WO2018201467A1 - 控制随机接入网络的方法、用户设备及基站 - Google Patents

控制随机接入网络的方法、用户设备及基站 Download PDF

Info

Publication number
WO2018201467A1
WO2018201467A1 PCT/CN2017/083292 CN2017083292W WO2018201467A1 WO 2018201467 A1 WO2018201467 A1 WO 2018201467A1 CN 2017083292 W CN2017083292 W CN 2017083292W WO 2018201467 A1 WO2018201467 A1 WO 2018201467A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
target
random access
base station
user equipment
Prior art date
Application number
PCT/CN2017/083292
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US16/611,022 priority Critical patent/US11224075B2/en
Priority to PCT/CN2017/083292 priority patent/WO2018201467A1/zh
Priority to CN201780000342.5A priority patent/CN107223361B/zh
Priority to EP17908276.3A priority patent/EP3621375B1/en
Publication of WO2018201467A1 publication Critical patent/WO2018201467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method, a user equipment, and a base station for controlling a random access network.
  • the communication process is as follows:
  • the transmitting end such as the base station gNB, utilizes a large-scale antenna array to utilize the receiving end, such as the user equipment (UE).
  • the high frequency beam with a frequency above 6 GHz is periodically scanned; after receiving the beam, the receiving end establishes a communication connection with the transmitting end, thereby transmitting and receiving information through the high frequency beam.
  • the user equipment When establishing a communication connection, the user equipment first needs to send a random access request to the base station to establish a communication connection between the base station and the user equipment.
  • the first step of the random access procedure is to transmit the random access preamble.
  • the main function of the preamble preamble is to tell the base station to have a random access request, so that the base station can estimate the transmission delay between it and the user equipment (User Equipment, UE), so that the base station can calibrate the uplink timing and calibrate.
  • the information is informed to the UE to implement uplink synchronization between the UE and the base station.
  • the high frequency beam is periodically transmitted, so that the UE cannot send the random access preamble to the base station in an omnidirectional manner. If the UE is in the overlapping coverage area of multiple beams, such as two beams, it needs to be selected. A beam with good random access channel conditions is used as the target access beam to ensure subsequent communication quality.
  • the embodiments of the present disclosure provide a method, a user equipment, and a base station for controlling a random access network, so as to improve the reliability of a random access network of user equipment in a 5G network.
  • a method for controlling a random access network is provided, which is applied to a user equipment, where the method includes:
  • the target beam After detecting the synchronization signal beam, determining an estimated arrival time of the at least two consecutive target beams, the target beam being used to send the preamble;
  • configuration information of each target preamble includes at least one of: a scrambling code for scrambling, and a preamble carrying the target preamble a time domain resource, a frequency domain resource carrying the target preamble;
  • the sending according to the configuration information of each target preamble, the target preamble to the base station, including:
  • the target preamble is scrambled by using a preset scrambling code to obtain a scrambled preamble.
  • the sending according to the configuration information of each target preamble, the target preamble to the base station, including:
  • the target preamble is transmitted to the base station by using a preset time domain resource of the target beam.
  • the sending according to the configuration information of each target preamble, the target preamble to the base station, including:
  • the accessing the network according to the random access response message includes:
  • the target access beam indicated by the response message accesses the network.
  • the accessing the network according to the random access response message includes:
  • the method before the sending the random access preamble to the base station by using the at least two consecutive beams, the method further includes:
  • the preamble uplink configuration information is obtained, where the preamble uplink configuration information includes: a preset target beam quantity, preset conduction code group information, and preset transmission configuration information.
  • a method for controlling a random access network is provided, which is applied to a base station, where the method includes:
  • the determining, by using the target preamble sent by the same user equipment includes:
  • the descrambling codes of the at least two preambles are the same, and the packet identifiers of the preambles transmitted by the adjacent beams are different, it is determined that the at least two preambles are from the same user equipment.
  • the time domain resources of the at least two preambles meet the preset preamble time domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different, determining that the at least two preambles are from the same User devices.
  • the determining, by using the target preamble sent by the same user equipment includes:
  • the at least two preambles are from the same user equipment, if the frequency domain resources of the at least two preambles meet the preset preamble frequency domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different.
  • the sending the random access response message to the user equipment according to the received signal to noise ratio of the target preamble further includes:
  • a user equipment including:
  • a sending module configured to send, by using at least two consecutive beams, a random access preamble to the base station, where the preambles carried by the two adjacent beams belong to different preamble packets respectively;
  • the response receiving module is configured to receive a random access response message that is sent back by the base station for the preamble
  • the requesting access module is configured to access the network according to the random access response message.
  • the sending module includes:
  • Selecting a submodule configured to select a target preamble for each of the target beams according to a preset preamble packet
  • the configuration information determining submodule is configured to determine configuration information of each target preamble according to the preset transmission configuration information, where the configuration information of each target preamble includes at least one of the following: a scrambling for scrambling a code, a time domain resource carrying the target preamble, and a frequency domain resource carrying the target preamble;
  • a sending submodule configured to send the target preamble to the base station according to configuration information of each target preamble within a time range of arrival of each of the target beams.
  • the sending submodule includes:
  • the first sending unit is configured to send the scrambled preamble to the base station by using the target beam.
  • the sending submodule includes:
  • the third sending unit is configured to send the target preamble to the base station by using a preset frequency domain resource of the target beam.
  • the response receiving module includes:
  • the first receiving submodule is configured to: if receiving a random access response message, access the network according to the target access beam indicated by the response message.
  • the response receiving module includes:
  • the access beam selection sub-module is configured to: if at least two random access response messages are received, select one target access beam from the access beams indicated by each of the response messages;
  • the device further includes:
  • a base station including:
  • a detecting module configured to detect a preamble continuously transmitted by a preset number of beams
  • the determining module includes:
  • the first parsing sub-module is configured to descramble the scrambled preamble sent by the preset number of consecutive beams to obtain a preamble and first parsing information, where the first parsing information includes: each preamble a descrambling code corresponding to the code and a packet identifier of the preamble packet to which the code belongs;
  • the determining module includes:
  • a second parsing submodule configured to determine a time domain resource of each preamble transmitted by the continuous beam and a packet identifier of the preamble packet to which the preamble is transmitted;
  • the second determining submodule is configured to determine the at least two preambles if the time domain resources of the at least two preambles satisfy the preset preamble time domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different From the same user device.
  • the determining module includes:
  • a third parsing submodule configured to determine a frequency domain resource of each preamble transmitted by the continuous beam and a packet identifier of the preamble packet to which the preamble is transmitted;
  • the third determining submodule is configured to: if the frequency domain resources of the at least two preambles meet the preset preamble frequency domain configuration information, and the packet identifiers of the preambles transmitted by the adjacent beams are different, The at least two preambles are from the same user equipment.
  • the response sending module includes:
  • a signal to noise ratio determination submodule configured to determine a received signal to noise ratio of each of the target preambles
  • a determining submodule configured to determine whether each of the received signal to noise ratios exceeds a preset signal to noise ratio threshold
  • the response sending module further includes:
  • the second sending submodule is configured to: if the received signal to noise ratio of the at least two target preambles is greater than the preset signal to noise ratio threshold, and the difference between each two received signal to noise ratios is less than a preset threshold, A random access response message is sent for each of the target preambles.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of the method of the first aspect described above.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of the method of the second aspect described above.
  • a user equipment including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the user equipment when the user equipment is in an overlapping coverage area of at least two scanning beams, the user equipment may send a random access preamble to the base station by using at least two consecutive beams, so that the base station acquires the preamble according to the different beams, and according to the The received signal-to-noise ratio of the target beam carrying the preamble determines which beam has a good random access channel condition, so that the random access response message indicates that the user equipment selects a beam with a good channel condition as the target access beam, and enhances the random access. Reliability to ensure the quality of subsequent communications.
  • FIG. 1 is a flowchart of a method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an application scenario of controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a flow chart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 15 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 16 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 17 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 18 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 19 is a block diagram of another user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 21 is a block diagram of another base station according to an exemplary embodiment of the present disclosure.
  • FIG. 22 is a block diagram of another base station according to an exemplary embodiment of the present disclosure.
  • FIG. 23 is a block diagram of another base station according to an exemplary embodiment of the present disclosure.
  • FIG. 24 is a block diagram of another base station according to an exemplary embodiment of the present disclosure.
  • FIG. 25 is a block diagram of another base station according to an exemplary embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of a user equipment according to an exemplary embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of a base station according to an exemplary embodiment of the present disclosure.
  • the execution subject of the present disclosure includes: a base station and a user equipment (User Equipment, UE), wherein the base station is used for a base station, a sub base station, or the like, which may be provided with a large-scale antenna array.
  • the user equipment UE may be a user terminal, a user node, a mobile terminal, or a tablet.
  • the base station and the user equipment are independent of each other, and are in contact with each other to jointly implement the technical solution provided by the present disclosure.
  • each cell is assigned a preset number such as 64 or 128 available random access preamble sequence preamble sequences. These sequences can be divided into two parts, one for contention based random access and the other for non-contention based random access.
  • the random access preamble preambles involved in the embodiments of the present disclosure all belong to a contention-based random access preamble preamble sequence.
  • FIG. 1 is a flowchart of a method for controlling a random access network according to an exemplary embodiment, and the method may include the following steps:
  • step 11 the random access preamble is sent to the base station by using at least two consecutive beams.
  • the preambles carried by the two adjacent beams belong to different preamble packets respectively.
