WO2018201502A1 - 一种信号处理方法及装置 - Google Patents

一种信号处理方法及装置 Download PDF

Info

Publication number
WO2018201502A1
WO2018201502A1 PCT/CN2017/083356 CN2017083356W WO2018201502A1 WO 2018201502 A1 WO2018201502 A1 WO 2018201502A1 CN 2017083356 W CN2017083356 W CN 2017083356W WO 2018201502 A1 WO2018201502 A1 WO 2018201502A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
measurement report
information
terminal device
signal quality
Prior art date
Application number
PCT/CN2017/083356
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
张戬
柴丽
苗金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780090118.XA priority Critical patent/CN110574416B/zh
Priority to PCT/CN2017/083356 priority patent/WO2018201502A1/zh
Priority to EP17908284.7A priority patent/EP3611958B1/en
Publication of WO2018201502A1 publication Critical patent/WO2018201502A1/zh
Priority to US16/673,565 priority patent/US11310684B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signal processing method and apparatus.
  • the cellular communication system is only for the ground terminal, that is, the signal radiation direction of the base station is toward the ground.
  • the price of drones continues to decline, and the application of drones has become more extensive, and the requirements for long-distance flight of drones have gradually been put forward.
  • Most of the existing consumer drones are operated by remote controls, so they can only fly within the line of sight.
  • the drone's flight control commands can achieve long-distance transmission over the line of sight, helping the drone to fly long distances.
  • the photos or videos collected by the drone can also be returned in real time, which greatly promotes the development of the drone industry.
  • the flying height of the drone does not exceed the height of the base station, it can be regarded as a normal terminal; if the flying height is higher than the base station, there are two problems:
  • the quality of the downlink signal received by the drone deteriorates.
  • the radiation direction of the base station signal is mainly directed to the ground, although some reflection or scattering of the ground signal causes some signals to diffuse into the air, or the base station antenna also has some side lobes radiating into the air, in general, it is at
  • the signal received by the airborne drone will be relatively low; on the other hand, when the flying height of the drone exceeds the base station, the drone can see more base stations, that is, receive signals from multiple other base stations, resulting in The interference increases in the downstream direction. Therefore, combining the above two reasons, the signal quality of the UAV terminal in the downlink direction will be significantly deteriorated.
  • the uplink signal sent by the drone will generate a lot of uplink interference.
  • the uplink signals sent by the drones are also received by more base stations, which will cause uplink interference to these base stations.
  • the UAV terminal communicates with the serving base station, but since the altitude is increased, the downlink signals of the interfering base station 1 and the interfering base station 2 can be received. At the same time, the uplink signal sent by the UAV terminal to the serving base station is also received by the interfering base station 1 and the interfering base station 2.
  • the existing cellular network does not have an optimized design for the UAV terminal, which causes the UAV terminal to receive a large amount of downlink interference, and the UAV terminal also generates serious uplink interference to the surrounding base stations.
  • the embodiment of the present application provides a signal processing method and device to solve the problem of serious uplink and downlink interference that occurs when the existing UAV terminal communicates.
  • a signal processing method comprising:
  • the terminal device measures signal quality of one or more cells to generate a first measurement report
  • the terminal device sends the first measurement report to the first base station, where the first measurement report includes measurement information of the one or more cells.
  • the terminal device can identify signals of multiple cells above a certain flight altitude, and the terminal device needs to include the measurement results of the signal quality of the cells. In the first measurement report and sent to the first base station for downlink interference cancellation.
  • the terminal device In combination with the first aspect, in a possible design, the terminal device generates a first measurement report, including:
  • the terminal device generates the first measurement report according to the measurement report configuration information, where the measurement report configuration information includes at least one signal quality level.
  • the terminal device generates the first measurement report including at least one signal quality level according to the measurement report configuration information, and obtains a balance between the integrity of the reported information and the measurement report data amount, thereby reducing system overhead.
  • the measurement report configuration information further includes a signal quality range corresponding to each of the at least one signal quality level and/or the at least one signal quality level Each level corresponds to level configuration information, and the level configuration information is used to indicate measurement information that needs to be reported.
  • the measurement report configuration information further includes level configuration information corresponding to each of the at least one signal quality level and/or each of the at least one signal quality level.
  • the neighboring area that is more concerned can be selected according to the measurement report configuration information, and the screening of the neighboring area is more flexible and changeable.
  • the measurement report configuration information is received by the terminal device from the first base station, or is pre-configured.
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the measurement information can be composed from any of the signal quality level and the signal quality in a variety of ways, and the integrity of the reported information can be guaranteed.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • the method further includes:
  • the terminal device determines the first scheduling information by using the first identifier information, where the first scheduling information is scheduling information of a neighboring area, where the first identifier information is received by the terminal device from the first base station, Or the terminal device is determined according to the indication information received from the first base station.
  • the terminal device can recognize the signals of the plurality of cells above a certain flight altitude, and the terminal device needs to include the measurement results of the signal quality of the cells in the first A measurement report is sent to the first base station for downlink interference cancellation.
  • the terminal device determines the first scheduling information by using the first identifier information, including:
  • the terminal device detects, by using the first identification information, a control channel to determine the first scheduling information.
  • the terminal device can recognize the signals of the plurality of cells above a certain flight altitude, and the terminal device needs to include the measurement results of the signal quality of the cells in the first A measurement report is sent to the first base station for downlink interference cancellation.
  • a signal processing method including:
  • the first base station receives a first measurement report from the terminal device, where the first measurement report includes measurement information of one or more cells;
  • the second base station performs interference detection or cancellation on the terminal device based on the first measurement report.
  • the method further includes:
  • the first base station sends uplink resource configuration information to the second base station, where the uplink resource configuration information includes at least one of resource block RB location information, a modulation and coding policy MCS, and a frequency hopping indication.
  • the first base station sends uplink resource configuration information to the second base station, where the uplink resource configuration information may be uplink data scheduling information, and includes at least one of RB location information, an MCS, and a frequency hopping indication.
  • the uplink resource configuration information may also be uplink reference signal configuration information, such as resource configuration information of the sounding reference signal.
  • the second base station performs uplink interference detection or cancellation on the terminal device based on the uplink resource configuration information.
  • the method further includes:
  • the first base station sends a resource scheduling request to the second base station, where the resource scheduling request is used to request downlink resource scheduling information from the second base station;
  • the first base station receives first downlink resource scheduling information from the second base station.
  • the first base station sends the acquired downlink resource scheduling information to the terminal device, and the terminal device uses the downlink resource scheduling information to implement downlink interference cancellation.
  • the method further includes:
  • the first base station sends the first downlink resource scheduling information to the terminal device, where the first downlink resource scheduling information includes downlink resource scheduling information of the second base station.
  • the method further includes:
  • the first downlink resource scheduling information further includes downlink resource scheduling information of the third base station, where the third base station is determined by the second base station according to the first measurement report.
  • the method further includes:
  • the first base station determines the second base station according to the first measurement report.
  • the first base station determines, according to the first measurement report, at least one of the one or more cells;
  • the first base station determines the second base station according to the at least one cell.
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • a signal processing method including:
  • the second base station receives a first measurement report from the first base station, where the first measurement report includes measurement information of at least one cell, and the second base station is a neighboring base station of the first base station;
  • the second base station determines at least one third base station according to the first measurement report.
  • the second base station determines, according to the first measurement report, at least one third base station, and the third base station uses the first measurement report to detect whether there is a cell with strong interference, thereby eliminating uplink interference of the third base station dependent cell to the terminal device.
  • the first measurement report includes signal quality of at least one cell, Determining, by the second base station, the at least one third base station according to the first measurement report, including:
  • the second base station determines the base station to which the target cell belongs as the third base station.
  • the first measurement report includes a signal quality level of the at least one cell
  • the second base station determines, according to the first measurement report, the at least one third base station, including:
  • the second base station determines the base station to which the target cell belongs as the third base station.
  • the method further includes:
  • the second base station receives uplink resource configuration information from the first base station, where the uplink resource configuration information is reference signal configuration information or uplink data scheduling information;
  • the second base station sends the uplink resource configuration information to the third base station.
  • the third base station uses the reference signal configuration information or the uplink data scheduling information to detect whether there is a cell with strong interference, thereby eliminating uplink interference of the third base station dependent cell to the terminal device.
  • the method further includes:
  • the second base station receives a resource scheduling request from the first base station, where the resource scheduling request is used to request downlink resource scheduling information;
  • the second base station sends downlink resource scheduling information of the second base station and/or the third base station to the first base station.
  • the first base station can send downlink resource scheduling information to the terminal device, so that the terminal device can eliminate the downlink interference.
  • a fourth aspect provides a terminal device, including:
  • a processing module configured to measure signal quality of one or more cells to generate a first measurement report
  • a sending module configured to send the first measurement report to the first base station, where the first measurement report includes measurement information of the one or more cells.
  • the processing module is specifically configured to:
  • the first measurement report is generated according to the measurement report configuration information, the measurement report configuration information including at least one signal quality level.
  • the measurement report configuration information further includes a signal quality range corresponding to each of the at least one signal quality level and/or the at least one signal quality level Each level corresponds to level configuration information, and the level configuration information is used to indicate measurement information that needs to be reported.
  • the measurement report configuration information is received by the terminal device from the first base station, or is pre-configured.
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • the terminal device further includes a receiving module, configured to:
  • the processing module is further configured to determine, by using the first identifier information, the first scheduling information, where the first scheduling information is For the scheduling information of the neighboring cell, the first identifier information is received by the receiving module from the first base station, or the processing module is determined according to the indication information received from the first base station.
  • the processing module is specifically used to
  • the first scheduling information is determined by detecting on the control channel by the first identification information.
  • the physical device corresponding to the processing module in the foregoing embodiment may be a processor, and the physical device corresponding to the sending module may be a transmitter, and the physical device corresponding to the receiving module may be a receiver.
  • a first base station including:
  • a receiving module configured to receive, by the terminal device, a first measurement report, where the first measurement report includes measurement information of one or more cells;
  • a sending module configured to send the first measurement report to the second base station, where the second base station is a neighboring base station of the first base station.
  • the sending module is further configured to:
  • uplink resource configuration information includes at least one of resource block RB location information, a modulation and coding policy MCS, and a frequency hopping indication.
  • the sending module is further configured to:
  • the sending module is further configured to:
  • the terminal device Sending, by the terminal device, the first downlink resource scheduling information, where the first downlink resource scheduling information includes downlink resource scheduling information of the second base station.
  • the first downlink resource scheduling information further includes downlink resource scheduling information of the third base station, and the third base station is configured by the second base station according to the first measurement The report is determined.
  • the first base station further includes a processing module, configured to:
  • the processing module is specifically used to
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • the physical device corresponding to the processing module in the foregoing embodiment may be a processor, and the physical device corresponding to the sending module may be a transmitter, and the physical device corresponding to the receiving module may be a receiver.
  • a second base station including:
  • a receiving module configured to receive a first measurement report from the first base station, where the first measurement report includes measurement information of at least one cell, and the second base station is a neighboring base station of the first base station;
  • a processing module configured to determine, according to the first measurement report, at least one third base station.
  • the first measurement report includes signal quality of at least one cell
  • the processing module is specifically configured to:
  • the base station to which the target cell belongs is determined as the third base station.
  • the first measurement report includes a signal quality level of at least one cell
  • the processing module is specifically configured to:
  • the base station to which the target cell belongs is determined as the third base station.
