WO2018201628A1 - 色轮模组、光源模组和投影系统 - Google Patents

色轮模组、光源模组和投影系统 Download PDF

Info

Publication number
WO2018201628A1
WO2018201628A1 PCT/CN2017/094804 CN2017094804W WO2018201628A1 WO 2018201628 A1 WO2018201628 A1 WO 2018201628A1 CN 2017094804 W CN2017094804 W CN 2017094804W WO 2018201628 A1 WO2018201628 A1 WO 2018201628A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
color wheel
light
transparent substrate
filter
Prior art date
Application number
PCT/CN2017/094804
Other languages
English (en)
French (fr)
Inventor
米麟
李乾
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018201628A1 publication Critical patent/WO2018201628A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the utility model relates to the technical field of light sources, in particular to a color wheel module, a light source module and a projection system with a radiation heat dissipation structure.
  • the laser light source module includes an excitation light source and a fluorescent color wheel located on the optical path of the excitation light source, wherein the excitation light source is a single laser or a laser array, and the fluorescent color wheel comprises a round wheel substrate and a phosphor layer coated on the substrate. And a motor that drives the substrate to rotate. During the excitation of the laser light from the excitation source to generate fluorescence, the motor drives the color wheel to rotate along the central axis, so that the spot formed by the excitation light acts on the phosphor layer in a circular path to avoid the occurrence of high power laser The problem of thermal quenching of phosphors caused by time exposure.
  • each of the light emitting modules needs to be configured with a corresponding filter to correct the fluorescence that is excited by the filter. For the color you need.
  • a transparent substrate is used as the substrate, and an annularly distributed light-emitting layer and a filter film are respectively disposed on the upper surface. Since the filter film is directly plated on the transparent substrate, such a structure simplifies the manufacturing process of the filter structure, reduces the number of color wheel assemblies, and improves the mechanical stability of the color wheel.
  • the structure of the above transparent substrate relies only on heat conduction and air convection to dissipate heat, and the heat dissipation performance cannot be maximized. As the power of the excitation light becomes higher and higher, the heat dissipation problem becomes more and more prominent.
  • the object of the present invention is to provide a color wheel module, a light source module and a projection system with a radiation heat dissipation structure, so as to solve the problem of poor heat dissipation of the color wheel module existing in the prior art, and to maximize heat dissipation performance. .
  • the present invention provides a color wheel module, which includes a color wheel.
  • the color wheel includes: a transparent substrate; at least one light emitting module fixed on a surface of the transparent substrate, at least a part of the light emitting module is a wavelength conversion module; and a radiation heat dissipation structure, wherein the radiation heat dissipation structure is disposed in the transparent On the surface of the non-optical path region of the substrate.
  • the color wheel may further be provided with at least one filter module, the filter module is disposed in one-to-one correspondence with the illumination module, and at least a part of the at least one filter module is used for correcting the corresponding illumination
  • the color coordinates of the beam emitted by the module can be arbitrarily set as needed, as long as the light beam emitted from the light emitting module can enter the corresponding filter module.
  • the radiation heat dissipation structure includes a black coating layer disposed on a surface of the non-optical path region of the transparent substrate.
  • the black coating may be one of a black high temperature gel coat, a carbon coat, a silicon coat, a black oxide coat, and a sulfide coat.
  • the radiation heat dissipation structure further comprises a black adhesive disposed between the transparent substrate and the light emitting module.
  • the black adhesive may be a thermal conductive adhesive containing graphite or graphene or a silica gel.
  • the bonding portion of the transparent substrate to which the black coating is adhered is a rough surface.
  • the transparent substrate is a sapphire substrate.
  • the utility model also provides a light source module.
  • the light source module includes: an excitation light source, wherein the excitation light source is used to emit excitation light; the color wheel module as described above, wherein the light emitting module of the color wheel module is located on the optical path of the excitation light And emitting a light beam of a predetermined color under illumination of the excitation light; at least one first optical film, the at least one first optical film being located between the excitation light source and the color wheel module, the at least one a first optical film transmits the excitation light and reflects a light beam emitted from the light emitting module; and at least one second optical film, the at least one second optical film will be from the at least one first optical film The reflected light beam is reflected onto the filter module corresponding to the light emitting module.
  • the light source module may further include a collecting lens located on an optical path of the light beam emitted from the color wheel module and collecting the light beam corrected by the filter module.
  • the utility model also provides a projection system.
  • the projection system includes a light source module as described above.
  • the present invention by providing a radiation heat dissipation structure on the surface of the non-optical path region of the transparent substrate, even when the power of the excitation light is higher and higher, a good heat dissipation effect can be achieved, and the heat dissipation performance of the device is maximized. .
  • FIG. 1 shows a schematic cross-sectional view of a light source module in accordance with a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a light source module in accordance with a second embodiment of the present invention.
  • FIG. 3 shows a schematic cross-sectional view of a light source module in accordance with a third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a light source module in accordance with a fourth embodiment of the present invention.
  • FIG. 5 shows a schematic cross-sectional view of a light source module in accordance with a fifth embodiment of the present invention.
  • FIG. 1 shows a schematic cross-sectional view of a light source module according to a first embodiment of the present invention.