  • a corresponding number of preamble preambles are continuously transmitted to the base station BS (Base Station) by using at least two beams, which is shown in FIG. 2 according to an exemplary embodiment.
  • FIG. 2 A schematic diagram of an application scenario for controlling a random access network.
  • the preamble preamble transmitted by each two adjacent beams is required to be different.
  • FIG. 3 is a flowchart of another method for controlling a random access network according to an exemplary embodiment.
  • the foregoing step 11 may include the following steps:
  • step 111 after detecting the synchronization signal beam, determining an estimated arrival time of at least two consecutive target beams;
  • the system may stipulate the number of target beams used to transmit the preamble.
  • the UE may continuously send the preamble to the base station by using 2 or 3 target beams.
  • the UE1 determines that the subsequent beam can be used to initiate a random access request to the base station, and the subsequent prediction can be calculated according to the current time and the beam scanning period.
  • the estimated arrival time may include: an expected time to arrive, and a duration of stay.
  • the above target beam refers to a beam that can transmit a preamble.
  • the relationship between the target beam and the expected arrival time can be as shown in Table 1 below:
  • the present disclosure may select one target preamble for each target beam according to preset preamble packet information.
  • the current cell in which the UE is located has a total of 10 available preambles, and the corresponding preamble sequence is 0-9.
  • the foregoing 10 preambles may be divided into two groups, group 1 and group 2, where group 1 includes: 0 to 4.
  • Group 2 includes: 5 to 9.
  • the preamble packet can be used to select the target preamble for the three target beams shown in Table 1, to ensure that the preambles of the adjacent beams are from different packets, and mutual interference is avoided.
  • the correspondence between the preamble information and the target beam can be as shown in Table 2 below:
  • the original preamble sequence is added and then grouped, and the target preambles allocated for each beam belong to different preamble packets.
  • the number of available preambles can be increased to 15, that is, the corresponding preamble sequence is: 0 to 14. It can be divided into three groups, which are respectively represented as: group 1 ⁇ 0, 4 ⁇ ; group 2 ⁇ 5, 9 ⁇ ; group 3 ⁇ 10, 14 ⁇ .
  • one target preamble can be selected for each of the three target beams shown in Table 1 from the above three different groups. For example, as shown in Table 3 below:
  • the preambles sent by the three target beams belong to different preamble packets, which can improve the accuracy and reliability of the target access beam determined by the base station according to the preamble.
  • the target access beam is a beam that the base station can use to indicate that the UE initiates a random access request in the random access response message.
  • the configuration information of each target preamble is determined according to the preset transmission configuration information, where the configuration information of each target preamble includes at least one of the following: a scrambling code for scrambling, and a bearer. a time domain resource of the target preamble, and a frequency domain resource carrying the target preamble;
  • the system may preset transmission configuration information, which is used to indicate how the UE sends the preamble in a continuous manner, so that the base station can determine that multiple preambles received continuously are from the same user equipment.
  • step 114 within each of the arrival time ranges of the target beam, according to each The configuration information of the target preamble transmits the target preamble to the base station.
  • the UE may send the target preamble to the base station according to the configuration information of each target preamble in at least one of the following manners:
  • the first way scrambling transmission
  • step 114 may include the following steps:
  • step 1141 the target preamble is scrambled by using a preset scrambling code to obtain a scrambled preamble;
  • step 1142 the scrambled preamble is transmitted to the base station through the target beam.
  • the preset scrambling code is scrambling code 1
  • UE1 sends a first scrambling preamble through beam 1 in the time range: T1 + ⁇ t, and the first scrambling preamble is using scrambling code 1
  • the scrambling information obtained after scrambling the first preamble that is, 0.
  • UE1 transmits a second scrambled preamble and a third scrambled preamble, respectively, in T2+ ⁇ t, T3+ ⁇ t.
  • the second way through the preset time domain resource transmission
  • the foregoing step 114 may be specifically: sending, by using a preset time domain resource of the target beam, the target preamble to the base station within a time range of each of the target beams.
  • each target preamble can be sent according to the information shown in Table 5-1 below:
  • Time slot 1 Time slot 1
  • T2 Time slot 1
  • T3 Time slot 1
  • T3 Time slot 1
  • UE1 transmits the target preamble using the same time domain resource of each beam, that is, slot slot1.
  • the preset transmission configuration information indicates that the UE transmits the preamble using the same time slot resource.
  • the preset transmission configuration information may also indicate that the UE sends the preamble using different designated time slot resources in different target beams. For example, if beam 1 uses slot 1, beam 2 uses slot 2, and beam 3 uses slot 3, Sending a message can be expressed as:
  • Time slot 3 Time slot 3
  • the disclosure does not limit the manner in which the target beam time domain resource is indicated.
  • the third way through the preset frequency domain resource transmission
  • the specific sending information can be as shown in Table 6:
  • Time limit Beam sequence Target preamble Frequency domain resource domain T1+ ⁇ t Beam 1 0 ⁇ 1 T2+ ⁇ t Beam 2 5 ⁇ 2 T3+ ⁇ t Beam 3 2 ⁇ 3
  • UE1 uses the first frequency point ⁇ 1 in beam1 in the beam1 arrival time range T1+ ⁇ t.
  • the line wave transmits the target preamble 0 to the base station.
  • the frequency band of beam1 is 800 MHz to 810 MHz
  • the first frequency point ⁇ 1 is 800 MHz
  • UE1 transmits a target preamble 0 to the base station using a radio wave having a beam1 intermediate frequency point of 800 MHz.
  • the specified frequency domain resource locations of the beam1, beam2, and beam3 may be the same or different, and Table 6 shows different situations.
  • the minimum working frequency band supported by each UE in the cell needs to include at least the frequency bands of the above three beams. Taking the same frequency band of three beams as an example, the working frequency band of UE1 may be 790 MHz to 820 MHz, including 800 MHz to 810 MHz.
  • each target preamble is transmitted to the base station by radio waves of a specified frequency point in the target beam.
  • step 12 receiving a random access response message that the base station replies to the preamble
  • the base station may send a random access response message to the UE according to one of the preambles, or may send multiple random access response messages to the UE for multiple preambles according to the situation of the preamble.
  • the UE after the UE sends the preamble, it will listen to the random access response message replied by the base station in the random access response message time window (RA response window).
  • RA response window the random access response message time window
  • step 13 the network is accessed according to the random access response message.
  • step 13 may include the following two implementation manners:
  • the target access beam indicated by the response message accesses the network.
  • the second embodiment is a flowchart of another method for controlling a random access network according to an exemplary embodiment.
  • the foregoing step 13 may include:
  • step 131 if at least two random access response messages are received, one target access beam is selected from the access beams indicated by each of the response messages;
  • the UE1 is still used as an example. If the random access response message that the base station replies to the three target preambles is received, the best beam can be selected as the target access according to the beam signal strength of the random access response message. Beams, such as beam2, have the best channel conditions, and beam2 can be used as the target access beam.
  • step 132 the network is accessed through the target access beam.
  • a communication connection is established with the base station through the target access beam.
  • FIG. 6 is a flowchart of another method for controlling a random access network according to an exemplary embodiment. On the basis of the embodiment shown in FIG. 1 , before the step 11, the method may further include:
  • the preamble uplink configuration information is obtained, where the preamble uplink configuration information includes: a preset target beam number, preset conduction code group information, and preset transmission configuration information.
  • the user equipment can use the method provided by the disclosure to send a random access preamble to the base station by using at least two consecutive beams, thereby effectively increasing the probability that the base station successfully parses the preamble, thereby improving the reliability of the random access network of the user equipment. Improve the efficiency of network random access.
  • FIG. 7 is a flowchart of a method for controlling random access of a network according to an exemplary embodiment, where the method may include the following steps:
  • step 21 detecting a preamble continuously transmitted by a preset number of beams
  • the base station when detecting a preamble that can be sent by the user equipment in the continuous beam transmission manner, the base station starts to detect a preset number of preambles transmitted by the continuous beam, and may include at least one of the following conditions:
  • the base station detects a scrambled preamble through the current beam, for example, beam1, and continues to acquire the scrambled preamble from the subsequent preset number of target beams.
  • the base station obtains in the preset time domain resource of the current beam, for example, beam1
  • the preamble sent by the UE continues to acquire the preamble from the subsequent preset number of target beams.
  • the preset number of consecutive target beams detected by the base station needs to be greater than the number of consecutive beams used by the UE to preamble the UE, such as three, and the preset number of the detection beams needs to be greater than 3.
  • the a priori information is set to 5 to prevent other UEs from transmitting the preamble in the same manner, resulting in missed detection of the preamble sent by the target UE.
  • FIG. 8 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment.
  • the foregoing step 22 may include:
  • step 222 if the descrambling codes of the at least two preambles are the same and the packet identifiers of the preambles transmitted by the adjacent beams are different, it is determined that the at least two preambles are from the same user equipment.
  • FIG. 9 is a flowchart of another method for controlling random access of a network according to an exemplary embodiment.
  • the foregoing step 22 may include:
  • step 2201 determining a time domain resource of each preamble transmitted by the continuous beam and a packet identifier of the associated preamble packet;
  • step 2202 if the time domain resources of the at least two preambles satisfy the preset preamble time domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different, determining that the at least two preambles are from the same user. device.
  • the three preambles obtained by the base station through beam 1, beam 2, and beam 3 are: 0, 5, and 2, respectively.
  • the corresponding parsing information is as shown in Table 8. Since the same time domain resource, slot 1, is used, the preset preamble time domain resource configuration information is met; and the preamble acquired by the two adjacent beams belongs to different packet identifiers, so the base station can It is determined that 0, 5, 2 are from the same UE.
  • a flowchart of a method for controlling random access of a network may include:
  • step 2211 determining a frequency domain resource of each preamble transmitted by the continuous beam and a packet identifier of the preamble packet to which the preamble belongs;
  • step 2212 if the frequency domain resources of the at least two preambles satisfy the preset preamble frequency domain configuration information, and the packet identifiers of the preambles transmitted by the adjacent beams are different, the at least two preambles are determined.
  • the code is from the same user device.
  • step 23 a random access response message is sent to the user equipment according to the received signal to noise ratio of the target preamble, so that the user equipment accesses the network according to the random access response message.
  • step 231 determining a received signal to noise ratio of each of the target preambles
  • step 232 it is determined whether the received signal to noise ratio exceeds a preset signal to noise ratio threshold
  • the base station may compare the received signal to noise ratio of the target beam carrying the target preamble with the preset signal to noise ratio threshold SNR0; and determine whether the received signal to noise ratio is greater than the target of the preset signal to noise ratio threshold. Beam. If yes, perform step 233 below; if not, go to step 234.
  • step 233 if the received signal to noise ratio of the at least one target preamble is greater than the preset signal to noise ratio threshold, a random access response message is sent to the user equipment by using the target beam with the maximum received signal to noise ratio.
