WO2018202217A1 - 传输参数处理方法及装置 - Google Patents

传输参数处理方法及装置 Download PDF

Info

Publication number
WO2018202217A1
WO2018202217A1 PCT/CN2018/091566 CN2018091566W WO2018202217A1 WO 2018202217 A1 WO2018202217 A1 WO 2018202217A1 CN 2018091566 W CN2018091566 W CN 2018091566W WO 2018202217 A1 WO2018202217 A1 WO 2018202217A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
configuration information
transmission
transmission parameter
base station
Prior art date
Application number
PCT/CN2018/091566
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
鲁照华
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018202217A1 publication Critical patent/WO2018202217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates to the field of wireless communication technologies, for example, to a transmission parameter processing method and apparatus.
  • LTE Long Term Evolution
  • SRS uplink measurement pilot sounding reference signal
  • MIMO multiple-input multiple-output
  • the present disclosure provides a transmission parameter processing method and apparatus, which can save control signaling overhead.
  • the present disclosure provides a transmission parameter processing method, including: a base station transmitting, by using a first physical layer signaling, precoding first configuration information that is applied to a first time window; and the base station passes the first physical layer signaling according to a preset condition or The second physical layer signaling transmits pre-encoded second configuration information that acts on the second time window.
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program executable on the processor and operable on the processor: the transmission parameter processing method of any of the above.
  • the present disclosure also provides a base station including the above transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement a transmission parameter processing method of any of the above.
  • the disclosure also provides a transmission parameter processing method, including:
  • the terminal detects precoding first configuration information that is applied to the first time window by using the first physical layer signaling; and detects the precoding second configuration that is applied to the second time window by using the first physical layer signaling or the second physical layer signaling information;
  • the terminal determines the final precoding configuration information according to at least one of the precoding first configuration information and the precoding second configuration information.
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program for performing the transmission parameter processing method of any of the above.
  • the present disclosure also provides a terminal including the above transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the transmission parameter processing method of any of the above.
  • the present disclosure further provides a method for processing a transmission parameter, comprising: pre-configuring, by a base station, multiple sets of precoding configuration information that is applied to a first time window by using signaling;
  • the base station selects one or more sets of precoding configuration information that is applied to the second time window from the pre-configured multiple sets of precoding configuration information by using physical layer signaling for uplink transmission and sends precoding configuration indication information to the terminal.
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the memory and operable on the processor, the computer program for performing the transmission parameter processing method of any of the above.
  • the present disclosure also provides a base station including the above-described transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the transmission parameter processing method of any of the above.
  • the disclosure also provides a transmission parameter processing method, including:
  • the terminal determines, by using signaling sent by the base station, multiple sets of precoding configuration information that is applied to the first time window;
  • the terminal detects the coding configuration indication information that is applied to the second time window in the physical downlink control channel, and performs uplink transmission according to the precoding configuration information indicated by the coding configuration indication information.
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the memory and operable on the processor: the above-described transmission parameter processing method.
  • the present disclosure also provides a terminal including the above-described transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the above described transmission parameter processing method.
  • the disclosure also provides a transmission parameter processing method, including:
  • the base station selects X SRS resource subsets from the sounding reference signal SRS resources;
  • the base station sends indication information of the X SRS resource subsets to the terminal.
  • the X SRS resource subsets are used to determine transmission parameters of the Y transmission resource groups;
  • the base station separately configures corresponding transmission parameter indication information for at least one of the X SRS resource subsets and the Y transmission resource groups;
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program executable on the processor and operable on the processor: the transmission parameter processing method of any of the above.
  • the present disclosure also provides a base station including the above-described transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the transmission parameter processing method of any of the above.
  • the disclosure also provides a transmission parameter processing method, including:
  • the terminal determines X subsets of SRS resources from the sounding reference signal SRS resources; wherein X is a natural number greater than or equal to 1;
  • Y transmission resource groups Determining, by the terminal, Y transmission resource groups and corresponding transmission resources; wherein the Y transmission resource groups are used for transmission of one or more uplink transmission coding blocks, where Y is a natural number greater than or equal to 1;
  • the terminal determines a correspondence between the X SRS resource subsets and the Y transmission resource groups
  • the terminal determines transmission parameters of the Y transmission resource groups according to the X SRS resource subsets.
  • the present disclosure also provides a transmission parameter processing apparatus including a processor, a memory, and a computer program executable on the processor and operable on the processor: the transmission parameter processing method of any of the above.
  • the present disclosure also provides a terminal including the above-described transmission parameter processing apparatus.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the transmission parameter processing method of any of the above.
  • the transmission parameter processing method and apparatus provided by the present disclosure can save the overhead of control signaling.
  • FIG. 1 is a schematic flowchart of a method for processing a transmission parameter provided by an embodiment
  • FIG. 2 is a schematic flowchart of a method for processing a transmission parameter provided by another embodiment
  • FIG. 3 is a schematic diagram of implementation of a time window provided by an embodiment
  • FIG. 4 is a schematic flowchart of a transmission parameter processing method according to another embodiment
  • FIG. 5 is a schematic flowchart of a transmission parameter processing method according to another embodiment
  • FIG. 6 is a schematic diagram of configuration precoding configuration information and precoding configuration information indicating selection according to an embodiment
  • FIG. 7 is a schematic flowchart diagram of a transmission parameter processing method according to another embodiment.
  • FIG. 8 is a schematic diagram of dividing a SRS resource subset according to a time domain symbol group or a Slot group to which an SRS belongs according to an embodiment
  • FIG. 9 is a schematic diagram of a correspondence between a subset of SRS resources and a group of transmission resources provided by an embodiment
  • FIG. 10 is a schematic flowchart diagram of a transmission parameter processing method according to another embodiment.
  • FIG. 11 is a schematic diagram of determining a transmission parameter of a transmission resource sub-group by using a subset of SRS resources provided by an embodiment.
  • FIG. 1 is a schematic flowchart of a method for processing a transmission parameter according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
  • the base station transmits precoding first configuration information that is applied to the first time window by using the first physical layer signaling.
  • the precoding first configuration information is applied to the first time window T1, and the first time window T1 may be a pre-agreed time window, such as a slot.
  • the acting on the first time window means that if the pre-coding first configuration information is to be valid, it is valid in the first time window.
  • the length of the first time window T1 may be indicated in the first physical layer control signaling.
  • the first time window T1 may also adopt an event definition manner, for example, the start time of the T1 is the time for precoding the first configuration information, and the end time of the T1 is the one of the received signaling information. time.
  • the precoding first configuration information comprises one or more of the following information:
  • Subband number information subband division indication information, subband selection information, subband precoding information, subband precoding codebook configuration information, and maximum transmission layer number information.
  • the base station transmits pre-coding second configuration information that is applied to the second time window by using the first physical layer signaling or the second physical layer signaling according to a preset condition.
  • the pre-set conditions may be, for example, a current channel state or interference condition, and the like.
  • the pre-encoded second configuration information acts on the second time window T2.
  • the second time window T2 may be a pre-agreed time window, such as a slot or a plurality of slots. Wherein, acting on the second time window means that if the pre-encoding second configuration information is to be valid, it is valid in the second time window.
  • the size of the second time window T2 may be a slot, such as a slot for receiving the second configuration information, and the second time window T2 may also be a plurality of slots.
  • the second time window may be indicated in the first physical layer control signaling, and may also be determined according to the received time of the second physical layer control signaling.
  • the pre-encoded second configuration information comprises one or more of the following information:
  • Subband number information subband division indication information, subband selection information, subband precoding information, subband precoding codebook configuration information, and maximum transmission layer number information.
  • the second time window T2 may be pre-agreed by the transceiver end, such as a base station and the terminal, or may be configured by the base station.
  • the pre-encoded second configuration information may be independent information.
  • the precoding the second configuration information takes precedence over the precoding the first configuration information, and the second configuration information is precoded.
  • the pre-coding second configuration information may also be non-independent information, and the pre-coding second configuration information and the pre-coding first configuration information are combined in the pre-coding second configuration information effective time. Determining the final precoding configuration information; or precoding the second configuration information to overwrite the precoding first configuration information.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: transmitting, by the first physical layer signaling, precoding according to the first time window a configuration information; precoding the second configuration information acting on the second time window by the first physical layer signaling or the second physical layer signaling according to a preset condition.
  • a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the processor and operable on the processor: transmitting, by the first physical layer signaling, precoding according to the first time window a configuration information; precoding the second configuration information acting on the second time window by the first physical layer signaling or the second physical layer signaling according to a preset condition.
  • the embodiment further provides a base station, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, at least the following steps are implemented: the first physical layer signaling is used to Precoding the first configuration information of the first time window; and transmitting the precoding second configuration information acting on the second time window by using the first physical layer signaling or the second physical layer signaling according to a preset condition.
  • FIG. 2 is a schematic flowchart of a transmission parameter processing method according to another embodiment. As shown in FIG. 2, the method includes the following steps:
  • step 200 the terminal detects precoding first configuration information acting on the first time window by using the first physical layer signaling.
  • the precoding first configuration information acts on the first time window T1
  • the first time window T1 may be a pre-agreed time window, such as a slot.
  • the length of the first time window T1 may be indicated in the first physical layer control signaling.
  • the first time window T1 may also adopt an event definition manner, for example, the start time of the T1 is the time for precoding the first configuration information, and the end time of the T1 is the one of the received signaling information. time.
  • the precoding first configuration information comprises one or more of the following information:
  • Subband number information subband division indication information, subband selection information, subband precoding information, subband precoding codebook configuration information, and maximum transmission layer number information.
  • step 210 the terminal detects pre-coding second configuration information acting on the second time window by using the first physical layer signaling or the second physical layer signaling.
  • the pre-encoded second configuration information acts on the second time window T2.
  • the second time window T2 may be a pre-agreed time window, such as a slot or a plurality of slots.
  • the second time window may be indicated in the first physical layer control signaling, and may also be determined according to the received time of the second physical layer control signaling.
  • the pre-encoded second configuration information comprises one or more of the following information:
  • Subband number information subband division indication information, subband selection information, subband precoding information, subband precoding codebook configuration information, and maximum transmission layer number information.
  • the size of the second time window T2 may be a slot, such as a slot for receiving the second configuration information, and the second time window T2 may also be a plurality of slots.
  • the second time window T2 may be pre-agreed by the transceiver end, such as a base station and the terminal, or may be configured by the base station.
  • step 220 the terminal determines the final precoding configuration information according to at least one of the precoding first configuration information and the precoding second configuration information.
  • step 220 when the terminal detects the pre-encoding second configuration information, step 220 includes:
  • the terminal may replace the pre-encoded first configuration information with the pre-encoded second configuration information to determine final pre-coding configuration information;
  • the terminal combines the precoding second configuration information and the precoding first configuration information to determine the final precoding configuration information during the effective time of precoding the second configuration information.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: detecting, by the first physical layer signaling, a precoding function applied to the first time window a configuration information; detecting, by the first physical layer signaling or the second physical layer signaling, precoding second configuration information that is applied to the second time window; and according to at least one of the precoding first configuration information and the precoding second configuration information One determines the final precoding configuration information.
  • a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the processor and operable on the processor: detecting, by the first physical layer signaling, a precoding function applied to the first time window a configuration information; detecting, by the first physical layer signaling or the second physical layer signaling, precoding second configuration information that is applied to the second time window; and according to at least one of the precoding first configuration information and the precoding second configuration information One determines the final precoding configuration information.
  • the embodiment further provides a terminal, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, at least the following steps are implemented: detecting by the first physical layer signaling Decoding first configuration information of the first time window; detecting precoding second configuration information acting on the second time window by using the first physical layer signaling or the second physical layer signaling; and precoding the first configuration information and the pre At least one of the encoded second configuration information determines final precoding configuration information.
  • FIG. 3 is a schematic diagram of an implementation of a time window according to an embodiment. As shown in FIG. 3, precoding first configuration information is applied to a first time window T1; wherein two slots are respectively used as a second time window T2, and precoding is performed. The second configuration information acts on the second time window T2.
  • the overhead is compressed by the correlation of the precoding configuration information in the time domain by the transmission parameter processing method shown in FIGS. 1 and 2. In this way, when the pre-coding first configuration information does not need to be changed, the pre-coding second configuration information is not sent, thereby effectively saving control overhead.
  • FIG. 4 is a schematic flowchart of a transmission parameter processing method according to another embodiment. As shown in FIG. 4, the method includes the following steps:
  • step 400 the base station pre-configures multiple sets of precoding configuration information applied to the first time window by signaling and transmits.
  • the plurality of sets of precoding configuration information are applied to the first time window T1, and the first time window T1 may be a pre-agreed time window, such as a slot.
  • the length of the first time window T1 may be indicated in the first physical layer control signaling.
  • the first time window T1 may also adopt an event definition manner, for example, the start time of the T1 is the time for precoding the first configuration information, and the end time of the T1 is the one of the received signaling information. time.
  • Radio Resource Control (RRC) signaling, Media Access Control (MAC) signaling, or physical layer signaling may be used.
  • the precoding configuration information includes one or more of the following:
  • Codebook selection information codeword set selection information, precoding granularity information, subband selection information, precoding indication information, subband number information, subband division information, precoding mode information, and maximum transmission layer number information.
  • pre-configuring the plurality of sets of precoding configuration information includes at least one of the following:
  • the base station may separately perform different precoding configurations for different transmission layer numbers to form multiple sets of precoding configuration information
  • the base station may perform different precoding configurations for different SRS ports or SRS port groups or SRS resources to form multiple sets of precoding configuration information; the base stations may be different for different User equipment (UE) performs different precoding configurations to form multiple sets of precoding configuration information.
  • UE User equipment
  • the base station may separately perform different precoding configurations for different links to form multiple sets of precoding configuration information
  • the base station can perform different precoding configurations for different antenna panels to form multiple sets of precoding configuration information.
  • the base station can separately perform different precoding configurations for the Demodulation Reference Signal (DMRS) and the Data Channel to form multiple sets of precoding configuration information.
  • DMRS Demodulation Reference Signal
  • Data Channel Data Channel
  • the base station may perform different precoding configurations for different DMRS port groups or layer groups to form multiple sets of precoding configuration information.
  • the base station can perform different precoding configurations for different transmission modes or transmission modes, respectively, to form multiple sets of precoding configuration information.
  • step 410 the base station selects one or more sets of precoding configuration information acting on the second time window from the pre-configured multiple sets of precoding configuration information by using physical layer signaling for uplink transmission and transmitting precoding configuration indication information. Give the terminal.
  • the selected coding configuration indication information of the precoding configuration information acts on the second time window T2.
  • the second time window T2 may be a pre-agreed time window, such as a slot or a plurality of slots.
  • the second time window may be indicated in the first physical layer control signaling, and may also be determined according to the received time of the second physical layer control signaling.
  • the precoding configuration information includes one or more of the following:
  • Codebook selection information codeword set selection information, precoding granularity information, subband selection information, precoding indication information, subband number information, subband division information, precoding mode information, and maximum transmission layer number information.
  • the size of the second time window T2 may be a slot, such as a slot for receiving the configuration configuration indication information; and the size of the second time window T2 may also be multiple slots.
  • the second time window T2 may be pre-agreed by the transceiver end, such as a base station and the terminal, or may be configured by the base station.
  • the base station may select one or more sets of precoding configuration information from the pre-configured multiple sets of precoding configuration information for uplink transmission according to the current channel state or the interference situation.
  • the precoding configuration indication information may be carried in the physical layer control signaling.
  • the base station may separately perform precoding configuration information selection for the DMRS, the data channel, or the control channel.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: pre-configuring a plurality of sets of precoding configuration information acting on the first time window by signaling And transmitting, by using physical layer signaling, one or more sets of precoding configuration information acting on the second time window are selected from the pre-configured multiple sets of precoding configuration information for uplink transmission and transmitting precoding configuration indication information to the terminal.
  • a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the processor and operable on the processor: pre-configuring a plurality of sets of precoding configuration information acting on the first time window by signaling And transmitting, by using physical layer signaling, one or more sets of precoding configuration information acting on the second time window are selected from the pre-configured multiple sets of precoding configuration information for uplink transmission and transmitting precoding configuration indication information to the terminal.
  • the embodiment further provides a base station, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, at least the following steps are implemented: pre-configuring by signaling to the first time Multiple sets of precoding configuration information of the window are sent and sent; and one or more sets of precoding configuration information acting on the second time window are selected from the pre-configured sets of precoding configuration information for uplink transmission and transmission by physical layer signaling. Precoding configuration indication information to the terminal.
  • FIG. 5 is a schematic flowchart of a transmission parameter processing method according to another embodiment. As shown in FIG. 5, the method includes the following steps:
  • step 500 the terminal determines multiple sets of precoding configuration information acting on the first time window by using signaling sent by the base station.
  • the plurality of sets of precoding configuration information are applied to the first time window T1, and the first time window T1 may be a pre-agreed time window, such as a slot.
  • the length of the first time window T1 may be indicated in the first physical layer control signaling.
  • the first time window T1 may also adopt an event definition manner, for example, the start time of the T1 is the time for precoding the first configuration information, and the end time of the T1 is the one of the received signaling information. time.
  • the coding configuration indication information may be carried in the physical layer control signaling.
  • step 510 the terminal detects the coding configuration indication information that is applied to the second time window in the physical downlink control channel, and performs uplink transmission according to the precoding configuration information indicated by the coding configuration indication information.
  • the encoding configuration indication information acts on the second time window T2.
  • the second time window T2 may be a pre-agreed time window, such as a slot or a plurality of slots.
  • the size of the second time window T2 may be a slot, such as a slot for which the terminal receives the pre-coded second configuration information; and the size of the second time window T2 may also be multiple slots.
  • the second time window may be indicated in the first physical layer control signaling, and may also be determined according to the received time of the second physical layer control signaling.
  • the second time window T2 may be pre-agreed by the transceiver end, such as a base station and the terminal, or may be configured by the base station.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: detecting, by signaling, a plurality of sets of precoding configuration information acting on the first time window; The coding configuration indication information that is applied to the second time window is detected by the physical layer signaling, and the uplink transmission is performed according to the precoding configuration information indicated by the coding configuration indication information.
  • a transmission parameter processing apparatus including a processor, a memory, and a computer program stored on the processor and operable on the processor: detecting, by signaling, a plurality of sets of precoding configuration information acting on the first time window; The coding configuration indication information that is applied to the second time window is detected by the physical layer signaling, and the uplink transmission is performed according to the precoding configuration information indicated by the coding configuration indication information.
  • the embodiment further provides a terminal, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, at least the following steps are implemented: detecting the first time window by signaling The plurality of sets of precoding configuration information; the coding configuration indication information that is applied to the second time window is detected by the physical layer signaling, and the uplink transmission is performed according to the precoding configuration information indicated by the coding configuration indication information.
  • FIG. 6 is a schematic diagram of configuration precoding configuration information and precoding configuration information indicating selection according to an embodiment.
  • the base station is respectively configured for different DMRS port groups or layer groups. Performing different precoding configurations and acting on the first time window T1, and assuming that the base station separately performs precoding configuration information selection for the DMRS, the data channel, and the control channel, and the precoding configuration selection indication information acts on two of the slots.
  • the switching of the precoding granularity or the beam direction change is realized.
  • the physical layer overhead is reduced, but still has a high degree of flexibility.
  • FIG. 7 is a schematic flowchart diagram of a transmission parameter processing method according to another embodiment.
  • step 700 the base station selects X SRS resource subsets from the SRS resources.
  • the X SRS resource subsets are used to determine data channel or control channel transmission parameters.
  • the transmission parameter of the data channel is determined according to the transmission parameter of the SRS; or the transmission parameter of the data channel is determined according to the transmission parameter of the SRS.