  • the light source module comprises an excitation light source 1 , a color wheel module 9 , at least one first optical film 3 , at least one second optical film 4 , a collecting lens 5 , and a driving device 8 .
  • the color wheel module 9 includes a color wheel, and the color wheel may include a transparent substrate 2, a light emitting module 6, and a filter module 7.
  • the transparent substrate 2 is, for example, a circular transparent substrate, and may be composed of quartz, glass, sapphire, transparent aluminum nitride or other transparent material having a high thermal conductivity.
  • the transparent substrate 2 may be a sapphire substrate, which has high thermal conductivity and good mechanical properties.
  • Both the light emitting module 6 and the filter module 7 are directly or indirectly fixed on the transparent substrate 2, and the number thereof may be plural.
  • Each of the plurality of filter modules 7 is fixed in a manner corresponding to the light-emitting module 6.
  • a plurality of light emitting modules 6 are spliced into a ring-shaped light emitting layer (not shown) on the surface of the transparent substrate 2.
  • the plurality of filter modules 7 are also spliced into a ring-shaped filter layer (not shown) on the surface of the transparent substrate 2, and the filter layer is located inside the light-emitting layer.
  • the ring of the luminescent layer is concentrically arranged with the ring of the filter layer.
  • each of the light emitting modules 6 may include a first substrate layer and at least one functional layer located on a surface of the first substrate layer.
  • the structure of the functional layer can be set according to actual needs, and at least part of the light emitting module is a wavelength conversion module.
  • the at least one functional layer may include a reflective layer on a surface of the first substrate layer and a light emitting layer on a surface of the reflective layer.
  • the light-emitting layer may be, for example, a laser-receiving phosphor layer capable of emitting a predetermined color after absorbing the excitation light, and the light-emitting module corresponding to the light-emitting layer is a wavelength conversion module.
  • a portion emitted from the phosphor layer is directed to the reflective layer by the laser light and is reflected by the reflective layer.
  • the at least one functional layer may also comprise only a reflective layer on the surface of the first substrate layer.
  • the emitted light emitted from the light emitting module is the excitation light reflected by the reflective layer.
  • the light emitting module may not directly include the first substrate layer, but directly fix the functional layer on the transparent substrate.
  • any suitable light-emitting module known can be used as needed.
  • the filter module 7 is for selectively correcting the color coordinates of the light beam emitted from the corresponding light emitting module.
  • the filter module 7 may include, for example, a filter film layer (or referred to as a color correction film layer) provided on the surface of the transparent substrate 2.
  • the filter module 7 can selectively retain light in a predetermined spectral range of the incident beam. In particular, when the spectrum of the incident beam is within a predetermined spectral range, the incident beam completely passes through the filter module.
  • the predetermined spectral ranges of the plurality of filter modules 7 disposed on the color wheel module 9 may be the same or different.
  • the predetermined spectral range of the plurality of filter modules 7 on the color wheel module 9 can be set such that a part of the filter module 7 completely transmits the corresponding incident light beam, and the other part of the filter module 7 corrects the corresponding incident light beam.
  • the filter module 7 may further include, for example, a second substrate layer disposed on the surface of the transparent substrate 2, and the filter film layer is disposed on a surface of the second substrate layer.
  • the second substrate layer is a transparent substrate layer, preferably a glass or sapphire substrate layer.
  • the collecting lens 5 is located on the opposite side of the color wheel module 9 from the excitation light source 1 and at a position opposite to the filter module 7 to collect the light beam transmitted through the filter module and the transparent substrate.
  • the light beam collected by the collection lens 5 will be transmitted to a subsequent modulation device for projection of the image.
  • the light source module further includes a driving device 8.
  • the driving device 8 drives the color wheel to rotate along a central axis of the annular light emitting layer or the annular filter layer.
  • the excitation light of the excitation light source 1 (which may be a single laser or a laser array composed of a plurality of lasers) is transmitted between the excitation light source 1 and the color wheel module 9
  • An optical film 3 is irradiated to the light-emitting module 6 on the color wheel module 9.
  • the respective light beams emerging from the light emitting module 6 are reflected onto the corresponding filter module 7 via the at least one first optical film 3 and the at least one second optical film 4, so that the filter module 7 selectively corrects the incident light.
  • the color coordinates of the beam the collecting lens 5 collects the light beam transmitted through the filter light module 7 and the transparent substrate 2 and transmits the collected light beam to a subsequent modulating device.
  • the region of the transparent substrate 2 corresponding to the position of the filter module 7 has a light beam transmitted, and thus this region is referred to as an "optical path region”. Further, the regions of the transparent substrate 2 through which no light beam is transmitted are collectively referred to as “non-optical path regions”.
  • the color wheel module according to the present invention further includes a radiation heat dissipation structure. As shown by the thick black line in FIG. 1, the radiation heat dissipation structure is disposed on the surface of the non-optical path region of the transparent substrate 2. Since the black object has the strongest heat radiation capability among objects of various colors, the radiation heat dissipation structure is preferably black.
  • the radiation heat dissipation structure is a black coating applied on the surface of the transparent substrate. Because the black coating has strong heat radiation capability, the color wheel has strong thermal radiation scattering ability in addition to the original air convection and heat conduction heat dissipation mode, so that the heat dissipation capability of the color wheel is maximized.
  • the black coating can be composed mainly of black high temperature glue, carbon, silicon, black oxide, and sulfide.
