WO2018202021A1 - 广播信号的发送方法、接收方法、网络设备和终端设备 - Google Patents

广播信号的发送方法、接收方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018202021A1
WO2018202021A1 PCT/CN2018/085186 CN2018085186W WO2018202021A1 WO 2018202021 A1 WO2018202021 A1 WO 2018202021A1 CN 2018085186 W CN2018085186 W CN 2018085186W WO 2018202021 A1 WO2018202021 A1 WO 2018202021A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
protocol layer
layer
network device
ssb
Prior art date
Application number
PCT/CN2018/085186
Other languages
English (en)
French (fr)
Inventor
刘瑾
葛屹群
袁璞
罗俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22160103.2A priority Critical patent/EP4092948A1/en
Priority to CN201880029945.2A priority patent/CN110583007B/zh
Priority to JP2019560744A priority patent/JP7127062B2/ja
Priority to KR1020197036015A priority patent/KR102299133B1/ko
Priority to EP18794735.3A priority patent/EP3621275B1/en
Publication of WO2018202021A1 publication Critical patent/WO2018202021A1/zh
Priority to US16/673,735 priority patent/US11218991B2/en
Priority to US17/561,357 priority patent/US11791967B2/en
Priority to JP2022084733A priority patent/JP7467529B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for transmitting a broadcast signal, a method for receiving a broadcast signal, a network device, and a terminal device.
  • LTE Long Term Evolution
  • SSS Primary Synchronization Signal
  • UE User Equipment
  • SSS Secondary Synchronization Signal
  • MIB Main Information Block
  • SIB SystemInformationBlock
  • each beam in the multiple beams transmits a different SSB, or 2 beams can transmit the same SSB.
  • Each SSB includes Orthogonal Frequency Division Multiplexing (OFDM) symbols for transmitting PSS, OFDM symbols for transmitting SSS, and OFDM symbols for transmitting PBCH.
  • the base station transmits the synchronization signal and PBCH in one SSB using different time-frequency resources.
  • One or more SSBs form an SS burst, and one or more SS bursts form an SS burst set, so one SS burst set includes one or more SSBs.
  • An SS burst set is mapped and transmitted in a predetermined number of radio frames, for example, an SS burst set is mapped and transmitted in 2 radio frames.
  • the base station transmits the SS burst set in a periodic manner, and the period in which the SS burst set is transmitted is a predetermined number of radio frames.
  • one SS burst set may include multiple SSBs
  • one SSB needs to distinguish information about the order of the SSB in the SS burst set transmission period in order to distinguish it from other SSBs that belong to the same SS burst set. .
  • the embodiment of the present application provides a method for sending a broadcast signal and a method for receiving the same, which are used to carry additional information in the SSB.
  • a first aspect provides a method for transmitting a broadcast signal, where the method is performed by a network device, where a protocol stack of the network device includes a first protocol layer and a second protocol layer, and the second protocol layer is a first protocol.
  • the protocol layer below the layer the method includes:
  • the network device generates the first information at the first protocol layer
  • the network device generates second information in the second protocol layer, where the second information is used to determine a time-frequency resource corresponding to the one or more synchronization signal blocks SSB;
  • the network device processes the first information and the second information at a second protocol layer
  • the network device sends the data obtained by the second protocol layer processing to the terminal device by using the physical broadcast channel PBCH in the SSB.
  • the network device only needs to be processed by the protocol layer below the second protocol layer to be sent to the terminal device through the PBCH.
  • the time taken for the protocol stack processing of the information transmitted in the PBCH is shortened, which helps to shorten the service delay.
  • the second protocol layer is a medium access control layer MAC layer, or a physical layer.
  • the second protocol layer is a physical layer
  • the network device sends the data obtained by the second protocol layer processing to the terminal device by using the PBCH in the SSB, where the network device includes: the network device The data obtained after the physical layer processing is sent to the terminal device by using the PBCH in the SSB.
  • the second protocol layer is a MAC layer
  • the network device sends the data obtained by the second protocol layer to the terminal device by using the PBCH in the SSB, including: the network device. Performing physical layer processing on the data processed by the second protocol layer; the network device sends the data obtained by the physical layer processing to the terminal device by using the PBCH in the SSB.
  • the physical layer processing includes one or more of the following modes: channel coding, rate matching, scrambling, modulation, time-frequency resource mapping, and fast Fourier transform (IFFT) processing. .
  • IFFT fast Fourier transform
  • the second information is a sequence number of the synchronization signal block SSB.
  • the physical layer processing includes the physical layer processing including channel coding, rate matching, scrambling, modulation, resource mapping, and fast inverse Fourier transform, where the network device pairs
  • the first layer of information and the second information are processed by the physical layer, including:
  • the network device performs channel coding and/or rate matching on the first information and the second information as a whole;
  • the network device scrambles the result of channel coding and/or rate matching by using one of J different scrambling codes to obtain a corresponding scrambling result, and N different scrambling codes in the J scrambling codes
  • the network device performs modulation processing on the scrambling result to obtain modulated data
  • the network device maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, performs IFFT processing on the data mapped to each PBCH symbol, and obtains the data obtained after the physical layer processing.
  • the physical layer processing includes the physical layer processing including channel coding, rate matching, scrambling, modulation, resource mapping, and fast inverse Fourier transform, where the network device pairs
  • the first layer of information and the second information are processed by the physical layer, including:
  • the network device performs channel coding and/or rate matching on the first information of the first coding rate pair to obtain a first coding result, and the network device performs channel coding and/or rate matching on the second information by using the second coding rate. Obtaining a second coding result;
  • the network device uses one of the J different scrambling codes to perform scrambling processing on the combination of the first encoding result and the second encoding result to obtain a corresponding scrambling result, where the J scrambling codes are included.
  • the network device performs modulation processing on the scrambling result to obtain modulated data
  • the network device maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, performs IFFT processing on the data mapped to each PBCH symbol, and obtains the data obtained after the physical layer processing.
  • the physical layer processing includes the physical layer processing including channel coding, rate matching, scrambling, modulation, resource mapping, and fast inverse Fourier transform, where the network device pairs
  • the first layer of information and the second information are processed by the physical layer, including:
  • the network device performs channel coding and/or rate matching on the first information of the first coding rate pair to obtain a first coding result, and the network device performs channel coding and/or rate matching on the second information by using the second coding rate. Obtaining a second coding result;
  • the network device separately performs scrambling processing on the first coding result and the second coding result by using one of J different scrambling codes, to obtain a corresponding first scrambling result and a second scrambling result,
  • the network device performs modulation processing on the combination of the first scrambling result and the second scrambling result, thereby obtaining modulated data
  • the network device maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, and performs IFFT processing on the data mapped to each PBCH symbol, thereby obtaining data processed by the physical layer.
  • the physical layer processing includes the physical layer processing including channel coding, rate matching, scrambling, modulation, resource mapping, and fast inverse Fourier transform, where the network device pairs
  • the first layer of information and the second information are processed by the physical layer, including:
  • the network device performs channel coding and/or rate matching on the first information of the first coding rate pair to obtain a first coding result, and the network device performs channel coding and/or rate matching on the second information by using the second coding rate. Obtaining a second coding result;
  • the network device separately performs scrambling processing on the first coding result and the second coding result by using one of J different scrambling codes, to obtain a corresponding first scrambling result and a second scrambling result,
  • the network device separately performs modulation processing on the first scrambling result and the second scrambling result, thereby obtaining corresponding first modulated data and second modulated data;
  • the network device maps the combination of the first modulated data and the second modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, and performs IFFT processing on the data mapped to each PBCH symbol, thereby Get the data processed by the physical layer.
  • the physical layer processing includes the physical layer processing including channel coding, rate matching, scrambling, modulation, resource mapping, and fast inverse Fourier transform, where the network device pairs
  • the first layer of information and the second information are processed by the physical layer, including:
  • the network device performs channel coding and/or rate matching on the first information of the first coding rate pair to obtain a first coding result, and the network device performs channel coding and/or rate matching on the second information by using the second coding rate. Obtaining a second coding result;
  • the network device separately performs scrambling processing on the first coding result and the second coding result by using one of J different scrambling codes, to obtain a corresponding first scrambling result and a second scrambling result,
  • the network device separately performs modulation processing on the first scrambling result and the second scrambling result, thereby obtaining corresponding first modulated data and second modulated data;
  • the network device maps the first modulated data to a first resource of a PBCH in an SSB corresponding to a sequence number of the SSB, and obtains a result of the first mapping; mapping the second modulated data to the Obtaining a second mapped result on the second resource of the PBCH in the SSB corresponding to the sequence number of the SSB;
  • the network device performs inverse Fourier transform IFFT processing on the first mapped result and the second mapped result, respectively, to obtain a first IFFT result and a second IFFT result, the first IFFT result and The second IFFT result is the data obtained after the physical layer processing.
  • the reliability of the decoding result is higher when the terminal device performs the corresponding decoding, and the second information has a higher timeliness requirement for the behavior control of the terminal device, so
  • the second information is encoded at a lower coding rate.
  • the terminal device can perform timing alignment without merging the second information detected from the plurality of frames, and can speed up the timing alignment only by the second information detected from one frame.
  • the first coding rate is greater than the second coding rate.
  • the first information includes system information.
  • the system information includes one or more of the following: a system bandwidth parameter value, a pre-LM bit in the system frame number, or configuration information of remaining minimum system information, where the system frame number includes L bits, L and M are all Natural number, and 1 ⁇ M ⁇ L.
  • the first protocol layer is an RRC layer.
  • a second aspect provides a method for receiving a broadcast signal, where the method is performed by a terminal device, where a protocol stack of the terminal device includes a first protocol layer and a second protocol layer, and the first protocol layer is a second protocol. a protocol layer above the layer, the method comprising:
  • the terminal device receives data sent by the network device through the physical broadcast channel PBCH; the terminal device performs physical layer processing on the received data; and the terminal device obtains the first information from the physical layer processing result in the second protocol layer.
  • Second information the second information is used to determine a time-frequency resource corresponding to one or more synchronization signal blocks SSB carrying the first information; the terminal device is in the second protocol layer according to the second information pair
  • the behavior of the terminal device is controlled; the terminal device controls the behavior of the terminal device according to the first information at the first protocol layer.
  • the terminal device In the receiving method of the broadcast signal provided by the embodiment of the present application, after the physical layer processes the data sent by the PBCH, the terminal device does not need to report all the data obtained after the physical layer processing to the first protocol layer processing, but The second information in the second protocol layer can be directly read, and the behavior of the terminal device is controlled according to the second information. Since the time for the terminal device to process the protocol stack for the second information is shortened, the service delay can be shortened and the timeliness of the service can be improved.
  • the second protocol layer is a physical layer, or a MAC layer.
  • the second protocol layer is a MAC layer
  • the terminal device obtains the first information and the second information from the physical layer processing result in the second protocol layer, including: the terminal device is The second protocol layer processes the physical layer processing result; the terminal device obtains the first information and the second information from the data obtained by the second protocol layer processing.
  • the terminal device receives data sent by the network device by using the PBCH, including:
  • the terminal device detects the synchronization signal, determines the cell identifier by using the synchronization signal, and the time-frequency resource corresponding to the PBCH, and receives the data sent by the network device through the PBCH on the time-frequency resource corresponding to the PBCH.
  • the terminal device performs physical layer processing on the received data, including:
  • the terminal device selects a descrambling sequence to descramble the demodulated data from the J descrambling sequences; the terminal device performs channel decoding on the descrambled data, and passes the CRC check channel.
  • the resulting data is decoded to determine a descrambling sequence that is capable of correctly descrambling the demodulated data.
  • the channel decoding result obtained by correct descrambling is taken as the result of the physical layer processing.
  • the first information and the second information are obtained by the UE from the physical layer processing result, where the first information and the second information are included in the physical layer processing result.
  • the terminal device performs physical layer processing on the received data, including:
  • the channel decoding result obtained by correctly descrambling is taken as the first information.
  • the second data is channel decoded using a second decoding rate, and the resulting data is decoded by a CRC check channel to determine a descrambling sequence capable of correctly descrambling the demodulated data.
  • the channel decoding result obtained by correctly descrambling is taken as the second information.
  • the first decoding rate is greater than the second decoding rate. Since the coding rate used by the base station to encode the second information is low, the decoding accuracy is high when the terminal device performs decoding accordingly. Optionally, in the foregoing possible implementation manner, the first decoding rate is greater than the second decoding rate.
  • the first information includes system information.
  • the system information includes system bandwidth value, pre-LM bit in the system frame number, or configuration information of remaining minimum system information, where the system frame number includes L bits in total, L and M are natural numbers, and 1 ⁇ M ⁇ L .
  • the second information is a sequence number of the synchronization signal block SSB.
  • the first protocol layer is an RRC layer.
  • a network device having the functionality to implement the method of the first aspect described above or any one of the possible implementations of the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a terminal device having the function of implementing the method of the second aspect described above or any one of the possible implementations of the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes any possible implementation of the foregoing first aspect or the foregoing first aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal device, which includes any possible implementation of the foregoing second aspect or the second aspect.
  • the embodiment of the present application further provides a communication system, including the network device of any one of the third aspect or the third aspect, and any one of the fourth aspect or the fourth aspect.
  • a communication system including the network device of any one of the third aspect or the third aspect, and any one of the fourth aspect or the fourth aspect.
  • FIG. 1 is a schematic diagram of a network system applied to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a possible SSB listed in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a possible SSB pulse set transmission period enumerated in the embodiment of the present application.
  • FIG. 4 is a flowchart of a method for transmitting a broadcast signal according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a method for transmitting a broadcast signal according to a structure of a possible protocol stack according to an embodiment of the present application
  • FIG. 6 is a flowchart of a method for sending a broadcast signal according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for sending a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another method for sending a broadcast signal according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another method for transmitting a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another method for transmitting a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another method for transmitting a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another method for transmitting a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a method for sending a broadcast signal according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a method for transmitting a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 15 is a flowchart of a method for receiving a broadcast signal according to an embodiment of the present disclosure
  • FIG. 16 is a flowchart of another method for receiving a broadcast signal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network system to which the embodiment of the present application is applied.
  • network system 100 can include network device 102 and terminal devices 104, 106, 108, 110, 112, and 114, wherein the network device and the terminal device are connected by wireless.
  • FIG. 1 is only an example in which the network system includes a network device, but the embodiment of the present invention is not limited thereto.
  • the system may further include more network devices; similarly, the system may also include more Terminal Equipment.
  • a terminal device may also refer to a UE, an access terminal, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a user agent.
  • the terminal device may also be a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolved public land mobile network (Public Land) Mobile network, PLMN) Terminal devices in the network, etc.
  • Public Land Public Land
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the structure and processing flow of the terminal device are described by taking the UE as an example.
  • the network device may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) or a base station in Code Division Multiple Access (CDMA) (Base Transceiver Station) , BTS), may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or may be an evolved base station in a Long Term Evolution (LTE) system (
  • the evolved Node B, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or a base station (gNB or gNodeB) in a future 5G network.
  • CRAN Cloud Radio Access Network
  • gNB or gNodeB base station in a future 5G network.
  • the structure and processing flow of the network device are described by taking a base station as an example.
  • NR-PSS and NR-SSS can respectively have the functions of PSS and SSS in a legacy standard (for example, LTE).
  • NR-PSS can be used to determine OFDM symbol timing, frequency synchronization, slot timing, and cell ID within a cell group;
  • NR-SSS can be used to determine frame timing, cell group, etc., or, NR-PSS and NR-SSS It is also possible to have a different function from the current PSS and SSS, which is not limited by the embodiment of the present invention.
  • the NR-PSS and the NR-SSS may also adopt the same or different sequences as the current PSS and the SSS, and the embodiment of the present invention is not limited thereto.
  • the NR-PBCH may have the same or different functions as the PBCH in the conventional standard (for example, LTE), and the present invention is not limited thereto.
  • the NR-PBCH may carry a Master Information Block (MIB).
  • MIB Master Information Block
  • the resource structure of the SSB shown in FIG. 2 is only one possible structure, and should not be construed as limiting the embodiments of the present invention.
  • the number of subcarriers occupied by the NR-PSS, NR-SSS, and NR-PBCH in the frequency domain may be different, which is not shown in the figure.
  • NR-PSS, NR-SSS, and NR-PBCH may also be discontinuous in time, or the SSB may include only NR-PSS and NR-PBCH, or only NR-SSS and NR-PBCH, or even It is also possible to include only NR-PBCH.
  • the resource structure of the SSB is not particularly limited in the embodiment of the present invention.
  • the inventors have noted that additional information introduced by the SSB can sometimes perform multiple functions.
  • the TI can not only indicate the order of the SSBs in the SS burst set transmission period, but the SSBs with the same TI are mapped on the relatively fixed time-frequency resources in the transmission period of the associated SSB pulse set. Therefore, after acquiring the TI in one SSB, the UE may estimate the frame/slot of the cell according to the content of the TI and the time-frequency resource mapped in the SSB pulse set transmission period of the SSB corresponding to each TI. The boundary of the UE, and thus the timing alignment of the UE and the cell radio frame.