  • the transmission parameters may include any combination of the following parameters: precoding parameters, power parameters, port and antenna mapping indication parameters.
  • the transmission parameter includes any of the foregoing transmission parameters, such as a transmission parameter of the SRS, a data channel transmission parameter, and a control channel transmission parameter, which may include at least one of a precoding parameter, a power parameter, and a mapping indication parameter between the port and the antenna. .
  • the manner of selecting X SRS resource subsets from the SRS resource includes:
  • the base station selects according to a pre-agreed division of the SRS resource subset.
  • the X SRS resource subsets selected by the base station may also be selected according to the reception quality of the SRS.
  • the SRS resource subset may be partitioned in one or more of the following ways:
  • the corresponding signaling when the M sets of SRS resources are configured in signaling, the corresponding signaling may be different, some SRS resources may be periodic, some SRS resources may be aperiodic, and some SRS resources may be in The specified time range is periodic.
  • the number of ports per SRS resource, the power transmitted, the time-frequency resource location to be transmitted, the transmit beam used, the transmit antenna, and the transmit channel may also be different.
  • the SRS resource subset division may be performed according to the configuration of the SRS resource.
  • the SRS resource is a narrow concept, and is mainly distinguished by some differences in signaling configuration.
  • the resources in the SRS resource refer to a generalized concept, including time domain resources such as symbols, time slots, etc., frequency domain resources such as subcarriers, subbands, etc., and spatial domain resources such as transmit beam resources, transmit antenna resources, and transmit antenna panel resources. , send channel resources, etc.
  • the foregoing methods for dividing the SRS resource subsets may be combined. For example, after the SRS resource is divided, the partitioning may be performed according to at least one of the port and the time domain resource.
  • the base station determines Y transmission resource groups.
  • Y transmission resource groups are used for transmission of one or more uplink transmission coding blocks. These uplink transmission coding blocks can be scheduled in the same control signaling.
  • the Y transmission resource groups may be divided according to the transport layer.
  • the first layer and the second layer are a group, and the third and fourth layers are another group; and the Y transmission resource groups may also have an intersection, such as :
  • the first and second layers are the first group, the second and third layers are the second group, and the like.
  • the Y transmission resource groups may be divided according to antenna division or antenna panel, for example, the first group corresponds to 1-8 antenna elements, and the second group corresponds to 9-16 antenna elements.
  • these antenna array groups can send the same layer, can also send different layers, and can send completely different layers.
  • the antenna array sub-groups may be sent on the same time-frequency resource, or may be sent on time-frequency resources that are not identical, or may be sent on completely different time-frequency resources.
  • the transmit power of these antenna sub-arrays may be the same or different, and the transmit beams of these antenna sub-arrays may be the same or different.
  • the Y transmission resource groups may be divided according to transmission (transceiving) channels, and different groups may send the same layer, may also send different layers, and may send completely different layers.
  • different groups may be sent on the same time-frequency resource, or on time-frequency resources that are not identical, or may be sent on completely different time-frequency resources.
  • the transmission powers of different groups may be the same or different, and the transmission beams of different groups may be the same or different.
  • the Y transmission resource groups may also be divided according to time-frequency resources. Among them, the time-frequency resources of different groups are not completely the same.
  • the Y transmission resource groups may also be divided according to the transmission beam resources.
  • the transmit beams of different groups are not identical.
  • step 720 the base station sends indication information of the X SRS resource subsets to the terminal.
  • the X SRS resource subsets are used to determine transmission parameters of the Y transmission resource groups.
  • the indication information of the SRS resource subset is indicated by at least one of a higher layer configuration and a physical layer signaling.
  • the SRS resource subset indication information may include one or more of the following:
  • SRS resource index SRI
  • SRS port group ID SGI
  • SRS time domain location SRS resource index X
  • the correspondence between the X SRS resource subsets and the Y transmission resource groups is agreed between the transceiver end, such as the base station and the terminal, or configured by the base station, as shown in FIG.
  • the base station separately configures corresponding transmission parameter indication information for at least one of the X SRS resource subsets and the Y transmission resource groups.
  • the transmission parameter indication information includes at least one of the following: DMRS port allocation indication information (which may also be considered as layer mapping indication information) and Coding Block (CB) or Coding Block Group (CBG) ) configuration information.
  • DMRS port allocation indication information (which may also be considered as layer mapping indication information)
  • CB Coding Block
  • CBG Coding Block Group
  • the transmission parameter indication information may further include at least one of a transmission layer number indication information and precoding indication information.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: the base station selects X SRS resource subsets from the SRS resources; the base station determines Y transmissions a resource group, the Y transmission resource groups are used for transmission of one or more uplink transmission coding blocks; and the base station sends indication information of X SRS resource subsets to the terminal.
  • the X SRS resource subsets are used for determining the transmission parameters of the Y transmission resource groups.
  • the base station configures corresponding transmission parameter indication information for at least one of the X SRS resource subsets and the Y transmission resource groups.
  • the embodiment further provides a base station, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the following steps are implemented: the base station selects X SRS resource subs from the SRS resource.
  • the base station determines Y transmission resource groups, and the Y transmission resource groups are used for transmission of one or more uplink transmission coding blocks; the base station sends indication information of X SRS resource subsets to the terminal.
  • the X SRS resource subsets are used for determining the transmission parameters of the Y transmission resource groups.
  • the base station configures corresponding transmission parameter indication information for at least one of the X SRS resource subsets and the Y transmission resource groups.
  • FIG. 10 is a schematic flowchart of a transmission parameter processing method according to another embodiment. As shown in FIG. 10, the method includes the following steps:
  • step 1000 the terminal determines X subsets of SRS resources from the SRS resources; wherein X is a natural number greater than or equal to 1.
  • the transmission parameter corresponding to the SRS resource may be configured by the base station or may be determined by the terminal.
  • the transmission parameters that can be determined by the terminal include at least one of the following: power, precoding or transmitting beams, transmitting antennas, and transmitting channels.
  • the parameter that can be determined by the base station includes at least one of the following: a time-frequency resource, a power, a precoding selection range, a transmission beam direction range, and the like.
  • the X SRS resource subsets are used to determine data channel or control channel transmission parameters.
  • the transmission parameter of the data channel is determined according to the transmission parameter of the SRS; or the transmission parameter of the control channel is determined according to the transmission parameter of the SRS.
  • determining the subset of X SRS resources comprises:
  • the terminal determines a subset of the X SRS resources according to the manner of dividing the agreed subset of SRS resources;
  • the terminal determines the X SRS resource subsets according to the division manner of the SRS resource subset indicated by the configuration signaling from the base station.
  • the terminal determines Y transmission resource groups and corresponding transmission resources; wherein the Y transmission resource groups are used for transmission of one or more uplink transmission coding blocks, and Y is a natural number greater than or equal to 1.
  • the Y transmission resource groups may be determined according to a predetermined agreement
  • the Y transmission resource groups may also be determined according to the base station configuration.
  • step 1020 the terminal determines a correspondence between the X SRS resource subsets and the Y transmission resource groups.
  • the terminal may determine a correspondence between the X SRS resource subsets and the Y transmission resource groups according to the pre-agreed determination or the base station configuration.
  • step 1030 the terminal determines transmission parameters of the Y transmission resource groups according to the X SRS resource subsets.
  • the terminal determines the corresponding transport layer or DMRS ports for the X SRS resource subsets, such as the SRI or SGI indicated resource or group (resource/group).
  • SRI is only an example of a subset of SRS resource partitioning, and the case of other resource subset partitioning is similar.
  • the terminal determines the corresponding CB or CBG for the X SRS resource subsets, such as the SRI or SGI indicated resource or group.
  • Each resource or group may correspond to one or more CBs or CBGs; the rules determined by the corresponding manner may be configured by the base station or pre-agreed.
  • the same CBG can correspond to one or more resource/group associated layers.
  • the terminal is for Y transmission resource groups, for example, panel 1 ... panel Y, antenna 1 ... antenna Y, transmission beam 1 ... transmission beam Y, respectively determined Corresponding transport layer or DMRS ports, power, precoding, CB or CBG configuration; the case of other transmission resource groups is similar.
  • the embodiment further provides a transmission parameter processing apparatus, including a processor, a memory, and a computer program stored on the processor and operable on the processor: determining X subsets of SRS resources from the SRS resources; wherein X is greater than or equal to a natural number of 1; determining Y transmission resource groups and corresponding transmission resources; wherein Y is a natural number greater than or equal to 1; determining a correspondence between X SRS resource subsets and Y transmission resource groups; according to the X SRSs The subset of resources determines the transmission parameters of the Y transmission resource groups.
  • the embodiment further provides a terminal, including any of the foregoing transmission parameter processing devices.
  • the embodiment further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the following steps are implemented: determining X SRS resource subsets from SRS resources Where X is a natural number greater than or equal to 1; determining Y transmission resource groups and corresponding transmission resources; wherein Y is a natural number greater than or equal to 1; determining a correspondence between X SRS resource subsets and Y transmission resource groups And determining transmission parameters of the Y transmission resource groups according to the X SRS resource subsets.
  • the original N1+N2 dimensional codebook is split into two low-dimensional codebooks for feedback.
  • the channel corresponding to the port group or the resource corresponding to each codebook may have a typical feature, for example, the codebooks are from the same panel, or from the same polarization direction, or use the same RF beam, or use the same wave speed. (beam).
  • the codebook dimension is made smaller, and the corresponding codebook characteristics are more obvious.
  • the codebook can be effectively utilized to construct the codebook, and the quantization efficiency is improved, thereby achieving the PMI overhead required for the same performance.
  • the content provided by the first aspect of the disclosure includes: the base station transmitting, by using the first physical layer signaling, precoding first configuration information that is applied to the first time window; and the base station passes the first physical layer signaling or the second physical according to a preset condition.
  • the layer signaling sends the pre-encoded second configuration information acting on the second time window, which saves control overhead.
  • the content provided by the other aspect of the disclosure includes at least: the base station pre-configures multiple sets of precoding configuration information that is applied to the first time window by using signaling and transmits the base station; and the base station uses physical layer signaling from the pre-configured multiple sets of precoding configuration information.
  • One or more sets of precoding configuration information acting on the second time window are selected for uplink transmission and the precoding configuration indication information is sent to the terminal, which saves control overhead.
  • the content provided by still another aspect of the present disclosure includes at least: the base station selects X SRS resource subsets from the SRS resources; the base station determines Y transmission resource groups, where the Y transmission resource groups are used for one or more uplink transmission coding blocks. Transmission; the base station sends indication information of the X SRS resource subsets to the terminal.
  • the X SRS resource subsets are used for the transmission parameter determination of the Y transmission resource groups; the base station respectively configures corresponding transmission parameter indication information for at least one of the X SRS resource subsets and the Y transmission resource groups;
  • X is a natural number greater than or equal to 1;
  • Y is a natural number greater than or equal to 1, saving control overhead.
  • the transmission parameter processing method and apparatus provided by the present disclosure can save the overhead of control signaling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输参数处理方法及装置,包括:基站通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;基站根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。

