WO2018201345A1 - 下行控制信息传输方法、终端设备和网络设备 - Google Patents

下行控制信息传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018201345A1
WO2018201345A1 PCT/CN2017/082902 CN2017082902W WO2018201345A1 WO 2018201345 A1 WO2018201345 A1 WO 2018201345A1 CN 2017082902 W CN2017082902 W CN 2017082902W WO 2018201345 A1 WO2018201345 A1 WO 2018201345A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control channel
terminal device
resource block
block set
Prior art date
Application number
PCT/CN2017/082902
Other languages
English (en)
French (fr)
Inventor
成艳
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/082902 priority Critical patent/WO2018201345A1/zh
Priority to CN201780089841.6A priority patent/CN110546907A/zh
Publication of WO2018201345A1 publication Critical patent/WO2018201345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a downlink control information transmission method, a terminal device, and a network device.
  • the terminal device before receiving the downlink data or transmitting the uplink data, the terminal device first needs to know downlink control information (DCI) such as configuration information of the network device to the terminal device, and the downlink control information is usually passed.
  • DCI downlink control information
  • the terminal device before receiving the downlink data or transmitting the uplink data, the terminal device first needs to know downlink control information (DCI) such as configuration information of the network device to the terminal device, and the downlink control information is usually passed.
  • DCI downlink control information
  • the long term evolution (LTE) system introduces a short transmission time interval (sTTI) to develop into an LTE system supporting sTTI.
  • the control channel and data channel corresponding to the LTE system supporting sTTI will also support sTTI. Therefore, the LTE system supporting sTTI supports short physical downlink control channel based on cell specific reference signal (CRS) demodulation.
  • CRS cell specific reference signal
  • the control channel (sPDCCH) also supports sPDCCH based on demodulation reference signal (DMRS) demodulation.
  • DMRS demodulation reference signal
  • the LTE system supporting sTTI supports CRS demodulation-based sPDCCH scheduling based on CRS demodulation short physical downlink shared channel (sPDSCH), and supports DMRS demodulation based sPDCCH scheduling based on DMRS demodulation sPDSCH.
  • sPDSCH CRS demodulation short physical downlink shared channel
  • whether DMRS for sPDSCH demodulation is transmitted depends on whether sPDSCH is scheduled, but it is not clear in the prior art whether the LTE system supporting sTTI supports sPDCCH scheduling based on CRS demodulation based on DMRS demodulation sPDSCH, and the terminal device does not know whether the sPDCCH based on the CRS demodulation schedules the sPDSCH based on the DMRS demodulation before demodulating the sPDCCH based on the CRS demodulation, and thus cannot determine whether the bearer based on the CRS demodulation includes the bearer in the time-frequency resource.
  • the resource unit of the DMRS used for sPDSCH demodulation may result in failure to successfully demodulate the downlink control information of the sPDCCH bearer.
  • the prior art has the problem that the terminal device cannot successfully demodulate the downlink control information carried by the sPDCCH.
  • the embodiment of the present invention provides a downlink control information transmission method, a terminal device, and a network device, which are used to solve the problem that the terminal device cannot successfully demodulate downlink control information carried by the sPDCCH.
  • the first aspect of the present application provides a downlink control information transmission method, including:
  • the terminal device detects a downlink control channel demodulated based on the cell reference signal CRS;
  • the terminal device Decoding, by the terminal device, the physical downlink shared channel demodulated based on the demodulation reference signal DMRS according to the downlink control information carried on the downlink control channel;
  • the transmission time interval between the downlink control channel and the physical downlink shared channel is less than 1 millisecond.
  • the terminal device before the sPDCCH based on the CRS demodulation is demodulated, the terminal device can clear whether the sPDCCH based on the CRS demodulation schedules the sPDSCH based on the DMRS demodulation, and thus can determine whether the time-frequency resource based on the CRS demodulation is included in the bearer.
  • the resource unit that carries the DMRS for sPDSCH demodulation the terminal device can successfully demodulate the downlink control information carried by the sPDCCH.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, and includes:
  • the terminal device receives first configuration information of a downlink control channel resource block set, where the downlink control channel resource block set is used to carry the downlink control channel, and the first configuration information is used to indicate the downlink control channel resource block.
  • the terminal device detects the downlink control channel according to the number of time domain symbols corresponding to the downlink control channel resource block set.
  • the detecting, by the terminal device, the downlink control channel according to the number of time domain symbols corresponding to the downlink control channel resource block set includes:
  • the terminal device assumes the downlink control channel resource block when detecting the downlink control channel.
  • the time-frequency resource corresponding to the set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel;
  • the control channel unit corresponding to the downlink control channel is mapped according to a rule of a prior time and a backward frequency a resource unit group, when the terminal device detects the downlink control channel, it is assumed that the time-frequency resource corresponding to the downlink control channel resource block set does not include a resource unit corresponding to the DMRS used for demodulating the physical downlink shared channel;
  • the control channel unit corresponding to the downlink control channel is mapped according to the rule of the first frequency after time
  • the resource unit group when the terminal device detects the downlink control channel, assumes that the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device detects the downlink control channel based on the CRS demodulation according to the first configuration information of the received downlink control channel resource block set and according to the determined number of time domain symbols corresponding to the determined downlink control channel resource block set.
  • the ambiguity of the DMRS in the sPDCCH demodulation process is enabled, and the sPDCCH scheduling based on the CRS demodulation is enabled based on the DMRS demodulation sPDSCH, thereby avoiding the sPDCCH scheduling based on the DMRS demodulation based on the DMRS in the prior art.
  • the disadvantage of the demodulated sPDSCH is that it does not need to be used for sPDCCH demodulation to transmit a specific DMRS, which reduces the reference signal overhead, and also avoids the limitation of the transmission mechanism of the sPDSCH caused by the need for the sPDCCH and the sPDSCH to share the DMRS resource unit, thereby reducing resource utilization.
  • the disadvantages of the resource utilization are improved, and the spectrum efficiency is improved.
  • a higher transmission performance than the sPDCCH based on the DMRS demodulation can be obtained, and the transmission reliability of the sPDCCH is improved.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, including:
  • the terminal device detects the number of time domain symbols in the downlink control channel corresponding to the downlink control channel. Detecting the downlink control channel;
  • the terminal device assumes the downlink control when detecting the downlink control channel.
  • the time-frequency resource corresponding to the channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel;
  • the control channel unit corresponding to the downlink control channel is according to the prior time and the backward frequency.
  • the terminal device detects the downlink control channel, the terminal device assumes that the time-frequency resource corresponding to the downlink control channel resource block set does not include the resource unit corresponding to the DMRS used for demodulating the physical downlink shared channel;
  • the terminal device If the number of time domain symbols in the downlink control channel detection area corresponding to the downlink control channel is equal to the number of time domain symbols corresponding to the transmission time interval, and the control channel unit corresponding to the downlink control channel is in accordance with the pre-frequency
  • the terminal device assumes that the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device detects the downlink control channel based on the CRS demodulation according to the number of time domain symbols of the downlink control channel detection region corresponding to the determined downlink control channel, and enables the sPDCCH scheduling based on the CRS demodulation based on the DMRS demodulation sPDSCH can obtain higher transmission performance than sPDCCH based on DMRS demodulation, and improves transmission reliability of sPDCCH.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, and includes:
  • the terminal device receives the high layer signaling, where the high layer signaling is used to indicate that the terminal device detects the downlink control channel according to the first detection mode or the second detection mode;
  • the terminal device detects the downlink control channel according to the high layer signaling
  • the detecting, by the terminal device, the downlink control channel according to the high layer signaling includes:
  • the control channel region corresponding to the downlink control channel includes Decoding a resource unit corresponding to the DMRS of the physical downlink shared channel;
  • the control channel region corresponding to the downlink control channel does not include A resource unit corresponding to a DMRS for demodulating a physical downlink shared channel.
  • the terminal device uses the high-level signaling sent by the network device to detect the downlink control channel based on the CRS demodulation, and the network device can flexibly change between the first detection mode and the second detection mode according to actual conditions, and can better match the actual situation. Application, thereby improving resource utilization efficiency.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, including:
  • the terminal device receives the second configuration information of the downlink control channel resource block set, where the downlink control channel is carried on the time-frequency resource corresponding to the downlink control channel resource block set, and the second configuration information is used to indicate the
  • the terminal device detects the downlink control channel according to the first detection mode or the second detection mode;
  • the terminal device detects the downlink control channel according to the second configuration information
  • the detecting, by the terminal device, the downlink control channel according to the second configuration information includes:
  • the frequency resource includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel
  • the second configuration information indicates that the terminal device detects the downlink control channel according to the second detection mode, when the terminal device detects the downlink control channel and assumes that the downlink control channel resource block set corresponds to The frequency resource does not include a resource unit corresponding to the DMRS used to demodulate the physical downlink shared channel.
  • the terminal device detects a downlink control channel demodulated based on the cell reference signal CRS, and further includes:
  • the terminal device detects the downlink control channel according to the number of time domain symbols corresponding to the downlink control channel resource block set and the second configuration information;
  • the terminal device assumes the downlink control channel resource block when detecting the downlink control channel.
  • the time-frequency resource corresponding to the set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel;
  • the terminal device detects the downlink control channel according to the second configuration information.
  • the terminal device detects the downlink control channel based on the CRS demodulation by using the second configuration information and/or the second configuration information that is sent by the network device, and can also enable the sPDCCH scheduling based on the DMRS demodulation based on the CRS demodulation sPDCCH.
  • a higher transmission performance than the sPDCCH based on DMRS demodulation can be obtained, and the transmission reliability of the sPDCCH is improved.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, including:
  • the control channel region corresponding to the downlink control channel includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the control channel region corresponding to the downlink control channel based on the CRS demodulation includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and the solution is solved when the terminal device detects the downlink control channel based on the CRS demodulation.
  • the sPDCCH and the sPDSCH sharing DMRS resource unit are required to bring about restrictions on the transmission mechanism of the sPDSCH, thereby reducing resource utilization, improving resource utilization and spectrum efficiency, and further adopting sPDCCH based on CRS demodulation to obtain demodulation based on DMRS.
  • the sPDCCH has higher transmission performance and improves the transmission reliability of the sPDCCH.
  • the terminal device detects a downlink control channel demodulated based on a cell reference signal CRS, including:
  • the terminal device detects a downlink control channel based on CRS demodulation in a non-multicast/multicast single frequency network MBSFN subframe;
  • the terminal device detects a downlink control channel based on DMRS demodulation in an MBSFN subframe.
  • the network device sends the downlink control information and the physical downlink shared channel scheduled by the downlink control information, the terminal device detects the downlink control channel, and decodes the physical downlink shared channel according to the downlink control information carried on the downlink control channel, The network device also transmits third configuration information of the downlink control channel resource block set, which enables the terminal device to be scheduled in each subframe, reducing the service delay.
  • the second aspect of the present application provides a downlink control information transmission method, including:
  • the network device sends downlink control information by using a downlink control channel, where the downlink control channel is demodulated based on the cell reference signal CRS;
  • the transmission time interval between the downlink control channel and the physical downlink shared channel is less than 1 millisecond.
  • the method further includes:
  • the network device sends first configuration information of a downlink control channel resource block set, where the downlink control channel resource block set is used to carry the downlink control channel, and the first configuration information is used to indicate the downlink control channel resource block.
  • the network device When the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the number of time domain symbols corresponding to the transmission time interval, the network device performs the downlink control channel corresponding according to the rule of the prior time and the backward frequency. Control mapping of channel elements to resource unit groups.
  • the method further includes:
  • the network device sends the high layer signaling, where the high layer signaling is used to indicate that the terminal device detects the downlink control channel according to the first detection mode or the second detection mode.
  • the method further includes:
  • the network device sends the second configuration information of the downlink control channel resource block set, where the downlink control channel is carried on the time-frequency resource corresponding to the downlink control channel resource block set, and the second configuration is used to indicate the terminal
  • the device detects the downlink control channel according to the first detection mode or the second detection mode.
  • the method further includes:
  • the network device sends the third configuration information of the downlink control channel resource block set, where the third configuration information is used to indicate the configuration information of the first downlink control channel resource block set and the second downlink control channel resource block set configuration information.
  • the first downlink control channel resource block set is used to carry a CRS demodulation-based downlink control channel
  • the second downlink control channel resource block set is used to carry a DMRS demodulation-based downlink control channel.
