WO2018201567A1 - 一种激光雷达的旋转结构 - Google Patents

一种激光雷达的旋转结构 Download PDF

Info

Publication number
WO2018201567A1
WO2018201567A1 PCT/CN2017/088546 CN2017088546W WO2018201567A1 WO 2018201567 A1 WO2018201567 A1 WO 2018201567A1 CN 2017088546 W CN2017088546 W CN 2017088546W WO 2018201567 A1 WO2018201567 A1 WO 2018201567A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
rotating structure
disposed
bearing
Prior art date
Application number
PCT/CN2017/088546
Other languages
English (en)
French (fr)
Inventor
张瓯
朱亚平
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Publication of WO2018201567A1 publication Critical patent/WO2018201567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the utility model relates to the field of rotating structures, in particular to a rotating structure for use on a laser radar.
  • the laser ranging radar is divided into upper and lower parts, wherein the lower part is a rotating base and the upper part is a laser transmitting/receiving component that is driven to rotate.
  • the rotating base of the laser ranging radar is usually limited to a single solid shaft structure with a small diameter due to signal transmission and power supply limitations.
  • the upper half of the laser transmitting/receiving component weighs at least 600g or more, this small-diameter single-axis design is easily damaged by external force vibration at high-speed rotation of the radar, thereby affecting the normal use of the laser ranging radar.
  • the utility model provides a rotating structure of a novel laser radar.
  • the design of a large-diameter hollow shaft system is adopted, and the stator and rotor parts of the rotating system are made into a shaft system, and a sufficient space is left in the middle.
  • the placement of the signal transmission structure and the power transmission structure not only ensures the stability of the rotating shaft, but also improves the impact resistance of the rotating structure, and at the same time avoids mutual interference of the signal transmission system.
  • the present invention provides a rotating structure of a laser radar, which is characterized in that it comprises a stator comprising a stator base and a stator body, the stator body being annular, disposed at a center of the stator body, a motor coil, the motor coil sleeved on an outer side of the stator body, and a rotor gland
  • the rotor gland is annular, the rotor gland is fixedly mounted on the inner side of the stator body, the rotor has a cylindrical shape, and the rotor end surface is centrally provided with a rotor mounting portion, and the rotor is mounted a fixed connection with the rotor gland for fixedly connecting the rotor to the stator, and a bearing mounted between the rotor and the rotor mounting portion to support rotation of the rotor, the stator passing After the electrical energy is input, the stator drives the rotor to rotate, thereby driving the lidar assembly mounted on the upper portion of the rotor to rotate.
  • the rotating structure further includes a first bearing and a second bearing
  • the inner side of the stator body is provided with an annular protrusion toward a central axis
  • the first bearing is disposed at an upper portion of the annular protrusion
  • a second bearing is disposed at a lower portion of the annular projection, an upper portion of the rotor gland.
  • the rotating structure further comprises a power transmission unit disposed inside the stator body for supplying power to the rotating structure, and a signal transmission unit for realizing signal conversion.
  • the power transmission unit includes a first coupling coil and a second coupling coil, wherein the first coupling coil is cylindrical and disposed inside the stator body, and the second coupling coil is disposed on the In the stator base.
  • a center of the first coupling coil is disposed at a center, and the signal transmission unit is disposed in the through hole.
  • At least one hollowed-out heat dissipation hole is disposed on an end surface of the rotor.
  • the end surface of the rotor is further provided with a mounting hole for mounting the laser radar assembly.
  • the mounting portion of the stator is a hollow cylindrical structure having a diameter greater than or equal to a diameter of the first coupling coil, less than or equal to a diameter of the bearing, and after installation, the first coupling coil is located at the rotor Inside the mounting section.