  • FIG. 3 is a schematic diagram of one possible SSB transmission scheme.
  • each SS burst set transmission period includes 2 radio frames, each radio frame is 10 ms, and 8 SSBs are included in the first radio frame of the SS burst set transmission period.
  • the UE if the conventional processing scheme for the content transmitted by the PBCH is adopted, it is difficult for the UE to implement timing alignment based on the TI.
  • the data received by the physical layer (physical, PHY) needs to be processed through multiple protocol layers. It is reported to Radio Resource Control (RRC) and read by the RRC layer.
  • RRC Radio Resource Control
  • the processing of the signals by multiple protocol layers will take a long time, which makes it difficult to achieve fast timing alignment between the UE and the cell, resulting in subsequent service delay.
  • the embodiment of the invention provides a transmission scheme suitable for a new wireless (English: New Radio, NR) broadcast signal.
  • the low protocol layer processing flow of the base station and the UE is improved, for example, the physical layer processing flow is improved.
  • the low protocol layer for example, the physical layer
  • the high protocol layer for example, the RRC layer
  • the low protocol layer of the UE reads a part of the information transmitted in the PBCH, and controls the UE according to the read part of the information at the low protocol layer, instead of performing low protocol layer processing on the PBCH. All the information obtained by the processing is sent to the high protocol layer for further processing, and then the UE is controlled according to the information obtained after processing by the high protocol layer. In this way, the time taken by the base station and the UE to perform protocol layer processing on the partial information can be shortened, so that the UE can quickly control the UE according to a part of the information obtained by the low protocol layer, and shorten the subsequent service delay. For example, the UE can quickly implement timing alignment with the cell according to the TI read by the physical layer.
  • FIG. 4 is a flowchart of a method for transmitting a broadcast signal according to an embodiment of the present application.
  • FIG. 4 illustrates the network device 102 of FIG. 1 by taking a base station as an example.
  • the UE involved in FIG. 4 may be the terminal devices 104, 106, 108, 110, 112, and 114 in FIG. 4 is mainly explained from the perspective of a base station.
  • Step 40 The base station generates first information in the first protocol layer.
  • the protocol stack of the base station includes a first protocol layer and a second protocol layer, and the second protocol layer is a protocol layer below the first protocol layer.
  • the first protocol layer and the second protocol layer do not represent a sequence relationship, but to distinguish different protocol layers.
  • the first information, the second information, and the like mentioned in the following documents are also for distinguishing different information.
  • FIG. 5 is a schematic diagram of a method for transmitting a broadcast signal according to a structure of a possible protocol stack in the embodiment of the present application.
  • the protocol stack includes five protocol layers, from top to bottom, the RRC layer, the Packet Data Convergence Protocol (PDCP) layer, and the Radio Link Control (RLC).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Medium access control layer English: Media Access Control, MAC
  • physical English: Pyhsical, PHY
  • the division of the protocol layer in the 5G network is still under discussion. It is possible to improve the protocol stack shown in FIG. 5, for example, to merge multiple protocol layers therein, or to add a new protocol layer.
  • the first protocol layer is an RRC layer, as long as the relative relationship between the first protocol layer and the second protocol layer is that the first protocol layer is a protocol layer above the second protocol layer.
  • the first information includes system information.
  • the system information may be system information in an LTE network, or may be system information defined in the NR standard.
  • the system information includes configuration information of a system bandwidth value (English: System Bandwidth), a system frame number (SFN), or a remaining minimum system information (RMSI), where The configuration information of the RMSI is used to indicate the time-frequency resource and sub-carrier spacing used to transmit the RMSI.
  • a part of the bit bits in the SFN may be included in the system information, and another part of the bit bits may be implicitly indicated by the scrambling of the subsequent physical layer.
  • the SFN has 10 bits in total, and the system information includes the first 8 bits of the SFN. The last 2 bits of the SFN are implicitly indicated by the scrambling of the subsequent physical layer.
  • Step 41 The base station generates second information in the second protocol layer.
  • the second protocol layer is a MAC layer or a physical layer.
  • the second information refers to additional information to be carried in the PBCH symbol of the SSB, the additional information is information related to the SSB, and the network can implement more functions according to the additional information.
  • the second information is used to determine a time-frequency resource corresponding to one or more synchronization signal blocks SSB.
  • the second information is the TI of the SSB.
  • the physical layer maps the data obtained by performing physical layer processing on the first information and the second information in the time-frequency resource of the SSB indicated by the TI, specifically, the subsequent physical layer.
  • the data obtained by performing physical layer processing on the first information and the second information is carried by the OFDM symbol of the PBCH of the SSB indicated by the TI.
  • Step 42 The base station processes the first information and the second information at the second protocol layer.
  • the second protocol layer processing includes a format in which the MAC layer determines data to be transmitted on the air interface, such as a size of the data block, and the like, and allocates physical layer resources according to the size of the data block, such as determining the data pair.
  • the MAC receives the system information sent by the RRC layer through the broadcast control channel (Broadcast Control Channel, BCCH), and the MAC layer. After the TI of the generated SSB, the MAC layer determines the corresponding control information.
  • the control information includes a size of a data block for transmitting system information and a TI, a manner of adjusting the data block, and a subcarrier for carrying the data block.
  • the MAC layer notifies the physical layer by using a broadcast channel (Broadcast Channel, BCH) for the data block for transmitting the system information and the TI, and the above control information, etc., or by combining the information and notifying the physical layer through the BCH, so that the After physical layer processing is performed on the data received by the BCH at the physical layer, the data obtained by the physical layer processing is sent to the UE through a physical broadcast channel (PBCH).
  • BCH Broadcast Channel
  • the second protocol layer processing includes channel coding, rate matching, interleaving, scrambling, modulation, time-frequency resource mapping, and inverse fast Fourier transform (English: Inverse Fast Fourier Transform, IFFT) )and many more.
  • IFFT Inverse Fast Fourier Transform
  • the physical layer receives the system information and the TI of the SSB generated by the physical layer, and performs the physical layer on the system information and the TI. deal with.
  • the system information is generated by the RRC layer and processed by the PDCP, RLC, and MAC layers and notified to the physical layer through the BCH.
  • Step 43 The base station sends the data obtained by the second protocol layer processing to the UE by using the PBCH in the SSB, where the SSB is the SSB determined by the base station according to the second information.
  • step 43 specifically includes two steps:
  • Step 1 The base station performs physical layer processing on the data processed by the MAC layer.
  • Physical layer processing includes channel coding, rate matching, interleaving, scrambling and modulation, and the like.
  • Step 2 The base station sends the data obtained by the physical layer processing to the UE through the PBCH in the SSB.
  • step 43 refers to the data obtained by the base station after the physical layer processing is sent to the UE by using the PBCH in the SSB. Specifically, the base station maps the data obtained by the physical layer processing on the physical layer to the UE on the time-frequency resource specified by the SFN and the second information.
  • the first protocol layer and the second protocol layer are included in a protocol stack of the network device, where the second protocol layer is a protocol layer below the first protocol layer.
  • the first information in the information finally transmitted in the PBCH is generated by the first protocol layer
  • the second information is generated by the second protocol layer
  • the second information is used to determine one or more synchronization signal blocks SSB corresponding to Time-frequency resources.
  • the second information only the processing of the protocol layer below the second protocol layer is required to be sent to the UE through the PBCH.
  • the time taken for the protocol stack processing of the information transmitted in the PBCH is shortened, which helps to shorten the service delay.
  • FIG. 6 and FIG. 7 further illustrate a method for transmitting a broadcast signal provided by an embodiment of the present application, taking the second protocol layer in FIG. 4 as a physical layer as an example.
  • FIG. 6 is a flowchart of a method for transmitting a broadcast signal according to an embodiment of the present application.
  • FIG. 6 illustrates the network device 102 of FIG. 1 by taking a base station as an example. Further, FIG. 6 describes a method for transmitting a broadcast signal provided by an embodiment of the present application, with the first protocol layer as the RRC layer and the second protocol layer as the physical layer.
  • Step 600 The base station generates first information at the RRC layer.
  • the first information system information For a description of the system information, please refer to the description in the embodiment described in FIG. 4, and details are not described herein again.
  • the RRC layer encapsulates the generated first information into Abstract Syntax Notation One (ASN.1), and sends the first information encapsulated in ASN.1 to the MAC layer through the BCCH.
  • the MAC layer performs the MAC layer processing on the received first ASN.1 encapsulated information and sends the first information to the physical layer through the BCH.
  • ASN.1 Abstract Syntax Notation One
  • Step 601 The physical layer of the base station receives the first information processed by the MAC layer through the BCH transmission data block.
  • the first information is system information generated by the RRC layer.
  • Step 602 The physical layer of the base station generates second information.
  • the second information is a TI of the SSB.
  • Step 603 The base station performs physical layer processing on the first information processed by the MAC layer and the second information generated by the physical layer.
  • the base station may perform physical layer processing on the first information processed by the MAC layer and the second information generated by the physical layer by using the steps 6031 to 6035.
  • Step 6031 The base station combines the second information with the first information processed by the MAC.
  • the physical layer of the base station directly aligns the first information processed by the ASN.1 and the MAC layer with the second information and the Cyclic Redundancy Check (CRC) code.
  • CRC Cyclic Redundancy Check
  • Step 6032 The base station performs channel coding on the combined result of the second information and the first information processed by the MAC as a whole. That is, the base station performs channel coding on the concatenation result of step 6031.
  • the channel coding further includes a process such as rate matching, so that the information bit amount in the coding result is scrambled and or modulated to be consistent with the number of allocated time-frequency resource cells.
  • Step 6033 The base station separately scrambles the channel coding and/or the rate matching result by using one of the J different scrambling codes to obtain a corresponding scrambling result, and the N different scrambling codes in the J scrambling codes.
  • the physical layer determines a radio frame for transmitting data processed by the physical layer according to the SFN.
  • One part of the SFN is indicated by the system information, and the other part is implicitly indicated by the scrambling.
  • the first information of the SFN is included in the first information, and the last two bits of the SFN are implicitly indicated by the scrambling code as an example.
  • the scrambling code sequence may be a Zadoff-Chu (ZC) sequence, and each scrambling code sequence corresponds to a value of 2 bits after the SFN.
  • ZC Zadoff-Chu
  • the scrambling code sequence 1 corresponds to the last 2 bits of the SFN.
  • the scrambling code sequence 2 corresponds to the last two bits of the SFN.
  • the scrambling code sequence 3 corresponds to the last two bits of the SFN.
  • the scrambling code sequence 4 corresponds to the last two bits of the SFN.
  • the base station selects a scrambling sequence corresponding to 2 bits after the system frame number to scramble the channel coding and/or rate matching results.
  • the J different scrambling codes may be used to implicitly indicate a partial bit in the TI.
  • the J different scrambling codes there are 8 different scrambling codes, and each scrambling code corresponds to the last 2 bits of the SFN and the value of 1 bit in the TI.
  • Figure 7 depicts in a schematic manner the processing of steps 604 and 605 of Figure 6 .
  • the base station first scrambles the channel coding/rate matching result using one of the four scrambling code sequences at the physical layer to obtain the scrambling result at the physical layer.
  • Step 6034 The base station performs modulation processing on the scrambling result at the physical layer, thereby obtaining modulated data.
  • the modulation mode may be pre-configured, such as Quadrature Phase Shift Keyin (QPSK) modulation.
  • QPSK Quadrature Phase Shift Keyin
  • Step 6035 The base station maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, and performs IFFT processing on the data mapped to each PBCH symbol, thereby obtaining physical layer processed data.
  • the base station performs the following two steps in the physical layer on the modulated data.
  • Step 1 The base station determines a frame number of the L bit of the radio frame used for transmitting the modulated data, and the value of the first LM bit in the L bit frame number is indicated in the system information, and the value of the last M bit is generated and modulated.
  • the scrambling code sequence used in the data has a mapping relationship.
  • Step 2 The base station maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, and the mapping result is the data obtained after the physical layer processing.
  • the system information includes the first 8 bits of the SFN, and the last 2 bits of the SFN are implicitly indicated by the scrambling code as an example.
  • Table 1 shows the scrambling code sequence obtained by scrambling, the value of the last 2 bits of the SFN, and the correspondence between the scrambling results.
  • Table 2 shows the mapping relationship between the value of the 2 bits after the SFN and the frame number used to transmit the SSB, where k is a natural number and k is determined according to the value of the first 8 bits of the SFN included in the first information.
  • the physical layer maps the modulated data on the radio frame 8k; if the last 2 bits of the system frame number is 01, the data obtained after the modulation is mapped. On the radio frame 8k+2; if the last 2 bits of the system frame number is 10, the data obtained after modulation is mapped on the radio frame 8k+4; if the last 2 bits of the system frame number is 10, the modulation is obtained. The data is mapped on the radio frame 8k+6.
  • the TI can be used to determine the time-frequency resource that the SSB of the data obtained after the physical layer processing belongs in the SSB pulse set transmission period.
  • the frame number of the radio frame of the data mapping processed by the physical layer may be determined by step 1.
  • the base station pre-stores time-frequency resource information mapped by the SSB indicated by each TI in an SSB pulse set transmission period, and the time domain information in the time-frequency resource information may be a start position of the SSB relative to the SSB pulse set transmission period. Relative value.
  • the base station can search for the time-frequency resource mapped by the SSB corresponding to the generated TI in an SSB pulse set transmission period.
  • the base station performs resource mapping on the modulated data at the physical layer, that is, determines the frame number of the radio frame used to transmit the data processed by the physical layer, and the specific time-frequency resource information in one radio frame.
  • Step 604 The base station sends the data obtained by the physical layer processing to the UE by using the PBCH in the SSB.
  • the first information in the information finally transmitted by the base station in the PBCH is generated by the first protocol layer, and the second information is generated by the second protocol layer.
  • the second information only the processing of the protocol layer below the second protocol layer is required to be sent to the UE through the PBCH.
  • the base station first performs channel coding on the first information and the second information as a whole.
  • the base station separately modulates the scrambling result corresponding to each scrambling code to obtain N sets of data.
  • the base station determines a time-frequency resource for transmitting the data processed by the physical layer according to the SFN and the second information, and then transmits the data processed by the physical layer by using the time-frequency resource determined in the PBCH.
  • the SSB is sent by using the scheme, it is possible to carry some additional information related to the SSB in the PBCH symbol corresponding to one SSB.
  • FIG. 8 and FIG. 9 further illustrate a method for transmitting a broadcast signal provided by an embodiment of the present application, taking the second protocol layer in FIG. 4 as a physical layer as an example.
  • FIG. 8 is a flowchart of a method for transmitting a broadcast signal according to an embodiment of the present application.
  • FIG. 8 illustrates the network device 102 of FIG. 1 by taking a base station as an example. Further, FIG. 8 is a description of a method for transmitting a broadcast signal provided by an embodiment of the present application, with the first protocol layer as the RRC layer and the second protocol layer as the physical layer.
  • the base station In step 800, the base station generates first information at the RRC layer.
  • the first information system information For a description of the system information, please refer to the description in the embodiment described in FIG. 4, and details are not described herein again.
  • the RRC layer performs ASN.1 encapsulation on the generated first information, and sends the first information encapsulated in the ASN.1 to the MAC layer through the BCCH.
  • the MAC layer performs the MAC layer processing on the received first ASN.1 encapsulated information and sends the first information to the physical layer through the BCH.
  • Step 801 The physical layer of the base station receives the first information processed by the MAC through the BCH transmission data block.
  • the first information is system information generated by the RRC layer.
  • the physical layer of the base station generates second information.
  • the second information is the TI of the SSB.
  • Step 803 The base station performs physical layer processing on the first information processed by the MAC layer and the second information generated by the physical layer.
  • the base station may perform physical layer processing on the first information and the second information processed by the MAC layer by using steps 8031 to 8034.
  • Step 8031 The base station cascades the first information processed by the MAC layer with the first CRC code at the physical layer, and concatenates the second information with the second CRC code.
  • the base station may adopt, by using steps 8031 to 8035, the cascading result of the first information processed by the MAC layer and the first CRC code, and the second information and the The cascading result of the two CRC codes is subjected to physical layer processing.
  • the cascading result of the first information processed by the MAC layer and the first CRC code is simply referred to as the first cascading result
  • the cascading result of the second information and the second CRC code is simply referred to as the second cascading result.
  • Step 8032 The base station performs channel coding and/or rate matching on the first concatenation result by using the first coding rate to obtain a first coding result.
  • the base station performs channel coding and/or rate on the second concatenation result by using the second coding rate. Match to obtain the second encoded result.
  • the reliability of the decoding result of the UE is higher when the corresponding decoding is performed, and the second information of the example of the TI is higher and timely for the behavior control of the UE.
  • sexual requirements so the second information can be encoded at a lower coding rate.