  • the network device sends downlink control information by using a downlink control channel, including:
  • the network device sends the downlink control information in the MBSFN subframe through the second downlink control channel resource set.
  • a third aspect of the embodiments of the present application provides a terminal device, where the terminal device includes a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the first aspect of the present application.
  • a fourth aspect of the embodiments of the present application provides a network device, where the network device includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the second aspect of the present application.
  • a fifth aspect of the embodiments of the present application provides a terminal device, including at least one processing element (or chip) for performing the method of the above first aspect.
  • a sixth aspect of the embodiments of the present application provides a network device, including at least one processing element (or chip) for performing the method of the above second aspect.
  • a seventh aspect of the present application provides a communication system, comprising the terminal device according to the above third aspect, and the network device according to the above fourth aspect.
  • An eighth aspect of embodiments of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the method of the first aspect described above.
  • a ninth aspect of the embodiments of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a tenth aspect of the embodiments of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of the second aspect above.
  • An eleventh aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect described above.
  • the network device sends downlink control information by using a downlink control channel, where the downlink control channel is based on CRS demodulation, and a physical downlink shared channel that is scheduled to be sent by the downlink control information, where the physical downlink shared channel is demodulated based on DMRS.
  • the terminal device detects the downlink control channel based on the CRS demodulation, and decodes the physical downlink shared channel based on the DMRS demodulation according to the downlink control information carried on the downlink control channel, where the downlink control channel and the PHY are carried.
  • the transmission time interval of the downlink shared channel is less than 1 millisecond.
  • the terminal device before the sPDCCH based on the CRS demodulation is demodulated, the terminal device can clear whether the sPDCCH based on the CRS demodulation schedules the sPDSCH based on the DMRS demodulation, and thus can determine whether the bearer based on the CRS demodulation includes the bearer in the time-frequency resource.
  • the resource unit of the DMRS used for sPDSCH demodulation so that the terminal device can successfully demodulate the downlink control information carried by the sPDCCH.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of interaction of Embodiment 1 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of interaction of Embodiment 2 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of interaction of Embodiment 3 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of interaction of Embodiment 4 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of interaction of Embodiment 5 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of interaction of Embodiment 7 of a downlink control information transmission method according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system can include at least one network device 110 and a plurality of terminal devices 120 located within the coverage of the network device 110.
  • FIG. 1 exemplarily shows a network device and two terminal devices.
  • the communication system may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. This example does not limit this.
  • the downlink control information transmission method provided by the embodiment of the present application can be applied to information transmission between the network device and the terminal device in the communication system, and it should be understood that the network device can send downlink control information to the terminal device.
  • the network device can also receive the uplink control information sent by the terminal device, and the specific format is determined according to actual needs, which is not limited herein.
  • the communications system may also include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • the embodiment of the present application is not limited thereto.
  • the communication system used in the embodiments of the present application may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, or a wideband code division multiple access (wideband code division multiple access).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • OFDM orthogonal frequency division multiplexing
  • the network device involved in the embodiment of the present application may be used to provide a wireless communication function for the terminal device, for example, may be used to send downlink control information to the terminal device.
  • the network device may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the network device may be a base transceiver station (BTS) in GSM or CDMA, or a base station (nodeB, NB) in WCDMA, or an evolved base station (evolutional node B, eNB or e in LTE).
  • BTS base transceiver station
  • nodeB base station
  • NB base station
  • evolutional node B evolutional node B
  • eNB evolved base station
  • gNB the foregoing apparatus for providing a wireless communication function for a terminal device
  • the foregoing apparatus for providing a wireless communication function for a terminal device is collectively referred to as a network device.
  • the terminal device may also be referred to as a user equipment (UE), a mobile station (MS), a mobile terminal, a terminal, etc.
  • the radio access network (RAN) can communicate with one or more core networks.
  • the terminal device can be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc.
  • the terminal device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the embodiment of the present application does not specifically limit it.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the terminal device before receiving downlink data or transmitting uplink data, the terminal device needs to know scheduling information configured by the network device to the terminal device, such as time-frequency resource allocation, modulation and coding mode, and the like. These scheduling information is called downlink control information (DCI).
  • DCI downlink control information
  • the embodiment of the present application does not limit the specific manifestation of the downlink control information, that is, the downlink control information is not limited to the scheduling information, and further includes other information, such as power control indication information, channel state information request information, and the like.
  • downlink control information is typically carried over a downlink control channel.
  • the network device mainly uses a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel (enhanced PDCCH).
  • the EPDCCH is used to carry the DCI, and the transmission time interval (TTI) length is 1 ms when the DCI transmission is performed, whether it is the PDCCH or the EPDCCH.
  • the network device mainly carries downlink data through a physical downlink shared channel (PDSCH), and supports both cell-based reference signals (
  • the cell-specific reference signal (CRS) demodulated PDSCH also supports PDSCH based on demodulation reference signal (DMRS) demodulation.
  • the PDCCH is demodulated based on the CRS, and the EPDCCH is demodulated based on the DMRS.
  • the LTE evolution system introduces a short transmission time interval (Shortened TTI or short TTI, sTTI).
  • short TTI short TTI
  • the length of the sTTI may be 2 time domain symbols or 7 time domain symbols.
  • the control channel and the data channel corresponding to the LTE system supporting the sTTI will also support the short transmission time interval.
  • the corresponding downlink control channel may be referred to as sPDCCH
  • the uplink control channel may be referred to as sPUCCH
  • the physical downlink shared channel may be referred to as sPDSCH
  • physical The uplink shared channel may be referred to as sPUSCH.
  • control channel and the data channel corresponding to the LTE system supporting the sTTI may also be called other names.
  • the short transmission time interval sTTI may also have other names, such as a short transmission time unit or a short transmission duration.
  • the LTE system supporting sTTI supports PDSCH based on CRS demodulation and PDSCH based on DMRS demodulation.
  • the LTE system supporting sTTI supports sPDCCH based on CRS demodulation and sPDCCH based on DMRS demodulation.
  • an LTE system supporting sTTI supports CRS demodulation-based sPDCCH scheduling based on CRS demodulation sPDSCH, and DMRS demodulation based sPDCCH scheduling is based on DMRS demodulation sPDSCH.
  • the LTE system supporting sTTI does not support sPDCCH scheduling based on CRS demodulation.
  • the sPDSCH based on DMRS demodulation is still unclear, and further research is needed.
  • sPDCCH scheduling based on DMRS demodulation can only be based on DMRS demodulation.
  • sPDSCH if the DMRS corresponding to the sPDCCH is different from the resource element (RE) corresponding to the DMRS corresponding to the sPDSCH, the system needs to transmit the DMRS specifically used for sPDCCH demodulation, thereby increasing the overhead of the reference signal.
  • RE resource element
  • the DMRS corresponding to the sPDCCH and the DMRS corresponding to the sPDSCH share the same resource unit, it may result in lower resource utilization efficiency, because if the sPDCCH and the sPDSCH adopt the same multiple input and multiple output (multi-input multi- The output, MIMO) transmission mechanism restricts the sPDSCH to only use the transmission mechanism corresponding to the sPDCCH, which may result in the inability to use a transmission mechanism such as spatial multiplexing, thereby reducing resource utilization efficiency and specifically reducing spectrum efficiency.
  • MIMO multiple input and multiple output
  • both the sPDCCH and the sPDSCH cannot use the maximum transmission power to affect the transmission performance, and on the other hand, a more complicated design is needed. To enable sPDCCH and sPDSCH to use different MIMO transmission mechanisms.
  • the DMRS for sPDSCH demodulation is transmitted depending on whether the sPDSCH is scheduled, it is not clear in the prior art whether the LTE system supporting the sTTI supports the sPDCCH scheduling based on the CRS demodulation sPDCCH based on DMRS demodulation.
  • the sPDCCH based on the CRS demodulation is solved by the terminal device, it is not clear whether the sPDCCH based on the CRS demodulation schedules the sPDSCH based on the DMRS demodulation, and thus it is not determined whether the resource element of the sPDCCH is carried in the sPDCCH, which may result in unsuccessful demodulation.
  • Downlink control information carried by the sPDCCH is not clear.
  • the present application provides a downlink control information transmission method, a terminal device, and a network device, which can enable sPDCCH scheduling based on DMRS for sPDCCH scheduling based on CRS demodulation, and whether resource elements of sPDCCH are carried in the sPDCCH.
  • a downlink control information transmission method a terminal device, and a network device, which can enable sPDCCH scheduling based on DMRS for sPDCCH scheduling based on CRS demodulation, and whether resource elements of sPDCCH are carried in the sPDCCH.
  • the embodiments of the present application are mainly applied to an LTE system or an LTE evolution system, and are applied to single carrier and multiple carriers for illustration.
  • the network elements involved in this application mainly include terminal devices and network devices.
  • the terminal device may refer to a user equipment
  • the network device may refer to a base station.
  • FIG. 2 is a schematic diagram of interaction of Embodiment 1 of a downlink control information transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the downlink control information transmission method provided by the embodiment of the present application includes the following steps:
  • Step 201 The network device sends downlink control information by using a downlink control channel.
  • the downlink control channel is demodulated based on the cell reference signal CRS.
  • the transmission time interval of the downlink control channel in the step 201 may be less than 1 ms, which may be referred to as a short transmission time interval sTTI, and the length of the sTTI may be 2 time domain symbols, 3 time domain symbols or 7 Time domain symbol.
  • the network device sends downlink control information, where the downlink control information is carried by the downlink control channel, and the downlink control channel is demodulated based on a cell-specific reference signal (CRS), and the downlink control channel can be carried on the downlink control channel.
  • CRS cell-specific reference signal
  • Step 202 The network device sends a physical downlink shared channel scheduled by downlink control information.
  • the physical downlink shared channel is demodulated based on the demodulation reference signal DMRS.
  • the physical downlink shared channel in the embodiment of the present application may be an sPDSCH, and the transmission time interval for carrying the sPDSCH is a short transmission time interval sTTI.
  • the network device sends a physical downlink shared channel on the resource indicated by the downlink control information in step 201, and the physical downlink shared channel is demodulated based on a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • Step 203 The terminal device detects a downlink control channel based on CRS demodulation.
  • the terminal device detects the downlink control channel based on the CRS demodulation, and acquires downlink control information carried on the downlink control channel.
  • Step 204 The terminal device decodes the physical downlink shared channel demodulated based on the demodulation reference signal DMRS according to the downlink control information carried on the downlink control channel.
  • the terminal device determines the scheduling information corresponding to the physical downlink shared channel according to the downlink control information of the downlink control channel detected in step 203, for example, the time-frequency resource and the modulation and coding mode corresponding to the physical downlink shared channel. And so on, thereby decoding the physical downlink shared channel.
  • the transmission time interval of the physical downlink shared channel in the step 204 may be less than 1 ms, which may be referred to as a short transmission time interval sTTI, and the length of the sTTI may be 2 time domain symbols, 3 time domain symbols or 7
  • the time domain symbols the embodiment of the present application does not limit the specific length of the sTTI.
  • the network device sends downlink control information by using a downlink control channel, where the downlink control channel is based on CRS demodulation, and a physical downlink shared channel that is scheduled to be sent by using the downlink control information, where the physical downlink shared channel is based on DMRS demodulation, correspondingly, the terminal device detects the downlink control channel based on the CRS demodulation, and decodes the physical downlink shared channel based on the DMRS demodulation according to the downlink control information carried on the downlink control channel, where the downlink is carried
  • the transmission time interval of the control channel and the physical downlink shared channel are both less than 1 millisecond.
  • the terminal device before the sPDCCH based on the CRS demodulation is demodulated, the terminal device can clear whether the sPDCCH based on the CRS demodulation schedules the sPDSCH based on the DMRS demodulation, and thus can determine whether the bearer based on the CRS demodulation includes the bearer in the time-frequency resource.
  • the resource unit of the DMRS used for sPDSCH demodulation so that the terminal device can successfully demodulate the downlink control information carried by the sPDCCH.
  • FIG. 3 is a schematic diagram of interaction of Embodiment 2 of a downlink control information transmission method according to an embodiment of the present disclosure. This embodiment is a further description of the downlink control information transmission method based on the embodiment shown in FIG. 2 above. As shown in FIG. 3, the downlink control information transmission method provided by the embodiment of the present application further includes:
  • Step 301 The network device sends first configuration information of a downlink control channel resource block set.