  • the rotor mounting portion is provided with an external thread, and correspondingly, the inner side of the rotor gland is provided with an internal thread, and when installed, the rotor mounting portion is screwed into the rotor gland and fixedly connected thereto.
  • a heat dissipating portion is disposed on the end surface of the rotor, and the heat dissipating portion is opposite to the rotor end surface A fan-shaped structure formed by thinning.
  • stator, the rotor and the bearing part of the rotating system are integrated into the shaft system, thereby avoiding the interference of the magnetic force between the rotor and the stator during installation, simplifying the installation step and improving the precision of the installation;
  • the utility model installs the signal transmission structure and the power transmission structure on the inner side of the shaft system integrated with the stator, the rotor and the bearing part to avoid mutual interference with the power transmission; when the radar is operated at a high speed, the rotation axis can be ensured. Smoothness and high impact resistance;
  • the utility model sets the rotor as a cover structure, and encloses the stator, the bearing and the signal transmission and power transmission structure on the inner side thereof, thereby increasing the anti-electromagnetic interference capability of the rotating structure.
  • FIG. 1 is a structural view of a laser radar rotating structure in accordance with a preferred embodiment of the present invention
  • Figure 2 is a longitudinal sectional view of the rotating structure of Figure 1;
  • Figure 3 is a structural view of the rotating structure of Figure 1 when the rotor is not installed;
  • Figure 4 is a structural view of the bearing and the rotor gland of the rotating structure of Figure 1;
  • Figure 5 is a structural view of the rotor in the rotating structure of Figure 1.
  • Figure 1 shows a structural view of a rotating structure in accordance with a preferred embodiment of the present invention and a longitudinal cross-sectional view thereof.
  • the rotating structure provided in this embodiment mainly includes a stator 4, a motor coil 2, a rotor gland 6, a rotor 1, and a bearing 3. Its specific location and interconnection are as follows:
  • the stator includes a stator base 42 and a stator body 41.
  • the stator base 42 has a cylindrical shape.
  • the stator body 41 has an annular shape.
  • the stator body 41 is disposed at a center of the stator base 42 and is held in the same manner.
  • the stator base 42 is coaxially disposed coaxially;
  • the motor coil 2 is sleeved on the outer side of the stator body 41, and is also coaxially disposed coaxially with the stator body and the stator base;
  • the rotor gland 6 is also annular, and the rotor gland 6 can be fixedly mounted on the inner side of the stator body 41 by a flange edge or the like.
  • the outer diameter of the rotor gland 6 is equal to or slightly smaller than The inner diameter of the stator body 41 is described.
  • the rotor 1 has a cylindrical shape, and a center of the end surface of the rotor 1 is provided with a rotor mounting portion 11 that is fixedly coupled to the rotor gland 6 so that the rotor 1 and the
  • the stator 4 is fixedly connected; in this embodiment, after the rotor 1 is mounted on the stator 4, the stator 4 wraps the motor coil 2, the stator body 41, and the like inside, thereby achieving the effect of electromagnetic shielding.
  • the bearing 3 is mounted between the rotor 1 and the rotor mounting portion 11 for supporting the rotation of the rotor 1.
  • the stator 4 first drives the rotor 1 to rotate, so that the laser radar assembly mounted on the upper portion of the rotor 1 is rotated by the rotor 1.
  • the stator, the rotor and the bearing portion of the rotating system are integrated into
  • the shafting system avoids the interference of the magnetic force between the rotor and the stator during installation, simplifies the installation step and improves the precision of the installation; meanwhile, in the embodiment, the stator body and the motor coil are used by the cylindrical rotor structure.
  • the outer cover formed by the rotor, such as bearings and bearings, increases the anti-electromagnetic interference capability of the rotating structure.
  • the rotating structure includes two bearings, which are respectively a first bearing and a second bearing (not shown), and the inner side of the stator body is disposed toward the central axis.