  • the UE can perform timing alignment without the need to synthesize the TIs detected from multiple frames, and only based on the TI detected from one frame, thereby greatly speeding up the timing alignment. Therefore, when setting the coding rate, the first coding rate can be set to be greater than the second coding rate.
  • the channel coding further includes a process such as rate matching, so that the amount of data in the coding result is consistent with the number of allocated resource cells.
  • Step 8033 The base station separately performs scrambling processing on the combination of the first coding result and the second coding result by using one of J different scrambling codes to obtain a corresponding scrambling result, the J scrambling codes.
  • the first information of the SFN is included in the first information, and the last two bits of the SFN are implicitly indicated by the scrambling code as an example.
  • the scrambling code sequence may be a Zadoff-Chu (ZC) sequence, and each scrambling code sequence corresponds to a value of 2 bits after the SFN.
  • the scrambling code sequence 1 corresponds to the last 2 bits of the SFN.
  • the scrambling code sequence 2 corresponds to the last two bits of the SFN.
  • the scrambling code sequence 3 corresponds to the last two bits of the SFN.
  • the scrambling code sequence 4 corresponds to the last two bits of the SFN.
  • Figure 9 schematically illustrates the processing of steps 804 and 805 of Figure 8 in a schematic manner.
  • the combination of the first coding result and the second coding result may be scrambled with one of different scrambling code sequences. It should be noted that the combination of the first coding result and the second coding result may be the same or different each time the scrambling is performed.
  • each bit in the first coding result and the second coding result is placed to generate the first combined data, and the first combination is used in the ZC sequence 1 in the scrambling code group.
  • the data is scrambled to obtain scrambled results.
  • the second SS burst set For example, for the period of the second SS burst set, two bits of the first coding result and the second coding result are placed at intervals to generate a second combination data, and the second type of ZC sequence 2 is used in the scrambling code group. The combined data is scrambled to obtain scrambled results.
  • the first coding result and the second coding result are cascaded in a manner that the first coding result is first and the second coding result is later, to generate a third combination data
  • the third combined data is scrambled by using the ZC sequence 3 in the scrambling code group to obtain the scrambling result.
  • the first coding result and the second coding result are cascaded in a manner that the second coding result is first and the first coding result is followed, and the fourth combination data is generated.
  • the fourth combined data is scrambled by using the ZC sequence 4 in the scrambling code group to obtain the scrambling result.
  • Step 8034 The base station performs modulation processing on the scrambling result at the physical layer, thereby obtaining modulated data.
  • the modulation mode may be pre-configured, such as QPSK modulation.
  • Step 8035 The base station maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB.
  • the data mapped onto each PBCH symbol is then subjected to IFFT processing. Thereby the data processed by the physical layer is obtained.
  • the base station performs the following two steps in the physical layer on the modulated data.
  • Step 1 The base station determines a frame number of the L bit of the radio frame used for transmitting the modulated data, and the value of the first LM bit in the L bit frame number is indicated in the system information, the value of the last M bit and the generated modulated data.
  • the scrambling code sequence used at the time has a mapping relationship.
  • Step 2 The base station maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB, and the mapping result is the data obtained after the physical layer processing.
  • the first 8 bits of the SFN are included in the first information, and the last 2 bits of the SFN are implicitly indicated by the scrambling code as an example.
  • Table 3 shows the scrambling code sequence obtained by scrambling, the value of the last two bits of the SFN, and the correspondence between the scrambling results.
  • Table 4 shows the mapping relationship between the value of the 2 bits after the SFN and the frame number used to transmit the SSB, where the value of k is a natural number, which is determined according to the first 8 bits of the SFN included in the first information.
  • the physical layer maps the modulated data on the radio frame 8k; if the last 2 bits of the system frame number is 01, the data obtained after the modulation is mapped. On the radio frame 8k+2; if the last 2 bits of the system frame number is 10, the data obtained after modulation is mapped on the radio frame 8k+4; if the last 2 bits of the system frame number is 10, the modulation is obtained. The data is mapped on the radio frame 8k+6.
  • the TI can be used to determine the time-frequency resource that the SSB of the data obtained after the physical layer processing belongs in the SSB pulse set transmission period.
  • the frame number of the radio frame of the data mapping processed by the physical layer may be determined by step 1.
  • the base station pre-stores time-frequency resource information mapped by the SSB indicated by each TI in an SSB pulse set transmission period, and the time domain information in the time-frequency resource information may be a start position of the SSB relative to the SSB pulse set transmission period. Relative value.
  • the base station can search for the time-frequency resource mapped by the SSB corresponding to the generated TI in an SSB pulse set transmission period.
  • the base station performs resource mapping on the modulated data at the physical layer, that is, determines the frame number of the radio frame used to transmit the data processed by the physical layer, and the specific time-frequency resource information in one radio frame.
  • Step 804 The base station sends the data obtained by the physical layer processing to the UE by using the PBCH in the SSB.
  • the first information in the information transmitted by the base station in the PBCH is generated by the first protocol layer
  • the second information is generated by the second protocol layer.
  • the second information only the processing of the protocol layer below the second protocol layer is required to be sent to the UE through the PBCH.
  • the difference from the embodiment shown in FIG. 6 is that when performing physical layer processing on the first information and the second information, the base station separately performs channel coding on the first information and the second information to obtain two channel coding results.
  • the combination of the two channel coding results is scrambled by using N different scrambling codes, respectively, to obtain scrambling results corresponding to each of the N different scrambling codes.
  • the UE when the first information and the second information are encoded by different coding rates, the UE is set to the second by setting a lower coding rate for the second information.
  • FIG. 10 is a schematic diagram of another physical layer processing procedure provided by an embodiment of the present application.
  • the base station processes the physical layer, the channel coding result of the first information and the channel coding result of the second information are separately scrambled, and then the combination of the scrambling results is modulated and resource mapped.
  • the base station performs channel coding and/or rate matching on the first information of the first coding rate pair at the physical layer to obtain a first coding result, and performs channel coding on the second information using the second coding rate. Or rate matching to obtain a second coding result.
  • FIG. 10 is limited to the length, and only the scrambling process of data in one radio frame is taken as an example, and the other three radio frames are similar. Further, the base station performs modulation processing on the combination of the first scrambling result and the second scrambling result, thereby obtaining modulated data.
  • the base station maps the modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB.
  • the data mapped onto each PBCH symbol is then subjected to IFFT processing. Thereby, the obtained data after the physical layer processing is obtained.
  • FIG. 11 is a schematic diagram of another physical layer processing procedure provided by an embodiment of the present application.
  • the base station processes the physical layer, the channel coding result of the first information and the channel coding result of the second information are separately scrambled and separately modulated, and then the respective modulated results are combined to perform resource mapping.
  • the base station performs channel coding and/or rate matching on the first information of the first coding rate pair at the physical layer to obtain a first coding result, and performs channel coding and/or channel coding on the second information using the second coding rate. Rate matching to obtain a second coding result.
  • the base station maps the combination of the first modulated data and the second modulated data to the PBCH in the SSB corresponding to the sequence number of the SSB. The data mapped onto each PBCH symbol is then subjected to IFFT processing. Thereby the data processed by the physical layer is obtained.
  • FIG. 12 is a schematic diagram of another physical layer processing procedure provided by an embodiment of the present application.
  • the base station processes the physical layer, the channel coding result of the first information and the channel coding result of the second information are respectively scrambled and separately modulated, and then resource mapping is performed, and then the mapped result is IFFT.
  • the base station performs channel coding and/or rate matching on the first information of the first coding rate pair to obtain a first coding result, and performs channel coding and/or rate matching on the second information by using the second coding rate. Obtain a second encoding result.
  • the base station maps the first modulated data to the first resource of the PBCH in the SSB corresponding to the sequence number of the SSB, obtains the result of the first mapping, and maps the second modulated data to the SSB corresponding to the sequence number of the SSB.
  • the resources corresponding to the PBCH in the SSB include 2 symbols in the time domain, and a subcarrier in the frequency domain.
  • the first resource may be the first symbol in the time domain
  • the second resource is the second symbol in the time domain
  • the first resource and the second resource correspond to the same subcarrier range.
  • the PBCH in the SSB can be divided into the first resource and the second resource by other division manners, for example, dividing the frequency domain subcarrier range.
  • the base station performs IFFT processing on the first mapped result and the second mapped result respectively to obtain a first IFFT result and a second IFFT result, where the first IFFT result and the second IFFT result are processed by the physical layer. The data obtained.
  • the base station can improve the detection of the second information by the UE by setting a lower encoding rate for the second information. accuracy. Therefore, the timeliness of the UE to control the behavior of the UE according to the second information is improved, and the service delay is further shortened. That is, the second encoding rate is less than the first encoding rate.
  • FIG. 13 is a schematic diagram of a method for transmitting a broadcast signal according to an embodiment of the present application, taking the second protocol layer in FIG. 4 as an example of a MAC layer.
  • FIG. 14 is a schematic diagram of a method for transmitting a broadcast signal according to a structure of a possible protocol stack according to an embodiment of the present application.
  • a method of transmitting a broadcast signal shown in FIG. 13 includes the following steps.
  • Step 1300 The base station generates first information at the RRC layer.
  • the first information system information For a description of the system information, please refer to the description in the embodiment described in FIG. 4, and details are not described herein again.
  • the base station performs ASN.1 encapsulation on the generated first information at the RRC layer, and sends the first information encapsulated in the ASN.1 to the MAC layer through the BCCH.
  • Step 1301 The base station receives the first information encapsulated by the ASN.1 through the BCCH at the MAC layer.
  • Step 1302 The base station generates second information at the MAC layer.
  • the second information is a TI of the SSB.
  • Step 1303 The base station sends the second information and the first information encapsulated in the ASN.1 to the physical layer through the BCH.
  • Step 1304 After obtaining the second information sent by the MAC layer through the BCH and the first information encapsulated by the ASN.1, the base station performs physical layer processing on the second information and the first information encapsulated in the ASN.1.
  • the base station For the process of physical layer processing of the second information and the first information encapsulated by the ASN.1, the base station refers to the descriptions of the foregoing FIG. 6 to FIG. 9, and details are not described herein again.
  • Step 1305 The base station sends the data obtained by the physical layer processing to the user equipment UE by using the PBCH in the SSB.
  • the process of the base station transmitting the data obtained by the physical layer processing to the user equipment UE by using the PBCH refer to the descriptions of FIG. 6 to FIG. 9 in the foregoing, and details are not described herein again.
  • FIG. 15 is a flowchart of a method for receiving a broadcast signal according to an embodiment of the present application.
  • FIG. 15 illustrates the terminal devices 104, 106, 108, 110, 112, and 114 of FIG. 1 by taking a UE as an example.
  • FIG. 15 is mainly explained from the perspective of the UE, and the UE in this embodiment may be the network device 102 in FIG. 1. Alternatively, the UE may interact with the base stations involved in FIGS. 4 to 14 .
  • Step 151 The UE receives data sent by the base station through the PBCH.
  • the protocol stack of the UE includes a first protocol layer and a second protocol layer, and the first protocol layer is a protocol layer above the second protocol layer.
  • the protocol stack in the UE has a similar structure to the protocol stack in the base station, but the functions of the protocol layers are different.
  • An example of each protocol layer in the protocol stack of the UE is shown in FIG. 5 or FIG. It should be noted that the division of the protocol layer in the 5G network is still under discussion. It is possible to improve the protocol stack shown in FIG. 5, for example, to merge multiple protocol layers therein, or to add a new protocol layer.
  • the first protocol layer is an RRC layer
  • the second protocol layer is a MAC layer or a physical layer.
  • the first protocol layer is an RRC layer, as long as the relative relationship between the first protocol layer and the second protocol layer is that the first protocol layer is a protocol layer above the second protocol layer.
  • Step 152 The UE performs physical layer processing on the received data.
  • the physical layer processing includes Fast Fourier Transformation (FFT), demodulation, descrambling, deinterleaving, channel decoding, and the like.
  • FFT Fast Fourier Transformation
  • Step 153 The UE obtains the first information and the second information in the data obtained by the second protocol layer from the physical layer processing.
  • the first information includes system information.
  • system information please refer to the description in FIG. 4, which will not be repeated here.
  • the second information is used to determine a time-frequency resource corresponding to one or more synchronization signal blocks SSB carrying the first information.
  • the MAC layer obtains data through the BCH acquisition physical layer processing, processes the data obtained from the BCH at the MAC layer, and acquires the first information and the second information from the MAC layer processed data.
  • the UE controls the behavior of the UE according to the second information at the MAC layer, and sends the first information to the RRC layer through the BCCH.
  • MAC processing includes decapsulation and the like.
  • the second protocol layer is the physical layer
  • the physical layer performs physical layer processing on the data received by the PBCH
  • the first information and the second information are obtained from the physical layer processing result.
  • Step 154 The UE controls, at the second protocol layer, the behavior of the UE according to the second information.
  • the UE controls the behavior of the UE according to the second information at the MAC layer, and sends the first information to the RRC layer through the BCCH.
  • the UE controls the behavior of the UE according to the second information at the physical layer, and sends the first information to the MAC layer through the BCH, and further the UE sends the first information to the MAC layer through the BCCH to the MAC layer.
  • RRC layer If the second protocol layer is the physical layer, the UE controls the behavior of the UE according to the second information at the physical layer, and sends the first information to the MAC layer through the BCH, and further the UE sends the first information to the MAC layer through the BCCH to the MAC layer.
  • the time-frequency resource used by the data layer can be received according to the physical layer, and the SSB of the TI identifier is predicted to be in an SSB pulse.
  • the relative position of the resource mapped in the transmission period is set, and the starting position of the SSB pulse set transmission period to which the SSB carrying the data belongs is estimated, and the starting position is used as the boundary of the cell radio frame, thereby implementing timing alignment.
  • the PBCH symbol in the SSB 1 received by the UE in the time-frequency resource 1 can be mapped according to the relative position of the SSB 1 in an SSB pulse set transmission period.
  • the starting position of the SSB pulse set transmission period to which the SSB 1 belongs is estimated, and the starting position is used as the boundary of the cell radio frame, thereby implementing timing alignment.
  • Step 155 The UE controls, at the first protocol layer, the behavior of the UE according to the first information.
  • the first protocol layer is an RRC layer
  • the first information is system information.
  • the UE can learn the channel resource configuration status of the cell, and access the cell.
  • the protocol stack of the UE includes a first protocol layer and a second protocol layer, and the first protocol layer is a protocol layer above the second protocol layer.
  • the UE receives data transmitted by the base station through the PBCH. After the UE performs physical layer processing on the received data, the UE obtains the first information and the second information in the data obtained by the second protocol layer from the physical layer processing.
  • the UE controls the behavior of the UE according to the second information at the second protocol layer, and controls the behavior of the UE according to the first information at the first protocol layer.
  • the UE After processing the data sent by the PBCH by the physical layer, the UE does not need to report all the data obtained by the physical layer processing to the first protocol layer, but can directly read the second information in the second protocol layer. For example, information for determining time-frequency resources corresponding to one or more synchronization signal blocks SSB is used, and the behavior of the UE is controlled according to the second information. Since the time for the UE to process the protocol stack for the second information is shortened, the service delay can be shortened and the timeliness of the service can be improved.
  • FIG. 16 is a schematic diagram of a method for receiving a broadcast signal according to an embodiment of the present application, taking the second protocol layer in FIG. 15 as a physical layer as an example.
  • Step 161 The UE detects the synchronization signal, and determines the cell identifier and the time-frequency resource corresponding to the PBCH by using the synchronization signal.
  • Step 162 The UE receives data sent by the base station through the PBCH on the time-frequency resource corresponding to the PBCH.
  • Step 163 The UE performs physical layer processing on the received data.
  • the physical layer processing performed by the UE on the received N sets of data corresponds to the physical layer processing used when the base station sends a broadcast signal.
  • the physical layer processing performed by the UE on the received N sets of data includes steps 1630 to 1634; if the base station transmits the broadcast signal, The physical layer processing performed by the UE on the received N sets of data includes steps 1635 to 16310.
  • Step 1630 The UE performs FFT processing on the data sent by the received base station through the PBCH.
  • Step 1631 The UE demodulates the data obtained by the FFT processing to obtain demodulated data.
  • Step 1632 The UE obtains J descrambling sequences according to the cell identifier obtained in step 161.
  • Step 1633 The UE selects a descrambling sequence from the J descrambling sequences to descramble the demodulated data.
  • Step 1634 The UE performs channel decoding on the descrambled data, and decodes the obtained data through the CRC check channel, thereby determining a descrambling sequence capable of correctly descrambling the demodulated data.
  • the channel decoding result obtained by correct descrambling is taken as the result of the physical layer processing. In order for the UE to obtain the first information and the second information from the physical layer processing result.
  • Step 1635 The UE performs FFT processing on the data sent by the received base station through the PBCH.
  • Step 1636 the UE demodulates the data obtained by the FFT processing to obtain demodulated data.
  • Step 1637 The UE obtains J descrambling sequences according to the cell identifier obtained in step 161.
