WO2018202247A1 - Vorrichtung zum gewinnen von wasser aus einer umgebungsatmosphäre - Google Patents

Vorrichtung zum gewinnen von wasser aus einer umgebungsatmosphäre Download PDF

Info

Publication number
WO2018202247A1
WO2018202247A1 PCT/DE2018/100402 DE2018100402W WO2018202247A1 WO 2018202247 A1 WO2018202247 A1 WO 2018202247A1 DE 2018100402 W DE2018100402 W DE 2018100402W WO 2018202247 A1 WO2018202247 A1 WO 2018202247A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
water
housing
rotor blades
axis
Prior art date
Application number
PCT/DE2018/100402
Other languages
English (en)
French (fr)
Inventor
Manfred Jordan
Original Assignee
Mayser Holding Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayser Holding Gmbh & Co. Kg filed Critical Mayser Holding Gmbh & Co. Kg
Publication of WO2018202247A1 publication Critical patent/WO2018202247A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0024Rotating vessels or vessels containing movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0042Thermo-electric condensing; using Peltier-effect
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/047Treatment of water, waste water, or sewage by heating by distillation or evaporation using eolic energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the invention relates to a device for obtaining water, in particular drinking water, in which by means of a cold condenser dehumidifies air and thus water is collected.
  • WO 2016/033544 A1 describes a method and an AWG device for obtaining water, wherein air is dehumidified with a capacitor arranged in a ground hole and thus water is collected.
  • the dehumidified air is heated by solar energy to create convection that drives the flow of air through the borehole and condenser.
  • the invention has for its object to provide a device for recovering water from an ambient atmosphere, in which with low energy an effective and largely continuous water extraction should be possible.
  • the device should be used decentrally.
  • the capacitor comprises at least one actively driven rotor whose rotor blades consist of open-pored metal foam. If the capacitor comprises a plurality of rotors, these are rotatably arranged about a common axis of rotation.
  • the condenser includes one or more cooling elements.
  • the cooling elements are designed as Peltier element for active cooling of the rotor blades; but it can also be used for cooling a well-known refrigeration system with a refrigerant circuit.
  • the capacitor is umhaust of a tubular housing open on both sides, whose longitudinal axis is aligned as far as possible parallel to the axis of rotation of the rotors.
  • the longitudinal axis and the axis of rotation coincide.
  • the housing may have one or more water drainage openings.
  • a water collecting container is in fluid communication with these water drainage openings or is arranged in the end region of the housing such that water, which collects in the lower region of the housing and flows out of the housing open on both sides, runs directly into the water collecting container.
  • water-collecting device The water extraction by means of the above-described device for obtaining water, hereinafter referred to as water-collecting device, takes place as follows:
  • the one or more rotors are, for. B. offset by means of an electrically driven motor in a rotational movement.
  • the cooling elements for.
  • the rotor blades are made of open-celled metal foam to a tempera- cooled below ambient temperature. Preferably, a temperature of 3 ° C to 5 ° C is set below the ambient temperature.
  • the air Upon contact of the air with the actively cooled metal foam, it is cooled below its dew point, so that water condenses on the cooled rotor blades.
  • the use of metal foam allows a large contact area between cold metal and moist air.
  • the condensed water is driven radially from the rotor blades to the inner wall of the tubular housing due to the centrifugal forces.
  • the water then flows by gravity along the (inner) pipe wall and can be collected at one or more water outlets of the housing.
  • one of the two end regions of the housing open on both sides can also be formed as a water outlet.
  • the tubular housing is aligned with its longitudinal axis at an angle to the horizontal.
  • the water collected by the rotor blades flows down to the water drainage openings of the housing and / or to the edge of the housing open on both sides, from where it enters the water collecting container.
  • the electrical energy for operating the cooling elements can be provided by connecting the device to a public power grid.
  • the water collecting device has its own, self-sufficient power generation unit, the current, for example, from solar energy z. B. by means of photovoltaic cells, or from wind energy, for. B. by means of a rotor with aerodynamic rotor blades wins.
  • the water collecting device has a storage device for storing electrical current, ie a rechargeable storage for electrical energy, for. B. packet packaged lithium-ion batteries includes.
  • a storage device for storing electrical current ie a rechargeable storage for electrical energy, for. B. packet packaged lithium-ion batteries includes.
  • the power supply of the water collecting device for example for cooling the rotor blades of open-pored metal foam, completely via the storage device for storing electrical current, which thus also acts as a buffer for fluctuating Stromer Wegungs- or current supply conditions.
  • the advantage of the water collecting device according to the invention is the high air dehumidification efficiency due to the use of rotor blades made of open-pored metal foam.
  • the water collecting device can be fully used decentrally, since it has a self-sufficient power supply.
  • the rotor is driven by a motor, e.g. B. an electric motor driven.
  • a motor e.g. B. an electric motor driven.