  • the annular projection is such that the first bearing is disposed at an upper portion of the annular projection, and the second bearing is disposed at a lower portion of the annular projection, an upper portion of the rotor gland.
  • the rotating structure further includes a power transmission unit disposed inside the stator body 41 (not Mark out), and signal transmission unit (not shown).
  • the power transmission unit can supply power to the rotating structure to start the rotating structure; and the signal transmission unit can realize signal conversion, for example, the signal received by the radar can be converted into an optical signal and transmitted to the motherboard in the chassis.
  • the present embodiment effectively avoids mutual interference of power transmission and signal transmission in the system as compared with the external settings in the prior art.
  • the power transmission unit includes a first coupling coil 5 and a second coupling coil (not shown), wherein the first coupling coil 5 has a cylindrical shape.
  • the stator body 41 is disposed coaxially with the stator body 41, and the second coupling coil is disposed in the stator base 42. After the installation of the rotating structure is completed, a gap is maintained between the first coupling coil 5 and the second coupling coil, so that, in the case of omitting the cable, power is supplied to the rotating structure through the base to drive the rotating structure to operate.
  • the above design utilizes a built-in coupling coil arrangement instead of an external wire arrangement to avoid the safety hazard caused by overlapping various complicated wires, and on the other hand, simplifies the installation process.
  • FIG. 4 is a structural view of the bearing and the rotor gland of the rotating structure of FIG. 1, it can be seen from the figure that in the embodiment, a through hole is disposed in the center of the first coupling coil 5. 51.
  • the signal transmission unit is disposed in the through hole, which further saves external signal transmission. The space of the unit avoids mutual interference between various transmission units or cables.
  • the end surface of the rotor 1 is provided with at least one hollowed-out heat dissipation hole 12, which can timely dissipate heat generated during the operation of the internal rotating structure, thereby increasing the operating life of the rotating structure.
  • the end surface of the rotor 1 is further provided with a mounting hole 13 for mounting the laser radar assembly, so that when the rotor 1 is in operation, the lidar assembly can be driven to rotate coaxially at the same speed, and can be improved.
  • the stability of the operation of the lidar component is further provided with a mounting hole 13 for mounting the laser radar assembly, so that when the rotor 1 is in operation, the lidar assembly can be driven to rotate coaxially at the same speed, and can be improved.
  • FIG. 5 is a structural view of the rotor of the rotating structure in the embodiment.
  • the mounting portion 11 of the stator 1 is a hollow cylindrical structure having a diameter greater than or equal to the above.
  • the diameter of the first coupling coil 5 is smaller than or equal to the diameter of the bearing 3.
  • the mounting portion 11 of the stator 1 is provided with external threads.
  • the rotor gland 6 is provided with internal threads. When mounted, the rotor 1 is screwed into the mounting. The rotor gland 6 is fixedly connected thereto. Thereby, the fastening of the rotor to the stator is further ensured.
  • a heat dissipating portion is provided on an end surface of the rotor 1, and the heat dissipating portion is a fan-shaped structure (not shown) formed by thinning the end surface of the rotor.
  • the contact area of the rotor 1 and the upper rotating assembly can be reduced, thereby forming a heat dissipation passage and improving the heat dissipation efficiency of the internal rotating structure.
  • the utility model adopts the design of the hollow large-diameter hollow shaft system, and the stator and the rotor part of the rotating system are formed into a shaft system, and a sufficient space is left in the middle for the signal transmission structure and the power transmission structure.
  • the stability of the rotating shaft can be ensured, and the impact resistance is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的旋转结构,其包括定子(4),电机线圈(2),转子压盖(6),转子(1),以及轴承(3),其中,定子(4)通入电能后,驱动转子(1)转动,从而带动安装于转子(1)上部的激光雷达组件转动。该激光雷达的旋转结构采用大直径的空心轴系的设计,将定子(4)与转子(1)部分做成了轴系,中间留有足够的空间,用于安置信号传输结构和电能传输结构,从而,不仅能够确保旋转轴的平稳性,提高旋转结构的抗冲击性能,同时还可避免信号传输系统的相互干扰。