  • Step 1638 the UE selects a descrambling sequence from the J descrambling sequences to descramble the demodulated data.
  • Step 1639 the UE acquires the included first data and second data from the descrambled data.
  • the manner in which the first data and the second data are obtained from the descrambling result corresponds to the manner in which the first encoding result and the second encoding result are combined in step 8033 in FIG.
  • Step 16310 The UE performs channel decoding on the first data by using a first decoding rate, and decodes the obtained data through a CRC check channel, thereby determining a descrambling sequence capable of correctly descrambling the demodulated data.
  • the channel decoding result obtained by correctly descrambling is taken as the first information.
  • the UE performs channel decoding on the second data using a second decoding rate, and decodes the obtained data through a CRC check channel, thereby determining a descrambling sequence capable of correctly descrambling the demodulated data.
  • the channel decoding result obtained by correctly descrambling is taken as the second information.
  • the UE uses the first information and the second information as the physical layer processing result.
  • the UE may perform the foregoing processing on the data received from the PBCHs of the multiple SSBs, thereby obtaining a plurality of first data, combining the plurality of first data, and using the first decoding rate.
  • Channel decoding is performed on the combined first data.
  • the first decoding rate is greater than the second decoding rate. Since the coding rate used by the base station to encode the second information is low, the decoding accuracy is high when the UE performs decoding accordingly. Therefore, when receiving any set of data sent by the base station through the PBCH, the UE may perform demodulation and descrambling processing on the group of data, and directly decode the second data included in the descrambling result of the set of data to obtain the second information. .
  • Step 164 The UE obtains the first information and the second information from the physical layer processing result.
  • Step 165 The UE controls, at the physical layer, the behavior of the UE according to the second information.
  • Step 166 The UE sends the obtained first information to the MAC layer by using the BCH at the physical layer, and the MAC layer further sends the first information to the RRC layer by using the BCCH.
  • Step 167 The UE controls the behavior of the UE according to the first information at the RRC layer.
  • the UE may adopt a corresponding physical layer processing procedure for data received from the PBCH in the SSB, and the principle and FIG. Similar, it will not be repeated here.
  • the embodiment of the present application further provides a network device.
  • the network device is a base station.
  • the structure and function of the network device will be described below by taking a base station as an example with reference to FIG. 17 is a schematic structural diagram of a network device, which is used as the network device in FIG. 1 and the base station in FIG. 4 to FIG. 14 to implement the network device in FIG. 1 and FIG. 4 to FIG.
  • the network device includes a transceiver 171 and a processor 172.
  • the transceiver 171 may be referred to as a remote radio unit (RRU), a transceiver unit, a transceiver, or a transceiver circuit or the like.
  • the transceiver 171 can include at least one antenna 1711 and a radio frequency unit 1712.
  • the transceiver 171 can be used for transceiving radio frequency signals and converting radio frequency signals with baseband signals.
  • the network device includes one or more baseband units (abbreviation: BBU) 173.
  • the baseband unit includes a processor 172.
  • the baseband unit 173 is mainly used for baseband processing such as channel coding, multiplexing, modulation, spread spectrum, etc., and control of the base station.
  • the transceiver 171 and the baseband unit 173 may be physically disposed together or physically separated, that is, distributed base stations.
  • the baseband unit 173 may be configured by one or more boards, and the multiple boards may jointly support the radio access network of a single access system, or may respectively support the radio access networks of different access systems.
  • the baseband unit 173 includes a processor 172.
  • the processor 172 can be used to control the network device to perform corresponding operations in the foregoing method embodiments.
  • baseband unit 173 may also include a memory 174 for storing the necessary instructions and data.
  • the processor 172 is configured to generate first information in a first protocol layer, where a protocol stack of the network device includes a first protocol layer and a second protocol layer, where the second protocol layer is a protocol below the first protocol layer And generating second information for determining a time-frequency resource corresponding to one or more synchronization signal blocks SSB.
  • the processor 172 is further configured to perform second protocol layer processing on the first information and the second information.
  • the transceiver 171 is configured to send data obtained by the second protocol layer processing to the UE by using the PBCH in the SSB.
  • the first information includes system information.
  • the system information includes one or more of the following: configuration information of a system bandwidth parameter value, SFN, or RMSI.
  • the second protocol layer is a MAC layer or a physical layer.
  • the first protocol layer is the RRC layer.
  • the data obtained by using the PBCH in the SSB to send the second protocol layer to the UE includes:
  • the processor 172 performs physical layer processing on the data processed by the second protocol layer
  • the transceiver 171 sends the data obtained by the physical layer processing to the UE by using the PBCH symbol in the time-frequency resource corresponding to the SSB.
  • the specific manner in which the processor 172 performs MAC layer processing on the first information and the second information in the MAC layer is referred to the related description in FIG. 13 to FIG. 14 , and is not repeated here.
  • the specific manner in which the processor 172 performs physical layer processing on the first information and the second information at the physical layer refer to the description in the foregoing method embodiments, especially the related descriptions of FIG. 6 to FIG. 12, where No longer repeat.
  • the embodiment of the present application further provides a network device.
  • the network device is a base station.
  • the structure and function of the network device will be described below by taking a base station as an example in conjunction with FIG. 18 is a schematic structural diagram of a network device, which is a network device in FIG. 1, and a base station in FIG. 4 to FIG. 14, having the network device in FIG. 1, and FIG. 4 to FIG. The functionality of the base station in the illustrated embodiment.
  • the network device includes a transceiver unit 181 and a processing unit 182.
  • the transceiver unit 181 and the processing unit 182 may be implemented in software or in hardware.
  • the transceiver unit 181 can be the transceiver 181 of FIG. 17, which can be the processor 172 of FIG.
  • An embodiment of the present application provides a network device that is a base station.
  • the protocol stack of the network device includes a first protocol layer and a second protocol layer, where the second protocol layer is a protocol layer below the first protocol layer.
  • the first information in the information finally transmitted in the PBCH is generated by the first protocol layer of the network device
  • the second information is generated by the second protocol layer of the network device
  • the second information is used to determine one or Time-frequency resources corresponding to the plurality of synchronization signal blocks SSB.
  • For the second information only the processing of the protocol layer below the second protocol layer is required to be sent to the UE through the PBCH.
  • the time taken for the protocol stack processing of the information transmitted in the PBCH is shortened, which helps to shorten the service delay.
  • FIG. 19 is a schematic structural diagram of a terminal device as a UE shown in FIG. 1, FIG. 15 to FIG. 16 as a UE shown in FIG. 1, FIG. 15 to FIG. The function.
  • the terminal device includes a processor 191 and a transceiver 192.
  • the transceiver 192 can include a control circuit and an antenna, wherein the control circuit can be used for converting baseband signals and radio frequency signals and processing the radio frequency signals, and the antenna can be used to transmit and receive radio frequency signals.
  • the device may also include other major components of the terminal device, such as memory, input and output devices, and the like.
  • the processor 191 can be configured to process the communication protocol and the communication data, and control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the corresponding operations in the foregoing method embodiments.
  • the memory 193 is mainly used to store software programs and data. After the terminal device is powered on, the processor 191 can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the transceiver 192 is configured to receive data sent by the base station by using a PBCH, where the terminal device includes a first protocol layer and a second protocol layer, where the first protocol layer is a protocol above the second protocol layer.
  • PBCH PBCH
  • the terminal device includes a first protocol layer and a second protocol layer, where the first protocol layer is a protocol above the second protocol layer.
  • the first protocol layer is a protocol above the second protocol layer.
  • the processor 191 is configured to perform physical layer processing on the received data, and obtain, by the second protocol layer, first information and second information from the physical layer processing result, where the second information is used to determine one or more synchronizations. a time-frequency resource corresponding to the signal block SSB; controlling, by the second protocol layer, the behavior of the terminal device according to the second information; and controlling, by the first protocol layer, the behavior of the terminal device according to the first information .