  • the random access response message is used to indicate that the user equipment can select the beam access network.
  • the base station may directly designate the target beam of the maximum received signal to noise ratio as the target access beam of the user equipment, and specify The beam information loading random access response message is sent to the UE through the corresponding beam, which can improve the efficiency of the UE randomly accessing the network.
  • the base station may reply to the random access response message by including the following two types:
  • the target access preamble for the maximum signal to noise ratio is replied to the random access response message
  • SNR1 and SNR2 target preamble signal-to-noise ratios
  • the difference ⁇ S between the received signal-to-noise ratios of the two target preambles may be calculated, and if ⁇ S is greater than the preset threshold, a random access response message is replied to the target preamble that receives the highest signal-to-noise ratio.
  • the corresponding random access response message may be separately sent based on the two target preambles, so that the user equipment selects the target access beam according to the two random access response messages.
  • step 2344 if the received signal to noise ratio of each target preamble does not exceed the preset signal to noise ratio threshold, the random access response message is not returned.
  • the random access response message detection time window is opened. If the random access response message replied by the base station is not detected in the random access response message detection time window, the UE is triggered to resend to the base station. Preamble.
  • the base station can identify the identity of the UE that sends the random access request according to the received random access preamble preamble. After parsing a plurality of preambles that are continuously sent by multiple UEs, the target access beam may be directly designated for the UE, or multiple random access response messages may be returned for the UE to select the target access beam, thereby effectively improving the random access of the UE.
  • the probability of success in the network increases the reliability of random access of the UE.
  • the present disclosure also provides an application function implementation apparatus and an embodiment of the corresponding terminal.
  • FIG. 12 is a block diagram of a device for controlling random access of a network, which is disposed in a user equipment, and the device may include:
  • the sending module 31 is configured to send, by using at least two consecutive beams, a random access preamble to the base station, where the preambles carried by the two adjacent beams belong to different preamble packets respectively;
  • the response receiving module 32 is configured to receive a random access response message that is sent back by the base station for the preamble;
  • the request access module 33 is configured to access the network according to the random access response message.
  • FIG. 13 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment.
  • the transmitting module 31 may include:
  • the time determining sub-module 311 is configured to determine an estimated arrival time of the at least two consecutive target beams after detecting the synchronization signal beam, where the target beam is used to send the preamble;
  • the selecting submodule 312 is configured to select a target preamble for each of the target beams according to a preset preamble packet;
  • the configuration information determining sub-module 313 is configured to determine configuration information of each target preamble according to the preset transmission configuration information, where the configuration information of each target preamble includes at least one of the following: used for scrambling a scrambling code, a time domain resource carrying the target preamble, and a frequency domain resource carrying the target preamble;
  • the transmitting submodule 314 is configured to send the target preamble to the base station according to the configuration information of each target preamble within a time range of arrival of each of the target beams.
  • the transmitting submodule 314 may include:
  • the scrambling unit 3141 is configured to scramble the target preamble by using a preset scrambling code to obtain a scrambled preamble.
  • the first sending unit 3142 is configured to pass the scrambled preamble through the target beam Sent to the base station.
  • FIG. 15 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment.
  • the transmitting submodule 314 may include:
  • the second sending unit 3413 is configured to send the target preamble to the base station by using a preset time domain resource of the target beam.
  • the transmitting submodule 314 may include:
  • the third sending unit 3414 is configured to send the target preamble to the base station by using a preset frequency domain resource of the target beam.
  • FIG. 17 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment of the present invention.
  • the response receiving module 32 may include:
  • the first receiving submodule 321 is configured to: if receiving a random access response message, access the network according to the target access beam indicated by the response message.
  • the response receiving module 32 may include:
  • the access beam selection sub-module 322 is configured to: if at least two random access response messages are received, select one target access beam from the access beams indicated by each of the response messages;
  • the second receiving submodule 323 is configured to access the network through the target access beam.
  • FIG. 19 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment. According to the device embodiment shown in FIG. 12, the device may further include:
  • the configuration information obtaining module 30 is configured to obtain the preamble uplink configuration information, where the preamble uplink configuration information includes: a preset target beam quantity, preset conduction code group information, and preset transmission configuration information.
  • FIG. 20 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment.
  • the device may include:
  • the detecting module 41 is configured to detect a preamble continuously transmitted by a preset number of beams
  • the determining module 42 is configured to determine a target preamble sent by the same user equipment
  • the response sending module 43 is configured to send a random access response message to the user equipment according to the received signal to noise ratio of the target preamble, so that the user equipment accesses the network according to the random access response message.
  • the determining module 42 may include:
  • the first parsing sub-module 421 is configured to descramble the scrambled preamble sent by the preset number of consecutive beams to obtain a preamble and first parsing information, where the first parsing information includes: each a descrambling code corresponding to the preamble and a packet identifier of the preamble packet to which the preamble belongs;
  • the first determining sub-module 422 is configured to determine that the at least two preambles are from the same user equipment if the descrambling codes of the at least two preambles are the same and the packet identifiers of the preambles transmitted by the adjacent beams are different.
  • the second parsing sub-module 4201 is configured to determine a time domain resource of each preamble transmitted by the continuous beam and a packet identifier of the preamble packet to which the preamble is transmitted;
  • the second determining sub-module 4202 is configured to determine the at least two preambles if the time domain resources of the at least two preambles satisfy the preset preamble time domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different.
  • the code is from the same user device.
  • the third parsing sub-module 4211 is configured to determine a frequency domain resource of each preamble transmitted by the continuous beam and a packet identifier of the preamble packet to which the preamble is transmitted;
  • the third determining sub-module 4212 is configured to determine the at least two preambles if the frequency domain resources of the at least two preambles satisfy the preset preamble frequency domain configuration information, and the packet identifiers of the preambles of the adjacent beam transmissions are different.
  • the code is from the same user device.
  • FIG. 24 is a block diagram of a device for controlling random access of a network according to an exemplary embodiment of the present invention.
  • the response sending module 43 may include:
  • a signal to noise ratio determination submodule 431 configured to determine a received signal to noise ratio of a target beam carrying each of the target preambles
  • the determining sub-module 432 is configured to determine whether each of the received signal to noise ratios exceeds a preset signal to noise ratio threshold;
  • the first sending submodule 433 is configured to send a random access response message to the user equipment by using a target beam corresponding to the maximum received signal to noise ratio if at least one received signal to noise ratio is greater than the preset signal to noise ratio threshold.
  • the response sending module 43 may further include:
  • the second sending submodule 434 is configured to send a random access response message for each of the target preambles if each of the received signal to noise ratios does not exceed the preset signal to noise ratio threshold.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • an apparatus for controlling a random access network comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • an apparatus for controlling a random access network including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • FIG. 26 is a schematic structural diagram of an apparatus 2600 for controlling a random access network according to an exemplary embodiment.
  • the device 2600 can be a terminal, and can be specifically a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a wearable device such as a smart watch, smart glasses. , smart bracelets, smart running shoes, etc.
  • apparatus 2600 can include one or more of the following components: processing component 2602, memory 2604, power component 2606, multimedia component 2608, audio component 2610, input/output (I/O) interface 2612, sensor component 2614, And a communication component 2616.
  • Memory 2604 is configured to store various types of data to support operation at device 2600. Examples of such data include instructions for any application or method operating on device 2600, Contact data, phone book data, messages, pictures, videos, etc.
  • the memory 2604 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • the multimedia component 2608 includes a screen between the above-described device 2600 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor described above may sense not only the boundary of the touch or slide action but also the duration and pressure associated with the touch or slide operation described above.
  • the multimedia component 2608 includes a front camera and/or a rear camera. When the device 2600 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2610 is configured to output and/or input an audio signal.
  • audio component 2610 includes a microphone (MIC) that is configured to receive an external audio signal when device 2600 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 2604 or transmitted via communication component 2616.
  • audio component 2610 also includes a speaker for outputting an audio signal.
  • Sensor assembly 2614 includes one or more sensors for providing each device 2600 State assessment of aspects.
  • sensor assembly 2614 can detect an open/closed state of device 2600, such as a display and keypad of device 2600, and sensor component 2614 can also detect a change in position of a component of device 2600 or device 2600, The presence or absence of user contact with device 2600, device 2600 orientation or acceleration/deceleration and temperature change of device 2600.
  • Sensor assembly 2614 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 2614 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2616 is configured to facilitate wired or wireless communication between device 2600 and other devices.
  • the device 2600 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 2616 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 2616 described above also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 2600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions stored thereon with computer instructions executable by processing component 2602 of apparatus 2600 to perform any of Figures 1-6
  • the method of controlling a random access network may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 27 is a schematic structural diagram of an apparatus 2700 for controlling a random access network according to an exemplary embodiment.
  • Device 2700 can be provided as a base station.
  • apparatus 2700 includes a processing component 2722, a wireless transmit/receive component 2724, an antenna component 2726, and a signal processing portion specific to the wireless interface.
  • Processing component 2722 can further include one or more processors.
  • One of the processing components 2722 can be configured to:
  • non-transitory computer readable storage medium comprising instructions stored thereon with computer instructions executable by processing component 2722 of apparatus 2700 to perform any of Figures 7-11 The method for controlling random access of a network.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种控制随机接入网络的方法、用户设备及基站,其中上述方法包括:通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;接收所述基站针对所述前导码回复的随机接入响应消息;根据所述随机接入响应消息接入网络。采用本公开提供的控制随机接入网络的方法,可以提高5G网络中用户设备随机接入网络的成功率和可靠性。

