WO2019157932A1 - 一种通信方法、装置以及系统 - Google Patents

一种通信方法、装置以及系统 Download PDF

Info

Publication number
WO2019157932A1
WO2019157932A1 PCT/CN2019/073353 CN2019073353W WO2019157932A1 WO 2019157932 A1 WO2019157932 A1 WO 2019157932A1 CN 2019073353 W CN2019073353 W CN 2019073353W WO 2019157932 A1 WO2019157932 A1 WO 2019157932A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
system information
frequency domain
type
indication information
Prior art date
Application number
PCT/CN2019/073353
Other languages
English (en)
French (fr)
Inventor
张旭
王建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19754693.0A priority Critical patent/EP3749032B1/en
Priority to EP22182219.0A priority patent/EP4152865B1/en
Priority to BR112020016218-3A priority patent/BR112020016218A2/pt
Publication of WO2019157932A1 publication Critical patent/WO2019157932A1/zh
Priority to US16/992,981 priority patent/US11057878B2/en
Priority to US17/352,916 priority patent/US11871425B2/en
Priority to US18/325,664 priority patent/US20230389034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a communication method, apparatus, and system in a wireless communication system.
  • a network device transmits public information or proprietary information to a terminal device through a Physical Downlink Shared Channel (PDSCH), and passes The downlink control information (DCI) carried by the control channel indicates that the terminal device performs demodulation and reception of the PDSCH.
  • the common information includes system information, which is used to configure a frequency domain reference point of the access bandwidth, a resource that is randomly accessed, and/or an uplink/downlink resource, and the like.
  • the system information may include multiple types of information, such as Remaining minimum system information (RMSI) (or system information block type 1 (SIB1)) and other system information (OSI). Wait.
  • RMSI Remaining minimum system information
  • SIB1 system information block type 1
  • OSI system information
  • the terminal device can correctly receive the type on the physical resource that carries the system information.
  • the system information is a technical problem that needs to be solved.
  • the present invention relates to a communication method, apparatus and system for implementing a flexible indication of the type of system information that needs to be transmitted.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the network device sends a physical downlink control channel PDCCH carrying downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information, and the network device determines to bear the system information according to the type of the system information. Physical resources, and the system information is sent through the physical resources.
  • the terminal device detects a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information, and determines a physical resource that carries the system information according to the indication information;
  • the terminal device receives the system information on the physical resource.
  • the cyclic redundancy code CRC included in the PDCCH is scrambled by the radio network temporary identifier RNTI.
  • the indication information is a value of the RNTI
  • the value of the RNTI is the first radio network temporary identifier RNTI, and the downlink control information is used to indicate the first type of system information; and/or the value of the RNTI is the second radio network temporary identifier RNTI.
  • the downlink control information is used to indicate the second type of system information.
  • the indication information is format indication information
  • the format indication information is carried in the downlink control information.
  • the network device sends a demodulation reference signal DMRS of a physical resource that carries the system information; and the terminal device acquires a solution corresponding to a physical resource that carries the system information according to a frequency domain reference point.
  • the reference signal DMRS is adjusted; wherein the frequency domain reference point corresponds to a type of the system information.
  • the first frequency domain reference point corresponds to the first type of system information
  • the second frequency domain reference point corresponds to the second type of system information.
  • the first frequency domain reference point is different from the second frequency domain reference point, and the first type of system information is different from the second type of system information.
  • the corresponding relationship between the frequency domain reference point and the type of the system information is pre-configured or defined; or the frequency domain reference point is indicated by the second indication information.
  • the terminal device can obtain the frequency domain reference point information by using the indication information of the system information type, without additional indication information or field, and acquire the system information type at the same time.
  • frequency domain reference points improve communication efficiency and simplify system design.
  • time domain and/or frequency domain resources of the PDCCH are indicated by information carried by the synchronization/broadcast channel block.
  • an embodiment of the present invention provides a wireless device, including a processor and a receiver:
  • the processor is configured to detect a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information;
  • the processor is configured to determine, according to the indication information, a physical resource that carries the system information
  • the receiver is configured to receive the system information on the physical resource.
  • the cyclic redundancy code CRC included in the PDCCH is scrambled by the radio network temporary identifier RNTI.
  • the indication information is a value of the RNTI
  • the value of the RNTI is the first radio network temporary identifier RNTI, and the downlink control information is used to indicate the first type of system information; and/or the value of the RNTI is the second radio network temporary identifier RNTI.
  • the downlink control information is used to indicate the second type of system information.
  • the indication information is format indication information
  • the format indication information is carried in the downlink control information.
  • the processor is configured to acquire, according to a frequency domain reference point, a demodulation reference signal DMRS corresponding to a physical resource that carries the system information, where the frequency domain reference point corresponds to a type of the system information. .
  • the corresponding relationship between the frequency domain reference point and the type of the system information is pre-configured or defined; or the frequency domain reference point is indicated by the second indication information.
  • the time domain and/or frequency domain resources of the PDCCH are indicated by information carried by the synchronization/broadcast channel block.
  • the embodiment of the invention provides a network device, including a transmitter and a processor, which are characterized in that:
  • the transmitter is configured to send a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information;
  • the processor is configured to determine, according to the type of the system information, a physical resource that carries the system information.
  • the PDCCH includes a cyclic redundancy code CRC, and the processor is configured to scramble the CRC by using a radio network temporary identifier RNTI.
  • CRC cyclic redundancy code
  • the indication information is a value of the RNTI
  • the value of the RNTI is the first radio network temporary identifier RNTI, and the downlink control information is used to indicate the first type of system information; and/or the value of the RNTI is the second radio network temporary identifier RNTI.
  • the downlink control information is used to indicate the second type of system information.
  • the indication information is format indication information
  • the format indication information is carried in the downlink control information.
  • the transmitter is configured to send a demodulation reference signal DMRS that carries the physical resource of the system information; the DMRS corresponds to a frequency domain reference point, and the frequency domain reference point and the type of the system information Corresponding.
  • DMRS demodulation reference signal
  • the corresponding relationship between the frequency domain reference point and the type of the system information is pre-configured or defined; or the transmitter is configured to send second indication information, where the second indication information is used by The frequency domain reference point corresponding to the system information type is indicated.
  • the time domain and/or frequency domain resources of the PDCCH are indicated by information carried by the synchronization/broadcast channel block.
  • the present invention provides a system comprising at least the two devices provided by the second aspect above.
  • the present invention provides a wireless device comprising one or more processors, and a memory, wherein the memory stores a computer program, and when the processor executes the computer program, the device is implemented Any of the methods of the above first aspect.
  • the present invention provides a computer storage medium storing a computer program, on which a computer program is stored, and when the computer program is executed by a processor (or a device (terminal device or network device)), the foregoing Any of the methods described on the one hand.
  • the present invention provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods provided by the first aspect.
  • the present invention provides a chip system including a processor for supporting a network device or device to implement the functions involved in the above first aspect, such as, for example, generating or processing the methods involved in the above method. Data and / or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the network device or the communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present invention provides a chip, the chip includes a processing module and a communication interface, the processing module is configured to control the communication interface to communicate with an external, and the processing module is further configured to implement the first aspect. Any one of the methods.
  • the solution provided by the embodiment of the present invention can implement flexible indication of the type of system information that needs to be sent, and realize that the terminal device can correctly receive the physical resource that carries the system information with less resource overhead. To the type of system information.
  • FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a system message scheduling method in a time domain
  • FIG. 5 is a schematic diagram showing the location of a frequency domain reference point corresponding to a system information type
  • FIG. 6 is a schematic flowchart diagram of a possible communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a possible structure of a wireless device according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a possible application scenario in the embodiment of the present invention.
  • the communication system in the application scenario includes: a network device, and one or more terminal devices.
  • the network device and the terminal device can communicate through one or more air interface technologies.
  • LTE Long Term Evolution
  • 5G fifth generation 5G system and the like.
  • Network device may be a base station, or an access point, or an access network device, or may refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the network device can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • Network devices can also coordinate attribute management of air interfaces.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or access A point, or a base station in a future 5G network, such as gNB, is not limited herein.
  • Evolutional Node B, eNB or eNodeB in Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • gNB a relay station or access A point
  • a base station in a future 5G network such as gNB
  • TRP Transmission Reception Point
  • the network device may also be divided into a Control Unit (CU) and a Data Unit (DU).
  • CU Control Unit
  • DU Data Unit
  • each DU and terminal may exist, where each DU and terminal
  • the measurement reporting method described in the embodiment of the present application can be used.
  • the difference between the CU-DU separation scenario and the multi-TRP scenario is that the TRP is only a radio unit or an antenna device, and the protocol stack function can be implemented in the DU.
  • the physical layer function can be implemented in the DU.
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • Symbol includes but is not limited to Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, and filtered Orthogonal Frequency Division (Filtered Orthogonal Frequency Division) Multiplexing, F-OFDM, and Non-Orthogonal Multiple Access (NOMA) symbols can be determined according to actual conditions, and are not described here.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • NOMA Non-Orthogonal Multiple Access
  • Control Resource Set A collection of resources used to control channel transmission.
  • the time domain resources of CORESET can be continuous or discontinuous.
  • Subframe A time-frequency resource that occupies the entire system bandwidth in the frequency domain and occupies a fixed length of time in the time domain, for example, 1 millisecond (ms).
  • one subframe can also occupy consecutive K symbols, and K is a natural number greater than zero.
  • the value of K can be determined according to actual conditions, and is not limited herein.
  • 1 subframe occupies consecutive 14 OFDM symbols in the time domain.
  • a slot is a basic time domain resource unit that occupies consecutive L OFDM symbols in the time domain, and L is a natural number greater than zero.
  • the value of L can be determined according to actual conditions, for example, 7 OFDM symbols.
  • Physical Resource Block A frequency domain resource unit that occupies consecutive M subcarriers in the frequency domain, where M is a natural number greater than zero. For example, M is equal to 12 or 16.
  • Bandwidth area BandWidth Part (BWP), a plurality of physical resource blocks in the frequency domain, which are generally configured by the network device for the terminal device.
  • the terminal device receives or transmits data within the BWP.
  • the control resource transmission Taking the control resource transmission as an example, at least one control resource set is included in one BWP, and the control resource set includes a frequency domain resource that does not exceed multiple physical resource blocks included in the frequency domain of the BWP.
  • the BWP is divided into an initial active BWP and a UE-specific BWP; wherein the Initial active BWP is configured by broadcast information, such as a master information block (MIB), and the UE-specific
  • the BWP is configured by UE-specific radio resource control (RRC) signaling.
  • RRC radio resource control
  • Initial active BWP Before the terminal device enters the connected state or does not obtain the BWP configuration information specific to the terminal device, the terminal device needs to receive or send data on the Initial active BWP. Specifically, the frequency domain location and the bandwidth size of the Initial Active BWP are configured by the broadcast information; and the bandwidth size is equal to the frequency domain range occupied by the control resource set CORESET configured by the broadcast information.
  • the common index mechanism is an indexing mechanism determined by a standard or a protocol or determined by a network device in a communication system or negotiated by a plurality of network devices, and the indexing mechanism is used for resource configuration.
  • the control resources and/or data resources configured by the network device for the terminal device it serves are located in a common index area determined according to the common indexing mechanism.
  • Common index area A plurality of physical resource blocks consecutive in the frequency domain obtained according to the common index scheme Common index scheme.
  • the bandwidth area BWP is located in the common index area.
  • DMRS Demodulation reference signal
  • the DMRS carried on the physical channel is a DMRS signal generated by mapping a DMRS sequence to a physical resource.
  • the downlink DMRS can be used to demodulate the physical downlink shared channel PDSCH.
  • SI System information
  • SIB1 System information
  • SIB2 system information
  • the network device 102 is capable of performing the methods provided by embodiments of the present invention.
  • the network device 102 may include a controller or a processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202.
  • Controller/processor 201 is sometimes also referred to as a modem processor.
  • Modem processor 201 can include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information or data bits conveyed in the signal.
  • BBP baseband processor
  • DSPs digital signal processors
  • ICs integrated circuits
  • the transceiver 202 can be used to support sending and receiving information between the network device and the terminal device, and to support radio communication between the terminal devices.
  • the processor 201 can also be used to perform functions of communication between various terminal devices and other network devices.
  • On the uplink the uplink signal from the terminal device is received via the antenna, coordinated by the transceiver 202, and further processed by the processor 201 to recover the traffic data and/or signaling information transmitted by the terminal device.
  • traffic data and/or signaling messages are processed by the terminal device and modulated by the transceiver 202 to generate downlink signals for transmission to the terminal device via the antenna.
  • the network device can also include a memory 203 that can be used to store program code and/or data for the network device.
  • the transceiver 202 can include separate receiver and transmitter circuits, or the same circuit can implement transceiving functions.
  • the network device can also include a communication unit 204 for supporting the network device to communicate with other network entities. For example, it is used to support the network device to communicate with a network device or the like of the core network.
  • the network device may also include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 can be connected to the processor 201 through a bus.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may include an address bus, a data bus, a control bus, and the like.
  • FIG. 3 is a schematic diagram of a possible structure of a terminal device in the above communication system.
  • the terminal device is capable of performing the method provided by the embodiment of the present invention.
  • the terminal device may be any one of the one or more terminal devices in FIG.
  • the terminal device includes a transceiver 301, an application processor 302, a memory 303, and a modem processor 304.
  • the transceiver 301 can condition (e.g., analog convert, filter, amplify, upconvert, etc.) the output samples and generate an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. On the downlink, the antenna receives the downlink signal transmitted by the network device. Transceiver 301 can condition (eg, filter, amplify, downconvert, digitize, etc.) the signals received from the antenna and provide input samples.
  • Modem processor 304 also sometimes referred to as a controller or processor, may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information conveyed in the signal Or data bits.
  • BBP baseband processor
  • the BBP is typically implemented in one or more numbers within the modem processor 304 or as a separate integrated circuit (IC), as needed or desired.
  • a modem processor 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is for encoding the signal to be transmitted.
  • encoder 3041 can be used to receive traffic data and/or signaling messages to be transmitted on the uplink and to process (eg, format, encode, or interleave, etc.) the traffic data and signaling messages.
  • Modulator 3042 is used to modulate the output signal of encoder 3041.
  • the modulator can perform symbol mapping and/or modulation processing on the encoder's output signals (data and/or signaling) and provide output samples.
  • a demodulator 3044 is used to demodulate the input signal.
  • demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is configured to decode the demodulated input signal.
  • the decoder 3043 deinterleaves, and/or decodes the demodulated input signal and outputs the decoded signal (data and/or signaling).
  • Encoder 3041, modulator 3042, demodulator 3044, and decoder 3043 may be implemented by a composite modem processor 304. These units are processed according to the radio access technology employed by the radio access network.
  • Modem processor 304 receives digitized data representative of voice, data or control information from application processor 302 and processes the digitized data for transmission.
  • the associated modem processor can support one or more of a variety of wireless communication protocols of various communication systems, such as LTE, new air interface, Universal Mobile Telecommunications System (UMTS), high speed packet access (High Speed) Packet Access, HSPA) and more.
  • UMTS Universal Mobile Telecommunications System
  • High Speed Packet Access High Speed Packet Access
  • one or more memories may also be included in the modem processor 304.
  • modem processor 304 and the application processor 302 may be integrated in one processor chip.
  • the memory 303 is used to store program code (sometimes referred to as programs, instructions, software, etc.) and/or data for supporting communication of the terminal device.
  • program code sometimes referred to as programs, instructions, software, etc.
  • the memory 203 or the memory 303 may include one or more storage units, for example, may be a processor 201 for storing program code or a storage unit inside the modem processor 304 or the application processor 302, or may Is an external storage unit separate from the processor 201 or the modem processor 304 or the application processor 302, or may also be a storage unit including the processor 201 or the modem processor 304 or the application processor 302 and with the processor 201 or modem
  • the processor 304 or the application processor 302 is a separate component of an external storage unit.
  • the processor 201 and the modem processor 304 may be the same type of processor or different types of processors. For example, it can be implemented in a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array ( Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, other integrated circuit, or any combination thereof.
  • Processor 201 and modem processor 304 may implement or perform various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing function devices, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • transmitting a downlink (uplink) channel may refer to transmitting data or information carried on a downlink (uplink) channel, where the data or information may refer to channel-encoded data or information.