  • it can also be provided to accomplish the drive by means of an additional, aerodynamically acting drive rotor whose wings are made of a solid material.
  • This drive rotor can be arranged on the same shaft on which the rotors of the capacitor sit, d. h., The drive rotor rotates about the same axis of rotation.
  • the drive rotor can likewise be enclosed by the tubular housing.
  • the tubular housing can also be designed in the manner of a nozzle, so that the wind entering the housing or the air sucked into the housing within the housing is accelerated.
  • the efficiency of the drive rotor can be increased.
  • the rotors of the capacitor can also be provided to use one or more of the rotors of the capacitor in addition to its function for dehumidifying the air and for generating the rotational movement.
  • This is achieved by at least one rotor in addition to the rotor blades made of metal foam and aerodynamically acting wings of a solid material.
  • alternately rotor blades made of metal foam and wings made of solid material can be mounted on the rotor hub.
  • the water collecting device may have a wind deflector which directs the wind targeted into the housing or on the wings of the aerodynamically acting rotors and a wind turbine.
  • a cooling element is attached to each rotor blade made of metal foam, for example, at the position where the rotor blade merges into the rotor hub.
  • electrically operated cooling elements for. B. Peltier elements
  • the power supply of the co-rotating on the rotor shaft cooling elements can be done by means of carbon brushes or inductively by means of coils in the rotating parts and statically fixed permanent magnets.
  • the open-pore metal foam of the rotor blades has a predetermined pore structure, which facilitates a radial outflow of the condensed water.
  • the pore diameter of the open-pore metal foam increases in the direction away from the axis of rotation of the rotor.
  • the rotor blades may be divided into two parts of open-pored metal foam, d. H. from two radially adjacent subregions, be constructed, wherein z. B. the arranged on the rotor hub portion has an open-pore metal foam having a first pore size and the metal foam of the radially outer portion of the rotor blade a second pore size, wherein the first pore size is smaller than the second pore size.
  • FIG. 1 shows a water-collecting device according to a first embodiment
  • FIG. 2 shows a water-collecting device according to a second embodiment
  • FIG. 3 shows the rotor of the capacitor according to one embodiment.
  • a first embodiment of the water collecting device illustrated in FIG. 1 comprises the rotors 1 whose rotor blades 2 are made of an open-pored metal foam.
  • the rotors 1 are mounted on the shaft 16, which is rotatable about the rotation axis 3.
  • the tubular housing 4 encloses the rotors 1, wherein the longitudinal axis 5 of the housing coincides with the axis of rotation 3.
  • the rotors 1 also comprise cooling elements, which are each mounted here in the form of Peltier elements 6 on the rotor blades 2 in the region of the rotor hub.
  • the arranged on the shaft 16 electric motor 1 1 offset the shaft 16 and thus the rotors 1 in a rotational movement.
  • the electric current for operating the motor 1 1 is provided by the current storage device 13, which is charged by the photovoltaic system 12 with sufficient Insolation.
  • the moist air 8 (symbolized here by the arrows) flows into the housing 4 and past the cooled rotor blades 2 or through the open-pore metal foam.
  • the air 8 is cooled below its dew point, i. H. condensation forms within the pores of the metal foam.
  • the dehumidified air 9 (symbolized by the arrows) flows out of the housing 4.
  • FIG. 2 illustrates a water-collecting device according to a second embodiment, wherein the device is oriented vertically, ie, the axis of rotation 3 is perpendicular.
  • the moist air 8 passes from above into the housing 4, wherein a possibly blowing wind is captured by the wind deflector 17 and directed to the rotor blades 2.
  • the moist air 8 Upon contact with the cooled rotor blades 2, the moist air 8 is cooled and dehumidified, whereby its density increases. Due to this increasing air density and the possibly acting wind pressure the air flows downwards.
  • the water collecting device has the drive rotor 15 which is set in rotation by the dry air 9 flowing downwards out of the housing 4. By coupling the generator 14 with the shaft 16, at least a portion of the current required to operate the Peltier elements 6 is generated.
  • This embodiment of the water-collecting device also has the current storage device 13 for supplying the Peltier elements 6 with current. The condensed and thrown to the inner wall of the housing 4 condensed water 7 runs along the wall down into the water collecting 10th
  • FIG. 3 shows an embodiment of the rotor 1 with the rotor blades 2 made of metal foam and aerodynamically acting blades 18 for driving the rotor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Centrifugal Separators (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Gewinnung von Wasser, insbesondere von Trinkwasser, bei der mittels eines kalten Kondensators Luft entfeuchtet und somit Wasser gesammelt wird. Der Kondensator umfasst wenigstens einen angetriebenen Rotor (1), dessen Rotorblätter (2) aus offenporigem Metallschaum bestehen. Zur aktiven Kühlung umfasst der Kondensator ein oder mehrere Kühlelemente. Der Kondensator ist von einem beidseitig offenen, rohrförmigem Gehäuse (4) umhaust, dessen Längsachse (5) weitestgehend parallel zu der Rotationsachse (3) der Rotoren (1) ausgerichtet ist. Das Gehäuse (4) kann ein oder mehrere Wasserablauföffnungen aufweisen. Ein Wasserauffangbehälter (10) steht in fluidischer Verbindung mit diesen Wasserablauföffnungen bzw. ist im Endbereich des Gehäuses derart angeordnet, dass das durch Luftentfeuchtung gewonnene Kondenswasser (7) in den Wasserauffangbehälter (10) läuft.