Description

一种激光雷达的旋转结构 技术领域
本实用新型涉及旋转结构领域,尤其涉及一种用于激光雷达上的旋转结构。
背景技术
随着智能雷达技术领域的快速发展,雷达的应用领域逐渐拓宽,旋转式雷达由于其便利性越来越受到各行业的重视。雷达旋转结构的样式繁多,但仍然存在许多问题。
目前,激光测距雷达多分为上下两个部分,其中,下部为旋转底座,上部为被带动旋转的激光发射/接收组件。激光测距雷达的旋转底座,由于受到信号传送和供电上的限制,通常采用直径较小的单实心轴结构。但是,由于上半部分的激光发射/接收组件重量至少在600g以上,所以这种小直径的单轴设计很容易在雷达高速旋转受到外力震动而损坏,从而影响激光测距雷达的正常使用。
实用新型内容
为解决上述问题,本实用新型提供一种新型激光雷达的旋转结构,采用大直径的空心轴系的设计,将旋转系统的定子与转子部分做成了轴系,中间留有足够的空间,用于安置信号传输结构和电能传输结构,不仅能够确保旋转轴的平稳性,提高旋转结构的抗冲击性能,同时还可避免信号传输系统的相互干扰。
具体地,本实用新型提供一种激光雷达的旋转结构,其特征在于,包括 定子,所述定子包括定子底座和定子本体,所述定子本体为圆环状,设置于所述定子本体的中心,电机线圈,所述电机线圈套设于所述定子本体的外侧,转子压盖,所述转子压盖为圆环状,所述转子压盖固定安装于所述定子本体内侧,转子,所述转子呈圆筒形状,所述转子端面中心设置有转子安装部,所述转子安装部与所述转子压盖固定连接,使所述转子与所述定子固定连接,以及轴承,所述轴承安装于所述转子与所述转子安装部之间,支撑转子的转动,所述定子通入电能后,所述定子驱动所述转子转动,从而带动安装于所述转子上部的激光雷达组件转动。
优选地,所述旋转结构还包括第一轴承和第二轴承,所述定子本体内侧朝向中心轴设置有环状凸起,所述第一轴承设置于所述环状凸起的上部,所述第二轴承设置于所述环状凸起的下部,所述转子压盖的上部。
优选地,所述旋转结构还包括设置于所述定子本体内侧的电能传输单元,用于向旋转结构提供电能,和信号传输单元,用于实现信号的转换。
优选地,所述电能传输单元包括第一耦合线圈和第二耦合线圈,其中,所述第一耦合线圈呈圆柱形,设置于所述定子本体内侧,所述第二耦合线圈则设置于所述定子底座中。
优选地,所述第一耦合线圈中心设置有一通孔,所述信号传输单元设置于所述通孔中。
优选地,所述转子的端面上设置有至少一个镂空的散热孔。
优选地,所述转子的端面上还设置有安装孔,用于安装激光雷达组件。
优选地,所述定子的安装部为空心的筒状结构,其直径大于等于所述第一耦合线圈的直径,小于等于所述轴承的直径,安装后,所述第一耦合线圈位于所述转子安装部内侧。
优选地,所述转子安装部上设置有外螺纹,对应地,所述转子压盖内侧设置有内螺纹,安装时,所述转子安装部旋入所述转子压盖,与其固定连接。
优选地,所述转子端面上设置有散热部,所述散热部为对所述转子端面 进行减薄处理形成的扇形结构。
与现有技术相比较,本实用新型的技术优势在于:
1)本实用新型中将旋转系统的定子、转子及轴承部分集成为轴系,避免了安装时转子与定子间的磁力作用的干扰,简化了安装步骤,同时提高了安装的精准度;
2)本实用新型将信号传输结构和电能传输结构安装于定子、转子及轴承部集成的轴系的内侧,避免与电源传输的相互干扰;在雷达工作时会高速旋转时,能够确保旋转轴的平稳性,同时具有高抗冲击性能;
3)本实用新型将转子设置为外罩结构,将定子、轴承及其内侧的信号传输和电能传输结构包裹在内,增加了旋转结构的抗电磁干扰能力。
附图说明
图1为一符合本实用新型一优选实施例的激光雷达旋转结构的结构图;
图2为图1中旋转结构的纵剖图;
图3为图1中旋转结构未安装转子时的结构图;
图4为图1中旋转结构的轴承及转子压盖的结构图;
图5为图1中旋转结构中转子的结构图。
附图标记:
1-转子,11-转子安装部,12-散热孔,13-安装孔,
2-电机线圈,
3-轴承,
4-定子,41-定子本体,42-定子底座,
5-第一耦合线圈,51-通孔,
6-转子压盖。
具体实施方式
下面结合附图及具体实施例,详细阐述本实用新型的优势。
参阅图1和图2,其中,图1显示一符合本实用新型一优选实施例的旋转结构的结构图及其纵剖图。结合图1、图2可以看出,本实施例中提供的旋转结构主要包括定子4,电机线圈2,转子压盖6,转子1,轴承3。其具体位置及相互连接关系如下:
-定子4
所述定子包括定子底座42和定子本体41,所述定子底座42为圆柱状,所述定子本体41为圆环状,所述定子本体41设置于所述定子底座42的中心,保持与所述定子底座42同心同轴设置;