  • the downlink control channel resource block set is configured to carry a CRS demodulation-based downlink control channel, where the first configuration information is used to indicate a number of time domain symbols corresponding to the downlink control channel resource block set.
  • the network device when the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the number of time domain symbols corresponding to the transmission time interval, the network device performs the downlink control according to a rule of a prior time and a backward frequency. Mapping of control channel elements to resource unit groups corresponding to the channel.
  • the foregoing step 203 that is, the terminal device detects the downlink control channel demodulated based on the cell reference signal CRS, may include the following steps:
  • Step 302 The terminal device receives first configuration information of a downlink control channel resource block set.
  • the downlink control channel resource block set is configured to carry a downlink control channel based on CRS demodulation, where the first
  • the configuration information is used to indicate the number of time domain symbols corresponding to the downlink control channel resource block set.
  • the time domain symbol in the embodiment of the present application may be an orthogonal frequency division multiplexing (OFDM) symbol, or a single-carrier frequency-division multiple access (SC). -FDMA) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC single-carrier frequency-division multiple access
  • -FDMA single-carrier frequency-division multiple access
  • Step 303 The terminal device determines, according to the first configuration information, the number of time domain symbols corresponding to the downlink control channel resource block set.
  • Step 304 The terminal device detects a downlink control channel demodulated by the cell reference signal CRS according to the number of time domain symbols corresponding to the downlink control channel resource block set.
  • the terminal device detects a downlink control channel based on CRS demodulation
  • the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the control channel unit corresponding to the downlink control channel is mapped according to a rule of a prior time and a backward frequency
  • the resource unit group when the terminal device detects the downlink control channel based on the CRS demodulation, assumes that the time-frequency resource corresponding to the downlink control channel resource block set does not include the resource unit corresponding to the DMRS used for demodulating the physical downlink shared channel.
  • control channel unit corresponding to the downlink control channel in the embodiment of the present application is mapped to the resource unit group according to the rule of the prior time and the backward frequency, and may be first mapped to the resource unit group on all the time domain symbols on the resource block 1, and then Starting to map to a resource unit group on resource block 2, the resource block index of the resource block 1 may be smaller than the resource unit group on the resource block 2.
  • the control channel unit corresponding to the downlink control channel is mapped according to the rule of the first frequency after time
  • the resource unit group when the terminal device detects the downlink control channel based on the CRS demodulation, assumes that the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • control channel unit corresponding to the downlink control channel in the embodiment of the present application is mapped to the resource unit group according to the rule of the pre-frequency, and may be mapped to the resource unit group on all resource blocks in the time domain symbol 1 first, and then Starting to map to a resource unit group on time domain symbol 2, the symbol index of the time domain symbol 1 may be smaller than the symbol index on the time domain symbol 2.
  • control channel unit in the embodiment of the present application may be a CCE (Control Channel Element) or a sCCE.
  • control channel unit When the control channel unit is an sCCE, it may refer to a control channel unit corresponding to the sPDCCH.
  • the resource unit group in the embodiment of the present application may be a REG (Resource Element Group), and may also be referred to as an sREG.
  • REG Resource Element Group
  • sREG Resource Element Group
  • the downlink control information transmission method when the network device sends the first configuration information of the downlink control channel resource block set, and the downlink control channel resource block set is used to carry the downlink control channel, the first configuration information is used.
  • the terminal device may detect the downlink control channel demodulated by the cell reference signal CRS according to the following manner, that is, the first device receives the downlink control channel resource block set by the terminal device.
  • the configuration information is determined, and the number of time domain symbols corresponding to the downlink control channel resource block set is determined according to the first configuration information, and the downlink control channel is detected according to the number of time domain symbols corresponding to the downlink control channel resource block set.
  • the present application solves the problem of whether the DMRS exists in the sPDCCH demodulation process.
  • the CRS demodulation-based sPDCCH scheduling sPDSCH based on DMRS demodulation is enabled, thereby avoiding the disadvantages of the sPDCCH that is based on the DMRS demodulation sPDCCH scheduling in the prior art, and does not need to be demodulated for sPDCCH.
  • the transmission of a specific DMRS reduces the reference signal overhead, and also avoids the disadvantage of reducing the resource utilization by limiting the transmission mechanism of the sPDSCH by the sPDCCH and the sPDSCH sharing DMRS resource unit, thereby improving resource utilization and improving spectrum efficiency.
  • higher transmission performance than sPDCCH based on DMRS demodulation can be obtained, and the transmission reliability of the sPDCCH is improved.
  • FIG. 4 is a schematic diagram of interaction of Embodiment 3 of a downlink control information transmission method according to an embodiment of the present disclosure. This embodiment is a further description of the downlink control information transmission method based on the embodiment shown in FIG. 2 above.
  • the foregoing step 203 that is, the terminal device detecting the downlink control channel demodulated by the cell reference signal CRS, may include the following steps:
  • Step 401 The terminal device determines the number of time domain symbols of the downlink control channel detection area corresponding to the downlink control channel based on the CRS demodulation.
  • Step 402 The terminal device detects the downlink control channel according to the number of time domain symbols of the downlink control channel detection area corresponding to the downlink control channel.
  • the terminal device detects CRS-based demodulation.
  • the downlink control channel assumes that the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the control channel unit corresponding to the downlink control channel is configured according to When the terminal device detects the downlink control channel based on the CRS demodulation, the time-frequency resource corresponding to the downlink control channel resource block set does not include the physical downlink sharing for demodulation.
  • the resource unit corresponding to the DMRS of the channel does not include the physical downlink sharing for demodulation.
  • the control channel unit corresponding to the downlink control channel is configured according to The pre-frequency-timed rule is mapped to the resource unit group, and the terminal device detects the downlink control channel based on the CRS demodulation, and assumes that the time-frequency resource corresponding to the downlink control channel resource block set includes a demodulation physical downlink shared channel.
  • the resource unit corresponding to the DMRS is configured according to the pre-frequency-timed rule.
  • the downlink control information transmission method when the terminal device detects the downlink control channel demodulated by the cell reference signal CRS, the terminal device determines the number of time domain symbols in the downlink control channel detection area corresponding to the downlink control channel, and The downlink control channel based on the CRS demodulation is detected according to the number of time domain symbols of the downlink control channel detection region corresponding to the downlink control channel.
  • the technical solution can also enable sPDCCH scheduling based on DMRS demodulation based on CRS demodulation, and can obtain higher transmission performance than sPDCCH based on DMRS demodulation, and improve transmission reliability of sPDCCH.
  • FIG. 5 is a schematic diagram of interaction of Embodiment 4 of a downlink control information transmission method according to an embodiment of the present disclosure. This embodiment A further description of the downlink control information transmission method based on the embodiment shown in FIG. 2 above. As shown in FIG. 5, the downlink control information transmission method provided by the embodiment of the present application further includes the following steps:
  • Step 501 The network device sends high-level signaling, where the high-level signaling is used to instruct the terminal device to detect the downlink control channel according to the first detection mode or the second detection mode.
  • Step 502 The terminal device receives the foregoing high layer signaling.
  • Step 503 The terminal device detects the downlink control channel based on the CRS demodulation according to the high layer signaling.
  • the terminal device determines the CRS based on the CRS demodulation-based downlink control channel
  • the control channel region corresponding to the demodulated downlink control channel includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device detects the downlink control channel based on the CRS demodulation, and assumes the downlink based on the CRS demodulation
  • the control channel region corresponding to the control channel does not include a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the high layer signaling indicates that the downlink control channel based on the CRS demodulation is detected according to the first detection manner, and the sPDSCH does not exist in the control channel region corresponding to the sPDCCH.
  • the high layer signaling indicates that the downlink control channel based on the CRS demodulation is detected according to the second detection mode.
  • the downlink control information transmission method provided by the embodiment of the present disclosure, when the network device sends the high layer signaling, and the high layer signaling is used to indicate that the terminal device detects the downlink control channel according to the first detection mode or the second detection mode, The terminal device detects the downlink control channel based on the CRS demodulation according to the received high layer signaling.
  • the network device can flexibly change between the first detection mode and the second detection mode according to actual conditions, and can better match the actual application situation, thereby improving resource utilization efficiency.
  • FIG. 6 is a schematic diagram of interaction of Embodiment 5 of a downlink control information transmission method according to an embodiment of the present disclosure. This embodiment is a further description of the downlink control information transmission method based on the embodiment shown in FIG. 2 above. As shown in FIG. 6, the downlink control information transmission method provided by the embodiment of the present application further includes the following steps:
  • Step 601 The network device sends second configuration information of the downlink control channel resource block set.
  • the downlink control channel is carried on the time-frequency resource corresponding to the downlink control channel resource block set.
  • the second configuration information is used to instruct the terminal device to detect the downlink control channel based on the CRS demodulation according to the first detection mode or the second detection mode.
  • the method further includes: the network device sending the first configuration information of the downlink control channel resource block set.
  • the first configuration information is used to indicate the number of time domain symbols corresponding to the downlink control channel resource block set.
  • Step 602 The terminal device receives second configuration information of the downlink control channel resource block set.
  • the terminal device when the network device further sends the first configuration information of the downlink control channel resource block set, the terminal device further receives the first configuration information of the downlink control channel resource block set, and determines, according to the first configuration information, The number of time domain symbols corresponding to the downlink control channel resource block set.
  • Step 603 The terminal device detects a downlink control channel based on CRS demodulation according to the second configuration information.
  • the terminal device assumes the downlink when detecting the downlink control channel based on the CRS demodulation.
  • the time-frequency resource corresponding to the control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device determines the downlink control channel resource block when detecting the downlink control channel based on the CRS demodulation.
  • the time-frequency resource corresponding to the set does not include a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device uses the number of time domain symbols corresponding to the downlink control channel resource block set and the second configuration.
  • the information detection is based on the downlink control channel of the CRS demodulation, and the specific implementation manner is as follows:
  • the terminal device assumes the downlink control when detecting the downlink control channel based on the CRS demodulation
  • the time-frequency resource corresponding to the channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the terminal device detects the downlink control channel based on the CRS demodulation according to the second configuration information. .
  • the network device integrates the second configuration information and/or the first configuration information of the downlink control channel resource block set into one information packet, and the information packet may be collectively referred to as downlink control. Configuration information of a channel resource block set.
  • the downlink control information transmission method provided by the embodiment of the present application, when the network device sends the second configuration information and/or the first configuration information of the downlink control channel resource block set, and the downlink control channel is carried by the downlink control channel resource block set.
  • the second configuration information is used to indicate that the terminal device detects the downlink control channel based on the CRS demodulation according to the first detection mode or the second detection mode, where the first configuration information is used to indicate the downlink control channel resource block set.
  • the terminal device receives the second configuration information and/or the first configuration information of the downlink control channel resource block set, and determines the number of time domain symbols corresponding to the downlink control channel resource block set according to the first configuration information.
  • the technical solution can also enable sPDCCH scheduling based on DMRS demodulation based on CRS demodulation, and can obtain higher transmission performance than sPDCCH based on DMRS demodulation, and improve transmission reliability of sPDCCH.
  • the terminal device detects the downlink control channel demodulated based on the cell reference signal CRS, and can be implemented by the following implementation manner:
  • the control channel region corresponding to the CRS demodulation-based downlink control channel includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the transmission time interval for carrying the downlink control channel in this step may be less than 1 ms, which may be referred to as a short transmission time interval sTTI, and the length of the sTTI may be two time domain symbols, three time domain symbols or seven time domain symbols. .
  • the terminal device when the terminal device detects the downlink control channel based on the CRS demodulation, it is assumed that the control channel region corresponding to the CRS demodulation-based downlink control channel includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel,
  • the problem that the DMRS is not known in the sPDCCH demodulation process is solved, and the sPDCCH scheduling based on the CRS demodulation is enabled based on the DMRS demodulation sPDSCH, which avoids the transmission mechanism of the sPDSCH by the sPDCCH and the sPDSCH sharing DMRS resource unit. Limiting the disadvantages of resource utilization, thereby improving resource utilization and improving spectrum efficiency.
  • using sPDCCH based on CRS demodulation higher transmission performance than sPDCCH based on DMRS demodulation is obtained, and sPDCCH is improved. Transmission reliability.