Description

Vorrichtung zum Gewinnen von Wasser aus einer Umgebungsatmosphäre
Die Erfindung betrifft eine Vorrichtung zur Gewinnung von Wasser, insbesondere von Trinkwasser, bei der mittels eines kalten Kondensators Luft entfeuchtet und somit Wasser gesammelt wird.
Die stetige Zunahme der Weltbevölkerung bringt einen fortwährend wachsenden Bedarf an Wasser, sowohl zur Versorgung der Menschen mit Trinkwasser als auch zur Bewässerung von Feldern sowie zur Viehzucht, mit sich. Aufgrund des Klimawandels verschärft sich diese Situation, insbesondere in ariden Gebieten.
Wassergewinnung mittels Meerwasserentsalzung ist nur in Küstengebieten wirtschaftlich möglich. Außerdem erfordert diese Methode einen nicht unerheblichen Energieeinsatz. Das Graben von Brunnen kann - abhängig von der Lage des Grundwasser- spiegeis - ebenfalls sehr kostspielig sein.
Weiterhin ist bekannt, Wasser mittels Entfeuchtung von Luft zu gewinnen. Derartige Geräte sind in der Fachwelt unter der Abkürzung AWG (Atmospheric Water Generator, englisch für atmosphärischer Wassergenerator) bekannt. Das von einem derarti- gen AWG implementierte Wassergewinnungsverfahren besteht darin, die Luftfeuchte an einem kalten bzw. zu kühlenden Kondensator auszukondensieren. Dieses Verfahren bietet sich insbesondere in Regionen weit ab vom Meer und ohne Zugang zum Grundwasser an. WO 2016/033544 A1 beschreibt ein Verfahren und eine AWG-Vorrichtung zur Gewinnung von Wasser, wobei mit einem in einem Erdloch angeordneten Kondensator Luft entfeuchtet und somit Wasser gesammelt wird. Zusätzlich wird die entfeuchtete Luft mittels Sonnenenergie erwärmt, um Konvektion zu erzeugen, die den Luftstrom durch das Erdloch und den Kondensator antreibt. Hierbei kann zwar energieeffizient Wasser gewonnen werden, doch ist die Ausbeute sowohl stark tageszeitabhängig als auch auf eine ausreichende Konvektion angewiesen.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Gewinnen von Wasser aus einer Umgebungsatmosphäre anzugeben, bei welcher mit geringem Energie- einsatz eine effektive und weitestgehend kontinuierliche Wassergewinnung möglich sein soll. Außerdem soll die Vorrichtung dezentral einsetzbar sein.
Diese Aufgabe wird durch die Vorrichtung mit den Merkmalen nach dem Anspruch 1 gelöst; zweckmäßige Weiterbildungen der Erfindung ergeben sich aus den Ansprüchen 2 bis 1 1 .
Gemäß der Erfindung wird eine Vorrichtung zur Gewinnung von Wasser, insbesondere von Trinkwasser, bei der mittels eines kalten Kondensators Luft entfeuchtet und somit Wasser gesammelt wird, bereitgestellt. Der Kondensator umfasst wenigstens einen aktiv angetriebenen Rotor, dessen Rotorblätter aus offenporigem Metallschaum bestehen. Umfasst der Kondensator mehrere Rotoren, so sind diese um eine gemeinsame Rotationsachse drehbar angeordnet. Zur aktiven Kühlung umfasst der Kondensator ein oder mehrere Kühlelemente. Bevorzugt sind die Kühlelemente als Peltier- element zur aktiven Kühlung der Rotorblätter ausgeführt; es kann aber auch eine hinlänglich bekannte Kälteanlage mit einem Kältemittelkreislauf zur Kühlung eingesetzt sein.
Der Kondensator ist von einem beidseitig offenen, rohrförmigem Gehäuse umhaust, dessen Längsachse weitestgehend parallel zu der Rotationsachse der Rotoren ausgerichtet ist. Vorzugsweise fallen die Längsachse und die Rotationsachse aufeinander.