Description

控制随机接入网络的方法、用户设备及基站 技术领域
本公开涉及通信技术领域,尤其涉及一种控制随机接入网络的方法、用户设备及基站。
背景技术
5G网络通信系统的关键技术之一为:波束扫描(beamsweeping)技术,其通信过程大致如下:发射端如基站gNB利用大规模天线阵列对接收端如用户设备(User Equipment,UE)所在小区,利用频点在6GHz以上的高频波束进行周期性扫描;接收端接收到上述波束后,与发射端建立通信连接,从而通过上述高频波束收发信息。
在建立通信连接时,用户设备首先需要向基站发送随机接入请求以建立基站与用户设备之间的通信连接。随机接入过程的第一步是传输随机接入前导码random access preamble。前导码preamble的主要作用是告诉基站有一个随机接入请求,使得基站能估计其与用户设备(User Equipment,UE)之间的传输时延,以便基站校准上行时钟(uplink timing),并将校准信息告知UE,以实现UE与基站之间上行同步。
根据5G网络波束扫描的特点,高频波束是周期性发送的,导致UE不能向基站全向发送随机接入前导码,如果UE正好处于多个波束比如两个波束的重叠覆盖区域内,需要选择一个随机接入信道条件好的波束作为目标接入波束,以确保后续通信质量。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种控制随机接入网络的方法、用户设备及基站,以提高5G网络中用户设备随机接入网络的可靠性。
根据本公开实施例的第一方面,提供了一种控制随机接入网络的方法,应用于用户设备中,所述方法包括:
通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
接收所述基站针对所述前导码回复的随机接入响应消息;
根据所述随机接入响应消息接入网络。
可选地,所述通过至少两个连续波束向基站发送随机接入前导码,包括:
在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间,所述目标波束用于发送所述前导码;
根据预设前导码分组为每个所述目标波束选择一个目标前导码;
根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
在每个所述目标波束的到达时间范围内,根据所述每个目标前导码的配置信息将所述目标前导码发送给所述基站。
可选地,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
利用预设扰码对所述目标前导码进行加扰,获得加扰前导码。
将所述加扰前导码通过所述目标波束发送给所述基站。
可选地,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
利用目标波束的预设时域资源,将所述目标前导码发送给所述基站。
可选地,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
利用目标波束的预设频域资源,将所述目标前导码发送给所述基站。
可选地,所述根据随机接入响应消息接入网络,包括:
若接收到一个随机接入响应消息,根据所述响应消息指示的目标接入波束接入网络。
可选地,所述根据随机接入响应消息接入网络,包括:
若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
通过所述目标接入波束接入网络。
可选地,在所述通过至少两个连续波束向基站发送随机接入前导码之前,所述方法还包括:
获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
根据本公开实施例的第二方面,提供了一种控制随机接入网络的方法,应用于基站中,所述方法包括:
检测预设数量波束连续发送的前导码;
确定同一用户设备发送的目标前导码;
根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
可选地,所述确定同一用户设备发送的目标前导码,包括:
对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识;
若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
可选地,所述确定同一用户设备发送的目标前导码,包括:
确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一 个用户设备。
可选地,所述确定同一用户设备发送的目标前导码,包括:
确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
可选地,所述根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,包括:
确定承载每个所述目标前导码的目标波束的接收信噪比;
判断各个所述接收信噪比是否超过预设信噪比阈值;
若有至少一个接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比的目标波束向所述用户设备发送一个随机接入响应消息。
可选地,所述根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,还包括:
若有至少两个目标前导码的接收信噪比大于所述预设信噪比阈值,且每两个接收信噪比之间的差值小于预设阈值,针对每一个所述目标前导码发送一个随机接入响应消息。
根据本公开实施例的第三方面,提供了一种用户设备,包括:
发送模块,被配置为通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
响应接收模块,被配置为接收所述基站针对所述前导码回复的随机接入响应消息;
请求接入模块,被配置为根据所述随机接入响应消息接入网络。
可选的,所述发送模块包括:
时间确定子模块,被配置为在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间,所述目标波束用于发送所述前导码;
选择子模块,被配置为根据预设前导码分组为每个所述目标波束选择一个目标前导码;
配置信息确定子模块,被配置为根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
发送子模块,被配置为在每个所述目标波束的到达时间范围内,根据所述每个目标前导码的配置信息将所述目标前导码发送给所述基站。
可选的,所述发送子模块包括:
加扰单元,被配置为利用预设扰码对所述目标前导码进行加扰,获得加扰前导码。
第一发送单元,被配置为将所述加扰前导码通过所述目标波束发送给所述基站。
可选的,所述发送子模块包括:
第二发送单元,被配置为利用目标波束的预设时域资源,将所述目标前导码发送给所述基站。
可选的,所述发送子模块包括:
第三发送单元,被配置为利用目标波束的预设频域资源,将所述目标前导码发送给所述基站。
可选的,所述响应接收模块包括:
第一接收子模块,被配置为若接收到一个随机接入响应消息,根据所述响应消息指示的目标接入波束接入网络。
可选的,所述响应接收模块包括:
接入波束选择子模块,被配置为若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
第二接收子模块,被配置为通过所述目标接入波束接入网络。
可选的,所述装置还包括:
配置信息获取模块,被配置为获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
根据本公开实施例的第四方面,提供了一种基站,包括:
检测模块,被配置为检测预设数量波束连续发送的前导码;
确定模块,被配置为确定同一用户设备发送的目标前导码;
响应发送模块,被配置为根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
可选的,所述确定模块包括:
第一解析子模块,被配置为对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识;
第一确定子模块,被配置为若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
可选的,所述确定模块包括:
第二解析子模块,被配置为确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
第二确定子模块,被配置为若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
可选的,所述确定模块包括:
第三解析子模块,被配置为确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
第三确定子模块,被配置为若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所 述至少两个前导码来自同一个用户设备。
可选的,所述响应发送模块包括:
信噪比确定子模块,被配置为确定每个所述目标前导码的接收信噪比;
判断子模块,被配置为判断各个所述接收信噪比是否超过预设信噪比阈值;
第一发送子模块,被配置为若有至少一个目标前导码的接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比的目标波束向所述用户设备发送一个随机接入响应消息。
可选的,所述响应发送模块还包括:
第二发送子模块,被配置为若有至少两个目标前导码的接收信噪比大于所述预设信噪比阈值,且每两个接收信噪比之间的差值小于预设阈值,针对每一个所述目标前导码发送一个随机接入响应消息。
根据本公开实施例的第五方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面所述方法的步骤。
根据本公开实施例的第六方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第二方面所述方法的步骤。
根据本公开实施例的第七方面,提供了一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
接收所述基站针对所述前导码回复的随机接入响应消息;
根据所述随机接入响应消息接入网络。
根据本公开实施例的第八方面,提供了一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
检测预设数量波束连续发送的前导码;
确定同一用户设备发送的目标前导码;
根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开中,当用户设备处于至少两个扫描波束的重叠覆盖区域时,用户设备可以使用至少两个连续波束向基站发送随机接入前导码,以使基站根据上述不同波束获取前导码,并根据承载前导码的目标波束的接收信噪比确定哪个波束的随机接入信道条件较好,从而通过随机接入响应消息指示用户设备选择信道条件好的波束作为目标接入波束,增强随机接入的可靠性,确保后续通信质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本公开根据一示例性实施例示出的一种控制网络随机接入的方法流程图。
图2是本公开根据一示例性实施例示出的一种控制网络随机接入的应用场景示意图。
图3是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图4是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图5是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图6是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图7是本公开根据一示例性实施例示出的一种控制网络随机接入的方法流程图。
图8是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图9是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图10是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图11是本公开根据一示例性实施例示出的另一种控制网络随机接入的方法流程图。
图12是本公开根据一示例性实施例示出的一种用户设备的框图。
图13是本公开根据一示例性实施例示出的另一种用户设备的框图。
图14是本公开根据一示例性实施例示出的另一种用户设备框图。
图15是本公开根据一示例性实施例示出的另一种用户设备的框图。
图16是本公开根据一示例性实施例示出的另一种用户设备的框图。
图17是本公开根据一示例性实施例示出的另一种用户设备的框图。
图18是本公开根据一示例性实施例示出的另一种用户设备的框图。
图19是本公开根据一示例性实施例示出的另一种用户设备的框图。
图20是本公开根据一示例性实施例示出的一种基站的框图。
图21是本公开根据一示例性实施例示出的另一种基站的框图。
图22是本公开根据一示例性实施例示出的另一种基站的框图。
图23是本公开根据一示例性实施例示出的另一种基站的框图。
图24是本公开根据一示例性实施例示出的另一种基站的框图。
图25是本公开根据一示例性实施例示出的另一种基站的框图。
图26是本公开根据一示例性实施例示出的一种用户设备的结构示意图。
图27是本公开根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本公开涉及的执行主体包括:基站和用户设备(User Equipment,UE),其中,基站用于可以是设置有大规模天线阵列的基站、子基站等。用户设备UE可以是用户终端、用户节点、移动终端或平板电脑等。在具体实现过程中,基站和用户设备各自独立,同时又相互联系,共同实现本公开提供的技术方案。
根据相关知识,每个小区分配有预设数量比如64或128个可用的随机接入前导码preamble序列。这些序列可以分成两部分,一部分用于基于竞争的随机接入,另一部分用于基于非竞争的随机接入。