  • the receiving module is further configured to:
  • uplink resource configuration information is reference signal configuration information or uplink data scheduling information
  • the second base station further includes a sending module, configured to send the uplink resource configuration information to the third base station.
  • the receiving module is further configured to:
  • the sending module is further configured to send downlink resource scheduling information of the second base station and/or the third base station to the first base station.
  • the physical device corresponding to the processing module in the foregoing embodiment may be a processor, and the physical device corresponding to the sending module may be a transmitter, and the physical device corresponding to the receiving module may be a receiver.
  • a communication system including the terminal device, the first base station, and the second base station involved in the foregoing embodiments.
  • a computer storage medium for storing computer software instructions for use in the terminal device, comprising a program designed to perform the above aspects.
  • a computer storage medium for storing computer software instructions for use in the first base station, comprising a program designed to perform the above aspects.
  • a computer storage medium for storing computer software instructions for use in the second base station, comprising a program designed to perform the above aspects.
  • a computer program product comprising instructions for causing a computer to perform the methods described in the above aspects when executed on a computer is provided.
  • FIG. 1 is a schematic flowchart diagram of a signal processing method according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a signal processing method according to an embodiment of the present application.
  • 3a and 3b are schematic diagrams showing a process of configuring downlink semi-static resources for a terminal device
  • FIG. 4 is a schematic flow chart of a signal processing method for downlink interference cancellation
  • 5 is a schematic flow chart of a signal processing method for uplink interference cancellation
  • FIG. 6 is a schematic diagram of interaction of a signal processing method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of interaction of a signal processing method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a location relationship of a base station according to an embodiment of the present application.
  • 9a is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • 9b is a schematic structural diagram of hardware of a terminal device according to an embodiment of the present application.
  • 10a is a schematic structural diagram of a first base station according to an embodiment of the present application.
  • FIG. 10b is a schematic structural diagram of hardware of a first base station according to an embodiment of the present application.
  • 11a is a schematic structural diagram of a second base station according to an embodiment of the present application.
  • FIG. 11b is a schematic structural diagram of hardware of a second base station according to an embodiment of the present application.
  • association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist at the same time. There are three cases of B alone.
  • the character “/” in the embodiment of the present application generally indicates that the context related object is an “or” relationship.
  • Multiple means two or more.
  • the signal processing method in the embodiment of the present application is applicable to a Long Term Evolution (LTE) system, or a 5G system; in addition, the paging method in the embodiment of the present application is also applicable to other wireless communication systems, such as global mobile communication.
  • System Global System for Mobile Communication, GSM
  • UMTS Mobile Communication System
  • CDMA Code Division Multiple Access
  • the base station in the embodiment of the present application can be used to convert the received air frame and the Internet Protocol (IP) packet into each other as a router between the wireless terminal device and the rest of the access network, where the access network
  • IP Internet Protocol
  • the base station in the embodiment of the present application may coordinate the attribute management of the air interface.
  • the base station in the embodiment of the present application may be a Global System for Mobile Communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA). It is a base station (NodeB) in Wideband Code Division Multiple Access (WCDMA), and may also be an evolved base station (eNB or e-NodeB) in LTE, or may be in a 5G system.
  • GSM Global System for Mobile Communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB base station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or e-NodeB evolved base station
  • the terminal device in the embodiment of the present application may be a device for providing voice and/or data connectivity to a user, a handheld device having a wireless connection function, or other processing device connected to a wireless modem.
  • the terminal device may also be a wireless terminal device, wherein the wireless terminal device may communicate with one or more core networks via a Radio Access Network (RAN), and the wireless terminal device may be a mobile terminal device, such as a mobile phone ( Or a "cellular" telephone, or a computer with a mobile terminal device, for example, a computer with a mobile terminal device can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device with a wireless access network Exchange language and/or data.
  • RAN Radio Access Network
  • the wireless terminal device can also be a Personal Communication Service (PCS) phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal number. Assistant (Personal Digital Assistant, PDA) and other devices.
  • a wireless terminal device may also be referred to as a system, a subscriber unit, and a subscriber unit. Subscriber Station, Mobile Station, Mobile, Remote Station, Access Point, Remote Terminal, Access Terminal ), user terminal (User Terminal), user agent (User Agent), user equipment (User Device), or user equipment (User Equipment, UE).
  • the terminal device may be a drone or other flight capable devices, such as an intelligent robot, a hot air balloon, or the like.
  • the first base station in the embodiment of the present application refers to the serving base station of the terminal device
  • the second base station refers to the neighboring base station of the first base station
  • the third base station refers to the peripheral base station of the first base station, usually It is a neighboring base station of the second base station.
  • the embodiment of the present application provides a signal processing method and device to solve the problem of serious uplink and downlink interference that occurs when the existing UAV terminal communicates.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 1 is a schematic flowchart diagram of a signal processing method provided by an embodiment of the present application, and the process may be specifically implemented by hardware, software programming, or a combination of hardware and software.
  • the terminal device can be configured to perform the process shown in FIG. 1.
  • the function module in the terminal device for performing the signal processing solution provided by the embodiment of the present invention can be specifically implemented by hardware, software programming, and a combination of hardware and software.
  • One or more signal processing and/or application specific integrated circuits may be included.
  • the process specifically includes the following processes:
  • Step 10 The terminal device measures signal quality of one or more cells to generate a first measurement report.
  • the terminal device when the terminal device generates the first measurement report, the following process can be implemented:
  • the terminal device generates the first measurement report according to the measurement report configuration information, where the measurement report configuration information is received by the terminal device from the first base station, or is pre-configured.
  • the measurement report configuration information includes at least one signal quality level.
  • the measurement report configuration information further includes level configuration information corresponding to each of the at least one signal quality level and/or the level of each of the at least one signal quality level.
  • the level configuration information is used to indicate measurement information that needs to be reported.
  • the level configuration information is used to indicate at least one of a number of cells, a cell ID, and a signal quality that need to be reported corresponding to each level.
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the terminal device For the downlink measurement, the terminal device, such as the UAV terminal, can identify the signals of multiple cells above a certain flight altitude, and the terminal device needs to include the measurement information of the cells in the first measurement report and send it to the first measurement report.
  • a base station In the prior art, there is a limit on the number of neighbor cells included in a single measurement report. Therefore, the terminal device needs to report multiple times to complete the reporting of all detected cells. Although the number of neighbors in a single report can be increased, the amount of data of the measurement report is increased, and the system overhead is increased.
  • the first measurement report includes level information of signal quality of the at least one cell, and the correspondence between the signal quality and the level information is preset or received by the terminal device from the first base station.
  • the first base station pre-configures each level threshold of the signal quality report by the terminal device, and the signal quality indicator value is a reference signal received power (RSRP), for example,
  • RSRP reference signal received power
  • RSRQ Reference Signal Received Quality
  • the first measurement report further includes a number of cells and/or a cell identifier (Identifier, ID) corresponding to each signal quality level, where the cell ID may be a physical cell identifier (PCI) or E-UTRAN Cell Global Identifier (ECGI).
  • the terminal device measures the RSRP results of multiple cells, classifies them according to the above range values, and reports the number of cells and cell IDs of each level.
  • the measurement result of the reported first measurement report is as shown in Table 2. Only the cell of the second gear has reported the specific RSRP value, and the other cells only have the cell ID.
  • the reporting condition of the first measurement report may be further restricted to filter out neighbor cells that are more concerned.
  • RSRP and RSRQ can be jointly screened to specify the level range, and the measurement results are allowed to be reported when both indicators meet the preset conditions. That is, the measurement result of the cell needs to satisfy the following two conditions at the same time, and the report of the first measurement report is triggered.
  • the possible judgment conditions are as follows, for example, defining at least one threshold, threshold 1, threshold 2, threshold 3, and threshold 4, and determining whether to trigger the reporting of the first measurement report by comparing the threshold value with the RSRP value:
  • threshold 1 RSRP value ⁇ threshold 2
  • threshold 3 RSRQ value ⁇ threshold 4
  • the threshold 1 ⁇ RSRP value, and the RSRQ value ⁇ threshold 4
  • Step 11 The terminal device sends the first measurement report to the first base station.
  • the terminal device receives the downlink first scheduling information from the first base station; or the terminal device determines the first scheduling information by using the first identifier information, where the first scheduling information is the scheduling information of the neighboring area.
  • the neighboring cell here refers to a cell other than the serving cell of the terminal device.
  • the first identifier information is received by the terminal device from the first base station, or is determined by the terminal device according to the indication information received from the first base station, where the first identifier information is carried in the In the indication information, or the indication information is used to indicate the location of the first identification information.
  • the first identifier information is a Radio Network Temporary Identifier (RNTI)
  • the terminal device determines the first scheduling information by using the first identifier information, including: the terminal device according to the The dedicated RNTI detects a physical downlink control channel (PDCCH) to acquire the first scheduling information.
  • RNTI Radio Network Temporary Identifier
  • the terminal device can identify signals of multiple cells above a certain flight altitude, and the terminal device needs to include the measurement results of the signal quality of the cells in the first measurement report. Send to the first base station for downlink interference cancellation.
  • FIG. 2 is a schematic flowchart diagram of a signal processing method provided by an embodiment of the present application. The process may be specifically implemented by hardware, software programming, or a combination of hardware and software.
  • the base station is configured to perform the process shown in FIG. 2, and the function module in the base station for performing the signal processing solution provided by the embodiment of the present invention may be implemented by hardware, software programming, and a combination of hardware and software, and the hardware may include a Or multiple signal processing and/or application specific integrated circuits.
  • the process specifically includes the following processes:
  • Step 20 The first base station receives a first measurement report from the terminal device, where the first measurement report includes measurement information of one or more cells.
  • the measurement information of the cell may be the signal quality of the cell.
  • the first measurement report includes level information of the signal quality of the at least one cell, and the signal quality and level information. The correspondence between the two is preset or received by the terminal device from the first base station. Further, the first measurement report further includes a number of cells and/or a cell ID corresponding to each level.
  • Step 21 The first base station sends the first measurement report to a second base station, where the second base station is a neighboring base station of the first base station.
  • the first base station determines the second base station according to the at least one cell.
  • the number of the second base stations may be one or more, and is the serving base station of the at least one cell.
  • the second base station may be the first base station.
  • the second base station may include the first base station.
  • the first base station sends uplink resource configuration information to the second base station, where the uplink resource configuration information may be uplink data scheduling information, including RB location information, MCS, and frequency hopping indication. at least one.
  • the uplink resource configuration information may also be uplink reference signal configuration information, such as resource configuration information of the sounding reference signal.
  • the second base station performs uplink interference detection or cancellation on the terminal device based on the uplink resource configuration information.
  • the first measurement report and the uplink resource configuration information may be sent separately or simultaneously.
  • the first base station sends a resource scheduling request to the second base station, and the first base station receives first downlink resource scheduling information from the second base station, where the resource scheduling request is And the first base station sends the obtained downlink resource scheduling information to the terminal device, where the terminal device uses the downlink resource scheduling information to implement downlink interference cancellation.
  • the downlink resource scheduling information of the base station includes downlink resource scheduling information of at least one cell served by the base station.
  • the first base station sends the first downlink resource scheduling information to the terminal device, where the first downlink resource scheduling information includes downlink resource scheduling information of the second base station.