Das Gehäuse kann ein oder mehrere Wasserablauföffnungen aufweisen. Ein Wasserauffangbehälter steht in fluidischer Verbindung mit diesen Wasserablauföffnungen bzw. ist im Endbereich des Gehäuses derart angeordnet, dass Wasser, welches sich im unteren Bereich des Gehäuses sammelt und aus dem beidseitig offenen Gehäuse herausfließt, direkt in den Wasserauffangbehälter läuft.
Die Wassergewinnung mittels der oben beschriebenen Vorrichtung zur Gewinnung von Wasser, im Folgenden als Wassersammeivorrichtung bezeichnet, erfolgt wie folgt:
Der oder die Rotoren werden, z. B. mittels eines elektrisch angetriebenen Motors, in eine Rotationsbewegung versetzt. Mittels des oder der Kühlelemente, z. B. der Peltier- elemente, werden die Rotorblätter aus offenporigem Metallschaum auf eine Tempera- tur unterhalb der Umgebungstemperatur gekühlt. Vorzugsweise wird eine Temperatur von 3°C bis 5°C unterhalb der Umgebungstemperatur eingestellt.
Feuchte Luft aus der Umgebung strömt durch das rohrförmige Gehäuse, in welchem sich die Rotoren drehen. Bei Kontakt der Luft mit dem aktiv gekühlten Metallschaum wird diese unterhalb ihres Taupunktes abgekühlt, sodass Wasser an den gekühlten Rotorblättern kondensiert. Hierbei ist durch die Verwendung von Metallschaum eine große Kontaktfläche zwischen kaltem Metall und feuchter Luft ermöglicht. Das auskondensierte Wasser wird aufgrund der Zentrifugalkräfte radial von den Rotorblättern an die innere Wandung des rohrförmigen Gehäuses getrieben. Sodann fließt das Wasser von der Schwerkraft getrieben entlang der (inneren) Rohrwandung und kann an einem oder mehreren Wasserauslässen des Gehäuses gesammelt werden. Hierbei kann auch einer der beiden Endbereiche des beidseitig offenen Gehäuses als Wasserauslass geformt sein.
Insbesondere kann vorgesehen sein, die Wassersammeivorrichtung derart aufzustellen, dass das rohrförmige Gehäuse mit seiner Längsachse in einem Winkel zu der Horizontalen ausgerichtet ist. Somit fließt das von den Rotorblättern gesammelte Wasser nach unten zu den Wasserablauföffnungen des Gehäuses und/oder zum Rand des beidseitig offenen Gehäuses, von wo es in den Wasserauffangbehälter gelangt.
Die elektrische Energie zum Betreiben der Kühlelemente, insbesondere der Peltier- elemente, kann durch Anschluss der Vorrichtung an ein öffentliches Stromnetz bereitgestellt werden. Vorzugsweise jedoch besitzt die Wassersammeivorrichtung eine eigene, autarke Stromerzeugungseinheit, die Strom beispielsweise aus der Sonnenenergie z. B. mittels Fotovoltaikzellen, oder aus der Windenergie, z. B. mittels eines Rotors mit aerodynamisch wirkenden Rotorflügeln, gewinnt.
Zudem kann vorgesehen sein, dass die Wassersammeivorrichtung eine Speichereinrichtung zur Speicherung von elektrischem Strom, d. h. einen wiederauf ladbaren Speicher für elektrische Energie, z. B. zu Zellpaketen verpackte Lithium-Ionen-Akkus, umfasst. Somit ist ein unterbrechungsfreier Betrieb gewährleistet, selbst wenn die Stromerzeugungseinheit kurzzeitig, z. B. in der Nacht, keinen Strom erzeugen kann. Es kann insbesondere vorgesehen sein, dass die Stromversorgung der Wassersammeivorrichtung, beispielweise zur Kühlung der Rotorblätter aus offenporigem Metallschaum, vollständig über die Speichereinrichtung zur Speicherung von elektrischem Strom erfolgt, die somit auch als Puffer für schwankende Stromerzeugungs- bzw. Strombereitstellungsbedingungen fungiert.
Der Vorteil der erfindungsgemäßen Wassersammeivorrichtung ist die hohe Luftent- feuchtungseffizienz aufgrund der Verwendung von Rotorblättern aus offenporigem Metallschaum. Zusätzlich kann die Wassersammeivorrichtung uneingeschränkt de- zentral eingesetzt werden, da sie über eine autarke Stromversorgung verfügt.