  • the embodiment of the present invention relates to the term “starting resource block”, and the meaning of the term may be a resource block with the smallest subcarrier number in the resource block included in a certain area (for example, a common index area or a bandwidth area), or It is said to be the resource block with the smallest number when the resource block included is numbered from the low frequency to the high frequency direction; or, the resource block with the largest subcarrier number in the resource block included in a certain area (for example, the common index area or the bandwidth area) Or the resource block with the largest number when the included resource blocks are numbered from the low frequency to the high frequency direction, wherein the low frequency and the high frequency are defined with respect to the subcarrier number, and the subcarrier number of the low frequency position is higher than the high frequency position.
  • a certain area for example, a common index area or a bandwidth area
  • the subcarrier number is small.
  • the embodiment does not specifically limit the specific requirements of the actual communication system, the notification of the network device or the standard or the agreement.
  • the starting resource block is a resource block with the smallest subcarrier number in the resource block included in a certain area (for example, a common index area or a bandwidth area), or is a low frequency to a high frequency of the included resource block.
  • the resource block with the lowest number when the direction is numbered is taken as an example.
  • PDSCH physical downlink shared channel
  • RMSI RMSI
  • OSI OSI
  • PDSCH physical downlink shared channel
  • the embodiment of the present invention is not limited thereto, and all the applications may be applied.
  • the system information type and physical channel or physical resource of the embodiments of the present invention are all within the protection scope of the present invention.
  • the PDSCH is scheduled by downlink control information.
  • the terminal device needs to detect downlink control information (DCI) carried by the physical downlink control channel (PDCCH) to further acquire system information carried over the PDSCH to access the serving cell or carrier. See Figure 4 for details.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the granularity of the frequency domain reference point may be one resource block, or may be a certain subcarrier in one resource block, for example, a subcarrier with the smallest number or number 0 in the resource block.
  • the granularity of the frequency domain reference point is described by taking a resource block as an example, but the protection scope is not limited thereto.
  • the frequency domain reference point is independent of the system information type, and the frequency domain reference points corresponding to different system information types are the same or different.
  • the frequency domain reference point is related to the type of the system information, and the different system information types correspond to different frequency domain reference points.
  • the RMSI is the first type of system information
  • the OSI is the second type of system information
  • the RMSI and OSI correspond to different frequency domain reference points.
  • different frequency domain reference points result in different frequency domain locations of PDSCHs carrying the RMSI or OSI
  • different frequency domain reference points result in different DMRSs for demodulating the PDSCH.
  • the frequency domain reference point on the network device side is configured by the system information RMSI, such that the frequency domain reference point is configured to initially activate the BWP (or the control channel resource set in the broadcast channel configuration) before the terminal device acquires the RMSI.
  • the sub-carrier numbered 0 in the starting resource block or the starting resource block of the initial active BWP may be recorded as the frequency domain reference point A.
  • the terminal device can determine a common frequency domain reference point in the wideband carrier configured by the network device, where the common frequency domain reference point is the starting resource block of the common index area or the starting resource block of the common index area.
  • the subcarrier of 0 can be recorded as the frequency domain reference point B.
  • the frequency domain reference point affects a determination of a frequency domain location of a PDSCH carrying the RMSI or OSI and/or a DMRS of a PDSCH carrying the RMSI or OSI.
  • the terminal device needs to acquire a DMRS sequence before demodulating the PDSCH, where the DMRS sequence is generated by intercepting a part of the sequence from a reference DMRS sequence; and the terminal device matches the received DMRS signal according to the locally generated or acquired DMRS sequence,
  • the PDSCH is demodulated and/or decoded. Further, if different types of system information correspond to the same frequency domain reference point and correspond to the same DMRS, the terminal device can correctly demodulate the PDSCH. If different frequency domain reference points correspond to different system information types, the DMRS sequences obtained from the reference DMRS sequence are also different according to different information types.
  • the reference DMRS sequence is a Gold sequence generated according to configuration information or a predefined parameter. For example, the terminal device generates a Gold sequence according to the acquired identification information or a cell identifier (ID).
  • the Gold sequence is a pseudo-random sequence proposed on the basis of the m-sequence.
  • the reference DMRS sequence includes multiple values, and each of the values may be a complex value.
  • DMRS demodulation reference may be made to the prior art or to demodulation using the prior art.
  • the DMRS occupies 2 REs in each RB on a given OFDM symbol, and if the frequency information reference point corresponding to the system information type is A, then in the nth RB in the initial activated BWP
  • the mapped DMRS sequence is the 2nth value and the 2n+1th value in the reference DMRS sequence; if the frequency domain reference point corresponding to the system information type is B, and the initial resource block of the initial activated BWP is in the common index area
  • the RB number of the RB is n 0
  • the DMRS sequence mapped by the nth RB in the initial active BWP is the 2nd (n 0 +n) value and the 2nd (n 0 +n)+1 in the reference DMRS sequence. Values.
  • the terminal device acquires the PDSCH frequency domain resource according to the frequency domain reference point. If the frequency domain reference points are different, the location of the frequency domain resources of the PDSCH acquired by the terminal device is also different.
  • one bit in the PDSCH frequency domain resource indication information included in the DCI corresponds to one RB group (RBG) in the frequency domain, and the RBs included in the one RB group are consecutive RBs in the frequency domain.
  • the RB group is generated from a frequency domain reference point, and the RBs are generated by low frequency to high frequency.
  • the RBs of the different RB groups do not overlap, and the number of RBs included in the multiple RB groups decreases from the low frequency to the high frequency direction.
  • the multiple RB groups may also include at least two RBs in the same number.
  • the adjacent RB groups in the frequency domain have a decreasing trend as a whole.
  • the number of RBs in the RB group located at the high frequency position is not greater than the number of RBs in the RB group located at a lower frequency domain position than the high frequency position.
  • the RB group starting from the frequency domain reference point A and the RB group starting from the frequency domain reference point B are RB groups divided according to different frequency domain reference points, even if the PDSCH frequency domain resource indication information indicated by the DCI is the same, the PDSCH The frequency domain location is also different.
  • the reference point of the PDSCH frequency domain location carrying the RMSI is the reference point A
  • the PDSCH frequency domain reference point carrying the OSI is the reference point B.
  • the terminal device acquires the PDSCH resource indication information, where the frequency domain reference point A is different from the frequency domain reference point B, corresponding to the different frequency domain reference point A or B, the frequency domain of the PDSCH indicated by the PDSCH resource indication information The location is also different.
  • the system information reception failure may be caused, and the terminal device may not be able to access the serving cell or carrier.
  • the system information type can be associated with a time domain location, which can be pre-defined or configured, such as predefined in a standard or protocol.
  • a time domain location (or may also be referred to as a time domain location corresponding to the RMSI) in which the downlink control information of the RMSI is located is defined or configured, for example, every 20 slots (Slot) 1 slot and 11th slot.
  • the network device transmits downlink control information for indicating the RMSI in the predefined first time domain resource, and the RMSI corresponds to the frequency domain reference point A in FIG. It should be noted that if the downlink control information used to indicate the type of system information other than the RMSI overlaps with the time domain resource, the network device preferentially sends downlink control information for indicating the RMSI to ensure that the terminal device can be located at the location. Downlink control information for indicating RMSI is detected on the predefined time domain resource.
  • the terminal device detects the downlink control information indicating that the system information type is RMSI only in a predefined time domain resource region (also referred to as a monitor window), and the terminal device may
  • the frequency domain reference point A, B or other possible frequency domain reference point determines the frequency domain location of the PDSCH carrying the RMSI and the corresponding DMRS sequence.
  • the terminal device determines that the bearer is different according to the frequency domain reference point A, B or other possible frequency domain reference points.
  • Other system information of the RMSI The frequency domain location of the PDSCH of the OSI and the DMRS sequence.
  • the terminal device detects RNTI information on the CRC in the PDCCH carrying the downlink control information, and the RNTI information is used to determine that the detected downlink control information is used to indicate receiving system information. For example, if the RNTI information is an SI-RNTI, the detected downlink control information is used to indicate reception of system information.
  • the scrambling and descrambling of the RNTI can be implemented in the prior art or in accordance with the prior art, which is not specifically limited herein.
  • the time domain resource in which the downlink control information received by the system information is located is associated with the system information type, and the resource scheduling is restricted while implicitly indicating the system information type, resulting in an increase in resource overhead of the network device.
  • the scheduling is not flexible enough.
  • the terminal device cannot accurately obtain the frequency domain reference point information, and the physical resources carrying the downlink control information cannot be correctly demodulated and/or decoded.
  • the embodiment of the present invention further provides a communication method, which implements a flexible indication of a system information type with a lower resource overhead.
  • the embodiments of the present invention will be further described in detail below based on the common aspects of the invention described above.
  • the delay that may exist in the uplink and downlink is ignored, and it is assumed that the transmission time of the network device is the same as the reception time of the terminal device.
  • the embodiment is described from the perspective of the terminal device side. Those skilled in the art can understand that the terminal device receives from the network device, which means that the network device performs the transmission.
  • An embodiment of the present invention provides a communication method, in which a network device sends a physical downlink control channel PDCCH, and a terminal device detects the physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information,
  • the indication information is used to indicate a type of system information; the terminal device determines, according to the indication information, a physical resource that carries the system information. According to the method provided in Embodiment 1 of the present invention, it is possible to flexibly indicate the system information type without increasing the resource overhead.
  • FIG. 6 shows a specific implementation manner of the communication method in Embodiment 1 of the present invention.
  • the solution provided in Embodiment 1 of the present invention will be described below with reference to FIG. 6.
  • Step 600 The network device determines to send system information, where the type of the system information is first type system information or second type system information.
  • the first type of providing information is RMSI or System Information Block Type 1, SIB1, and/or the second type of system information is an OSI or a system message SI messages.
  • the network device determines that a particular type of system information, such as RMSI, SIB1, or SIB2, needs to be transmitted, based on the state of the current communication system and/or further scheduling requirements. It is not described here, and the specific manner can be the same as the prior art.
  • This determining step can be performed by the processor 201 of the network device.
  • Step 601 The network device sends a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate the type of system information.
  • This transmitting step can be performed by the transceiver 202 of the network device.
  • the method further includes: indicating, by the network device, the time domain and/or the frequency domain resource of the PDCCH by using information carried by the synchronization/broadcast channel block.
  • the primary information block MIB carried by the broadcast channel in the synchronous/physical broadcast channel block (SS/PBCH block) includes configuration information of the time domain and/or the frequency domain resource of the PDCCH.
  • the upper N bits in the RMSI-PDCCH-Config field in the MIB are used to configure the number of consecutive resource blocks in the frequency domain and the number of consecutive OFDM symbols in the time domain, and the low bits in the RMSI-PDCCH-Config field
  • the M bit configures a monitoring occasion of the PDCCH, and the M and N are positive integers.
  • the 4 bits may indicate 16 kinds of bit values or bit states, different bit values or correspondences between bit states and resource configurations, and the corresponding relationships may be pre-configured or defined, for example, in a standard. Or the agreement is defined in the form of a table.
  • Step 602 The network device determines, according to the type of the system information, a physical resource that carries the system information.
  • the physical resource may be a time domain and/or a frequency domain resource of the physical downlink shared channel PDSCH.
  • the network device may be determined in various manners, for example, in the same or similar manner as the terminal device, as specifically described above.
  • the network device acquires the DMRS sequence according to the frequency domain reference point or the system information type, where the DMRS sequence is a part of a reference DMRS sequence, for example, may be generated by intercepting a part of the sequence from a reference DMRS sequence. Further, the network device determines a frequency domain location of the PDSCH. The network device modulates the DMRS sequence onto a physical resource and transmits a PDSCH that carries the system information.
  • the DCI carried by the PDCCH includes the PDSCH frequency domain resource indication information, and is used to notify the terminal device of the frequency domain resource of the PDSCH.
  • the length of the bit sequence included in the PDSCH frequency domain resource indication information is related to the frequency domain size of the BWP in which the PDSCH is scheduled by the DCI, and each bit indicates an RBG; or the value of a group of bits or the bit status corresponds to Multiple RBs consecutive on the frequency domain resource.
  • the PDSCH frequency domain resource indication information may include one or more bits, each bit corresponding to an RB group (RBG) in the frequency domain, and the RBs included in the one RB group are consecutive in the frequency domain. Multiple RBs.
  • the frequency domain resource of the PDSCH is determined by the frequency domain reference point and the PDSCH frequency domain resource indication information included in the DCI.
  • the network device can be determined in a variety of ways.
  • the time domain resource may be predefined or configured, and the terminal device has been notified in advance.
  • the time domain resource is dynamically or semi-statically configured by the network device, and the terminal device is notified by DCI.
  • the network device may directly indicate the time domain resource by using a DCI. Or instructing, by the DCI, the terminal device to determine the time domain resource.
  • the index of the time domain resource is indicated by the DCI, and the index is used to indicate the time domain resource, so that the terminal device determines the time domain resource location by using the index.
  • This determining step can be performed by the processor 201 of the network device.
  • Step 603 The terminal device detects a physical downlink control channel PDCCH that carries the downlink control information, where the PDCCH carries the indication information.
  • the cyclic redundancy code (CRC) included in the PDCCH is scrambled by the radio network temporary identifier RNTI, where the scrambled CRC is used by the terminal device to detect the received PDCCH. Whether it is correct and the scheduling type of the PDCCH.
  • CRC cyclic redundancy code
  • This detection step can be performed by the processor 304 of the terminal device or by the processor 304 of the terminal device controlling the transceiver 301.
  • the detection involved in the step 603 is blind detection.
  • the network device scrambles the CRC included in the PDCCH in step 601, where the scrambling is to scramble the lower 16 bits of the CRC according to the value of the RNTI.
  • the terminal device performs blind detection according to the RNTI, and determines that the information to be received is system information according to the RNTI that successfully detects the DCI is the SI-RNTI.
  • the RNTI further includes a C-RNTI, an RA-RNTI, and the like. The specific type of the RNTI refers to the prior art, and details are not described herein again.
  • the indication information may be an RNTI value for scrambling, or may be information carried in the DCI, for example, one or more bits. See the description of the following examples for details.
  • Step 604 The terminal device determines, according to the indication information, a physical resource that carries the system information.
  • the physical resource may be a time domain and/or a frequency domain resource of the physical downlink shared channel PDSCH.
  • the determination method can be referred to the above.
  • the terminal device may acquire the PDSCH frequency domain resource according to the frequency domain reference point and the PDSCH frequency domain resource indication information included in the DCI.
  • the PDSCH frequency domain resource indication information is used to indicate one or more RB groups corresponding to the PDSCH.
  • the terminal device needs to acquire a DMRS sequence before demodulating the PDSCH, for example, determining the DMRS sequence according to a frequency domain reference point.
  • the DMRS sequence is a part of the reference DMRS sequence, for example, may be generated by intercepting a part of the sequence from the reference DMRS sequence; the terminal device matches the received DMRS signal according to the locally generated or acquired DMRS sequence, and solves the PDSCH. Harmonize and/or decode.
  • the terminal device may be determined by one of a plurality of alternative manners.
  • the time domain resource may be predefined or configured, and the terminal device has been notified in advance.
  • the time domain resource is dynamically or semi-statically configured by the network device, and the terminal device is notified by DCI; further optionally, the terminal device can directly determine the time by using information carried by the DCI.
  • the domain resource, or the terminal device further determines the time domain resource by using the information carried by the DCI.
  • the DCI is notified by an index of the time domain resource, and the terminal device further determines the time domain resource by using the index.
  • the correspondence between the index and the time domain resource is predefined or configured, for example, defined in a standard or a protocol, and the corresponding relationship may be as shown in Table 1:
  • the index field is corresponding to the index of the time domain resource location notified by the DCI; optionally, the index may be carried by a time domain resource assignment field in the DCI; for example, the field includes 2 bits.
  • ⁇ 00 ⁇ corresponds to index0
  • ⁇ 01 ⁇ corresponds to index1
  • ⁇ 10 ⁇ corresponds to index2
  • ⁇ 11 ⁇ corresponds to index3
  • time interval K0 is the time interval between the detected PDCCH and the PDSCH scheduled by the PDCCH, the unit is slot
  • the indication information RIV is indication information of the start and length of the time domain of the PDSCH in a slot
  • the value of each RIV corresponds to a time domain position of the PDSCH in a slot.
  • the terminal device determines a time domain resource of the PDSCH by a correspondence between the index and a time domain resource location.
  • This determining step can be performed by the processor 304 of the terminal device.
  • Step 605 The terminal device receives the system information on a physical resource that carries the system information.
  • This receiving step can be performed by the transceiver 301 of the terminal device or by the processor 304 of the terminal device controlling the transceiver 301.
  • the network device sends the PDCCH carrying the downlink control information.
  • the terminal device detects the PDCCH carrying the downlink control information, and the PDCCH carries the indication information, where the indication information is used to indicate the type of the system information.
  • the PDCCH transmitted by the network device includes a CRC, and the CRC or the lower 16 bits of the CRC are scrambled by the RNTI.
  • the terminal device detects the PDCCH through the RNTI.