本公开实施例中涉及的随机接入前导码preamble,均属于基于竞争的随机接入前导码preamble序列。
基于上述应用场景,本公开提供了一种控制随机接入网络的方法。参照图1根据一示例性实施例示出的一种控制随机接入网络的方法流程图,所述方法可以包括以下步骤:
在步骤11中,通过至少两个连续波束向基站发送随机接入前导码, 其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
本公开中,为了提高用户设备随机接入网络的成功率,采用至少两个波束连续向基站BS(Base Station)发送对应数量的前导码preamble,参照图2根据一示例性实施例示出的一种控制随机接入网络的应用场景示意图。为了避免相邻波束发送相同的preamble对基站产生干扰,要求每两个相邻波束发送的前导码preamble不同。
本公开一实施例中,在确定可以发送随机接入请求之后,UE可以在目标波束达到时实时选择一个preamble发送给基站。
在本公开另一实施例中,UE在确定可以发送随机接入请求之后,也可以在目标波束达到之前,预先为每个目标波束分配好目标前导码,以便在各个目标波束达到时可以立即加载并发送,节省选择目标前导码的时间,提高preamble的发送效率。
参照图3根据一示例性实施例示出的另一种控制随机接入网络的方法流程图,上述步骤11可以包括以下步骤:
在步骤111中,在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间;
本公开实施例中,系统可以约定用于发送前导码的目标波束的数量,比如,UE可以使用2个或3个目标波束连续向基站发送preamble。
以用户设备UE1为例,根据5G网络波束扫描的周期性特点,UE1在检测到同步信号波束之后,确定可以利用后续波束向基站发起随机接入请求,可以根据当前时刻和波束扫描周期计算后续预设数量目标波束的预计到达时间。上述预计到达时间可以包括:预计达到时刻、持续停留时长。上述目标波束是指可以传输preamble的波束。
以三个目标波束为例,目标波束与预计达到时间的关系,可以如以下表一所示:
波束序列 预计达到时刻
波束1 T1
波束2 T2
波束3 T3
表一
表一中,三个波束:波束1、波束1、波束3,预计到达时刻依次为:T1、T2、T3。
在步骤112中,根据预设前导码分组为每个所述目标波束选择一个目标前导码;
本公开可以根据预设前导码分组信息为每个目标波束选择一个目标前导码。
本公开实施例中,可以将系统为一个小区配置的用于基于竞争随机接入的前导码序列进行分组。根据前导码序列相对于相关技术是否增加数量,可以包括以下两种情况:
第一种情况,将小区原有的前导码序列进行分组
为方便示意,假设UE所在的当前小区共分配有10个可用的前导码,对应的前导码序列为0~9。
本公开实施例中,可以将上述10个前导码分为两组group 1和group 2,其中,group 1包括:0~4。group 2包括:5~9。
示例性的,可以利用上述前导码分组为表一所示的三个目标波束选择目标前导码,确保相邻波束的前导码来自不同的分组,避免相互干扰。前导码信息与目标波束的对应关系,可以如以下表二所示:
波束序列 目标前导码 分组标识
波束1 0 group 1
波束2 5 group 2
波束3 2 group 1
表二
从表二可知,虽然波束1和波束3分配的目标前导码属于第一分组即group 1,但两个波束属于非相邻波束,不会对基站分辨波束造成干扰。
第二种情况,将原有前导码序列增加后进行分组,为每一个波束分配的目标前导码属于不同的前导码分组。
仍以相关技术中共10个可用的前导码为例,本公开实施例中,可以将可用前导码数量增加为15个,即对应的前导码序列为:0~14。可以将其分为三组,分别表示为:group 1{0,4};group 2{5,9};group 3{10,14}。
则,可以从上述三个不同分组中为表一所示的三个目标波束各选择一个目标前导码。示例的,如以下表三所示:
波束序列 目标前导码 分组标识
波束1 0 group 1
波束2 5 group 2
波束3 11 group 3
表三
采用本公开实施例的分组方式,三个目标波束发送的preamble分别属于不同的前导码分组,可以提高基站根据preamble确定目标接入波束的准确性和可靠性。其中,上述目标接入波束是基站在随机接入响应消息中指示UE发起随机接入请求可以使用的波束。
在步骤113中,根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
本公开实施例中,系统可以预设传输配置信息,用于指示UE在连续发送preamble采用何种方式发送,以使基站可以确定连续接收到的多个preamble来自同一个用户设备。
在步骤114中,在每个所述目标波束的到达时间范围内,根据所述每 个目标前导码的配置信息将所述目标前导码发送给基站。
假设每个波束在用户设备所在区域的停留时长为Δt。本公开实施例中,UE可以采用以下至少一种方式根据每个目标前导码的配置信息将目标preamble发送给基站:
第一种方式:加扰传输
参照图4根据一示例性实施例示出的另一种控制随机接入网络的方法流程图,上述步骤114可以包括以下步骤:
在步骤1141中,利用预设扰码对目标前导码进行加扰,获得加扰前导码;
在步骤1142中,将所述加扰前导码通过目标波束发送给基站。
以上述表二为例,假设预设扰码为扰码1,则UE1会在时间范围:T1+Δt内,通过beam 1发送第一加扰preamble,该第一加扰preamble是使用扰码1对第一preamble即0进行加扰后获得的加扰信息。
依次类推,UE1分别在T2+Δt、T3+Δt时间内分别发送第二加扰preamble、第三加扰preamble。
对应的具体发送信息如以下表四所示:
时间范围 波束序列 加扰前导码
T1+Δt 波束1 第一加扰preamble
T2+Δt 波束2 第二加扰preamble
T3+Δt 波束3 第三加扰preamble
表四
第二种方式:通过预设时域资源传输
上述步骤114可以具体为:在每个所述目标波束的到达时间范围内,利用目标波束的预设时域资源,将所述目标前导码发送给基站。
示例性的,在上述表二的基础上,可以按照以下表五-1所示的信息发送各个目标前导码:
时间范围 波束序列 目标前导码 时域
T1+Δt 波束1 0 时隙1
T2+Δt 波束2 5 时隙1
T3+Δt 波束3 2 时隙1
表五-1
即UE1使用每个波束相同的时域资源即时隙slot1发送目标前导码。上述示例中,预设传输配置信息指示UE使用相同时隙资源发送preamble。
在本公开另一实施例中,预设传输配置信息也可以指示UE在不同目标波束使用指定的不同时隙资源发送preamble,比如,波束1使用slot1、波束2使用slot2、波束3使用slot3,则发送信息可以表示为:
时间范围 波束序列 目标前导码 时域资源
T1+Δt 波束1 0 时隙1
T2+Δt 波束2 5 时隙2
T3+Δt 波束3 2 时隙3
表五-2
本公开对目标波束时域资源的指示方式不作限制。
第三种方式:通过预设频域资源传输
上述步骤114具体为:利用目标波束的预设频域资源,将所述目标前导码发送给基站。
具体发送信息可以如表六所示:
时间范围 波束序列 目标前导码 频域资源域
T1+Δt 波束1 0 ν1
T2+Δt 波束2 5 ν2
T3+Δt 波束3 2 ν3
表六
即,UE1在beam1到达时间范围T1+Δt内,利用beam1中的第一频点ν1无 线波向基站发送目标前导码0。假设beam1的频带为:800MHz~810MHz,则第一频点ν1为:800MHz,UE1使用beam1中频点为800MHz的无线波向基站发送目标前导码0。
本公开实施例中,上述beam1、beam2、beam3的指定频域资源位置可以相同也可以不同,表六示出了不同的情况。小区内各UE支持的最小工作频段需要至少包括上述三个波束的频带。以三个波束的频带相同为例,UE1的工作频段可以为790MHz~820MHz,包含800MHz~810MHz。
依此类推,通过目标波束中指定频点的无线波向基站发送各目标前导码。
在步骤12中,接收基站针对所述前导码回复的随机接入响应消息;
基站在接收到同一个UE发送的preamble后,根据解析preamble的情况,向UE回复随机接入响应消息(random access response,RAR)。
本公开实施例中,基站根据解析preamble的情况,可能根据其中一个preamble向UE发送一个随机接入响应消息,也可能针对多个preamble向UE发送多个随机接入响应消息。
相应的,UE发送了preamble之后,将在随机接入响应消息时间窗(RA response window)内监听基站回复的随机接入响应消息。
在步骤13中,根据所述随机接入响应消息接入网络。
根据用户设备在步骤12中接收到的随机接入响应消息数量不同,步骤13可以包括以下两种实施方式:
第一种实施方式,步骤13可以包括:
若接收到一个随机接入响应消息,根据该响应消息指示的目标接入波束接入网络。
第二种实施方式,参照图5根据一示例性实施例示出的另一种控制随机接入网络的方法流程图,上述步骤13可以包括:
在步骤131中,若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
仍以上述UE1为例,若接收到基站针对上述3个目标前导码回复的随机接入响应消息,可以根据承载随机接入响应消息的波束信号强度,从中选择一个最好的波束作为目标接入波束,比如beam2的信道条件最好,则可以将beam2作为目标接入波束。
在步骤132中,通过所述目标接入波束接入网络。
在后续正常通信中,通过目标接入波束与基站建立通信连接。
参照图6根据一示例性实施例示出的另一种控制随机接入网络的方法流程图,在图1所示实施例的基础上,在步骤11之前,所述方法还可以包括:
在步骤10中,获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
适用于用户设备系统初始化或首次请求接入网络的情况,首先获取前导码上行配置信息进行相关配置,按照上述配置信息通过连续多个波束向基站发送随机接入前导码。
综上,采用本公开提供的方法,用户设备可以使用至少两个连续波束向基站发送随机接入前导码,从而有效增加基站成功解析preamble的概率,进而提高用户设备随机接入网络的可靠性,提高网络随机接入效率。
相应的,本公开还提供了一种控制网络随机接入的方法,应用于基站中。参照图7根据一示例性实施例示出的一种控制网络随机接入的方法流程图,所述方法可以包括以下步骤:
在步骤21中,检测预设数量波束连续发送的前导码;
本公开实施例中,基站在检测到一个可以指示用户设备采用连续波束发送方式发送的前导码时,开始检测预设数量的连续波束发送的前导码,可以包括以下至少一种情况:
第一种情况,基站通过当前波束例如beam1检测到一个加扰preamble,继续从后续预设数量的目标波束中获取加扰preamble。
第二种情况,若基站在当前波束例如beam1的预设时域资源中获取到 UE发送的preamble,继续从后续预设数量的目标波束中获取preamble。
第三种情况,若基站在当前波束例如beam1的预设频域资源中获取到UE发送的preamble,继续从后续预设数量的目标波束中获取preamble,并确定获取各个preamble的频域资源信息。
本公开实施例中,上述基站检测连续目标波束的预设数量需要大于系统约定UE发送preamble使用的连续波束数量如3个,则上述检测波束的预设数量需要大于3。比如,根据先验信息设置为5,以防止其他UE使用相同方式传输preamble,导致漏检目标UE发送的preamble。
在步骤22中,确定同一用户设备发送的目标前导码;
对应上述第一种情况,参照图8根据一示例性实施例示出的另一种控制网络随机接入的方法流程图,上述步骤22可以包括:
在步骤221中,对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识。
基站可以利用预设扰码对各个加扰preamble进行解扰,确定各个加扰preamble对应的解扰扰码。根据预设前导码分组信息确定每个前导码所属分组的分组标识。
在步骤222中,若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,则确定所述至少两个前导码来自同一个用户设备。
示例性的,如下述表七所示:
波束序列 前导码 分组标识 解扰扰码
波束1 0 group 1 扰码1
波束2 5 group 2 扰码1
波束3 2 group 1 扰码1
表七
基站通过波束1、波束2、波束3发送的三个加扰preamble,分别为: 0、5、2。对应的解析信息如表七所示,由于均使用扰码1成功解扰,且两个相邻波束获取的preamble所属的分组标识不同,因此,基站可以确定0、5、2来自同一UE。
对应上述第二种情况,参照图9根据一示例性实施例示出的另一种控制网络随机接入的方法流程图,上述步骤22可以包括:
在步骤2201中,确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
在步骤2202中,若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
示例性的如下表所示:
波束序列 目标前导码 分组标识 时域资源
波束1 0 group 1 时隙1
波束2 5 group 2 时隙1
波束3 2 group 1 时隙1
表八
基站通过波束1、波束2、波束3获取到的三个preamble,分别为:0、5、2。对应的解析信息如表八所示,由于均使用相同时域资源即时隙1,符合预设preamble时域资源配置信息;且两个相邻波束获取的preamble所属的分组标识不同,因此,基站可以确定0、5、2来自同一UE。
对应上述第三种情况,参照图10根据一示例性实施例示出的一种控制网络随机接入的方法流程图,上述步骤22可以包括:
在步骤2211中,确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