  • the first information is system information
  • the description of the system information is referred to the description in the previous embodiment, and is not repeated here.
  • the first protocol layer is an RRC layer
  • the second protocol layer is a physical layer, or a MAC layer.
  • the process of the transceiver 192 receiving the data sent by the base station through the PBCH, and the process of the physical layer processing performed by the processor 191 on the received data refer to the description in the foregoing method embodiment, especially FIG. The related description in FIGS. 15 to 16 will not be repeated here.
  • the embodiment of the present application further provides a terminal device.
  • the UE may be the UE in each of the foregoing method embodiments, and may have any function of the UE in each method embodiment.
  • 20 is a schematic structural diagram of a UE.
  • the UE functions as the UE in FIG. 1, FIG. 15 to FIG. 16 to implement the functions of the UE shown in one embodiment of FIG. 1, FIG. 15 to FIG.
  • the base station processing unit 201 and the transceiver unit 202 As shown in FIG. 20, the base station processing unit 201 and the transceiver unit 202.
  • the processing unit 201 and the transceiver unit 202 may be implemented in software or in hardware.
  • the processing unit 201 can be the processor 191 of FIG. 19, which can be the transceiver 192 of FIG.
  • the embodiment of the present application provides a terminal device, where the protocol stack of the terminal device includes a first protocol layer and a second protocol layer, where the first protocol layer is a protocol layer above the second protocol layer.
  • the terminal device receives data transmitted by the base station through the PBCH. After the UE performs physical layer processing on the received data, the terminal device obtains the first information and the second information in the data obtained by the second protocol layer from the physical layer processing.
  • the UE controls the behavior of the terminal device according to the second information at the second protocol layer, and controls the behavior of the terminal device according to the first information at the first protocol layer.
  • the terminal device After the physical layer processes the data sent by the PBCH, the terminal device does not need to report all the data obtained by the physical layer processing to the first protocol layer, but can directly read the second information in the second protocol layer. And controlling the behavior of the terminal device according to the second information. Since the time for the terminal device to process the protocol stack for the second information is shortened, the service delay can be shortened and the timeliness of the service can be improved.
  • the embodiment of the invention further provides a communication system, which comprises the network device and the terminal device in the above embodiment.
  • a communication system which comprises the network device and the terminal device in the above embodiment.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种广播信号的发送方法、接收方法、网络设备和终端设备,用以实现在SSB中携带附加信息。所述方法由网络设备执行,所述网络设备的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层,所述方法包括:网络设备在第一协议层生成第一信息;网络设备在第二协议层生成第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源;所述网络设备在第二协议层对所述第一信息和第二信息进行处理;所述网络设备通过所述SSB中的物理广播信道PBCH向终端设备发送第二协议层处理后得到的数据。

Description

广播信号的发送方法、接收方法、网络设备和终端设备 技术领域
本申请涉及通信技术领域,尤其涉及一种广播信号的发送方法、一种广播信号的接收方法、一种网络设备及一种终端设备。
背景技术
在长期演进(英文:Long Term Evolution,LTE)网络中,为了支持小区搜索,定义了2个下行同步信号,分别为主同步信号(英文:Primary Synchronization Signal,PSS)和辅同步信号(英文:Secondary Synchronization Signal,SSS)。用户设备(英文:User Equipment,UE)完成小区搜索过程之后,UE已经与小区取得下行同步,此时UE需要获取到小区的系统信息才能知道小区是如何配置的,以便接入该小区并在该小区内正确地工作。系统信息中包括主信息块(英文:MasterInformationBlock,MIB)和系统信息块(英文:SystemInformationBlock,SIB)。其中,MIB是基站通过物理广播信道(英文:Physical Broadcast Channel,PBCH)发送给UE的。同步信号和PBCH分别占用不同的时频资源。
在新一代无线接入技术(new radio access technology,NR)的研究中,由于考虑多波束,引入了同步信号块(英文:SS block,SSB)的概念。波束与SSB具有可配置的映射关系,例如多波束中的每个波束发送不同的SSB,或者2个波束可以发送同一SSB。每一个SSB中包括用以传输PSS的正交频分复用(英文:Orthogonal Frequency Division Multiplexing,OFDM)符号、用以传输SSS的OFDM符号和用以传输PBCH的OFDM符号。基站使用不同的时频资源发送一个SSB中的同步信号和PBCH。
一个或多个SSB组成一个SS脉冲(SS burst),一个或多个SS burst组成一个SS脉冲集合(SS burst set),因此一个SS burst set中包括一个或多个SSB。一个SS burst set被映射在预定数目个无线帧(radio frame)中发送,例如一个SS burst set被映射在2个无线帧中发送。这样,基站以周期性的方式发送SS burst set,发送SS burst set的周期是预定数目个无线帧。
考虑到SSB的上述发送方式,需要在SSB中携带一些附加信息,以实现UE对SSB的检测或者实现更多的功能。例如由于一个SS burst set可能包括多个SSB,一个SSB为了与同属一个SS burst set的其他SSB相区分,需要在一个SSB中包括用于指示该SSB在所属SS burst set发送周期中的排序的信息。
如何实现在SSB中携带上述附加信息是一个尚在讨论中的问题。
发明内容
本申请实施例提供一种广播信号的发送方法和接收方法,用以实现在SSB中携带附加信息。
第一方面,提供了一种广播信号的发送方法,所述方法由网络设备执行,所述网络设备的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层,所述方法包括:
网络设备在第一协议层生成第一信息;
网络设备在第二协议层生成第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源;
所述网络设备在第二协议层对所述第一信息和第二信息进行处理;
所述网络设备通过所述SSB中的物理广播信道PBCH向终端设备发送第二协议层处理后得到的数据。
在本申请实施例中,对于第二信息而言,网络设备仅需通过第二协议层以下的协议层的处理即可通过PBCH发送给终端设备。相对于在PBCH中传输的所有信息均通过第一协议层以下的所有协议栈处理的方案而言,缩短了对PBCH中传输的信息进行协议栈处理耗费的时间,有助于缩短业务时延。
在一种可能的实现方式中,所述第二协议层为媒体接入控制层MAC层,或者物理层。
在一种可能的实现方式中,所述第二协议层为物理层,所述网络设备通过所述SSB中的PBCH向终端设备发送第二协议层处理后得到的数据,包括:所述网络设备通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
在一种可能的实现方式中,所述第二协议层为MAC层,所述网络设备通过所述SSB中的PBCH向终端设备发送第二协议层处理后得到的数据,包括:所述网络设备对所述第二协议层处理得到的数据进行物理层处理;所述网络设备通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
在一种可能的实现方式中,所述物理层处理包括以下方式中的一种或多种:信道编码、速率匹配、加扰、调制、时频资源映射、和快速傅里叶逆变换IFFT处理。
在一种可能的实现方式中,所述第二信息为同步信号块SSB的序号。
在一种可能的实现方式中,所述物理层处理包括所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
所述网络设备将第一信息和第二信息作为一个整体进行信道编码和/或速率匹配;
所述网络设备分别使用J个不同扰码中的一个,对信道编码和/或速率匹配的结果进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
所述网络设备对所述加扰结果进行调制处理,从而获得调制后数据;
所述网络设备将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的得到的数据。
在一种可能的实现方式中,所述物理层处理包括所述物理层处理包括信道编码、速率 匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
所述网络设备使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,所述网络设备使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
所述网络设备分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果的组合进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
所述网络设备对所述加扰结果进行调制处理,从而获得调制后数据;
所述网络设备将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的得到的数据。
在一种可能的实现方式中,所述物理层处理包括所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
所述网络设备使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,所述网络设备使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
所述网络设备分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
所述网络设备对所述第一加扰结果和第二加扰结果的组合进行调制处理,从而获得调制后数据;
所述网络设备将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的数据。
在一种可能的实现方式中,所述物理层处理包括所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
所述网络设备使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,所述网络设备使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
所述网络设备分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
所述网络设备对所述第一加扰结果和所述第二加扰结果分别进行调制处理,从而获得对应的第一调制后数据和第二调制后数据;
所述网络设备将所述第一调制后数据和第二调制后数据的组合映射到所述SSB的序 号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的数据。
在一种可能的实现方式中,所述物理层处理包括所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
所述网络设备使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,所述网络设备使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
所述网络设备分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
所述网络设备对所述第一加扰结果和所述第二加扰结果分别进行调制处理,从而获得对应的第一调制后数据和第二调制后数据;
所述网络设备将所述第一调制后数据映射到所述SSB的序号对应的SSB中的PBCH的第一资源上,获得第一映射后的结果;将所述第二调制后数据映射到所述SSB的序号对应的SSB中的PBCH的第二资源上,获得第二映射后的结果;
所述网络设备对所述第一映射后的结果和所述第二映射后的结果分别进行傅里叶逆变换IFFT处理,获得第一IFFT结果和第二IFFT结果,所述第一IFFT结果和第二IFFT结果为物理层处理后的得到的数据。
由于较低的编码速率进行编码后,终端设备在进行对应的译码时译码结果的可靠性较高,而第二信息对于终端设备的行为控制有较高的及时性要求,因此可以对第二信息采用较低的编码速率进行编码。这样终端设备可以无需对从多个帧中检测到的第二信息进行合并,仅根据从一个帧中检测到的第二信息就可以进行时序对齐,从而大大加快时序对齐的速度。可选地,在上述几种可能的实现方式中,所述第一编码速率大于所述第二编码速率。
在一种可能的实现方式中,所述第一信息包括系统信息。所述系统信息中包括以下一种或多种:系统带宽参数值、系统帧号中的前L-M位、或剩余最少系统信息的配置信息,其中系统帧号共包含L位,L、M均为自然数、且1<M≤L。
在一种可能的实现方式中,所述第一协议层为RRC层。
第二方面,提供了一种广播信号的接收方法,所述方法由终端设备执行,所述终端设备的协议栈包括第一协议层和第二协议层,所述第一协议层是第二协议层之上的协议层,所述方法包括:
终端设备接收网络设备通过物理广播信道PBCH发送的数据;所述终端设备对接收到的所述数据进行物理层处理;所述终端设备在第二协议层从物理层处理结果中获得第一信息和第二信息,所述第二信息用以确定承载有所述第一信息的一个或多个同步信号块SSB对应的时频资源;所述终端设备在第二协议层根据所述第二信息对所述终端设备的行为进行控制;所述终端设备在第一协议层根据所述第一信息对所述终端设备的行为进行控制。
在本申请实施例提供的广播信号的接收方法中,终端设备在物理层对PBCH发送的数据进行处理后,无需将物理层处理后获得的所有数据都上报到第一协议层处理,而是在第 二协议层中可以直接读取其中的第二信息,并根据第二信息对终端设备的行为进行控制。由于缩短了终端设备对第二信息进行协议栈处理的时间,能够缩短业务时延,提高业务的及时性。
在一种可能的实现方式中,所述第二协议层是物理层,或者MAC层。
在一种可能的实现方式中,所述第二协议层是MAC层,所述终端设备在第二协议层从物理层处理结果中获得第一信息和第二信息,包括:所述终端设备在第二协议层对物理层处理结果进行处理;所述终端设备从第二协议层处理后得到的数据中获得所述第一信息和所述第二信息。
在一种可能的实现方式中,所述终端设备接收网络设备通过PBCH发送的数据,包括:
终端设备检测到同步信号,通过同步信号确定小区标识,以及PBCH对应的时频资源;在所述PBCH对应的时频资源上接收网络设备通过PBCH发送的数据。
在一种可能的实现方式中,所述终端设备的对接收到的所述数据进行物理层处理,包括:
对接收到的基站通过PBCH发送的数据进行快速傅里叶变换FFT处理;对FFT处理得到的数据进行解调,得到解调后的数据;根据所述小区标识,获得J个解扰序列;所述终端设备从所述J个解扰序列中,选择一个解扰序列对对解调后的数据进行解扰;所述终端设备对所述解扰得到的数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为物理层处理结果。以便于UE从物理层处理结果中获得第一信息和第二信息,所述物理层处理结果中包含所述第一信息和所述第二信息。
在一种可能的实现方式中,所述终端设备的对接收到的所述数据进行物理层处理,包括:
对接收到的基站通过PBCH发送的数据进行FFT处理;对FFT处理得到的数据进行解调,得到解调后的数据;根据所述小区标识,获得J个解扰序列;所述终端设备从所述J个解扰序列中,选择一个解扰序列对解调后的数据进行解扰;所述终端设备从所述解扰后的数据中获取包含的第一数据和第二数据;所述终端设备使用第一解码速率对所述第一数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为所述第一信息。使用第二解码速率对所述第二数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为所述第二信息。
与编码速率相对应地,所述第一解码速率大于所述第二解码速率。由于基站对第二信息进行编码时使用的编码速率较低,因此终端设备相应地进行解码时解码准确率较高。可选地,在上述可能的实现方式中,所述第一解码速率大于所述第二解码速率。
在一种可能的实现方式中,所述第一信息包括系统信息。所述系统信息中包括系统带宽值、系统帧号中的前L-M位、或剩余最少系统信息的配置信息,其中系统帧号共包含L位,L、M均为自然数、且1<M≤L。
在一种可能的实现方式中,所述第二信息为同步信号块SSB的序号。
在一种可能的实现方式中,,所述第一协议层是RRC层。
第三方面,提供了一种网络设备,该网络设备具有实现上述第一方面所述方法或上述第一方面的任意一种可能的实现方式的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供了一种终端设备,该终端设备具有实现上述第二方面所述方法或上述第二方面的任意一种可能的实现方式的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述第一方面或上述第一方面的任意一种可能的实现方式所设计的程序。
第六方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述第二方面或上述第二方面的任意一种可能的实现方式所设计的程序。
第七方面,本申请实施例还提供了一种通信系统,包括第三方面或第三方面的任意一种可能的实现方式所述的网络设备,以及第四方面或第四方面的任意一种可能的实现方式所述的终端设备。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例应用的一种网络系统的示意图;
图2为本申请实施例中列举的一种可能的SSB的结构示意图;
图3为本申请实施例中列举的一种可能的SSB脉冲集发送周期的示意图;
图4为本申请实施例提供的一种广播信号的传输方法的流程图;
图5为本申请实施例结合一种可能的协议栈的结构,提供的一种广播信号的发送方法的示意图;
图6为本申请实施例提供的一种广播信号的发送方法的流程图;
图7为本申请实施例提供的一种广播信号的发送方法的示意图;
图8为本申请实施例提供的另一种广播信号的发送方法的流程图;
图9为本申请实施例提供的另一种广播信号的发送方法的示意图;
图10为本申请实施例提供的另一种广播信号的发送方法的示意图;
图11为本申请实施例提供的另一种广播信号的发送方法的示意图;
图12为本申请实施例提供的另一种广播信号的发送方法的示意图;
图13为本申请实施例提供的一种广播信号的发送方法的流程图;
图14为本申请实施例提供的一种广播信号的发送方法的示意图;
图15为本申请实施例提供的一种广播信号的接收方法的流程图;
图16为本申请实施例提供的另一种广播信号的接收方法的流程图;
图17为本申请实施例提供的一种网络设备的结构示意图;
图18为本申请实施例提供的另一种网络设备的结构示意图;
图19为本申请实施例提供的一种终端设备的结构示意图;