  • the first downlink resource scheduling information further includes downlink resource scheduling information of the third base station, where the third base station is determined by the second base station according to the first measurement report.
  • Step 22 The second base station determines at least one third base station according to the first measurement report.
  • the first measurement report includes a signal quality or a signal quality level of the at least one cell
  • the second base station determines, according to the first measurement report, a manner of the at least one third base station, and the first base station determines the second
  • the way of the base station is similar, and can be implemented by the following process.
  • the second base station determines at least one cell whose signal quality or signal quality level exceeds a preset threshold as a target cell.
  • the second base station determines the base station to which the target cell belongs as the third base station.
  • the second base station receives uplink resource configuration information from the first base station, and the second base station sends the uplink resource configuration information, the uplink resource configuration information, to the third base station. And configuring, by the second base station, the uplink resource configuration information to the third base station.
  • the third base station uses the reference signal configuration information or the uplink data scheduling information to detect whether there is a cell with strong interference, thereby eliminating uplink interference of the terminal device to the cell to which the third base station belongs, and the cell to which the third base station belongs may also be used. It is understood to be one or more cells served by the third base station, or one or more cells within the coverage of the third base station.
  • the second base station receives a resource scheduling request from the first base station, where the resource scheduling request is used to request downlink resource scheduling information, and the second base station sends the first base station to the first base station.
  • Downlink resource scheduling information of the second base station and/or the third base station may be sent separately or simultaneously.
  • the first base station can send the downlink resource scheduling information to the terminal device, so that the terminal device can eliminate the downlink interference.
  • the foregoing downlink resource scheduling information includes dynamic resource scheduling information and/or semi-static resource scheduling information; and the uplink resource configuration information includes dynamic resource configuration information and/or semi-static resource configuration information.
  • the downlink resources allocated by the first base station to the terminal device are semi-static, that is, periodically configured.
  • the second base station also reserves the same time and frequency resources, which may be allocated to possible The terminal device is not assigned to any terminal device.
  • the first base station needs to send the downlink semi-static resource scheduling information of the terminal device to the second base station.
  • the first base station configures a downlink semi-static resource for the terminal device, and sends the downlink semi-static resource configuration information to the adjacent second base station, and instructs a cell of the second base station to generate the terminal device.
  • Downside interference After receiving the indication information, the second base station may disable related time-frequency resources in the interfering cell to avoid generating uplink interference to the terminal device. This method is also applicable to scenarios in which the terminal device adopts dynamic scheduling.
  • the second base station allocates the time-frequency resource to the terminal device of the local cell according to the semi-persistent scheduling mode, and feeds back the downlink resource scheduling information to the first base station, where the first base station
  • the downlink resource scheduling information is sent to the terminal device for downlink interference cancellation.
  • Embodiment 1 is a downlink interference cancellation scheme.
  • the specific process includes the following steps:
  • Step 40 The terminal device measures the reference signal of the at least one cell, and obtains the signal quality of the at least one cell, and reports the signal quality to the serving base station by using the first measurement report.
  • the first measurement report includes PCI or ECGI, and downlink signal quality of the cell, optionally, Can be RSRP or RSRQ, etc.
  • the first measurement report includes level information of signal quality of at least one cell, and the correspondence between the signal quality and the level information is preset, or is received by the terminal device from the serving base station. of.
  • Step 41 After receiving the first measurement report, the serving base station determines, according to the signal quality of the at least one cell included in the first measurement report, whether each cell is a strong interfering cell, and then sends a resource scheduling to the neighboring base station to which the strong interfering cell belongs. Requesting, requesting to obtain downlink resource scheduling information of a neighboring base station and/or a peripheral base station.
  • Step 42 The serving base station receives downlink resource scheduling information fed back by the neighboring base station.
  • the downlink resource scheduling information includes downlink resource scheduling information of a neighboring base station and/or a neighboring base station.
  • Step 43 The serving base station sends the downlink resource scheduling information to the terminal device.
  • the downlink resource scheduling information may include the following information, a Modulation and Coding Scheme (MCS), a Resource Block (RB) location, and a Cell Radio Network Temporary Identity (C-RNTI). , redundancy version, transmission mode, Demodulation Reference Signal (DMRS) pilot resource information, etc.
  • MCS Modulation and Coding Scheme
  • RB Resource Block
  • C-RNTI Cell Radio Network Temporary Identity
  • the serving base station sends the downlink resource scheduling information to the terminal device at a low bit rate to ensure that the terminal device can correctly receive the information; and the data of the terminal device can be transmitted at a high code rate to improve spectrum efficiency.
  • the serving base station may send downlink resource scheduling information by using the following signaling:
  • the RRC reconfiguration message may include resource scheduling information of multiple cells, and is applicable to scenarios in which multiple cells have large interference.
  • RRC message needs to pass the automatic repeat request (ARQ) and the hybrid automatic repeat request (HARQ) two-layer reliability protection mechanism, which may have a large delay and is only suitable for the notification of semi-persistent scheduling. Neighbor resource scheduling information.
  • a Media Access Layer Control Unit indicates a message.
  • the MAC CE only experiences the HARQ process and has a short delay. It can be used as a carrier for dynamic resource scheduling information in the neighboring area.
  • the DCI is the control information of the physical layer and has the characteristics of high reliability and low delay.
  • the terminal device blindly detects whether there is resource scheduling information indicated by the serving base station through the C-RNTI.
  • the serving base station may allocate, to the terminal equipment, an Interference Radio Network Temporary Identifier (I-RNTI) dedicated to detecting the neighboring area scheduling information, and each time interval (Transmission Timing Interval, TTI), the terminal device.
  • I-RNTI Interference Radio Network Temporary Identifier
  • TTI Transmission Timing Interval
  • the original C-RNTI and I-RNTI can be used to detect resource scheduling information. If the resource scheduling information is detected by using the I-RNTI, it is considered as resource scheduling information of the neighboring cell, and can be used for interference cancellation.
  • the serving base station may instruct the terminal device to detect the neighboring cell interference message by using the C-RNTI, and correspondingly indicate in the DCI that the resource scheduling information is the resource scheduling information of the neighboring cell.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment is an uplink interference cancellation scheme.
  • the specific process includes the following steps:
  • Step 50 The terminal device measures the reference signal of the at least one cell, and obtains the signal quality of the at least one cell, and reports the signal quality to the serving base station by using the first measurement report.
  • the first measurement report includes a PCI or a CGI, and a downlink signal quality of the cell, and optionally, may be an RSRP or an RSRQ.
  • the first measurement report includes level information of signal quality of at least one cell, and the correspondence between the signal quality and the level information is preset, or is received by the terminal device from the serving base station. of.
  • Step 51 After receiving the first measurement report, the serving base station determines whether there is strong interference in each cell according to the signal quality of the at least one cell included in the first measurement report. If there is a strong interfering cell, the uplink resource configuration information, including the uplink data scheduling information and/or the reference signal configuration information, is sent to the neighboring base station to which the strong interfering cell belongs.
  • Step 52 The neighboring base station receives the uplink resource configuration information, and performs uplink interference cancellation.
  • the serving base station needs to send the uplink resource configuration information of the terminal device to the neighboring base station of the neighboring base station to notify the serving base station through the resource configuration confirmation message. Received resource configuration information of the terminal device. See Figure 6.
  • the serving base station may first provide a single terminal uplink resource configuration information to the neighboring base station, and the neighboring base station may use this information to detect whether it can receive the uplink resource configuration information. Strong uplink signal of the terminal equipment. If the detected signal energy of the terminal device is low, the device may indicate that the interference of the terminal device is weak in the resource configuration confirmation, and the uplink resource configuration information of the terminal device is not required to be provided; if the detected terminal device has strong signal energy The resource configuration confirmation may indicate that the serving base station has strong interference of the terminal device, and the uplink resource configuration information of the terminal device needs to be continuously provided for interference cancellation, as shown in FIG. 7.
  • the resource configuration information of the serving base station and the neighboring base station interaction terminal equipment is used for uplink interference cancellation.
  • the base station at the central location is a serving base station where the terminal device is located
  • the first lap base station adjacent to the serving base station is a neighboring base station, that is, the second base station, and the second lap adjacent to the adjacent base station.
  • the base station is a peripheral base station, that is, a third base station.
  • the interference range of the terminal device is up to the neighboring base station, that is, the first circle range; and when the height of the terminal device is higher than the serving base station, the interference influence range thereof is extended to the peripheral base station, that is, the second Circle range.
  • the serving base station sends the uplink resource configuration information of the terminal device to the neighboring base station
  • the first measurement report reported by the terminal device is also sent to the neighboring base station. If the neighboring base station determines that the cell of the peripheral base station also has strong interference to the terminal device through the measurement report, the uplink resource configuration information of the terminal device is further sent to the peripheral base station for uplink interference cancellation.
  • the embodiment of the present application further provides a terminal device, which is used to perform the action or function of the terminal device in the foregoing method embodiment.
  • the first base station is configured to perform the action or function of the first base station or the serving base station in the foregoing method embodiment.
  • the second base station is configured to perform the action or function of the second base station or the neighboring base station in the foregoing method embodiment.
  • the embodiment of the present invention further provides a communication system, including the first base station, the second base station, and the terminal device in the foregoing embodiment.
  • the content of the device part can be specifically seen in the method embodiment, and the repeated description will not be repeated.
  • the terminal device 900a of the embodiment of the present application includes: a sending module 920a and a processing module 910a, where the processing module 910a is configured to measure signal quality of one or more cells to generate a first measurement.
  • the sending module 920a is configured to send the first measurement report to the first base station, where the first measurement report includes measurement information of the one or more cells.
  • processing module 910a is specifically configured to:
  • the first measurement report is generated according to the measurement report configuration information, the measurement report configuration information including at least one signal quality level.
  • the measurement report configuration information further includes level configuration information corresponding to each of the at least one signal quality level and/or the level of each of the at least one signal quality level.
  • the level configuration information is used to indicate measurement information that needs to be reported.
  • the measurement report configuration information is received by the terminal device from the first base station, or is pre-configured.
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • the terminal device further includes a receiving module 930a, configured to:
  • the processing module 910a is further configured to: determine, by using the first identifier information, the first scheduling information, where the first scheduling information is scheduling information of a neighboring area, where the first identifier information is that the receiving module 930a Received by the first base station, or the processing module 910a determines according to the indication information received from the first base station.
  • processing module 910a is specifically configured to:
  • the first scheduling information is determined by detecting on the control channel by the first identification information.
  • the processing module 910a may be implemented by a processor, and the sending module 920a and the receiving module 930a may be implemented by a transceiver.
  • the terminal device 900b may include a processor 910b, a transceiver 920b, and a memory 930b.
  • the memory 930b may be used to store a program/code pre-installed at the time of shipment of the terminal device 900b, or may store a code or the like for execution of the processor 910b.
  • the processor 910b may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for performing related operations to implement the technical solutions provided by the embodiments of the present application.
  • terminal device 900b shown in FIG. 9b only shows the processor 910b, the transceiver 920b, and the memory 930b, in a specific implementation process, those skilled in the art should understand that the terminal device 900b also includes a normal implementation. Other devices necessary for operation. At the same time, according to specific needs, those skilled in the art will appreciate that the terminal device 900b may also include hardware devices that implement other additional functions. In addition, it should be understood by those skilled in the art that the terminal device 900b may only include the devices or modules necessary for implementing the embodiments of the present application, and does not have to be included. All of the devices shown in Figure 9b are included.