Gemäß einer Ausführungsform der Wassersammeivorrichtung wird der Rotor von einem Motor, z. B. einem Elektromotor, angetrieben. Es kann jedoch auch vorgesehen sein, den Antrieb mittels eines zusätzlichen, aerodynamisch wirkenden Antriebsrotors, dessen Flügel aus einem Vollmaterial bestehen, zu bewerkstelligen. Dieser Antriebsrotor kann auf derselben Welle angeordnet sein, auf der auch die Rotoren des Kondensators sitzen, d. h., der Antriebsrotor rotiert um dieselbe Rotationsachse. Der Antriebsrotor kann hierbei ebenfalls von dem rohrförmi- gen Gehäuse eingehaust sein.
Das rohrförmige Gehäuse kann außerdem nach Art einer Düse gestaltet sein, sodass der in das Gehäuse eintretende Wind bzw. die in das Gehäuse gesaugte Luft innerhalb des Gehäuses beschleunigt wird. Somit kann die Effizienz des Antriebsrotors er- höht werden.
Es kann auch vorgesehen sein, einen oder mehrere der Rotoren des Kondensators neben ihrer Funktion zur Entfeuchtung der Luft auch für die Erzeugung der Rotationsbewegung zu verwenden. Dies wird erreicht, indem wenigstens ein Rotor neben den Rotorblättern aus Metallschaum auch aerodynamisch wirkende Flügel aus einem Vollmaterial aufweist. Beispielsweise können abwechselnd Rotorblätter aus Metallschaum und Flügel aus Vollmaterial auf der Rotornabe montiert sein. Durch eine düsenförmige Ausgestaltung des rohrförmigen Gehäuses kann so bereits bei geringen Windgeschwindigkeiten ein ausreichender Antrieb der Rotoren des Kondensators erzielt werden. Zusätzlich kann die Wassersammeivorrichtung eine Windleiteinrichtung aufweisen, die den Wind gezielt in das Gehäuse bzw. auf die Flügel der aerodynamisch wirkenden Rotoren bzw. einer Windenergieanlage lenkt.
Gemäß einer Ausführungsform der Wassersammeivorrichtung ist an jedem Rotorblatt aus Metallschaum jeweils ein Kühlelement angebracht, beispielsweise an der Position, an der das Rotorblatt in die Rotornabe übergeht. Bei Verwendung von elektrisch arbeitenden Kühlelementen, z. B. Peltierelementen, kann die Stromversorgung der auf der Rotorwelle mitdrehenden Kühlelemente mittels Kohlebürsten oder induktiv mittels Spulen in den rotierenden Teilen und statisch fixierten Permanentmagneten erfolgen.
Zur effektiveren Sammlung von Wasser kann vorgesehen sein, dass der offenporige Metallschaum der Rotorblätter eine vorgegebene Porenstruktur aufweist, die ein radiales Abfließen des kondensierten Wassers erleichtert. Hierfür ist es vorteilhaft, dass der Porendurchmesser des offenporigen Metallschaums in Richtung weg von der Rotati- onsachse des Rotors zunimmt.
Alternativ oder zusätzlich können die Rotorblätter aus offenporigem Metallschaum zweigeteilt, d. h. aus zwei radial nebeneinander liegenden Teilbereichen, aufgebaut sein, wobei z. B. der an der Rotornabe angeordnete Teilbereich einen offenporigen Metallschaum mit einer ersten Porengröße und der Metallschaum des in radialer Richtung äußeren Teilbereiches des Rotorblattes eine zweite Porengröße aufweist, wobei die erste Porengrößer kleiner als die zweite Porengröße ist.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen mit Bezug auf die beiliegenden Figuren veranschaulicht, wobei gleiche oder ähnliche Merkmale mit gleichen Bezugszeichen versehen sind; hierbei zeigen schematisch:
Figur 1 eine Wassersammeivorrichtung gemäß einer ersten Ausführungsform; Figur 2 eine Wassersammeivorrichtung gemäß einer zweiten Ausführungsform; und