  • the surface of the transparent substrate 2 coated with the black heat-dissipating coating is a rough surface.
  • a rough bonding portion can be formed on the surface of the transparent substrate 2 where the black heat-dissipating coating layer is to be applied to increase the transparent substrate 2 and black heat dissipation.
  • the bonding force between the coatings causes the black coating to be firmly fixed on the transparent substrate 2.
  • the black heat-dissipating coating may be applied to the transparent substrate after forming the light-emitting module and the filter module.
  • a black coating may be plated over a large area on a transparent substrate (for example, partial coating or partial coating using a mask), and then a light emitting module and a filter module are formed.
  • the black coating layer in FIG. 1 is disposed at a position corresponding to the light emitting module on the back surface of the transparent substrate 2, at a center position of the front surface of the transparent substrate 2, and at a side surface of the transparent substrate 2. It should be understood that the position of the black coating layer is obviously not limited to the position shown in FIG. 1, but may be disposed at any position of the non-optical path region of the transparent substrate 2 as needed.
  • FIG. 2 is a schematic cross-sectional view of a light source module in accordance with a second embodiment of the present invention.
  • the light-emitting module 6 and the corresponding filter module 7 are located in the same sector-shaped region centered on the center of rotation of the transparent substrate 2.
  • the light-emitting module 6 and the corresponding filter module 7 are located in different sector regions centered on the center of rotation of the transparent substrate 2.
  • the main difference between the second embodiment of the present invention and the first embodiment is that the arrangement positions of the radiation heat dissipation structures are different. Therefore, the differences between the two will be mainly explained below, and the same portions will not be described again.
  • the scattering structure is disposed between the light emitting module 6 and the transparent substrate 2, and is a black adhesive for connecting the light emitting module 6 and the transparent substrate 2.
  • the black adhesive may be any black adhesive having high thermal conductivity in the prior art, and may be, for example, a thermal conductive adhesive containing graphite or graphene or silica gel. Such a black adhesive can maximize the heat dissipation capability of the light-emitting module 6 in the color wheel because it has both high heat transfer capability and heat radiation capability. It should be understood that the black adhesive in the second embodiment is also apparently located in the non-optical path region of the transparent substrate 2.
  • Figure 3 shows a third embodiment in accordance with the present invention.
  • the black coating layer shown in Fig. 1 and the black binder shown in Fig. 2 can be simultaneously provided.
  • the radiation heat dissipation structure is not limited to the case in the above embodiment, and may include other black heat dissipation structures (for example, black heat dissipation protrusions, ribs, etc.) disposed in the non-optical path area of the surface of the transparent substrate, as long as It can affect the original optical performance of the transparent substrate, the light-emitting module and the filter module.
  • black heat dissipation structures for example, black heat dissipation protrusions, ribs, etc.
  • each of FIGS. 1 to 3 illustrates a case where the filter module 7 and the light-emitting module 6 are located on the same side of the transparent substrate 2.
  • the filter module 7 may also be disposed on the other side of the transparent substrate 2, that is, the back side in FIGS. 1 and 2.
  • the light beam reflected by the second optical film 4 passes through the transparent substrate 2 and then passes through the filter module 7.
  • both FIG. 1 and FIG. 2 illustrate the case where the filter module 7 is located inside the light-emitting module 6, but the filter module 7 may also be located outside the light-emitting module 6.
  • FIG. 4 shows a fourth embodiment in accordance with the present invention.
  • the color wheel module 9 is a monochrome color wheel module or the wavelength of light emitted by the light-emitting module 6 is exactly in accordance with the outgoing light requirement
  • the color wheel in the color wheel module 9 may also be provided without filtering.
  • Optical module In this case, as shown in FIG. 4, the light emitted from the light emitting module 6 (for example, the reflected blue laser light or the laser light emitted from the light emitting module 6) of the first optical film 3 and the second optical film 4 After reflection, it passes directly through the transparent substrate 2.
  • FIG. 5 shows a fifth embodiment in accordance with the present invention. As shown in FIG. 5, the light-emitting module 6 and the filter module 7 are directly or indirectly fixed on the transparent substrate 2, and the number may be plural. In the present embodiment, a plurality of light emitting modules 6 are spliced into a ring-shaped light emitting layer (not shown) on the surface of the transparent substrate 2.
  • the plurality of filter modules 7 are also spliced into a ring-shaped filter layer (not shown) on the opposite side surface of the transparent substrate 2, and each of the filter modules 7 faces the light-emitting module 6.
  • the light emitted from the light-emitting module 6 enters the filter module 7 through the transparent substrate 2, and is filtered by the filter light module 7 to reach the collecting lens 5.
  • a black coating as described in Embodiment 1 is provided on the surface of the non-optical path region of the substrate.
  • the radiant heat dissipation structures described in Embodiment 2 and Embodiment 3 can also be employed as needed.
  • the color wheel module 9 shown in FIG. 5 may not be provided with the filter module 7 as needed. In this case, the light emitted from the light-emitting module 6 passes through the transparent substrate 2 and directly reaches the collecting lens 5.
  • the color wheel module further increases the heat radiation heat dissipation mode in addition to the original air convection and heat conduction heat dissipation mode, which avoids the heat radiation mode.
  • Device failure due to untimely heat dissipation improves luminous efficiency and extends device life.
  • the present invention also provides a projection system, including the light source module provided by any of the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Filters (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮模组(9)、光源模组和投影系统。色轮模组(9)包括色轮和驱动色轮转动的驱动装置(8)。色轮包括透明基板(2);固定在透明基板(2)的表面上的至少一个发光模块(6),至少部分发光模块(6)为波长转换模块;以及辐射散热结构,辐射散热结构布置在透明基板(2)的非光路区域的表面上。通过设置辐射散热结构,色轮的散热效果最大化。