  • the above storage medium may be a magnetic disk, an optical disk, a ROM, a RAM, or the like.
  • the first base station 1000a in the embodiment of the present application includes: a receiving module 1010a and a sending module 1020a, wherein: the receiving module 1010a is configured to receive a first measurement report, the first measurement report, from the terminal device. The measurement information of the one or more cells is included; the sending module 1020a is configured to send the first measurement report to the second base station, where the second base station is a neighboring base station of the first base station.
  • the sending module 1020a is further configured to:
  • uplink resource configuration information includes at least one of resource block RB location information, a modulation and coding policy MCS, and a frequency hopping indication.
  • the sending module 1020a is further configured to:
  • the sending module 1020a is further configured to:
  • the terminal device Sending, by the terminal device, the first downlink resource scheduling information, where the first downlink resource scheduling information includes downlink resource scheduling information of the second base station.
  • the first downlink resource scheduling information further includes downlink resource scheduling information of the third base station, where the third base station is determined by the second base station according to the first measurement report.
  • the first base station further includes a processing module 1030a, configured to:
  • processing module 1030a is specifically configured to:
  • the measurement information includes any one of a signal quality level and a signal quality
  • the correspondence between the signal quality and the level of the signal quality is preset or received by the terminal device from the first base station.
  • the first measurement report further includes a number of cells and/or a cell ID corresponding to each signal quality level.
  • the processing module 1030a may be implemented by a processor, and the sending module 1020a and the receiving module 1010a may be implemented by a transceiver.
  • the first base station 1000b may include a processor 1010b, a transceiver 1020b, and a memory 1030b.
  • the memory 1030b may be used to store a program/code pre-installed at the time of shipment of the first base station 1000b, or may store a code or the like for execution of the processor 1010b.
  • the processor 1010b may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing related operations.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • first base station 1000b shown in FIG. 10b only shows the processor 1010b, the transceiver 1020b, and the memory 1030b, in a specific implementation process, those skilled in the art should understand that the first base station 1000b It also contains other devices necessary to get it running. At the same time, according to specific needs, those skilled in the art should understand that the first base station 1000b may also include hardware devices that implement other additional functions. Moreover, those skilled in the art will appreciate that the first base station 1000b may also include only the devices or modules necessary to implement the embodiments of the present application, and does not necessarily include all of the devices shown in FIG. 10b.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the first base station 1100a in the embodiment of the present application includes: a receiving module 1110a and a processing module 1120a, wherein: a receiving module 1110a is configured to receive a first measurement report from the first base station, where the first measurement The report includes measurement information of at least one cell, the second base station is a neighboring base station of the first base station, and the processing module 1120a is configured to determine at least one third base station according to the first measurement report.
  • the first measurement report includes a signal quality of the at least one cell
  • the processing module 1120a is specifically configured to:
  • the base station to which the target cell belongs is determined as the third base station.
  • the first measurement report includes a signal quality level of the at least one cell
  • the processing module 1120a is specifically configured to:
  • the base station to which the target cell belongs is determined as the third base station.
  • the receiving module 1110a is further configured to:
  • uplink resource configuration information is reference signal configuration information or uplink data scheduling information
  • the second base station further includes a sending module 1130a, configured to send the uplink resource configuration information to the third base station.
  • the receiving module 1110a is further configured to:
  • the sending module 1130a is further configured to send downlink resource scheduling information of the second base station and/or the third base station to the first base station.
  • the processing module 1120a may be implemented by a processor, and the sending module 1130a and the receiving module 1110a may be implemented by a transceiver.
  • the second base station 1100b may include a processor 1110b, a transceiver 1120b, and a memory 1130b.
  • the memory 1130b may be used to store a program/code pre-installed at the time of shipment of the second base station 1100b, or may store a code or the like for execution of the processor 1110b.
  • the processor 1110b may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for performing correlation. The operation is provided to implement the technical solutions provided by the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the second base station 1100b shown in FIG. 11b only shows the processor 1110b, the transceiver 1120b, and the memory 1130b, in a specific implementation process, those skilled in the art should understand that the second base station 1100b further includes Other devices necessary for proper operation. At the same time, according to specific needs, those skilled in the art should White, the second base station 1100b may also include hardware devices that implement other additional functions. Moreover, those skilled in the art will appreciate that the second base station 1100b may also only include the devices or modules necessary to implement the embodiments of the present application, and does not necessarily include all of the devices shown in FIG. 10b.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号处理方法及装置,该方法为,终端设备对一个或多个小区的信号质量进行测量,以生成第一测量报告;所述终端设备向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息,使第一基站向第二基站发送所述第一测量报告,从而使第一基站利用第一测量报告实现对终端设备的上行干扰消除或下行干扰消除。

Description

一种信号处理方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信号处理方法及装置。
背景技术
蜂窝通信系统在设计之初,只针对地面终端,即基站的信号辐射方向是朝向地面的。随着无人机技术的发展成熟,无人机价格持续下降,无人机的应用逐渐变得更为广泛,对无人机的远距离飞行逐渐提出了要求。而现有的消费级无人机大多由遥控器操作飞行,所以只能在视距范围内飞行。
如果地面蜂窝通信网络能够支持无人机,则无人机的飞行控制命令可以实现超视距的远距离传输,帮助无人机进行远距离飞行。同时无人机采集的照片或视频等信息也可以实时回传,极大地促进无人机产业发展。
如果无人机的飞行高度不超过基站高度,可以看做普通终端;如果飞行高度高于基站,则会产生两个方面的问题:
1.无人机接收到的下行信号质量变差。
一方面是由于基站信号的辐射方向主要朝向地面的,虽然会有地面信号的反射或者散射导致部分信号扩散向空中,或者基站天线也会有一些旁瓣向空中辐射,但总的来说,处于空中的无人机接收到的信号强度会比较低;另一方面,当无人机飞行高度超过基站后,无人机能够看到更多的基站,即接收到多个其他基站的信号,导致下行方向上干扰增加。所以,综合以上两个原因,无人机终端在下行方向上的信号质量会明显变差。
2.无人机发出的上行信号会产生大量的上行干扰。
