WO2020061953A1 - 测量配置方法、装置、设备、系统及存储介质 - Google Patents

测量配置方法、装置、设备、系统及存储介质 Download PDF

Info

Publication number
WO2020061953A1
WO2020061953A1 PCT/CN2018/108112 CN2018108112W WO2020061953A1 WO 2020061953 A1 WO2020061953 A1 WO 2020061953A1 CN 2018108112 W CN2018108112 W CN 2018108112W WO 2020061953 A1 WO2020061953 A1 WO 2020061953A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna panel
srs
terminal
identification information
measurement
Prior art date
Application number
PCT/CN2018/108112
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/108112 priority Critical patent/WO2020061953A1/zh
Priority to CN201880001508.XA priority patent/CN109417717B/zh
Priority to CN202210570670.1A priority patent/CN114760021A/zh
Priority to US17/279,792 priority patent/US20210336737A1/en
Publication of WO2020061953A1 publication Critical patent/WO2020061953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a measurement configuration method, device, device, system, and storage medium.
  • the high-frequency signal When the communication frequency band is in the frequency range 2 (above 6 GHz), the high-frequency signal will decay rapidly during transmission. In order to ensure the coverage of the high-frequency signal, it is necessary to send or receive high-frequency signals through a directional beam. Thereby reducing the attenuation of high-frequency signals.
  • An antenna panel is configured in the terminal, and the antenna panel can receive signals in multiple receiving beam directions, and can only receive signals in one receiving beam direction at the same time; or, the antenna panel can receive signals in multiple transmitting beam directions. Send signals, and signals can only be sent in one transmit beam direction at a time.
  • the access network device needs to measure each transmission beam of the terminal, so as to configure a transmission beam for the terminal for uplink transmission. During the measurement, the access network device can assign an SRS (Sounding Reference Signal) resource for each transmitting beam corresponding to an antenna panel, and the terminal sends an SRS on each SRS resource, and the access network device Configure a transmit beam for the terminal according to the measurement results of each SRS.
  • SRS Sounding Reference Signal
  • the present disclosure provides a measurement configuration method, device, device, system, and storage medium.
  • a measurement configuration method includes:
  • the access network device sends measurement configuration information to the terminal, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is a sounding reference signal SRS resource or an SRS resource group;
  • the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and sends the uplink sending instruction information corresponding to the SRS identity ID of the at least one SRS to the terminal, where the terminal is configured to: Determine the SRS ID corresponding to the uplink transmission instruction information, and use the transmission beam corresponding to the SRS ID to perform uplink transmission, or use the transmission beam corresponding to the SRS ID and an antenna panel to perform uplink transmission.
  • a measurement configuration method includes:
  • the terminal receives measurement configuration information sent by an access network device, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is a sounding reference signal SRS resource or an SRS resource group;
  • the terminal sends SRS to the access network device on each SRS resource, and the SRS is sent using the antenna panel indicated by the antenna panel identification information;
  • the uplink transmission instruction information is that the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and according to the at least The SRS ID of an SRS is determined.
  • a measurement configuration device includes:
  • a receiving module configured to receive an SRS sent by the terminal on each SRS resource, where the SRS is sent using an antenna panel indicated by the antenna panel identification information;
  • the configuration module is configured to measure the SRS sent by the terminal, select at least one SRS according to the measurement result, and send the uplink sending instruction information corresponding to the SRS identity ID of the at least one SRS to the terminal.
  • the terminal is configured to: Determine the SRS ID corresponding to the uplink transmission instruction information, and use the transmission beam corresponding to the SRS ID to perform uplink transmission, or use the transmission beam corresponding to the SRS ID and an antenna panel to perform uplink transmission.
  • a measurement configuration device includes:
  • a receiving module configured to receive measurement configuration information sent by an access network device, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is a sounding reference signal SRS resource Or SRS resource group;
  • a sending module configured to send an SRS to the access network device on each SRS resource, where the SRS is sent using the antenna panel indicated by the antenna panel identification information;
  • the configuration module is configured to receive at least one piece of uplink sending instruction information sent by the access network device, determine an SRS identity ID corresponding to the uplink sending instruction information, and use a sending beam corresponding to the SRS ID for uplink sending. Or, using a transmission beam and an antenna panel corresponding to the SRS ID to perform uplink transmission, and the uplink transmission instruction information is that the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and The SRS ID of the at least one SRS is determined.
  • an access network device includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • Measure the SRS sent by the terminal select at least one SRS according to the measurement result, and send the uplink sending instruction information corresponding to the SRS identity ID of the at least one SRS to the terminal, and the terminal is used to determine the uplink sending instruction
  • the SRS ID corresponding to the information is used for uplink transmission using a transmission beam corresponding to the SRS ID, or uplink transmission is performed using a transmission beam corresponding to the SRS ID and an antenna panel.
  • a terminal includes:
  • Memory for storing processor-executable instructions
  • the processor is configured to:
  • a receiving module configured to receive measurement configuration information sent by an access network device, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is a sounding reference signal SRS resource Or SRS resource group;
  • a sending module configured to send an SRS to the access network device on each SRS resource, where the SRS is sent using the antenna panel indicated by the antenna panel identification information;
  • the configuration module is configured to receive at least one piece of uplink sending instruction information sent by the access network device, determine an SRS identity ID corresponding to the uplink sending instruction information, and use a sending beam corresponding to the SRS ID for uplink sending. Or, using a transmission beam and an antenna panel corresponding to the SRS ID to perform uplink transmission, and the uplink transmission instruction information is that the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and The SRS ID of the at least one SRS is determined.
  • a mobile communication system including the measurement configuration device according to any one of the third aspect and the measurement configuration device according to any one of the fourth aspect, or including the fifth The access network device according to any one of the aspects and the terminal according to any one of the sixth aspects.
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set, or instruction set, and the at least one instruction, the at least one piece A program, the code set, or an instruction set is loaded and executed by the processor to implement the measurement configuration method according to the first aspect, or the at least one instruction, the at least one program, the code set or instruction The set is loaded and executed by the processor to implement the measurement configuration method according to the second aspect.
  • each measurement resource in the measurement configuration information corresponds to an antenna panel identification information
  • the terminal can use the antenna panel indicated by each antenna panel identification information to send SRS on the SRS resource, so that the access network device can know which SRSs Can be sent at the same time, that is, SRSs sent using different antenna panels can be sent at the same time, so the terminal is configured with the transmission beams corresponding to the SRS that can be sent at the same time, and these transmission beams are used for uplink transmission, or the terminal is configured with these
  • the transmit beam and antenna panel corresponding to the transmitted SRS use the transmit beams of these antenna panels for uplink transmission, thereby improving the robustness of communication.
  • FIG. 2 is a schematic diagram of a mobile communication system according to various embodiments of the present disclosure.
  • Fig. 3 is a flow chart showing a measurement configuration method according to an exemplary embodiment.
  • Fig. 5 is a block diagram of a measurement configuration apparatus according to an exemplary embodiment.
  • Fig. 6 is a block diagram of a measurement configuration device according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a device for measuring a configuration according to an exemplary embodiment.
  • Fig. 9 is a block diagram showing a mobile communication system according to an exemplary embodiment.
  • the beam is divided into a transmission beam and a reception beam.
  • the transmission beam here may also be referred to as an uplink beam, which is used by the terminal for uplink transmission; the reception beam may also be referred to as a downlink beam, which is used by the terminal for downlink reception.
  • the antenna panel can be divided into a transmitting antenna panel and a receiving antenna panel, and an antenna panel for transmitting signals in the direction of the transmitting beam is called a transmitting antenna panel, and an antenna panel for receiving signals in the direction of the receiving beam It is called a receiving antenna panel.
  • the transmitting antenna panel and the receiving antenna panel may be two independent antenna panels, or may be located on the same antenna panel, which is not limited in this embodiment. Since the terminal has the function of transmitting and receiving signals at the same time, unless otherwise specified, an antenna panel configured in the terminal described below includes a transmitting antenna panel and a receiving panel, or an antenna panel is Refers to an antenna panel that includes a transmitting antenna panel and a receiving antenna panel.
  • the terminal can only receive signals in one of the receiving beam directions of the antenna panel at the same time, and at the same time can only send signals in one of the transmitting beam directions of the antenna panel. Signal, resulting in poor robustness of communication.
  • the terminal can receive signals in N receiving beam directions at the same time, that is, receive signals in one of the receiving beam directions on each antenna panel; send signals in N Send signals in beam direction, that is, send signals in one of the transmit beam directions on each antenna panel.
  • FIG. 1 illustrates a schematic diagram of interaction between a terminal configured with two antenna panels and an access network device, and FIG. 1 only shows a transmit beam and a receive beam of panel1, and a transmit beam and a receive beam of panel2 are not shown. show.
  • the access network device can configure each antenna panel of the terminal to send SRS using each transmission beam, and then select and allocate a transmission beam for the terminal based on the measurement results of each SRS transmitted by each antenna panel.
  • the access network device When measuring SRS, the access network device needs to know which SRS comes from the same antenna panel, which SRS comes from different antenna panels, and which SRS from different antenna panels can be sent at the same time, so as to configure a suitable transmission beam for the terminal based on this information. In the related technology, the access network equipment cannot obtain the information.
  • the access network device 201 may be a base station.
  • the base station may be a base station (gNB) employing a centralized distributed architecture in a 5G system.
  • the access network device 201 adopts a centralized distributed architecture it generally includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a protocol stack of the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Layer Control Protocol (RLC) layer, and the Media Access Control (MAC) layer; distribution A physical (PHY) layer protocol stack is provided in the unit, and the specific implementation manner of the access network device 201 is not limited in this embodiment of the present application.
  • the access network device 201 may further include a home base station (Home eNB, HeNB), a relay (Relay), a pico base station Pico, and the like.
  • the access network device 201 and the terminal 202 establish a wireless connection through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface (New Radio, NR); or, the wireless air interface may also be a 5G-based radio interface. Wireless air interface for next generation mobile communication network technology standards.
  • multiple access network devices 201 and / or multiple terminals 202 may be included.
  • one access network device 201 and one terminal 202 are shown.
  • this embodiment does not limit this.
  • Fig. 3 is a flowchart illustrating a measurement configuration method according to an exemplary embodiment.
  • the measurement configuration method is applied to the mobile communication system shown in Fig. 2.
  • the measurement configuration method includes the following steps.
  • the access network device sends measurement configuration information to the terminal.
  • the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is an SRS resource or an SRS resource group.
  • step 302 the terminal receives the measurement configuration information sent by the access network device.
  • step 304 the access network device receives the SRS sent by the terminal on each SRS resource.
  • the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and sends uplink transmission instruction information corresponding to the SRS ID of the at least one SRS to the terminal.
  • the terminal can use the antenna panel indicated by each antenna panel identification information on the SRS resource. Send SRS.
  • the access network device can know which SRSs can be sent at the same time, that is, SRSs sent using different antenna panels can be sent at the same time. Therefore, the terminal is configured with the transmission beams corresponding to these SRSs that can be sent at the same time, and these transmission beams are used.
  • Send uplink PUSCH or PUCCH or SRS or configure the terminal with the transmit beams and antenna panels corresponding to these SRSs that can be sent at the same time, and use the transmit beams of these antenna panels to send uplink PUSCH or PUCCH or SRS, thereby improving communication. Robustness.
  • Fig. 4 is a flowchart illustrating a measurement configuration method according to another exemplary embodiment.
  • the measurement configuration method is applied to the mobile communication system shown in Fig. 2.
  • the measurement configuration method includes the following steps. .
  • step 401 the terminal sends capability information to the access network device, where the capability information includes the number of antenna panels supported by the terminal and the number of transmit beams that each antenna panel can support.
  • the capability information is information for indicating the capability of the terminal.
  • the capability information in this embodiment includes at least the number of antenna panels supported by the terminal and the number of transmit beams that each antenna panel can support. This embodiment does not limit whether the capability information includes other information.
  • the number of antenna panels may include the number of transmitting antenna panels, and may also include the number of transmitting antenna panels and receiving antenna panels. It should be noted that when the number of transmitting antenna panels and the number of receiving antenna panels are equal, the number of transmitting antenna panels or the number of receiving antenna panels may be included, or the number of antenna panels may be indicated without indicating the transmitting antenna panels. Still receiving antenna panel.