  • FIG. 7 is a schematic diagram of interaction of Embodiment 7 of a downlink control information transmission method according to an embodiment of the present disclosure. As shown in FIG. 7, the downlink control information transmission method provided by the embodiment of the present application includes the following steps:
  • Step 701 The network device sends downlink control information.
  • the network device sends the downlink control information through the first downlink control channel resource block set in the multicast broadcast multicast service single frequency network (MBSFN) subframe.
  • the network device sends the downlink control information in the MBSFN subframe through the second downlink control channel resource set.
  • MBSFN multicast broadcast multicast service single frequency network
  • the network device sends the downlink control information by using the first downlink control channel resource block set in the non-MBSFN subframe, where the network device sends the downlink through the second downlink control channel resource set in the first short transmission time interval (sTTI) of the MBSFN subframe.
  • sTTI short transmission time interval
  • the sTTIs other than the first short transmission time interval sTTI in the MBSFN subframe transmit downlink control information through the second downlink control channel resource set.
  • Step 702 The network device sends a physical downlink shared channel scheduled by the downlink control information.
  • the network device sends a physical downlink shared channel on the resource indicated by the downlink control information in step 701.
  • the physical downlink shared channel may be a physical downlink shared channel based on CRS demodulation, or may be a physics based on DMRS demodulation.
  • the downlink shared channel depends on the configured transmission mode.
  • the physical downlink shared channel may be a physical downlink shared channel based on DMRS demodulation.
  • Step 703 The terminal device detects the downlink control channel.
  • the terminal device detects the downlink control channel, which can be implemented in the following manner (7-1), as follows:
  • the terminal device detects a downlink control channel demodulated based on the cell reference signal CRS in the non-MBSFN subframe, and detects a downlink control channel demodulated based on the demodulation reference signal DMRS in the MBSFN subframe.
  • the terminal device detects the downlink control channel demodulated based on the cell reference signal CRS in the non-MBSFN subframe, and detects the downlink control channel based on the CRS demodulation in the first short transmission time interval (sTTI) of the MBSFN subframe,
  • the other sTTIs of the MBSFN subframe except the first short transmission time interval sTTI detect the downlink control channel demodulated based on the demodulation reference signal DMRS.
  • the MBSFN subframe may have a CRS only in the first time domain symbol and the second time domain symbol, and therefore the MBSFN subframe is other than the first sTTI.
  • the terminal device needs to switch between the CRS demodulation-based sPDCCH and the DMRS demodulation-based sPDCCH. In this way, the user equipment can be scheduled in each subframe, thereby reducing the service delay.
  • the terminal device detects the downlink control channel, which can be implemented in the following manner (7-2), as follows:
  • the terminal device detects a downlink control channel demodulated by the cell reference signal CRS in both the non-MBSFN subframe and the MBSFN subframe;
  • the terminal device detects a downlink control channel demodulated based on the demodulation reference signal DMRS in both the non-MBSFN subframe and the MBSFN subframe.
  • the terminal device can be scheduled in each subframe, thereby reducing the service delay; at the same time, the terminal device only needs to detect the sPDCCH based on the CRS demodulation or the sPDCCH based on the DMRS demodulation at least for a period of time, without Switching between sPDCCHs reduces complexity.
  • the transmission time interval of the downlink control channel in the step may be less than 1 ms, which may be referred to as a short transmission time interval sTTI, and the length of the sTTI may be two time domain symbols, three time domain symbols or seven time slots.
  • sTTI short transmission time interval
  • Step 704 The terminal device decodes the physical downlink shared channel according to the downlink control information carried on the downlink control channel.
  • the physical downlink shared channel may be a physical downlink shared channel based on CRS demodulation, or may be a physical downlink shared channel based on DMRS demodulation. It depends on the configured transmission mode; when the terminal device detects the sPDCCH based on DMRS demodulation in step 703, the physical downlink shared channel may be a physical downlink shared channel based on DMRS demodulation.
  • the transmission time interval of the physical downlink shared channel in this step may be less than 1 ms, which may be referred to as a short transmission time interval sTTI, and the length of the sTTI may be 2 time domain symbols, 3 time domain symbols or 7 time domain symbols.
  • Step 705 The network device sends third configuration information of the downlink control channel resource block set.
  • the third configuration information of the downlink control channel resource block set indicates configuration information of the first downlink control channel resource block set and configuration information of the second downlink control channel resource block set, and the first downlink control channel resource block set And a second downlink control channel resource block set is used to carry a downlink control channel based on DMRS demodulation.
  • step 703 when step 703 adopts mode (7-1), the embodiment adopts step 705.
  • the mode (7-1) in step 703 in this embodiment may further be:
  • the terminal device receives the third configuration information of the downlink control channel resource block set, where the third configuration information of the downlink control channel resource block set indicates the configuration information of the first downlink control channel resource block set and the second downlink control channel resource block set.
  • the configuration information, the first downlink control channel resource block set is used to carry a CRS demodulation-based downlink control channel, and the second downlink control channel resource block set is used to carry a DMRS demodulation-based downlink control channel.
  • the terminal device detects, according to the first downlink control channel resource block set, the downlink control channel demodulated based on the cell reference signal CRS in the non-MBSFN subframe, and detects the solution based on the second downlink control channel resource block set detection in the MBSFN subframe. Adjusting the downlink control channel of the reference signal DMRS demodulation;
  • the terminal device detects the downlink control channel based on the CRS demodulation based on the first downlink control channel resource block set in the non-MBSFN subframe, and the first short transmission time interval (sTTI) in the MBSFN subframe is based on the first downlink control channel resource
  • the block set detects a downlink control channel based on CRS demodulation; the other sTTIs other than the first short transmission time interval sTTI in the MBSFN subframe are detected based on the demodulation reference signal DMRS demodulation based on the detection of the second downlink control channel resource block set Control channel.
  • the network device sends the downlink control information and the physical downlink shared channel scheduled by the downlink control information, and the terminal device detects the downlink control channel, and according to the downlink control information carried on the downlink control channel, The physical downlink shared channel is decoded, and the network device further sends the third configuration information of the downlink control channel resource block set, which enables the terminal device to be scheduled in each subframe, which reduces the service delay.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 8, the terminal device of this embodiment may include: a detecting unit 801 and a processing unit 802.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS.
  • the processing unit 802 is configured to decode, according to the downlink control information carried on the downlink control channel, a physical downlink shared channel demodulated based on the demodulation reference signal DMRS;
  • the transmission time interval between the downlink control channel and the physical downlink shared channel is less than 1 millisecond.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on a cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to receive first configuration information of a downlink control channel resource block set, where the downlink control channel resource block set is used to carry the downlink control channel, where the first configuration information is used to indicate the And determining, according to the first configuration information, a number of time domain symbols corresponding to the downlink control channel resource block set, and corresponding to the downlink control channel resource block set according to the first configuration information. Detecting the downlink control channel by the number of time domain symbols;
  • the detecting unit 801 is configured to detect the downlink control channel according to the number of time domain symbols corresponding to the downlink control channel resource block set, specifically:
  • the detecting unit 801 is specifically configured to: if the number of time domain symbols corresponding to the downlink control channel resource block set is smaller than the number of time domain symbols corresponding to the transmission time interval, when the downlink control channel is detected, the The time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, where the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the transmission time interval. And the number of the time domain symbols, and the control channel unit corresponding to the downlink control channel is mapped to the resource unit group according to the rule of the first time and the second frequency, and the downlink control channel is determined to be corresponding to the downlink control channel resource block set.
  • the time-frequency resource does not include a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and if the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the number of time domain symbols corresponding to the transmission time interval, And the control channel unit corresponding to the downlink control channel is mapped to the resource unit group according to the rule of the pre-frequency and then the check.
  • the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to determine a number of time domain symbols of a downlink control channel detection area corresponding to the downlink control channel, and detect a time domain symbol number of the downlink control channel detection area corresponding to the downlink control channel. Describe the downlink control channel;
  • the detecting unit 801 is configured to detect the downlink control channel according to the number of time domain symbols in the downlink control channel detection area corresponding to the downlink control channel, specifically:
  • the detecting unit 801 is specifically configured to: when the number of time domain symbols in the downlink control channel detection area corresponding to the downlink control channel is smaller than the number of time domain symbols corresponding to the transmission time interval, when detecting the downlink control channel Assume that the time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and if the number of time domain symbols of the downlink control channel detection area corresponding to the downlink control channel is equal to And the number of the time domain symbols corresponding to the transmission time interval, and the control channel unit corresponding to the downlink control channel is mapped to the resource unit group according to the rule of the prior time and the backward frequency, and the downlink control is assumed when the downlink control channel is detected.
  • the time-frequency resource corresponding to the channel resource block set does not include the resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and the number of time domain symbols of the downlink control channel detection area corresponding to the downlink control channel is equal to the transmission time.
  • the number of time domain symbols corresponding to the interval, and the control channel unit corresponding to the downlink control channel is The rules are mapped to the frequency resource element groups, the downlink frequency resource is detected it is assumed that the downlink control channel when the control channel resource block corresponding to a set of resource elements comprises for demodulating the physical downlink shared channel corresponding to the DMRS.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to receive the high layer signaling, where the high layer signaling is used to indicate that the terminal device detects the downlink control channel according to the first detection mode or the second detection mode, according to the high layer signal. Having detected the downlink control channel;
  • the detecting unit 801 is configured to detect the downlink control channel according to the high layer signaling, specifically:
  • the detecting unit 801 is specifically configured to: if the high-level signaling indicates that the terminal device detects the downlink control channel according to the first detection manner, if the downlink control channel is detected, it is assumed that the downlink control channel corresponds to The control channel region includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and if the high layer signaling indicates that the terminal device detects the downlink control channel according to the second detection manner, detecting the downlink control The channel assumes that the control channel region corresponding to the downlink control channel does not include a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to receive second configuration information of a downlink control channel resource block set, where the downlink control channel is carried on a time-frequency resource corresponding to the downlink control channel resource block set, and the second configuration information is
  • the terminal device is configured to detect the downlink control channel according to the first detection mode or the second detection mode, and detect the downlink control channel according to the second configuration information;
  • the detecting unit 801 is configured to detect the downlink control channel according to the second configuration information, specifically:
  • the detecting unit 801 is specifically configured to: if the second configuration information indicates that the terminal device detects the downlink control channel according to the first detection manner, if the downlink control channel is detected, the downlink control channel resource is assumed
  • the time-frequency resource corresponding to the block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, and if the second configuration information indicates that the terminal device detects the downlink control channel according to the second detection mode, When detecting the downlink control channel, it is assumed that the time-frequency resource corresponding to the downlink control channel resource block set does not include a resource unit corresponding to the DMRS used for demodulating the physical downlink shared channel.
  • the detecting unit 801 is further configured to receive first configuration information of a downlink control channel resource block set, where the first configuration information is used to indicate that the downlink control channel resource block set corresponds to The number of time domain symbols is determined according to the first configuration information, and the number of time domain symbols corresponding to the downlink control channel resource block set is determined according to the number of time domain symbols corresponding to the downlink control channel resource block set and the The second configuration information detects the downlink control channel.
  • the detecting unit 801 is configured to detect the downlink control channel according to the number of time domain symbols corresponding to the downlink control channel resource block set and the second configuration information, specifically:
  • the detecting unit 801 is specifically configured to: if the number of time domain symbols corresponding to the downlink control channel resource block set is smaller than the number of time domain symbols corresponding to the transmission time interval, when the downlink control channel is detected, the The time-frequency resource corresponding to the downlink control channel resource block set includes a resource unit corresponding to the DMRS for demodulating the physical downlink shared channel, where the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the transmission time interval. The number of time domain symbols is used to detect the downlink control channel according to the second configuration information.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to: when detecting the downlink control channel, assume that the control channel region corresponding to the downlink control channel includes a resource unit corresponding to a DMRS for demodulating a physical downlink shared channel.
  • the detecting unit 801 is configured to detect a downlink control channel demodulated based on the cell reference signal CRS, specifically:
  • the detecting unit 801 is specifically configured to detect a downlink control channel based on CRS demodulation in a non-multicast/multicast single frequency network MBSFN subframe, and detect a downlink control channel based on DMRS demodulation in an MBSFN subframe.