由于无人机看到更多的基站,所以无人机发出的上行信号也会被更多的基站接收到,这会对这些基站产生上行干扰。
如图1所示,无人机终端与服务基站进行通信,但由于高度升高,所以能够收到干扰基站1和干扰基站2的下行信号。同时无人机终端向服务基站发送的上行信号,也会被干扰基站1和干扰基站2接收到。
综上,现有蜂窝网络没有针对无人机终端的优化设计,导致无人机终端接收到大量的下行干扰,同时无人机终端也会对周围基站产生严重的上行干扰。
发明内容
本申请实施例提供一种信号处理方法及装置,以解决现有的无人机终端通信时出现的上下行干扰严重的问题。
第一方面,提供一种信号处理方法,包括:
终端设备对一个或多个小区的信号质量进行测量,以生成第一测量报告;
所述终端设备向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息。
这种设计中,通过上述信号处理方法,对于下行测量,终端设备在一定的飞行高度之上,能够识别出多个小区的信号,终端设备需要将这些小区的信号质量的测量结果都包含 在第一测量报告中并发送给第一基站,用于下行干扰消除。
结合第一方面,一种可能的设计中,终端设备生成第一测量报告,包括:
所述终端设备根据测量报告配置信息生成所述第一测量报告,所述测量报告配置信息包含至少一个信号质量等级。
这种设计中,终端设备根据测量报告配置信息生成包含至少一个信号质量等级所述第一测量报告,在上报信息的完整性和测量报告数据量之间获得平衡,降低系统开销。
结合第一方面,一种可能的设计中,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
这种设计中,由于测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,能够根据测量报告配置信息筛选出更关注的邻区,邻区的筛选更加灵活多变。
结合第一方面,一种可能的设计中,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
结合第一方面,一种可能的设计中,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
这种设计中,可以从信号质量等级和信号质量中的任意选择组成测量信息,方式多样,且能保证上报信息的完整性。
结合第一方面,一种可能的设计中,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID
结合第一方面,一种可能的设计中,所述方法还包括:
终端设备从所述第一基站接收下行第一调度信息;或者,
所述终端设备通过第一标识信息确定所述第一调度信息,所述第一调度信息为邻区的调度信息,所述第一标识信息是所述终端设备从所述第一基站接收的,或者是所述终端设备根据从所述第一基站接收的指示信息确定的。
这种设计中,通过上述信号处理方法,对于下行测量,终端设备在一定的飞行高度之上,能够识别出多个小区的信号,终端设备需要将这些小区的信号质量的测量结果都包含在第一测量报告中并发送给第一基站,用于下行干扰消除。
结合第一方面,一种可能的设计中,所述终端设备通过第一标识信息确定所述第一调度信息,包括:
所述终端设备通过第一标识信息在控制信道上检测以确定所述第一调度信息。
这种设计中,通过上述信号处理方法,对于下行测量,终端设备在一定的飞行高度之上,能够识别出多个小区的信号,终端设备需要将这些小区的信号质量的测量结果都包含在第一测量报告中并发送给第一基站,用于下行干扰消除。
第二方面,提供一种信号处理方法,包括:
第一基站从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息;
所述第一基站向第二基站发送所述第一测量报告,所述第二基站为所述第一基站的相 邻基站。
这种设计中,第二基站基于第一测量报告对终端设备进行干扰检测或消除。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第一基站向所述第二基站发送上行资源配置信息,所述上行资源配置信息包含资源块RB位置信息、调制与编码策略MCS、跳频指示中的至少一个。
这种设计中,所述第一基站向所述第二基站发送上行资源配置信息,所述上行资源配置信息可以是上行数据调度信息,包含RB位置信息、MCS、跳频指示中的至少一个。所述上行资源配置信息也可以是上行参考信号配置信息,例如探测参考信号的资源配置信息。这样,第二基站基于上行资源配置信息对终端设备进行上行干扰检测或消除。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第一基站向所述第二基站发送资源调度请求,所述资源调度请求用于向所述第二基站请求下行资源调度信息;
所述第一基站从所述第二基站接收第一下行资源调度信息。
这种设计中,第一基站将获取到的下行资源调度信息发送至终端设备,终端设备利用该下行资源调度信息以实现下行干扰消除。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第一基站向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
结合第二方面,一种可能的设计中,所述方法还包括:
所述第一基站根据所述第一测量报告,确定所述第二基站。
结合第二方面,一种可能的设计中,所述第一基站根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
所述第一基站根据所述至少一个小区,确定所述第二基站。
结合第二方面,一种可能的设计中,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
结合第二方面,一种可能的设计中,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID
第三方面,提供一种信号处理方法,包括:
第二基站从第一基站接收第一测量报告,所述第一测量报告中包括至少一个小区的测量信息,所述第二基站为所述第一基站的相邻基站;
所述第二基站根据所述第一测量报告,确定至少一个第三基站。
这种设计中,第二基站根据第一测量报告,确定至少一个第三基站,第三基站利用第一测量报告检测是否存在强干扰的小区,从而消除第三基站从属小区对终端设备的上行干扰。
结合第三方面,一种可能的设计中,所述第一测量报告包括至少一个小区的信号质量, 所述第二基站根据所述第一测量报告,确定至少一个第三基站,包括:
所述第二基站将信号质量超过预设阈值的至少一个小区确定为目标小区;
所述第二基站将所述目标小区所属的基站确定为第三基站。
结合第三方面,一种可能的设计中,所述第一测量报告包括至少一个小区的信号质量等级,所述第二基站根据所述第一测量报告,确定至少一个第三基站,包括:
所述第二基站将信号质量等级超过预设阈值的至少一个小区确定为目标小区;
所述第二基站将所述目标小区所属的基站确定为第三基站。
结合第三方面,一种可能的设计中,所述方法还包括:
所述第二基站从所述第一基站接收上行资源配置信息,所述上行资源配置信息为参考信号配置信息或上行数据调度信息;
所述第二基站向所述第三基站发送所述上行资源配置信息。
这种设计中,这种实施方式中,第三基站利用参考信号配置信息或上行数据调度信息检测是否存在强干扰的小区,从而消除第三基站从属小区对终端设备的上行干扰。
结合第三方面,一种可能的设计中,所述方法还包括:
所述第二基站从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;
所述第二基站向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。
这种设计中,第一基站能够将下行资源调度信息发送至终端设备,方便终端设备消除下行干扰。
第四方面,提供一种终端设备,包括:
处理模块,用于对一个或多个小区的信号质量进行测量,以生成第一测量报告;
发送模块,用于向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息。
结合第四方面,一种可能的设计中,所述处理模块具体用于:
根据测量报告配置信息生成所述第一测量报告,所述测量报告配置信息包含至少一个信号质量等级。
结合第四方面,一种可能的设计中,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
结合第四方面,一种可能的设计中,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
结合第四方面,一种可能的设计中,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
结合第四方面,一种可能的设计中,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID
结合第四方面,一种可能的设计中,所述终端设备还包括接收模块,用于:
从所述第一基站接收下行第一调度信息;
所述处理模块还用于,通过第一标识信息确定所述第一调度信息,所述第一调度信息 为邻区的调度信息,所述第一标识信息是所述接收模块从所述第一基站接收的,或者是所述处理模块根据从所述第一基站接收的指示信息确定的。
结合第四方面,一种可能的设计中,所述处理模块具体用于
通过第一标识信息在控制信道上检测以确定所述第一调度信息。
另一方面,上述实施例中的处理模块对应的实体设备可以为处理器,发送模块对应的实体设备可以为发射器,接收模块对应的实体设备可以为接收器。
第五方面,提供一种第一基站,包括:
接收模块,用于从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息;
发送模块,用于向第二基站发送所述第一测量报告,所述第二基站为所述第一基站的相邻基站。
结合第五方面,一种可能的设计中,所述发送模块还用于:
向所述第二基站发送上行资源配置信息,所述上行资源配置信息包含资源块RB位置信息、调制与编码策略MCS、跳频指示中的至少一个。
结合第五方面,一种可能的设计中,所述发送模块还用于:
向所述第二基站发送资源调度请求,所述资源调度请求用于向所述第二基站请求下行资源调度信息;
从所述第二基站接收第一下行资源调度信息。
结合第五方面,一种可能的设计中,所述发送模块还用于:
向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
结合第五方面,一种可能的设计中,所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
结合第五方面,一种可能的设计中,所述第一基站还包括处理模块用于:
根据所述第一测量报告,确定所述第二基站。
结合第五方面,一种可能的设计中,所述处理模块具体用于
根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
根据所述至少一个小区,确定所述第二基站。
结合第五方面,一种可能的设计中,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
结合第五方面,一种可能的设计中,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID。
另一方面,上述实施例中的处理模块对应的实体设备可以为处理器,发送模块对应的实体设备可以为发射器,接收模块对应的实体设备可以为接收器。
第六方面,提供一种一种第二基站,包括:
接收模块,用于从第一基站接收第一测量报告,所述第一测量报告中包括至少一个小区的测量信息,所述第二基站为所述第一基站的相邻基站;
处理模块,用于根据所述第一测量报告,确定至少一个第三基站。
结合第六方面,一种可能的设计中,所述第一测量报告包括至少一个小区的信号质量,所述处理模块具体用于:
将信号质量超过预设阈值的至少一个小区确定为目标小区;
将所述目标小区所属的基站确定为第三基站。
结合第六方面,一种可能的设计中,所述第一测量报告包括至少一个小区的信号质量等级,所述处理模块具体用于:
将信号质量等级超过预设阈值的至少一个小区确定为目标小区;
将所述目标小区所属的基站确定为第三基站。
结合第六方面,一种可能的设计中,所述接收模块还用于:
从所述第一基站接收上行资源配置信息,所述上行资源配置信息为参考信号配置信息或上行数据调度信息;
所述第二基站还包括发送模块,用于向所述第三基站发送所述上行资源配置信息。
结合第六方面,一种可能的设计中,所述接收模块还用于:
从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;
所述发送模块,还用于向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。
另一方面,上述实施例中的处理模块对应的实体设备可以为处理器,发送模块对应的实体设备可以为发射器,接收模块对应的实体设备可以为接收器。
第七方面,提供一种通信系统,包括上述实施例中所涉及的终端设备、第一基站和第二基站。
第八方面,提供一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第九方面,提供一种计算机存储介质,用于储存为上述第一基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,提供一种计算机存储介质,用于储存为上述第二基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例提供的信号处理方法的流程示意图;
图2为本申请实施例提供的信号处理方法的流程示意图;
图3a、图3b为给终端设备配置下行半静态资源的过程示意图;
图4为下行干扰消除的信号处理方法的流程示意图;
图5为上行干扰消除的信号处理方法的流程示意图;
图6为本申请实施例提供的信号处理方法的交互示意图;
图7为本申请实施例提供的信号处理方法的交互示意图;
图8为本申请实施例提供的基站位置关系示意图;
图9a为本申请实施例终端设备的结构示意图;
图9b为本申请实施例终端设备的硬件结构示意图;
图10a为本申请实施例第一基站的结构示意图;
图10b为本申请实施例第一基站的硬件结构示意图;
图11a为本申请实施例第二基站的结构示意图;
图11b为本申请实施例第二基站的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请实施例中的字符“/”,一般表示前后关联对象是一种“或”的关系。
多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例涉及的信号处理方法,适用于长期演进(Long Term Evolution,LTE)系统,或5G系统;此外,本申请实施例的寻呼方法也可适用于其它无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM)、移动通信系统(Universal Mobile Telecommunications System,UMTS)、码分多址接入(Code Division Multiple Access,CDMA)系统、以及新的网络系统等。
本申请实施例中的基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络;此外,本申请实施例中的基站还可协调对空中接口的属性管理。例如,本申请实施例中的基站可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是5G系统中的基站,或5G系统中的中心单元或数据单元,在本申请实施例中不做限定。
本申请实施例中的终端设备可以为用于向用户提供语音和/或数据连通性的设备、具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备还可以为无线终端设备,其中,无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)、或具有移动终端设备的计算机,例如,具有移动终端设备的计算机可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,无线终端设备还可以为个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、 订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment,UE)等。可选的,终端设备可以是无人机,也可以是其他一些具有飞行能力的设备,例如,智能机器人、热气球等。
本申请实施例中的第一基站指的是终端设备的服务基站,第二基站指的是所述第一基站的相邻基站,第三基站指的是所述第一基站的外围基站,通常是第二基站的相邻基站。
本申请实施例提供一种信号处理方法及装置,以解决现有的无人机终端通信时出现的上下行干扰严重的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
图1示出了本申请实施例提供的信号处理方法的流程示意图,该流程具体可通过硬件、软件编程或软硬件的结合来实现。