  • the capability information further includes a reciprocity indication, which is used to indicate whether the terminal can learn the direction of the optimal transmission beam from the direction of the optimal reception beam. That is, whether the transmission beam corresponding to the reception beam with the best reception signal is the best transmission beam.
  • step 402 the access network device receives the capability information sent by the terminal.
  • the access network device can directly determine the most from the optimal receiving beam direction. Optimize the transmission beam, configure the optimal transmission beam to the terminal, and end the process.
  • the network access device If the capability information does not include a reciprocity indication, or if the capability information includes a reciprocity indication, and when the reciprocity indication is used to indicate that the terminal cannot obtain the optimal transmission beam direction from the optimal reception beam direction, The network access device generates measurement configuration information according to the number of antenna panels and the number of transmit beams supported by the antenna panel, that is, steps 403-408 are performed to configure a transmit beam for the terminal.
  • the access network device sends measurement configuration information to the terminal.
  • the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is an SRS resource or an SRS resource group.
  • the SRS resource is a time-frequency resource configured by the access network device for the terminal to send SRS, and the terminal can send the SRS on each SRS resource.
  • the access network device may configure measurement resources in units of SRS resources.
  • the measurement configuration information includes at least one SRS resource and antenna panel identification information corresponding to each SRS resource.
  • the access network device may also configure measurement resources in units of SRS resource groups.
  • the measurement configuration information includes at least one SRS resource group and antenna panel identification information corresponding to each SRS resource group.
  • Each SRS resource group includes at least An SRS resource.
  • the antenna panel identification information is used to indicate an antenna panel in the terminal.
  • the quantity of measurement resources and antenna panel identification information included in the measurement configuration information may be determined according to service requirements. For example, if the access network device wants to measure the transmit beam of an antenna panel, the measurement configuration information may include at least one measurement resource and an antenna panel identification information corresponding to all measurement resources in common; or, the access network device wants to measure each The transmission beam in one direction of each antenna panel, the measurement configuration information may include at least two measurement resources and an antenna panel identification information corresponding to each measurement resource, and each antenna panel identification information is different; or To measure the transmission beams in multiple directions of multiple antenna panels, the measurement configuration information may include at least one measurement resource and antenna panel identification information corresponding to each measurement resource. This embodiment does not use the quantity of measurement resources and antenna panel identification information. limited.
  • the following describes the identification information of the antenna panel.
  • the antenna panel identification information is used to indicate an arbitrary antenna panel in the terminal, and the SRS sent on the measurement resource corresponding to the same antenna panel identification information is sent by the same antenna panel.
  • the SRS sent on the measurement resources corresponding to the same antenna panel identification information is sent by the same antenna panel, and it is not specified which antenna panel in the terminal sends.
  • the number of measurement resources corresponding to the identification information of each antenna panel may be equal. That is, when the measurement resources are SRS resources, the number of SRS resources corresponding to the same antenna panel identification information is equal; when the measurement resources are SRS resource groups and each SRS resource group corresponds to one antenna panel identification information, each SRS The number of SRS resources in the resource group is equal.
  • the measurement configuration information includes 6 SRS resources, of which 3 SRS resources correspond to the antenna panel identification information 1, and 3 SRS resources correspond to the antenna panel identification information 2, then the terminal can be instructed to use the antenna
  • the transmit beam of panel 1 sends SRS on three SRS resources corresponding to antenna panel identification information 1, and the terminal uses the transmit beam of antenna panel 2 to send SRS on three SRS resources corresponding to antenna panel identification information 2; It can be instructed that the terminal uses the transmission beam of antenna panel 2 to send SRS on three SRS resources corresponding to antenna panel identification information 1, and the terminal uses the transmission beam of antenna panel 1 on 3 SRS resources corresponding to antenna panel identification information 2.
  • the terminal is configured with two antenna panels, and the measurement configuration information includes two SRS resource groups, each SRS resource group includes three SRS resources, and the first SRS resource group corresponds to the antenna panel identification information 1, and the second SRS resource groups corresponding to the antenna panel identification information 2, can instruct the terminal to use the transmit beam of antenna panel 1 to send SRS on the three SRS resources in the first SRS resource group respectively, and the terminal uses the transmit beam of antenna panel 2 to Send SRS on 3 SRS resources in the second SRS resource group; you can also instruct the terminal to use the transmit beam of antenna panel 2 to send SRS on the 3 SRS resources in the first SRS resource group, and the terminal uses the antenna panel
  • the transmission beam of 1 transmits SRS on 3 SRS resources in the second SRS resource group.
  • the antenna panel identification information is used to indicate a fixed antenna panel in the terminal.
  • the identification information of each antenna panel corresponds to a specified antenna panel in the terminal.
  • the antenna panel identification information 1 is used to indicate the antenna panel 1 in the terminal
  • the antenna panel identification information 2 is used to indicate the antenna panel 2 in the terminal.
  • the number of measurement resources corresponding to the identification information of each antenna panel is equal. That is, when the measurement resources are SRS resources, the number of SRS resources corresponding to the same antenna panel identification information is equal; when the measurement resources are SRS resource groups and each SRS resource group corresponds to one antenna panel identification information, each SRS The number of SRS resources in the resource group is equal. or,
  • the antenna panel identification information includes one first antenna panel identification information and at least one second antenna panel identification information, and the number of measurement resources corresponding to the first antenna panel identification information is greater than the number of measurement resources corresponding to the second antenna panel identification information. . That is, when the measurement resource is an SRS resource, the number of SRS resources corresponding to the first antenna panel identification information is the largest; when the measurement resource is an SRS resource group, and each SRS resource group corresponds to one antenna panel identification information, it corresponds to The first antenna panel identification information has the largest number of SRS resources in the SRS resource group.
  • the access network device can obtain the location information of the terminal.
  • the access network device may refer to the antenna panel identification information indicating the antenna panel as the first antenna panel identification information, and the antenna panel identification information indicating the other antenna panels as the second antenna panel identification information. That is, the first antenna panel identification information is used to indicate an antenna panel whose direction matches the direction in which the access network device is located.
  • the matching of the direction of the antenna panel and the direction of the access network device means that the direction of the antenna panel is opposite to the direction of the access network device. For example, if the access network device is located on the left side of the terminal, it can be determined that the direction of the antenna panel facing the left side of the terminal matches the direction in which the access network device is located.
  • the access network device can configure N SRS resources for the antenna panel and M SRS resources for the remaining antenna panels, and N> M to improve the determination of the optimal transmission beam. Probability.
  • the antenna panel identification information may have two representation forms.
  • the first form is: the antenna panel identification information is the antenna panel identification of the fixed antenna panel, and the antenna panel identification is used to indicate the fixed antenna panel. For example, if the antenna panel identifier of antenna panel 1 in the terminal is identifier 1 and the antenna panel identifier of antenna panel 2 is identifier 2, then the antenna panel identifier information may be identifier 1 and identifier 2.
  • the method further includes: the terminal sends a downlink beam measurement report to the access network device, and the beam measurement report includes at least two RSs L1 (Layer1, Layer 1) -RSRP (Reference Signaling Receiving Power, RSRP), antenna panel identification information corresponding to each RS identifier; access network equipment receives the downlink beam sent by the terminal Measurement report; the access network device determines the largest L1-RSRP corresponding RS identifier, and uses the antenna panel identifier corresponding to the RS identifier as the first antenna panel identifier information.
  • the antenna panel identifier corresponding to the RS identifier receives and measures the RS corresponding to the RS identifier. The identification of the antenna panel to be used.
  • the RS may be an SSB (Synchronization Signal Block) or CSI-RS (Channel State Information Reference Signal) sent by an access network device for downlink beam measurement, which is not limited in this embodiment. .
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the terminal when it reports the downlink beam measurement result, it may report based on the group.
  • the terminal will use RSs that cannot be received simultaneously through one antenna panel as a group, indicating that these RSs are received using the same antenna panel.
  • the beam measurement report includes the RS identifier.
  • the access network device may determine the antenna panel transmitting the RS, and use the antenna panel identifier for indicating the antenna panel as the first antenna panel identification information.
  • the antenna panel identification used to indicate other antenna panels is used as the second antenna panel identification information, and the access network device configures measurement resources to generate measurement configuration information.
  • the second representation is: the antenna panel identification information indicates an RS (Reference Signal) reference mark, and the RS identifier is used to indicate the antenna panel corresponding to a transmission beam of the terminal, that is, the terminal is instructed to use the RS
  • the antenna panel used when identifying the corresponding RS is used to send the SRS; or, the RS identifier is used to indicate the antenna panel corresponding to a receiving beam of the terminal, that is, the terminal is used to send the SRS using the antenna panel used when receiving the RS corresponding to the RS identification.
  • the RS identifier is used to indicate an antenna panel corresponding to a transmission beam of the terminal, that is, the terminal is instructed to use the antenna panel used to transmit the SRS corresponding to the SRS identifier to transmit the SRS;
  • the RS identifier is used to indicate the antenna panel corresponding to a receiving beam of the terminal, that is, the terminal is instructed to use the antenna panel used to receive the SSB or CSI-RS corresponding to the RS identifier to send SRS.
  • the method further includes: the terminal sends a downlink to the access network device A beam measurement report, the downlink beam measurement report includes at least two RS identifiers and L1-RSRP corresponding to each RS identifier; the access network device receives a downlink beam measurement report sent by the terminal; the access network device corresponds to the largest L1-RSRP The RS identifier is used as the first antenna panel identification information.
  • step 404 the terminal receives the measurement configuration information sent by the access network device.
  • step 405 the terminal sends an SRS to the access network device on each SRS resource, and the SRS is sent using the antenna panel indicated by the antenna panel identification information.
  • the time domain positions of the SRS resources corresponding to the same antenna panel identification information are different, and the time domain positions of the SRS resources corresponding to different antenna panel identification information may be the same.
  • step 406 the access network device receives the SRS sent by the terminal on each SRS resource.
  • the access network device measures the SRS sent by the terminal, selects at least one SRS according to the measurement result, and sends uplink transmission instruction information corresponding to the SRS ID of the at least one SRS to the terminal.
  • the uplink transmission instruction information includes spatial relationship information. At this time, the uplink transmission instruction information is used to indicate parameters of a transmission beam. Alternatively, the uplink transmission instruction information includes spatial relationship information and antenna panel identification information. At this time, the uplink transmission instruction information is used to indicate a transmission beam and parameters of the antenna panel.
  • the terminal receives at least one piece of uplink transmission instruction information sent by the access network device, determines an SRS ID corresponding to the uplink transmission instruction information, and uses the transmission beam corresponding to the SRS ID to perform uplink transmission, or uses the transmission beam corresponding to the SRS ID.
  • the transmission beam corresponding to the SRS ID and the antenna panel perform uplink transmission.
  • the terminal can use the transmission beam corresponding to the SRS ID to perform uplink transmission; or, the terminal can use the transmission corresponding to the SRS ID.
  • the beam and the antenna panel perform uplink transmission, that is, one of the transmission beams of the antenna panel is used for uplink transmission.
  • the terminal can use a transmission beam corresponding to the SRS ID Perform uplink transmission with the antenna panel, that is, use one of the transmission beams of the antenna panel for uplink transmission.
  • the SRS ID in the spatial relationship information and the RS identifier indicated by the antenna panel identification information may be different, as long as the two correspond to the same antenna panel.
  • steps 402, 403, 406, and 407 can be separately implemented as an embodiment on the access network device side
  • steps 401, 404, 405, and 408 can be separately implemented as an embodiment on the terminal side.
  • the terminal can use the antenna panel indicated by each antenna panel identification information on the SRS resource. Send SRS.
  • the access network device can know which SRSs can be sent at the same time, that is, SRSs sent using different transmit antenna panels can be sent at the same time, so that the terminal is configured with the transmit beams corresponding to these SRS that can be sent at the same time.
  • Send uplink PUSCH or PUCCH or SRS or configure the terminal with the transmit beams and antenna panels corresponding to these SRSs that can be sent at the same time, and use the transmit beams of these antenna panels to send uplink PUSCH or PUCCH or SRS, thereby improving communication Robustness.
  • Fig. 5 is a block diagram of a measurement configuration device according to an exemplary embodiment.