Figur 3 den Rotor des Kondensators gemäß einer Ausführungsform. Eine in Figur 1 veranschaulichte erste Ausführungsform der Wassersammelvorrich- tung umfasst die Rotoren 1 , deren Rotorblätter 2 aus einem offenporigen Metallschaum sind. Die Rotoren 1 sind auf der Welle 16 angebracht, die um die Rotationsachse 3 drehbar ist. Das rohrförmige Gehäuse 4 umschließt die Rotoren 1 , wobei die Längsachse 5 des Gehäuses mit der Rotationsachse 3 zusammenfällt.
Die Rotoren 1 umfassen noch Kühlelemente, die hier in Form von Peltierelementen 6 jeweils an den Rotorblättern 2 im Bereich der Rotornabe angebracht sind. Der an der Welle 16 angeordnete Elektromotor 1 1 versetzt die Welle 16 und somit die Rotoren 1 in eine Rotationsbewegung.
Der elektrische Strom zum Betrieb des Motors 1 1 wird von der Stromspeichereinrichtung 13 bereitgestellt, die von der Fotovoltaikanlage 12 bei ausreichender Insolation aufgeladen wird. Im Betrieb der Wassersammeivorrichtung strömt die feuchte Luft 8 (hier durch die Pfeile symbolisiert) in das Gehäuse 4 ein und an den gekühlten Rotorblättern 2 vorbei bzw. durch den offenporigen Metallschaum hindurch. An dem kalten Metallschaum wird die Luft 8 unter ihren Taupunkt abgekühlt, d. h. es bildet sich Kondenswasser innerhalb der Poren des Metallschaums. Die entfeuchtete Luft 9 (durch die Pfeile sym- bolisiert) strömt aus dem Gehäuse 4.
Aufgrund der rotierenden Bewegung der Rotoren 1 um die Rotationsachse 3 wird das Kondenswasser 7 von der Fliehkraft getrieben aus den Poren des offenporigen Metallschaums an die innere Wandung des Gehäuses 4 geschleudert, von wo es nach unten abfließt. Somit sammelt sich das Kondenswasser 7 im unteren Bereich des Gehäuses 4. Der Wasserauffangbehälter 10 fängt das aus dem Gehäuse 4 herausfließende Kondenswasser 7 auf. Figur 2 veranschaulicht eine Wassersammeivorrichtung gemäß einer zweiten Ausführungsform, wobei die Vorrichtung vertikal ausgerichtet ist, d. h., die Rotationsachse 3 steht lotrecht. Die feuchte Luft 8 gelangt von oben in das Gehäuse 4, wobei ein ggf. wehender Wind von der Windleiteinrichtung 17 eingefangen und auf die Rotorblätter 2 gelenkt wird. Bei Kontakt mit den gekühlten Rotorblättern 2 wird die feuchte Luft 8 abgekühlt und entfeuchtet, wodurch ihre Dichte ansteigt. Aufgrund dieser zunehmenden Luftdichte sowie des ggf. einwirkenden Winddruckes strömt die Luft nach unten. Zusätzlich weist die Wassersammeivorrichtung den Antriebsrotor 15 auf, der von der nach unten aus dem Gehäuse 4 strömenden trockenen Luft 9 in Rotation versetzt wird. Durch die Kopplung des Generators 14 mit der Welle 16 wird zumindest ein Teil des zum Betrieb der Peltierelemente 6 benötigten Stroms erzeugt. Auch diese Ausführungsform der Wassersammeivorrichtung weist die Stromspeichereinrichtung 13 zur Versorgung der Peltierelemente 6 mit Strom auf. Das auskondensierte und an die innere Wandung des Gehäuses 4 geschleuderte Kondenswasser 7 läuft entlang der Wandung nach unten in die Wasserauffangbehälter 10.
Figur 3 zeigt eine Ausgestaltung des Rotors 1 mit den Rotorblättern 2 aus Metall- schäum und aerodynamisch wirkenden Flügeln 18 zum Antrieb des Rotors 1 .
Liste der verwendeten Bezugszeichen
1 Rotor
2 Rotorblatt
3 Rotationsachse
4 rohrförmiges Gehäuse
5 Längsachse
6 Peltierelement
7 Kondenswasser
8 feuchte Luft
9 trockene Luft
10 Wasserauffangbehälter
1 1 Motor
12 Solarenergie-Stromerzeugungseinheit / Fotovoltaikanlage 13 Stromspeichereinrichtung
14 Generator
15 Antriebsrotor
16 Welle
17 Windleiteinrichtung
18 Flügel