Description

传输参数处理方法及装置 技术领域
本公开涉及无线通信技术领域,例如涉及一种传输参数处理方法及装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,仅仅考虑支持一个天线面板(Antenna panel)以及比较少的天线单元(Antenna Element)数目,比如2个天线单元和4个天线单元。上行测量导频探测参考信号(Sounding Reference Signal,SRS)是非预编码的,由天线单元直接映射到天线端口(port)。因此上行传输比较简单。在5G无线接入(5G NR)中,由于可能支持更多的天线单元,如最多支持到32个天线单元,可能支持更多的port,除了1、2和4个天线端口,还需要支持更多的端口数目,可能支持终端多种射频波束的接收,可能支持上行的子带预编码,因此,上行多输入多输出(Multiple-Input Multiple-Output,MIMO)传输比LTE中要复杂很多。
在5G NR中,上行MIMO传输的设计面临较大的技术挑战,一个重要的问题是物理层信令开销过大的问题。仅在预编码相关的参数方面就有明显的信令开销增加。比如:由于码本更加复杂,量化精度需求更高,对应的预编码矩阵指示(Pre-coding Matrix Indication,PMI)信令开销会明显增加;由于支持的传输层数增加,对应的秩指示(rank indication,RI),及PMI的指示开销也会增加;由于支持子带的PMI指示,相比于宽带的PMI反馈,也会明显的增加信令的开销。另一方面,控制信令开销的增加会影响控制信令传输的鲁棒性,并且会引起传输效率的下降。
发明内容
本公开提供一种传输参数处理方法及装置,能够节约控制信令开销。
本公开提供了一种传输参数处理方法,包括:基站通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;基站根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:上述任一项的传输参数处理方法。
本公开还提供了一种基站,包括上述传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行实现上述任一项的传输参数处理方法。
本公开还提供了一种传输参数处理方法,包括:
终端通过第一物理层信令检测作用于第一时间窗的预编码第一配置信息;通过第一物理层信令或第二物理层信令检测作用于第二时间窗的预编码第二配置信息;
终端根据所述预编码第一配置信息和所述预编码第二配置信息中的至少之一确定最终的预编码配置信息。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行上述任一项的传输参数处理方法。
本公开还提供了一种终端,包括上述传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项的传输参数处理方法。
本公开还提供了一种传输参数处理方法,包括:基站通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送;
基站通过物理层信令从预先配置的多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输并发送预编码配置指示信息给终端。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行上述任一项的传输参数处理方法。
本公开还提供了一种基站,包括上述的传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项的传输参数处理方法。
本公开还提供了一种传输参数处理方法,包括:
终端通过基站发送的信令确定作用于第一时间窗的多套预编码配置信息;
终端在物理下行控制信道中检测作用于第二时间窗的编码配置指示信息,并根据编码配置指示信息指示的预编码配置信息进行上行传输。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:上述的传输参数处理方法。
本公开还提供了一种终端,包括上述的传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的传输参数处理方法。
本公开还提供了一种传输参数处理方法,包括:
基站从探测参考信号SRS资源中选择X个SRS资源子集;
基站确定Y个传输资源组,所述Y个传输资源组用于一个或多个上行传输编码块的传输;
基站向终端发送X个SRS资源子集的指示信息。其中,X个SRS资源子集用于确定Y个传输资源组的传输参数;
基站针对X个SRS资源子集和Y个传输资源组中的至少之一,分别配置对应的传输参数指示信息;
其中,X为大于或等于1的自然数;Y为大于或等于1的自然数。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:上述任一项的传输参数处理方法。
本公开还提供了一种基站,包括上述的传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项的传输参数 处理方法。
本公开还提供了一种传输参数处理方法,包括:
终端从探测参考信号SRS资源中确定X个SRS资源子集;其中,X为大于或等于1的自然数;
终端确定Y个传输资源组及对应的传输资源;其中,所述Y个传输资源组用于一个或多个上行传输编码块的传输,Y为大于或等于1的自然数;
终端确定X个SRS资源子集和Y个传输资源组的对应关系;
终端根据所述X个SRS资源子集确定Y个传输资源组的传输参数。
本公开还提供了一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:上述任一项的传输参数处理方法。
本公开还提供了一种终端,包括上述的传输参数处理装置。
本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项的传输参数处理方法。
本公开提供的传输参数处理方法及装置能够节约控制信令的开销。
附图说明
图1为一实施例提供的传输参数处理方法的流程示意图;
图2为另一实施例提供的传输参数处理方法的流程示意图;
图3为一实施例提供的时间窗的实现示意图;
图4为又一实施例提供的传输参数处理方法的流程示意图;
图5为又一实施例提供的传输参数处理方法的流程示意图;
图6为一实施例提供的配置预编码配置信息及指示选择的预编码配置信息的示意图;
图7为又一实施例提供的传输参数处理方法的流程示意图;
图8为一实施例提供的按照SRS所属的时域符号组或Slot组划分SRS资源子集的示意图;
图9为一实施例提供的SRS资源子集和传输资源组的对应关系的示意图;
图10为又一实施例提供的传输参数处理方法的流程示意图;
图11为一实施例提供的SRS资源子集确定传输资源子组的传输参数的示意图。
具体实施方式
图1为本实施例提供的一种传输参数处理方法的流程示意图,如图1所示,该方法包括以下步骤:
在步骤100中,基站通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息。
在一实施例中,预编码第一配置信息作用于第一时间窗T1,第一时间窗T1可以是预先约定的时间窗,如一个时隙(slot)。其中,作用于第一时间窗是指,如果预编码第一配置信息要生效,就在第一时间窗内生效。
在一实施例中,第一时间窗T1的长度可以在第一物理层控制信令中指示。
在一实施例中,第一时间窗T1也可以采用事件定义方式,比如:T1的起始时间为预编码第一配置信息的时间,T1的结束时间为收到约定的一种信令信息出现的时间。
在一实施例中,预编码第一配置信息包含以下信息中的一种或多种:
子带数目信息、子带划分指示信息、子带选择信息、子带预编码信息、子带预编码码本配置信息和最大传输层数信息。
在步骤110中,基站根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。
在一实施例中,预先设置的条件可以是如:当前的信道状态或干扰情况等等。
在一实施例中,预编码第二配置信息作用于第二时间窗T2。第二时间窗T2可以是预先约定的时间窗,如一个slot或多个slot。其中,作用于第二时间窗是指,如果预编码第二配置信息要生效,就在第二时间窗内生效。
在一实施例中,第二时间窗T2的大小可以为一个slot,比如为收到预编码第二配置信息的slot;第二时间窗T2的大小也可以是多个slots。
在一实施例中,第二时间窗可以在第一物理层控制信令中指示,还可以根 据收到的第二物理层控制信令的时间确定。
在一实施例中,预编码第二配置信息包含以下信息中的一种或多种:
子带数目信息、子带划分指示信息、子带选择信息、子带预编码信息、子带预编码码本配置信息和最大传输层数信息。
在一实施例中,第二时间窗T2可以由收发端如基站与终端之间预先约定,也可以由基站配置。
在一实施例中,预编码第二配置信息可以是独立的信息。如对于同一类参数,如果在一段时间内同时有预编码第一配置信息和预编码第二配置信息的作用,预编码第二配置信息优先于预编码第一配置信息,预编码第二配置信息用于确定该类参数的最终配置;预编码第二配置信息也可以是非独立的信息,在预编码第二配置信息生效时间内,由预编码第二配置信息和预编码第一配置信息联合来确定最终的预编码配置信息;或者还可以用预编码第二配置信息来覆盖预编码第一配置信息。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。
本实施例还提供一种基站,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现至少以下步骤:通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。
图2为另一实施例提供的传输参数处理方法的流程示意图,如图2所示,该方法包括以下步骤:
在步骤200中,终端通过第一物理层信令检测作用于第一时间窗的预编码第一配置信息。
在一实施例中,预编码第一配置信息作用于第一时间窗T1,第一时间窗T1 可以是预先约定的时间窗,如一个时隙(slot)。
在一实施例中,第一时间窗T1的长度可以在第一物理层控制信令中指示。
在一实施例中,第一时间窗T1也可以采用事件定义方式,比如:T1的起始时间为预编码第一配置信息的时间,T1的结束时间为收到约定的一种信令信息出现的时间。
在一实施例中,预编码第一配置信息包含以下信息中的一种或多种:
子带数目信息、子带划分指示信息、子带选择信息、子带预编码信息、子带预编码码本配置信息和最大传输层数信息。
在步骤210中,终端通过第一物理层信令或第二物理层信令检测作用于第二时间窗的预编码第二配置信息。