  • the measurement configuration device is applied to the access network device 201 shown in Fig. 2.
  • the measurement configuration device includes: Module 510, receiving module 520, and configuration module 530;
  • the sending module 510 is configured to send measurement configuration information to a terminal, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is an SRS resource or an SRS resource group;
  • the receiving module 520 is configured to receive SRS sent by each terminal on each SRS resource, and the SRS is sent using the antenna panel indicated by the antenna panel identification information;
  • the configuration module 530 is configured to measure the SRS sent by the terminal, select at least one SRS according to the measurement result, and send the uplink sending instruction information corresponding to the SRS ID of the at least one SRS to the terminal.
  • the terminal is used to determine the SRS corresponding to the uplink sending instruction information. ID, use the transmission beam corresponding to the SRS ID to perform uplink transmission, or use the transmission beam corresponding to the SRS ID and the antenna panel to perform uplink transmission.
  • the antenna panel identification information is used to indicate an arbitrary antenna panel in the terminal, and the SRS transmitted on the measurement resource corresponding to the same antenna panel identification information is sent by the same antenna panel.
  • the antenna panel identification information is used to indicate a fixed antenna panel in the terminal; the number of measurement resources corresponding to each antenna panel identification information is equal; or, the antenna panel identification information includes a first antenna panel Identification information and at least one piece of second antenna panel identification information, and the number of measurement resources corresponding to the first antenna panel identification information is greater than the number of measurement resources corresponding to all the second antenna panel identification information.
  • the antenna panel identification information is an antenna panel identification of a fixed antenna panel, and the antenna panel identification is used to indicate a fixed antenna panel; or, the antenna panel identification information indicates an RS identifier of an RS, and
  • the RS identifier is used to indicate the antenna panel corresponding to one transmit beam of the terminal, that is, the terminal is used to instruct the terminal to use the antenna panel used when transmitting the RS corresponding to the RS identifier to send SRS, or the RS identifier is used to indicate the antenna corresponding to one receive beam of the terminal.
  • Panel that is, the terminal is instructed to use the antenna panel used when receiving the RS corresponding to the RS identification to send SRS.
  • the antenna panel identification information includes first antenna panel identification information, and the antenna panel identification information is an antenna panel identification, then
  • the receiving module 520 is further configured to receive a downlink beam measurement report sent by the terminal.
  • the downlink beam measurement report includes at least two RS identifiers, L1-RSRP corresponding to each RS identifier, and antenna panel identification information corresponding to each RS identifier.
  • the configuration module 530 is further configured to determine the RS identifier corresponding to the largest L1-RSRP, and use the antenna panel identifier corresponding to the RS identifier as the first antenna panel identifier information, and the antenna panel identifier corresponding to the RS identifier is to receive and measure the RS. The identification of the antenna panel to be used.
  • the antenna panel identification information includes first antenna panel identification information, and the antenna panel identification information is an RS identification, then
  • the receiving module 520 is further configured to receive a downlink beam measurement report sent by the terminal, where the downlink beam measurement report includes at least two RS identifiers and L1-RSRP corresponding to each RS identifier;
  • the configuration module 530 is further configured to use the RS identifier corresponding to the largest L1-RSRP as the first antenna panel identification information, that is, to notify the terminal to use the antenna panel used for receiving and measuring the RS to send the SRS.
  • the receiving module 520 is further configured to receive capability information sent by the terminal.
  • the capability information includes the number of antenna panels supported by the terminal and the number of transmit beams that each antenna panel can support.
  • the capability information further includes a reciprocity indication, and the reciprocity indication is used to indicate whether the terminal can learn the direction of the optimal transmission beam from the direction of the optimal reception beam.
  • the measurement configuration device since each measurement resource in the measurement configuration information corresponds to an antenna panel identification information, the terminal can use the antenna panel indicated by each antenna panel identification information on the SRS resource. Send SRS.
  • the access network device can know which SRSs can be sent at the same time, that is, SRSs sent using different antenna panels can be sent at the same time, so that the terminal is configured with the transmission beams corresponding to these SRSs that can be sent at the same time, and use these transmission beams for uplink Send PUSCH or PUCCH or SRS, or configure the terminal with the transmit beams and antenna panels corresponding to these SRSs that can be sent at the same time, and use the transmit beams of these antenna panels to perform uplink PUSCH or PUCCH or SRS transmission, thereby improving the communication robustness.
  • the access network device can know which SRSs can be sent at the same time, that is, SRSs sent using different antenna panels can be sent at the same time, so that the terminal is configured with the transmission beams corresponding to these SRSs that can
  • Fig. 6 is a block diagram of a measurement configuration device according to an exemplary embodiment.
  • the measurement configuration device is applied to the terminal 202 shown in Fig. 2.
  • the measurement configuration device includes a receiving module 610, Sending module 620 and configuration module 630;
  • the receiving module 610 is configured to receive measurement configuration information sent by an access network device, where the measurement configuration information includes at least one measurement resource and antenna panel identification information corresponding to each measurement resource, and the measurement resource is an SRS resource or an SRS resource group;
  • the sending module 620 is configured to send SRS to the access network device on each SRS resource, and the SRS is sent using the antenna panel indicated by the antenna panel identification information;
  • the configuration module 630 is configured to receive at least one piece of uplink transmission instruction information sent by the access network device, determine an SRS ID corresponding to the uplink transmission instruction information, and use a transmission beam corresponding to the SRS ID to perform uplink transmission, or use and The transmission beam corresponding to the SRS ID and the antenna panel perform uplink transmission.
  • the uplink transmission instruction information is the SRS sent by the access network device measurement terminal, and at least one SRS is selected according to the measurement result, and the SRS ID of the at least one SRS is determined.
  • the antenna panel identification information is used to indicate an arbitrary antenna panel in the terminal, and the SRS transmitted on the measurement resource corresponding to the same antenna panel identification information is sent by the same antenna panel.
  • the antenna panel identification information is used to indicate a fixed antenna panel in the terminal; the number of measurement resources corresponding to each antenna panel identification information is equal; or, the antenna panel identification information includes a first antenna panel Identification information and at least one piece of second antenna panel identification information, and the number of measurement resources corresponding to the first antenna panel identification information is greater than the number of measurement resources corresponding to all the second antenna panel identification information.
  • the antenna panel identification information includes first antenna panel identification information, and the antenna panel identification information is the antenna panel identification, then the sending module 620 is further configured to send a downlink beam measurement to the access network device.
  • the downlink beam measurement report includes at least two RS identifiers, the reference signal received power L1-RSRP of layer one corresponding to each RS identifier, the antenna panel identifier information corresponding to each RS identifier, and the access network device is used to determine the maximum
  • the RS identifier corresponding to L1-RSRP uses the antenna panel identifier corresponding to the RS identifier as the first antenna panel identifier information.
  • the antenna panel identifier corresponding to the RS identifier is the antenna panel identifier used when receiving and measuring the RS.
  • the sending module 620 is further configured to send the capability information to the access network device.
  • the capability information includes the number of antenna panels supported by the terminal and the number of transmit beams that each antenna panel can support.
  • the capability information further includes a reciprocity indication, and the reciprocity indication is used to indicate whether the terminal can learn the direction of the optimal transmission beam from the direction of the optimal reception beam.
  • the measurement configuration device since each measurement resource in the measurement configuration information corresponds to an antenna panel identification information, the terminal can use the antenna panel indicated by each antenna panel identification information on the SRS resource. Send SRS.
  • the access network device can know which SRSs can be sent at the same time, that is, SRSs sent using different antenna panels can be sent at the same time, so that the terminal is configured with the transmission beams corresponding to these SRSs that can be sent at the same time, and use these transmission beams for uplink Transmission of PUSCH or PUCCH or SRS, thereby improving the robustness of communication.
  • An exemplary embodiment of the present disclosure provides an access network device capable of implementing the measurement configuration method provided by the present disclosure.
  • the UE includes: a processor and a memory for storing processor-executable signaling;
  • the processor is configured to:
  • An exemplary embodiment of the present disclosure provides a terminal capable of implementing the measurement configuration method provided by the present disclosure.
  • the base station includes a processor and a memory for storing processor-executable signaling;
  • the processor is configured to:
  • Receive at least one piece of uplink transmission instruction information sent by the access network device determine the SRS ID corresponding to the uplink transmission instruction information, and use the transmission beam corresponding to the SRS ID to perform uplink transmission, or use the transmission beam corresponding to the SRS ID and
  • the antenna panel performs uplink transmission, and the uplink transmission instruction information is the SRS sent by the access network device measurement terminal, and at least one SRS is selected according to the measurement result, and is determined according to the SRS ID of the at least one SRS.
  • Fig. 7 is a block diagram of a device 700 for measuring a configuration according to an exemplary embodiment.
  • the apparatus 700 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the device 700 may include one or more of the following components: a processing component 702, a memory 704, a power component 706, a multimedia component 708, an audio component 710, an input / output (I / O) interface 712, a sensor component 714, And communication component 716.
  • the processing component 702 generally controls overall operations of the device 700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing element 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 702 may include one or more modules to facilitate the interaction between the processing component 702 and other components.
  • the processing component 702 may include a multimedia module to facilitate the interaction between the multimedia component 708 and the processing component 702.
  • the memory 704 is configured to store various types of data to support operation at the device 700. Examples of such data include instructions for any application or method for operating on the device 700, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 706 provides power to various components of the device 700.
  • the power component 706 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 700.
  • the multimedia component 708 includes a screen that provides an output interface between the device 700 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 708 includes a front camera and / or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the I / O interface 712 provides an interface between the processing component 702 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor component 714 includes one or more sensors for providing status assessment of various aspects of the device 700.
  • the sensor component 714 can detect the on / off state of the device 700, and the relative positioning of the components, such as the display and keypad of the device 700.
  • the sensor component 714 can also detect the change in the position of the device 700 or a component of the device 700 , The presence or absence of the user's contact with the device 700, the orientation or acceleration / deceleration of the device 700, and the temperature change of the device 700.
  • the sensor component 714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the apparatus 700 and other devices.
  • the device 700 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication section 716 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 further includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • a non-transitory computer-readable storage medium including instructions may be executed by the processor 720 of the device 700 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • a non-transitory computer-readable storage medium when an instruction in the storage medium is executed by a processor of a mobile terminal, enables the mobile terminal to execute the measurement configuration method described above.
  • Fig. 8 is a block diagram of a measurement configuration apparatus 800 according to an exemplary embodiment.
  • the measurement configuration apparatus 800 may be a base station.
  • the measurement configuration device 800 may include a processor 801, a receiver 802, a transmitter 803, and a memory 804.
  • the receiver 802, the transmitter 803, and the memory 804 are connected to the processor 801 through a bus, respectively.
  • the processor 801 includes one or more processing cores.
  • the processor 801 runs a software program and a module to execute a method performed by a base station in a measurement configuration method provided by an embodiment of the present disclosure.
  • the memory 804 may be used to store software programs and modules. Specifically, the memory 804 may store an application program module 8042 required by the operating system 8041 and at least one function.
  • the receiver 802 is configured to receive communication data sent by other devices, and the transmitter 803 is configured to send communication data to other devices.
  • Fig. 9 is a block diagram illustrating a mobile communication system according to an exemplary embodiment. As shown in Fig. 9, the mobile communication system includes an access network device 901 and a terminal 902.
  • the access network device 901 is configured to perform a measurement configuration method performed by the access network device in the embodiment shown in FIG. 3 or 4.
  • the terminal 902 is configured to execute the measurement configuration method performed by the terminal in the embodiment shown in FIG. 3 or 4.
  • An exemplary embodiment of the present disclosure provides a computer-readable storage medium, where the storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the at least one program, The code set or instruction set is loaded and executed by the processor to implement the measurement configuration method as described above.