  • the terminal device in this embodiment may be used to implement the implementation scheme of the terminal device in the method embodiment shown in FIG. 2 to FIG. 7.
  • the specific implementation manner and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application. As shown in FIG. 9, the network device of this embodiment may include: a sending unit 901.
  • the sending unit 901 is configured to send downlink control information by using a downlink control channel, where the downlink control channel is demodulated based on the cell reference signal CRS, and the physical downlink shared channel scheduled by the downlink control information is sent, where the physical downlink shared channel is used.
  • the transmission time interval between the downlink control channel and the physical downlink shared channel is less than 1 millisecond.
  • the sending unit 901 is further configured to send first configuration information of a downlink control channel resource block set, where the downlink control channel resource block set is used to carry the downlink control a channel, the first configuration information is used to indicate a number of time domain symbols corresponding to the downlink control channel resource block set;
  • the network device further includes: a processing unit 902.
  • the processing unit 902 is configured to: when the number of time domain symbols corresponding to the downlink control channel resource block set is equal to the number of time domain symbols corresponding to the transmission time interval, perform the downlink according to a rule of a prior time and a backward frequency Mapping of control channel elements to resource element groups corresponding to the control channel.
  • the sending unit 901 is further configured to send the high layer signaling, where the high layer signaling is used to indicate that the terminal device performs the first detection mode or the second detection mode.
  • the downlink control channel is detected.
  • the sending unit 901 is further configured to send second configuration information of a downlink control channel resource block set, where the downlink control channel is carried in the downlink control channel resource block.
  • the second configuration information is used to indicate that the terminal device detects the downlink control channel according to the first detection mode or the second detection mode.
  • the sending unit 901 is further configured to send third configuration information of a downlink control channel resource block set, where the third configuration information is used to indicate the first downlink control.
  • the configuration information of the channel resource block set and the configuration information of the second downlink control channel resource block set, where the first downlink control channel resource block set is used to carry a CRS demodulation-based downlink control channel, and the second downlink control channel The resource block set is used to carry a downlink control channel based on DMRS demodulation.
  • the sending unit 901 is configured to send downlink control information by using a downlink control channel, specifically:
  • the sending unit 901 is specifically configured to send the downlink control information by using the first downlink control channel resource block set in a non-MBSFN subframe, and send the MBSFN subframe by using the second downlink control channel resource set. Downstream control information.
  • the network device in this embodiment may be used to implement the implementation of the network device in the method embodiment shown in FIG. 2 to FIG. 7.
  • the specific implementation manner and technical effects are similar, and details are not described herein again.
  • each unit of the above devices is only a division of logical functions, and may be integrated into one physical entity or physically separated in whole or in part.
  • these units can all be realized by software in the form of processing component calls; or all of them can be realized in the form of hardware; some units can be realized by means of processing component calling software, and some units are realized by hardware.
  • the processing unit may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above processing unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more application specific integrated circuits (ASICs), or one or more digital signal processors ( Digital singnal processor (DSP), or one or more field programmable gate arrays (FPGAs).
  • ASICs application specific integrated circuits
  • DSP Digital singnal processor
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • CPU central processing unit
  • these units can be integrated in one It is implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • the terminal device provided in this example includes: a processor 1001 and a transceiver 1002.
  • the terminal device may further include a memory for storing execution instructions of the processor 1001.
  • the transceiver 1002 may be implemented by an independent function of a transmitter and a receiver, and may be implemented by using an antenna or the like, which is not limited by the embodiment of the present application.
  • the processor 1001 is configured to execute a computer to execute an instruction to cause the terminal device to perform the steps of the terminal device as applied to the downlink control information transmission method as described above.
  • the detecting unit 901 and the processing unit 902 correspond to the processor 1001 and the like.
  • FIG. 11 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the network device provided by this example includes: a processor 1101 and a transceiver 1102.
  • the network device may further include a memory for storing execution instructions of the processor 1101.
  • the transceiver 1102 can be implemented by an independent function transmitter and a receiver, and can be implemented by using an antenna or the like, which is not limited by the embodiment of the present application.
  • the processor 1101 and the transceiver 1102 are configured to execute a computer to execute instructions to cause the network device to perform the various steps of the network device as applied to the downlink control information transmission method as described above.
  • the transmitting unit 901 corresponds to the transceiver 1102, and the processing unit 902 corresponds to the processor 1101 and the like.
  • FIG. 12 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system provided in this embodiment includes: a terminal device 1201 and a network device 1202.
  • the terminal device 1201 is the terminal device in the embodiment shown in FIG. 8 or the terminal device in the embodiment shown in FIG. 10.
  • the network device 1202 is the network device in the embodiment shown in FIG. 9 or implemented in FIG. The network device in the example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种下行控制信息传输方法、终端设备和网络设备,其中,该方法包括:网络设备通过下行控制信道发送下行控制信息,该下行控制信道基于CRS解调,发送下行控制信息调度的物理下行共享信道,该物理下行共享信道基于DMRS解调,相应的,终端设备检测基于CRS解调的下行控制信道,并根据该下行控制信道上承载的下行控制信息对基于DMRS解调的物理下行共享信道进行译码,其中,承载下行控制信道和物理下行共享信道的传输时间间隔均小于1毫秒。该技术方案,终端设备能够确定承载基于CRS解调的时频资源中是否包括承载用于sPDSCH解调的DMRS的资源单元,因而可以成功的解调sPDCCH承载的下行控制信息。

Description

下行控制信息传输方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种下行控制信息传输方法、终端设备和网络设备。
背景技术
在无线通信系统中,终端设备在接收下行数据或者发送上行数据之前,首先需要知道网络设备给该终端设备的配置信息等下行控制信息(downlink control information,简称DCI),且该下行控制信息通常通过下行控制信道承载。
现阶段,随着无线通信系统对传输时延的要求越来越高,长期演进(long term evolution,LTE)系统引入了短传输时间间隔(short transmission time interval,sTTI)发展成为支持sTTI的LTE系统。支持sTTI的LTE系统对应的控制信道和数据信道也将支持sTTI,因而,支持sTTI的LTE系统既支持基于小区参考信号(cell specific reference signal,CRS)解调的短物理下行控制信道(short physical downlink control channel,sPDCCH),也支持基于解调参考信号(demodulation reference signal,DMRS)解调的sPDCCH。也就是说,支持sTTI的LTE系统支持基于CRS解调的sPDCCH调度基于CRS解调的短物理下行共享信道(short physical downlink shared channel,sPDSCH),支持基于DMRS解调的sPDCCH调度基于DMRS解调的sPDSCH。
在上述方案中,由于用于sPDSCH解调的DMRS是否传输取决于是否调度了sPDSCH,但现有技术中并不清楚该支持sTTI的LTE系统是否支持基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,而终端设备在解基于CRS解调的sPDCCH之前并不清楚基于CRS解调的sPDCCH是否调度了基于DMRS解调的sPDSCH,因而并不能确定承载基于CRS解调的时频资源中是否包括承载用于sPDSCH解调的DMRS的资源单元,可能导致无法成功解调sPDCCH承载的下行控制信息。
综上所述,现有技术存在终端设备无法成功解调sPDCCH承载的下行控制信息的问题。
发明内容
本申请实施例提供一种下行控制信息传输方法、终端设备和网络设备,用于解决终端设备无法成功解调sPDCCH承载的下行控制信息的问题。
本申请第一方面提供一种下行控制信息传输方法,包括:
终端设备检测基于小区参考信号CRS解调的下行控制信道;
所述终端设备根据所述下行控制信道上承载的下行控制信息对基于解调参考信号DMRS解调的物理下行共享信道进行译码;
其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
在本实施例中,终端设备在解基于CRS解调的sPDCCH之前能够清楚基于CRS解调的sPDCCH是否调度了基于DMRS解调的sPDSCH,因而能够确定承载基于CRS解调的时频资源中是否包括承载用于sPDSCH解调的DMRS的资源单元,终端设备可以成功的解调sPDCCH承载的下行控制信息。
在第一方面的一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备接收下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
所述终端设备根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数;
所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道。
在第一方面的上述实施例中,所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道,包括:
若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
本实施例中,终端设备根据接收的下行控制信道资源块集合的第一配置信息,并根据确定的下行控制信道资源块集合对应的时域符号个数检测基于CRS解调的下行控制信道,解决了sPDCCH解调过程中DMRS是否存在的模糊度问题,使能了基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,从而避免了现有技术中只能利用基于DMRS解调的sPDCCH调度基于DMRS解调的sPDSCH的缺点,不需要专为sPDCCH解调传输特定的DMRS,降低了参考信号开销,也避免了因需要sPDCCH和sPDSCH共享DMRS资源单元带来对sPDSCH的传输机制限制从而降低资源利用率的缺点,从而提高了资源利用率,提高了频谱效率,此外,通过采用基于CRS解调的sPDCCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
在第一方面的另一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备确定所述下行控制信道对应的下行控制信道检测区域的时域符号个数;
所述终端设备根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数 检测所述下行控制信道;
所述终端设备根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道,包括:
若所述下行控制信道对应的下行控制信道检测区域的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
该技术方案,终端设备根据确定的下行控制信道对应的下行控制信道检测区域的时域符号个数检测基于CRS解调的下行控制信道,能够使能基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
在第一方面的再一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备接收高层信令,所述高层信令用于指示所述终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测;
所述终端设备根据所述高层信令检测所述下行控制信道;
所述终端设备根据所述高层信令检测所述下行控制信道,包括:
若所述高层信令指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述高层信令指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域不包括用于解调物理下行共享信道的DMRS对应的资源单元。
该技术方案,终端设备利用网络设备下发的高层信令检测基于CRS解调的下行控制信道,网络设备可以根据实际情况在第一检测方式和第二检测方式之间灵活变化,更能匹配实际应用情况,从而提高了资源利用效率。
在第一方面的又一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备接收下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测;
所述终端设备根据所述第二配置信息检测所述下行控制信道;
所述终端设备根据所述第二配置信息检测所述下行控制信道,包括:
若所述第二配置信息指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述第二配置信息指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
在第一方面的上述实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,还包括:
所述终端设备接收下行控制信道资源块集合的第一配置信息,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
所述终端设备根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数;
所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道;
所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道,包括:
若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,则所述终端设备根据所述第二配置信息检测所述下行控制信道。
该技术方案,终端设备利用网络设备下发的第二配置信息和/或第二配置信息检测基于CRS解调的下行控制信道,同样能够使能基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
在第一方面的又一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
该技术方案在终端设备检测基于CRS解调的下行控制信道时假设该基于CRS解调的下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元,解决了因需要sPDCCH和sPDSCH共享DMRS资源单元带来对sPDSCH的传输机制限制从而降低资源利用率的缺点,提高了资源利用率和频谱效率,此外,采用基于CRS解调的sPDCCH,获得了比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
在第一方面的又一实施例中,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
所述终端设备在非多播/组播单频网络MBSFN子帧检测基于CRS解调的下行控制信道;
所述终端设备在MBSFN子帧检测基于DMRS解调的下行控制信道。
该技术方案,网络设备发送下行控制信息以及下行控制信息调度的物理下行共享信道,终端设备检测上述下行控制信道,并根据上述下行控制信道上承载的下行控制信息对物理下行共享信道进行译码,网络设备还发送下行控制信道资源块集合的第三配置信息,这使得终端设备在每个子帧均可以被调度,降低了服务延迟。
本申请第二方面提供一种下行控制信息传输方法,包括:
网络设备通过下行控制信道发送下行控制信息,所述下行控制信道基于小区参考信号CRS解调;
所述网络设备发送所述下行控制信息调度的物理下行共享信道,所述物理下行共享信道基于解调参考信号DMRS解调;
其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
在本申请第二方面的一实施例中,所述方法,还包括:
所述网络设备发送下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
在所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数时,所述网络设备按照先时后频的规则进行所述下行控制信道对应的控制信道单元到资源单元组的映射。
在本申请第二方面的另一实施例中,所述方法,还包括:
所述网络设备发送高层信令,所述高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测。
在本申请第二方面的再一实施例中,所述方法,还包括:
所述网络设备发送下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测。
在本申请第二方面的又一实施例中,所述方法,还包括:
所述网络设备发送下行控制信道资源块集合的第三配置信息,所述第三配置信息用于指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,所述第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,所述第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
在本申请第二方面的上述实施例中,所述网络设备通过下行控制信道发送下行控制信息,包括:
所述网络设备在非MBSFN子帧通过所述第一下行控制信道资源块集合发送所述下行控制信息;
所述网络设备在MBSFN子帧通过所述第二下行控制信道资源集合发送所述下行控制信息。
本申请实施例第三方面提供一种终端设备,所述终端设备包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面提供的方法。
本申请实施例第四方面提供一种网络设备,所述网络设备包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第二方面提供的方法。
本申请实施例第五方面提供一种终端设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第六方面提供一种网络设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请实施例第七方面提供一种通信系统,该系统包括如上述第三方面所述的终端设备和如上述第四方面所述的网络设备。
本申请实施例第八方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面的方法。
本申请实施例第九方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
本申请实施例第十方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面的方法。
本申请实施例第十一方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
在以上各个方面中,网络设备通过下行控制信道发送下行控制信息,该下行控制信道基于CRS解调,以及发送该下行控制信息调度的物理下行共享信道,该物理下行共享信道基于DMRS解调,相应的,终端设备检测基于CRS解调的下行控制信道,并根据该下行控制信道上承载的下行控制信息对基于DMRS解调的物理下行共享信道进行译码,其中,承载该下行控制信道和该物理下行共享信道的传输时间间隔均小于1毫秒。该技术方案中,终端设备在解基于CRS解调的sPDCCH之前能够清楚基于CRS解调的sPDCCH是否调度了基于DMRS解调的sPDSCH,因而能够确定承载基于CRS解调的时频资源中是否包括承载用于sPDSCH解调的DMRS的资源单元,故终端设备可以成功的解调sPDCCH承载的下行控制信息。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的下行控制信息传输方法实施例一的交互示意图;
图3为本申请实施例提供的下行控制信息传输方法实施例二的交互示意图;
图4为本申请实施例提供的下行控制信息传输方法实施例三的交互示意图;
图5为本申请实施例提供的下行控制信息传输方法实施例四的交互示意图;
图6为本申请实施例提供的下行控制信息传输方法实施例五的交互示意图;
图7为本申请实施例提供的下行控制信息传输方法实施例七的交互示意图;
图8为本申请实施例提供的一种终端设备的结构示意图;
图9为本申请实施例提供的一种网络设备的结构示意图;
图10为本申请实施例提供的另一种终端设备的结构示意图;
图11为本申请实施例提供的另一种网络设备的结构示意图;
图12为本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
本申请下述各实施例提供的下行控制信息传输方法,可适用于通信系统中。图1为本申请实施例提供的一种通信系统的结构示意图。如图1所示,该通信系统可以包括至少一个网络设备110和位于网络设备110覆盖范围内的多个终端设备120。图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
也就是说,本申请实施例提供的下行控制信息传输方法,可应用于通信系统中网络设备和终端设备之间的信息传输,应理解,其既可以是网络设备向终端设备发送下行控制信息,也可以是网络设备接收终端设备发送的上行控制信息,具体形式根据实际需要进行确定,此处不作限定。
可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
本申请实施例所应用的通信系统可以为全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS),及其他应用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的无线通信系统等。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请实施例中所涉及的网络设备可用于为终端设备提供无线通信功能,比如,可用于向终端设备发送下行控制信息。所述网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。所述网络设备可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或e-NodeB),以及可以是5G网络中对应的设备gNB。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,所述终端设备也可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例 如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
本申请实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面首先针对本申请实施例适用场景进行简要说明。
在无线通信系统中,终端设备在接收下行数据或者发送上行数据前,需要知道网络设备配置给终端设备的调度信息,例如时频资源分配、调制编码方式等。这些调度信息被称为下行控制信息(downlink control information,简称DCI)。需要说明的是,本申请实施例并不对下行控制信息的具体表现形式进行限定,即下行控制信息不限于调度信息,还包括其他信息,例如功率控制指示信息、信道状态信息请求信息等。
在无线通信系统中,下行控制信息通常通过下行控制信道承载。例如,在长期演进(long term evolution,LTE)Rel-13(版本13)之前的系统中,网络设备主要通过物理下行控制信道(physical downlink control channel,PDCCH)和增强物理下行控制信道(enhanced PDCCH,EPDCCH)来承载DCI,且无论是PDCCH,还是EPDCCH,在进行DCI传输时,传输时间间隔(transmission time interval,简称TTI)长度都是1ms。在长期演进(long term evolution,LTE)Rel-13(版本13)之前的系统中,网络设备主要通过物理下行共享信道(physical downlink shared channel,PDSCH)承载下行数据,且既支持基于小区参考信号(cell-specific reference signal,CRS)解调的PDSCH,也支持基于(demodulation reference signal,DMRS)解调的PDSCH。PDCCH基于CRS进行解调,EPDCCH基于DMRS进行解调。
在无线通信系统中,时延(latency)是影响用户体验的重要因素之一。而无线通信系统中不断出现的新业务,比如,车联网相关的业务等,对时延提的要求也越来越高。而基于长度为1ms的传输时间间隔,无法满足低时延业务的需求。因此,LTE演进系统引入了短传输时间间隔(Shortened TTI或short TTI,sTTI),例如,sTTI的长度可以是2个时域符号或7个时域符号。支持sTTI的LTE系统对应的控制信道和数据信道也将支持短传输时间间隔,例如,对应的下行控制信道可称为sPDCCH,上行控制信道可称为sPUCCH,物理下行共享信道可称为sPDSCH,物理上行共享信道可称为sPUSCH。需要说明的是,支持sTTI的LTE系统对应的控制信道和数据信道也可以叫其他名称。需要说明的是,短传输时间间隔sTTI也可以有其他名称,例如可以称为短传输时间单元(short transmission time unit),或短传输持续时间(short transmission duration)。
支持sTTI的LTE系统,即支持基于CRS解调的PDSCH,也支持基于DMRS解调的PDSCH。支持sTTI的LTE系统,即支持基于CRS解调的sPDCCH,也支持基于DMRS解调的sPDCCH。现有技术中,支持sTTI的LTE系统支持基于CRS解调的sPDCCH调度基于CRS解调的sPDSCH,基于DMRS解调的sPDCCH调度基于DMRS解调的sPDSCH。但是支持sTTI的LTE系统否支持基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH目前尚不清楚,其需要进一步研究。
现阶段,由于支持sTTI的LTE系统不支持基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,此时,只能利用基于DMRS解调的sPDCCH调度基于DMRS解调的 sPDSCH。一方面,若sPDCCH对应的DMRS与sPDSCH对应的DMRS对应的资源单元(resource element,RE)不同,那么系统需要传输专为sPDCCH解调使用的DMRS,从而增加了参考信号的开销。另一方面,若sPDCCH对应的DMRS与sPDSCH对应的DMRS共享相同的资源单元,其会导致较低的资源利用效率,这是因为若sPDCCH和sPDSCH采用相同的多入多出(multi-input multi-output,MIMO)传输机制,则会限制sPDSCH也只能采用sPDCCH对应的传输机制,从而导致可能无法使用空间复用等传输机制,从而降低了资源利用效率,具体降低了频谱效率。若sPDCCH和sPDSCH采用不同的MIMO传输机制,则一方面会因为sPDCCH和sPDSCH使用不同的DMRS天线端口导致sPDCCH和sPDSCH都不能使用最大的发送功率而影响传输性能,另一方面也需要更复杂的设计来使能sPDCCH和sPDSCH使用不同的MIMO传输机制。
此外,由于用于sPDSCH解调的DMRS是否传输取决于是否调度了sPDSCH,但现有技术中并不清楚该支持sTTI的LTE系统是否支持基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,而终端设备在解基于CRS解调的sPDCCH之前并不清楚基于CRS解调的sPDCCH是否调度了基于DMRS解调的sPDSCH,因而并不能确定sPDCCH中是否承载了sPDCCH的资源单元,可能导致无法成功解调sPDCCH承载的下行控制信息。
针对上述问题,本申请提出一种下行控制信息传输方法、终端设备和网络设备,能够使能基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,并且清楚sPDCCH中是否承载了sPDCCH的资源单元,从而降低了参考信号的开销,提高了系统资源利用率。
本申请实施例主要应用于LTE系统或LTE演进系统中,且以应用于单载波和多载波进行举例说明。本申请涉及的网元主要有终端设备和网络设备。可选的,该终端设备可以指用户设备,网络设备可以指基站。
实施例一
图2为本申请实施例提供的下行控制信息传输方法实施例一的交互示意图。如图2所示,本申请实施例提供的下行控制信息传输方法,包括以下几个步骤:
步骤201:网络设备通过下行控制信道发送下行控制信息。
其中,该下行控制信道基于小区参考信号CRS解调。
可选的,该步骤201中承载该下行控制信道的传输时间间隔可以小于1ms,可以称为短传输时间间隔sTTI,该sTTI的长度可以为2个时域符号,3个时域符号或7个时域符号。
在该步骤中,网络设备发送下行控制信息,该下行控制信息通过下行控制信道承载,且该下行控制信道基于小区参考信号(cell-specific reference signal,CRS)解调,该下行控制信道可以承载于下行控制信道资源集合中。
步骤202:该网络设备发送下行控制信息调度的物理下行共享信道。
其中,该物理下行共享信道基于解调参考信号DMRS解调。
在本实施例中,可选的,本申请实施例中的物理下行共享信道,可以为sPDSCH,承载该sPDSCH的传输时间间隔为短传输时间间隔sTTI。
在该步骤中,网络设备在步骤201中下行控制信息指示的资源上发送物理下行共享信道,该物理下行共享信道基于解调参考信号(demodulation reference signal,DMRS)解调。