终端设备可被配置为执行如图1所示的流程,终端设备中用以执行本发明实施例所提供的信号处理方案的功能模块具体可以通过硬件、软件编程以及软硬件的组合来实现,硬件可包括一个或多个信号处理和/或专用集成电路。
如图1所示,该流程具体包括有以下处理过程:
步骤10:终端设备对一个或多个小区的信号质量进行测量,以生成第一测量报告。
具体的,终端设备生成第一测量报告时,可以通过以下过程实现:
所述终端设备根据测量报告配置信息生成所述第一测量报告,其中,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
其中,所述测量报告配置信息包含至少一个信号质量等级。
可选的,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
所述等级配置信息用于指示对应于每一等级需要上报的小区数量、小区I D以及信号质量中的至少一个。
其中,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
对于下行测量,终端设备如无人机终端,在一定的飞行高度之上,能够识别出多个小区的信号,终端设备需要将这些小区的测量信息都包含在第一测量报告中并发送给第一基站。现有技术中,对于单次测量上报中包含的邻区个数有数量限制,所以终端设备需要多次上报才能将所有检测到的所有小区的上报完成。虽然可以增加单次上报中的邻区数量,但是又会增加测量报告的数据量,增加了系统开销,因此为了在上报信息的完整性和测量报告数据量之间获得平衡,本实施例中的第一测量报告中包括所述至少一个小区的信号质量的等级信息,所述信号质量与等级信息之间的对应关系为预先设置的,或由所述终端设备从所述第一基站接收的。
具体的,一种可能的实施方式中,第一基站为终端设备预先配置信号质量上报的各个等级门限,以信号质量指标值为参考信号接收功率(Reference Signal Received Power,RSRP)为例,需要说明的是,以下描述同样适用于参考信号接收质量(Reference Signal  Received Qual ity,RSRQ),各等级对应的RSRP范围如表1所示。
表1
等级 范围
1 RSRP>=-70dBm
2 -80dBm<=RSRP<-70dBm
3 -90dBm<=RSRP<-80dBm
4 -100dBm<=RSRP<-90dBm
5 RSRP<-100dBm
可选的,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区标识(Identifier,ID),其中小区ID可以是物理小区标识(Physical Cell Identifier,PCI)或全球唯一小区标识(E-UTRAN Cell Global Identifier,ECGI)。例如,终端设备测量得到多个小区的RSRP结果,按照以上范围值进行归类,并上报每个等级的小区数量和小区I D,可选的,还可以上报部分小区的具体测量结果,即信号质量。例如小区1RSRP=-74dBm,小区2RSRP=-84dBm,小区3=-88dBm。则上报的第一测量报告的测量结果如表2所示,其中只有第2档位的小区上报了具体的RSRP值,其他小区只有小区ID。
表2
等级 小区数量及小区ID
1 0
2 1(小区1,RSRP=-74dBm)
3 2(小区2,小区3)
4 0
5 0
对于检测到多个小区需要上报的情况,还可以进一步对第一测量报告的上报条件进行约束以筛选出更关注的邻区。例如,可以将RSRP和RSRQ进行联合筛选,分别划定等级范围,当两个指标同时满足预设条件时才允许测量结果的上报。即小区的测量结果需要同时满足以下两个条件,才会触发第一测量报告的上报。可能的判断条件如下,例如定义至少一个门限值,门限1、门限2、门限3以及门限4等,通过门限值与RSRP值的比较确定是否触发第一测量报告的上报:
例如:门限1<=RSRP值<门限2,并且,门限3<=RSRQ值<门限4
或,门限1<=RSRP值,并且,RSRQ值<门限4
或,RSRP值<门限2,并且,门限3<=RSRQ值。
步骤11:所述终端设备向第一基站发送所述第一测量报告。
可选的,终端设备从所述第一基站接收下行第一调度信息;或者,所述终端设备通过第一标识信息确定所述第一调度信息,所述第一调度信息为邻区的调度信息。这里的邻区指的是除所述终端设备的服务小区之外的小区。所述第一标识信息是所述终端设备从所述第一基站接收的,或者是所述终端设备根据从所述第一基站接收的指示信息确定的,所述第一标识信息承载于所述指示信息中,或者所述指示信息用于指示所述第一标识信息的位置。
具体的,所述第一标识信息为专用无线网络临时标识(Radio Network Temporary Identifier,RNTI),所述终端设备通过第一标识信息确定所述第一调度信息,包括:所述终端设备根据所述专用RNTI检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)获取所述第一调度信息。
通过上述信号处理方法,对于下行测量,终端设备在一定的飞行高度之上,能够识别出多个小区的信号,终端设备需要将这些小区的信号质量的测量结果都包含在第一测量报告中并发送给第一基站,用于下行干扰消除。
图2示出了本申请实施例提供的信号处理方法的流程示意图,该流程具体可通过硬件、软件编程或软硬件的结合来实现。
基站被配置为执行如图2所示的流程,基站中用以执行本发明实施例所提供的信号处理方案的功能模块具体可以通过硬件、软件编程以及软硬件的组合来实现,硬件可包括一个或多个信号处理和/或专用集成电路。
如图2所示,该流程具体包括有以下处理过程:
步骤20:第一基站从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息。
可选的,小区的测量信息可以为小区的信号质量,一种可能的实施方式中,所述第一测量报告中包括所述至少一个小区的信号质量的等级信息,所述信号质量与等级信息之间的对应关系为预先设置的,或由所述终端设备从所述第一基站接收的。进一步的,所述第一测量报告中还包括每个等级所对应的小区数量和/或小区ID
步骤21:所述第一基站向第二基站发送所述第一测量报告,所述第二基站为所述第一基站的相邻基站。
所述第一基站根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
所述第一基站根据所述至少一个小区,确定所述第二基站。
需要说明的是,第二基站的数量可以为一个或多个,为所述至少一个小区的服务基站,当所述第二基站为一个时,所述第二基站可以为第一基站,当所述第二基站为多个时,所述第二基站中可以包含所述第一基站。
一种可能的实施方式中,所述第一基站向所述第二基站发送上行资源配置信息,所述上行资源配置信息可以是上行数据调度信息,包含RB位置信息、MCS、跳频指示中的至少一个。所述上行资源配置信息也可以是上行参考信号配置信息,例如探测参考信号的资源配置信息。这样,第二基站基于上行资源配置信息对终端设备进行上行干扰检测或消除。
需要说明的是,所述第一测量报告和所述上行资源配置信息可以独立发送或者同时发送。
另一种可能的实施方式中:所述第一基站向所述第二基站发送资源调度请求,所述第一基站从所述第二基站接收第一下行资源调度信息,所述资源调度请求用于向所述第二基站请求第一下行资源调度信息,从而第一基站将获取到的下行资源调度信息发送至终端设备,终端设备利用该下行资源调度信息以实现下行干扰消除。
需要说明的是,基站的下行资源调度信息包含所述基站所服务的至少一个小区的下行资源调度信息。
一种可能的设计中,所述第一基站向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
另一种可能的设计中,所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
步骤22:所述第二基站根据所述第一测量报告,确定至少一个第三基站。
具体的,所述第一测量报告包括至少一个小区的信号质量或信号质量等级,所述第二基站根据所述第一测量报告,确定至少一个第三基站的方式,与第一基站确定第二基站的方式类似,可以通过以下过程实现
S1:所述第二基站将信号质量或信号质量等级超过预设阈值的至少一个小区确定为目标小区。
S2:所述第二基站将所述目标小区所属的基站确定为第三基站。
一种可能的实施方式中,所述第二基站从所述第一基站接收上行资源配置信息,所述第二基站向所述第三基站发送所述上行资源配置信息,所述上行资源配置信息为参考信号配置信息或上行数据调度信息;所述第二基站向所述第三基站发送所述上行资源配置信息。这种实施方式中,第三基站利用参考信号配置信息或上行数据调度信息检测是否存在强干扰的小区,从而消除终端设备对第三基站所属小区的上行干扰,所述第三基站所属小区也可以理解为所述第三基站所服务的一个或多个小区,或者第三基站覆盖范围内的一个或多个小区。
另一种可能的实施方式中,所述第二基站从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;所述第二基站向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。其中,所述所述第二基站和第三基站的下行资源调度信息可以分开发送,也可以同时发送。这种实施方式中,第一基站能够将下行资源调度信息发送至终端设备,方便终端设备消除下行干扰。
需要说明的是,上述下行资源调度信息包括动态资源调度信息和/或半静态资源调度信息;上述上行资源配置信息包括动态资源配置信息和/或半静态资源配置信息。
另一种可能的实施方式中,第一基站为终端设备分配的下行资源都是半静态的,即周期配置的;同时,第二基站也预留相同的时间和频率资源,可以分配给可能的终端设备,或者不分配给任何终端设备使用。这种方式,需要第一基站将终端设备的下行半静态资源调度信息发送给第二基站。
如图3a所示,第一基站为终端设备配置下行半静态资源,同时将该下行半静态资源配置信息发送给相邻的第二基站,并指示该第二基站的某小区对该终端设备产生了下行干扰。在收到该指示信息后,第二基站可以在干扰小区内禁用相关的时频资源来避免对终端设备产生上行干扰。该方式也适用于终端设备采用动态调度的场景。
或者,如图3b所示,该第二基站将该时频资源也按照半静态调度的模式分配给本小区的终端设备,并将该下行资源调度信息反馈给第一基站,第一基站再将该下行资源调度信息发送给终端设备用于下行干扰消除。
下面通过几个实施例来详细说明上述信号处理的方法。
实施例一为下行干扰消除方案。
参阅图4所示,具体流程包括如下步骤:
步骤40:终端设备测量至少一个小区的参考信号,获得至少一个小区的信号质量,通过第一测量报告上报给服务基站。
其中,所述第一测量报告中包含PCI或ECGI,以及该小区的下行信号质量,可选的, 可以为RSRP或RSRQ等。一种可能的设计中,第一测量报告中包括至少一个小区的信号质量的等级信息,所述信号质量与等级信息之间的对应关系为预先设置的,或由所述终端设备从服务基站接收的。
步骤41:服务基站收到第一测量报告后,根据第一测量报告中包含的至少一个小区的信号质量,判断各个小区是否是强干扰小区,然后向强干扰小区所属的相邻基站发送资源调度请求,请求获得相邻基站和/或外围基站的下行资源调度信息。
步骤42:服务基站接收相邻基站反馈的下行资源调度信息。
其中,所述下行资源调度信息包括相邻基站和/或外围基站的下行资源调度信息。
步骤43:服务基站将下行资源调度信息发送给终端设备。
下行资源调度信息到达服务基站后,需要发送给终端设备用于干扰消除。具体的,相邻基站把每个子帧上的所有频域资源的调度信息都发给了服务基站,而服务基站只需要将终端设备占用的资源上的邻区调度信息发送给终端设备即可。例如终端设备占用的是SFN=0,subframe=1子帧上的RB10-RB20,相应的下行资源调度信息覆盖此时频资源即可,例如包含RB5-RB15和RB16-RB30的两组调度信息。其中,下行资源调度信息可能包括以下信息,调制与编码策略(Modulation and Coding Scheme,MCS),资源块(Resource Block,RB)位置,小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI),冗余版本,发射模式,解调参考信号(Demodulation Reference Signal,DMRS)导频资源信息等。
需要说明的是,若下行资源调度信息和终端设备的数据合并一起发送时,由于干扰的存在,可能无法实现有效的数据检测。所以可行的方法是,将下行资源调度信息和终端设备的数据分开发送。
具体的,服务基站采用低码率向终端设备发送下行资源调度信息,确保终端设备能够正确接收到该信息;对于终端设备的数据可以采用高码率发送以提高谱效率。
具体的,服务基站可以通过以下信令发送下行资源调度信息:
1)无线资源控制(Radio Resource Control,RRC)重配置消息。RRC重配置消息可以包括多个小区的资源调度信息,适用于多个小区都具有较大干扰的场景。但是RRC消息需要经过自动重传请求(automatic repeat request,ARQ)和混合自动重传请求(hybrid automatic repeat request,HARQ)两层可靠性保护机制,可能时延较大,只适合于通知半静态调度的邻区资源调度信息。
2)媒体接入层控制单元(MAC Control Element,MAC CE)指示消息。MAC CE只经历HARQ过程,时延较短,可以作为邻区动态资源调度信息的载体。
3)下行控制信息(Downl ink Control Information,DCI)指示消息。DCI是物理层的控制信息,具有高可靠低时延的特点,目前终端设备通过C-RNTI盲检测是否存在服务基站指示的资源调度信息。服务基站可以为终端设备分配一个专用于检测邻区调度信息的干扰小区无线网络临时标识(Interference Radio Network Temporary Identifier,I-RNTI),在每一个传输时间间隔(Transmission Timing Interval,TTI),终端设备都可以使用原有的C-RNTI和I-RNTI检测资源调度信息。如果使用I-RNTI检测到资源调度信息,则认为是邻区的资源调度信息,可用于干扰消除。可选的,服务基站可以指示终端设备使用C-RNTI检测邻区干扰消息,相应的在DCI中指示该资源调度信息是邻区的资源调度信息。
实施例二:
实施例二为上行干扰消除方案。
参阅图5所示,具体流程包括如下步骤:
步骤50:终端设备测量至少一个小区的参考信号,获得至少一个小区的信号质量,通过第一测量报告上报给服务基站。
其中,所述第一测量报告中包含PCI或CGI,以及该小区的下行信号质量,可选的,可以为RSRP或RSRQ等。一种可能的设计中,第一测量报告中包括至少一个小区的信号质量的等级信息,所述信号质量与等级信息之间的对应关系为预先设置的,或由所述终端设备从服务基站接收的。
步骤51:服务基站收到第一测量报告后,根据第一测量报告中包含的至少一个小区的信号质量,判断各个小区中是否存在强干扰。若存在强干扰小区,则向强干扰小区所属的相邻基站发送上行资源配置信息,包括上行数据调度信息和/或参考信号配置信息。
步骤52:相邻基站在收到上行资源配置信息,进行上行干扰消除。
为保证干扰消除效果,一种可能的实施方式中,只要终端设备有上行数据发送,都需要服务基站将终端设备的上行资源配置信息发给相邻基站相邻基站通过资源配置确认消息通知服务基站收到该终端设备的资源配置信息。可参阅图6所示。
当终端设备上报的某个小区的信号质量较大干扰较强时,服务基站可以先向相邻基站提供单次的终端设备的上行资源配置信息,相邻基站可以利用这个信息检测是否能够收到较强的终端设备的上行信号。如果检测的终端设备的信号能量较低,可以在资源配置确认中指示服务基站该终端设备的干扰较弱,无需再提供该终端设备的上行资源配置信息;如果检测的终端设备的信号能量较强,可以在资源配置确认中指示服务基站该终端设备的干扰较强,需要继续提供该终端设备的上行资源配置信息用于干扰消除,可参阅图7所示。
在实施例二中,服务基站和相邻基站交互终端设备的资源配置信息,包括上行数据调度信息和上行参考信号配置信息,用于上行干扰消除。但是在终端设备高度增加后,不仅是相邻基站,即使更远处的基站也会被终端设备干扰,也需要考虑干扰消除。所以需要扩大资源配置信息的传递范围。如图8所示,中心位置的基站为终端设备所在的服务基站,与服务基站相邻的第一圈基站为相邻基站,即第二基站,而与相邻基站的相邻的第二圈基站为外围基站,即第三基站。当终端设备处于地面时,终端设备的干扰范围最大到相邻基站,即第一圈范围;而当终端设备的高度高于服务基站时,它的干扰影响范围将扩大到外围基站,即第二圈范围。
具体的,服务基站在向相邻基站发送终端设备的上行资源配置信息时,同时会将终端设备上报的第一测量报告,也发送给相邻基站。如果相邻基站通过测量报告判断其外围基站的小区也对终端设备产生了较强的干扰,会将该终端设备的上行资源配置信息继续发送给外围基站,用于上行干扰消除。
基于同一构思,本申请实施例中还提供了一种终端设备,该终端设备用于执行上述方法实施例中的终端设备的动作或功能。