Description

色轮模组、光源模组和投影系统 技术领域
本实用新型涉及光源技术领域,特别地,涉及具有辐射散热结构的色轮模组、光源模组和投影系统。
背景技术
通常,激光光源模组包括激发光源和位于该激发光源光路上的荧光色轮,其中,激发光源为单个激光器或激光器阵列,荧光色轮包括圆轮状基板、涂覆在基板上的荧光粉层以及驱动基板转动的马达。在激发光源发出的激光激发荧光粉层产生荧光的过程中,马达驱动色轮沿中心轴转动,使得激发光形成的光斑按圆形路径作用于荧光粉层,以避免出现因大功率激光的长时间照射而导致的荧光粉热淬灭的问题。
当荧光色轮包括多个发光模块如红光色段、绿光色段和蓝光色段时,每一个发光模块都需要配置相应的滤光片,以通过滤光片将被激发出来的荧光修正为需要的颜色。
在有些技术中,采用了透明基板作为基板,在上面分别设置环形分布的发光层和滤光膜。由于滤光膜直接镀覆在透明基板上,所以这样的结构简化了滤光结构的制作工艺,并且减少了色轮组件的数量,提高了色轮的机械稳定性。
技术问题
但是,上述透明基板的结构仅仅依靠热传导和空气对流进行散热,无法实现散热性能的最大化。随着激发光的功率越来越高,散热问题变得越来越突出。
技术解决方案
因而,本实用新型的目的是提供一种具有辐射散热结构的色轮模组、光源模组和投影系统,以解决现有技术中存在的色轮模块散热较差的问题,使散热性能最大化。
为了解决上述问题,本实用新型提供了一种色轮模组,所述色轮模组包括色轮。所述色轮包括:透明基板;固定在所述透明基板的表面上的至少一个发光模块,至少部分所述发光模块为波长转换模块;以及辐射散热结构,所述辐射散热结构布置在所述透明基板的非光路区域的表面上。
所述色轮还可以设置有至少一个滤光模块,所述滤光模块与所述发光模块一一对应地设置,所述至少一个滤光模块中的至少一部分用于修正从对应的所述发光模块出射的光束的色坐标。所述滤光模块的具体位置可以根据需要任意设置,只要能够使得从发光模块出射的光束能够进入相应的滤光模块即可。
优选地,所述辐射散热结构包括设置在所述透明基板的所述非光路区域的表面上的黑色涂层。所述黑色涂层可以是黑色高温胶涂层、碳涂层、硅涂层、黑色氧化物涂层以及硫化物涂层中的一种。
优选地,所述辐射散热结构还包括设置在所述透明基板与所述发光模块之间的黑色粘接剂。所述黑色粘接剂可以是含石墨或石墨烯的导热胶或硅胶。
优选地,所述透明基板粘接有所述黑色涂层的粘接部是粗糙表面。
优选地,所述透明基板为蓝宝石基板。
本实用新型还提供了一种光源模组。所述光源模组包括:激发光源,所述激发光源用于发射激发光;如上所述的色轮模组,其中,所述色轮模组的所述发光模块位于所述激发光的光路上,并在所述激发光的照射下出射预定颜色的光束;至少一个第一光学膜片,所述至少一个第一光学膜片位于所述激发光源和色轮模组之间,所述至少一个第一光学膜片透射所述激发光并且反射从所述发光模块出射的光束;以及至少一个第二光学膜片,所述至少一个第二光学膜片将从所述至少一个第一光学膜片反射来的所述光束反射至与所述发光模块对应的所述滤光模块上。
所述光源模组还可以包括收集透镜,所述收集透镜位于从所述色轮模块出射的光束的光路上并且收集经所述滤光模块修正的光束。
本实用新型还提供了一种投影系统。该投影系统包括如上所述的光源模组。
有益效果
根据本实用新型,通过在透明基板的非光路区域的表面上设置辐射散热结构,即使在激发光的功率越来越高的情况下,也能够实现良好的散热效果,使装置的散热性能最大化。
附图说明
图1示出了根据本实用新型的第一实施例的光源模组的示意断面图。
图2示出了根据本实用新型的第二实施例的光源模组的示意断面图。
图3示出了根据本实用新型的第三实施例的光源模组的示意断面图。
图4示出了根据本实用新型的第四实施例的光源模组的示意断面图。
图5示出了根据本实用新型的第五实施例的光源模组的示意断面图。
本发明的最佳实施方式
下面,将参照附图详细说明根据本实用新型的色轮模组和光源模组。
图1示出了根据本实用新型的第一实施例的光源模组的示意性截面图。