Abstract

一种测量配置方法、装置、设备、系统及存储介质,属于通信技术领域。所述方法包括:向终端发送测量配置信息,测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,测量资源为SRS资源或SRS资源组(301);接收终端在各个SRS资源上发送的SRS,SRS是使用天线面板标识信息所指示的天线面板发送的(303);测量终端发送的SRS,根据测量结果选择至少一个SRS,将至少一个SRS的SRS ID对应的上行发送指示信息发送给终端(305);终端用于确定上行发送指示信息对应的SRS ID,使用与SRS ID对应的发送波束进行上行发送,或,使用与SRS ID对应的发送波束和天线面板进行上行发送(306)。所述方法提高通信的鲁棒性。

Description

测量配置方法、装置、设备、系统及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种测量配置方法、装置、设备、系统及存储介质。
背景技术
当通信频段在频段(frequency range)2(6GHz以上)时,高频信号在传输过程中的衰减较快,为了保证高频信号的覆盖范围,需要通过定向的波束来发送或接收高频信号,从而降低高频信号的衰减。
终端中配置有一个天线面板(panel),该天线面板可以在多个接收波束方向接收信号,且在同一时刻只能在一个接收波束方向接收信号;或者,该天线面板可以在多个发送波束方向发送信号,且同一时刻只能在一个发送波束方向发送信号。相关技术中,接入网设备需要对终端的各个发送波束进行测量,从而为终端配置一个发送波束进行上行发送。在测量时,接入网设备可以为一个天线面板对应的每个不同方向的发送波束分配一个SRS(Sounding Reference Signal,探测参考信号)资源,终端在每个SRS资源上发送SRS,接入网设备根据每个SRS的测量结果为终端配置一个发送波束。
发明内容
为解决相关技术中的问题,本公开提供了一种测量配置方法、装置、设备、系统及存储介质。
根据本公开实施例的第一方面,提供一种测量配置方法,所述方法包括:
接入网设备向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
所述接入网设备接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个 SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
根据本公开实施例的第二方面,提供一种测量配置方法,所述方法包括:
终端接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
所述终端在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
所述终端接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
根据本公开实施例的第三方面,提供一种测量配置装置,所述装置包括:
发送模块,被配置为向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
接收模块,被配置为接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
配置模块,被配置为测量所述终端发送的SRS,根据测量结果选择至少一个SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
根据本公开实施例的第四方面,提供一种测量配置装置,所述装置包括:
接收模块,被配置为接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
发送模块,被配置为在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
配置模块,被配置为接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
根据本公开实施例的第五方面,提供一种接入网设备,所述接入网设备包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
测量所述终端发送的SRS,根据测量结果选择至少一个SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
根据本公开实施例的第六方面,提供一种终端,所述终端包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收模块,被配置为接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
发送模块,被配置为在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
配置模块,被配置为接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
根据本公开实施例的第七方面,提供一种移动通信系统,包括上述第三方面任一所述的测量配置装置和上述第四方面任一所述的测量配置装置,或者,包括上述第五方面任一所述的接入网设备和上述第六方面任一所述的终端。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如第一方面所述的测量配置方法,或者,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如第二方面所述的测量配置方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同天线面板发送的SRS是可以同时发送的,从而为终端配置这些可以同时发送的SRS对应的发送波束,使用这些发送波束进行上行发送,或,从而为终端配置这些可以同时发送的SRS对应的发送波束和天线面板,使用这些天线面板的发送波 束进行上行发送,从而提高通信的鲁棒性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本公开说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是一个基站和一个终端的示意图。
图2是本公开各个实施例涉及的移动通信系统的示意图。
图3是根据一示例性实施例示出的一种测量配置方法的流程图。
图4是根据一示例性实施例示出的一种测量配置方法的流程图。
图5是根据一示例性实施例示出的一种测量配置装置的框图。
图6是根据一示例性实施例示出的一种测量配置装置的框图。
图7是根据一示例性实施例示出的一种用于测量配置的装置的框图。
图8是根据一示例性实施例示出的一种测量配置装置的框图。
图9是根据一示例性实施例示出的一种移动通信系统的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
下面对本公开各个实施例涉及的名词进行解释。
波束分为发送波束和接收波束,这里的发送波束也可以称为上行波束,用于供终端进行上行发送;接收波束也可以称为下行波束,用于供终端进行下行接收。
对应于上述两种波束,可以将天线面板分为发送天线面板和接收天线面板,且用于在发送波束方向发送信号的天线面板称为发送天线面板,用于在接收波束方向接收信号的天线面板称为接收天线面板。
发送天线面板和接收天线面板可以是两个相互独立的天线面板,也可以位于同一天线面板上,本实施例不作限定。由于终端同时具有发送和接收信号的功能,所以,下文中所述的终端中配置的天线面板,除特殊说明之外,一个天线面板包括一个发送天线面板和一个接收面板,或者,一个天线面板是指一个包括发送天线面板和接收天线面板的天线面板。
相关技术中,终端中若只配置有一个天线面板,那么终端同时只能在该天线面板的其中一个接收波束方向上接收信号,且同时也只能在该天线面板的其中一个发送波束方向上发送信号,导致通信的鲁棒性较差。
为了提高通信鲁棒性,可以考虑在终端中配置至少两个天线面板。假设终端中配置有N(N≥2)个天线面板,则终端可以同时在N个接收波束方向接收信号,即在每个天线面板上的其中一个接收波束方向上接收信号;同时在N个发送波束方向发送信号,即在每个天线面板上的其中一个发送波束方向上发送信号。请参考图1,其示出了配置有两个天线面板的终端和接入网设备交互的示意图,且图1中仅示出了panel1的发送波束和接收波束,panel2的发送波束和接收波束未示出。
为了提高通信鲁棒性,需要考虑通过至少两个天线面板发送和接收信号。以上行发送为例,则接入网设备可以配置终端的各个天线面板使用各个发送波束发送SRS,再根据对各个天线面板发送的各个SRS的测量结果为终端选择并分配发送波束,该发送波束用于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)或PUCCH(Physical Uplink Control Channel,物理上行控制信道)或SRS的发送;或者,再根据对各个天线面板发送的各个SRS的测量结果为终端选择并分配发送波束和发送天线面板,该发送波束和天线面板用于PUSCH或PUCCH或SRS的发送。在测量SRS时,接入网设备需要知道哪些SRS来自同一天线面板,哪些SRS来自于不同天线面板,且来自不同天线面板的哪些SRS可以同时发送,从而根据这些信息为终端配置合适的发送波束,而相关技术中接入网设备并不能获取到这些信息。
本实施例中,由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同天线面板发送的SRS是可以同时发送的,从而为终端配置这些可以同时发 送的SRS对应的发送波束,使用这些发送波束进行上行PUSCH或PUCCH或SRS的发送,或,从而为终端配置这些可以同时发送的SRS对应的发送波束和天线面板,使用这些天线面板的发送波束进行上行PUSCH或PUCCH或SRS的发送,从而提高通信的鲁棒性。
图2示出了本公开一个实施例提供的移动通信系统的结构示意图。该移动通信系统可以是5G系统,又称NR(New Radio,新空口)系统。该移动通信系统包括:接入网设备201和终端202。
接入网设备201可以是基站。例如,基站可以是5G系统中采用集中分布式架构的基站(gNB)。当接入网设备201采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本申请实施例对接入网设备201的具体实现方式不加以限定。可选地,接入网设备201还可以包括家庭基站(Home eNB,HeNB)、中继(Relay)、微微基站Pico等。
接入网设备201和终端202通过无线空口建立无线连接。可选地,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口(New Radio,NR);或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端202可以是指向用户提供语音和/或数据连通性的设备。终端202可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端202可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment)。
需要说明的是,在图2所示的移动通信系统中,可以包括多个接入网设备 201和/或多个终端202,图2中以示出一个接入网设备201和一个终端202来举例说明,但本实施例对此不作限定。
图3是根据一示例性实施例示出的一种测量配置方法的流程图,该测量配置方法应用于图2所示的移动通信系统中,如图3所示,该测量配置方法包括以下步骤。
在步骤301中,接入网设备向终端发送测量配置信息,该测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,该测量资源为SRS资源或SRS资源组。
在步骤302中,终端接收接入网设备发送的测量配置信息。
在步骤303中,终端在各个SRS资源上向接入网设备发送SRS,该SRS是使用天线面板标识信息所指示的天线面板发送的。
在步骤304中,接入网设备接收终端在各个SRS资源上发送的SRS。
在步骤305中,接入网设备测量终端发送的SRS,根据测量结果选择至少一个SRS,将该至少一个SRS的SRS ID对应的上行发送指示信息发送给终端。