在一实施例中,预编码第二配置信息作用于第二时间窗T2。第二时间窗T2可以是预先约定的时间窗,如一个slot或多个slot。
在一实施例中,第二时间窗可以在第一物理层控制信令中指示,还可以根据收到的第二物理层控制信令的时间确定。
在一实施例中,预编码第二配置信息包含以下信息中的一种或多种:
子带数目信息、子带划分指示信息、子带选择信息、子带预编码信息、子带预编码码本配置信息和最大传输层数信息。
在一实施例中,第二时间窗T2的大小可以为一个slot,比如为收到预编码第二配置信息的slot;第二时间窗T2的大小也可以是多个slots。
在一实施例中,第二时间窗T2可以由收发端如基站与终端之间预先约定,也可以由基站配置。
在步骤220中,终端根据预编码第一配置信息和预编码第二配置信息中的至少一个确定最终的预编码配置信息。
在一实施例中,当终端检测到预编码第二配置信息时,步骤220包括:
终端可以用预编码第二配置信息替换预编码第一配置信息来确定最终的预编码配置信息;或者,
终端在预编码第二配置信息的生效时间内,采用预编码第二配置信息和预 编码第一配置信息联合来确定最终的预编码配置信息。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:通过第一物理层信令检测作用于第一时间窗的预编码第一配置信息;通过第一物理层信令或第二物理层信令检测作用于第二时间窗的预编码第二配置信息;根据预编码第一配置信息和预编码第二配置信息中的至少之一确定最终的预编码配置信息。
本实施例还提供一种终端,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现至少以下步骤:通过第一物理层信令检测作用于第一时间窗的预编码第一配置信息;通过第一物理层信令或第二物理层信令检测作用于第二时间窗的预编码第二配置信息;根据预编码第一配置信息和预编码第二配置信息中的至少一个确定最终的预编码配置信息。
图3为一实施例提供的时间窗的实现示意图,如图3所示,作用于第一时间窗T1的预编码第一配置信息;其中有两个slot分别作为第二时间窗T2,预编码第二配置信息作用于第二时间窗T2。
通过图1和图2所示的传输参数处理方法,利用预编码配置信息在时域上的相关性来压缩开销。这样,在无需改变预编码第一配置信息时,就不用发送预编码第二配置信息,从而有效的节约了控制开销。
图4为又一实施例提供的一种传输参数处理方法的流程示意图,如图4所示,该方法包括以下步骤:
在步骤400中,基站通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送。
在一实施例中,多套预编码配置信息作用于第一时间窗T1,第一时间窗T1可以是预先约定的时间窗,如一个时隙(slot)。
在一实施例中,第一时间窗T1的长度可以在第一物理层控制信令中指示。
在一实施例中,第一时间窗T1也可以采用事件定义方式,比如:T1的起始时间为预编码第一配置信息的时间,T1的结束时间为收到约定的一种信令信 息出现的时间。在一实施例中,可以通过无线链路控制(Radio Resource Control,RRC)信令、媒体访问控制(Media Access Control,MAC)信令或物理层信令。
在一实施例中,预编码配置信息包括以下一种或多种:
码本选择信息、码字集合选择信息、预编码粒度信息、子带选择信息、预编码指示信息、子带数目信息、子带划分信息、预编码模式信息和最大传输层数信息。
在一实施例中,预先配置多套预编码配置信息包括以下至少之一:
基站可以分别针对不同的传输层数进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对不同的SRS端口(SRS port)或SRS端口组(SRS port group)或SRS资源(SRS resource)进行不同的预编码配置,以形成多套预编码配置信息;基站可以分别针对不同的用户设备(User Equipment,UE)进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对不同的链路进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对不同的天线Panel进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对解调参考信号(Demodulation Reference Signal,DMRS)和数据通道(Data channel)进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对不同DMRS端口组(DMRS port group)或层组(layer group)进行不同的预编码配置,以形成多套预编码配置信息;
基站可以分别针对不同的发送模式或传输模式进行不同的预编码配置,以形成多套预编码配置信息。
在步骤410中,基站通过物理层信令从预先配置的多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输并发送预编码配置指示信息给终端。
在一实施例中,选择出的预编码配置信息的编码配置指示信息作用于第二 时间窗T2。第二时间窗T2可以是预先约定的时间窗,如一个slot或多个slot。
在一实施例中,第二时间窗可以在第一物理层控制信令中指示,还可以根据收到的第二物理层控制信令的时间确定。
所述预编码配置信息包括以下一种或多种:
码本选择信息、码字集合选择信息、预编码粒度信息、子带选择信息、预编码指示信息、子带数目信息、子带划分信息、预编码模式信息和最大传输层数信息。
在一实施例中,第二时间窗T2的大小可以为一个slot,比如为收到编码配置指示信息的slot;第二时间窗T2的大小也可以是多个slots。
在一实施例中,第二时间窗T2可以由收发端如基站与终端之间预先约定,也可以由基站配置。
在一实施例中,基站可以根据当前的信道状态或干扰情况等从预先配置的多套预编码配置信息中选择一套或多套预编码配置信息用于上行传输。
在一实施例中,预编码配置指示信息可以携带在物理层控制信令中。
在一实施例中,基站可以分别针对DMRS、数据信道或控制信道分别进行预编码配置信息选择。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送;通过物理层信令从预先配置的多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输并发送预编码配置指示信息给终端。
本实施例还提供一种基站,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现至少以下步骤:通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送;通过物理层信令从预先配置的多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输并发送预编码配置指示信息给终端。
图5为又一实施例提供的传输参数处理方法的流程示意图,如图5所示, 该方法包括以下步骤:
在步骤500中,终端通过基站发送的信令确定作用于第一时间窗的多套预编码配置信息。
在一实施例中,多套预编码配置信息作用于第一时间窗T1,第一时间窗T1可以是预先约定的时间窗,如一个时隙(slot)。
在一实施例中,第一时间窗T1的长度可以在第一物理层控制信令中指示。
在一实施例中,第一时间窗T1也可以采用事件定义方式,比如:T1的起始时间为预编码第一配置信息的时间,T1的结束时间为收到约定的一种信令信息出现的时间。
在一实施例中,编码配置指示信息可以携带在物理层控制信令中。
在步骤510中,终端在物理下行控制信道中检测作用于第二时间窗的编码配置指示信息,并根据编码配置指示信息指示的预编码配置信息进行上行传输。
在一实施例中,编码配置指示信息作用于第二时间窗T2。第二时间窗T2可以是预先约定的时间窗,如一个slot或多个slot。
在一实施例中,第二时间窗T2的大小可以为一个slot,比如为终端收到预编码第二配置信息的slot;第二时间窗T2的大小也可以是多个slots。
在一实施例中,第二时间窗可以在第一物理层控制信令中指示,还可以根据收到的第二物理层控制信令的时间确定。
在一实施例中,第二时间窗T2可以由收发端如基站与终端之间预先约定,也可以由基站配置。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:通过信令检测作用于第一时间窗的多套预编码配置信息;通过物理层信令检测作用于第二时间窗的编码配置指示信息,并根据编码配置指示信息指示的预编码配置信息进行上行传输。
本实施例还提供一种终端,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现至少以下步骤:通过信令检测作用于第一时间窗的多套预编码配置信息;通过物理层信令检测作用于 第二时间窗的编码配置指示信息,并根据编码配置指示信息指示的预编码配置信息进行上行传输。
图6为一实施例提供的配置预编码配置信息及指示选择的预编码配置信息的示意图,如图6所示,假设基站分别针对不同DMRS端口组(port group)或层组(layer group)分别进行不同的预编码配置,并作用于第一时间窗T1,并假设基站分别针对DMRS、数据信道和控制信道分别进行预编码配置信息选择,预编码配置选择指示信息作用于其中两个slot。
通过图4和图5所示的传输参数处理方法,实现了预编码粒度的切换,或者波束方向变化。这样,使得物理层开销减小,但仍然具有较高的灵活性。从而适应了信道的时变性和信道的频选,对抗突发干扰,支持透明的上行链路的切换等等。
图7为又一实施例提供的传输参数处理方法的流程示意图。
在步骤700中,基站从SRS资源中选择X个SRS资源子集(SRS resource subset)。
在一实施例中,X个SRS资源子集用于确定数据信道或控制信道传输参数。其中,根据SRS的传输参数确定数据信道的传输参数;或者,根据SRS的传输参数确定数据信道的传输参数。
在一实施例中,传输参数可以包括以下任意参数组合:预编码参数,功率参数,端口和天线之间映射指示参数。其中,所述传输参数包括上述任意传输参数,如SRS的传输参数、数据信道传输参数和控制信道传输参数均可以包括预编码参数,功率参数,端口和天线之间映射指示参数中的至少之一。
在一实施例中,从SRS resource中选择X个SRS资源子集的方式包括:
基站按照预先约定的SRS资源子集合的划分方式选择;或者,
基站确定SRS资源子集的划分方式并配置给终端;或者
基站选择的X个SRS资源子集合还可以是根据SRS的接收质量进行选择的。