基于同一构思,本申请实施例中还提供了一种第一基站,该第一基站用于执行上述方法实施例中第一基站或服务基站的动作或功能。
基于同一构思,本申请实施例中还提供了一种第二基站,该第二基站用于执行上述方法实施例中第二基站或相邻基站的动作或功能。
本发明实施例还提供一种通信系统,包括上述实施例中的第一基站、第二基站与终端设备。
为了节省篇幅,装置部分的内容可以具体能见方法实施例,重复之处不再赘述。
如图9a所示,本申请实施例的终端设备900a,包括:发送模块920a和处理模块910a,其中,处理模块910a,用于对一个或多个小区的信号质量进行测量,以生成第一测量报告;发送模块920a,用于向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息。
可选的,所述处理模块910a具体用于:
根据测量报告配置信息生成所述第一测量报告,所述测量报告配置信息包含至少一个信号质量等级。
可选的,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
可选的,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
可选的,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
可选的,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区I D
可选的,所述终端设备还包括接收模块930a,用于:
从所述第一基站接收下行第一调度信息;
所述处理模块910a还用于,通过第一标识信息确定所述第一调度信息,所述第一调度信息为邻区的调度信息,所述第一标识信息是所述接收模块930a从所述第一基站接收的,或者是所述处理模块910a根据从所述第一基站接收的指示信息确定的。
可选的,所述处理模块910a具体用于
通过第一标识信息在控制信道上检测以确定所述第一调度信息。
其中,本申请实施例的终端设备900a所有可能的实现方式参见本申请实施例中终端设备的所有可能的实现方式。
应注意,本申请实施例中,处理模块910a可以由处理器实现,发送模块920a和接收模块930a可以由收发器实现。如图9b所示,终端设备900b可以包括处理器910b、收发器920b和存储器930b。其中,存储器930b可以用于存储终端设备900b出厂时预装的程序/代码,也可以存储用于处理器910b执行时的代码等。
其中,处理器910b可以采用通用的CPU,微处理器,ASIC,或者一个或多个集成电路,用于执行相关操作,以实现本申请实施例所提供的技术方案。
应注意,尽管图9b所示的终端设备900b仅仅示出了处理器910b、收发器920b和存储器930b,但是在具体实现过程中,本领域的技术人员应当明白,该终端设备900b还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该终端设备900b还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该终端设备900b也可仅仅包含实现本申请实施例所必须的器件或模块,而不必包 含图9b中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、ROM或RAM等。
如图10a所示,本申请实施例中的第一基站1000a,包括:接收模块1010a和发送模块1020a,其中:接收模块1010a,用于从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息;发送模块1020a,用于向第二基站发送所述第一测量报告,所述第二基站为所述第一基站的相邻基站。
可选的,所述发送模块1020a还用于:
向所述第二基站发送上行资源配置信息,所述上行资源配置信息包含资源块RB位置信息、调制与编码策略MCS、跳频指示中的至少一个。
可选的,所述发送模块1020a还用于:
向所述第二基站发送资源调度请求,所述资源调度请求用于向所述第二基站请求下行资源调度信息;
从所述第二基站接收第一下行资源调度信息。
可选的,所述发送模块1020a还用于:
向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
可选的,所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
可选的,所述第一基站还包括处理模块1030a用于:
根据所述第一测量报告,确定所述第二基站。
可选的,所述处理模块1030a具体用于
根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
根据所述至少一个小区,确定所述第二基站。
可选的,所述测量信息包括信号质量等级和信号质量中的任意一个;
其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
可选的,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID。
应注意,本申请实施例中,处理模块1030a可以由处理器实现,发送模块1020a、接收模块1010a可以由收发器实现。如图10b所示,第一基站1000b可以包括处理器1010b、收发器1020b和存储器1030b。其中,存储器1030b可以用于存储第一基站1000b出厂时预装的程序/代码,也可以存储用于处理器1010b执行时的代码等。
其中,处理器1010b可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本申请实施例所提供的技术方案。
应注意,尽管图10b所示的第一基站1000b仅仅示出了处理器1010b、收发器1020b和存储器1030b,但是在具体实现过程中,本领域的技术人员应当明白,该第一基站1000b 还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,该第一基站1000b还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该第一基站1000b也可仅仅包含实现本申请实施例所必须的器件或模块,而不必包含图10b中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
如图11a所示,本申请实施例中的第一基站1100a,包括:接收模块1110a和处理模块1120a,其中:接收模块1110a,用于从第一基站接收第一测量报告,所述第一测量报告中包括至少一个小区的测量信息,所述第二基站为所述第一基站的相邻基站;处理模块1120a,用于根据所述第一测量报告,确定至少一个第三基站。
可选的,所述第一测量报告包括至少一个小区的信号质量,所述处理模块1120a具体用于:
将信号质量超过预设阈值的至少一个小区确定为目标小区;
将所述目标小区所属的基站确定为第三基站。
可选的,所述第一测量报告包括至少一个小区的信号质量等级,所述处理模块1120a具体用于:
将信号质量等级超过预设阈值的至少一个小区确定为目标小区;
将所述目标小区所属的基站确定为第三基站。
可选的,所述接收模块1110a还用于:
从所述第一基站接收上行资源配置信息,所述上行资源配置信息为参考信号配置信息或上行数据调度信息;
所述第二基站还包括发送模块1130a,用于向所述第三基站发送所述上行资源配置信息。
可选的,所述接收模块1110a还用于:
从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;
所述发送模块1130a,还用于向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。
应注意,本申请实施例中,处理模块1120a可以由处理器实现,发送模块1130a、接收模块1110a可以由收发器实现。如图11b所示,第二基站1100b可以包括处理器1110b、收发器1120b和存储器1130b。其中,存储器1130b可以用于存储第二基站1100b出厂时预装的程序/代码,也可以存储用于处理器1110b执行时的代码等。
其中,处理器1110b可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Appl ication Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关操作,以实现本申请实施例所提供的技术方案。
应注意,尽管图11b所示的第二基站1100b仅仅示出了处理器1110b、收发器1120b和存储器1130b,但是在具体实现过程中,本领域的技术人员应当明白,该第二基站1100b还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明 白,该第二基站1100b还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,该第二基站1100b也可仅仅包含实现本申请实施例所必须的器件或模块,而不必包含图10b中所示的全部器件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁盘、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种信号处理方法,其特征在于,包括:
    终端设备对一个或多个小区的信号质量进行测量,以生成第一测量报告;
    所述终端设备向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息。
  2. 如权利要求1所述的方法,其特征在于,终端设备生成第一测量报告,包括:
    所述终端设备根据测量报告配置信息生成所述第一测量报告,所述测量报告配置信息包含至少一个信号质量等级。
  3. 如权利要求2所述的方法,其特征在于,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
  4. 如权利要求2或3所述的方法,其特征在于,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
  5. 如权利要求1或2所述的方法,其特征在于,所述测量信息包括信号质量等级和信号质量中的任意一个;
    其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
  6. 如权利要求5所述的方法,其特征在于,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID。
  7. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备从所述第一基站接收下行第一调度信息,所述第一调度信息为邻区的调度信息;或者,
    所述终端设备通过第一标识信息确定所述第一调度信息,所述第一调度信息为邻区的调度信息,所述第一标识信息是所述终端设备从所述第一基站接收的,或者是所述终端设备根据从所述第一基站接收的指示信息确定的。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备通过第一标识信息确定所述第一调度信息,包括:
    所述终端设备通过第一标识信息在控制信道上检测以确定所述第一调度信息。
  9. 一种信号处理方法,其特征在于,包括:
    第一基站从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息;
    所述第一基站向第二基站发送所述第一测量报告。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述第二基站发送上行资源配置信息,所述上行资源配置信息包含资源块RB位置信息、调制与编码策略MCS、跳频指示中的至少一个。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述第二基站发送资源调度请求,所述资源调度请求用于向所述第二基站请求下行资源调度信息;
    所述第一基站从所述第二基站接收第一下行资源调度信息。
  12. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一基站向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
  14. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一基站根据所述第一测量报告,确定所述第二基站。
  15. 如权利要求14所述的方法,其特征在于,包括:
    所述第一基站根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
    所述第一基站根据所述至少一个小区,确定所述第二基站。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述测量信息包括信号质量等级和信号质量中的任意一个;
    其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
  17. 如权利要求16所述的方法,其特征在于,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID
  18. 一种信号处理方法,其特征在于,包括:
    第二基站从第一基站接收第一测量报告,所述第一测量报告包括第一终端设备测量至少一个小区得到的测量信息;
    所述第二基站根据所述第一测量报告,确定至少一个第三基站;
    其中所述第一基站为所述第一终端设备的服务基站。
  19. 如权利要求18所述的方法,其特征在于,所述第一测量报告包括至少一个小区的信号质量,所述第二基站根据所述第一测量报告,确定至少一个第三基站,包括:
    所述第二基站将信号质量超过预设阈值的至少一个小区确定为目标小区;
    所述第二基站将所述目标小区所属的基站确定为第三基站。
  20. 如权利要求18所述的方法,其特征在于,所述第一测量报告包括至少一个小区的信号质量等级,所述第二基站根据所述第一测量报告,确定至少一个第三基站,包括:
    所述第二基站将信号质量等级超过预设阈值的至少一个小区确定为目标小区;
    所述第二基站将所述目标小区所属的基站确定为第三基站。
  21. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二基站从所述第一基站接收上行资源配置信息,所述上行资源配置信息包含参考信号配置信息或上行数据调度信息;
    所述第二基站向所述第三基站发送所述上行资源配置信息。
  22. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二基站从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;
    所述第二基站向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。
  23. 一种终端设备,其特征在于,包括:
    处理模块,用于对一个或多个小区的信号质量进行测量,以生成第一测量报告;
    发送模块,用于向第一基站发送所述第一测量报告,所述第一测量报告包含所述一个或多个小区的测量信息。
  24. 如权利要求23所述的终端设备,其特征在于,所述处理模块具体用于:
    根据测量报告配置信息生成所述第一测量报告,所述测量报告配置信息包含至少一个信号质量等级。
  25. 如权利要求24所述的终端设备,其特征在于,所述测量报告配置信息还包含与所述至少一个信号质量等级中的每个等级对应的信号质量范围和/或所述至少一个信号质量等级中的每个等级对应的等级配置信息,所述等级配置信息用于指示需要上报的测量信息。
  26. 如权利要求24或25所述的终端设备,其特征在于,所述测量报告配置信息是所述终端设备从所述第一基站接收的,或者是预先配置的。
  27. 如权利要求24或25所述的终端设备,其特征在于,所述测量信息包括信号质量等级和信号质量中的任意一个;
    其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
  28. 如权利要求27所述的终端设备,其特征在于,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID
  29. 如权利要求23所述的终端设备,其特征在于,所述终端设备还包括接收模块,用于:
    从所述第一基站接收下行第一调度信息;
    所述处理模块还用于,通过第一标识信息确定所述第一调度信息,所述第一调度信息为邻区的调度信息,所述第一标识信息是所述接收模块从所述第一基站接收的,或者是所述处理模块根据从所述第一基站接收的指示信息确定的。
  30. 如权利要求29所述的终端设备,其特征在于,所述处理模块具体用于