步骤203:终端设备检测基于CRS解调的下行控制信道。
在该步骤中,终端设备检测基于CRS解调的下行控制信道,获取该下行控制信道上承载的下行控制信息。
可选的,终端设备检测基于CRS解调的下行控制信道具体过程参见下述图3至图6所示实施例,此处不再赘述。
步骤204:终端设备根据该下行控制信道上承载的下行控制信息对基于解调参考信号DMRS解调的物理下行共享信道进行译码。
在该步骤204中,终端设备根据步骤203中检测到的下行控制信道承载的下行控制信息,确定物理下行共享信道对应的调度信息,例如,该物理下行共享信道对应的时频资源和调制编码方式等,从而对物理下行共享信道进行译码。
可选的,该步骤204中承载该物理下行共享信道的传输时间间隔可以小于1ms,可以称为短传输时间间隔sTTI,该sTTI的长度可以为2个时域符号,3个时域符号或7个时域符号,本申请实施例并不对sTTI的具体长度进行限定。
需要说明的是,在本申请实施例中,若无特殊说明,并不限定各步骤之间的先后顺序,也不限定各步骤之间的相互依赖关系。
本实施例提供的下行控制信息传输方法,网络设备通过下行控制信道发送下行控制信息,该下行控制信道基于CRS解调,以及发送该下行控制信息调度的物理下行共享信道,该物理下行共享信道基于DMRS解调,相应的,终端设备检测基于CRS解调的下行控制信道,并根据该下行控制信道上承载的下行控制信息对基于DMRS解调的物理下行共享信道进行译码,其中,承载该下行控制信道和该物理下行共享信道的传输时间间隔均小于1毫秒。该技术方案中,终端设备在解基于CRS解调的sPDCCH之前能够清楚基于CRS解调的sPDCCH是否调度了基于DMRS解调的sPDSCH,因而能够确定承载基于CRS解调的时频资源中是否包括承载用于sPDSCH解调的DMRS的资源单元,故终端设备可以成功的解调sPDCCH承载的下行控制信息。
实施例二
图3为本申请实施例提供的下行控制信息传输方法实施例二的交互示意图。本实施例是在上述图2所示实施例的基础上对下行控制信息传输方法的进一步说明。如图3所示,本申请实施例提供的下行控制信息传输方法,还包括:
步骤301:网络设备发送下行控制信道资源块集合的第一配置信息。
其中,该下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,该第一配置信息用于指示下行控制信道资源块集合对应的时域符号个数。
可选的,在所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数时,该网络设备按照先时后频的规则进行所述下行控制信道对应的控制信道单元到资源单元组的映射。
相应的,上述步骤203,即终端设备检测基于小区参考信号CRS解调的下行控制信道,可以包括以下几个步骤:
步骤302:终端设备接收下行控制信道资源块集合的第一配置信息。
其中,该下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,该第一 配置信息用于指示下行控制信道资源块集合对应的时域符号个数。
可选的,本申请实施例中的时域符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或为单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)符号。
步骤303:终端设备根据上述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数。
步骤304:终端设备根据该下行控制信道资源块集合对应的时域符号个数检测基于小区参考信号CRS解调的下行控制信道。
可选的,若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测基于CRS解调的下行控制信道时假设该下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,本申请实施例中的下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,可以指先映射到资源块1上所有时域符号上的资源单元组,再开始映射到资源块2上的资源单元组,所述资源块1的资源块索引可以小于所述资源块2上的资源单元组。
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,本申请实施例中的下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,可以指先映射到时域符号1上所有资源块上的资源单元组,再开始映射到时域符号2上的资源单元组,所述时域符号1的符号索引可以小于所述时域符号2上的符号索引。
需要说明的是,本申请实施例中的控制信道单元可以为CCE(Control Channel Element),也可以称为sCCE。当控制信道单元为sCCE时,其可以指sPDCCH对应的控制信道单元。本申请实施例中的资源单元组可以为REG(Resource Element Group),也可以称为sREG。当资源单元组为sREG时,其可以指sPDCCH对应的资源单元组。
本申请实施例提供的下行控制信息传输方法,当网络设备发送下行控制信道资源块集合的第一配置信息,且该下行控制信道资源块集合用于承载下行控制信道,该第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数时,终端设备可按照如下方式检测基于小区参考信号CRS解调的下行控制信道,即终端设备接收下行控制信道资源块集合的第一配置信息,并根据所述第一配置信息确定下行控制信道资源块集合对应的时域符号个数,以及根据下行控制信道资源块集合对应的时域符号个数检测下行控制信道。通过这种方式,本申请解决了sPDCCH解调过程中DMRS是否存在的模糊度问题, 使能了基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,从而避免了现有技术中只能利用基于DMRS解调的sPDCCH调度基于DMRS解调的sPDSCH的缺点,不需要专为sPDCCH解调传输特定的DMRS,降低了参考信号开销,也避免了因需要sPDCCH和sPDSCH共享DMRS资源单元带来对sPDSCH的传输机制限制从而降低资源利用率的缺点,从而提高了资源利用率,提高了频谱效率,此外,通过采用基于CRS解调的sPDCCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
实施例三
图4为本申请实施例提供的下行控制信息传输方法实施例三的交互示意图。本实施例是在上述图2所示实施例的基础上对下行控制信息传输方法的进一步说明。如图4所示,本申请实施例提供的下行控制信息传输方法中,上述步骤203,即终端设备检测基于小区参考信号CRS解调的下行控制信道,可以包括以下几个步骤:
步骤401:终端设备确定基于CRS解调的下行控制信道对应的下行控制信道检测区域的时域符号个数。
步骤402:该终端设备根据下行控制信道对应的下行控制信道检测区域的时域符号个数检测上述下行控制信道。
可选的,若该基于CRS解调的下行控制信道对应的下行控制信道检测区域的时域符号个数小于所述传输时间间隔对应的时域符号个数,则终端设备检测基于CRS解调的下行控制信道时假设下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述基于CRS解调的下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述基于CRS解调的下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
本申请实施例提供的下行控制信息传输方法,终端设备检测基于小区参考信号CRS解调的下行控制信道时,终端设备通过确定下行控制信道对应的下行控制信道检测区域的时域符号个数,并根据该下行控制信道对应的下行控制信道检测区域的时域符号个数检测基于CRS解调的下行控制信道。该技术方案,同样能够使能基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
实施例四
图5为本申请实施例提供的下行控制信息传输方法实施例四的交互示意图。本实施例 是在上述图2所示实施例的基础上对下行控制信息传输方法的进一步说明。如图5所示,本申请实施例提供的下行控制信息传输方法,还包括如下步骤:
步骤501:网络设备发送高层信令,该高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测。
步骤502:终端设备接收上述高层信令。
步骤503:终端设备根据该高层信令检测基于CRS解调的下行控制信道。
可选的,若所述高层信令指示终端设备按照第一检测方式对基于CRS解调的下行控制信道进行检测,则所述终端设备检测基于CRS解调的下行控制信道时假设所述基于CRS解调的下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述高层信令指示终端设备按照第二检测方式对基于CRS解调的下行控制信道进行检测,则所述终端设备检测基于CRS解调的下行控制信道时假设所述基于CRS解调的下行控制信道对应的控制信道区域不包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,当sPDSCH会存在于sPDCCH对应的控制信道区域时,高层信令指示按照第一检测方式对基于CRS解调的下行控制信道进行检测,当sPDSCH不会存在于sPDCCH对应的控制信道区域时,高层信令指示按照第二检测方式对基于CRS解调的下行控制信道进行检测。
本申请实施例提供的下行控制信息传输方法,当网络设备发送高层信令,且该高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测时,终端设备根据接收到的高层信令检测基于CRS解调的下行控制信道。该技术方案,网络设备可以根据实际情况在第一检测方式和第二检测方式之间灵活变化,更能匹配实际应用情况,从而提高了资源利用效率。
实施例五
图6为本申请实施例提供的下行控制信息传输方法实施例五的交互示意图。本实施例是在上述图2所示实施例的基础上对下行控制信息传输方法的进一步说明。如图6所示,本申请实施例提供的下行控制信息传输方法,还包括如下步骤:
步骤601:网络设备发送下行控制信道资源块集合的第二配置信息。
其中,下行控制信道承载于下行控制信道资源块集合对应的时频资源上。在本实施例中,该第二配置信息用于指示终端设备按照第一检测方式或第二检测方式对基于CRS解调的下行控制信道进行检测。
可选的,在另一实施例中,该方法还包括:网络设备发送下行控制信道资源块集合的第一配置信息。其中,该第一配置信息用于指示下行控制信道资源块集合对应的时域符号个数。
步骤602:终端设备接收下行控制信道资源块集合的第二配置信息。
可选的,当网络设备还发送下行控制信道资源块集合的第一配置信息时,相应的,该终端设备还接收下行控制信道资源块集合的第一配置信息,并根据该第一配置信息确定下行控制信道资源块集合对应的时域符号个数。
步骤603:终端设备根据该第二配置信息检测基于CRS解调的下行控制信道。
可选的,若所述第二配置信息指示终端设备按照第一检测方式对基于CRS解调的下行控制信道进行检测,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述第二配置信息指示终端设备按照第二检测方式对基于CRS解调的下行控制信道进行检测,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,当终端设备接收到下行控制信道资源块集合的第一配置信息和第二配置信息时,该终端设备根据上述下行控制信道资源块集合对应的时域符号个数和该第二配置信息检测基于CRS解调的下行控制信道,具体实现方式如下:
若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测基于CRS解调的下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,则所述终端设备根据该第二配置信息检测基于CRS解调的下行控制信道。
关于终端设备根据该第二配置信息检测基于CRS解调的下行控制信道的具体实现流程参见本步骤前述部分,此处不再赘述。
需要说明的是,在支持sTTI的LTE系统中,网络设备会将下行控制信道资源块集合的第二配置信息和/或第一配置信息整合成一个信息包下发,这个信息包可以统称下行控制信道资源块集合的配置信息。
本申请实施例提供的下行控制信息传输方法,在网络设备发送下行控制信道资源块集合的第二配置信息和/或第一配置信息,且下行控制信道承载于下行控制信道资源块集合对应的时频资源上,该第二配置信息用于指示终端设备按照第一检测方式或第二检测方式对基于CRS解调的下行控制信道进行检测,该第一配置信息用于指示下行控制信道资源块集合对应的时域符号个数,因而终端设备接收下行控制信道资源块集合的第二配置信息和/或第一配置信息,根据第一配置信息确定下行控制信道资源块集合对应的时域符号个数,并根据下行控制信道资源块集合对应的时域符号个数和该第二配置信息检测基于CRS解调的下行控制信道。该技术方案,同样能够使能基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,可以获得比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
实施例六
在本实施例中,终端设备检测基于小区参考信号CRS解调的下行控制信道,可以通过如下实现方式实现:
终端设备检测基于CRS解调的下行控制信道时假设该基于CRS解调的下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
其中,该步骤中承载该下行控制信道的传输时间间隔可以小于1ms,可以称为短传输时间间隔sTTI,该sTTI的长度可以为2个时域符号,3个时域符号或7个时域符号。
本申请实施例中,通过终端设备检测基于CRS解调的下行控制信道时假设该基于CRS解调的下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元,解决了sPDCCH解调过程中不清楚DMRS是否存在的问题,使能了基于CRS解调的sPDCCH调度基于DMRS解调的sPDSCH,避免了因需要sPDCCH和sPDSCH共享DMRS资源单元带来对sPDSCH的传输机制限制从而降低资源利用率的缺点,从而提高了资源利用率,提高了频谱效率,此外,采用基于CRS解调的sPDCCH,获得了比基于DMRS解调的sPDCCH较高的传输性能,提高了sPDCCH的传输可靠性。
实施例七
图7为本申请实施例提供的下行控制信息传输方法实施例七的交互示意图。如图7所示,本申请实施例提供的下行控制信息传输方法,包括如下步骤:
步骤701:网络设备发送下行控制信息。
在该步骤中,可选的,网络设备在非多播/组播单频网络(multimedia broadcast multicast service single frequency network,MBSFN)子帧通过第一下行控制信道资源块集合发送下行控制信息,所述网络设备在MBSFN子帧通过第二下行控制信道资源集合发送所述下行控制信息。
或者
网络设备在非MBSFN子帧通过第一下行控制信道资源块集合发送下行控制信息,该网络设备在MBSFN子帧的第一个短传输时间间隔(sTTI)通过第二下行控制信道资源集合发送下行控制信息,在MBSFN子帧除第一个短传输时间间隔sTTI外的其他sTTI通过第二下行控制信道资源集合发送下行控制信息。
步骤702:网络设备发送下行控制信息调度的物理下行共享信道。
在该步骤中,网络设备在步骤701中下行控制信息指示的资源上发送物理下行共享信道。
当步骤701中网络设备通过第一下行控制信道资源块集合发送所述下行控制信息时,该物理下行共享信道可以为基于CRS解调的物理下行共享信道,也可以为基于DMRS解调的物理下行共享信道,取决于配置的传输模式;当步骤701中网络设备通过第二下行控制信道资源块集合发送所述下行控制信息时,该物理下行共享信道可以为基于DMRS解调的物理下行共享信道。
步骤703:终端设备检测上述下行控制信道。
可选的,在该步骤中,终端设备检测下行控制信道,可以通过如下方式(7-1)实现,具体如下:
终端设备在非MBSFN子帧检测基于小区参考信号CRS解调的下行控制信道,在MBSFN子帧检测基于解调参考信号DMRS解调的下行控制信道。
或者,
终端设备在非MBSFN子帧检测基于小区参考信号CRS解调的下行控制信道,在MBSFN子帧的第一个短传输时间间隔(sTTI)检测基于CRS解调的下行控制信道,在 MBSFN子帧的除第一个短传输时间间隔sTTI外的其他sTTI检测基于解调参考信号DMRS解调的下行控制信道。
值得说明的是,在LTE系统及LTE的演进系统中,MBSFN子帧仅在第一个时域符号和第二个时域符号可能存在CRS,因此在MBSFN子帧除第一个sTTI外的其他sTTI不存在CRS,因此终端设备需要在基于CRS解调的sPDCCH和基于DMRS解调的sPDCCH之间切换,通过该方式使得用户设备在每个子帧均可以被调度,从而降低服务延迟。
可选的,在该步骤中,终端设备检测下行控制信道,可以通过如下方式(7-2)实现,具体如下:
终端设备在非MBSFN子帧和MBSFN子帧均检测基于小区参考信号CRS解调的下行控制信道;
或者,
终端设备在非MBSFN子帧和MBSFN子帧均检测基于解调参考信号DMRS解调的下行控制信道。
通过该方式使得终端设备在每个子帧均可以被调度,从而降低服务延迟;同时,终端设备至少在一段时间内仅需检测基于CRS解调的sPDCCH或检测基于DMRS解调的sPDCCH,无需在两种sPDCCH之间切换,从而减少了复杂度。
可选的,该步骤中承载该下行控制信道的传输时间间隔可以小于1ms,可以称为短传输时间间隔sTTI,该sTTI的长度可以为2个时域符号,3个时域符号或7个时域符号
步骤704:终端设备根据上述下行控制信道上承载的下行控制信息对物理下行共享信道进行译码。
在该步骤中,当步骤703中终端设备检测基于CRS解调的sPDCCH时,该物理下行共享信道可以为基于CRS解调的物理下行共享信道,也可以为基于DMRS解调的物理下行共享信道,其取决于配置的传输模式;当步骤703中终端设备检测基于DMRS解调的sPDCCH时,该物理下行共享信道可以为基于DMRS解调的物理下行共享信道。
该步骤中承载该物理下行共享信道的传输时间间隔可以小于1ms,可以称为短传输时间间隔sTTI,该sTTI的长度可以为2个时域符号,3个时域符号或7个时域符号。
步骤705:网络设备发送下行控制信道资源块集合的第三配置信息。
其中,该下行控制信道资源块集合的第三配置信息指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,该第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,该第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
可选的,在本实施例中,当步骤703采用方式(7-1)时,本实施例采用该步骤705。此时,本实施例中的步骤703中的方式(7-1)可以进一步为:
终端设备接收下行控制信道资源块集合的第三配置信息,该下行控制信道资源块集合的第三配置信息指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,该第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,该第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
终端设备在非MBSFN子帧基于第一下行控制信道资源块集合检测基于小区参考信号CRS解调的下行控制信道,在MBSFN子帧基于第二下行控制信道资源块集合检测基于解 调参考信号DMRS解调的下行控制信道;
或者,
终端设备在非MBSFN子帧基于第一下行控制信道资源块集合检测基于CRS解调的下行控制信道,在MBSFN子帧的第一个短传输时间间隔(sTTI)基于第一下行控制信道资源块集合检测基于CRS解调的下行控制信道;在MBSFN子帧除第一个短传输时间间隔sTTI外的其他sTTI基于第二下行控制信道资源块集合的检测基于解调参考信号DMRS解调的下行控制信道。
需要说明的是,在本申请实施例中,若无特殊说明,不限定各步骤之间的先后顺序,不限定各步骤之间的相互依赖关系。