图20为本申请实施例提供的另一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1给出了本申请实施例应用的一种网络系统的示意图。如图1所示,网络系统100可以包括网络设备102以及终端设备104、106、108、110、112和114,其中,网络设备与终端设备之间通过无线连接。应理解,图1仅以网络系统包括一个网络设备为例进行说明,但本发明实施例并不限于此,例如,系统还可以包括更多的网络设备;类似地,系统也可以包括更多的终端设备。
本说明书结合终端设备描述了各个实施例。终端设备也可以指UE、接入终端、移动台、远方站、远程终端、移动设备、用户终端、用户代理。终端设备也可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。在本申请各实施例中,以UE为例,对终端设备的结构和处理流程进行说明。
本说明书结合网络设备描述了各个实施例。网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(英文:Cloud Radio Access Network,CRAN)场景下的无线控制器,或者未来5G网络中的基站(gNB或gNodeB)。在本申请各实施例中,以基站为例,对网络设备的结构和处理流程进行说明。
附图2是一种可能的SSB的结构示意图,一个SSB中包含1个OFDM符号的PSS(或者NR-PSS)、1个OFDM符号的SSS(或者NR-SSS)和2个OFDM符号的PBCH(或者NR-PBCH)。其中NR-PSS和NR-SSS可以分别具有传统标准(例如,LTE)中的PSS和SSS的功能。例如,NR-PSS可以用于确定OFDM符号定时、频率同步、时隙定时和小区组内的小区ID;NR-SSS 可以用于确定帧定时、小区组等,或者,NR-PSS和NR-SSS也可以具有与目前的PSS和SSS不同的功能,本发明实施例对此并未限定。另外,NR-PSS和NR-SSS还可以采用分别与目前的PSS和SSS相同或不同的序列,本发明实施例对此也不限定。另外,在本发明实施例中,NR-PBCH可以具有与传统标准(例如,LTE)中的PBCH相同或不同的功能,本发明对此也不限定。可选地,NR-PBCH中可以携带主信息块(Master Information Block,MIB)。
应理解,图2中示出的SSB的资源结构仅为一种可能的结构,不应对本发明实施例构成任何限定。例如,NR-PSS、NR-SSS和NR-PBCH在频域上占用的子载波数可能是不同的,图中并未予以示出。或者,NR-PSS、NR-SSS和NR-PBCH也有可能在时间上并不连续,或者,该SSB可能仅包括NR-PSS和NR-PBCH,或者,仅包括NR-SSS和NR-PBCH,甚至还可以仅包括NR-PBCH。本发明实施例对于SSB的资源结构并未特别限定。
对于如何在SSB中携带附加信息,有的研究提出在一个SSB包括的NR-PBCH资源中携带附加信息,附加信息如用于指示该SSB在所属SS burst set发送周期中的排序的序号(英文:Time Index,TI)。然而即便如此,基站如何在NR-PBCH的资源中指示附加信息、以及UE如何从NR-PBCH资源中读取SSB的附加信息仍然是一个待解决的问题。
发明人注意到由于SSB而引入的附加信息有时候还可以实现多种功能。以SSB的TI为例,TI不仅可以指示SSB在所属SS burst set发送周期中的排序,并且具有同一TI的SSB都映射在所属SSB脉冲集发送周期中的相对固定的时频资源上。因此UE在获取一个SSB中的TI后,可以根据TI的内容以及预知的各TI对应的SSB在SSB脉冲集发送周期中映射的时频资源,推测出小区的帧/时隙(frame/slot)的边界,从而实现UE与小区无线帧的时序对齐。附图3是一种可能的SSB发送方案的示意图。在附图3中,每个SS burst set发送周期(periodicity)包括2个无线帧,每个无线帧为10ms,在SS burst set发送周期的第1个无线帧中包括8个SSB。在每个SS burst set发送周期中,SSB 2都映射在本SS burst set发送周期中的固定时频资源中,如果UE知晓了一个SSB的TI,例如TI=2,则可以推算出无线帧的边界。
然而,如果采用传统的对PBCH所传输的内容的处理方案,UE想要基于TI实现时序对齐是较为困难的。参考现有LTE网络、以及5G协议栈中各协议层之间的关系,UE想要获取PBCH中传输的信息,就需要将物理层(英文:physical,PHY)接收的数据通过多个协议层处理,上报至无线资源控制(英文:Radio Resource Control,RRC),由RRC层读出。由于多个协议层对信号的处理将耗费较长时间,导致难以实现UE与小区快速时序对齐,造成后续业务时延。
本发明实施例提供了一种适合新无线(英文:New Radio,NR)的广播信号的传输方案。该对基站和UE的低协议层处理流程进行改进,例如物理层处理流程进行改进。从基站角度而言,由基站的低协议层(例如,物理层)生成将在PBCH中传输的一部分信息,而不是PBCH中传输的所有信息都是由高协议层(例如,RRC层)生成并发送给低协议层。从UE角度而言,UE的低协议层读取PBCH中传输的一部分信息,并在低协议层根据读取的一部分信息对UE进行控制,而不是对PBCH中接收的进行低协议层处理后,将处理得到的所有信息都发送给高协议层进行进一步处理,再根据高协议层处理后获得的信息对UE进行控制。这样,可以缩短基站和UE对部分信息进行协议层处理耗费的时间,使得UE可以快速地根据低协议层处理得到的一部分信息对UE进行控制,缩短后续业务时延。例如 UE可以根据物理层读取到的TI,快速与小区实现时序对齐。
下面结合多个附图对本申请提供的技术方案进行详细描述。
附图4是本申请实施例提供的一种广播信号的传输方法的流程图。附图4以基站为例对图1中的网络设备102进行说明。附图4中涉及到的UE可以是图1中的终端设备104、106、108、110、112和114。附图4主要从基站的角度进行说明。
步骤40,基站在第一协议层生成第一信息。基站的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层。
在本申请第一协议层和第二协议层并不是表示顺序关系,而是为了区别不同的协议层,以下文件中提到的第一信息、第二信息等也是为了区别不同的信息。
可选地,附图5是本申请实施例结合一种可能的协议栈的结构,提供的一种广播信号的发送方法的示意图。该协议栈中包括5个协议层,自上而下分别为RRC层、分组数据汇聚协议(英文:Packet Data Convergence Protocol,PDCP)层、无线链路层控制(英文:Radio Link Control,RLC)、媒体接入控制层(英文:Media Access Control,MAC)层、物理(英文:Pyhsical,PHY)层。
需要进行说明的是,5G网络中协议层的划分仍然在讨论中,可能对附图5所示的协议栈进行改进,例如合并其中的多个协议层,或者是新增新的协议层。本实施例仅以第一协议层是RRC层为例进行说明,只要保证第一协议层与第二协议层之间的相对关系是第一协议层是第二协议层以上的协议层即可。
可选地,第一信息包括系统信息。系统信息可以是LTE网络中的系统信息,也可以是NR标准中定义的系统信息。示例性地,系统信息包括系统带宽值(英文:System Bandwidth)、系统帧号(英文:System Frame Number,SFN)、或剩余最少系统信息(英文:remaining minimum system information,RMSI)的配置信息,其中RMSI的配置信息用于指示用以传输RMSI的时频资源和子载波间隔。SFN中的一部分bit位可以包含在系统信息中,另一部分bit位可以通过后续物理层的加扰隐含指示。例如,SFN共有10bit,系统信息中包含SFN的前8bit。SFN的后2bit通过后续物理层的加扰隐含指示。
步骤41,基站在第二协议层生成第二信息。可选地,第二协议层是MAC层或物理层。第二信息是指将要在SSB的PBCH符号中携带的附加信息,该附加信息是与SSB相关的信息,网络可以根据这些附加信息,实现更多的功能。例如,第二信息用以确定一个或多个同步信号块SSB对应的时频资源。
可选地,第二信息为SSB的TI。基站在发送第一信息和第二信息时,物理层将第一信息和第二信息进行物理层处理后得到的数据映射在所述TI指示的SSB的时频资源中,具体地,后续物理层将第一信息和第二信息进行物理层处理后得到的数据通过TI指示的SSB的PBCH的OFDM符号承载。
步骤42,基站在第二协议层对所述第一信息和第二信息进行处理。
如果第二协议层为MAC层,则第二协议层处理包括MAC层确定数据在空中接口发送的格式,如数据块的大小等;以及根据数据块的大小,分配物理层资源,如确定对数据块的编码调制方式、确定用于承载数据块的子载波个数等等。
以第二协议层为MAC层、第一信息为系统信息、第二信息为TI为例,MAC接收到RRC层通过广播控制信道(英文:Broadcast Control Channel,BCCH)发送的系统信息、以及 MAC层生成的SSB的TI之后,MAC层确定对应的控制信息。控制信息包括用于传输系统信息和TI的数据块的大小,对该数据块的调整方式、用于承载该数据块的子载波。然后MAC层将用于传输系统信息和TI的数据块、以及上述控制信息等等分别通过广播信道(英文:Broadcast Channel,BCH)通知物理层,或者将这些信息组合后通过BCH通知物理层,以便于物理层对BCH接收到的数据进行物理层处理后,通过物理广播信道(英文:Physical Broadcast Channel,PBCH)向UE发送物理层处理后得到的数据。
如果第二协议层为物理层,则第二协议层处理包括信道编码、速率匹配、交织、加扰、调制、时频资源映射、和快速傅里叶逆变换(英文:Inverse Fast Fourier Transform,IFFT)等等。
以第二协议层为物理层、第一信息为系统信息、第二信息为TI为例,物理层接收到系统信息、以及物理层生成的SSB的TI之后,对系统信息和TI进行上述物理层处理。系统信息是RRC层生成的,经PDCP、RLC、MAC层处理后并通过BCH通知物理层的。
步骤43,基站通过SSB中的PBCH向UE发送第二协议层处理后得到的数据,其中SSB是基站根据第二信息确定出的SSB。
如果第二协议层为MAC层,则步骤43具体包括两个步骤:
步骤一,基站对MAC层处理得到的数据进行物理层处理。物理层处理包括信道编码、速率匹配、交织、加扰和调制等等。
步骤二,基站通过SSB中的PBCH向UE发送物理层处理后得到的数据。
如果第二协议层为物理层,则步骤43是指基站通过SSB中的PBCH向UE发送物理层处理后得到的数据。具体地,基站在物理层将经物理层处理后得到的数据映射在SFN和第二信息指定的时频资源上发送给UE。
在本申请实施例中,在网络设备的协议栈中包括第一协议层和第二协议层,其中第二协议层是第一协议层以下的协议层。对于基站而言,最终在PBCH中传输的信息中的第一信息由第一协议层生成、第二信息由第二协议层生成,第二信息用以确定一个或多个同步信号块SSB对应的时频资源。对于第二信息而言,仅需通过第二协议层以下的协议层的处理即可通过PBCH发送给UE。相对于在PBCH中传输的所有信息均通过第一协议层以下的所有协议栈处理的方案而言,缩短了对PBCH中传输的信息进行协议栈处理耗费的时间,有助于缩短业务时延。
附图6和附图7以附图4中的第二协议层为物理层为例,对本申请实施例提供的一种广播信号的发送方法进行进一步的说明。
附图6是本申请实施例提供的一种广播信号的传输方法的流程图。附图6以基站为例对图1中的网络设备102进行说明。进一步地,附图6以第一协议层为RRC层,第二协议层为物理层为例,对本申请实施例提供的广播信号的传输方法进行描述。
步骤600,基站在RRC层生成第一信息。其中第一信息系统信息。关于系统信息的说明请参照附图4所描述的实施例中的描述,在这里不再赘述。RRC层对生成的第一信息进行抽象语法标记(英文:Abstract Syntax Notation One,ASN.1)封装,并将经过ASN.1封装的第一信息通过BCCH发送给MAC层。MAC层将接收到的经过ASN.1封装的第一信息进行MAC层处理后通过BCH发送给物理层。
步骤601,基站的物理层通过BCH传输数据块接收经过MAC层处理的第一信息。其中 第一信息是RRC层生成的系统信息。
步骤602,基站的物理层生成第二信息。可选地,第二信息是SSB的TI。
步骤603,基站对经MAC层处理的第一信息以及物理层生成的第二信息进行物理层处理。
可选地,如果物理层处理包括信道编码、加扰和调制,则基站可以采用步骤6031~6035对经过MAC层处理的的第一信息以及物理层生成的第二信息进行物理层处理。
步骤6031,基站将第二信息和经过MAC处理的第一信息进行组合。可选地基站的物理层将经ASN.1封装、以及MAC层处理的第一信息,与第二信息和循环冗余校验(英文:Cyclic Redundancy Check,CRC)码进行直接级联。级联具体是指将经ASN.1封装、以及MAC层处理的第一信息的各bit、第二信息的各bit和CRC码的各bit依次连接。
步骤6032,基站将第二信息和经过MAC处理的第一信息的组合结果作为一个整体进行信道编码。即基站对步骤6031的级联结果进行信道编码。
可选地,信道编码之后还包括速率匹配等处理,使得编码结果中的信息比特量经过加扰和或调制后与分配的时频资源格的数量一致。
步骤6033,基站分别使用J个不同的扰码中的一个,对信道编码和/或速率匹配结果进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与所述SFN后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
在本申请实施例中,物理层根据SFN确定用于发送物理层处理后的数据的无线帧。其中SFN中的一部分通过系统信息指示,另一部分通过加扰隐式指示。以第一信息中包括SFN的前8bit,SFN的后2位通过扰码隐式指示的方式为例。SFN的后2位一共有4种可能的取值,具体为00、01、10、11。因此共有4个扰码序列,扰码序列可以是Zadoff-Chu(ZC)序列,每个扰码序列分别SFN后2位的一种取值对应。
扰码序列1与SFN的后2位取值为00相对应。
扰码序列2与SFN的后2位取值为01相对应。
扰码序列3与SFN的后2位取值为10相对应。
扰码序列4与SFN的后2位取值为11相对应。
基站选择与系统帧号后2bit对应的加扰序列,对信道编码和/或速率匹配结果进行加扰。
可选地,J个不同扰码中除了指示SFN中的后2bit之外,还可以用于隐式指示TI中的部分bit。例如共有8个不同扰码,每个扰码与SFN的后2bit以及TI中的1bit的取值对应。
附图7以示意图的方式对附图6中步骤604和步骤605的处理过程进行描述。基站在物理层先将信道编码/速率匹配结果使用4个扰码序列中的一个扰码进行加扰,从而在物理层得到加扰结果。
步骤6034,基站在物理层对加扰结果进行调制处理,从而获得调制后的数据。
可选地,调制方式可以预先配置,如正交相移键控(英文:Quadrature Phase Shift Keyin,QPSK)调制等等。
步骤6035,基站将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的数据。
可选地,基站在物理层对调制后的数据执行步骤以下两个步骤。
步骤一,基站确定用于发送调制后的数据的无线帧的L位的帧号,L位帧号中的前L-M位的值是系统信息中指示的,后M位的值与生成调制后的数据时使用的扰码序列具有映射关系。
步骤二,基站将调制后的数据映射在SSB的序号对应的SSB中的PBCH上,映射结果为物理层处理后的得到的数据。
仍以系统信息中包括SFN的前8bit,SFN的后2位通过扰码隐式指示的方式为例。表1表示了加扰得到的扰码序列、SFN的后2位的取值、以及加扰结果的对应关系。
表1
加扰序列 SFN后2位的取值 加扰结果
ZC序列1 00 加扰结果1
ZC序列2 01 加扰结果2
ZC序列3 10 加扰结果3
ZC序列4 11 加扰结果4
表2表示SFN后2位的取值与用以传输SSB的帧号的映射关系,其中k的取值为自然数,k根据第一信息中包含的SFN的前8bit的取值确定。
表2
SFN后2位的取值 帧号
00 8k
01 8k+2
10 8k+4
11 8k+6
请参照附图7,如果系统帧号的后2bit是00,则物理层将调制后得到的数据映射在无线帧8k上;如果系统帧号的后2bit是01,则将调制后得到的数据映射在无线帧8k+2上;如果系统帧号的后2bit是10,则将调制后得到的数据映射在无线帧8k+4上;如果系统帧号的后2bit是10,则将调制后得到的数据映射在无线帧8k+6上。
可选地,由于TI可以用于确定物理层处理后得到的数据所属SSB在SSB脉冲集发送周期中映射的时频资源。一方面,可以通过步骤一确定物理层处理后的数据映射的无线帧的帧号。另一方面,还可以通过TI确定物理层处理后的数据在一个SSB脉冲集发送周期中映射的时频资源。例如,基站预先存储每个TI指示的SSB在一个SSB脉冲集发送周期中映射的时频资源信息,该时频资源信息中的时域信息可以是SSB相对于SSB脉冲集发送周期的起始位置的相对值。基站在物理层生成TI后,可以查找生成的TI对应的SSB在一个SSB脉冲集发送周期中映射的时频资源。
综上,基站在物理层完成对调制后的数据的资源映射,即确定用于传输物理层处理后的数据的无线帧的帧号、以及在一个无线帧中的具体时频资源信息。
步骤604,基站通过所述SSB中的PBCH向UE发送物理层处理后得到的数据。
本申请实施例提供的广播信号的发送方法中,基站最终在PBCH中传输的信息中的第一信息由第一协议层生成、第二信息由第二协议层生成。对于第二信息而言,仅需通过第 二协议层以下的协议层的处理即可通过PBCH发送给UE。基站的在对第一信息和第二信息进行物理层处理时,先将第一信息和第二信息作为一个整体进行信道编码。分别使用N个不同的扰码,对信道编码结果进行加扰处理,获得所述N个不同的扰码中的每个扰码分别对应的加扰结果,所述N个不同扰码中的每个扰码分别与所述系统帧号后M位的一种取值相对应,其中N和M均为自然数、且N=M 2。这样通过第一信息指示SFN中的一部分,通过加扰隐式指示SFN的其他部分。基站分别对每个扰码对应的加扰结果进行调制处理,从而获得N组数据。基站根据SFN以及第二信息确定用于发送物理层处理后的数据的时频资源,然后使用PBCH中确定出的时频资源,发送物理层处理后的数据。采用该方案发送SSB时,能够实现在一个SSB对应的PBCH符号中携带与SSB相关的一些附加信息。
附图8和附图9以附图4中的第二协议层为物理层为例,对本申请实施例提供的一种广播信号的发送方法进行进一步的说明。
附图8是本申请实施例提供的一种广播信号的传输方法的流程图。附图8以基站为例对图1中的网络设备102进行说明。进一步地,附图8以第一协议层为RRC层,第二协议层为物理层为例,对本申请实施例提供的广播信号的传输方法进行描述。
步骤800,基站在RRC层生成第一信息。其中第一信息系统信息。关于系统信息的说明请参照附图4所描述的实施例中的描述,在这里不再赘述。RRC层对生成的第一信息进行ASN.1封装,并将经过ASN.1封装的第一信息通过BCCH发送给MAC层。MAC层将接收到的经过ASN.1封装的第一信息进行MAC层处理后通过BCH发送给物理层。
步骤801,基站的物理层通过BCH传输数据块接收经过MAC处理的第一信息。其中第一信息是RRC层生成的系统信息。
步骤802,基站的物理层生成第二信息。关于第二信息的说明请参考以上实施例中的描述,可选地,在本实施例中第二信息是SSB的TI。
步骤803,基站对经过MAC层处理的第一信息和物理层生成的第二信息进行物理层处理。
可选地,如果物理层处理包括信道编码、加扰和调制,则基站可以采用步骤8031~8034对经过MAC层处理的第一信息与第二信息进行物理层处理。
步骤8031,基站在物理层将经MAC层处理的第一信息与第一CRC码进行级联,将第二信息与第二CRC码级联。
可选地,如果物理层处理包括信道编码、加扰和调制,则基站可以采用步骤8031~8035对经过MAC层处理的第一信息与第一CRC码的级联结果,以及第二信息与第二CRC码的级联结果进行物理层处理。
为了简明起见,将经过MAC层处理的第一信息与第一CRC码的级联结果简称为第一级联结果,将第二信息与第二CRC码的级联结果简称为第二级联结果。
步骤8032,基站使用第一编码速率对第一级联结果进行信道编码和/或速率匹配,从而获得第一编码结果;基站使用第二编码速率对第二级联结果进行信道编码和/或速率匹配,从而获得第二编码结果。
可选地,由于较低的编码速率进行编码后,UE在进行对应的译码时译码结果的可靠性较高,而以TI为例的第二信息对于UE的行为控制有较高的及时性要求,因此可以对第二信息采用较低的编码速率进行编码。这样UE可以无需对从多个帧中检测到的TI进行合 并,仅根据从一个帧中检测到的TI就可以进行时序对齐,从而大大加快时序对齐的速度。因此在设置编码速率时,可以设置第一编码速率大于所述第二编码速率。
可选地,信道编码之后还包括速率匹配等处理,使得编码结果中的数据量与分配的资源格的数量一致。
步骤8033,基站分别使用J个不同的扰码中的一个,对所述第一编码结果和所述第二编码结果的组合进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
以第一信息中包括SFN的前8bit,SFN的后2位通过扰码隐式指示的方式为例。SFN的后2位一共有4种可能的取值,具体为00、01、10、11。因此共有4个扰码序列,扰码序列可以是Zadoff-Chu(ZC)序列,每个扰码序列分别SFN后2位的一种取值对应。
扰码序列1与SFN的后2位取值为00相对应。
扰码序列2与SFN的后2位取值为01相对应。
扰码序列3与SFN的后2位取值为10相对应。
扰码序列4与SFN的后2位取值为11相对应。
附图9以示意图的方式对附图8中步骤804和步骤805的处理过程进行描述。可选地,可以用不同的扰码序列中的一个,对第一编码结果和所述第二编码结果的组合进行加扰。需要说明的是,每次进行加扰时第一编码结果和第二编码结果的组合方式可以相同,也可以不同。
例如,对于第一个SS burst set的周期,将第一编码结果和第二编码结果中的每个bit间隔放置,生成第一种组合数据,采用扰码组里ZC序列1对第一种组合数据进行加扰,得到加扰结果。
例如,对于第二个SS burst set的周期,将第一编码结果和第二编码结果中的每两个bit间隔放置,生成第二种组合数据,采用扰码组里ZC序列2对第二种组合数据进行加扰,得到加扰结果。
例如,对于第三个SS burst set的周期,以第一编码结果在前、第二编码结果在后的方式,对第一编码结果和第二编码结果进行级联,生成第三种组合数据,采用扰码组里ZC序列3对第三种组合数据进行加扰,得到加扰结果。
例如,对于第四个SS burst set的周期,以第二编码结果在前、第一编码结果在后的方式,对第一编码结果和第二编码结果进行级联,生成第四种组合数据,采用扰码组里ZC序列4对第四种组合数据进行加扰,得到加扰结果。
步骤8034,基站在物理层对加扰结果进行调制处理,从而获得调制后的数据。
可选地,调制方式可以预先配置,如QPSK调制等。
步骤8035,基站将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上。然后对映射到每个PBCH符号上的数据进行IFFT处理。从而得到物理层处理后的数据。
可选地,基站在物理层对调制后的数据执行步骤以下两个步骤。
步骤一,基站确定用于发送调制后数据的无线帧的L位的帧号,L位帧号中的前L-M位的值是系统信息中指示的,后M位的值与生成调制后的数据时使用的扰码序列具有映射关系。
步骤二,基站将调制后的数据映射在SSB的序号对应的SSB中的PBCH上,映射结果为物理层处理后的得到的数据。
仍以第一信息中包括SFN的前8bit,SFN的后2位通过扰码隐式指示的方式为例。表3表示了加扰得到的扰码序列、SFN的后2位的取值、以及加扰结果的对应关系。
表3
加扰序列 SFN后2位的取值 加扰结果
ZC序列1 00 加扰结果1
ZC序列2 01 加扰结果2
ZC序列3 10 加扰结果3
ZC序列4 11 加扰结果4
表4表示SFN后2位的取值与用以传输SSB的帧号的映射关系,其中k的取值为自然数,根据第一信息中包含的SFN的前8bit确定。
表4