  • the specific CRC algorithm refers to the prior art, and will not be elaborated here.
  • For the indication information indicating the type of system information involved in the above two steps a plurality of optional designs are available, which are specifically described below.
  • the indication information is a value of the RNTI, where the value of the RNTI is a first radio network temporary identifier RNTI, and the downlink control information is used to indicate a first type of system information. And/or, the value of the RNTI is a second radio network temporary identifier RNTI, and the downlink control information is used to indicate the second type of system information.
  • the mapping between the value of the RNTI and the type of the system information may be predefined or configured; for example, predefined by a protocol or a standard, or pre-notified or configured by the network device to the terminal device, and specifically notified or configured. The time can be known by the terminal device when performing PDCCH descrambling decoding.
  • the SI-RNTI used to indicate system information may include SI-RNTI0 and SI-RNTI1.
  • SI-RNTI0 is FFFF
  • SI-RNTI1 is other values not equal to FFFF, such as FFF0 and the like.
  • specific RNTI value used to distinguish different types of system information may be other forms or other values, which are not specifically limited herein.
  • the network device determines the physical resource that carries the system information according to the type of the system information
  • the terminal device determines the physical resource that carries the system information according to the indication information.
  • the network device and the terminal device may determine the physical resource using the same or similar principles.
  • the terminal device detects the physical downlink control channel PDCCH that carries the downlink control information. If the descrambling is successful through the SI-RNTI0, for example, the FFFF, the DCI instructs the terminal device to receive the first type of system information. If the descrambling is successful by SI-RNTI1, for example, other values than FFFF, the DCI indicates that the terminal device receives the second type of system information.
  • SI-RNTI0 for example, the FFFF
  • SI-RNTI1 for example, other values than FFFF
  • the indication information is an Identifier for DCI formats, and the format indication information is carried in the downlink control information.
  • the CRC of the PDCCH carrying the downlink control information is scrambled by system information RNTI (SI-RNTI) to indicate receipt of system information.
  • SI-RNTI system information RNTI
  • the format indication information is used to indicate the type of the system information.
  • the format indication information may be indication information used to indicate a format in the downlink control information.
  • the format of the downlink control information may be DCI format 0_0 or DCI format 1_0
  • the downlink control information of the two formats includes a format indication information bit, where the format indication information bit is used to indicate that the downlink control information format is DCI format 0_0 or DCI format 1_0; where DCI format 0_0 is used to schedule transmission of the uplink PUSCH, and DCI format 1_0 is used to schedule reception of the downlink PDSCH.
  • different bit states or different bit values of the bits respectively indicate different system information types.
  • the format indication information occupies 1 bit.
  • “0” is used to indicate RMSI
  • "1” is used to indicate OSI
  • "1" is used to indicate RMSI
  • "0" is used to indicate OSI
  • the format indication information occupies a plurality of bits.
  • "01" is used to indicate RMSI
  • other states are used to indicate OSI and the like.
  • NR introduces the concept of frequency domain reference point, and the frequency domain reference point position needs to be considered for the demodulation and reception of PDSCH. In particular, it involves different types of system information corresponding to different frequency domain reference points.
  • the embodiment of the present invention provides Embodiment 2, based on the optional design about the frequency domain reference point configuration explained above, and specifically provides a solution about the frequency domain reference point.
  • the solution of Embodiment 2 is based on Embodiment 1, and may refer to part of the related content in Embodiment 1, or the entire content in Embodiment 1, and will not be repeatedly described herein.
  • the embodiment 2 includes the following possible implementations.
  • the frequency domain reference point is a pre-defined or configured frequency domain reference point, for example, a starting resource block of an initial active bandwidth area or a sub-carrier numbered 0 in a starting resource block of an initial active bandwidth area, and another public index.
  • the terminal device and the network device perform demodulation and reception of the PDSCH according to a pre-defined or set frequency domain reference point without considering the type of system information.
  • different types of system information correspond to different frequency domain reference points
  • the frequency domain reference points correspond to types of the system information
  • the RMSI corresponds to the frequency domain reference point A (ie, the initial resource block of the initial active BWP or the subcarrier with the number 0 in the initial resource block of the initial active bandwidth region)
  • the OSI corresponds to the frequency domain reference.
  • Point B ie, the starting resource block of the common index area or the subcarrier numbered 0 in the starting resource block of the common index area).
  • the location of the frequency domain reference point can be implicitly indicated by the indication of the system information type, thereby indicating the system information type and the frequency domain reference point without additional indication information, thereby improving communication efficiency and simplifying system design.
  • the system information type there is a pre-defined or configured correspondence between the system information type and the location of the frequency domain reference point.
  • the first type of system information corresponds to the first frequency domain reference point
  • the second type of system information corresponds to the second frequency domain reference point.
  • the frequency domain reference point corresponding to the RMSI is the initial resource block of the initial active BWP, and/or the frequency domain reference point corresponding to the OSI is the starting resource block of the common index area.
  • the frequency domain reference point corresponding to the RMSI is the subcarrier with the number 0 in the initial resource block of the initial active BWP, and the other system information type OSI corresponding to the RMSI corresponds to the frequency domain reference point in the initial resource block of the common index region.
  • step 602 when the network device determines the frequency domain resource of the physical downlink shared channel PDSCH that carries the system information according to the type of the system information, the DMRS sequence needs to be obtained according to the type of the system information.
  • the DMRS sequences corresponding to different information types are different. See the above for details.
  • the network device determines a frequency domain location of the PDSCH.
  • the network device modulates the DMRS sequence onto a physical resource and transmits a PDSCH that carries the system information.
  • the terminal device when the terminal device determines the frequency domain resource of the physical downlink shared channel PDSCH that carries the system information, the terminal device needs to indicate the PDSCH frequency domain resource indication information included in the DCI and corresponding to the The frequency domain reference point of the system information type acquires the PDSCH frequency domain resource. Further, before demodulating the PDSCH, the terminal device needs to acquire the DMRS sequence according to the type of the system information or the frequency domain reference point, and match the received DMRS signal and demodulate and/or decode the PDSCH.
  • the frequency domain reference point corresponding to the system information is indicated by another indication information.
  • different types of system information correspond to different frequency domain reference points
  • the another indication information indicates a frequency domain reference point corresponding to the type of system information delivered by the network device.
  • the frequency domain reference point does not completely correspond to the system information type, and the another indication information indicates a frequency domain reference point corresponding to the system information that is sent by the network device.
  • the frequency domain reference point can still be dynamically indicated by the indication information, which improves the flexibility of resource scheduling.
  • the another indication information may be an index of a control resource set (CORESET) where the PDCCH is located.
  • CORESET control resource set
  • the terminal device detects the PDCCH in multiple CORESETs. If the PDCCH is detected in CORESET 0, the frequency domain reference point of the received PDSCH is the reference point A; if the PDCCH is detected in other CORESET, the frequency domain reference of the received PDSCH is received. The point is reference point B.
  • the another indication information may be a hybrid automatic repeat request (HARQ) process number, a new data indicator (NDI), and a redundancy included in the DCI.
  • HARQ hybrid automatic repeat request
  • NDI new data indicator
  • RV redundancy included in the DCI.
  • the terminal device detects the PDCCH carrying the DCI according to the SI-RNTI, and determines that the frequency domain reference point is A or B according to the combination of one or more of the HARQ process number, the NDI, and the RV.
  • the frequency domain reference point is the reference point A; if the information bit in the NDI is ⁇ 1 ⁇ , the frequency domain reference point is the reference point B.
  • the specific interaction method can be referred to the foregoing possible implementation, and the difference between the two is only that the indication manners of the frequency domain reference points are different.
  • a specific interaction manner in the possible implementation a person skilled in the art can make a reasonable adjustment according to the different indication manners based on the previous possible implementation.
  • each network element such as a network device, a terminal device, etc.
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the terminal device can perform any of the methods of the embodiments of the present invention.
  • the terminal device can include at least a transceiver 301 and a processor 304 (here, the upper representation is a processor, which can represent the modem processor 304 itself, or the modem 304 and the application processor. 302 integration).
  • FIG. 3 such as a memory, and other components in the description of FIG. 3 may also be included.
  • the transceiver 301 can be composed of independent receivers and transmitters, and can perform corresponding receiving and transmitting functions separately, or can be a transceiver integrated with receiving and transmitting functions. There is no further limitation here.
  • the transceiver 301 of Figure 3 can be split into a receiver 301A and a transmitter 301B.
  • the wireless device since the terminal device is merely an exemplary description of an optional main body, the wireless device is mainly described as a main unit, the wireless device may be a unit, a chip or a component included in the terminal device, or the terminal device itself. .
  • the wireless device includes a processor 304 and a receiver 301A, wherein:
  • the processor 304 is configured to detect a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information.
  • the processor 304 is configured to determine, according to the indication information, a physical resource that carries the system information;
  • the receiver 301A is configured to receive the system information on the physical resource.
  • the cyclic redundancy code CRC included in the PDCCH is scrambled by the radio network temporary identifier RNTI.
  • the indication information is a value of the RNTI, where the value of the RNTI is a first radio network temporary identifier RNTI, and the downlink control information is used to indicate a first type of system information. And/or the value of the RNTI is a second radio network temporary identifier RNTI, and the downlink control information is used to indicate the second type of system information.
  • the indication information is format indication information
  • the format indication information is carried in the downlink control information.
  • the processor is configured to acquire, according to a frequency domain reference point, a demodulation reference signal DMRS corresponding to a physical resource that carries the system information, where the frequency domain reference point corresponds to the The type of system information.
  • the correspondence between the frequency domain reference point and the type of the system information is pre-configured or defined; or the frequency domain reference point is indicated by the second indication information.
  • the time domain and/or frequency domain resources of the PDCCH are indicated by information carried by the synchronization/broadcast channel block.
  • the specific implementation manner of the communication method performed by the foregoing wireless device can be referred to the description of the embodiment of the present invention and the communication method provided.
  • the communication method corresponding to the terminal device of the embodiment of the present invention and FIG. 6 is based on the same concept, and the technical effects brought about by the same are the same as the above communication method.
  • the specific functions of the processor and receiver included in the wireless device in the embodiments of the present invention, as well as any features, terms, and implementation details involved therein, correspond to the functions of the terminal device in the method embodiment corresponding to FIG. 6. For details, refer to the description in the method embodiment corresponding to FIG. 6 of the present invention, and details are not described herein again.
  • the wireless device may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • the corresponding components in the foregoing embodiments may be implemented by corresponding hardware, or may be executed by corresponding hardware, for example, the foregoing receiving.
  • the device 301A may be hardware having a function of performing the foregoing receiving function, such as a transceiver that integrates a transceiving function or a receiver that only implements a receiving function, or a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions.
  • the processor 304 may also be a software module or a functional unit that performs the corresponding function, such as a receiving unit; and the processor 304 as described above may be a hardware having a function of executing the processor, such as a specific function processor, or a general processor, It may be another hardware device capable of executing a corresponding computer program to perform the foregoing functions, and may also be a software module or a functional unit that performs a corresponding function, such as a processing unit; for example, the aforementioned transmitter 301B may have the foregoing Sending function hardware, such as integrated transceiver work
  • the transceiver, or the transmitter that only implements the transmitting function may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions, or may be a software module or a functional unit that performs a corresponding function, such as a transmitting unit.
  • a storage unit may also be included. See Figure 7 for details.
  • the network device is capable of performing any of the methods of the embodiments of the present invention.
  • the network device may include at least a controller or processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202.
  • FIG. 2 such as a memory, and other components in the description of FIG. 2 may also be included.
  • the transceiver 202 may be composed of independent receivers and transmitters, and perform respective receiving and transmitting functions separately, or may be transceivers that integrate receiving and transmitting functions.
  • the transceiver 202 of Figure 2 can be split into a receiver 202A and a transmitter 202B.
  • the network device is merely an exemplary description of an optional main body, the following is mainly described by a wireless device, which may be a unit, a chip or a component included in the network device, or the network device itself. .
  • the wireless device includes a processor 201 and a transmitter 202B, wherein:
  • the transmitter 202B is configured to send a physical downlink control channel PDCCH that carries downlink control information, where the PDCCH carries indication information, where the indication information is used to indicate a type of system information.
  • the processor 201 is configured to determine, according to the type of the system information, a physical resource that carries the system information.
  • the PDCCH includes a cyclic redundancy code CRC.
  • the processor is configured to scramble the CRC using a wireless network temporary identifier RNTI.
  • the indication information is a value of the RNTI, where the value of the RNTI is a first radio network temporary identifier RNTI, and the downlink control information is used to indicate a first type of system information. And/or, the value of the RNTI is a second radio network temporary identifier RNTI, and the downlink control information is used to indicate the second type of system information.
  • the indication information is format indication information
  • the format indication information is carried in the downlink control information.
  • the transmitter 202B is configured to send a demodulation reference signal DMRS of a physical resource that carries the system information; the DMRS corresponds to a frequency domain reference point, and the frequency domain reference point and the location The type of system information corresponds to the type.
  • the corresponding relationship between the frequency domain reference point and the type of the system information is pre-configured or defined; or the transmitter 202B is configured to send the second indication information, the second The indication information is used to indicate the frequency domain reference point corresponding to the system information type.
  • the time domain and/or frequency domain resources of the PDCCH are indicated by information carried by the synchronization/broadcast channel block.
  • the specific implementation manner of the communication method performed by the foregoing wireless device may refer to the description of the communication method provided by the embodiment of the present invention.
  • the communication method corresponding to the network device in FIG. 6 in the embodiment of the present invention is based on the same concept, and the technical effect brought by the same is the same as the above-mentioned control resource acquisition method.
  • the specific functions of the processor and receiver included in the wireless device in the embodiments of the present invention, as well as any features, terminology and implementation details involved therein, correspond to the functions of the network device in the method embodiment corresponding to FIG. 6. For details, refer to the description in the method embodiment corresponding to FIG. 6 of the present invention, and details are not described herein again.
  • the wireless device may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • the corresponding components in the foregoing embodiments may be implemented by corresponding hardware, or may be executed by corresponding hardware, for example, the foregoing transmission.
  • the device 202B may be hardware having the foregoing transmitting function, such as a transceiver that integrates a transceiving function or a transmitter that only implements a receiving function, or a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions.
  • the processor 201 may also be a software module or a functional unit that performs the corresponding function, such as a transmitting unit; and the processor 201 as described above may be a hardware having a function of executing the processor, such as a specific function processor, or a general processor, It may be another hardware device capable of executing a corresponding computer program to perform the aforementioned functions, and may also be a software module or a functional unit that performs a corresponding function, such as a processing unit; for example, the aforementioned receiver 202A may have the foregoing Receive function hardware, such as integrated transceiver function Transceiver, receiving function or achieve only a receiver, and may be capable of executing a corresponding computer program to implement the functions of a general processor or other hardware devices, may also be software modules performing the corresponding functions or functional unit, for example, the receiving unit.
  • a storage unit may also be included. See Figure 7 for details.
  • a wireless device can include any number of transmitters, receivers, processors, controllers, memories, communication units, and the like.
  • the embodiment of the present invention further provides a communication system, including at least one network device and at least one terminal device mentioned in the foregoing embodiments of the present invention.
  • the embodiment of the invention further provides a device (for example, an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above communication method.
  • a device for example, an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the power tracker and/or power generator described herein may be a stand-alone device or may be part of a larger device.
  • the device may be (i) a self-contained IC; (ii) a set having one or more 1Cs, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular telephone, a wireless device, or a mobile unit; (vii) others, and the like.
  • a self-contained IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular telephone, a wireless device, or a mobile unit; (vii) others, and the like.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device (which may be collectively referred to as a wireless device).
  • the terminal device or network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution body of the method, as long as the transmission signal according to the embodiment of the present invention can be executed by running a program recording the code of the method of the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method for wireless communication in the embodiment of the present invention may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,尤其涉及无线通信系统中的一种通信方法、装置以及系统。该方法中,终端设备检测网络设备发送的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型,并根据所述指示信息确定承载所述系统信息的物理资源;所述终端设备在所述物理资源上接收所述系统信息。通过该方法,实现网络设备灵活的指示需要发送的系统信息的类型。