在一实施例中,SRS资源子集可以按照以下方式中的一种或多种组合进行划分:
按照SRS port组划分;
按照SRS所属的时域符号组或Slot组划分,如图8所示;
按照SRS resource划分。
在一实施例中,M套SRS resource在信令配置时,对应的信令可以是不同的,有的SRS resource可以是周期的,有的SRS resource可以是非周期的,还有的SRS resource可以在指定的时间范围内是周期的。每套SRS resource的端口数目、发送的功率、发送的时频资源位置、使用的发送波束、发送天线和发送通道也可以是不同的。
本实施例中,可以按照SRS resource的配置来进行SRS资源子集划分。
本实施例中SRS resource是一个狭义的概念,主要是针对信令配置上的一些区别来进行区分。而SRS资源中的资源指的是一个广义概念,包括时域资源如符号、时隙等,频域资源如子载波,子带等、空域资源如发送波束资源、发送天线资源和发送天线panel资源,发送通道资源等。
上面几种划分SRS资源子集的方式是可以结合的,比如可以基于SRS resource进行划分后,根据端口和时域资源中的至少之一进行划分等。
在步骤710中,基站确定Y个传输资源组。其中,Y个传输资源组用于一个或多个上行传输编码块的传输。这些上行传输编码块可以在同一个控制信令中被调度。
在一实施例中,Y个传输资源组可以根据传输层来划分,比如,第1、2层为一组,第3、4层为另一组;Y个传输资源组也可以存在交集,比如:第1、2层为第一组,第2、3层为第二组等。
在一实施例中,Y个传输资源组可以根据天线划分或天线panel划分,比如:第一组对应1-8个天线阵子,第二组对应9-16天线阵子等。其中,这些天线阵子组可以发送相同的层,也可以发送不完全相同的层,还可以发送完全不同的层。其中,这些天线阵子组可以在相同的时频资源上发送,也可以在不完全相同的时频资源上发送,还可以在完全不同的时频资源上发送。这些天线子阵组的发送功率可以相同也可以不同,这些天线子阵组的发送波束可以相同也可以不同。
在一实施例中,Y个传输资源组可以根据传输(收发)通道划分,不同的 组可以发送相同的层,也可以发送不完全相同的层,还可以发送完全不同的层。或者,不同的组可以在相同的时频资源上发送,也可以在不完全相同的时频资源上发送,还可以在完全不同的时频资源上发送。不同的组的发送功率可以相同也可以不同,不同的组的发送波束可以相同也可以不同。
在一实施例中,Y个传输资源组还可以按照时频资源进行划分。其中,不同组的时频资源不完全相同。
在一实施例中,Y个传输资源组也可以按照发送波束资源来进行划分。其中,不同组的发送波束不完全相同。
在步骤720中,基站向终端发送X个SRS资源子集的指示信息。其中,X个SRS资源子集用于确定Y个传输资源组的传输参数。
在一实施例中,SRS资源子集的指示信息由高层配置和物理层信令中的至少之一来指示。
在一实施例中,SRS资源子集指示信息可以包括以下一种或多种:
SRS资源索引(SRS resource index,SRI)、SRS端口组标识(SRS port group ID,SGI)、SRS时域位置和X的取值。
在一实施例中,Y的取值由收发端如基站与终端之间约定,如Y=X;或者,Y的取值由基站配置。
在一实施例中,X个SRS资源子集和Y个传输资源组的对应关系由收发端如基站与终端之间约定或由基站配置,如图9所示。
在步骤730中,基站针对X个SRS资源子集和Y个传输资源组的至少之一,分别配置对应的传输参数指示信息。
在一实施例中,传输参数指示信息包括以下至少之一:DMRS端口分配指示信息(也可以认为是层映射指示信息)和编码块(Coding Block,CB)或编码块组(Coding Block Group,CBG)配置信息。
在一实施例中,传输参数指示信息还可以包括传输层数指示信息和预编码指示信息中的至少之一。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:基站从SRS资源中选择X个SRS资 源子集;基站确定Y个传输资源组,所述Y个传输资源组用于一个或多个上行传输编码块的传输;基站向终端发送X个SRS资源子集的指示信息。其中,X个SRS资源子集用于Y个传输资源组的传输参数确定;基站针对X个SRS资源子集和Y个传输资源组的至少之一,分别配置对应的传输参数指示信息。
本实施例再提供一种基站,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:基站从SRS资源中选择X个SRS资源子集;基站确定Y个传输资源组,所述Y个传输资源组用于一个或多个上行传输编码块的传输;基站向终端发送X个SRS资源子集的指示信息。其中,X个SRS资源子集用于Y个传输资源组的传输参数确定;基站针对X个SRS资源子集和Y个传输资源组的至少之一,分别配置对应的传输参数指示信息。
图10为又一实施例提供的传输参数处理方法的流程示意图,如图10所示,该方法包括以下步骤:
在步骤1000中,终端从SRS资源中确定X个SRS资源子集;其中,X为大于或等于1的自然数。
在一实施例中,SRS resource对应的传输参数可以由基站配置,也可以由终端确定。其中,可以由终端确定的传输参数包括以下至少之一:功率、预编码或发送波束、发送天线和发送通道等。其中,可以由基站确定的参数包括以下至少之一:时频资源、功率、预编码选择范围和发送波束方向范围等。
在一实施例中,X个SRS资源子集用于确定数据信道或控制信道传输参数。其中,根据SRS的传输参数确定数据信道的传输参数;或者,根据SRS的传输参数确定控制信道的传输参数。
在一实施例中,确定X个SRS资源子集包括:
终端根据约定的SRS资源子集合的划分方式确定X个SRS资源子集;
或者,终端根据来自基站的配置信令指示的SRS资源子集的划分方式确定X个SRS资源子集。
在步骤1010中,终端确定Y个传输资源组及对应的传输资源;其中,所述 Y个传输资源组用于一个或多个上行传输编码块的传输,Y为大于或等于1的自然数。
在一实施例中,Y个传输资源组可以根据预先约定确定;
在一实施例中,Y个传输资源组也可以根据基站配置确定。
在步骤1020中,终端确定X个SRS资源子集和Y个传输资源组的对应关系。
在一实施例中,终端可以根据预先约定确定或基站配置确定X个SRS资源子集和Y个传输资源组的对应关系。
在步骤1030中,终端根据X个SRS资源子集确定Y个传输资源组的传输参数。
比如:终端针对X个SRS资源子集,如SRI或SGI指示的资源或组(resource/group),分别确定对应的传输层或DMRS ports。
在一实施例中,X=2时,如图11所示,根据SRI1关联的TRI1,确定其使用的层数r1,映射到层1......r1;DMRS port为p1......(p1+r1);根据SRI2关联的TRI2,确定其使用的层数r2,映射到层[(p2-p1)+1]......[(p2-p1)+r1];DMRS port为p2+1......(p2+r2)。X>2的情况以此类推,这里不再赘述。
其中,p1和p2的取值,以及p1和p2的关系可以约定或者由基站配置。例如,在约定的方式中,可以是:p1=p2+r1,或者p1=p2。
这里,SRI只是一种SRS资源子集划分的例子,其它资源子集划分方式的情况也与此类似。
再如:终端针对X个SRS资源子集,如SRI或SGI指示的resource或group,分别确定对应的CB或CBG。每个resource或group可以对应一个或多个CB或CBG;对应方式确定的规则可以是基站配置的或者预先约定的。同一个CBG可以对应1个或多个resource/group关联的层。
又如:终端针对Y个传输资源组,例如,panel 1......panel Y,天线1......天线Y,发送波束1......发送波束Y,分别确定对应的传输层或DMRS ports,功率,预编码,CB或CBG配置;其它传输资源组的划分方式的情况也与此类似。
本实施例还提供一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序:从SRS资源中确定X个SRS资源子集;其中X为大于或等于1的自然数;确定Y个传输资源组及对应的传输资源;其中,Y为大于或等于1的自然数;确定X个SRS资源子集和Y个传输资源组的对应关系;根据所述X个SRS资源子集确定Y个传输资源组的传输参数。
本实施例还提供一种终端,包括上述任意的传输参数处理装置。
本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:从SRS资源中确定X个SRS资源子集;其中X为大于或等于1的自然数;确定Y个传输资源组及对应的传输资源;其中,Y为大于或等于1的自然数;确定X个SRS资源子集和Y个传输资源组的对应关系;根据所述X个SRS资源子集确定Y个传输资源组的传输参数。
通过图7和图10所示的传输参数处理方法,实现了将原本的N1+N2维的码本拆分为2个低维的码本用于反馈。这样,每个码本对应的port group或resource对应的信道可以具有比较典型的特征,比如,码本来自同一个panel,或者来自同一极化方向,或者采用相同的射频波束,或者采用相同的波速(beam)。这样使得码本维度变小了,且对应的码本特性较明显,能够有效利用这些特征来构造码本,提高了量化效率,从而达到了相同性能所需要的PMI开销小的目的。
本公开一方面提供的内容至少包括:基站通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;基站根据预先设置的条件通过第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息,节约了控制开销。
本公开另一方面提供的内容至少包括:基站通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送;基站通过物理层信令从预先配置的多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输并发送预编码配置指示信息给终端,节约了控制开销。
本公开又一方面提供的内容至少包括:基站从SRS资源中选择X个SRS资源子集;基站确定Y个传输资源组,所述Y个传输资源组用于一个或多个上行 传输编码块的传输;基站向终端发送X个SRS资源子集的指示信息。其中,X个SRS资源子集用于Y个传输资源组的传输参数确定;基站针对X个SRS资源子集和Y个传输资源组的至少之一,分别配置对应的传输参数指示信息;其中,X为大于或等于1的自然数;Y为大于或等于1的自然数,节约了控制开销。
工业实用性
本公开提供的传输参数处理方法及装置,可以节约控制信令的开销。