在步骤2212中,若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导 码来自同一个用户设备。
在步骤23中,根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
参照图11根据一示例性实施例示出的另一种控制网络随机接入的方法流程图,上述步骤23可以包括:
在步骤231中,确定每个所述目标前导码的接收信噪比;
其中,一个目标前导码的接收信噪比可以反映承载该目标前导码的目标波束的上行信道条件,接收信噪比越高说明该目标波束的上行信道条件越好。
假设基站根据步骤22确定有三个preamble,比如preamble1、preamble2、preamble3来自同一个UE,则基站可以确定每个preamble的接收信噪比(Signal-Noise Ratio,SNR),分别表示为:SNR1、SNR2、SNR3。
在步骤232中,判断所述接收信噪比是否超过预设信噪比阈值;
本公开实施例中,基站可以将承载各个目标前导码的目标波束的接收信噪比与预设信噪比阈值SNR0进行比较;判断是否有接收信噪比大于上述预设信噪比阈值的目标波束。若有,执行下述步骤233;若无,执行步骤234。
在步骤233中,若有至少一个目标前导码的接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比的目标波束向所述用户设备发送一个随机接入响应消息。
其中,所述随机接入响应消息用于指示用户设备可以选择该波束接入网络。
本公开实施例中,在至少有一个preamble的接收信噪比大于预设信噪比阈值时,基站可以将最大接收信噪比的目标波束直接指定为用户设备的目标接入波束,并将指定波束信息载入随机接入响应消息通过对应波束发送给UE,可以提高UE随机接入网络的效率。
在本公开另一实施例中,若基站解析出的目标preamble中,有至少两 个目标preamble的接收信噪比超过了上述预设信噪比阈值,基站回复随机接入响应消息的情况可以包括以下两种:
第一种情况,针对最大信噪比的目标preamble回复随机接入响应消息;
假设有两个目标preamble的信噪比,比如SNR1、SNR2,都大于预设信噪比阈值SNR0。
可以计算两个目标preamble的接收信噪比之间的差值ΔS,如果ΔS大于预设阈值,则针对接收信噪比最大的目标preamble回复一个随机接入响应消息。
反之,如果ΔS小于等于上述预设阈值,则可以基于这两个目标preamble分别发送对应的随机接入响应消息,以便用户设备根据两个随机接入响应消息选择目标接入波束。
在步骤234中,若各个目标前导码的所述接收信噪比均未超过所述预设信噪比阈值,不回复随机接入响应消息。
相应的,用户设备在发送preamble之后,开启随机接入响应消息检测时间窗口,若在上述随机接入响应消息检测时间窗口内未监测到基站回复的随机接入响应消息,触发UE重新向基站发送preamble。
可见,基站可以根据接收到的随机接入前导码preamble,识别发送随机接入请求的UE身份。在解析出一个UE通过多个波束连续发送的多个preamble,可以直接为UE指定目标接入波束,或者,返回多个随机接入响应消息供UE选择目标接入波束,有效提高了UE随机接入网络的成功机率,提高了UE随机接入的可靠性。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应终端的实施例。
参照图12根据一示例性实施例示出的一种控制网络随机接入的装置框图,设置于用户设备中,所述装置可以包括:
发送模块31,被配置为通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
响应接收模块32,被配置为接收所述基站针对所述前导码回复的随机接入响应消息;
请求接入模块33,被配置为根据所述随机接入响应消息接入网络。
参照图13根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图12所示装置实施例的基础上,所述发送模块31可以包括:
时间确定子模块311,被配置为在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间,所述目标波束用于发送所述前导码;
选择子模块312,被配置为根据预设前导码分组为每个所述目标波束选择一个目标前导码;
配置信息确定子模块313,被配置为根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
发送子模块314,被配置为在每个所述目标波束的到达时间范围内,根据所述每个目标前导码的配置信息将所述目标前导码发送给所述基站。
参照图14根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图13所示装置实施例的基础上,所述发送子模块314可以包括:
加扰单元3141,被配置为利用预设扰码对所述目标前导码进行加扰,获得加扰前导码。
第一发送单元3142,被配置为将所述加扰前导码通过所述目标波束 发送给所述基站。
参照图15根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图13所示装置实施例的基础上,所述发送子模块314可以包括:
第二发送单元3413,被配置为利用目标波束的预设时域资源,将所述目标前导码发送给所述基站。
参照图16根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图13所示装置实施例的基础上,所述发送子模块314可以包括:
第三发送单元3414,被配置为利用目标波束的预设频域资源,将所述目标前导码发送给所述基站。
参照图17根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图12所示装置实施例的基础上,所述响应接收模块32可以包括:
第一接收子模块321,被配置为若接收到一个随机接入响应消息,根据所述响应消息指示的目标接入波束接入网络。
参照图18根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图12所示装置实施例的基础上,所述响应接收模块32可以包括:
接入波束选择子模块322,被配置为若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
第二接收子模块323,被配置为通过所述目标接入波束接入网络。
参照图19根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图12所示装置实施例的基础上,所述装置还可以包括:
配置信息获取模块30,被配置为获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
相应的,本公开还提供了一种控制随机接入网络的装置,设置于基站中。
参照图20根据一示例性实施例示出的一种控制网络随机接入的装置框图,所述装置可以包括:
检测模块41,被配置为检测预设数量波束连续发送的前导码;
确定模块42,被配置为确定同一用户设备发送的目标前导码;
响应发送模块43,被配置为根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
参照图21根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图20所示装置实施例的基础上,所述确定模块42可以包括:
第一解析子模块421,被配置为对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识;
第一确定子模块422,被配置为若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
参照图22根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图20所示装置实施例的基础上,所述确定模块42可以包括:
第二解析子模块4201,被配置为确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
第二确定子模块4202,被配置为若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
参照图23根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图20所示装置实施例的基础上,所述确定模块42可以包括:
第三解析子模块4211,被配置为确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
第三确定子模块4212,被配置为若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
参照图24根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图20所示装置实施例的基础上,所述响应发送模块43可以包括:
信噪比确定子模块431,被配置为确定承载每个所述目标前导码的目标波束的接收信噪比;
判断子模块432,被配置为判断各个所述接收信噪比是否超过预设信噪比阈值;
第一发送子模块433,被配置为若有至少一个接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比对应的目标波束向所述用户设备发送一个随机接入响应消息。
参照图25根据一示例性实施例示出的一种控制网络随机接入的装置框图,在图24所示装置实施例的基础上,所述响应发送模块43还可以包括:
第二发送子模块434,被配置为若各个所述接收信噪比均未超过所述预设信噪比阈值,针对每一个所述目标前导码发送一个随机接入响应消息。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,一方面提供了一种控制随机接入网络的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两 个波束承载的所述前导码分别属于不同的前导码分组;
接收所述基站针对所述前导码回复的随机接入响应消息;
根据所述随机接入响应消息接入网络。
相应的,另一方面还提供一种控制随机接入网络的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
检测预设数量波束连续发送的前导码;
确定同一用户设备发送的目标前导码;
根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
图26是根据一示例性实施例示出的一种控制随机接入网络的装置2600的结构示意图。例如,装置2600可以是终端,可以具体为移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,可穿戴设备如智能手表、智能眼镜、智能手环、智能跑鞋等。
参照图26,装置2600可以包括以下一个或多个组件:处理组件2602,存储器2604,电源组件2606,多媒体组件2608,音频组件2610,输入/输出(I/O)的接口2612,传感器组件2614,以及通信组件2616。
处理组件2602通常控制装置2600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2602可以包括一个或多个处理器2620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件2602可以包括一个或多个模块,便于处理组件2602和其他组件之间的交互。例如,处理组件2602可以包括多媒体模块,以方便多媒体组件2608和处理组件2602之间的交互。
存储器2604被配置为存储各种类型的数据以支持在设备2600的操作。这些数据的示例包括用于在装置2600上操作的任何应用程序或方法的指令, 联系人数据,电话簿数据,消息,图片,视频等。存储器2604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2606为装置2600的各种组件提供电力。电源组件2606可以包括电源管理系统,一个或多个电源,及其他与为装置2600生成、管理和分配电力相关联的组件。
多媒体组件2608包括在上述装置2600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。上述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与上述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2608包括一个前置摄像头和/或后置摄像头。当设备2600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2610被配置为输出和/或输入音频信号。例如,音频组件2610包括一个麦克风(MIC),当装置2600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2604或经由通信组件2616发送。在一些实施例中,音频组件2610还包括一个扬声器,用于输出音频信号。