在步骤306中,终端接收接入网设备发送的至少一条上行发送指示信息,确定与该上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送波束进行上行发送,或,使用与该SRS ID对应的发送波束和天线面板进行上行发送。
其中,步骤301、304和305可以单独实现成为接入网设备侧的实施例,步骤302、303和306可以单独实现成为终端侧的实施例。
综上所述,本公开提供的测量配置方法,由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同天线面板发送的SRS是可以同时发送的,从而为终端配置这些可以同时发送的SRS对应的发送波束,使用这些发送波束进行上行PUSCH或PUCCH或SRS发送,或,从而为终端配置这些可以同时发送的SRS对应的发送波束和天线面板,使用这些天线面板的发送波束进行上行PUSCH或PUCCH或SRS的发送,从而提高通信的鲁棒性。
图4是根据另一示例性实施例示出的一种测量配置方法的流程图,该测量 配置方法应用于图2所示的移动通信系统中,如图4所示,该测量配置方法包括如下步骤。
在步骤401中,终端向接入网设备发送能力信息,该能力信息包括终端支持的天线面板的数量、各个天线面板能够支持的发送波束的数量。
能力信息是用于指示终端的能力的信息。本实施例中的能力信息至少包括终端支持的天线面板的数量、各个天线面板能够支持的发送波束的数量,本实施例不对能力信息是否包括其他信息作限定。
天线面板的数量可以包括发送天线面板的数量,也可以包括发送天线面板和接收天线面板的数量。需要说明的是,当发送天线面板的数量和接收天线面板的数量相等时,可以包括发送天线面板的数量或接收天线面板的数量,或者,可以指示天线面板的数量,而不用指示是发送天线面板还是接收天线面板。
发送波束的数量是天线面板能够支持的发送波束的最大数量。
本实施例中,能力信息还包括互易性指示,该互易性指示用于指示终端是否能够由最优接收波束的方向获知最优发送波束的方向。即,接收信号最好的接收波束对应的发送波束是否是最好的发送波束。
在步骤402中,接入网设备接收终端发送的能力信息。
若能力信息包括互易性指示,则当互易性指示用于指示终端能够由最优接收波束的方向获知最优发送波束的方向时,接入网设备可以由最优接收波束方向直接确定最优发送波束,将最优发送波束配置给终端,结束流程。
若能力信息不包括互易性指示,或者,若能力信息包括互易性指示,且当互易性指示用于指示终端不能够由最优接收波束的方向获知最优发送波束的方向时,接入网设备根据天线面板的数量和天线面板支持的发送波束的数量生成测量配置信息,即执行步骤403-408为终端配置发送波束。
在步骤403中,接入网设备向终端发送测量配置信息,该测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,该测量资源为SRS资源或SRS资源组。
SRS资源是接入网设备为终端配置的用于发送SRS的时频资源,终端可以在每个SRS资源上发送SRS。
接入网设备可以以SRS资源为单位配置测量资源,此时该测量配置信息包括至少一个SRS资源以及每个SRS资源对应的天线面板标识信息。或者,接入网设备也可以以SRS资源组为单位配置测量资源,此时该测量配置信息包括 至少一个SRS资源组以及每个SRS资源组对应的天线面板标识信息,每个SRS资源组包括至少一个SRS资源。其中,天线面板标识信息用于指示终端中的一个天线面板。
需要说明的是,测量配置信息中包括的测量资源以及天线面板标识信息的数量可以根据业务需求确定。比如,接入网设备想要测量某一个天线面板的发送波束,则测量配置信息可以包括至少一个测量资源以及所有测量资源共同对应的一条天线面板标识信息;或者,接入网设备想要测量每个天线面板的其中一个方向的发送波束,则测量配置信息可以包括至少两个测量资源以及每个测量资源对应的一条天线面板标识信息,每条天线面板标识信息不同;或者,接入网设备想要测量多个天线面板的多个方向的发送波束,则测量配置信息可以包括至少一个测量资源以及每个测量资源对应的天线面板标识信息,本实施例不对测量资源以及天线面板标识信息的数量作限定。
下面对天线面板标识信息进行介绍。
1)在第一种实现方式中,天线面板标识信息用于指示终端中一个任意的天线面板,且同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送。
其中,同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送,而不指定由终端中的哪个天线面板发送。
每个天线面板标识信息对应的测量资源的数量可以相等。即,当测量资源是SRS资源时,对应于同一天线面板标识信息的SRS资源的数量相等;当测量资源是SRS资源组,且每个SRS资源组对应于一条天线面板标识信息时,每个SRS资源组中的SRS资源的数量相等。
假设终端中配置有2个天线面板,测量配置信息包括6个SRS资源,其中3个SRS资源对应于天线面板标识信息1,3个SRS资源对应于天线面板标识信息2,则可以指示终端使用天线面板1的发送波束在对应于天线面板标识信息1的3个SRS资源上分别发送SRS,终端使用天线面板2的发送波束在对应于天线面板标识信息2的3个SRS资源上分别发送SRS;也可以指示终端使用天线面板2的发送波束在对应于天线面板标识信息1的3个SRS资源上分别发送SRS,终端使用天线面板1的发送波束在对应于天线面板标识信息2的3个SRS资源上分别发送SRS。或者,假设终端中配置有2个天线面板,测量配置信息包括2个SRS资源组,每个SRS资源组包括3个SRS资源,且第一个SRS 资源组对应于天线面板标识信息1,第二个SRS资源组对应于天线面板标识信息2,则可以指示终端使用天线面板1的发送波束在第一个SRS资源组中的3个SRS资源上分别发送SRS,终端使用天线面板2的发送波束在第二个SRS资源组中的3个SRS资源上分别发送SRS;也可以指示终端使用天线面板2的发送波束在第一个SRS资源组中的3个SRS资源上分别发送SRS,终端使用天线面板1的发送波束在第二个SRS资源组中的3个SRS资源上分别发送SRS。
2)在第二种实现方式中,天线面板标识信息用于指示终端中一个固定的天线面板。其中,每条天线面板标识信息对应于终端中一个指定的天线面板。比如,天线面板标识信息1用于指示终端中的天线面板1,天线面板标识信息2用于指示终端中的天线面板2。
a)每条天线面板标识信息对应的测量资源的数量相等。即,当测量资源是SRS资源时,对应于同一天线面板标识信息的SRS资源的数量相等;当测量资源是SRS资源组,且每个SRS资源组对应于一条天线面板标识信息时,每个SRS资源组中的SRS资源的数量相等。或者,
b)天线面板标识信息包括一条第一天线面板标识信息和至少一条第二天线面板标识信息,且第一天线面板标识信息对应的测量资源的数量大于第二天线面板标识信息对应的测量资源的数量。即,当测量资源是SRS资源时,对应于第一天线面板标识信息的SRS资源的数量最大;当测量资源是SRS资源组,且每个SRS资源组对应于一条天线面板标识信息时,对应于第一天线面板标识信息的SRS资源组中的SRS资源的数量最大。
需要说明的是,接入网设备可以获取终端的位置信息,当根据该位置信息确定接入网设备所在的方向与终端中一个天线面板的方向相匹配时,该方向的发送波束较好,所以,接入网设备可以将用于指示该天线面板的天线面板标识信息称为第一天线面板标识信息,将用于指示其他天线面板的天线面板标识信息称为第二天线面板标识信息。即,第一天线面板标识信息用于指示方向与接入网设备所在的方向相匹配的天线面板。
其中,天线面板的方向与接入网设备所在方向相匹配是指天线面板与接入网设备所在方向相对。比如,接入网设备位于终端的左侧,则可以确定终端中正对左侧的天线面板的方向与接入网设备所在方向相匹配。
在确定了第一天线面板标识信息后,接入网设备可以为该天线面板配置N 个SRS资源,为其余天线面板配置M个SRS资源,且N>M,以提高确定出最优发送波束的概率。
本实施例中,天线面板标识信息可以有两种表示形式。
第一种表示形式为:天线面板标识信息是固定的天线面板的天线面板标识,且天线面板标识用于指示固定的天线面板。比如,终端中天线面板1的天线面板标识为标识1,天线面板2的天线面板标识为标识2,则天线面板标识信息可以是标识1和标识2。
若天线面板标识信息包括第一天线面板标识信息,且天线面板标识信息是天线面板标识,则该方法还包括:终端向接入网设备发送下行波束测量报告,该波束测量报告包括至少两个RS标识、每个RS标识对应的L1(Layer1,层一)-RSRP(Reference Signal Receiving Power,参考信号接收功率)、每个RS标识对应的天线面板标识信息;接入网设备接收终端发送的下行波束测量报告;接入网设备确定最大的L1-RSRP对应的RS标识,将RS标识对应的天线面板标识作为第一天线面板标识信息,RS标识对应的天线面板标识即接收测量该RS标识对应的RS时使用的天线面板的标识。
其中,RS可以是接入网设备为了进行下行波束测量而发送的SSB(Synchronization Signal Block,同步信号块)或CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号),本实施例不作限定。
其中,终端在上报下行波束测量结果时,可以基于组进行上报。其中,基于组进行上报的方式有很多种,比如,终端将无法通过一个天线面板同时接收到的RS作为一个分组,表示这些RS是使用同一天线面板接收到的,则波束测量报告包括该RS标识分组和与该RS标识分组对应的天线面板标识。
由于接收RS最好的接收波束对应的天线面板较好,所以,接入网设备可以确定发送该RS的天线面板,将用于指示该天线面板的天线面板标识作为第一天线面板标识信息,将用于指示其他天线面板的天线面板标识作为第二天线面板标识信息,接入网设备再配置测量资源,生成测量配置信息。
第二种表示形式为:天线面板标识信息指示的是RS(Reference Signal,参考信号)的RS标识,且该RS标识用于指示终端的一个发送波束对应的天线面板,即指示终端使用发送该RS标识对应的RS时使用的天线面板来发送SRS;或,该RS标识用于指示终端的一个接收波束对应的天线面板,即指示终端使用接收该RS标识对应的RS时使用的天线面板来发送SRS。
其中,当RS是SRS时,该RS标识用于指示终端的一个发送波束对应的天线面板,即指示终端使用发送该SRS标识对应的SRS时使用的天线面板来发送SRS;当RS是SSB或CSI-RS时,该RS标识用于指示终端的一个接收波束对应的天线面板,即指示终端使用接收该RS标识对应的SSB或CSI-RS时使用的天线面板来发送SRS。
若天线面板标识信息包括第一天线面板标识信息,天线面板标识信息指示的是RS标识,且RS标识包括SSB index或CSI-RS ID时,则该方法还包括:终端向接入网设备发送下行波束测量报告,该下行波束测量报告包括至少两个RS标识和每个RS标识对应的L1-RSRP;接入网设备接收终端发送的下行波束测量报告;接入网设备将最大的L1-RSRP对应的RS标识作为第一天线面板标识信息。
由于接收RS最好的接收波束对应的天线面板较好,所以,接入网设备可以确定该RS,将该RS标识作为第一天线面板标识信息,将不是由接收该RS的天线面板接收的其他RS的RS标识作为第二天线面板标识信息,接入网设备再配置测量资源,生成测量配置信息。
若天线面板标识信息包括第一天线面板标识信息,天线面板标识信息指示的是RS标识,且RS标识包括SRS标识时,则该方法还包括:接入网设备根据终端之前在SRS资源上发送的SRS的测量结果,将测量结果较好的SRS标识作为第一天线面板标识信息;而将不是由发送该SRS的天线面板发送的其他SRS的SRS标识作为第二天线面板标识信息,接入网设备再配置测量资源,生成测量配置信息。
在步骤404中,终端接收接入网设备发送的测量配置信息。
在步骤405中,终端在各个SRS资源上向接入网设备发送SRS,该SRS是使用天线面板标识信息所指示的天线面板发送的。
其中,对应于同一天线面板标识信息的SRS资源的时域位置不同,对应于不同天线面板标识信息的SRS资源的时域位置可以相同。
在步骤406中,接入网设备接收终端在各个SRS资源上发送的SRS。
在步骤407中,接入网设备测量终端发送的SRS,根据测量结果选择至少一个SRS,将该至少一个SRS的SRS ID对应的上行发送指示信息发送给终端。
其中,上行发送指示信息包括空间关系信息,此时上行发送指示信息用于指示发送波束的参数。或者,上行发送指示信息包括空间关系信息和天线面板 标识信息,此时上行发送指示信息用于指示发送波束和天线面板的参数。