Claims (39)

  1. 一种传输参数处理方法,包括:
    基站通过第一物理层信令发送作用于第一时间窗的预编码第一配置信息;
    基站根据预先设置的条件通过所述第一物理层信令或第二物理层信令发送作用于第二时间窗的预编码第二配置信息。
  2. 根据权利要求1所述的方法,其中,
    所述预编码第二配置信息为独立的信息:对于同一类参数,如果在一段时间内同时有所述预编码第一配置信息和所述预编码第二配置信息的作用,所述预编码第二配置信息优先于所述预编码第一配置信息用于确定该类参数的最终配置;或者,
    所述预编码第二配置信息为非独立的信息,在所述预编码第二配置信息生效时间内,由所述预编码第二配置信息和所述预编码第一配置信息联合来确定最终的预编码配置信息。
  3. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求1或2所述的传输参数处理方法。
  4. 一种基站,包括上述权利要求3所述的传输参数处理装置。
  5. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1或2所述的传输参数处理方法。
  6. 一种传输参数处理方法,包括:
    终端通过第一物理层信令检测作用于第一时间窗的预编码第一配置信息;
    终端通过所述第一物理层信令或第二物理层信令检测作用于第二时间窗的预编码第二配置信息;
    终端根据所述预编码第一配置信息和所述预编码第二配置信息中的至少一个确定最终的预编码配置信息。
  7. 根据权利要求6所述的方法,其中,所述终端检测到所述预编码第二配置信息时,所述终端根据所述预编码第一配置信息和所述预编码第二配置信息 中的至少一个确定最终的预编码配置信息包括:
    所述终端将所述预编码第二配置信息替换所述预编码第一配置信息来确定最终的预编码配置信息;或者,
    所述终端在所述预编码第二配置信息的生效时间内,由所述预编码第二配置信息和所述预编码第一配置信息联合来确定最终的预编码配置信息。
  8. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求6或7所述的传输参数处理方法。
  9. 一种终端,包括上述权利要求8所述的传输参数处理装置。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求6或7所述的传输参数处理方法。
  11. 一种传输参数处理方法,包括:
    基站通过信令预先配置作用于第一时间窗的多套预编码配置信息并发送给终端;
    基站通过物理层信令从预先配置的所述多套预编码配置信息中选择作用于第二时间窗的一套或多套预编码配置信息用于上行传输,并发送预编码配置指示信息给终端。
  12. 根据权利要求11所述的方法,其中,所述预编码配置信息包括以下至少一种:
    码本选择信息、码字集合选择信息、预编码粒度信息、子带选择信息、预编码指示信息、子带数目信息、子带划分信息、预编码模式信息和最大传输层数信息。
  13. 根据权利要求11所述的方法,其中,所述预先配置多套预编码配置信息包括以下至少之一:
    所述基站分别针对不同的传输层数进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同的探测参考信号SRS端口或SRS端口组或SRS资源 进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同的终端UE进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同的链路进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同的天线面板进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对解调参考信号和数据通道进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同解调参考信号DMRS端口组或层组进行不同的预编码配置,以形成所述多套预编码配置信息;
    所述基站分别针对不同的发送模式或传输模式进行不同的预编码配置,以形成所述多套预编码配置信息。
  14. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求11~13任一项所述的传输参数处理方法。
  15. 一种基站,包括权利要求14所述的传输参数处理装置。
  16. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求11~13任一项所述的传输参数处理方法。
  17. 一种传输参数处理方法,包括:
    终端通过基站发送的信令确定作用于第一时间窗的多套预编码配置信息;
    终端在物理下行控制信道中检测作用于第二时间窗的编码配置指示信息,并根据编码配置指示信息所指示的预编码配置信息进行上行传输。
  18. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求17所述的传输参数处理方法。
  19. 一种终端,包括权利要求18所述的传输参数处理装置。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求17所述的传输参数处理方法。
  21. 一种传输参数处理方法,包括:
    基站从探测参考信号SRS资源中选择X个SRS资源子集;
    基站确定Y个传输资源组,所述Y个传输资源组用于一个或多个上行传输编码块的传输;
    基站向终端发送X个SRS资源子集的指示信息,其中,X个SRS资源子集用于确定Y个传输资源组的传输参数;
    基站针对X个SRS资源子集和Y个传输资源组的至少之一,分别配置对应的传输参数指示信息;
    其中,X为大于或等于1的自然数;Y为大于或等于1的自然数。
  22. 根据权利要求21所述的方法,其中,所述X个SRS资源子集用于确定数据信道传输参数或控制信道传输参数;
    其中,根据SRS的传输参数确定所述数据信道传输参数;
    或者,根据SRS的传输参数确定所述控制信道传输参数。
  23. 根据权利要求22所述的方法,其中,所述传输参数包括以下至少之一:预编码参数,功率参数,端口和天线之间映射指示参数。
  24. 根据权利要求21所述的方法,其中,所述基站从SRS资源中选择X个SRS资源子集的方式包括:
    所述基站按照预先约定的SRS资源子集合的划分方式选择;或者,
    所述基站确定SRS资源子集的划分方式并配置给终端;或者
    所述基站根据SRS的接收质量选择所述X个SRS资源子集合。
  25. 根据权利要求21所述的方法,其中,所述Y个传输资源组的划分方式包括以下至少一种:
    根据传输层来划分;
    根据天线划分或天线面板划分;
    根据传输通道划分;
    按照时频资源进行划分;
    按照发送波束资源进行划分。
  26. 根据权利要求21所述的方法,其中,所述SRS资源子集的指示信息由以下至少之一得到:高层配置和物理层信令指示。
  27. 根据权利要求21所述的方法,其中,Y的取值预先约定为Y=X;或者,Y的取值由基站配置。
  28. 根据权利要求21所述的方法,其中,所述X个SRS资源子集和所述Y个传输资源组的对应关系预先约定或由基站配置。
  29. 根据权利要求21所述的方法,其中,所述传输参数指示信息包括:解调参考信号DMRS端口分配指示信息、编码块配置信息和编码块组配置信息中的至少之一。
  30. 根据权利要求29所述的方法,其中,所述传输参数指示信息还包括传输层数指示信息和预编码指示信息中的至少之一。
  31. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求21~30任一项所述的传输参数处理方法。
  32. 一种基站,包括权利要求31所述的传输参数处理装置。
  33. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求21~30任一项所述的传输参数处理方法。
  34. 一种传输参数处理方法,包括:
    终端从探测参考信号SRS资源中确定X个SRS资源子集;其中,X为大于或等于1的自然数;
    终端确定Y个传输资源组及对应的传输资源;其中,所述Y个传输资源组用于一个或多个上行传输编码块的传输,Y为大于或等于1的自然数;
    终端确定X个SRS资源子集和Y个传输资源组的对应关系;
    终端根据所述X个SRS资源子集确定Y个传输资源组的传输参数。
  35. 根据权利要求34所述的方法,其中,所述X个SRS资源子集用于确定数据信道传输参数或控制信道传输参数;
    其中,根据SRS的传输参数确定数据信道传输参数;或者,根据SRS的传输参数确定控制信道传输参数。
  36. 根据权利要求34所述的方法,其中,所述确定X个SRS资源子集包括:
    所述终端根据约定的SRS资源子集合的划分方式确定所述X个SRS资源子集;或者,
    所述终端根据来自基站的配置信令指示的SRS资源子集的划分方式确定所述X个SRS资源子集。
  37. 一种传输参数处理装置,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述计算机程序用于执行权利要求34~36任一项所述的传输参数处理方法。
  38. 一种终端,包括权利要求37所述的传输参数处理装置。
  39. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求34~36任一项所述的传输参数处理方法。
PCT/CN2018/091566 2017-05-05 2018-06-15 传输参数处理方法及装置 WO2018202217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314129.3 2017-05-05
CN201710314129.3A CN108111268B (zh) 2017-05-05 2017-05-05 一种传输参数处理方法及装置