Description

一种通信方法、装置以及系统
本申请要求于2018年02月13日提交中国国家知识产权局、申请号为201810150873.9、申请名称为“一种通信方法、装置以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信领域,尤其涉及无线通信系统中的一种通信方法、装置以及系统。
背景技术
在新的无线(New Radio,NR)系统,或者,在第五代无线接入(5G)系统中,网络设备通过物理下行共享信道(PDSCH)发送公共信息或专有信息给终端设备,并且通过控制信道承载的下行控制信息(DCI)指示所述终端设备进行所述PDSCH的解调和接收。所述公共信息包含系统信息,所述系统信息用于配置接入带宽的频域参考点、随机接入的资源,和/或,上行/下行资源等。所述系统信息可以包含多种信息类型,例如剩余最小系统信息(Remaining minimumn system information,RMSI)(或系统信息类型1(system information block type1,SIB1))以及其它系统信息(Other system information,OSI)等。所述系统信息应用于接入相应小区的所有终端设备。
在存在多种类型的系统信息的前提下,如何灵活的指示需要发送的系统信息的类型,以较少的资源开销实现终端设备可以在承载所述系统信息的物理资源上正确接收到所述类型的系统信息是亟需解决的技术问题。
发明内容
本发明涉及一种通信方法、装置以及系统,以实现灵活的指示需要发送的系统信息的类型。
第一方面,本申请的实施例提供一种通信方法,所述方法包括:
网络设备发送承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;所述网络设备根据所述系统信息的类型确定承载所述系统信息的物理资源,并通过所述物理资源发送所述系统信息。
终端设备检测承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型,并根据所述指示信息确定承载所述系统信息的物理资源;所述终端设备在所述物理资源上接收所述系统信息。
其中,所述PDCCH包括的循环冗余码CRC被无线网络临时标识RNTI加扰。
通过该方式,可以实现灵活的指示需要发送的系统信息的类型,以较少的资源开销实现终端设备可以在承载所述系统信息的物理资源上正确接收到所述类型的系统信息
一种可选的设计中,所述指示信息为所述RNTI的取值;
其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或,所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。
通过该方法,可以实现通过RNTI的不同取值来确定不同的系统信息类型,在未增加资源和信令开销的前提下,灵活指示需要发送的系统信息类型。
一种可选的设计中,所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
通过该方法,复用现有的字段或者信息位以指示系统信息类型,提高了系统信息类型指示的效率,降低了系统设计复杂度。
一种可选的设计中,所述网络设备发送承载所述系统信息的物理资源的解调参考信号DMRS;所述终端设备根据频域参考点获取对应于承载所述系统信息的物理资源的解调参考信号DMRS;其中,所述频域参考点对应于所述系统信息的类型。例如,第一频域参考点对应于第一类型系统信息,第二频域参考点对应于第二类型系统信息。第一频域参考点不同于第二频域参考点,第一类型系统信息不同于第二类型系统信息。
具体的,所述频域参考点与所述系统信息的类型的对应关系是预先配置或定义的;或者,所述频域参考点是通过第二指示信息指示的。
在频域参考点与系统信息类型对应关系为预先配置或定义的前提下,终端设备可以通过系统信息类型的指示信息获取频域参考点信息,无需额外的指示信息或字段,同时获取系统信息类型和频域参考点,提高了通信效率,简化了系统设计。
另外,所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
第二方面,本发明实施例提供了一种无线装置,包括处理器和接收器:
所述处理器,用于检测承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
所述处理器,用于根据所述指示信息确定承载所述系统信息的物理资源;
所述接收器,用于在所述物理资源上接收所述系统信息。
其中,所述PDCCH包括的循环冗余码CRC被无线网络临时标识RNTI加扰。
一种可选的设计中,所述指示信息为所述RNTI的取值;
其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或,所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。
一种可选的设计中,所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
可选的,所述处理器,用于根据频域参考点获取对应于承载所述系统信息的物理资源的解调参考信号DMRS;其中,所述频域参考点对应于所述系统信息的类型。
进一步可选的,所述频域参考点与所述系统信息的类型的对应关系是预先配置或定义的;或者,所述频域参考点是通过第二指示信息指示的。
其中,所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
本发明实施例提供了一种网络设备,包括发射器和处理器,其特征在于:
所述发射器,用于发送承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
所述处理器,用于根据所述系统信息的类型确定承载所述系统信息的物理资源。
其中,所述PDCCH包括循环冗余码CRC,所述处理器,用于使用无线网络临时标识RNTI加扰所述CRC。
一种可选的设计中,所述指示信息为所述RNTI的取值;
其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或,所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。
一种可选的设计中,所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
可选的,所述发射器,用于发送承载所述系统信息的物理资源的解调参考信号DMRS;所述DMRS对应于频域参考点,所述频域参考点与所述系统信息的类型相对应。
进一步可选的,所述频域参考点与所述系统信息的类型的对应关系是预先配置或定义的;或者,所述发射器,用于发送第二指示信息,所述第二指示信息用于指示与所述系统信息类型对应的所述频域参考点。
其中,所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
第三方面,本发明提供了一种系统,至少包括上述第二方面提供的两种装置。
第四方面,本发明提供了一种无线装置,其包含一个或多个处理器,以及存储器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时,使得所述装置实现上述第一方面所述的任一种方法。
第五方面,本发明提供了一种存储有计算机程序的计算机存储介质,其上存储有计算机程序,当所述计算机程序被处理器(或者设备(终端设备或网络设备))执行时实现上述第一方面所述的任一种方法。
第六方面,本发明提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面所提供的任何一种方法。
第七方面,本发明提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备或装置实现上述第一方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备或通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,本发明提供了一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面提供的任何一种方法。
相较于现有技术,本发明实施例提供的方案,可以实现灵活的指示需要发送的系统信息的类型,以较少的资源开销实现终端设备可以在承载所述系统信息的物理资源上正确接收到所述类型的系统信息。
附图说明
下面将参照所示附图对本发明实施例进行更详细的描述:
图1示出了本发明实施例的一种可能的应用场景示意图;
图2示出了本发明实施例提供的网络设备的一种可能的结构示意图;
图3示出了本发明实施例提供的终端设备的一种可能的结构示意图;
图4示出了一种时域上的系统消息调度方法示意图;
图5示出了一种对应系统信息类型的频域参考点的位置示意图;
图6示出了本发明实施例提供的一种可能的通信方法的流程示意图;
图7示出了本发明实施例提供的无线装置的一种可能的结构示意图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示出了本发明实施例中一种可能的应用场景示意图。该应用场景中的通信系统包括:网络设备,以及一个或者多个终端设备。其中,网络设备和终端设备可以通过一种或多种空口技术进行通信。
以下,对本发明实施例可能出现的术语进行解释。
通信系统:可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
网络设备:可以是基站,或者接入点,或者接入网设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,例如gNB等,在此并不限定。需要说明的是,对于5G或NR系统,在一个NR基站下,可能存在一个或多个发送接收点(Transmission Reception Point,TRP),所有的TRP属于同一个小 区,其中,每个TRP和终端都可以使用本申请实施例所述的测量上报方法。在另一种场景下,网络设备还可以分为控制单元(Control Unit,CU)和数据单元(Data Unit,DU),在一个CU下,可以存在多个DU,其中,每个DU和终端都可以使用本申请实施例所述的测量上报方法。CU-DU分离场景和多TRP场景的区别在于,TRP只是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
符号:包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
控制资源集合(Control Resource Set,CORESET):用于控制信道传输的资源集合,CORESET的时域资源可以连续或者不连续。
子帧:一个子帧在频域上占用整个系统带宽的时频资源、在时域上上占用固定的时间长度,例如1毫秒(ms)。同时一个子帧也可占用连续的K个符号,K为大于零的自然数。K的取值可以根据实际情况确定,在此并不限定。例如,LTE中,1个子帧在时域上占用连续的14个OFDM符号。
时隙:时隙是指一个基本的时域资源单元,在时域上占用连续的L个OFDM符号,L为大于零的自然数。L的取值可以根据实际情况确定,例如,7个OFDM符号。
物理资源块(Physical Resource Block,PRB):一种频域资源单元,在频域上占用连续的M个子载波,M为大于零的自然数。例如,M等于12或16。
带宽区域:BandWidth Part(BWP),频域连续的多个物理资源块,一般由网络设备为终端设备配置。终端设备在BWP内接收或发送数据。以控制资源传输为例,在一个BWP内包括至少一个控制资源集合,且控制资源集合包括的频域资源不超过BWP在频域上包括的多个物理资源块。BWP分为初始激活带宽区域(Initial active BWP)和UE专属带宽 区域(UE-specific BWP);其中,Initial active BWP由广播信息,例如主信息块(master information block,MIB)配置,而UE-specific BWP由UE-specific无线资源控制(radio resource control,RRC)信令配置。
初始激活带宽区域(Initial active BWP):终端设备在进入连接态前或未获得终端设备专属的BWP配置信息前,所述终端设备需在Initial active BWP上接收或发送数据。具体的,Initial Active BWP的频域位置和带宽大小由广播信息配置;并且,所述带宽大小与由广播信息配置的控制资源集合CORESET所占用的频域范围相等。
公共索引机制:Common Index Scheme,是标准或者协议规定的或者通信系统中网络设备所确定或多个网络设备协商确定的一种索引机制,所述索引机制用于资源配置。通信系统中,网络设备为其所服务的终端设备配置的控制资源和/或数据资源位于根据所述公共索引机制确定的公共索引区域内。
公共索引区域:根据公共索引机制Common index scheme获得的频域连续的多个物理资源块。带宽区域BWP位于公共索引区域内。
解调参考信号:简称DMRS(Demodulation reference signal),用于对接收到的物理信道进行解调。具体的,物理信道上承载的DMRS是通过将DMRS序列映射到物理资源上生成的DMRS信号。例如,下行DMRS可以用于对物理下行共享信道PDSCH进行解调。
系统信息:简称SI(System information),用于配置接入带宽的频域参考点、用于随机接入的资源和/或上行/下行资源等。系统信息包括多种类型的系统信息,例如RMSI或SIB1,以及其他系统信息OSI(Other system information),如SIB2等。这里的OSI可以涵盖除RMSI之外的任一种系统信息。
进一步地,上述网络设备的一种可能的结构示意图可以如图2所示。该网络设备102能够执行本发明实施例提供的方法。其中,该网络设备102可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。控制器/处理器201有时也称为调制解调器处理器(modem processor)。调制解调器处理器201可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调器处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
收发器202可以用于支持网络设备与终端设备之间收发信息,以及支持终端设备之间进行无线电通信。所述处理器201还可以用于执行各种终端设备与其他网络设备通信的功能。在上行链路,来自终端设备的上行链路信号经由天线接收,由收发器202进行调解,并进一步处理器201进行处理来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,业务数据和/或信令消息由终端设备进行处理,并由收发器202进行调制来产生下行链路信号,并经由天线发射给终端设备。所述网络设备还可以包括存储器203,可以用于存储该网络设备的程序代码和/或数据。收发器202可以包括独立的接收器和发送器电路,也可以是同一个电路实现收发功能。所述网络设备还可以包括通信单元204,用于支持所述网络设备与其他网络实体进行通信。例如,用于支持所述网络设备与核心网的网络设备等进行通信。
可选的,网络设备还可以包括总线。其中,收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图3为上述通信系统中,终端设备的一种可能的结构示意图。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是图1中的一个或多个终端设备中的任一个。所述终端设备包括收发器301,应用处理器(application processor)302,存储器303和调制解调器处理器(modem processor)304。