I/O接口2612为处理组件2602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2614包括一个或多个传感器,用于为装置2600提供各个 方面的状态评估。例如,传感器组件2614可以检测到设备2600的打开/关闭状态,组件的相对定位,例如上述组件为装置2600的显示器和小键盘,传感器组件2614还可以检测装置2600或装置2600一个组件的位置改变,用户与装置2600接触的存在或不存在,装置2600方位或加速/减速和装置2600的温度变化。传感器组件2614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2614还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2616被配置为便于装置2600和其他设备之间有线或无线方式的通信。装置2600可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,上述通信组件2616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,其上存储有计算机指令,上述计算机指令可由装置2600的处理组件2602执行以完成图1~6任一所述的控制随机接入网络的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图27所示,图27是根据一示例性实施例示出的一种用于控制随机接入网络的装置2700的一结构示意图。装置2700可以被提供为一基站。
参照图27,装置2700包括处理组件2722、无线发射/接收组件2724、天线组件2726、以及无线接口特有的信号处理部分,处理组件2722可进一步包括一个或多个处理器。
处理组件2722中的其中一个处理器可以被配置为:
检测预设数量波束连续发送的前导码;
确定同一用户设备发送的目标前导码;
根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,其上存储有计算机指令,上述计算机指令可由装置2700的处理组件2722执行以完成图7~11任一所述的控制网络随机接入的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种控制随机接入网络的方法,其特征在于,应用于用户设备中,所述方法包括:
    通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
    接收所述基站针对所述前导码回复的随机接入响应消息;
    根据所述随机接入响应消息接入网络。
  2. 根据权利要求1所述的方法,其特征在于,所述通过至少两个连续波束向基站发送随机接入前导码,包括:
    在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间,所述目标波束用于发送所述前导码;
    根据预设前导码分组为每个所述目标波束选择一个目标前导码;
    根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
    在每个所述目标波束的到达时间范围内,根据所述每个目标前导码的配置信息将所述目标前导码发送给所述基站。
  3. 根据权利要求2所述的方法,其特征在于,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
    利用预设扰码对所述目标前导码进行加扰,获得加扰前导码。
    将所述加扰前导码通过所述目标波束发送给所述基站。
  4. 根据权利要求2所述的方法,其特征在于,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
    利用目标波束的预设时域资源,将所述目标前导码发送给所述基站。
  5. 根据权利要求2所述的方法,其特征在于,所述根据每个目标前导码的配置信息将所述目标前导码发送给所述基站,包括:
    利用目标波束的预设频域资源,将所述目标前导码发送给所述基站。
  6. 根据权利要求1所述的方法,其特征在于,所述根据随机接入响应消息接入网络,包括:
    若接收到一个随机接入响应消息,根据所述响应消息指示的目标接入波束接入网络。
  7. 根据权利要求1所述的方法,其特征在于,所述根据随机接入响应消息接入网络,包括:
    若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
    通过所述目标接入波束接入网络。
  8. 根据权利要求1所述的方法,其特征在于,在所述通过至少两个连续波束向基站发送随机接入前导码之前,所述方法还包括:
    获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
  9. 一种控制随机接入网络的方法,其特征在于,应用于基站中,所述方法包括:
    检测预设数量波束连续发送的前导码;
    确定同一用户设备发送的目标前导码;
    根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
  10. 根据权利要求9所述的方法,其特征在于,所述确定同一用户设备发送的目标前导码,包括:
    对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识;
    若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  11. 根据权利要求9所述的方法,其特征在于,所述确定同一用户设备发送的目标前导码,包括:
    确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
    若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  12. 根据权利要求9所述的方法,其特征在于,所述确定同一用户设备发送的目标前导码,包括:
    确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
    若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  13. 根据权利要求9所述的方法,其特征在于,所述根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,包括:
    确定每个所述目标前导码的接收信噪比;
    判断各个所述接收信噪比是否超过预设信噪比阈值;
    若至少有一个目标前导码的接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比的目标波束向所述用户设备发送一个随机接入响应消息。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,还包括:
    若有至少两个目标前导码的接收信噪比大于所述预设信噪比阈值,且每两个接收信噪比之间的差值小于预设阈值,针对每一个所述目标前导码发送一个随机接入响应消息。
  15. 一种用户设备,其特征在于,包括:
    发送模块,被配置为通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
    响应接收模块,被配置为接收所述基站针对所述前导码回复的随机接入响应消息;
    请求接入模块,被配置为根据所述随机接入响应消息接入网络。
  16. 根据权利要求15所述的用户设备,其特征在于,所述发送模块包括:
    时间确定子模块,被配置为在检测到同步信号波束后,确定至少两个连续目标波束的预计到达时间,所述目标波束用于发送所述前导码;
    选择子模块,被配置为根据预设前导码分组为每个所述目标波束选择一个目标前导码;
    配置信息确定子模块,被配置为根据预设传输配置信息,确定每个目标前导码的配置信息,其中,所述每个目标前导码的配置信息包括以下至少一项:用于加扰的扰码、承载所述目标前导码的时域资源、承载所述目标前导码的频域资源;
    发送子模块,被配置为在每个所述目标波束的到达时间范围内,根据所述每个目标前导码的配置信息将所述目标前导码发送给所述基站。
  17. 根据权利要求16所述的用户设备,其特征在于,所述发送子模块包括:
    加扰单元,被配置为利用预设扰码对所述目标前导码进行加扰,获得加扰前导码。
    第一发送单元,被配置为将所述加扰前导码通过所述目标波束发送给所述基站。
  18. 根据权利要求16所述的用户设备,其特征在于,所述发送子模块包括:
    第二发送单元,被配置为利用目标波束的预设时域资源,将所述目标前导码发送给所述基站。
  19. 根据权利要求16所述的用户设备,其特征在于,所述发送子模块包括:
    第三发送单元,被配置为利用目标波束的预设频域资源,将所述目标前导码发送给所述基站。
  20. 根据权利要求15所述的用户设备,其特征在于,所述响应接收模块包括:
    第一接收子模块,被配置为若接收到一个随机接入响应消息,根据所述响应消息指示的目标接入波束接入网络。
  21. 根据权利要求15所述的用户设备,其特征在于,所述响应接收模块包括:
    接入波束选择子模块,被配置为若接收到至少两个随机接入响应消息,从各个所述响应消息指示的接入波束中选择一个目标接入波束;
    第二接收子模块,被配置为通过所述目标接入波束接入网络。
  22. 根据权利要求15所述的用户设备,其特征在于,所述装置还包括:
    配置信息获取模块,被配置为获取前导码上行配置信息,所述前导码上行配置信息包括:预设目标波束数量、预设传导码分组信息、预设传输配置信息。
  23. 一种基站,其特征在于,包括:
    检测模块,被配置为检测预设数量波束连续发送的前导码;
    确定模块,被配置为确定同一用户设备发送的目标前导码;
    响应发送模块,被配置为根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
  24. 根据权利要求23所述的基站,其特征在于,所述确定模块包括:
    第一解析子模块,被配置为对所述预设数量的连续波束发送的加扰前导码进行解扰,获得前导码及第一解析信息;其中,所述第一解析信息包括:每一个前导码对应的解扰扰码和所属前导码分组的分组标识;
    第一确定子模块,被配置为若至少两个前导码的解扰扰码相同,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  25. 根据权利要求23所述的基站,其特征在于,所述确定模块包括:
    第二解析子模块,被配置为确定所述连续波束发送的每一个前导码的时域资源和所属前导码分组的分组标识;
    第二确定子模块,被配置为若至少两个前导码的时域资源满足预设前导码时域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  26. 根据权利要求23所述的基站,其特征在于,所述确定模块包括:
    第三解析子模块,被配置为确定所述连续波束发送的每一个前导码的频域资源和所属前导码分组的分组标识;
    第三确定子模块,被配置为若至少两个前导码的频域资源满足预设前导码频域配置信息,且相邻波束传输的前导码的分组标识不同,确定所述至少两个前导码来自同一个用户设备。
  27. 根据权利要求23所述的基站,其特征在于,所述响应发送模块包括:
    信噪比确定子模块,被配置为确定每个所述目标前导码的接收信噪比;
    判断子模块,被配置为判断各个所述接收信噪比是否超过预设信噪比阈值;
    第一发送子模块,被配置为若有至少一个目标前导码的接收信噪比大于所述预设信噪比阈值,通过最大接收信噪比的目标波束向所述用户设备发送一个随机接入响应消息。
  28. 根据权利要求27所述的基站,其特征在于,所述响应发送模块还包括:
    第二发送子模块,被配置为若有至少两个目标前导码的接收信噪比大于所述预设信噪比阈值,且每两个接收信噪比之间的差值小于预设阈值,针对每一个所述目标前导码发送一个随机接入响应消息。
  29. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1~8任一所述方法的步骤。
  30. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求9~14任一所述方法的步骤。
  31. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    通过至少两个连续波束向基站发送随机接入前导码,其中,相邻两个波束承载的所述前导码分别属于不同的前导码分组;
    接收所述基站针对所述前导码回复的随机接入响应消息;
    根据所述随机接入响应消息接入网络。
  32. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    检测预设数量波束连续发送的前导码;
    确定同一用户设备发送的目标前导码;
    根据所述目标前导码的接收信噪比,向所述用户设备发送随机接入响应消息,以使所述用户设备根据所述随机接入响应消息接入网络。
PCT/CN2017/083292 2017-05-05 2017-05-05 控制随机接入网络的方法、用户设备及基站 WO2018201467A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/611,022 US11224075B2 (en) 2017-05-05 2017-05-05 Method, user equipment, and base station for controlling random access to network
PCT/CN2017/083292 WO2018201467A1 (zh) 2017-05-05 2017-05-05 控制随机接入网络的方法、用户设备及基站
CN201780000342.5A CN107223361B (zh) 2017-05-05 2017-05-05 控制随机接入网络的方法、用户设备及基站
EP17908276.3A EP3621375B1 (en) 2017-05-05 2017-05-05 Method, user equipment unit, and base station for controlling random access to network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/083292 WO2018201467A1 (zh) 2017-05-05 2017-05-05 控制随机接入网络的方法、用户设备及基站