Publications (1)

Publication Number Publication Date
WO2018202217A1 true WO2018202217A1 (zh) 2018-11-08

Family

ID=62207032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091566 WO2018202217A1 (zh) 2017-05-05 2018-06-15 传输参数处理方法及装置

Country Status (2)

Country Link
CN (2) CN108111268B (zh)
WO (1) WO2018202217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
CN111836377A (zh) * 2019-08-12 2020-10-27 维沃移动通信有限公司 一种调度方法、网络设备及终端

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111268B (zh) * 2017-05-05 2023-02-17 中兴通讯股份有限公司 一种传输参数处理方法及装置
CN110838860B (zh) * 2018-08-17 2023-06-27 大唐移动通信设备有限公司 一种信号传输方法、装置、终端及网络侧设备
CN110838903B (zh) * 2018-08-17 2022-01-04 大唐移动通信设备有限公司 一种上行传输指示的方法、终端、基站及计算机存储介质
WO2020061953A1 (zh) 2018-09-27 2020-04-02 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
WO2020077536A1 (en) * 2018-10-16 2020-04-23 Qualcomm Incorporated Uplink srs with precoding
CN113839748B (zh) * 2019-03-14 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151392A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
CN103856309A (zh) * 2012-12-07 2014-06-11 中兴通讯股份有限公司 一种协同小区的探测参考信号资源配置方法及装置
CN105227272A (zh) * 2014-06-28 2016-01-06 上海朗帛通信技术有限公司 一种大尺度 mimo 传输方法和装置
CN106411492A (zh) * 2016-11-28 2017-02-15 京信通信技术(广州)有限公司 一种srs资源配置方法及装置
CN108111268A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 一种传输参数处理方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110255483A1 (en) * 2010-04-16 2011-10-20 Research In Motion Limited Signaling of Precoding Granularity for LTE and LTE-A
CN102014506B (zh) * 2010-07-13 2012-08-29 华为技术有限公司 一种触发终端发送测量参考信号的方法和基站
CN102404854B (zh) * 2011-11-04 2018-04-06 中兴通讯股份有限公司 一种上行解调参考信号的资源配置方法及系统
CN103036663B (zh) * 2012-12-06 2015-09-09 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
US9923690B2 (en) * 2013-08-06 2018-03-20 Texas Instruments Incorporated Dynamic signaling of the downlink and uplink subframe allocation for a TDD wireless communication system
CN105636105B (zh) * 2014-10-27 2019-03-22 中兴通讯股份有限公司 测量导频发送、检测方法、装置、基站及终端
CN106559111B (zh) * 2015-09-25 2021-03-26 中兴通讯股份有限公司 获取码本的方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151392A1 (en) * 2012-04-06 2013-10-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
CN103856309A (zh) * 2012-12-07 2014-06-11 中兴通讯股份有限公司 一种协同小区的探测参考信号资源配置方法及装置
CN105227272A (zh) * 2014-06-28 2016-01-06 上海朗帛通信技术有限公司 一种大尺度 mimo 传输方法和装置
CN106411492A (zh) * 2016-11-28 2017-02-15 京信通信技术(广州)有限公司 一种srs资源配置方法及装置
CN108111268A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 一种传输参数处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836377A (zh) * 2019-08-12 2020-10-27 维沃移动通信有限公司 一种调度方法、网络设备及终端
CN111836377B (zh) * 2019-08-12 2023-09-22 维沃移动通信有限公司 一种调度方法、网络设备及终端
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
US12114343B2 (en) 2019-09-03 2024-10-08 Zte Corporation Method for transmitting signaling information, and communication node and storage medium

Also Published As

Publication number Publication date
CN116232554A (zh) 2023-06-06
CN108111268A (zh) 2018-06-01
CN108111268B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2018202217A1 (zh) 传输参数处理方法及装置
US10673507B2 (en) Method and apparatus for channel state information reference signal (CSI-RS)
JP6862526B2 (ja) 減少されたフィードバックfd−mimoのための方法及び装置
US20240195468A1 (en) Codebook Subset Restriction Signaling
RU2730892C1 (ru) Зондирование восходящей линии связи на множестве ресурсов и передача поднабора антенн
US11349537B2 (en) Codebook subset restriction for full-dimension MIMO
USRE47074E1 (en) Parameterized codebook with subset restrictions for use with precoding MIMO transmissions
US9001907B2 (en) Multi-rank precoding matrix indicator (PMI) feedback in a multiple-input multiple-output (MIMO) system
CN109495149B (zh) 通信方法、网络设备、终端设备和系统
RU2630378C2 (ru) Способ обратной связи по указателю матрицы предварительного кодирования, сторона приема и сторона передачи
JP5127394B2 (ja) Mimoシステムのプリコーディング方法及び該方法を用いた装置
DK2232726T3 (en) Open loop pre-cycling by MIMO communication
KR20210025097A (ko) 무선통신 네트워크에서 type-ii 피드백 보고를 위한 코드북 제한 및 상위 계층 구성 및 선형 결합 코드북에 대한 보고를 위한 방법 및 장치
JP6449904B2 (ja) プリコーディングマトリクスインジケータフィードバック方法、受信方法、および装置
CN108781100B (zh) 一种传输分集方法、设备及系统
EP2805430A1 (en) Codebook construction
KR20110014902A (ko) 폐 루프 미모 시스템에서 피드백 오버헤드 감소를 위한 장치 및 방법
KR101359808B1 (ko) 다중 송수신 안테나 시스템에서 차분 코드-북 생성장치 및 방법과 이를 위한 송신 및 수신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794682

Country of ref document: EP

Kind code of ref document: A1