在步骤408中,终端接收接入网设备发送的至少一条上行发送指示信息,确定与该上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送波束进行上行发送,或,使用与该SRS ID对应的发送波束和天线面板进行上行发送。
当上行发送指示信息包括空间关系信息时,由于空间关系信息对应于一个SRS ID,所以,终端可以使用与该SRS ID对应的发送波束进行上行发送;或者,终端可以使用与该SRS ID对应的发送波束和天线面板进行上行发送,即使用该天线面板的其中一个发送波束进行上行发送。
当上行发送指示信息包括空间关系信息和天线面板标识信息时,由于空间关系信息对应于一个SRS ID,且天线面板标识信息对应于一个天线面板,所以,终端可以使用与该SRS ID对应的发送波束和天线面板进行上行发送,即使用该天线面板的其中一个发送波束进行上行发送。
需要说明的是,当天线面板标识信息指示的RS标识时,空间关系信息中的SRS ID与天线面板标识信息指示的RS标识可以不同,只要两者对应于同一个天线面板即可。
其中,步骤402、403、406和407可以单独实现成为接入网设备侧的实施例,步骤401、404、405和408可以单独实现成为终端侧的实施例。
综上所述,本公开提供的测量配置方法,由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同发送天线面板发送的SRS可以同时发送,从而为终端配置这些可以同时发送的SRS对应的发送波束,使用这些发送波束进行上行PUSCH或PUCCH或SRS的发送,或,从而为终端配置这些可以同时发送的SRS对应的发送波束和天线面板,使用这些天线面板的发送波束进行上行PUSCH或PUCCH或SRS的发送,从而提高通信的鲁棒性。
图5是根据一示例性实施例示出的一种测量配置装置的框图,该测量配置装置应用于图2所示的接入网设备201中,如图5所示,该测量配置装置包括:发送模块510、接收模块520和配置模块530;
该发送模块510,被配置为向终端发送测量配置信息,测量配置信息包括 至少一个测量资源,以及每个测量资源对应的天线面板标识信息,测量资源为SRS资源或SRS资源组;
该接收模块520,被配置为接收终端在各个SRS资源上发送的SRS,SRS是使用天线面板标识信息所指示的天线面板发送的;
该配置模块530,被配置为测量终端发送的SRS,根据测量结果选择至少一个SRS,将至少一个SRS的SRS ID对应的上行发送指示信息发送给终端,终端用于确定上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送波束进行上行发送,或,使用与SRS ID对应的发送波束和天线面板进行上行发送。
在本公开的一个实施例中,天线面板标识信息用于指示终端中一个任意的天线面板,且同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送。
在本公开的一个实施例中,天线面板标识信息用于指示终端中一个固定的天线面板;每条天线面板标识信息对应的测量资源的数量相等;或者,天线面板标识信息包括一条第一天线面板标识信息和至少一条第二天线面板标识信息,且第一天线面板标识信息对应的测量资源的数量大于所有第二天线面板标识信息对应的测量资源的数量。
在本公开的一个实施例中,天线面板标识信息是固定的天线面板的天线面板标识,且天线面板标识用于指示固定的天线面板;或者,天线面板标识信息指示的是RS的RS标识,且RS标识用于指示终端的一个发送波束对应的天线面板,即指示终端使用发送该RS标识对应的RS时使用的天线面板来发送SRS,或,RS标识用于指示终端的一个接收波束对应的天线面板,即指示终端使用接收该RS标识对应的RS时使用的天线面板来发送SRS。
在本公开的一个实施例中,天线面板标识信息包括第一天线面板标识信息,且天线面板标识信息是天线面板标识,则
该接收模块520,还被配置为接收终端发送的下行波束测量报告,下行波束测量报告包括至少两个RS标识、每个RS标识对应的L1-RSRP、每个RS标识对应的天线面板标识信息;
该配置模块530,还被配置为确定最大的L1-RSRP对应的RS标识,将RS标识对应的天线面板标识作为第一天线面板标识信息,该RS标识对应的天线面板标识即为接收测量该RS时使用的天线面板的标识。
在本公开的一个实施例中,天线面板标识信息包括第一天线面板标识信息,且天线面板标识信息是RS标识,则
该接收模块520,还被配置为接收终端发送的下行波束测量报告,下行波束测量报告包括至少两个RS标识和每个RS标识对应的L1-RSRP;
该配置模块530,还被配置为将最大的L1-RSRP对应的RS标识作为第一天线面板标识信息,即告知终端使用接收测量该RS时使用的天线面板来发送SRS。
在本公开的一个实施例中,该接收模块520,还被配置为接收终端发送的能力信息,能力信息包括终端支持的天线面板的数量、各个天线面板能够支持的发送波束的数量。
在本公开的一个实施例中,能力信息还包括互易性指示,互易性指示用于指示终端是否能够由最优接收波束的方向获知最优发送波束的方向。
综上所述,本公开提供的测量配置装置,由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同天线面板发送的SRS可以同时发送,从而为终端配置这些可以同时发送的SRS对应的发送波束,使用这些发送波束进行上行PUSCH或PUCCH或SRS的发送,或,从而为终端配置这些可以同时发送的SRS对应的发送波束和天线面板,使用这些天线面板的发送波束进行上行PUSCH或PUCCH或SRS的发送,从而提高通信的鲁棒性。
图6是根据一示例性实施例示出的一种测量配置装置的框图,该测量配置装置应用于图2所示的终端202中,如图6所示,该测量配置装置包括:接收模块610、发送模块620和配置模块630;
该接收模块610,被配置为接收接入网设备发送的测量配置信息,测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,测量资源为SRS资源或SRS资源组;
该发送模块620,被配置为在各个SRS资源上向接入网设备发送SRS,SRS是使用天线面板标识信息所指示的天线面板发送的;
该配置模块630,被配置为接收接入网设备发送的至少一条上行发送指示信息,确定与上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送 波束进行上行发送,或,使用与SRS ID对应的发送波束和天线面板进行上行发送,上行发送指示信息是接入网设备测量终端发送的SRS,根据测量结果选择至少一个SRS,根据至少一个SRS的SRS ID确定的。
在本公开的一个实施例中,天线面板标识信息用于指示终端中一个任意的天线面板,且同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送。
在本公开的一个实施例中,天线面板标识信息用于指示终端中一个固定的天线面板;每条天线面板标识信息对应的测量资源的数量相等;或者,天线面板标识信息包括一条第一天线面板标识信息和至少一条第二天线面板标识信息,且第一天线面板标识信息对应的测量资源的数量大于所有第二天线面板标识信息对应的测量资源的数量。
在本公开的一个实施例中,天线面板标识信息是固定的天线面板的天线面板标识,且天线面板标识用于指示固定的天线面板;或者,天线面板标识信息指示的是RS的RS标识,且RS标识用于指示终端的一个发送波束对应的天线面板,即指示终端使用发送该RS标识对应的RS时使用的天线面板来发送SRS;或,RS标识用于指示终端的一个接收波束对应的天线面板,即指示终端使用接收该RS标识对应的RS时使用的天线面板来发送SRS。
在本公开的一个实施例中,天线面板标识信息包括第一天线面板标识信息,且天线面板标识信息是天线面板标识,则该发送模块620,还被配置为向接入网设备发送下行波束测量报告,下行波束测量报告包括至少两个RS标识、每个RS标识对应的层一的参考信号接收功率L1-RSRP、每个RS标识对应的天线面板标识信息,且接入网设备用于确定最大的L1-RSRP对应的RS标识,将RS标识对应的天线面板标识作为第一天线面板标识信息,该RS标识对应的天线面板标识即为接收测量该RS时使用的天线面板的标识。
在本公开的一个实施例中,天线面板标识信息包括第一天线面板标识信息,且天线面板标识信息指示的是RS标识,则该发送模块620,还被配置为向接入网设备发送下行波束测量报告,下行波束测量报告包括至少两个RS标识和每个RS标识对应的L1-RSRP,且接入网设备用于将最大的L1-RSRP对应的RS标识作为第一天线面板标识信息,即告知终端使用接收测量该RS时使用的天线面板来发送SRS。
在本公开的一个实施例中,该发送模块620,还被配置为向接入网设备发 送能力信息,能力信息包括终端支持的天线面板的数量、各个天线面板能够支持的发送波束的数量。
在本公开的一个实施例中,能力信息还包括互易性指示,互易性指示用于指示终端是否能够由最优接收波束的方向获知最优发送波束的方向。
综上所述,本公开提供的测量配置装置,由于测量配置信息中每个测量资源对应于一个天线面板标识信息,所以,终端可以使用每个天线面板标识信息所指示的天线面板在SRS资源上发送SRS,这样,接入网设备可以知道哪些SRS可以同时发送,即使用不同天线面板发送的SRS可以同时发送,从而为终端配置这些可以同时发送的SRS对应的发送波束,使用这些发送波束进行上行PUSCH或PUCCH或SRS的发送,从而提高通信的鲁棒性。
本公开一示例性实施例提供了一种接入网设备,能够实现本公开提供的测量配置方法,该UE包括:处理器、用于存储处理器可执行信令的存储器;
其中,处理器被配置为:
向终端发送测量配置信息,测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,测量资源为SRS资源或SRS资源组;
接收终端在各个SRS资源上发送的SRS,SRS是使用天线面板标识信息所指示的天线面板发送的;
测量终端发送的SRS,根据测量结果选择至少一个SRS,将至少一个SRS的SRS ID对应的上行发送指示信息发送给终端,终端用于确定上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送波束进行上行发送,或,使用与该SRS ID对应的发送波束和天线面板进行上行发送。
本公开一示例性实施例提供了一种终端,能够实现本公开提供的测量配置方法,该基站包括:处理器、用于存储处理器可执行信令的存储器;
其中,处理器被配置为:
接收接入网设备发送的测量配置信息,测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,测量资源为SRS资源或SRS资源组;
在各个SRS资源上向接入网设备发送SRS,SRS是使用天线面板标识信息所指示的天线面板发送的;
接收接入网设备发送的至少一条上行发送指示信息,确定与上行发送指示信息对应的SRS ID,使用与该SRS ID对应的发送波束进行上行发送,或,使用与该SRS ID对应的发送波束和天线面板进行上行发送,上行发送指示信息是接入网设备测量终端发送的SRS,根据测量结果选择至少一个SRS,根据至少一个SRS的SRS ID确定的。
图7是根据一示例性实施例示出的一种用于测量配置的装置700的框图。例如,装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理部件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在设备700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件706为装置700的各种组件提供电力。电力组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信 号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件716还包括近场通信(NFC)模块,以促进短程通信。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程 逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行上述测量配置方法。