收发器301可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收网络设备发射的下行链路信号。收发器301可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。
调制解调器处理器304有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。BBP通常按需或按期望实现在调制解调器处理器304内的一个或多个数字中或实现为分开的集成电路(IC)。
在一个设计中,调制解调器处理器(modem processor)304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器3041、调制器3042、解调器3044和解码器3043可以由合成的调制解调处理器304来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
调制解调器处理器304从应用处理器302接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,调制解调器处理器304中也可以包括一个或多个存储器。
可选的,该调制解调器处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或调制解调器处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或调制解调器处理器304或应用处理器302内部 的存储单元以及与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和调制解调器处理器304(下文简称处理器304)可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和调制解调器处理器304可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
在本发明实施例中,发送下行(上行)信道可以是指发送下行(上行)信道上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。
需要说明的是,本发明实施例涉及术语“起始资源块”,该术语的含义可以是一定区域(例如公共索引区域或者带宽区域)所包括的资源块中子载波编号最小的资源块,或者说是对所包括的资源块从低频向高频方向进行编号时编号最小的资源块;或者,是一定区域(例如公共索引区域或者带宽区域)所包括的资源块中子载波编号最大的资源块,或者说是对所包括的资源块从低频向高频方向进行编号时编号最大的资源块,其中,低频和高频是相对子载波编号定义的,低频位置的子载波编号比高频位置的子载波编号小。实施例中不做具体限定,具体以实际通信系统的要求、网络设备的通知或者标准或者协议的规定为准。本发明实施例中以起始资源块为一定区域(例如公共索引区域或者带宽区域)所包括的资源块中子载波编号最小的资源块,或者说是对所包括的资源块从低频向高频方向进行编号时编号最小的资源块为例进行阐述。
本领域技术人员可知,系统信息有多种类型,本文将以承载RMSI或OSI的物理下行共享信道(physical downlink shared channel,PDSCH)为例进行阐述,但本发明实施例不限于此,所有可以应用本发明实施例的系统信息类型以及物理信道或物理资源均在本发明保护范围之内。
本领域技术人员可知,PDSCH通过下行控制信息调度。所述终端设备需要检测物理下行控制信道(physical downlink control channel,PDCCH)所承载的下行控制信息(downlink control information,DCI)以进一步获取通过PDSCH承载的系统信息, 以接入服务小区或载波。具体参见图4。
由于NR系统中网络设备侧的系统带宽大于终端设备实际接入的带宽,因此引入了频域参考点的配置。所述频域参考点的粒度可以为一个资源块,或者,为一个资源块中的某个子载波,例如资源块中编号最小或者编号为0的子载波。本发明实施例对频域参考点的粒度以资源块为例进行阐述,但是保护范围不限于此。
本发明实施例中的频域参考点的配置可以有以下多种可选的设计:
一种可选的设计中,所述频域参考点与系统信息类型无关,不同系统信息类型对应的频域参考点相同或者不同。
另一种可选的设计中,所述频域参考点与所述系统信息的类型有关,不同系统信息类型对应不同的频域参考点。例如,RMSI为第一类型的系统信息,OSI为第二类型的系统信息,RMSI和OSI对应不同的频域参考点。具体的,不同的频域参考点导致承载所述RMSI或OSI的PDSCH的频域位置不同,和/或不同的频域参考点导致用于解调所述PDSCH的DMRS不同。
可选的,网络设备侧的频域参考点由系统信息RMSI配置,这样使得终端设备在获取RMSI前,频域参考点被配置为初始激活BWP(或广播信道配置的控制信道资源集合内)的起始资源块或者初始激活BWP的起始资源块中编号为0的子载波,可记为频域参考点A。终端设备在接收RMSI后,能够确定网络设备配置的宽带载波内的公共频域参考点,所述公共频域参考点为公共索引区域的起始资源块或者公共索引区域的起始资源块中编号为0的子载波,可记为频域参考点B。进一步的,所述频域参考点影响对承载所述RMSI或者OSI的PDSCH的频域位置和/或承载所述RMSI或者OSI的PDSCH的DMRS的确定。
具体的,终端设备对PDSCH解调之前需要获取DMRS序列,所述DMRS序列是从一参考DMRS序列中截取一部分序列生成的;终端设备根据本地生成的或者获取的DMRS序列匹配接收到的DMRS信号,并对PDSCH进行解调和/或译码。进一步,如果不同类型的系统信息对应相同的频域参考点且对应相同的DMRS,则终端设备可以正确解调PDSCH。如果不同的频域参考点对应不同的系统信息类型,则对应于不同的信息类型,从参考DMRS序列中获取的DMRS序列也不同。若终端设备获取的DMRS序列与网络设备发送的DMRS信号不匹配,将导致终端设备无法正确解调接收PDSCH。其中,所述参考DMRS序列是根据配置信息或预定义的参数生成的Gold序列,例如,终端设备根据获取的标识信息,或者,小区标识(ID)生成Gold序列。其中,Gold序列为在m序列的基础上提出的一种伪随机序列,具体可以参见现有技术;所述参考DMRS序列包含多个值,其中的每个值可以为一个复数值。关于DMRS解调可以参见现有技术的阐述或者应用现有技术进行解调。
例如,DMRS在在给定的一个OFDM符号上的每个RB内占用的资源为2个RE,若系统信息类型对应的频域参考点为A,则在初始激活BWP内的第n个RB内所映射的DMRS序列为参考DMRS序列中的第2n个值以及第2n+1个值;若系统信息类型对应的频域参考点为B,且初始激活BWP的起始资源块在公共索引区域中的RB编号为n 0,则在初始激活BWP内的第n个RB所映射的DMRS序列为参考DMRS序列中的第2(n 0+n)个值以及第2(n 0+n)+1个值。
另外,终端设备根据频域参考点获取PDSCH频域资源。频域参考点不同,则终端设 备获取的PDSCH的频域资源位置也不同。例如,DCI中包括的PDSCH频域资源指示信息中的一个比特位对应频域上一个RB组(RB Group,RBG),且所述一个RB组包括的RB为频域上连续的多个RB。所述RB组是从频域参考点起始,由低频向高频对RB进行分组生成。不同RB组之间RB不重叠,且所述多个RB组包括的RB数量从低频到高频方向呈递减趋势;可选的,所述多个RB组中还可以包括至少两个RB数量相同的频域上相邻的RB组,整体上呈递减趋势。例如:位于高频位置的RB组中的RB数量不大于位于相对所述高频位置较低的频域位置的RB组中的RB数量。进一步,频域参考点A起始的RB组与频域参考点B起始的RB组为根据不同频域参考点划分的RB组,即使通过DCI指示的PDSCH频域资源指示信息相同,PDSCH的频域位置也不同。
以系统信息类型为RMSI或OSI为例,如图5所示,承载RMSI的PDSCH频域位置的参考点为参考点A,而承载OSI的PDSCH频域参考点为参考点B。终端设备获取PDSCH资源指示信息,在频域参考点A不同于频域参考点B的情况下,对应于不同的频域参考点A或B,所述PDSCH资源指示信息所指示的PDSCH的频域位置也不同。
由上可知,如果无法区分不同的系统信息类型和/或系统信息类型对应的频域参考点,则会导致系统信息接收失败,进一步导致终端设备无法接入服务小区或载波。
一种可选的方案中,可以将系统信息类型与时域位置关联,所述关联关系可以是预先定义或配置的,例如在标准或协议中预先定义。具体的,例如,预先定义或配置用于指示RMSI的下行控制信息所在的时域位置(或者,也可以称为RMSI对应的时域位置),例如:每20个时隙(Slot)中的第1个slot和第11个slot。
网络设备在所述预定义的第一时域资源发送用于指示RMSI的下行控制信息,且所述RMSI对应图5中频域参考点A。这里需要说明的是,若用于指示除RMSI外的系统信息类型的下行控制信息与所述时域资源重叠,则网络设备优先发送用于指示RMSI的下行控制信息,以保证终端设备可以在所述预定义的时域资源上检测到用于指示RMSI的下行控制信息。在这种情形下,终端设备仅在预定义的时域资源区域(这里又称为检测窗口(monitor window)),检测到指示系统信息类型为RMSI的下行控制信息,则所述终端设备可以根据频域参考点A、B或其它可能的频域参考点确定承载RMSI的PDSCH的频域位置以及相应的DMRS序列。
若在第二时域资源区域(即上述检测窗口之外)检测到指示系统信息的下行控制信息,则所述终端设备根据频域参考点A、B或者其它可能的频域参考点确定承载不同于RMSI的其它系统信息OSI的PDSCH的频域位置以及DMRS序列。
其中,所述终端设备检测加扰在承载下行控制信息的PDCCH中的CRC上的RNTI信息,所述RNTI信息用于确定所述检测到的下行控制信息用于指示接收系统信息。例如,若RNTI信息为SI-RNTI,则检测到的下行控制信息用于指示系统信息的接收。RNTI的加扰和解扰可以参见现有技术的阐述,或者依据现有技术的方式实现,这里不做具体限定。
上述解决方案中,将指示系统信息接收的下行控制信息所在的时域资源与系统信息类型关联,在隐式指示系统信息类型的同时也对资源调度进行了限制,导致网络设备的资源开销增大且调度不够灵活;另外,终端设备也无法准确获取频域参考点信息,导致无法对承载下行控制信息的物理资源进行正确解调和/或译码。
为了解决上述技术问题,本发明实施例还提供了一种通信方法,以较低的资源开销实 现系统信息类型的灵活指示。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例进一步详细说明。在实施例的阐述中,忽略上下行可能存在的时延,假设网络设备的发送时刻与终端设备的接收时刻相同。对于网络设备的发送和终端设备的接收相对应的处理,实施例中多从终端设备侧角度阐述,本领域技术人员可以理解,终端设备从网络设备接收,意味着网络设备进行了发送。
另外,本发明实施例中各个步骤的编号不限定具体执行过程中的先后顺序,在不同的可选设计中,上述各个步骤执行先后顺序会进行适应性的调整。
实施例1
本发明的实施例提供一种通信方法,在该方法中,网络设备发送物理下行控制信道PDCCH,终端设备检测所述承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;所述终端设备根据所述指示信息确定承载所述系统信息的物理资源。根据本发明实施例1所提供的方法,可以实现在不增加资源开销的前提下,灵活指示系统信息类型。
图6示出了本发明实施例1中通信方法的一种具体实现方式,如下根据图6对本发明的实施例1提供的方案进行说明。
步骤600:网络设备确定发送系统信息,所述系统信息的类型为第一类型系统信息或第二类型系统信息。
可选的,所述第一类型提供信息为RMSI或系统信息块类型1(SystemInformationBlockType1,SIB1),和/或,所述所述第二类型系统信息为OSI或系统消息SI messages。
步骤600之前,网络设备根据当前通信系统的状态和/或进一步的调度需求,确定需要发送特定类型的系统信息,例如RMSI、SIB1或SIB2等。这里不进行赘述,具体方式可以与现有技术相同。
该确定步骤可由网络设备的处理器201执行。
步骤601:网络设备发送承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型。
该发送步骤可由网络设备的收发器202执行。
在该步骤601之前,还包括:所述网络设备通过同步/广播信道块携带的信息指示所述PDCCH的时域和/或频域资源。
具体的,通过同步/广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block)中的广播信道携带的主信息块MIB中包括PDCCH的时域和/或频域资源的配置信息。具体的,MIB中的RMSI-PDCCH-Config字段中高位N比特用于配置频域连续的多个资源块的数量和时域连续的多个OFDM符号的数量,而RMSI-PDCCH-Config字段中低位M比特配置PDCCH的检测时刻(monitoring occasion), 所述M、N均为正整数。可选的,所述M=N=4。进一步地,所述4比特可以指示16种比特值或者比特状态,不同的比特值或比特状态与资源配置之间存在的对应关系,所述对应关系可以是预先配置或定义的,例如,在标准或协议中以表格的方式定义。
步骤602:网络设备根据所述系统信息的类型确定承载所述系统信息的物理资源。
其中,所述物理资源可以为物理下行共享信道PDSCH的时域和/或频域资源。
对于所述频域资源,网络设备可以采用多种方式确定,例如可以与终端设备相同或相似的方式确定,具体参见上文中阐述。
可选的,网络设备根据频域参考点或者系统信息类型获取DMRS序列,所述DMRS序列为一参考DMRS序列中的一部分,例如,可以是从一参考DMRS序列中截取一部分序列生成的。进一步,所述网络设备确定PDSCH的频域位置。所述网络设备将所述DMRS序列调制到物理资源上,并发送承载所述系统信息的PDSCH。
具体的,根据上文的阐述,PDCCH所承载的DCI中包括PDSCH频域资源指示信息,用于通知所述终端设备所述PDSCH的频域资源。所述PDSCH频域资源指示信息包括的比特序列长度与所述DCI调度的所述PDSCH所在的BWP的频域大小相关,每一比特位指示一个RBG;或者一组比特的取值或者比特状态对应频域资源上连续的多个RB。所述PDSCH频域资源指示信息可以包含一个或多个比特位,每个比特位对应频域上一个RB组(RB Group,RBG),且所述一个RB组包括的RB为频域上连续的多个RB。对于终端设备来说,所述PDSCH的频域资源通过所述频域参考点以及DCI包括的PDSCH频域资源指示信息确定。
对于所述的时域资源,网络设备可以采用多种方式确定。
可选的,所述时域资源可以是预先定义或配置的,已经预先通知给所述终端设备。
又一可选的,所述时域资源是网络设备动态或者半静态配置的,并通过DCI通知所述终端设备;进一步可选的,所述网络设备可以通过DCI直接指示所述时域资源,或者,通过DCI指示所述终端设备确定所述时域资源。例如,通过所述DCI指示所述时域资源的索引,所述索引用于指示所述时域资源,以使得所述终端设备通过所述索引确定所述时域资源位置。
该确定步骤可由网络设备的处理器201执行。
步骤603:终端设备检测承载所述下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带所述指示信息。
其中,在步骤601之前,所述PDCCH包括的循环冗余码(cyclic redundancy code,CRC)被无线网络临时标识RNTI加扰,所述加扰后的CRC用于所述终端设备检测接收到的PDCCH是否正确以及PDCCH的调度类型。
该检测步骤可由终端设备的处理器304执行,或者由终端设备的处理器304控制收发器301执行。