-电机线圈2
所述电机线圈2套设于所述定子本体41的外侧,也与所述定子本体及定子底座同心同轴设置;
-转子压盖6
所述转子压盖6也为圆环状,所述转子压盖6可通过法兰边等方式固定安装于所述定子本体41的内侧,所述转子压盖6的外径等于或略小于所述定子本体41的内径。
-转子1
所述转子1呈圆筒形状,所述转子1的端面的中心位置设置有转子安装部11,所述转子安装部11与所述转子压盖6固定连接,从而使所述转子1与所述定子4固定连接;本实施例中,转子1安装于定子4后,定子4将电机线圈2、定子本体41等均包裹在内部,从而,实现电磁屏蔽的效果。
-轴承3,
所述轴承3安装于所述转子1与所述转子安装部11之间,用于支撑转子1的转动。
本实用新型的旋转结构,当所述定子4通入电能后,所述定子4首先驱动所述转子1转动,从而利用所述转子1带动安装于所述转子1上部的激光雷达组件转动。
鉴于上述设置,本实施例中将旋转系统的定子、转子及轴承部分集成为 轴系,避免了安装时转子与定子间的磁力作用的干扰,简化了安装步骤,同时提高了安装的精准度;同时,本实施例中利用圆筒状的转子结构,将定子本体、电机线圈、轴承等结构包裹在内,转子形成的外罩,增加了旋转结构的抗电磁干扰能力。
进一步参阅图2可见,本实施例中,优选地,所述旋转结构包括两个轴承,分别为第一轴承和第二轴承(未标出),而,所述定子本体内侧朝向中心轴设置有环状凸起,使得,所述第一轴承设置于所述环状凸起的上部,所述第二轴承设置于所述环状凸起的下部,所述转子压盖的上部。
进一步参阅图3,其为图1中旋转结构未安装转子时的结构图,从图中可见,本实施例中,所述旋转结构还包括设置于所述定子本体41内侧的电能传输单元(未标出),和信号传输单元(未标出)。其中,电能传输单元可以向旋转结构提供电能,从而启动旋转结构工作;而信号传输单元则可实现信号的转换,如,可将雷达接收到的信号转换为光信号,并传递至底盘中的主板。鉴于上述设置,与现有技术中的外部设置相比较,本实施例有效避免了系统中电能传输、信号传输的相互干扰。
其中,具体地,参阅图2及图3,可以看出,所述电能传输单元包括第一耦合线圈5和第二耦合线圈(未标出),其中,所述第一耦合线圈5呈圆柱形,设置于所述定子本体41内侧,与所述定子本体41同心同轴,而所述第二耦合线圈则设置于所述定子底座42中。旋转结构安装完成后,第一耦合线圈5与第二耦合线圈之间保持一间隙,从而,可实现在省略线缆的情况下,实现通过底座向旋转结构提供电能,以驱动旋转结构运行。上述设计利用内置的耦合线圈设置,替代了外置的导线设置,一方面避免各种复杂的导线相互交叠产生的安全隐患,另一方面简化了安装工艺。
更进一步地,参阅图4,其为图1中旋转结构的轴承及转子压盖的结构图,从图中可以看出,本实施例中,在所述第一耦合线圈5中心设置有一通孔51,所述信号传输单元设置于所述通孔中,也进一步节省了外置信号传输 单元的空间,同时避免了各种传输单元或者线缆之间的相互干扰。
另外,优选地,参阅图1,所述转子1的端面上设置有至少一个镂空的散热孔12,可将其内部的旋转结构运行过程中产生的热量及时散发出,增加旋转结构的运行寿命。
优选地,参阅图1,所述转子1的端面上还设置有安装孔13,用于安装激光雷达组件,从而,当转子1运转时,可带动激光雷达组件同轴同速运动,且可提高激光雷达组件运行的稳定性。
优选地,参阅图5,图5为本实施例中旋转结构的转子的结构图,从图中可以看出,所述定子1的安装部11为空心的筒状结构,其直径大于等于所述第一耦合线圈5的直径,小于等于所述轴承3的直径。另外,从图4中也可以看出,所述定子1的安装部11上设置有外螺纹,对应地,所述转子压盖6上设置有内螺纹,安装时,所述转子1旋入所述转子压盖6,与其固定连接。从而,进一步保证转子与定子连接的紧固性。
参阅图1,所述转子1的端面上设置有散热部,所述散热部为对所述转子端面进行减薄处理形成的扇形结构(未标出)。鉴于上述设置,可减少转子1与上部旋转组件的接触面积,从而形成散热通道,提高内部旋转结构的散热效率。
综上所述,本实用新型采用底部大直径的空心轴系的设计,将旋转系统的定子与转子部分做成了轴系,中间留有足够的空间,用于安置信号传输结构和电能传输结构,在彼此互补干扰的情况下,在雷达工作时会高速旋转时,能够确保旋转轴的平稳性,同时具有高抗冲击性能。
应当注意的是,本实用新型的实施例有较佳的实施性,且并非对本实用新型作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本实用新型技术方案的范围内。