如图1所示,该光源模组包括激发光源1、色轮模组9、至少一个第一光学膜片3、至少一个第二光学膜片4和收集透镜5、驱动装置8。具体地,色轮模组9包括色轮,色轮可以包括透明基板2、发光模块6以及滤光模块7。透明基板2例如为圆形的透明基板,并且可以是由石英、玻璃、蓝宝石、透明氮化铝或其它透明的具有较高的导热系数的材料构成的。优选地,透明基板2可以为蓝宝石基板,该基板导热系数高,且具有较好的机械性能。发光模块6和滤光模块7均直接或间接地固定在透明基板2上,数量均可以为多个。多个滤光模块7中的各者以对应于发光模块6的方式进行固定。例如,在本实施例中,多个发光模块6在透明基板2的表面上拼接成圆环状的发光层(未示出)。相应地,多个滤光模块7也在透明基板2的表面上拼接成圆环状的滤光层(未示出),并且滤光层位于发光层的内侧。发光层的圆环与滤光层的圆环是同心布置的。
具体地,每一个发光模块6可以包括第一基板层和位于第一基板层表面的至少一个功能层。功能层的结构可以根据实际需要而设置,至少部分发光模块为波长转换模块。例如,所述至少一个功能层可以包括位于第一基板层表面的反射层和位于反射层表面的发光层。发光层例如可以是在吸收激发光后能够出射预定颜色的受激光的荧光粉层,该发光层对应的发光模块即为波长转换模块。从荧光粉层发出的部分受激光射向反射层并被反射层反射。可替代地,所述至少一个功能层也可以仅包括位于第一基板层表面的反射层。在此情况下,从发光模块发出的出射光是经反射层反射的激发光。可以理解,在本实用新型的另一个实施方式中,发光模块也可以不包括第一基板层,而是直接将上述功能层固定在透明基板上。另外,可以根据需要采用已知的任意适合的发光模块。
滤光模块7用于选择性地修正从对应的发光模块出射的光束的色坐标。滤光模块7例如可以包含设置于透明基板2表面上的滤光膜层(或被称为修色膜层)。例如,滤光模块7可以选择性地保留入射光束中的预定光谱范围内的光。特别地,当入射的光束的光谱均在预定光谱范围之内时,入射的光束完全透过滤光模块。设置在色轮模组9上的多个滤光模块7的上述预定光谱范围可以是相同或不同的。例如,可以将色轮模组9上的多个滤光模块7的上述预定光谱范围设定为使得一部分滤光模块7完全透过对应的入射光束,另一部分滤光模块7修正对应的入射光束的色坐标。滤光模块7例如还可以包括设置于透明基板2表面上的第二基板层,上述滤光膜层设置在第二基板层的表面上。第二基板层为透明基板层,优选为玻璃或蓝宝石基板层。
收集透镜5位于色轮模组9的与激发光源1相反的一侧并且位于与滤光模块7相对的位置处,以收集透过滤光模块和透明基板的光束。收集透镜5收集的光束将被传输至后续的调制装置中,以进行图像的投影。
进一步,光源模组还包括驱动装置8,当色轮模组9工作时,驱动装置8会驱动色轮沿圆环状的发光层或圆环状的滤光层的中心轴转动。
当根据本实用新型的光源模组处于操作状态时,激发光源1(可以为单个激光器或多个激光器构成的激光器阵列)的激发光透过位于激发光源1和色轮模组9之间的第一光学膜片3照射至色轮模组9上的发光模块6。从发光模块6出射的相应光束经由至少一个第一光学膜片3和至少一个第二光学膜片4而被反射至对应的滤光模块7上,以使该滤光模块7选择性地修正入射的光束的色坐标。然后,收集透镜5收集透过滤光模块7以及透明基板2的光束并将收集的光束传输至后续的调制装置中。在上述过程中,透明基板2的与滤光模块7的位置相对应的区域有光束透过,因而将该区域称为“光路区域”。此外,将透明基板2的没有光束透过的区域统称为“非光路区域”。
随着激光的长时间照射和色轮的转动,色轮的温度将不断升高,过高的温度会严重影响器件的工作状态和使用寿命。为了使色轮的散热性能最大化,根据本实用新型的色轮模组还包括辐射散热结构。如图1中的黑色粗线所示,辐射散热结构设置在透明基板2的非光路区域的表面上。由于在各种颜色的物体中黑色物体的热辐射能力最强,所以辐射散热结构优选为黑色。
在本实施例中,辐射散热结构是涂覆在透明基板的表面上的黑色涂层。由于黑色涂层具有强的热辐射能力,这使得色轮在原有的空气对流、热传导的散热方式之外,具有了强的热辐射散射能力,使得色轮的散热能力最大化。黑色涂层可以主要由黑色高温胶、碳、硅、黑色氧化物以及硫化物构成。
优选地,透明基板2的涂覆有黑色散热涂层的表面为粗糙表面。具体地,通过在透明基板2上进行腐蚀处理以及机械加工等,可以在透明基板2表面上将要涂覆黑色散热涂层的位置处形成粗糙的粘接部,以增大透明基板2与黑色散热涂层之间的结合力,使得黑色涂层牢固地固定在透明基板2上。黑色散热涂层可以在形成发光模块和滤光模块之后被涂覆至透明基板上。或者,可以先在透明基板上大面积地镀覆黑色涂层(例如,使用掩模进行局部涂覆或整体涂覆后再进行局部移除),然后再形成发光模块和滤光模块。