其中,该步骤603所涉及的检测为盲检测。具体的,网络设备在步骤601中对PDCCH 包括的CRC进行加扰,所述加扰是根据RNTI的取值对CRC的低位16比特进行加扰。终端设备根据RNTI进行盲检测,并根据成功检测到DCI的RNTI为SI-RNTI,确定需要接收的信息为系统信息。其中,所述RNTI还包含C-RNTI、RA-RNTI等等,RNTI的具体类型参考现有技术,这里不再赘述。
可选的,所述指示信息可以为用于加扰的RNTI值,或者,可以为DCI中所携带的信息,例如,1个或多个比特位。具体参见以下实施例的阐述。
步骤604:所述终端设备根据所述指示信息确定承载所述系统信息的物理资源。
其中,所述物理资源可以为物理下行共享信道PDSCH的时域和/或频域资源。
对于所述频域资源,确定方式可以参见上文中阐述。
具体的,终端设备可以根据频域参考点以及DCI中包括的PDSCH频域资源指示信息获取PDSCH频域资源。其中,所述PDSCH频域资源指示信息用于指示所述PDSCH对应的一个或多个RB组。终端设备对PDSCH解调之前需要获取DMRS序列,例如,根据频域参考点确定所述DMRS序列。所述DMRS序列为参考DMRS序列中的一部分,例如可以通过从所述参考DMRS序列中截取一部分序列生成;终端设备根据本地生成的或者获取的DMRS序列匹配接收到的DMRS信号,并对PDSCH进行解调和/或译码。
对于所述时域资源,所述终端设备可以通过多种可选方式中的一种确定。
可选的,所述时域资源可是是预先定义或配置的,已经预先通知给所述终端设备。
又一可选的,所述时域资源是网络设备动态或者半静态配置的,并通过DCI通知所述终端设备;进一步可选的,所述终端设备可以通过DCI承载的信息直接确定所述时域资源,或者,所述终端设备通过所述DCI承载的信息,进一步确定所述时域资源。例如,所述DCI通知的为所述时域资源的索引,所述终端设备通过所述索引进一步确定所述时域资源。可选的,所述索引与时域资源的对应关系是预先定义或者配置的,例如在标准或协议中定义的,所述对应关系可以如表1所示:
表1
索引(index) 时间间隔K0 指示信息RIV
0 0 2
1 0 4
2 1 8
3 1 10
其中,索引栏对应DCI所通知的时域资源位置的索引;可选的,所述索引可以通过DCI中的时域资源配置(Time domain resource assignment)字段承载;例如,所述字段包括2比特,其中{00}对应index0;{01}对应index1,{10}对应index2,{11}对应index3;时间间隔K0为检测到的PDCCH与所述PDCCH调度的PDSCH之间的时间间隔,单位为slot;指示信息RIV为PDSCH在一个slot内的时域起始位置和长度的指示信息;每一种RIV的取值对应了一种PDSCH在一个slot内的的时域位置。
通过所述索引与时域资源位置的对应关系,所述终端设备确定所述PDSCH的时域资 源。
该确定步骤可由终端设备的处理器304执行。
步骤605:所述终端设备在承载所述系统信息的物理资源上接收所述系统信息。
该接收步骤可由终端设备的收发器301执行,或者通过终端设备的处理器304控制所述收发器301执行。
通过上述步骤600-605所实现的通信方法,可以实现可以实现在不增加资源开销的前提下灵活指示系统信息类型,提高通信效率。
步骤601中网络设备发送承载下行控制信息的PDCCH,步骤603中终端设备检测承载所述下行控制信息的PDCCH,所述PDCCH承载指示信息,所述指示信息用于指示系统信息的类型。网络设备发送的所述PDCCH包含CRC,所述CRC或者所述CRC的低位16个比特通过RNTI加扰。终端设备通过RNTI检测所述PDCCH。上述两个步骤中,具体的CRC算法参考现有技术,这里不再详细阐述。对于上述两个步骤中所涉及的指示系统信息的类型的指示信息,可以多种可选设计,具体阐述如下。
一种可选的设计中,所述指示信息为所述RNTI的取值;其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或,所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。其中,所述RNTI的取值以及系统信息类型的对应关系可以被预先定义或者配置;例如,通过协议或者标准预先定义,或者,由网络设备预先通知或配置给所述终端设备,具体通知或配置的时间以终端设备在进行PDCCH解扰译码时可以知晓即可。
具体的,用于指示系统信息的所述SI-RNTI可以包括SI-RNTI0以及SI-RNTI1。例如,SI-RNTI0的值为FFFF,和/或,SI-RNTI1的值为不等于FFFF的其它值,例如FFF0等。这里需要说明的是,用于区分不同系统信息类型的具体的RNTI值可以采用其他形式或者其它取值,这里不做具体限定。
步骤602中,网络设备根据所述系统信息的类型确定承载所述系统信息的物理资源,以及步骤604中,所述终端设备根据所述指示信息确定承载所述系统信息的物理资源。这里,网络设备和终端设备可以采用相同或相似的原理确定所述物理资源。
在步骤603中,终端设备检测承载所述下行控制信息的物理下行控制信道PDCCH,若通过SI-RNTI0,例如FFFF,解扰成功,则所述DCI指示所述终端设备接收第一类型系统信息,若通过SI-RNTI1解扰成功,例如除FFFF之外的其它取值,则所述DCI指示所述终端设备接收第二类型系统信息。
又一种可选的设计中,所述指示信息为格式指示信息(Identifier for DCI formats),所述格式指示信息承载于所述下行控制信息中。在该可选的设计中,承载所述下行控制信息的PDCCH的CRC被系统信息RNTI(SI-RNTI)加扰,以指示系统信息的接收。进一步,所述格式指示信息用于指示所述系统信息的类型。
具体的,所述格式指示信息可以为下行控制信息中用于指示格式的指示信息。例如,所述下行控制信息的格式可以为DCI format 0_0或DCI format 1_0,该两种格式的下行控 制信息中包含格式指示信息位,所述格式指示信息位用于指示所述下行控制信息格式为DCI format 0_0或DCI format 1_0;其中,DCI format 0_0用于调度上行PUSCH的发送,而DCI format 1_0用于调度下行PDSCH的接收。
具体实现中,所述比特位的不同比特状态或者不同比特值分别指示不同的系统信息类型。例如,所述格式指示信息占用1个比特位。进一步,“0”用于指示RMSI,“1”用于指示OSI,或者,“1”用于指示RMSI,“0”用于指示OSI。又如,所述格式指示信息占用多个比特位。进一步,“01”用于指示RMSI,其它状态用于指示OSI等。
这里需要说明的是,上述指示方式只是以例举的方式阐述,具体的指示方式不受此限定。
基于上文的阐述可知,NR引入了频域参考点的概念,对于PDSCH的解调和接收同时需要考虑频域参考点位置。尤其涉及不同系统信息类型对应不同频域参考点的情况下。在实施例1的基础上,本发明实施例提供了实施例2,基于上文阐述的关于频域参考点配置的可选设计,具体提供有关频域参考点的方案。这里需要说明的是,实施例2的方案以实施例1为基础,可以引用实施例1中的部分相关内容,或者实施例1中的全部内容,这里不再进行重复阐述。
基于上述实施例1的部分或全部实现,所述实施例2包含以下几种可能的实现。
一种可能的实现中,不同类型的系统信息对应相同的频域参考点。即所述频域参考点为预先定义或配置的频域参考点,例如初始激活带宽区域的起始资源块或者初始激活带宽区域的起始资源块中编号为0的子载波,又如公共索引区域的起始资源块或者公共索引区域的起始资源块中编号为0的子载波。该可能的实现中,终端设备和网络设备无需考虑系统信息的类型,根据预先定义或设置的频域参考点进行PDSCH的解调和接收。
又一种可能的实现中,不同类型的系统信息对应不同的频域参考点,所述频域参考点对应于所述系统信息的类型,系统信息类型与频域参考点之间存在对应关系,无需额外的指示。以图5为例,RMSI对应于频域参考点A(即,初始激活BWP的起始资源块或者初始激活带宽区域的起始资源块中编号为0的子载波),OSI对应于频域参考点B(即,公共索引区域的起始资源块或者公共索引区域的起始资源块中编号为0的子载波)。
通过该可能的实现,可以通过系统信息类型的指示隐式指示频域参考点的位置,进而无需额外的指示信息就可以指示系统信息类型以及频域参考点,提高了通信效率,简化了系统设计。
该可能的实现中,系统信息类型与频域参考点的位置存在预先定义或配置的对应关系。例如第一类型的系统信息对应于第一频域参考点,第二类型的系统信息对应于第二频域参考点。
例如,RMSI对应的频域参考点为初始激活BWP的起始资源块,和/或OSI对应的频域参考点为公共索引区域的起始资源块。
或者,RMSI对应的频域参考点为初始激活BWP的起始资源块中编号为0的子载波,除RMSI外的其他系统信息类型OSI对应频域参考点为公共索引区域的起始资源块中编号 为0的子载波,其中,所述公共索引区域的起始资源块由RMSI携带的指示信息所指示。
在该实现中,对于步骤602:网络设备根据所述系统信息的类型确定承载所述系统信息的物理下行共享信道PDSCH的频域资源时,需要根据所述系统信息的类型获取DMRS序列。不同信息类型对应的DMRS序列不同。具体可以参见上文阐述。
进一步,由于不同系统信息类型对应不同的频域参考点,所述网络设备确定PDSCH的频域位置。所述网络设备将所述DMRS序列调制到物理资源上,并发送承载所述系统信息的PDSCH。
对于步骤604:所述终端设备根据所述指示信息确定承载所述系统信息的物理下行共享信道PDSCH的频域资源时,终端设备需要根据DCI中包括的PDSCH频域资源指示信息以及对应于所述系统信息类型的频域参考点获取PDSCH频域资源。进一步,终端设备对PDSCH解调之前需要根据所述系统信息的类型或频域参考点获取DMRS序列,并匹配接收到的DMRS信号以及对PDSCH进行解调和/或译码。
再一种可能的实现中,通过另一指示信息指示所述系统信息对应的频域参考点。
通过该可能的实现,通过单独对频域参考点进行指示,提高了下行资源调度的灵活性。
可选的,不同类型的系统信息对应不同的频域参考点,所述另一指示信息指示对应于所述网络设备下发的所述类型的系统信息的频域参考点。
可选的,频域参考点与系统信息类型不完全对应,所述另一指示信息指示对应于所述网络设备下发的所述系统信息的频域参考点。在这种可选的方案中,对于相同类型的系统信息,频域参考点仍然可以通过指示信息动态指示,提高了资源调度的灵活性。
一种实现中,所述另一指示信息可以为PDCCH所在的控制资源集合(CORESET)的索引。例如,若所述CORESET索引为0,则频域参考点为参考点A;若所述CORESET索引不为0,则频域参考点为参考点B。具体的,终端设备在多个CORESET中检测PDCCH,若在CORESET 0检测到PDCCH,则接收PDSCH的频域参考点为参考点A;若在其它CORESET内检测到PDCCH,则接收PDSCH的频域参考点为参考点B。
又一种实现中,所述另一指示信息可以为DCI中包括的混合自动重传请求处理编号((hybrid automatic repeat request,HARQ)process number)、新数据指示(New data indicator,NDI)以及冗余版本(Redundancy version,RV)中的一种或多种的组合。具体的,终端设备根据SI-RNTI检测承载DCI的PDCCH,并且根据所述HARQ process number、NDI以及RV中的一种或多种的组合,确定所述频域参考点为A或B。
例如,若NDI中的信息比特为{0},则频域参考点为参考点A;若NDI中的信息比特为{1},则频域参考点为参考点B。
该可能的实现中,具体的交互方法可以参见上一种可能的实现,两者的区别仅在于对于频域参考点的指示方式不同。对于该可能的实现中具体的交互方式,本领域技术人员可以基于上一种可能的实现,根据指示方式的不同进行合理调整。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理 解的是,各个网元,例如网络设备、终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
下面基于图3中终端设备的可能的结构进行进一步解释。终端设备能够执行本发明实施例任一种方法,该终端设备至少可以包括:收发器301以及处理器304(这里上位表述为处理器,可以代表调制解调器处理器304本身,或者调制解调器304和应用处理器302的集成)。可选的,还可以包含存储器等图3以及关于图3的阐述中的其他部件。这里收发器301可以由独立的接收器和发送器组成,单独执行相应的接收和发送功能,也可以是集成了接收和发送功能的收发器。这里不做进一步限定。结构上,图3中的收发器301可以拆分为接收器301A和发射器301B。这里,由于终端设备只是作为一种可选的主体的示例性说明,接下来以无线装置为主体进行说明,所述无线装置可以为终端设备所包含的一个单元、芯片或者部件,或者终端设备本身。
对于本发明实施例1和2:
所述无线装置,包括处理器304和接收器301A,其中:
所述处理器304,用于检测承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
所述处理器304,用于根据所述指示信息确定承载所述系统信息的物理资源;
所述接收器301A,用于在所述物理资源上接收所述系统信息。
具体的,所述PDCCH包括的循环冗余码CRC被无线网络临时标识RNTI加扰。
一种可选的设计中,所述指示信息为所述RNTI的取值;其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。
一种可选的设计中,所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
一种可选的设计中,所述处理器,用于根据频域参考点获取对应于承载所述系统信息的物理资源的解调参考信号DMRS;其中,所述频域参考点对应于所述系统信息的类型。
进一步,所述频域参考点与所述系统信息的类型的对应关系是预先配置或定义的;或者,所述频域参考点是通过第二指示信息指示的。
其中,所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
需要说明的是,上述无线装置执行的通信方法的具体实施方式可参见本发明实施例和提供的通信方法的描述。本发明实施例的终端设备与图6对应的通信方法基于同一构思,其带来的技术效果与上述通信方法相同。本发明实施例中无线装置所包含的处理器和接收器的具体功能以及其中所涉及的任何特征、术语和实现细节与图6对应的方法实施例中的终端设备的功能相对应。具体内容可分别参见本发明图6对应的方法实施例中的叙述,此处不再赘述。
需要说明的是,在上述实施例中,无线装置可以全部或部分地通过软件、硬件、固件或者其任一组合来实现。
对于所述无线装置的结构,另一种可选的方式为,上述实施例中的相应的部件可以是由相应的硬件实现,也可以由相应的硬件执行相应的软件完成,例如,前述的接收器301A,可以是具有执行前述接收功能的硬件,例如集成收发功能的收发器或者仅实现接收功能的接收器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如接收单元;又如前述的处理器304,可以是具有执行所述处理器功能的硬件,例如特定功能的处理器,或者一般处理器,也可以是能够执行相应计算机程序从而完成前述功能的其他硬件设备,还可以是还可以是执行相应功能的软件模块或者功能单元,例如处理单元;再如,前述的发射器301B,可以是具有执行前述发送功能的硬件,例如集成收发功能的收发器,或者仅实现发射功能的发射器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如发射单元。可选的,还可以包含存储单元。具体参见图7。
下面基于图2中网络设备的可能的结构进行进一步的解释。该网络设备能够执行本发明实施例任一种方法。该网络设备至少可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。可选的,还可以包含存储器等图2以及关于图2的阐述中的其他部件。这里收发器202可以由独立的接收器和发送器组成,单独执行相应的接收和发送功能,也可以是集成了接收和发送功能的收发器。这里不做进一步限定。结构上,图2中的收发器202可以拆分为接收器202A和发射器202B。这里,由于网络设备只是作为一种可选的主体的示例性说明,接下来以无线装置为主体进行说明,所述无线装置可以为网络设备所包含的一个单元、芯片或者部件,或者网络设备本身。