    通过第一标识信息在控制信道上检测以确定所述第一调度信息。
  31. 一种第一基站,其特征在于,包括:
    接收模块,用于从终端设备接收第一测量报告,所述第一测量报告包括一个或多个小区的测量信息;
    发送模块,用于向第二基站发送所述第一测量报告,所述第二基站为所述第一基站的相邻基站。
  32. 如权利要求31所述的第一基站,其特征在于,所述发送模块还用于:
    向所述第二基站发送上行资源配置信息,所述上行资源配置信息包含资源块RB位置信息、调制与编码策略MCS、跳频指示中的至少一个。
  33. 如权利要求31所述的第一基站,其特征在于,所述发送模块还用于:
    向所述第二基站发送资源调度请求,所述资源调度请求用于向所述第二基站请求下行资源调度信息;
    从所述第二基站接收第一下行资源调度信息。
  34. 如权利要求31所述的第一基站,其特征在于,所述发送模块还用于:
    向所述终端设备发送所述第一下行资源调度信息,所述第一下行资源调度信息包含所述第二基站的下行资源调度信息。
  35. 如权利要求34所述的第一基站,其特征在于,所述第一下行资源调度信息还包含第三基站的下行资源调度信息,所述第三基站是由所述第二基站根据所述第一测量报告确定的。
  36. 如权利要求31所述的第一基站,其特征在于,所述第一基站还包括处理模块用于:
    根据所述第一测量报告,确定所述第二基站。
  37. 如权利要求36所述的第一基站,其特征在于,所述处理模块具体用于
    根据所述第一测量报告,确定所述一个或多个小区中的至少一个小区;
    根据所述至少一个小区,确定所述第二基站。
  38. 如权利要求31-37任一项所述的第一基站,其特征在于,所述测量信息包括信号质量等级和信号质量中的任意一个;
    其中,所述信号质量与信号质量的等级之间的对应关系为预先设置的,或是所述终端设备从所述第一基站接收的。
  39. 如权利要求38所述的第一基站,其特征在于,所述第一测量报告中还包括每个信号质量等级所对应的小区数量和/或小区ID。
  40. 一种第二基站,其特征在于,包括:
    接收模块,用于从第一基站接收第一测量报告,所述第一测量报告中包括至少一个小区的测量信息,所述第二基站为所述第一基站的相邻基站;
    处理模块,用于根据所述第一测量报告,确定至少一个第三基站。
  41. 如权利要求40所述的第二基站,其特征在于,所述第一测量报告包括至少一个小区的信号质量,所述处理模块具体用于:
    将信号质量超过预设阈值的至少一个小区确定为目标小区;
    将所述目标小区所属的基站确定为第三基站。
  42. 如权利要求40所述的第二基站,其特征在于,所述第一测量报告包括至少一个小区的信号质量等级,所述处理模块具体用于:
    将信号质量等级超过预设阈值的至少一个小区确定为目标小区;
    将所述目标小区所属的基站确定为第三基站。
  43. 如权利要求40所述的第二基站,其特征在于,所述接收模块还用于:
    从所述第一基站接收上行资源配置信息,所述上行资源配置信息为参考信号配置信息或上行数据调度信息;
    所述第二基站还包括发送模块,用于向所述第三基站发送所述上行资源配置信息。
  44. 如权利要求40所述的第二基站,其特征在于,所述接收模块还用于:
    从所述第一基站接收资源调度请求,所述资源调度请求用于请求下行资源调度信息;
    所述发送模块,还用于向所述第一基站发送所述第二基站和/或第三基站的下行资源调度信息。
PCT/CN2017/083356 2017-05-05 2017-05-05 一种信号处理方法及装置 WO2018201502A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780090118.XA CN110574416B (zh) 2017-05-05 2017-05-05 一种信号处理方法及装置
PCT/CN2017/083356 WO2018201502A1 (zh) 2017-05-05 2017-05-05 一种信号处理方法及装置
EP17908284.7A EP3611958B1 (en) 2017-05-05 2017-05-05 Signal processing method, base station and computer storage medium
US16/673,565 US11310684B2 (en) 2017-05-05 2019-11-04 Signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083356 WO2018201502A1 (zh) 2017-05-05 2017-05-05 一种信号处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,565 Continuation US11310684B2 (en) 2017-05-05 2019-11-04 Signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018201502A1 true WO2018201502A1 (zh) 2018-11-08

Family

ID=64016669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083356 WO2018201502A1 (zh) 2017-05-05 2017-05-05 一种信号处理方法及装置

Country Status (4)

Country Link
US (1) US11310684B2 (zh)
EP (1) EP3611958B1 (zh)
CN (1) CN110574416B (zh)
WO (1) WO2018201502A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780728A1 (en) * 2019-08-14 2021-02-17 Panasonic Intellectual Property Corporation of America Transceiver device and base station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110028181A1 (en) * 2009-07-28 2011-02-03 Samsung Electronics Co. Ltd. Apparatus and method for configuration and optimization of automatic neighbor relation in wireless communication system
CN102870466A (zh) * 2012-05-31 2013-01-09 华为技术有限公司 传输测量信息的方法、设备及系统
CN103313401A (zh) * 2012-03-14 2013-09-18 普天信息技术研究院有限公司 一种调整pdcch格式的方法及装置
CN104054372A (zh) * 2011-11-04 2014-09-17 诺基亚通信公司 Anr建立解决方案
CN106068658A (zh) * 2014-03-21 2016-11-02 三星电子株式会社 移动通信系统中使用的小区测量和特殊功能小小区选择的装置和方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028907A1 (en) * 2007-08-21 2009-02-25 Nokia Siemens Networks Oy Method and apparatus for forwarding of condensed information about a user equipment between base stations
CN102577558B (zh) * 2010-06-29 2016-03-02 中兴通讯股份有限公司 一种缓冲区状态报告的上报方法和用户设备
JP4960489B2 (ja) * 2010-11-12 2012-06-27 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US8611823B2 (en) * 2011-06-16 2013-12-17 Blackberry Limited Mobile guided uplink interference management
US9788327B2 (en) * 2011-11-14 2017-10-10 Qualcomm Incorporated Methods and apparatus for reducing interference in a heterogeneous network
CN103518400B (zh) 2012-05-11 2017-04-19 华为技术有限公司 一种信号质量测量结果的上报方法、设备及系统
CN103701572A (zh) * 2012-09-27 2014-04-02 普天信息技术研究院有限公司 一种指示信道质量的方法和装置
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
RU2631251C2 (ru) * 2013-05-31 2017-09-20 Хуавэй Текнолоджиз Ко., Лтд. Способ обмена информацией, базовая станция и устройство пользователя
US10039107B2 (en) * 2013-12-19 2018-07-31 Intel IP Corporation Apparatus, system and method of dynamic allocation of radio resources to wireless communication links of a plurality of types
WO2015180078A1 (zh) * 2014-05-28 2015-12-03 华为技术有限公司 一种基于使用非授权频谱的小区Uscell的信息获取方法及装置
EP2978258B1 (en) * 2014-07-22 2017-03-08 Alcatel Lucent Seamless replacement of a first drone base station with a second drone base station
US10863395B2 (en) * 2015-08-18 2020-12-08 Parallel Wireless, Inc. Cell ID disambiguation
CN105764061B (zh) * 2016-01-28 2018-12-04 电子科技大学 一种无线蜂窝网络中的d2d通信资源分配方法
CN108282836B (zh) * 2017-01-06 2020-10-30 展讯通信(上海)有限公司 辅基站切换方法、装置及基站
EP3603225B1 (en) * 2017-03-23 2022-07-27 Interdigital Patent Holdings, Inc. Method and system for altitude path-loss based power control for aerial vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110028181A1 (en) * 2009-07-28 2011-02-03 Samsung Electronics Co. Ltd. Apparatus and method for configuration and optimization of automatic neighbor relation in wireless communication system
CN104054372A (zh) * 2011-11-04 2014-09-17 诺基亚通信公司 Anr建立解决方案
CN103313401A (zh) * 2012-03-14 2013-09-18 普天信息技术研究院有限公司 一种调整pdcch格式的方法及装置
CN102870466A (zh) * 2012-05-31 2013-01-09 华为技术有限公司 传输测量信息的方法、设备及系统
CN106068658A (zh) * 2014-03-21 2016-11-02 三星电子株式会社 移动通信系统中使用的小区测量和特殊功能小小区选择的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611958A4 *

Also Published As

Publication number Publication date
CN110574416B (zh) 2021-12-03
US11310684B2 (en) 2022-04-19
EP3611958B1 (en) 2023-07-26
EP3611958A1 (en) 2020-02-19
US20200068423A1 (en) 2020-02-27
EP3611958A4 (en) 2020-05-27
CN110574416A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP7340648B2 (ja) 車両間通信のためのロケーションおよびリッスンビフォアスケジュールベースのリソース割振り
US20220014954A1 (en) Method and apparatus for cli reporting
JP7191933B2 (ja) ショート送信時間区間用のチャネル状態情報報告
US11310858B2 (en) Method and apparatus for managing radio link in unlicensed band
US11153774B2 (en) Signal transmission method and device, and system
US8837422B2 (en) Low-cost LTE system with distributed carrier aggregation on the unlicensed band
CN110461014B (zh) 带宽分配方法、装置、用户设备和基站
EP3228118B1 (en) Hidden node detection in lte licensed assisted access
CN111316737B (zh) 数据传输方法、终端设备和网络设备
US20150195729A1 (en) UE Signal Quality Measurements on a Subset of Radio Resource Elements
CN109644498A (zh) 针对频谱共享的新无线电先听后讲设计
CN107079430B (zh) 一种数据传输装置、方法及系统
JP2017523655A (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
US11665736B2 (en) Control channel position determining method, device, and processor-readable storage medium
EP3709758B1 (en) Method for enabling device to device communication in a radio communications network
CN111295912A (zh) 定向波束环境中的功率控制
CN112771972A (zh) 通过侵害者-受害者关系进行增强
EP3297365A1 (en) Carrier aggregation method using subframe offset and base station
WO2019154099A1 (zh) 无线通信方法、终端和网络设备
US20160249226A1 (en) Wireless communication method and apparatus
WO2021003620A1 (zh) 下行信号传输的方法和设备
WO2020186533A1 (zh) 无线链路监测方法、设备和存储介质
WO2018201502A1 (zh) 一种信号处理方法及装置
WO2017114087A1 (zh) 基于载波聚合的数据传输方法及装置
EP4319374A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908284

Country of ref document: EP

Effective date: 20191114