SFN后2位的取值 帧号
00 8k
01 8k+2
10 8k+4
11 8k+6
请参照附图9,如果系统帧号的后2bit是00,则物理层将调制后得到的数据映射在无线帧8k上;如果系统帧号的后2bit是01,则将调制后得到的数据映射在无线帧8k+2上;如果系统帧号的后2bit是10,则将调制后得到的数据映射在无线帧8k+4上;如果系统帧号的后2bit是10,则将调制后得到的数据映射在无线帧8k+6上。
可选地,由于TI可以用于确定物理层处理后得到的数据所属SSB在SSB脉冲集发送周期中映射的时频资源。一方面,可以通过步骤一确定物理层处理后的数据映射的无线帧的帧号。另一方面,还可以通过TI确定物理层处理后的数据在一个SSB脉冲集发送周期中映射的时频资源。例如,基站预先存储每个TI指示的SSB在一个SSB脉冲集发送周期中映射的时频资源信息,该时频资源信息中的时域信息可以是SSB相对于SSB脉冲集发送周期的起始位置的相对值。基站在物理层生成TI后,可以查找生成的TI对应的SSB在一个SSB脉冲集发送周期中映射的时频资源。
综上,基站在物理层完成对调制后的数据的资源映射,即确定用于传输物理层处理后的数据的无线帧的帧号、以及在一个无线帧中的具体时频资源信息。
步骤804,基站通过SSB中的PBCH向UE发送物理层处理后得到的数据。
本申请实施例提供的广播信号的发送方法中,基站在PBCH中传输的信息中的第一信息由第一协议层生成、第二信息由第二协议层生成。对于第二信息而言,仅需通过第二协议层以下的协议层的处理即可通过PBCH发送给UE。与附图6所示实施例的不同之处是基站的在对第一信息和第二信息进行物理层处理时,对第一信息和第二信息分别进行信道编码,获得两个信道编码结果。分别使用N个不同的扰码,对两个信道编码结果的组合进行加扰处理,获得所述N个不同的扰码中的每个扰码分别对应的加扰结果。在可以实现附图 6所示实施例的效果的基础上,通过不同编码速率对第一信息和第二信息进行编码时,通过为第二信息设置较低的编码速率,从而提高UE对第二信息的检测准确性。从而提高UE侧根据第二信息对UE的行为进行控制时的及时性,进一步缩短业务时延。
附图10是本申请实施例提供的另一种物理层处理过程的示意图。基站在物理层处理时,对第一信息的信道编码结果和第二信息的信道编码结果分别加扰后,对加扰结果的组合进行调制和资源映射。如图10所示,基站在物理层,使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果。基站使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中N和M均为自然数、1<N≤J、且N=M 2。附图10受限于篇幅,仅以一个无线帧中数据的加扰处理为例进行说明,其他3个无线帧的情况类似。进一步地,基站对所述第一加扰结果和第二加扰结果的组合进行调制处理,从而获得调制后数据。基站将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上。然后对映射到每个PBCH符号上的数据进行IFFT处理。从而得到物理层处理后的得到的数据。
附图11是本申请实施例提供的另一种物理层处理过程的示意图。基站在物理层处理时,对第一信息的信道编码结果和第二信息的信道编码结果分别加扰和分别调制后,将分别调制的结果组合后进行资源映射。如图11所示,基站在物理层使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果。基站分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、N=M 2。进一步地,对所述第一加扰结果和所述第二加扰结果分别进行调制处理,从而获得对应的第一调制后数据和第二调制后数据。基站将第一调制后数据和第二调制后数据的组合映射到所述SSB的序号对应的SSB中的PBCH上。然后对映射到每个PBCH符号上的数据进行IFFT处理。从而得到物理层处理后的数据。
附图12是本申请实施例提供的另一种物理层处理过程的示意图。基站在物理层处理时,对第一信息的信道编码结果和第二信息的信道编码结果分别加扰和分别调制后,分别进行资源映射,再对映射后的结果进行IFFT。如图12所示,基站使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果。基站分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果分别进行加扰处理,获得对应的第一加扰结果和第二加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、N=M 2。进一步地,基站对所述第一加扰结果和所述第二加扰结果分别进行调制处理,从而获得对应的第一调制后数据和第二调制后数据。基站将第一调制后数据映射到所述SSB的序号对应的SSB中的PBCH的第一资源上,获得第一映射后的结果,将第二调制后数据映射到所述SSB的序号对应的SSB中的PBCH的第二资源上,获得第二映射后的结果。可选地,SSB中的PBCH对应的资 源包括时域上的2个符号,以及频域的一段子载波。第一资源可以是时域上的第一个符号、第二资源是时域上的第二个符号,第一资源和第二资源对应的子载波范围相同。当然,也可以通过其他划分方式,例如对频域子载波范围进行划分,将SSB中的PBCH划分为第一资源和第二资源。基站对所述第一映射后的结果和所述第二映射后的结果分别进行IFFT处理,获得第一IFFT结果和第二IFFT结果,第一IFFT结果和第二IFFT结果为物理层处理后的得到的数据。
与附图8所示的实施例类似的,在附图10-12所示的物理层处理过程中,基站可以通过为第二信息设置较低的编码速率,从而提高UE对第二信息的检测准确性。从而提高UE侧根据第二信息对UE的行为进行控制时的及时性,进一步缩短业务时延。即第二编码速率小于第一编码速率。
附图13以附图4中的第二协议层为MAC层为例,对本申请实施例提供的一种广播信号的发送方法进行进一步的说明。附图14是本申请实施例结合一种可能的协议栈的结构,提供的一种广播信号的发送方法的示意图。
附图13所示的一种广播信号的发送方法包括以下步骤。
步骤1300,基站在RRC层生成第一信息。其中第一信息系统信息。关于系统信息的说明请参照附图4所描述的实施例中的描述,在这里不再赘述。基站在RRC层对生成的第一信息进行ASN.1封装,并将经过ASN.1封装的第一信息通过BCCH发送给MAC层。
步骤1301,基站在MAC层通过BCCH接收经过ASN.1封装的第一信息。
步骤1302,基站在MAC层生成第二信息。关于第二信息的说明请参考前面实施例中的描述,在这里不再赘述。可选地,第二信息是SSB的TI。
步骤1303,基站将第二信息和经过ASN.1封装的第一信息通过BCH发送给物理层。
步骤1304,基站在物理层获取MAC层通过BCH发送的第二信息和经过ASN.1封装的第一信息后,对第二信息和经过ASN.1封装的第一信息进行物理层处理。
所述基站对第二信息和经过ASN.1封装的第一信息进行物理层处理的过程请参考前面附图6~附图9的描述,在这里不再赘述。
步骤1305,基站通过SSB中的PBCH向用户设备UE发送物理层处理后得到的数据。所述基站通过PBCH向用户设备UE发送物理层处理后得到的数据的过程请参考前面附图6~附图9的描述,在这里不再赘述。
附图15是本申请实施例提供的一种广播信号的接收方法的流程图。附图15以UE为例对图1中的终端设备104、106、108、110、112和114进行说明。附图15主要从UE的角度进行说明,本实施例中的UE可以是图1中的网络设备102。可选地,该UE可以与附图4~附图14中涉及到的基站相互交互。
步骤151,UE接收基站通过PBCH发送的数据。UE的协议栈中包括第一协议层和第二协议层,所述第一协议层是第二协议层之上的协议层。
UE中的协议栈与基站中的协议栈有类似的结构,但各协议层的功能有所差异。UE的协议栈中各协议层的示例请参照附图5或附图11所示。需要进行说明的是,5G网络中协议层的划分仍然在讨论中,可能对附图5所示的协议栈进行改进,例如合并其中的多个协议层,或者是新增新的协议层。
可选地,第一协议层是RRC层,第二协议层是MAC层或物理层。本实施例仅以第一协 议层是RRC层为例进行说明,只要保证第一协议层与第二协议层之间的相对关系是第一协议层是第二协议层以上的协议层即可。
步骤152,UE对接收到的所述数据进行物理层处理。可选地,物理层处理包括快速傅里叶变换(英文:Fast Fourier Transformation,FFT)、解调、解扰、去交织、信道解码等等。
步骤153,UE在第二协议层从物理层处理得到的数据中获得第一信息和第二信息。
可选地,第一信息包括系统信息。关于系统信息的说明请参照附图4中的描述,在这里不再重复。
可选地,所述第二信息用以确定承载有所述第一信息的一个或多个同步信号块SSB对应的时频资源。
如果第二协议层是MAC层,则MAC层通过BCH获取物理层处理得到数据,在MAC层对从BCH获得的数据进行处理,从MAC层处理后的数据中获取第一信息和第二信息。UE在MAC层根据第二信息对UE的行为进行控制,并将第一信息通过BCCH发送到RRC层。MAC处理包括解封装等。
如果第二协议层为物理层,则物理层对PBCH接收到的数据进行物理层处理后,从物理层处理结果中获得第一信息和第二信息。
步骤154,UE在第二协议层根据所述第二信息对所述UE的行为进行控制。
如果第二协议层是MAC层,则UE在MAC层根据第二信息对UE的行为进行控制,并将第一信息通过BCCH发送到RRC层。
如果第二协议层为物理层,则UE在物理层根据第二信息对UE的行为进行控制,并将第一信息通过BCH发送到MAC层,进一步UE在MAC层通过BCCH将第一信息发送到RRC层。
以第二协议层为物理层、第二信息为TI为例,物理层获得TI后,可以根据物理层接收到所述数据使用的时频资源,以及预知的该TI标识的SSB在一个SSB脉冲集发送周期中映射的资源的相对位置,推测出承载所述数据的SSB所属的SSB脉冲集发送周期的起始位置,以该起始位置作为小区无线帧的边界,从而实现时序对齐。
仍以附图3所示的SSB的发送方式为例,假定UE在时频资源1中接收到的SSB 1中的PBCH符号,则可以根据SSB 1在一个SSB脉冲集发送周期中映射的相对位置,推测出SSB 1所属的SSB脉冲集发送周期的起始位置,以该起始位置作为小区无线帧的边界,从而实现时序对齐。
步骤155,UE在第一协议层根据所述第一信息对所述UE的行为进行控制。
可选地,以第一协议层是RRC层、第一信息为系统信息为例,则UE在RRC层读取到系统信息后,可以获知小区的信道资源配置状况,从而接入该小区。
在本申请实施例提供的广播信号的接收方法中,UE的协议栈中包括第一协议层和第二协议层,第一协议层是第二协议层之上的协议层。UE接收基站通过PBCH发送的数据。UE对接收到的所述数据进行物理层处理后,UE在第二协议层从物理层处理得到的数据中获得第一信息和第二信息。所述UE在第二协议层根据所述第二信息对所述UE的行为进行控制,在第一协议层根据所述第一信息对所述UE的行为进行控制。UE在物理层对PBCH发送的数据进行处理后,无需将物理层处理后获得的所有数据都上报到第一协议层处理,而是在第二协议层中可以直接读取其中的第二信息,例如用以确定一个或多个同步信号块 SSB对应的时频资源的信息,并根据第二信息对UE的行为进行控制。由于缩短了UE对第二信息进行协议栈处理的时间,能够缩短业务时延,提高业务的及时性。
附图16以附图15中的第二协议层为物理层为例,对本申请实施例提供的一种广播信号的接收方法进行进一步的说明。
步骤161,UE检测到同步信号,通过同步信号确定小区标识以及PBCH对应的时频资源。
步骤162,UE在所述PBCH对应的时频资源上接收基站通过PBCH发送的数据。
步骤163,UE对接收到的数据进行物理层处理。
其中UE对接收到的N组数据进行物理层处理与基站发送广播信号时采用的物理层处理相对应。可选地,如果基站发送广播信号时,采用如附图6所示的物理层处理,则UE对接收到的N组数据执行的物理层处理包括步骤1630~1634;如果基站发送广播信号时,采用如附图8所示的物理层处理,则UE对接收到的N组数据执行的物理层处理包括步骤1635~16310。
步骤1630,UE对接收到的基站通过PBCH发送的数据进行FFT处理。
步骤1631,UE对FFT处理得到的数据进行解调,得到解调后的数据。
步骤1632,UE根据步骤161得到的小区标识,获得J个解扰序列。
步骤1633,UE从所述J个解扰序列中,选择一个解扰序列对所述解调后的数据进行解扰。
步骤1634,UE对所述解扰得到的数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为物理层处理结果。以便于UE从物理层处理结果中获得第一信息和第二信息。
步骤1635,UE对接收到的基站通过PBCH发送的数据进行FFT处理。
步骤1636,UE对FFT处理得到的数据进行解调,得到解调后的数据。
步骤1637,UE根据步骤161得到的小区标识,获得J个解扰序列。
步骤1638,UE从所述J个解扰序列中,选择一个解扰序列对解调后的数据进行解扰。
步骤1639,所述UE从所述解扰后的数据中获取包含的第一数据和第二数据。从解扰结果中获得第一数据以及第二数据的方式与附图8中步骤8033对第一编码结果和第二编码结果进行组合的方式相对应。
步骤16310,UE使用第一解码速率对所述第一数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为所述第一信息。
所述UE使用第二解码速率对所述第二数据进行信道解码,通过CRC校验信道解码得到的数据,从而确定能够对解调后的数据进行正确解扰的解扰序列。将正确解扰得到的信道解码结果作为所述第二信息。所述UE将所述第一信息和所述第二信息作为所述物理层处理结果。
可选地,为了提高解码正确率,UE可以对从多个SSB的PBCH接收到的数据执行上述处理,从而得到多个第一数据,对多个第一数据进行合并,再使用第一解码速率对合并后的第一数据进行信道解码。
可选地,与编码速率相对应地,所述第一解码速率大于所述第二解码速率。由于基站 对第二信息进行编码时使用的编码速率较低,因此UE相应地进行解码时解码准确率较高。因此UE在接收到基站通过PBCH发送的任意一组数据时,可以立即对该组数据进行解调和解扰处理,对该组数据的解扰结果中包含的第二数据直接进行解码得到第二信息。
步骤164,UE从物理层处理结果中获得第一信息和第二信息。
步骤165,UE在物理层根据所述第二信息对所述UE的行为进行控制。
步骤166,UE在物理层通过BCH将获得的第一信息发送给MAC层,MAC层进一步通过BCCH将第一信息发送给RRC层。
步骤167,UE在RRC层根据第一信息对所述UE的行为进行控制。
与基站采用附图10、附图11、或附图12所示的物理层处理过程相对应,UE可以对从SSB中的PBCH接收到的数据采用对应的物理层处理过程,原理与附图16相类似,在这里不再赘述。
本申请实施例还提供了一种网络设备,示例性地,该网络设备是基站。下面结合附图17以基站为例,对网络设备的结构和功能进行描述。附图17是网络设备的结构示意图,该网络设备作为附图1中的网络设备、附图4~附图14中的基站,实现附图1中的网络设备以及附图4~附图14所示的各实施例中的基站的功能。如图17所示,该网络设备包括收发器171和处理器172。
可选地,收发器171可以称为远端射频单元(remote radio unit,RRU)、收发单元、收发机、或者收发电路等等。收发器171可以包括至少一个天线1711和射频单元1712,收发器171可以用于射频信号的收发以及射频信号与基带信号的转换。
可选地,网络设备包括一个或多个基带单元(英文:baseband unit,简称:BBU)173。该基带单元包括处理器172。基带单元173主要用于进行基带处理,如信道编码,复用,调制,扩频等,以及对基站进行控制。收发器171与该基带单元173可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
在一个示例中,基带单元173可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。基带单元173包括处理器172。处理器172可以用于控制网络设备执行前述各方法实施例中的相应操作。可选地,基带单元173还可以包括存储器174,用以存储必要的指令和数据。
所述处理器172,用于在第一协议层生成第一信息,所述网络设备的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层;以及用于在第二协议层生成第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源。
所述处理器172,还用于对所述第一信息和第二信息进行第二协议层处理。
所示收发器171,用于使用所述SSB中的PBCH向UE发送第二协议层处理后得到的数据。
可选地,所述第一信息包括系统信息。系统信息包括以下一种或多种:系统带宽参数值、SFN、或RMSI的配置信息。
可选地,第二协议层为MAC层或者物理层。第一协议层为RRC层。
如果第二协议层为MAC层,所述使用所述SSB中的PBCH向UE发送第二协议层处理后得到的数据,包括:
处理器172对所述第二协议层处理得到的数据进行物理层处理;
收发器171使用所述SSB对应的时频资源中的PBCH符号向UE发送物理层处理后得到的数据。
可选地,处理器172在MAC层对第一信息和第二信息进行MAC层处理的具体方式请参考附图13至附图14的相关说明,在这里不再重复。
可选地,处理器172在物理层对第一信息和第二信息进行物理层处理的具体方式请参照前面方法实施例中的描述,尤其是附图6至附图12的相关说明,在这里不再重复。
本申请实施例还提供了一种网络设备,示例性地,该网络设备是基站。下面结合附图18以基站为例,对网络设备的结构和功能进行描述。附图18是网络设备的结构示意图,该网络设备作为附图1中的网络设备、附图4至附图14中的基站,具备附图1中的网络设备、附图4至附图14所示的实施例中基站的功能。如图18所示,该网络设备包括收发单元181和处理单元182。该收发单元181和该处理单元182可以是软件实现也可以是硬件实现。在硬件实现的情况下,该收发单元181可以是图17中的收发器181,该处理单元182可以是图17中的处理器172。
本申请实施例提供了一种以基站为例的网络设备,该网络设备的协议栈中包括第一协议层和第二协议层,其中第二协议层是第一协议层以下的协议层。对于该网络设备而言,最终在PBCH中传输的信息中的第一信息由网络设备的第一协议层生成、第二信息由网络设备的第二协议层生成,第二信息用以确定一个或多个同步信号块SSB对应的时频资源。对于第二信息而言,仅需通过第二协议层以下的协议层的处理即可通过PBCH发送给UE。相对于在PBCH中传输的所有信息均通过第一协议层以下的所有协议栈处理的方案而言,缩短了对PBCH中传输的信息进行协议栈处理耗费的时间,有助于缩短业务时延。
本申请实施例还提供了一种终端设备。应理解,该终端设备可以是上述各方法实施例中的UE,可以具有各方法实施例中的UE的任意功能。附图19是终端设备的结构示意图,该终端设备作为附图1、附图15至附图16中的UE,实现附图1、附图15至附图16中的一个实施例所示的UE的功能。如图19所示,该终端设备包括处理器191和收发器192。
可选地,收发器192可以包括控制电路和天线,其中,控制电路可用于基带信号与射频信号的转换以及对射频信号的处理,天线可用于收发射频信号。
可选地,该装置还可以包括终端设备的其他主要部件,例如,存储器、输入输出装置等。
处理器191可用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行前述方法实施例中的相应操作。存储器193主要用于存储软件程序和数据。当终端设备开机后,处理器191可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。
在一个实施例中,收发器192,用于接收基站通过PBCH发送的数据,所述终端设备包括第一协议层和第二协议层,所述第一协议层是第二协议层之上的协议层。
处理器191用于对接收到的所述数据进行物理层处理;在第二协议层从物理层处理结果中获得第一信息和第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源;在第二协议层根据所述第二信息对所述终端设备的行为进行控制;在第一协议层根据所述第一信息对所述终端设备的行为进行控制。
可选地,第一信息是系统信息,关于系统信息的说明请参考前面实施例中的描述,在 这里不再重复。
可选地,第一协议层是RRC层,第二协议层是物理层,或者MAC层。
可选地,收发器192接收基站通过PBCH发送的数据的过程,以及处理器191对接收到的所述数据进行物理层处理的过程请参考前面方法实施例中的描述,尤其是附图1、附图15至附图16中的相关说明,在这里不再赘述。
本申请实施例还提供了一种终端设备。应理解,该UE可以是上述各方法实施例中的UE,可以具有各方法实施例中的UE的任意功能。附图20是UE的结构示意图,该UE作为附图1、附图15至附图16中的UE,实现附图1、附图15至附图16的一个实施例所示的UE的功能。如图20所示,该基站处理单元201和收发单元202。该处理单元201和该收发单元202可以是软件实现也可以是硬件实现。在硬件实现的情况下,该处理单元201可以是图19中的处理器191,该收发单元202可以是图19中的收发器192。
本申请实施例提供了一种终端设备,该终端设备的协议栈中包括第一协议层和第二协议层,第一协议层是第二协议层之上的协议层。终端设备接收基站通过PBCH发送的数据。UE对接收到的所述数据进行物理层处理后,终端设备在第二协议层从物理层处理得到的数据中获得第一信息和第二信息。所述UE在第二协议层根据所述第二信息对所述终端设备的行为进行控制,在第一协议层根据所述第一信息对所述终端设备的行为进行控制。终端设备在物理层对PBCH发送的数据进行处理后,无需将物理层处理后获得的所有数据都上报到第一协议层处理,而是在第二协议层中可以直接读取其中的第二信息,并根据第二信息对终端设备的行为进行控制。由于缩短了终端设备对第二信息进行协议栈处理的时间,能够缩短业务时延,提高业务的及时性。
本发明实施例还提供了一种通信系统,包括上述实施例中的网络设备和终端设备。网络设备和终端设备的功能,以及相互信息交互的详细过程,请参考前面实施例中的描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (36)

  1. 一种广播信号的发送方法,其特征在于,所述方法由网络设备执行,所述网络设备的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层,所述方法包括:
    网络设备在第一协议层生成第一信息;
    网络设备在第二协议层生成第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源;
    所述网络设备在第二协议层对所述第一信息和第二信息进行处理;
    所述网络设备通过所述SSB中的物理广播信道PBCH向终端设备发送第二协议层处理后得到的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第二协议层为媒体接入控制层MAC层,或者物理层。
  3. 根据权利要求2所述的方法,其特征在于,所述第二协议层为物理层,所述网络设备通过所述SSB中的PBCH向终端设备发送第二协议层处理后得到的数据,包括:
    所述网络设备通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
  4. 根据权利要求2所述的方法,其特征在于,所述第二协议层为MAC层,所述网络设备通过所述SSB中的PBCH向终端设备发送第二协议层处理后得到的数据,包括:
    所述网络设备对所述第二协议层处理得到的数据进行物理层处理;
    所述网络设备通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二信息为同步信号块SSB的序号。
  6. 根据权利要求5所述的方法,其特征在于,所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