对于本发明实施例1和2:
所述无线装置,包括处理器201和发射器202B,其中:
所述发射器202B,用于发送承载下行控制信息的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
所述处理器201,用于根据所述系统信息的类型确定承载所述系统信息的物理资源。
具体的,所述PDCCH包括循环冗余码CRC。所述处理器,用于使用无线网络临时标识RNTI加扰所述CRC。
一种可选的设计中,所述指示信息为所述RNTI的取值;其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或,所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息。
一种可选的设计中,所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
一种可选的设计中,所述发射器202B,用于发送承载所述系统信息的物理资源的解调参考信号DMRS;所述DMRS对应于频域参考点,所述频域参考点与所述系统信息的类型相对应。
该可选的设计中,所述频域参考点与所述系统信息的类型的对应关系是预先配置或定 义的;或者,所述发射器202B,用于发送第二指示信息,所述第二指示信息用于指示与所述系统信息类型相对应的所述频域参考点。
其中,所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
需要说明的是,上述无线装置执行的通信方法的具体实施方式可参见本发明实施例提供的通信方法的描述。本发明实施例中网络设备与图6对应的通信方法基于同一构思,其带来的技术效果与上述控制资源获取方法相同。本发明实施例中无线装置所包含的处理器和接收器的具体功能以及其中所涉及的任何特征、术语和实现细节与图6对应的方法实施例中的网络设备的功能相对应。具体内容可参见本发明图6对应的方法实施例中的叙述,此处不再赘述。
需要说明的是,在上述实施例中,无线装置可以全部或部分地通过软件、硬件、固件或者其任一组合来实现。
对于所述无线装置的结构,另一种可选的方式为,上述实施例中的相应的部件可以是由相应的硬件实现,也可以由相应的硬件执行相应的软件完成,例如,前述的发射器202B,可以是具有执行前述发送功能的硬件,例如集成收发功能的收发器或者仅实现接收功能的发射器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如发射单元;又如前述的处理器201,可以是具有执行所述处理器功能的硬件,例如特定功能的处理器,或者一般处理器,也可以是能够执行相应计算机程序从而完成前述功能的其他硬件设备,还可以是还可以是执行相应功能的软件模块或者功能单元,例如处理单元;再如,前述的接收器202A,可以是具有执行前述接收功能的硬件,例如集成收发功能的收发器,或者仅实现接收功能的接收器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如接收单元。可选的,还可以包含存储单元。具体参见图7。
可以理解的是,附图仅仅示出了无线装置的简化设计。在实际应用中,无线装置可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等。
本发明实施例还提供一种通信系统,其包含执行本发明上述实施例所提到的至少一个网络设备以及至少一个终端设备。
本发明实施例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述通信方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备(可以统称为无线设备)。该终端设备或网络设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows 操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于:
    终端设备检测承载下行控制信息DCI的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
    所述终端设备根据所述指示信息确定承载所述系统信息的物理资源;
    所述终端设备在所述物理资源上接收所述系统信息。
  2. 根据权利要求1所述的方法,其特征在于:
    所述PDCCH包括的循环冗余码CRC被系统信息无线网络临时标识SI-RNTI加扰。
  3. 根据权利要求1或2所述的方法,其特征在于:
    所述系统信息的类型为系统信息类型1 SIB1或者系统消息SI message。
  4. 根据权利要求1-3任一项所述的方法,其特征在于:
    所述指示信息为所述RNTI的取值;
    其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或
    所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息;或者
    所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
  5. 根据权利要求1-3任一项所述的方法,其特征在于:
    所述指示信息为所述DCI所携带的一个比特位的状态。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据频域参考点获取承载所述系统信息的物理资源的解调参考信号DMRS;
    其中,对于不同类型的系统信息,用于获取承载所述系统信息的物理资源的解调参考信号DMRS的频域参考点不同。
  7. 根据权利要求6所述的方法,其特征在于:
    所述频域参考点与所述系统信息的类型之间存在预先配置或定义的对应关系;或者
    所述频域参考点是通过第二指示信息指示的。
  8. 根据权利要求1-7所述的方法,其特征在于:
    所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
  9. 一种通信方法,其特征在于,所述方法包括:
    网络设备发送承载下行控制信息DCI的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
    所述网络设备根据所述系统信息的类型确定承载所述系统信息的物理资源。
  10. 根据权利要求9所述的方法,其特征在于:
    所述PDCCH包括循环冗余码CRC;
    所述网络设备使用系统信息无线网络临时标识SI-RNTI加扰所述CRC。
  11. 根据权利要求9或10所述的方法,其特征在于:
    所述系统信息的类型为系统信息类型1 SIB1或者系统消息SI message。
  12. 根据权利要求9-11任一项所述的方法,其特征在于:
    所述指示信息为所述RNTI的取值;
    其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或
    所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息;或者
    所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
  13. 根据权利要求9-11任一项所述的方法,其特征在于:
    所述指示信息为所述DCI所携带的一个比特位的状态。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送承载所述系统信息的物理资源的解调参考信号DMRS;其中,对于不同类型的系统信息,所述DMRS对应的频域参考点不同。
  15. 根据权利要求14所述的方法,其特征在于:
    所述频域参考点与所述系统信息的类型之间存在预先配置或定义的对应关系;或者
    所述网络设备发送第二指示信息,所述第二指示信息用于指示与所述系统信息类型对应的所述频域参考点。
  16. 根据权利要求9-15任一项所述的方法,其特征在于:
    所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
  17. 一种无线装置,包括处理器和接收器,其特征在于:
    所述处理器,用于检测承载下行控制信息DCI的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
    所述处理器,用于根据所述指示信息确定承载所述系统信息的物理资源;
    所述接收器,用于在所述物理资源上接收所述系统信息。
  18. 根据权利要求17所述的装置,其特征在于:
    所述PDCCH包括的循环冗余码CRC被系统信息无线网络临时标识SI-RNTI加扰。
  19. 根据权利要求17或18所述的装置,其特征在于:
    所述系统信息的类型为系统信息类型1 SIB1或者系统消息SI message。
  20. 根据权利要求17-19任一项所述的装置,其特征在于:
    所述指示信息为所述RNTI的取值;
    其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或
    所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息;或者
    所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
  21. 根据权利要求17-19任一项所述的装置,其特征在于:
    所述指示信息为所述DCI所携带的一个比特位的状态。
  22. 根据权利要求17-21任一项所述的装置,其特征在于:
    所述处理器,用于根据频域参考点获取承载所述系统信息的物理资源的解调参考信号DMRS;
    其中,对于不同类型的系统信息,用于获取承载所述系统信息的物理资源的解调参考信号DMRS的频域参考点不同。
  23. 根据权利要求22所述的装置,其特征在于:
    所述频域参考点与所述系统信息的类型之间存在预先配置或定义的对应关系;或者
    所述频域参考点是通过第二指示信息指示的。
  24. 根据权利要求17-23任一项所述的装置,其特征在于:
    所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
  25. 一种网络设备,包括发射器和处理器,其特征在于:
    所述发射器,用于发送承载下行控制信息DCI的物理下行控制信道PDCCH,所述PDCCH携带指示信息,所述指示信息用于指示系统信息的类型;
    所述处理器,用于根据所述系统信息的类型确定承载所述系统信息的物理资源。
  26. 根据权利要求25所述的网络设备,其特征在于:
    所述PDCCH包括循环冗余码CRC,
    所述处理器,用于使用系统信息无线网络临时标识SI-RNTI加扰所述CRC。
  27. 根据权利要求25或26所述的网络设备,其特征在于:
    所述系统信息的类型为系统信息类型1 SIB1或者系统消息SI message。
  28. 根据权利要求25-27任一项所述的网络设备,其特征在于:
    所述指示信息为所述RNTI的取值;
    其中,所述RNTI的取值为第一无线网络临时标识RNTI,所述下行控制信息用于指示第一类型系统信息;和/或
    所述RNTI的取值为第二无线网络临时标识RNTI,所述下行控制信息用于指示第二类型系统信息;或者
    所述指示信息为格式指示信息,所述格式指示信息承载于所述下行控制信息中。
  29. 根据权利要求25-27所述的网络设备,其特征在于:
    所述指示信息为所述DCI所携带的一个比特位的状态。
  30. 根据权利要求25-29任一项所述的网络设备,其特征在于:
    所述发射器,用于发送承载所述系统信息的物理资源的解调参考信号DMRS;其中,对于不同类型的系统信息,所述DMRS对应的频域参考点不同。
  31. 根据权利要求30所述的网络设备,其特征在于:
    所述频域参考点与所述系统信息的类型之间存在预先配置或定义的对应关系;或者所述发射器,用于发送第二指示信息,所述第二指示信息用于指示与所述系统信息类型对应的所述频域参考点。
  32. 根据权利要求25-31任一项所述的网络设备,其特征在于:
    所述PDCCH的时域和/或频域资源通过同步/广播信道块携带的信息指示。
  33. 一种装置,其包含一个或多个处理器以及存储器,所述存储器上存储有计算机程序,其特征在于:
    当所述计算机程序被所述一个或多个处理器执行时,使得所述装置实现权利要求1-8 任一项所述的方法。
  34. 一种装置,其包含一个或多个处理器以及存储器,所述存储器上存储有计算机程序,其特征在于:
    当所述计算机程序被所述一个或多个处理器执行时,使得所述装置实现权利要求9-16任一项所述的方法。
  35. 一种存储介质,其上存储有计算机程序,其特征在于:
    当所述计算机程序被一个或多个处理器执行时,实现权利要求1-8任一项所述的方法。
  36. 一种存储介质,其上存储有计算机程序,其特征在于:
    当所述计算机程序被一个或多个处理器执行时,实现权利要求9-16任一项所述的方法。
PCT/CN2019/073353 2018-02-13 2019-01-28 一种通信方法、装置以及系统 WO2019157932A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19754693.0A EP3749032B1 (en) 2018-02-13 2019-01-28 Communication method, apparatus, and system
EP22182219.0A EP4152865B1 (en) 2018-02-13 2019-01-28 Communication method, apparatus, and system
BR112020016218-3A BR112020016218A2 (pt) 2018-02-13 2019-01-28 Método de comunicação, aparelho, e mídia de armazenamento
US16/992,981 US11057878B2 (en) 2018-02-13 2020-08-13 Communication method, apparatus, and system
US17/352,916 US11871425B2 (en) 2018-02-13 2021-06-21 Communication method, apparatus, and system
US18/325,664 US20230389034A1 (en) 2018-02-13 2023-05-30 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150873.9A CN110167159B (zh) 2018-02-13 2018-02-13 一种通信方法、装置以及系统
CN201810150873.9 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,981 Continuation US11057878B2 (en) 2018-02-13 2020-08-13 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019157932A1 true WO2019157932A1 (zh) 2019-08-22