图8是根据一示例性实施例示出的一种测量配置装置800的框图。例如,测量配置装置800可以是基站。如图8所示,测量配置装置800可以包括:处理器801、接收机802、发射机803和存储器804。接收机802、发射机803和存储器804分别通过总线与处理器801连接。
其中,处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块以执行本公开实施例提供的测量配置方法中基站所执行的方法。存储器804可用于存储软件程序以及模块。具体的,存储器804可存储操作系统8041、至少一个功能所需的应用程序模块8042。接收机802用于接收其他设备发送的通信数据,发射机803用于向其他设备发送通信数据。
图9是根据一示例性实施例示出的一种移动通信系统的框图,如图9所示,该移动通信系统包括接入网设备901和终端902。
接入网设备901用于执行图3或4所示实施例中接入网设备所执行的测量配置方法。
终端902用于执行图3或4所示实施例中终端所执行的测量配置方法。
本公开一示例性实施例提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上所述的测量配置方法。
本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的 其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种测量配置方法,其特征在于,所述方法包括:
    接入网设备向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    所述接入网设备接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
    所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
  2. 根据权利要求1所述的方法,其特征在于,所述天线面板标识信息用于指示所述终端中一个任意的天线面板,且同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送。
  3. 根据权利要求1所述的方法,其特征在于,所述天线面板标识信息用于指示所述终端中一个固定的天线面板;
    每条所述天线面板标识信息对应的测量资源的数量相等;或者,
    所述天线面板标识信息包括一条第一天线面板标识信息和至少一条第二天线面板标识信息,且所述第一天线面板标识信息对应的测量资源的数量大于所有第二天线面板标识信息对应的测量资源的数量。
  4. 根据权利要求3所述的方法,其特征在于,
    所述天线面板标识信息是所述固定的天线面板的天线面板标识,且所述天线面板标识用于指示所述固定的天线面板;或者,
    所述天线面板标识信息指示的是参考信号RS的RS标识,且所述RS标识用于指示所述终端的一个发送波束对应的天线面板,或,所述RS标识用于指示所述终端的一个接收波束对应的天线面板。
  5. 根据权利要求4所述的方法,其特征在于,所述天线面板标识信息包括所述第一天线面板标识信息,且所述天线面板标识信息是天线面板标识,则所述方法还包括:
    所述接入网设备接收所述终端发送的下行波束测量报告,所述下行波束测量报告包括至少两个RS标识、每个RS标识对应的层一的参考信号接收功率L1-RSRP、每个RS标识对应的天线面板标识信息;
    所述接入网设备确定最大的L1-RSRP对应的RS标识,将所述RS标识对应的天线面板标识作为所述第一天线面板标识信息。
  6. 根据权利要求4所述的方法,其特征在于,所述天线面板标识信息包括所述第一天线面板标识信息,且所述天线面板标识信息指示的是RS标识,则所述方法还包括:
    所述接入网设备接收所述终端发送的下行波束测量报告,所述下行波束测量报告包括至少两个RS标识和每个RS标识对应的L1-RSRP;
    所述接入网设备将最大的L1-RSRP对应的RS标识作为所述第一天线面板标识信息。
  7. 根据权利要求2至6任一所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收所述终端发送的能力信息,所述能力信息包括所述终端支持的天线面板的数量、所述各个天线面板能够支持的发送波束的数量。
  8. 根据权利要求7所述的方法,其特征在于,所述能力信息还包括互易性指示,所述互易性指示用于指示所述终端是否能够由最优接收波束的方向获知最优发送波束的方向。
  9. 一种测量配置方法,其特征在于,所述方法包括:
    终端接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    所述终端在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用 所述天线面板标识信息所指示的天线面板发送的;
    所述终端接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
  10. 根据权利要求9所述的方法,其特征在于,所述天线面板标识信息用于指示所述终端中一个任意的天线面板,且同一天线面板标识信息对应的测量资源上发送的SRS由同一天线面板发送。
  11. 根据权利要求9所述的方法,其特征在于,所述天线面板标识信息用于指示所述终端中一个固定的天线面板;
    每条所述天线面板标识信息对应的测量资源的数量相等;或者,
    所述天线面板标识信息包括一条第一天线面板标识信息和至少一条第二天线面板标识信息,且所述第一天线面板标识信息对应的测量资源的数量大于所有第二天线面板标识信息对应的测量资源的数量。
  12. 根据权利要求11所述的方法,其特征在于,
    所述天线面板标识信息是所述固定的天线面板的天线面板标识,且所述天线面板标识用于指示所述固定的天线面板;或者,
    所述天线面板标识信息指示的是参考信号RS的RS标识,且所述RS标识用于指示所述终端的一个发送波束对应的天线面板,或,所述RS标识用于指示所述终端的一个接收波束对应的天线面板。
  13. 根据权利要求12所述的方法,其特征在于,所述天线面板标识信息包括所述第一天线面板标识信息,且所述天线面板标识信息是天线面板标识,则所述方法还包括:
    所述终端向所述接入网设备发送下行波束测量报告,所述下行波束测量报告包括至少两个RS标识、每个RS标识对应的层一的参考信号接收功率L1-RSRP、每个RS标识对应的天线面板标识信息,且所述接入网设备用于确定 最大的L1-RSRP对应的RS标识,将所述RS标识对应的天线面板标识作为所述第一天线面板标识信息。
  14. 根据权利要求12所述的方法,其特征在于,所述天线面板标识信息包括所述第一天线面板标识信息,且所述天线面板标识信息指示的是RS标识,则所述方法还包括:
    所述终端向所述接入网设备发送下行波束测量报告,所述下行波束测量报告包括至少两个RS标识和每个RS标识对应的L1-RSRP,且所述接入网设备用于将最大的L1-RSRP对应的RS标识作为所述第一天线面板标识信息。
  15. 根据权利要求10至14任一所述的方法,其特征在于,所述方法还包括:
    所述终端向所述接入网设备发送能力信息,所述能力信息包括所述终端支持的天线面板的数量、所述各个天线面板能够支持的发送波束的数量。
  16. 根据权利要求15所述的方法,其特征在于,所述能力信息还包括互易性指示,所述互易性指示用于指示所述终端是否能够由最优接收波束的方向获知最优发送波束的方向。
  17. 一种测量配置装置,其特征在于,用于接入网设备中,所述装置包括:
    发送模块,被配置为向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    接收模块,被配置为接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
    配置模块,被配置为测量所述终端发送的SRS,根据测量结果选择至少一个SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
  18. 一种测量配置装置,其特征在于,用于终端中,所述装置包括:
    接收模块,被配置为接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    发送模块,被配置为在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
    配置模块,被配置为接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
  19. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    向终端发送测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    接收所述终端在各个SRS资源上发送的SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
    测量所述终端发送的SRS,根据测量结果选择至少一个SRS,将所述至少一个SRS的SRS身份标识ID对应的上行发送指示信息发送给所述终端,所述终端用于确定所述上行发送指示信息对应的SRS ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送。
  20. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收接入网设备发送的测量配置信息,所述测量配置信息包括至少一个测量资源,以及每个测量资源对应的天线面板标识信息,所述测量资源为探测参考信号SRS资源或SRS资源组;
    在各个SRS资源上向所述接入网设备发送SRS,所述SRS是使用所述天线面板标识信息所指示的天线面板发送的;
    接收所述接入网设备发送的至少一条上行发送指示信息,确定与所述上行发送指示信息对应的SRS身份标识ID,使用与所述SRS ID对应的发送波束进行上行发送,或,使用与所述SRS ID对应的发送波束和天线面板进行上行发送,所述上行发送指示信息是所述接入网设备测量所述终端发送的SRS,根据测量结果选择至少一个SRS,根据所述至少一个SRS的SRS ID确定的。
  21. 一种移动通信系统,其特征在于,所述移动通信系统包括如权利要求17所述的测量配置装置和如权利要求18所述的测量配置装置,或者,所述移动通信系统包括如权利要求19所述的接入网设备和如权利要求20所述的终端。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求1至8任一所述的测量配置方法,或者,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求9至16任一所述的测量配置方法。
PCT/CN2018/108112 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质 WO2020061953A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/108112 WO2020061953A1 (zh) 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质
CN201880001508.XA CN109417717B (zh) 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质
CN202210570670.1A CN114760021A (zh) 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质
US17/279,792 US20210336737A1 (en) 2018-09-27 2018-09-27 Measurement configuration method, apparatus, devices, system, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108112 WO2020061953A1 (zh) 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2020061953A1 true WO2020061953A1 (zh) 2020-04-02