Publications (1)

Publication Number Publication Date
WO2018201467A1 true WO2018201467A1 (zh) 2018-11-08

Family

ID=59954283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083292 WO2018201467A1 (zh) 2017-05-05 2017-05-05 控制随机接入网络的方法、用户设备及基站

Country Status (4)

Country Link
US (1) US11224075B2 (zh)
EP (1) EP3621375B1 (zh)
CN (1) CN107223361B (zh)
WO (1) WO2018201467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087655A1 (zh) * 2022-10-27 2024-05-02 大唐移动通信设备有限公司 一种利用接入波束进行随机接入的方法和ue及基站

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3621375B1 (en) 2017-05-05 2024-08-21 Koninklijke Philips N.V. Method, user equipment unit, and base station for controlling random access to network
CN110035555B (zh) * 2018-01-11 2022-11-08 北京三星通信技术研究有限公司 一种随机接入方法和装置
EP3628135B1 (en) 2017-06-26 2023-02-22 Samsung Electronics Co., Ltd. Method for generating preamble, method for configuring preamble and equipment thereof, random access method, device, user equipment and base station
CN109698737B (zh) * 2017-10-20 2021-05-25 普天信息技术有限公司 一种随机接入信道的规划方法及装置
CN109756977B (zh) * 2017-11-03 2021-11-12 维沃移动通信有限公司 随机接入方法和用户终端
CN109788576B (zh) * 2017-11-15 2020-10-23 华为技术有限公司 随机接入方法、装置及设备
CN109803339A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种随机接入方法、终端及基站
CN109963350B (zh) * 2017-12-26 2021-10-15 华为技术有限公司 消息接收方法及终端
CN110099458B (zh) * 2018-01-30 2021-05-04 中国移动通信有限公司研究院 随机接入方法、网络侧设备及用户终端
WO2019183940A1 (zh) 2018-03-30 2019-10-03 北京小米移动软件有限公司 波束选择方法及装置
CN110351736B (zh) * 2018-04-04 2022-11-29 北京紫光展锐通信技术有限公司 按需系统消息请求确认的传输方法及装置、存储介质、基站、终端
CN115720373B (zh) * 2018-04-13 2023-10-20 华为技术有限公司 一种激活频域资源的方法、设备及系统
CN110381543B (zh) 2018-04-13 2022-11-11 华为技术有限公司 一种激活频域资源的方法、设备及系统
WO2019213972A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 一种随机接入前导码的传输方法及装置
CN110621035A (zh) * 2018-06-20 2019-12-27 普天信息技术有限公司 波束失败恢复方法、基站及用户设备
US11234244B2 (en) * 2018-07-05 2022-01-25 Asustek Computer Inc. Method and apparatus for performing random access resource selection in new radio access technology-unlicensed (NR-U) cells in a wireless communication system
CN110708764B (zh) * 2018-07-09 2022-01-25 维沃移动通信有限公司 一种信息传输方法、网络设备及终端
CN111328088B (zh) * 2018-12-17 2021-12-03 华为技术有限公司 一种prach检测方法及装置
CN116193624A (zh) 2019-02-14 2023-05-30 上海诺基亚贝尔股份有限公司 接收具有扩展响应窗口的随机接入响应
EP3949647A4 (en) * 2019-03-28 2022-04-13 ZTE Corporation GENERATION OF PREAMBLE FOR RANDOM ACCESS IN WIRELESS NETWORKS
EP3952396A4 (en) * 2019-04-02 2022-04-13 Beijing Xiaomi Mobile Software Co., Ltd. RANDOM ACCESS METHOD AND RANDOM ACCESS DEVICE
CN111294183B (zh) * 2019-04-19 2022-09-06 展讯通信(上海)有限公司 发送波束确定方法、用户设备、基站
CN111865388B (zh) * 2019-04-30 2022-04-05 华为技术有限公司 一种上行波束管理方法及装置
JP7335361B2 (ja) * 2019-06-17 2023-08-29 北京小米移動軟件有限公司 ランダムアクセス指示方法、装置及び記憶媒体
WO2021048462A1 (en) 2019-09-10 2021-03-18 Nokia Technologies Oy Time of arrival based method for extended connection range
WO2022027383A1 (zh) * 2020-08-05 2022-02-10 北京小米移动软件有限公司 随机接入的方法、装置、设备及存储介质
US20240178707A1 (en) * 2021-03-22 2024-05-30 Beijing Xiaomi Mobile Software Co., Ltd. Charging method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063203A1 (en) * 2013-08-29 2015-03-05 Electronics And Telecommunications Research Institute Method of designing and communicating beam in communication system
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN107223361A (zh) * 2017-05-05 2017-09-29 北京小米移动软件有限公司 控制随机接入网络的方法、用户设备及基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414199B (zh) * 2008-08-07 2013-11-01 Innovative Sonic Ltd 處理上鏈路傳輸資源的方法及通訊裝置
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
TWI653843B (zh) * 2013-01-25 2019-03-11 內數位專利控股公司 基於所接收波束參考信號在實體隨機存取通道(prach)資源上傳送
CN105532069A (zh) * 2013-04-28 2016-04-27 华为技术有限公司 物理随机接入信道接入的方法、设备及系统
US9907093B2 (en) * 2014-12-29 2018-02-27 Electronics And Telecommunications Research Institute Method and apparatus for random access in communications system
US10104627B2 (en) * 2015-03-20 2018-10-16 Lg Electronics Inc. Method for performing uplink synchronization in wireless communication system and apparatus therefor
JP6575680B2 (ja) * 2016-05-12 2019-09-18 日本電気株式会社 無線端末、基地局、及びこれらの方法
US10383038B2 (en) * 2016-05-13 2019-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and methods for providing and receiving system information in a wireless communications network
JP6781342B2 (ja) * 2016-11-09 2020-11-04 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ユーザ機器(ue)と通信ネットワークの無線アクセスネットワークとの間でランダムアクセス手順を実行する方法および装置
US11051342B2 (en) * 2016-12-26 2021-06-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063203A1 (en) * 2013-08-29 2015-03-05 Electronics And Telecommunications Research Institute Method of designing and communicating beam in communication system
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN107223361A (zh) * 2017-05-05 2017-09-29 北京小米移动软件有限公司 控制随机接入网络的方法、用户设备及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "RACH Preamble Design for NR", 3GPP TSG RAN WG1 NR AD HOC MEETING R1-1700034, 9 January 2017 (2017-01-09), XP051202460 *
See also references of EP3621375A4 *
ZTE CORPORATION ET AL.: "Consideration on Random Access in NR", 3GPP TSG-RAN WG2 MEETING #95BIS R2-166351, 9 October 2016 (2016-10-09), XP051150923 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087655A1 (zh) * 2022-10-27 2024-05-02 大唐移动通信设备有限公司 一种利用接入波束进行随机接入的方法和ue及基站

Also Published As

Publication number Publication date
US11224075B2 (en) 2022-01-11
CN107223361B (zh) 2021-09-28
EP3621375A4 (en) 2020-11-04
EP3621375B1 (en) 2024-08-21
US20200187259A1 (en) 2020-06-11
EP3621375A1 (en) 2020-03-11
CN107223361A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
WO2018201467A1 (zh) 控制随机接入网络的方法、用户设备及基站
US11546867B2 (en) Transmission configuration method and apparatus
US11711818B2 (en) Method and device for configuring transmission
WO2021189202A1 (zh) 用于随机接入的通信方法、装置及计算机可读存储介质
WO2020198912A1 (zh) 随机接入方法、装置及计算机可读存储介质
CN107079310B (zh) 获取、发送系统信息的方法及装置
WO2018176222A1 (zh) 传输、获取同步信息块的方法及装置
CN109644326B (zh) 传输随机接入指示信息的方法及装置
CN109496400B (zh) 重传信息的方法、装置、基站及终端
US20220053528A1 (en) Method for allocating time domain resources, data transmission method, base station, and terminal
WO2019213962A1 (zh) 寻呼同步方法及装置
WO2019192021A1 (zh) 上行资源请求方法及装置
WO2020199073A1 (zh) 接入控制方法、装置、用户设备及基站
US11871449B2 (en) Backoff method and apparatus in transmission process, device, system, and storage medium
CN109451869B (zh) 波束选择方法及装置
CN111758297B (zh) 信道检测方法及装置、通信设备及存储介质
CN109547190B (zh) 全双工通信方法及装置和非临时性计算机可读存储介质
US20220256372A1 (en) Downlink transmission detecting method and device, configuration information transmission method and device, and downlink transmission method and device
US20200396735A1 (en) Data transmission method and device
US12096409B2 (en) Random access processing method and apparatus
WO2021046828A1 (zh) 随机接入方法及装置
WO2021092735A1 (zh) 信号处理方法及装置、通信设备及存储介质
JP2023525282A (ja) データ送信方法、装置、通信機器及び記憶媒体
WO2023051540A1 (zh) 收端辅助信息的传输方法、装置、终端及网络侧设备
WO2023143532A1 (zh) 资源选择方法及装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017908276

Country of ref document: EP

Effective date: 20191205