图1中黑色涂层被分别设置在透明基板2背面的与发光模块对应的位置处、透明基板2正面的中心位置处以及透明基板2的侧面。应当理解的是,黑色涂层的位置显然不限于图1所示的位置,而是可以根据需要设置在透明基板2的非光路区域的任意位置处。
图2是根据本实用新型的第二实施例的光源模组的示意性截面图。在图1所示的本实用新型的第一实施例的光源模组中,发光模块6和对应的滤光模块7位于以透明基板2的旋转中心为圆心的同一扇形区域内。而在图2所示的本实用新型的第二实施例的光源模组中,发光模块6和对应的滤光模块7位于以透明基板2的旋转中心为圆心的不同扇形区域内。此外,对比图2和图1可知,本实用新型的第二实施例和第一实施例的主要区别在于辐射散热结构的设置位置不同。因此,在下文中将主要说明二者之间的不同,相同的部分将不再赘述。
根据本实用新型的第二实施例中,散射结构设置在发光模块6和透明基板2之间,并且是用于连接发光模块6与透明基板2的黑色粘接剂。黑色粘接剂可以是现有技术中任意的具有高热导率的黑色粘接剂,例如可以是含石墨或石墨烯的导热胶或硅胶。这样的黑色粘接剂由于同时具有高的热传导能力和热辐射能力,所以能够使色轮中的发光模块6的散热能力最大化。应当理解,第二实施例中的黑色粘接剂显然也位于透明基板2的非光路区域内。
图3示出了根据本实用新型的第三实施例。在第三实施例中,为了获得更好的热辐射效果,可以同时设置有图1所示的黑色涂层与图2所示的黑色粘接剂。
此外,所述辐射散热结构不限于上述实施例中的情况,而可以包括设置在透明基板表面的非光路区域内的其它的黑色散热结构(例如,黑色散热凸起、肋片等),只要不影响透明基板、发光模块以及滤光模块原有的光学性能即可。
另外,图1至图3中均图示的是滤光模块7与发光模块6位于透明基板2的相同侧的情况。然而,滤光模块7也可以布置在透明基板2的另一侧,即,图1和图2中的背面。在此情况下,被第二光学膜片4反射的光束先透过透明基板2再经过滤光模块7。此外,图1和图2中均图示的是滤光模块7位于发光模块6的内侧的情况,但滤光模块7也可以位于发光模块6的外侧。
另外,图4示出了根据本实用新型的第四实施例。在一些特定情况下(例如,色轮模组9是单色色轮模组或者发光模块6发出的光的波长恰好符合出射光需求),色轮模组9中的色轮也可以不设置滤光模块。在此情况下,如图4所示,从发光模块6出射的光(例如,被反射的蓝色激光或发光模块6出射的受激光)第一光学膜片3和第二光学膜片4的反射后,直接穿过透明基板2。
在第一实施例至第四实施例中,均说明的是色轮模组9中的发光模块为反射型发光模块的情况。然而,本实用新型显然也适用于采用透射型发光模块的色轮模组。图5示出了根据本实用新型的第五实施例。如图5中所示,发光模块6和滤光模块7均直接或间接地固定在透明基板2上,数量均可以为多个。在本实施例中,多个发光模块6在透明基板2的表面上拼接成圆环状的发光层(未示出)。相应地,多个滤光模块7也在透明基板2的对侧表面上拼接成圆环状的滤光层(未示出),并且每一个滤光模块7与发光模块6相面对。从发光模块6出射的光透过透明基板2入射至滤光模块7,经过滤光模块7的滤光后到达收集透镜5。在实施例5中,在基板的非光路区域的表面上设置有如实施例1中所述的黑色涂层。但应当理解的是,也可以根据需要采用实施例2和实施例3中所述的辐射散热结构。另外,图5所示的色轮模组9也可以根据需要不设置滤光模块7。在此情况下,从发光模块6出射的光透过透明基板2后直接到达收集透镜5。
综上所述,通过在色轮的透明基板上设置黑色的辐射散热结构,使得色轮模组在原有的空气对流以及热传导的散热方式之外,进一步增加了热辐射的散热方式,这避免了因热量扩散不及时而导致的器件故障,提高了发光效率,并延长了器件的使用寿命。
此外,本实用新型还提供了一种投影系统,包括如上任一实施例提供的光源模组。
尽管在上面已经参照附图说明了根据本实用新型的色轮模组、光源模组和投影系统,但是本实用新型不限于此,且本领域技术人员应理解,在不偏离本实用新型随附权利要求书限定的主旨或范围的情况下,可以对说明书中的各实施例作出各种改变、组合、次组合以及变型。