Family

ID=67619124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073353 WO2019157932A1 (zh) 2018-02-13 2019-01-28 一种通信方法、装置以及系统

Country Status (5)

Country Link
US (3) US11057878B2 (zh)
EP (2) EP4152865B1 (zh)
CN (2) CN110167159B (zh)
BR (1) BR112020016218A2 (zh)
WO (1) WO2019157932A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11363630B2 (en) * 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11147093B2 (en) * 2018-06-28 2021-10-12 Qualcomm Incorporated System information scheduling
CN110535616B (zh) * 2019-09-06 2022-05-06 北京紫光展锐通信技术有限公司 解调参考信号dmrs的传输方法、装置及存储介质
CN110808823B (zh) * 2019-10-31 2021-09-14 北京紫光展锐通信技术有限公司 公共参考信号的序列映射方法及装置、存储介质、终端
WO2021087822A1 (zh) * 2019-11-06 2021-05-14 Oppo广东移动通信有限公司 系统信息接收方法、发送方法、装置、终端及存储介质
CN113271675B (zh) * 2020-02-17 2023-03-28 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN113541894B (zh) * 2020-04-16 2023-02-21 维沃移动通信有限公司 一种资源确定方法及设备
WO2022160068A1 (en) * 2021-02-01 2022-08-04 Sierra Wireless, Inc. Method and apparatus for supporting device to device communication
CN113454943B (zh) * 2021-05-10 2023-07-07 北京小米移动软件有限公司 系统消息的传输方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119838A1 (en) * 2016-01-08 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Broadcasting system information in a wireless communication system
WO2018010661A1 (zh) * 2016-07-14 2018-01-18 夏普株式会社 系统信息的获取方法、基站和用户设备
WO2018022573A1 (en) * 2016-07-27 2018-02-01 Sharp Laboratories Of America, Inc. Wireless telecommuncations methods and apparatus using system information value tag

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111510992B (zh) * 2014-03-19 2022-12-16 交互数字专利控股公司 无线发射/接收单元的系统信息块获取方法和装置
WO2015190750A1 (en) * 2014-06-08 2015-12-17 Lg Electronics Inc. Method and apparatus for indicating usage of mbsfn area in wireless communication system
WO2017075835A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 系统消息传输装置、方法和系统
US10368329B2 (en) * 2016-04-11 2019-07-30 Qualcomm Incorporated Synchronization for standalone LTE broadcast
CN108282303B (zh) * 2017-01-06 2023-03-10 北京三星通信技术研究有限公司 信号传输的方法及设备
US20190372719A1 (en) * 2017-03-07 2019-12-05 Intel IP Corporation Design of downlink control information for wideband coverage enhancement
US10849158B2 (en) * 2017-03-20 2020-11-24 Motorola Mobility Llc Feedback for a system information request
CN115087100B (zh) * 2017-05-03 2024-04-16 Idac控股公司 用于新无线电(nr)中的寻呼过程的方法和设备
WO2019050379A1 (en) * 2017-09-11 2019-03-14 Lg Electronics Inc. METHOD AND APPARATUS FOR TRANSMITTING DOWNLINK CONTROL INFORMATION IN WIRELESS COMMUNICATION SYSTEM
KR102184771B1 (ko) * 2017-11-13 2020-11-30 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
US11018910B2 (en) * 2017-11-17 2021-05-25 Mediatek Inc. On PDCCH DMRS mapping and coreset resource allocation
CN110050485B (zh) * 2017-11-17 2021-05-11 Lg 电子株式会社 发送和接收系统信息的方法及其设备
US10897755B2 (en) * 2017-12-22 2021-01-19 Samsung Electronics Co., Ltd Method and apparatus for configuring demodulation reference signal information in wireless cellular communication system
KR102334470B1 (ko) * 2018-01-18 2021-12-03 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 제어 리소스 세트 구성을 제공하는 장치 및 방법
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119838A1 (en) * 2016-01-08 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Broadcasting system information in a wireless communication system
WO2018010661A1 (zh) * 2016-07-14 2018-01-18 夏普株式会社 系统信息的获取方法、基站和用户设备
WO2018022573A1 (en) * 2016-07-27 2018-02-01 Sharp Laboratories Of America, Inc. Wireless telecommuncations methods and apparatus using system information value tag

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3749032A4

Also Published As

Publication number Publication date
CN110167159B (zh) 2023-04-07
EP4152865A1 (en) 2023-03-22
US11871425B2 (en) 2024-01-09
US20210314928A1 (en) 2021-10-07
US20230389034A1 (en) 2023-11-30
US20200374848A1 (en) 2020-11-26
BR112020016218A2 (pt) 2020-12-08
EP3749032A4 (en) 2021-03-31
EP3749032A1 (en) 2020-12-09
US11057878B2 (en) 2021-07-06
CN115134927A (zh) 2022-09-30
EP4152865B1 (en) 2024-04-10
CN110167159A (zh) 2019-08-23
EP3749032B1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2019157932A1 (zh) 一种通信方法、装置以及系统
US11700532B2 (en) Data channel sending and receiving methods, network device, and terminal
US10219160B2 (en) Information sending method, information receiving method, apparatus and system
KR101635864B1 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
EP3099127B1 (en) User device, base-station device, integrated circuit, and communication method
EP3873152A1 (en) Downlink control information receiving method and apparatus, and storage medium
EP3177092B1 (en) Terminal device, base station device, communication method and integrated circuit
EP3002983A1 (en) Control information transmission method, user equipment, and base station
EP3099113B1 (en) User device, base-station device, integrated circuit, and communication method
EP3637818B1 (en) Signal sending and receiving method and device
CN110583007B (zh) 广播信号的发送方法、接收方法、网络设备和终端设备
EP3177084B1 (en) Terminal device, base station device, communications method and integrated circuit
CN114026939A (zh) 用于下行链路控制信息(dci)格式的dci的用户设备、基站和方法
US11050538B2 (en) Information sending and receiving method and device
WO2019026443A1 (ja) 通信装置及び通信方法
CN114424491A (zh) 用于上行链路传输优先级的用户装备、基站和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754693

Country of ref document: EP

Effective date: 20200902

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020016218

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020016218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200810