Family

ID=65462538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108112 WO2020061953A1 (zh) 2018-09-27 2018-09-27 测量配置方法、装置、设备、系统及存储介质

Country Status (3)

Country Link
US (1) US20210336737A1 (zh)
CN (2) CN109417717B (zh)
WO (1) WO2020061953A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236584A1 (en) * 2019-05-17 2020-11-26 Qualcomm Incorporated Panel selection for user equipment with multiple panels
CN115150903A (zh) * 2021-03-30 2022-10-04 维沃移动通信有限公司 波束切换方法、装置及存储介质
WO2023070243A1 (en) * 2021-10-25 2023-05-04 Nokia Shanghai Bell Co., Ltd. Panel selection for positioning

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077536A1 (en) * 2018-10-16 2020-04-23 Qualcomm Incorporated Uplink srs with precoding
CN111106864B (zh) * 2018-11-16 2023-02-24 维沃移动通信有限公司 上行波束训练方法、终端设备和网络侧设备
CN114900880A (zh) * 2018-12-11 2022-08-12 华为技术有限公司 同步信号块的发送、接收方法及装置
WO2020167201A1 (en) * 2019-02-14 2020-08-20 Sony Corporation Methods for beam correspondence signalling, related wireless devices and related network nodes
CN110140301B (zh) * 2019-03-25 2023-06-27 北京小米移动软件有限公司 同步信号块传输方法、装置及存储介质
US20220167332A1 (en) * 2019-03-26 2022-05-26 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and apparatus
CN111756426B (zh) * 2019-03-29 2023-04-07 华为技术有限公司 一种选择接收波束的方法及装置
EP3955665A4 (en) * 2019-04-10 2022-11-16 Beijing Xiaomi Mobile Software Co., Ltd. RESOURCE INDICATION METHOD AND DEVICE
SG11202111694WA (en) * 2019-04-26 2021-11-29 Beijing Xiaomi Mobile Software Co Ltd Antenna panel application method, apparatus and storage medium
CN111614450B (zh) * 2019-04-26 2021-10-01 维沃移动通信有限公司 终端天线面板信息的指示方法、网络侧设备和终端
US11943030B2 (en) * 2019-05-09 2024-03-26 FG Innovation Company Limited Method and apparatus for antenna panel control
KR20220019774A (ko) * 2019-06-17 2022-02-17 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 랜덤 액세스 지시 방법, 장치 및 저장 매체
CN112312416B (zh) * 2019-07-26 2023-04-04 华为技术有限公司 一种通信方法及通信装置
CN116437324A (zh) * 2019-08-05 2023-07-14 北京小米移动软件有限公司 天线面板选择方法、装置及存储介质
JP7305872B2 (ja) * 2019-08-15 2023-07-10 ソニーグループ株式会社 能力シグナリングの方法、無線装置及びネットワークノード
CN112751599B (zh) * 2019-10-30 2023-04-07 中国电信股份有限公司 基于多天线面板的数据传输方法、系统以及存储介质
CN112787784B (zh) * 2019-11-08 2023-06-09 维沃移动通信有限公司 一种信息传输方法及设备
CN115866531A (zh) * 2019-11-22 2023-03-28 华为技术有限公司 通信方法及装置
CN114930736A (zh) * 2020-01-14 2022-08-19 Oppo广东移动通信有限公司 用于接收单元特定的波束测量和上报的方法和装置
CN113259997A (zh) * 2020-02-12 2021-08-13 大唐移动通信设备有限公司 上行传输特性确认方法、信息上报方法和相关设备
CN115053555A (zh) * 2020-02-14 2022-09-13 华为技术有限公司 一种资源配置的方法和装置
CN113453264B (zh) * 2020-03-24 2022-11-18 维沃移动通信有限公司 检测终端发射行为的方法及网络设备
US20230208589A1 (en) * 2020-05-22 2023-06-29 Beijing Xiaomi Mobile Software Co., Ltd. Srs resource configuration method, srs resource determination method, and apparatuses
US20230262480A1 (en) * 2020-08-03 2023-08-17 Beijing Xiaomi Mobile Software Co., Ltd. Signal transmission method and apparatus, terminal, device, and medium
US11728850B2 (en) * 2020-10-12 2023-08-15 Qualcomm Incorporated Techniques for indicating a panel identifier in reporting received beams
KR20230087568A (ko) * 2020-10-23 2023-06-16 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 어레이 선택 방법, 단말, 네트워크 기기 및 저장 매체
WO2022160302A1 (zh) * 2021-01-29 2022-08-04 华为技术有限公司 一种天线面板状态的传输方法和装置
CN117223371A (zh) * 2021-05-10 2023-12-12 Oppo广东移动通信有限公司 通过多个端口进行的信号和信道选择
CN117042166A (zh) * 2022-04-28 2023-11-10 华为技术有限公司 一种信息传输方法及装置
CN117376938A (zh) * 2022-06-30 2024-01-09 华为技术有限公司 一种天线管理的方法、设备及通信系统
WO2024026644A1 (zh) * 2022-08-01 2024-02-08 北京小米移动软件有限公司 Srs资源的配置方法、装置、介质及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN108282297A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种资源指示方法、装置及系统
CN108521878A (zh) * 2017-05-27 2018-09-11 北京小米移动软件有限公司 接收和上报测量信号的方法、装置、基站和用户设备
CN108632839A (zh) * 2017-03-24 2018-10-09 维沃移动通信有限公司 一种波束处理方法、基站及终端

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062937A1 (ko) * 2016-09-29 2018-04-05 엘지전자(주) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
US10560851B2 (en) * 2017-01-13 2020-02-11 Samsung Electronics Co., Ltd. Method and apparatus for uplink beam management in next generation wireless systems
US10218424B2 (en) * 2017-01-13 2019-02-26 Nokia Technologies Oy Reference signal indications for massive MIMO networks
US10735157B2 (en) * 2017-02-03 2020-08-04 Futurewei Technologies, Inc. UE-assisted SRS resource allocation
JP6804649B2 (ja) * 2017-02-06 2020-12-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末の無線リンクモニタリングを行う方法及びそれをサポートする装置
CN108401264B (zh) * 2017-02-07 2023-03-24 中兴通讯股份有限公司 一种波束信息反馈方法及装置
EP3606140A4 (en) * 2017-03-22 2020-10-21 NTT DoCoMo, Inc. USER TERMINAL AND RADIO COMMUNICATION PROCESS
EP4255088A3 (en) * 2017-03-23 2023-12-27 InterDigital Patent Holdings, Inc. Beam training and initial access
EP3562052A4 (en) * 2017-03-31 2020-07-01 LG Electronics Inc. -1- UPLINK DATA TRANSMISSION METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
US11159347B2 (en) * 2017-05-04 2021-10-26 Lg Electronics Inc. Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
WO2018203711A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Method and apparatus for beam association between downlink/uplink
CN116232554A (zh) * 2017-05-05 2023-06-06 中兴通讯股份有限公司 一种传输参数处理方法及装置
CN110741592B (zh) * 2017-06-16 2022-11-01 瑞典爱立信有限公司 多资源上行链路探测和天线子集传输
CN109391301B (zh) * 2017-08-11 2021-12-14 大唐移动通信设备有限公司 一种上行传输码本确定方法及设备
US11139878B2 (en) * 2017-09-08 2021-10-05 Apple Inc. Group based beam reporting and channel state information reference signal configuration in new radio systems
JP2019050470A (ja) * 2017-09-08 2019-03-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
JP2019050472A (ja) * 2017-09-08 2019-03-28 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
US20200389872A1 (en) * 2017-09-11 2020-12-10 Ntt Docomo, Inc. User terminal and radio communication method
JP6694032B2 (ja) * 2017-09-20 2020-05-13 華碩電腦股▲ふん▼有限公司 無線通信システムにおけるビーム決定の方法及び装置
CN109600208B (zh) * 2017-09-30 2021-06-04 电信科学技术研究院 一种上行传输、配置方法、终端及基站
US11025388B2 (en) * 2017-10-10 2021-06-01 Futurewei Technologies, Inc. System and method for control signaling
EP3776907A1 (en) * 2018-04-04 2021-02-17 IDAC Holdings, Inc. Beam indication for 5g new radio
CN110474734B (zh) * 2018-05-11 2022-02-08 华为技术有限公司 通信方法及装置
US11729782B2 (en) * 2018-06-11 2023-08-15 Apple Inc. Enhanced uplink beam management
US11160061B2 (en) * 2018-07-05 2021-10-26 Apple Inc. Uplink transmission for multi-panel operation
US10972244B2 (en) * 2018-08-01 2021-04-06 Samsung Electronics Co., Ltd. Method and apparatus for low-overhead and low latency multi-beam operation
CN112840575B (zh) * 2018-08-09 2023-11-21 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2020032737A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치
CN112840737A (zh) * 2018-08-09 2021-05-25 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110830209B (zh) * 2018-08-10 2021-04-09 华为技术有限公司 训练天线面板的方法与装置
CN110868231B (zh) * 2018-08-10 2021-08-13 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
US11671149B2 (en) * 2018-08-17 2023-06-06 Interdigital Patent Holdings, Inc. Beam management for multi-TRP
WO2020063560A1 (en) * 2018-09-25 2020-04-02 FG Innovation Company Limited Method and apparatus for triggering power headroom reports
EP3820051A1 (en) * 2019-11-07 2021-05-12 Comcast Cable Communications LLC Transmission repetition for wireless communication
US11658727B2 (en) * 2020-01-17 2023-05-23 Samsung Electronics Co., Ltd. Dynamic beam adaptation in a multi-beam system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282297A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种资源指示方法、装置及系统
CN108632839A (zh) * 2017-03-24 2018-10-09 维沃移动通信有限公司 一种波束处理方法、基站及终端
CN108521878A (zh) * 2017-05-27 2018-09-11 北京小米移动软件有限公司 接收和上报测量信号的方法、装置、基站和用户设备
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236584A1 (en) * 2019-05-17 2020-11-26 Qualcomm Incorporated Panel selection for user equipment with multiple panels
US11251919B2 (en) 2019-05-17 2022-02-15 Qualcomm Incorporated Panel selection for user equipment with multiple panels
CN115150903A (zh) * 2021-03-30 2022-10-04 维沃移动通信有限公司 波束切换方法、装置及存储介质
WO2023070243A1 (en) * 2021-10-25 2023-05-04 Nokia Shanghai Bell Co., Ltd. Panel selection for positioning

Also Published As

Publication number Publication date
CN109417717A (zh) 2019-03-01
CN109417717B (zh) 2022-06-24
US20210336737A1 (en) 2021-10-28
CN114760021A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2020061953A1 (zh) 测量配置方法、装置、设备、系统及存储介质
CN109076560B (zh) 传输配置指示的配置方法及装置
CN109076364B (zh) 传输配置方法及装置
US11711818B2 (en) Method and device for configuring transmission
US11191085B2 (en) Method and apparatus for coordinating in-device coexistence interference, user equipment and communication device
WO2020132885A1 (zh) 数据传输方法、基站、用户设备及存储介质
WO2020019218A1 (zh) 传输配置方法及装置
CN109691171B (zh) 反射业务质量配置的方法及装置和信息发送方法及装置
WO2023070563A1 (zh) 传输配置指示状态确定方法、装置及存储介质
CN111095857B (zh) 无线通信方法、装置及存储介质
CN109863700A (zh) 数据传输方法及装置
WO2021022453A1 (zh) 天线面板选择方法、装置及存储介质
US11924121B2 (en) Data transmission method and apparatus, and storage medium
US11394515B2 (en) Information transmission method, device, and system, and storage medium
KR20230159614A (ko) 디폴트 빔 결정 방법, 장치 및 통신 기기(default beam determination method and apparatus, and communication device)
US20230075773A1 (en) Information transmission method and apparatus, and communication device and storage medium
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
CN113796110A (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
CN110169004B (zh) 资源指示方法及装置
WO2023050049A1 (zh) 信息上报、波束切换方法及装置、存储介质
WO2024011527A1 (zh) 信息上报、上报指示方法和装置
WO2023206037A1 (zh) 定位参考信号发送、定位参考信号接收方法和装置
WO2024026696A1 (zh) 波束上报增强方法、装置、通信设备及存储介质
US20240057054A1 (en) Signal transmitting/receiving method and apparatus, and signal receiving method and apparatus
WO2023050208A1 (zh) 波束切换、评估上报方法和装置、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935469

Country of ref document: EP

Kind code of ref document: A1