Claims (10)

  1. 一种激光雷达的旋转结构,其特征在于,包括
    定子,所述定子包括定子底座和定子本体,所述定子本体为圆环状,设置于所述定子本体的中心,
    电机线圈,所述电机线圈套设于所述定子本体的外侧,
    转子压盖,所述转子压盖为圆环状,所述转子压盖固定安装于所述定子本体内侧,
    转子,所述转子呈圆筒形状,所述转子端面中心设置有转子安装部,
    所述转子安装部与所述转子压盖固定连接,使所述转子与所述定子固定连接,以及
    轴承,所述轴承安装于所述转子与所述转子安装部之间,支撑转子的转动,所述定子通入电能后,驱动所述转子转动,从而带动安装于所述转子上部的激光雷达组件转动。
  2. 如权利要求1所述的旋转结构,其特征在于,
    所述旋转结构包括第一轴承和第二轴承,
    所述定子本体内侧朝向中心轴设置有环状凸起,
    所述第一轴承设置于所述环状凸起的上部,
    所述第二轴承设置于所述环状凸起的下部,所述转子压盖的上部。
  3. 如权利要求1所述的旋转结构,其特征在于,
    还包括设置于所述定子本体部内侧的电能传输单元,用于向旋转结构提供电能,和信号传输单元,用于实现信号的转换。
  4. 如权利要求2所述的旋转结构,其特征在于,
    所述电能传输单元包括第一耦合线圈和第二耦合线圈,其中,所述第一耦合线圈呈圆柱形,设置于所述定子本体内侧,所述第二耦合线圈则设置于所述定子底座。
  5. 如权利要求3所述的旋转结构,其特征在于,
    所述第一耦合线圈中心设置有一通孔,所述信号传输单元设置于所述通孔中。
  6. 如权利要求1所述的旋转结构,其特征在于,
    所述转子的端面上设置有至少一个镂空的散热孔。
  7. 如权利要求1所述的旋转结构,其特征在于,
    所述转子的端面上还设置有安装孔,用于安装激光雷达组件。
  8. 如权利要求1所述的旋转结构,其特征在于,
    所述转子安装部为空心的筒状结构,其直径大于等于所述第一耦合线圈的直径,小于等于所述轴承的直径,安装后,所述第一耦合线圈位于所述转子安装部内侧。
  9. 如权利要求1所述的旋转结构,其特征在于,
    所述转子安装部上设置有外螺纹,对应地,所述转子压盖内侧设置有内螺纹,安装时,所述转子安装部旋入所述转子压盖,与其固定连接。
  10. 如权利要求1所述的旋转结构,其特征在于,
    所述转子端面上设置有散热部,所述散热部为对所述转子端面进行减薄处理形成的扇形结构。
PCT/CN2017/088546 2017-05-05 2017-06-16 一种激光雷达的旋转结构 WO2018201567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720492365.X 2017-05-05
CN201720492365.XU CN206992808U (zh) 2017-05-05 2017-05-05 一种激光雷达的旋转结构

Publications (1)

Publication Number Publication Date
WO2018201567A1 true WO2018201567A1 (zh) 2018-11-08

Family

ID=61390999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088546 WO2018201567A1 (zh) 2017-05-05 2017-06-16 一种激光雷达的旋转结构