Claims (10)

1. 一种色轮模组,所述色轮模组包括色轮,其特征在于,所述色轮包括:
透明基板;
固定在所述透明基板的表面上的至少一个发光模块,至少部分所述发光模块为波长转换模块;以及
辐射散热结构,所述辐射散热结构布置在所述透明基板的非光路区域的表面上。
2. 根据权利要求1所述的色轮模组,其特征在于,
所述辐射散热结构包括设置在所述透明基板的所述非光路区域的表面上的黑色涂层。
3. 根据权利要求1或2所述的色轮模组,其特征在于,
所述辐射散热结构还包括设置在所述透明基板与所述发光模块之间的黑色粘接剂。
4. 根据权利要求3所述的色轮模组,其特征在于,
所述黑色粘接剂是含石墨或石墨烯的导热胶或硅胶。
5. 根据权利要求2所述的色轮模组,其特征在于,
所述黑色涂层是黑色高温胶涂层、碳涂层、硅涂层、黑色氧化物涂层以及硫化物涂层中的一种。
6. 根据权利要求2所述的色轮模组,其特征在于,
所述透明基板粘接有所述黑色涂层的粘接部是粗糙表面。
7. 根据权利要求1或2所述的色轮模组,其特征在于,所述透明基板为蓝宝石基板。
8. 根据权利要求1或2所述的色轮模组,其特征在于,所述色轮还包括至少一个滤光模块,所述滤光模块与所述发光模块一一对应地设置,所述至少一个滤光模块中的至少一部分用于修正从对应的所述发光模块出射的光束的色坐标。
9. 一种光源模组,其特征在于,所述光源模组包括:
激发光源,所述激发光源用于发射激发光;
如权利要求1~7任一项所述的色轮模组,所述色轮还包括至少一个滤光模块,所述滤光模块与所述发光模块一一对应地设置,所述至少一个滤光模块中的至少一部分用于修正从对应的所述发光模块出射的光束的色坐标,其中,所述色轮模组的所述发光模块位于所述激发光的光路上,并在所述激发光的照射下出射预定颜色的光束;
至少一个第一光学膜片,所述至少一个第一光学膜片位于所述激发光源和色轮模组之间,所述至少一个第一光学膜片透射所述激发光并且反射从所述发光模块出射的光束;
至少一个第二光学膜片,所述至少一个第二光学膜片将从所述至少一个第一光学膜片反射来的所述光束反射至与所述发光模块对应的所述滤光模块上;以及
驱动装置,用于驱动所述色轮模组的色轮转动。
10. 一种投影系统,其特征在于,包括权利要求9所述的光源模组。
PCT/CN2017/094804 2017-05-04 2017-07-28 色轮模组、光源模组和投影系统 WO2018201628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720488891.9U CN206819041U (zh) 2017-05-04 2017-05-04 色轮模组、光源模组和投影系统
CN201720488891.9 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201628A1 true WO2018201628A1 (zh) 2018-11-08