    所述网络设备将第一信息和第二信息作为一个整体进行信道编码和/或速率匹配;
    所述网络设备分别使用J个不同扰码中的一个,对信道编码和/或速率匹配的结果进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
    所述网络设备对所述加扰结果进行调制处理,从而获得调制后数据;
    所述网络设备将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的数据。
  7. 根据权利要求5所述的方法,其特征在于,所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,所述网络设备对所述第一信息和第二信息进行物理层处理,包括:
    所述网络设备使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,所述网络设备使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
    所述网络设备分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码 结果的组合进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2
    所述网络设备对所述加扰结果进行调制处理,从而获得调制后数据;
    所述网络设备将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行处理,从而得到物理层处理后的数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第一编码速率大于所述第二编码速率。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述第一信息包括系统信息。
  10. 根据权利要求1-9任一所述的方法,其特征在于,所述第一协议层为无线资源控制RRC层。
  11. 一种广播信号的接收方法,其特征在于,所述方法由终端设备执行,所述终端设备的协议栈包括第一协议层和第二协议层,所述第一协议层是第二协议层之上的协议层,所述方法包括:
    终端设备接收网络设备通过物理广播信道PBCH发送的数据;
    所述终端设备对接收到的所述数据进行物理层处理;
    所述终端设备在第二协议层从物理层处理结果中获得第一信息和第二信息,所述第二信息用以确定承载有所述第一信息的一个或多个同步信号块SSB对应的时频资源;
    所述终端设备在第二协议层根据所述第二信息对所述终端设备的行为进行控制;
    所述终端设备在第一协议层根据所述第一信息对所述终端设备的行为进行控制。
  12. 根据权利要求11所述的方法,其特征在于,所述第二协议层是物理层,或者媒体接入控制层MAC层。
  13. 根据权利要求12所述的方法,其特征在于,所述第二协议层是MAC层,所述终端设备在第二协议层从物理层处理结果中获得第一信息和第二信息,包括:
    所述终端设备在第二协议层对物理层处理结果进行处理;
    所述终端设备从第二协议层处理后得到的数据中获得所述第一信息和所述第二信息。
  14. 根据权利要求11-13任一所述的方法,其特征在于,所述第一信息包括系统信息。
  15. 根据权利要求11-14中任一所述的方法,其特征在于,所述第二信息为同步信号块SSB的序号。
  16. 根据权利要求11-15任一所述的方法,其特征在于,所述第一协议层是无线资源控制RRC层。
  17. 一种网络设备,其特征在于,所述网络设备的协议栈包括第一协议层、第二协议层,所述第二协议层是第一协议层以下的协议层,所述网络设备包括收发器和处理器,其中
    所述处理器,用于在第一协议层生成第一信息;在第二协议层生成第二信息,所述第二信息用以确定一个或多个同步信号块SSB对应的时频资源;在第二协议层对所述第一信息和第二信息进行处理;
    所述收发器,用于通过所述SSB对应的时频资源中的物理广播信道PBCH向终端设备发送第二协议层处理后得到的数据。
  18. 根据权利要求17所述的网络设备,其特征在于,所述第二协议层为媒体接入控制层MAC层,或者物理层。
  19. 根据权利要求18所述的网络设备,其特征在于,所述第二协议层为物理层,
    所述收发器,用于通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
  20. 根据权利要求18所述的网络设备,其特征在于,所述第二协议层为MAC层,
    所述处理器,还用于对所述第二协议层处理得到的数据进行物理层处理;
    所述收发器,用于通过所述SSB中的PBCH向终端设备发送物理层处理后得到的数据。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述第二信息为同步信号块SSB的序号。
  22. 根据权利要求21所述的网络设备,其特征在于,所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,
    所述处理器,用于将第一信息和第二信息作为一个整体进行信道编码和/或速率匹配;
    分别使用J个不同扰码中的一个,对信道编码和/或速率匹配的结果进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与所述系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2;以及
    对所述加扰结果进行调制处理,从而获得调制后的数据;
    将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行IFFT处理,从而得到物理层处理后的数据。
  23. 根据权利要求21所述的网络设备,其特征在于,所述物理层处理包括信道编码、速率匹配、加扰、调制、资源映射和快速傅里叶逆变换,
    所述处理器,用于使用第一编码速率对的第一信息进行信道编码和/或速率匹配,获得第一编码结果,使用第二编码速率对第二信息进行信道编码和/或速率匹配,获得第二编码结果;
    分别使用J个不同扰码中的一个,对所述第一编码结果和所述第二编码结果的组合进行加扰处理,获得对应的加扰结果,所述J个扰码中的N个不同扰码中的每个扰码分别与系统帧号后M位的一种取值相对应,其中J、N和M均为自然数、1<N≤J、且N=M 2;以及
    对所述加扰结果进行调制处理,从而获得调制后数据;
    将所述调制后数据映射到所述SSB的序号对应的SSB中的PBCH上,对映射到每个PBCH符号上的数据进行处理,从而得到物理层处理后的数据。
  24. 根据权利要求23所述的网络设备,其特征在于,所述第一编码速率大于所述第二编码速率。
  25. 根据权利要求17-24任一所述的网络设备,其特征在于,所述第一信息包括系统信息。
  26. 根据权利要求17-25任一所述的网络设备,其特征在于,所述第一协议层为无线资源控制RRC层。
  27. 一种终端设备,其特征在于,所述终端设备的协议栈包括第一协议层和第二协议层,所述第一协议层是第二协议层之上的协议层,所述终端设备包括收发器和处理器,其中
    所述收发器,用于接收网络设备通过物理广播信道PBCH发送的数据;
    所述处理器,用于对接收到的所述数据进行物理层处理;在第二协议层从物理层处理结果中获得第一信息和第二信息,所述第二信息用以确定承载有所述第一信息的一个或多个同步信号块SSB对应的时频资源;在第二协议层根据所述第二信息对所述终端设备的行为进行控制;在第一协议层根据所述第一信息对所述终端设备的行为进行控制。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第二协议层是物理层,或者媒体接入控制层MAC层。
  29. 根据权利要求28所述的终端设备,其特征在于,第二协议层是MAC层,
    所述处理器,用于在第二协议层对物理层处理结果进行处理;从第二协议层处理后得到的数据中获得所述第一信息和所述第二信息。
  30. 根据权利要求27-29任一所述的终端设备,其特征在于,所述第一信息包括系统信息。
  31. 根据权利要求27-30中任一所述的终端设备,其特征在于,所述第二信息为同步信号块SSB的序号。
  32. 根据权利要求27-31任一所述的终端设备,其特征在于,所述第一协议层是无线资源控制RRC层。
  33. 一种计算机存储介质,其特征在于,所述计算机存储介质用于储存权利要求17-26任一项所述网络设备所用的计算机软件指令。
  34. 一种计算机存储介质,其特征在于,所述计算机存储介质用于储存权利要求27-32任一项所述终端设备所用的计算机软件指令。
  35. 一种网络设备,其特征在于,所述网络设备包括处理器、收发器和存储器,所述存储器存储指令,所述指令被所述处理器执行,使得所述网络设备执行权利要求1-10任一项所述的方法。
  36. 一种终端设备,其特征在于,所述终端设备包括处理器、收发器和存储器,所述存储器存储指令,所述指令被所述处理器执行,使得所述终端设备执行权利要求11-16任一项所述的方法。
PCT/CN2018/085186 2017-05-05 2018-04-28 广播信号的发送方法、接收方法、网络设备和终端设备 WO2018202021A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22160103.2A EP4092948A1 (en) 2017-05-05 2018-04-28 Broadcast signal sending method, broadcast signal receiving method, network device, and terminal device
CN201880029945.2A CN110583007B (zh) 2017-05-05 2018-04-28 广播信号的发送方法、接收方法、网络设备和终端设备
JP2019560744A JP7127062B2 (ja) 2017-05-05 2018-04-28 放送信号送信方法、放送信号受信方法、ネットワークデバイス、および端末デバイス
KR1020197036015A KR102299133B1 (ko) 2017-05-05 2018-04-28 방송 신호 송신 방법, 방송 신호 수신 방법, 네트워크 장치, 및 단말 장치
EP18794735.3A EP3621275B1 (en) 2017-05-05 2018-04-28 Transmitting method and receiving method for broadcast signal, network device, and terminal device
US16/673,735 US11218991B2 (en) 2017-05-05 2019-11-04 Broadcast signal sending method, broadcast signal receiving method, network device, and terminal device
US17/561,357 US11791967B2 (en) 2017-05-05 2021-12-23 Broadcast signal sending method, broadcast signal receiving method, network device, and terminal device
JP2022084733A JP7467529B2 (ja) 2017-05-05 2022-05-24 放送信号送信方法、放送信号受信方法、ネットワークデバイス、および端末デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313613.4A CN108810059B (zh) 2017-05-05 2017-05-05 广播信号的发送方法、接收方法、网络设备和终端设备
CN201710313613.4 2017-05-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,735 Continuation US11218991B2 (en) 2017-05-05 2019-11-04 Broadcast signal sending method, broadcast signal receiving method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018202021A1 true WO2018202021A1 (zh) 2018-11-08

Family

ID=64015890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085186 WO2018202021A1 (zh) 2017-05-05 2018-04-28 广播信号的发送方法、接收方法、网络设备和终端设备

Country Status (6)

Country Link
US (2) US11218991B2 (zh)
EP (2) EP4092948A1 (zh)
JP (2) JP7127062B2 (zh)
KR (1) KR102299133B1 (zh)
CN (2) CN108810059B (zh)
WO (1) WO2018202021A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109348534B (zh) * 2017-05-04 2020-01-03 华为技术有限公司 传输信号的方法和装置
CN108810059B (zh) * 2017-05-05 2024-04-16 华为技术有限公司 广播信号的发送方法、接收方法、网络设备和终端设备
US11452057B2 (en) * 2018-06-21 2022-09-20 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for transmitting synchronization signal
CN112584323B (zh) * 2019-09-29 2022-03-22 维沃移动通信有限公司 一种信息发送、接收方法、控制节点及终端
CN115088345A (zh) * 2021-01-13 2022-09-20 北京小米移动软件有限公司 资源确定方法、装置及通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581840A (zh) * 2013-10-12 2015-04-29 上海摩波彼克半导体有限公司 移动终端及其小区重选方法和装置
CN105075322A (zh) * 2013-03-28 2015-11-18 Lg电子株式会社 在天线阵列中获取信道状态信息的方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108603B (fi) * 1999-04-19 2002-02-15 Nokia Corp Menetelmä ja järjestelmä multimediaan liittyvän informaation välittämiseksi pakettikytkentäisessä solukkoradioverkossa, jossa on ulkoinen liitäntä
WO2013045741A1 (en) * 2011-09-28 2013-04-04 Nokia Siemens Networks Oy Inter-system interference in communications
EP2768257B1 (en) * 2011-10-14 2016-12-28 Lg Electronics Inc. Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
KR101967884B1 (ko) * 2012-07-12 2019-04-12 삼성전자주식회사 방송 및 통신 시스템에서 패킷 송/수신 장치 및 방법
WO2014137127A1 (ko) * 2013-03-04 2014-09-12 엘지전자 주식회사 셀 재선택 방법 및 그 사용자 장치
US10123344B2 (en) 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
JP6551690B2 (ja) 2014-02-21 2019-07-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法及び受信方法
WO2016082147A1 (zh) * 2014-11-27 2016-06-02 华为技术有限公司 寻呼方法、基站及寻呼系统
WO2016096032A1 (en) * 2014-12-19 2016-06-23 Huawei Technologies Duesseldorf Gmbh Efficient fbmc transmission and reception for muliple access communication systems
CN107736060B (zh) * 2015-06-15 2021-01-08 瑞典爱立信有限公司 可变同步块格式
US10292093B2 (en) * 2015-11-10 2019-05-14 Qualcomm Incorporated Communicating subframe timing of an access point on a shared communication medium
KR20170056947A (ko) 2015-11-16 2017-05-24 장지훈 2중 유골함
US20190110275A1 (en) * 2016-04-08 2019-04-11 Ntt Docomo, Inc. Radio base station and communication control method
EP3836631B1 (en) * 2016-04-12 2023-11-22 Telefonaktiebolaget LM Ericsson (publ) Transmission and reception of system information in parts
US10582504B2 (en) 2017-02-23 2020-03-03 Qualcomm Incorporated Usage of synchronization signal block index in new radio
CN110663271B (zh) * 2017-03-24 2021-11-19 瑞典爱立信有限公司 用于在同步信号块中传送系统信息的方法和设备
EP3618506B1 (en) 2017-04-28 2022-08-17 NTT DoCoMo, Inc. User terminal and wireless communication method
US10925023B2 (en) * 2017-05-04 2021-02-16 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
US10609661B2 (en) 2017-05-04 2020-03-31 Qualcomm Incorporated Timing indication through DMRS/PBCH in different modes
CN108810059B (zh) * 2017-05-05 2024-04-16 华为技术有限公司 广播信号的发送方法、接收方法、网络设备和终端设备
US10911271B2 (en) * 2017-09-11 2021-02-02 Qualcomm Incorporated PBCH scrambling design

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075322A (zh) * 2013-03-28 2015-11-18 Lg电子株式会社 在天线阵列中获取信道状态信息的方法和装置
CN104581840A (zh) * 2013-10-12 2015-04-29 上海摩波彼克半导体有限公司 移动终端及其小区重选方法和装置

Also Published As

Publication number Publication date
EP4092948A1 (en) 2022-11-23
US20220248372A1 (en) 2022-08-04
CN108810059B (zh) 2024-04-16
CN110583007A (zh) 2019-12-17
US11218991B2 (en) 2022-01-04
EP3621275A1 (en) 2020-03-11
JP7467529B2 (ja) 2024-04-15
EP3621275B1 (en) 2022-07-20
JP7127062B2 (ja) 2022-08-29
US20200163054A1 (en) 2020-05-21
KR20200004372A (ko) 2020-01-13
CN110583007B (zh) 2020-09-29
JP2022118000A (ja) 2022-08-12
JP2020519198A (ja) 2020-06-25
US11791967B2 (en) 2023-10-17
KR102299133B1 (ko) 2021-09-06
EP3621275A4 (en) 2020-05-13
CN108810059A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018202021A1 (zh) 广播信号的发送方法、接收方法、网络设备和终端设备
WO2018137577A1 (zh) 通信方法及装置
US11895056B2 (en) Method and device in UE and base station for wireless communication
WO2019029240A1 (zh) 一种信号加扰、解扰方法及装置
AU2018349996B2 (en) Terminal apparatus, base station apparatus, and communication method
WO2019157932A1 (zh) 一种通信方法、装置以及系统
US11502885B2 (en) Base station, terminal, reception method and transmission method
US10693696B2 (en) Apparatus and method for transmitting and receiving signals in wireless communication system
US11050538B2 (en) Information sending and receiving method and device
WO2019029548A1 (zh) 传输同步信号的方法和装置
WO2017133407A1 (zh) 信号传输方法和装置
US20210195568A1 (en) Communication method and apparatus
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2018210263A1 (zh) 传输同步信号的方法和装置
KR20210138820A (ko) 통신 시스템에서 ldm에 기초한 신호의 송수신 방법 및 장치
WO2017148430A1 (zh) 传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036015

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018794735

Country of ref document: EP

Effective date: 20191203