Country Status (2)

Country Link
CN (1) CN206992808U (zh)
WO (1) WO2018201567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994618B2 (en) 2017-12-07 2024-05-28 Ouster, Inc. Rotating compact light ranging system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709528B (zh) * 2019-01-11 2021-09-28 宁波傲视智绘光电科技有限公司 电机、电机组件及激光发射组件
CN109828286B (zh) * 2019-03-08 2021-07-30 上海禾赛科技有限公司 激光雷达
WO2021196230A1 (zh) * 2020-04-03 2021-10-07 深圳市速腾聚创科技有限公司 激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275331A (ja) * 2000-03-27 2001-10-05 Mitsubishi Materials Corp 揺動アクチュエーター
US20140198308A1 (en) * 2013-01-11 2014-07-17 Samsung Techwin Co., Ltd. Panoramic scan radar and panoramic laser scanning method
CN104967248A (zh) * 2015-07-08 2015-10-07 广东威灵电机制造有限公司 外转子电机
CN205027903U (zh) * 2015-10-13 2016-02-10 大族激光科技产业集团股份有限公司 激光测距模块
CN205594163U (zh) * 2016-05-04 2016-09-21 上海思岚科技有限公司 一种激光扫描测距装置
CN205643710U (zh) * 2016-05-19 2016-10-12 上海思岚科技有限公司 一种激光扫描测距装置
CN205681192U (zh) * 2016-06-24 2016-11-09 四川经曼光电科技有限公司 360°旋转扫描电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275331A (ja) * 2000-03-27 2001-10-05 Mitsubishi Materials Corp 揺動アクチュエーター
US20140198308A1 (en) * 2013-01-11 2014-07-17 Samsung Techwin Co., Ltd. Panoramic scan radar and panoramic laser scanning method
CN104967248A (zh) * 2015-07-08 2015-10-07 广东威灵电机制造有限公司 外转子电机
CN205027903U (zh) * 2015-10-13 2016-02-10 大族激光科技产业集团股份有限公司 激光测距模块
CN205594163U (zh) * 2016-05-04 2016-09-21 上海思岚科技有限公司 一种激光扫描测距装置
CN205643710U (zh) * 2016-05-19 2016-10-12 上海思岚科技有限公司 一种激光扫描测距装置
CN205681192U (zh) * 2016-06-24 2016-11-09 四川经曼光电科技有限公司 360°旋转扫描电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994618B2 (en) 2017-12-07 2024-05-28 Ouster, Inc. Rotating compact light ranging system

Also Published As

Publication number Publication date
CN206992808U (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2018201567A1 (zh) 一种激光雷达的旋转结构
US11466693B2 (en) Electric blower
JP2017539193A (ja) ローター組立体およびこれを含むモーター
CN101588144A (zh) 共轴并联式双定子双转子超声波电机
BR102020022281B1 (pt) Sistema de controle ativo para movimento rotacional de trens de alta velocidade
US10125742B2 (en) Wind power generation system
CN209358699U (zh) 一种网络交换机散热系统
JP2020072642A (ja) モータ及び減速装置
US20130285515A1 (en) External rotation type power generation device having biased power generator
CN202673430U (zh) 对置式电磁铁芯
CN101702568A (zh) 永磁限距耦合器
CN206226185U (zh) 一种电机后端盖
CN212660019U (zh) 一种无刷电机及其外转子结构
CN201418043Y (zh) 一种环形行波型超声波电机
CN106882034A (zh) 一种动力轮的支撑结构
CN105896804A (zh) 一种基于集成控制器的新能源汽车电机
CN207710794U (zh) 一种舵机组件及人形机器人
TW201738486A (zh) 慣性飛輪傳動組件及具有慣性飛輪傳動組件的系統
CN112436675A (zh) 一种航空发动机的双发电机结构
CN202707212U (zh) 电磁风扇离合器
CN215451989U (zh) 一种导电滑环的安装结构
CN220313382U (zh) 一种一体化机器人关节
US11973399B2 (en) Fan module
CN205847037U (zh) 一种无人机用的一体化无刷电机
JP6736983B2 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908389

Country of ref document: EP

Kind code of ref document: A1