Family

ID=60754102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094804 WO2018201628A1 (zh) 2017-05-04 2017-07-28 色轮模组、光源模组和投影系统

Country Status (2)

Country Link
CN (1) CN206819041U (zh)
WO (1) WO2018201628A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207164450U (zh) * 2017-08-01 2018-03-30 深圳市光峰光电技术有限公司 色轮、光源系统及投影系统
CN108303839B (zh) * 2018-02-09 2019-11-12 广景视睿科技(深圳)有限公司 一种激光投影照明光源及其投影系统
CN110398875A (zh) 2018-04-24 2019-11-01 深圳光峰科技股份有限公司 光源系统
CN110928122A (zh) * 2018-09-20 2020-03-27 深圳光峰科技股份有限公司 光源系统及显示设备
CN111077667B (zh) * 2018-10-22 2021-12-07 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法以及投影装置
CN111308841A (zh) * 2018-12-11 2020-06-19 深圳光峰科技股份有限公司 波长转换装置及光源系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129354A (ja) * 2009-12-17 2011-06-30 Stanley Electric Co Ltd 光源装置および照明装置
CN202432440U (zh) * 2012-02-17 2012-09-12 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN202474028U (zh) * 2012-02-17 2012-10-03 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN104516177A (zh) * 2014-12-18 2015-04-15 苏州佳世达光电有限公司 色轮及投影装置
CN205608228U (zh) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 一种光源装置
CN205750254U (zh) * 2016-05-09 2016-11-30 深圳市光峰光电技术有限公司 色轮、光源系统及投影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129354A (ja) * 2009-12-17 2011-06-30 Stanley Electric Co Ltd 光源装置および照明装置
CN202432440U (zh) * 2012-02-17 2012-09-12 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN202474028U (zh) * 2012-02-17 2012-10-03 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN104516177A (zh) * 2014-12-18 2015-04-15 苏州佳世达光电有限公司 色轮及投影装置
CN205608228U (zh) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 一种光源装置
CN205750254U (zh) * 2016-05-09 2016-11-30 深圳市光峰光电技术有限公司 色轮、光源系统及投影装置

Also Published As

Publication number Publication date
CN206819041U (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2018201628A1 (zh) 色轮模组、光源模组和投影系统
US8070302B2 (en) Laminate type light-emitting diode device, and reflection type light-emitting diode unit
US10281808B2 (en) Multilayer wavelength conversion device and projector
CN205450551U (zh) 色轮模组、光源模组和投影系统
WO2016127816A1 (zh) 散热型修色色轮
US20130126930A1 (en) Light source device
WO2017121233A1 (zh) 一种波长转换装置、光源系统以及投影装置
CN113341640B (zh) 波长转换装置及投影装置
US20160274446A1 (en) Light source apparatus and projection display apparatus
WO2017193779A1 (zh) 色轮、光源系统及投影装置
WO2019000674A1 (zh) 波长转换装置及光源系统
WO2011011980A1 (zh) 高效合光的舞台灯光照明装置
WO2019104829A1 (zh) 波长转换装置
US11340445B2 (en) Phosphor wheel device
WO2018010487A1 (zh) 光源及投影仪
TWI634380B (zh) 色輪模組與光源模組
WO2016070705A1 (zh) 一种投影仪及其光源系统
WO2018137313A1 (zh) 一种光源装置
US10976651B2 (en) Image display apparatus and light source apparatus
CN110579932A (zh) 波长转换元件、投影装置及波长转换元件的制作方法
WO2018153042A1 (zh) 光源控制组件、显示装置及制造光源控制组件的方法
CN1762038A (zh) 照明装置及具备其的投影机
WO2020052228A1 (zh) 波长转换装置及光源系统
WO2017118300A1 (zh) 一种光源装置及照明装置
WO2018095019A1 (zh) 光源系统、投影系统及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908215

Country of ref document: EP

Kind code of ref document: A1