Claims

Patentansprüche
1 . Vorrichtung zum Gewinnen von Wasser aus einer Umgebungsatmosphäre, aufweisend:
- mindestens einen um eine Rotationsachse (3) drehbar gelagerten Rotor (1 ), der Rotorblätter (2) aus offenporigem Metallschaum umfasst,
ein den mindestens einen Rotor (1 ) umhausendes, beidseitig offen rohrförmi- ges Gehäuse (4), dessen Längsachse (5) parallel zur Rotationsachse (3) angeordnet ist,
- wenigstens ein Kühlelement, das in thermischem Kontakt zu den Rotorblättern (2) steht, und
einen Wasserauffangbehälter (10), der in fluidischer Verbindung mit wenigstens einer Wasserablauföffnung des Gehäuses (4) steht.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühlelement ein Peltierelement (6) ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie einen mit dem wenigstens einen Rotor (1 ) gekoppelten Motor (1 1 ) zum Antreiben desselben umfasst.
4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie einen weiteren, um die Rotationsachse (3) drehbaren Antriebsrotor (15) umfasst, dessen Rotorblätter (2) aus einem Vollmaterial sind, wobei der Antriebsrotor (15) mittels einer Welle (16) drehfest mit dem wenigstens einen Rotor (1 ) verbunden ist.
5. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine erste Hälfte der Rotorblätter (2) des wenigstens einen Rotors (1 ) aus Metallschaum und eine zweite Hälfte der Rotorblätter (2) Flügel (18) aus einem Vollmaterial sind.
6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Solarenergie-Stromerzeugungseinheit (12) umfasst.
7. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie eine Windenergie-Stromerzeugungseinheit umfasst.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass sie eine Windleit- einrichtung (17) umfasst, mittels derer Luft in das Gehäuse (4) einleitbar und auf Rotorblätter eines Rotors der Windenergie-Stromerzeugungseinheit lenkbar ist.
9. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Speichereinrichtung (13) zur Speicherung von elektrischem Strom umfasst.
10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass an jedem Rotorblatt (2) ein Kühlelement befestigt ist.
1 1 . Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Porendurchmesser des offenporigen Metallschaums in Richtung weg von der Rotationsachse (3) des Rotors (1 ) zunimmt.
- Hierzu zwei Blatt Zeichnung -
PCT/DE2018/100402 2017-05-05 2018-04-25 Vorrichtung zum gewinnen von wasser aus einer umgebungsatmosphäre WO2018202247A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017109658.2A DE102017109658A1 (de) 2017-05-05 2017-05-05 Vorrichtung zum Gewinnen von Wasser aus einer Umgebungsatmosphäre
DE102017109658.2 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018202247A1 true WO2018202247A1 (de) 2018-11-08

Family

ID=62528189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100402 WO2018202247A1 (de) 2017-05-05 2018-04-25 Vorrichtung zum gewinnen von wasser aus einer umgebungsatmosphäre

Country Status (2)

Country Link
DE (1) DE102017109658A1 (de)
WO (1) WO2018202247A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339151A (zh) * 2018-11-21 2019-02-15 赵彦强 一种戈壁滩夜用的集水装置
KR102151234B1 (ko) * 2020-01-14 2020-09-02 최대수 탈수장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH716496A2 (de) 2019-08-14 2021-02-15 Msp Construction Ag Anlage zur Gewinnung von Energie und/oder Wasser.
FR3113723A1 (fr) * 2020-08-25 2022-03-04 Joel Kasarherou Dispositif générateur thermoélectrique d’eau atmosphérique par jet impactant
CN112983743B (zh) * 2021-03-15 2024-05-24 南京全拓机电设备有限公司 一种能源再生用沙漠风能发电冷却集水设备
DE202022001285U1 (de) 2022-05-31 2022-06-24 Dieter Zedow Photovoltaisch betriebene Vorrichtung zur Bewässerung von Pflanzen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020073715A1 (en) * 2000-12-15 2002-06-20 Logan Mark A. Compact volatile organic compound removal system
DE102004021166A1 (de) * 2004-04-29 2005-11-24 Ufermann, Rüdiger Anordnung zur Wassergewinnung aus natürlicher Luftfeuchte
US20060065002A1 (en) * 2004-09-27 2006-03-30 Humano, Ltd. System and method for extracting potable water from atmosphere
US20120204725A1 (en) * 2011-02-15 2012-08-16 Lta Corporation Systems for Water Extraction from Air
WO2016033544A1 (en) 2014-08-29 2016-03-03 Vena Corporation Apparatus and methods for water collection
US20160145837A1 (en) * 2014-11-23 2016-05-26 Seyed Farid ABRARI Wind Qanat, an Apparatus for Atmospheric Moisture Recovery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020073715A1 (en) * 2000-12-15 2002-06-20 Logan Mark A. Compact volatile organic compound removal system
DE102004021166A1 (de) * 2004-04-29 2005-11-24 Ufermann, Rüdiger Anordnung zur Wassergewinnung aus natürlicher Luftfeuchte
US20060065002A1 (en) * 2004-09-27 2006-03-30 Humano, Ltd. System and method for extracting potable water from atmosphere
US20120204725A1 (en) * 2011-02-15 2012-08-16 Lta Corporation Systems for Water Extraction from Air
WO2016033544A1 (en) 2014-08-29 2016-03-03 Vena Corporation Apparatus and methods for water collection
US20160145837A1 (en) * 2014-11-23 2016-05-26 Seyed Farid ABRARI Wind Qanat, an Apparatus for Atmospheric Moisture Recovery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339151A (zh) * 2018-11-21 2019-02-15 赵彦强 一种戈壁滩夜用的集水装置
CN109339151B (zh) * 2018-11-21 2020-11-13 苏师大半导体材料与设备研究院(邳州)有限公司 一种戈壁滩夜用的集水装置
KR102151234B1 (ko) * 2020-01-14 2020-09-02 최대수 탈수장치

Also Published As

Publication number Publication date
DE102017109658A1 (de) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2018202247A1 (de) Vorrichtung zum gewinnen von wasser aus einer umgebungsatmosphäre
EP1736665B1 (de) Turmentfeuchtung einer Windenergieanlage
DE102004046700B4 (de) Windenergieanlage mit einer Generatorkühlung
EP2255088B1 (de) Windenergieanlage und verfahren zum betreiben einer windenergieanlage
DE10245103A1 (de) Schaltschrank für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
EP2000668A1 (de) Windkraftturm mit passiver Kühlvorrichtung
EP2636131A2 (de) Windenergieanlage mit synchrongenerator sowie langsam drehender synchrongenerator
DE3202884A1 (de) Windradgenerator
EP2521859A2 (de) Windenergieanlage
WO2019086069A1 (de) Windenergieanlage mit co2 sammler und windenergieanlagen-co2-sammler-steuerungs- bzw. betriebsverfahren
EP4015818B1 (de) Windenergieanlage
DE102012000129B4 (de) Verfahren und Vorrichtung zum Gewinnen von Trinkwasser
DE102011108512A1 (de) Windkraftanlage
EP2546595A1 (de) Kühlvorrichtung und Kühlverfahren
DE102018103975A1 (de) Windkraftanlage
WO1981000435A1 (en) Wind turbine having a shaft arranged perpendicularly with respect to the wind direction on a vertical axis,and flettner rotors parallel to the shaft
DE102004060230A1 (de) Windkraftanlage mit zwei in der Horizontalebene miteinander gekoppelten in Gegenrichtung drehenden Rotoren mit vertikalen Drehachsen
AT518863B1 (de) Windkraftanlage
DE102015216931B4 (de) Verfahren zum Betreiben einer Windkraftanlage
DE202012012783U1 (de) Vorrichtung und System zum Umwandeln kinetischer Energie eines Abluftstromes in elektrische Energie
DE102014001114B3 (de) Aufwindkraftwerk / Aufwindzentrifuge
EP3565970B1 (de) Windenergieanlage und verwendung eines tropfenabscheiders in einem windenergieanlagenrotor
DE102011050462A1 (de) Windkraftanlage
DE212008000104U1 (de) Wind-Energieanlage
EP3458724A1 (de) Anordnung und verfahren zur gewinnung von wasser aus einem feuchten gasgemisch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18729023

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18729023

Country of ref document: EP

Kind code of ref document: A1