本申请实施例提供的下行控制信息传输方法,网络设备发送下行控制信息以及下行控制信息调度的物理下行共享信道,终端设备检测上述下行控制信道,并根据上述下行控制信道上承载的下行控制信息对物理下行共享信道进行译码,网络设备还发送下行控制信道资源块集合的第三配置信息,这使得终端设备在每个子帧均可以被调度,降低了服务延迟。
图8为本申请实施例提供的一种终端设备的结构示意图。如图8所示,本实施例的终端设备可以包括:检测单元801和处理单元802。
其中,该检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道。
该处理单元802,用于根据所述下行控制信道上承载的下行控制信息对基于解调参考信号DMRS解调的物理下行共享信道进行译码;
其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
可选的,在一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于接收下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数,根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数,并根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道;
所述检测单元801用于根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道,具体为:
所述检测单元801,具体用于若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则检测所述下行控制信道时 假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,在另一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于确定所述下行控制信道对应的下行控制信道检测区域的时域符号个数,根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道;
所述检测单元801用于根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道,具体为:
所述检测单元801,具体用于若所述下行控制信道对应的下行控制信道检测区域的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,在再一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于接收高层信令,所述高层信令用于指示所述终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测,根据所述高层信令检测所述下行控制信道;
所述检测单元801,用于根据所述高层信令检测所述下行控制信道,具体为:
所述检测单元801,具体用于若所述高层信令指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述高层信令指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域不包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,在又一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于接收下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测,根据所述第二配置信息检测所述下行控制信道;
所述检测单元801,用于根据所述第二配置信息检测所述下行控制信道,具体为:
所述检测单元801,具体用于若所述第二配置信息指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述第二配置信息指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,在上述实施例中,该检测单元801,具体还用于接收下行控制信道资源块集合的第一配置信息,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数,根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数,根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道。
所述检测单元801,用于根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道,具体为:
所述检测单元801,具体用于若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,则根据所述第二配置信息检测所述下行控制信道。
可选的,在又一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于在检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
可选的,在又一实施例中,所述检测单元801,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
所述检测单元801,具体用于在非多播/组播单频网络MBSFN子帧检测基于CRS解调的下行控制信道,在MBSFN子帧检测基于DMRS解调的下行控制信道。
本实施例的终端设备可用于执行图2-图7所示方法实施例中终端设备的实现方案,具体实现方式和技术效果类似,这里不再赘述。
图9为本申请实施例提供的一种网络设备的结构示意图。如图9所示,本实施例的网络设备可以包括:发送单元901。
其中,该发送单元901,用于通过下行控制信道发送下行控制信息,所述下行控制信道基于小区参考信号CRS解调,发送所述下行控制信息调度的物理下行共享信道,所述物理下行共享信道基于解调参考信号DMRS解调;
其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
可选的,在本申请的一实施例中,所述发送单元901,还用于发送下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
可选的,在本实施例中,所述网络设备,还包括:处理单元902。
所述处理单元902,用于在所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数时,按照先时后频的规则进行所述下行控制信道对应的控制信道单元到资源单元组的映射。
可选的,在本申请的另一实施例中,所述发送单元901,还用于发送高层信令,所述高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测。
可选的,在本申请的再一实施例中,所述发送单元901,还用于发送下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测。
可选的,在本申请的又一实施例中,所述发送单元901,还用于发送下行控制信道资源块集合的第三配置信息,所述第三配置信息用于指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,所述第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,所述第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
可选的,在本实施例中,所述发送单元901,用于通过下行控制信道发送下行控制信息,具体为:
所述发送单元901,具体用于在非MBSFN子帧通过所述第一下行控制信道资源块集合发送所述下行控制信息,在MBSFN子帧通过所述第二下行控制信道资源集合发送所述下行控制信息。
本实施例的网络设备可用于执行图2-图7所示方法实施例中网络设备的实现方案,具体实现方式和技术效果类似,这里不再赘述。
需要说明的是,应理解以上设备(网络设备和终端设备)的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过处理元件调用软件的形式实现,部分单元通过硬件的形式实现。例如,处理单元可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述设备的存储器中,由上述设备的某一个处理元件调用并执行以上处理单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些单元可以集成在一 起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质、(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图10为本申请实施例提供的另一种终端设备的结构示意图。如图10所示,本实例提供的终端设备,包括:处理器1001和收发器1002。可选的,该终端设备还可以包括存储器,该存储器用于存储处理器1001的执行指令。可选的,该收发器1002可以是由独立功能的发送器和接收器实现,两者均可以通过天线等形式实现,本申请实施例并不对其限定。处理器1001用于运行计算机执行指令,使终端设备执行如上应用于下行控制信息传输方法中终端设备的各个步骤。
具体的,在上述图8中,检测单元901和处理单元902对应处理器1001等。
图11为本申请实施例提供的另一种网络设备的结构示意图。如图11所示,本实例提供的网络设备,包括:处理器1101和收发器1102。可选的,该网络设备还可以包括存储器,该存储器用于存储处理器1101的执行指令。可选的,该收发器1102可以是由独立功能的发送器和接收器实现,两者均可以通过天线等形式实现,本申请实施例并不对其限定。处理器1101和收发器1102用于运行计算机执行指令,使网络设备执行如上应用于下行控制信息传输方法中网络设备的各个步骤。
具体的,在上述图9中,发送单元901对应收发器1102,处理单元902对应处理器1101等。
进一步的,图12为本申请实施例提供的一种通信系统的结构示意图。如图12所示,本实施例提供的通信系统,包括:终端设备1201和网络设备1202。
其中,终端设备1201为上述图8所示实施例中的终端设备或图10所示实施例中的终端设备,网络设备1202为上述图9所示实施例中的网络设备或图11所示实施例中的网络设备。关于终端设备和网络设备的具体实现方案和有益效果参见图8和图9或图10和图11中的记载,此处不再赘述。

Claims (30)

  1. 一种下行控制信息传输方法,其特征在于,包括:
    终端设备检测基于小区参考信号CRS解调的下行控制信道;
    所述终端设备根据所述下行控制信道上承载的下行控制信息对基于解调参考信号DMRS解调的物理下行共享信道进行译码;
    其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备接收下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
    所述终端设备根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数;
    所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道,包括:
    若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备确定所述下行控制信道对应的下行控制信道检测区域的时域符号个数;
    所述终端设备根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道;
    所述终端设备根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道,包括:
    若所述下行控制信道对应的下行控制信道检测区域的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制 信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
  5. 根据权利要求1所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备接收高层信令,所述高层信令用于指示所述终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测;
    所述终端设备根据所述高层信令检测所述下行控制信道;
    所述终端设备根据所述高层信令检测所述下行控制信道,包括:
    若所述高层信令指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述高层信令指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域不包括用于解调物理下行共享信道的DMRS对应的资源单元。
  6. 根据权利要求1所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备接收下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测;
    所述终端设备根据所述第二配置信息检测所述下行控制信道;
    所述终端设备根据所述第二配置信息检测所述下行控制信道,包括:
    若所述第二配置信息指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述第二配置信息指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,还包括:
    所述终端设备接收下行控制信道资源块集合的第一配置信息,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
    所述终端设备根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数;
    所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道;
    所述终端设备根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道,包括:
    若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则所述终端设备检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元;
    若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,则所述终端设备根据所述第二配置信息检测所述下行控制信道。
  8. 根据权利要求1所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述终端设备检测基于小区参考信号CRS解调的下行控制信道,包括:
    所述终端设备在非多播/组播单频网络MBSFN子帧检测基于CRS解调的下行控制信道;
    所述终端设备在MBSFN子帧检测基于DMRS解调的下行控制信道。
  10. 一种下行控制信息传输方法,其特征在于,包括:
    网络设备通过下行控制信道发送下行控制信息,所述下行控制信道基于小区参考信号CRS解调;
    所述网络设备发送所述下行控制信息调度的物理下行共享信道,所述物理下行共享信道基于解调参考信号DMRS解调;
    其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    所述网络设备发送下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
    在所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数时,所述网络设备按照先时后频的规则进行所述下行控制信道对应的控制信道单元到资源单元组的映射。
  12. 根据权利要求10所述的方法,其特征在于,还包括:
    所述网络设备发送高层信令,所述高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测。
  13. 根据权利要求10或11所述的方法,其特征在于,还包括:
    所述网络设备发送下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测。
  14. 根据权利要求10所述的方法,其特征在于,还包括:
    所述网络设备发送下行控制信道资源块集合的第三配置信息,所述第三配置信息用于指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,所述第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,所述第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备通过下行控制信道发送下行控制信息,包括:
    所述网络设备在非MBSFN子帧通过所述第一下行控制信道资源块集合发送所述下行控制信息;
    所述网络设备在MBSFN子帧通过所述第二下行控制信道资源集合发送所述下行控制信息。
  16. 一种终端设备,其特征在于,包括:
    检测单元,用于检测基于小区参考信号CRS解调的下行控制信道;
    处理单元,用于根据所述下行控制信道上承载的下行控制信息对基于解调参考信号DMRS解调的物理下行共享信道进行译码;
    其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
  17. 根据权利要求16所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于接收下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数,根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数,并根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道。
  18. 根据权利要求17所述的终端设备,其特征在于,所述检测单元用于根据所述下行控制信道资源块集合对应的时域符号个数检测所述下行控制信道,具体为:
    所述检测单元,具体用于若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则检测所述下行控制信道时假 设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
  19. 根据权利要求16所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于确定所述下行控制信道对应的下行控制信道检测区域的时域符号个数,根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道;
    所述检测单元用于根据所述下行控制信道对应的下行控制信道检测区域的时域符号个数检测所述下行控制信道,具体为:
    所述检测单元,具体用于若所述下行控制信道对应的下行控制信道检测区域的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先时后频的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道对应的下行控制信道检测区域的时域符号个数等于所述传输时间间隔对应的时域符号个数,且所述下行控制信道对应的控制信道单元按照先频后时的规则映射到资源单元组,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元。
  20. 根据权利要求16所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于接收高层信令,所述高层信令用于指示所述终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测,根据所述高层信令检测所述下行控制信道;
    所述检测单元,用于根据所述高层信令检测所述下行控制信道,具体为:
    所述检测单元,具体用于若所述高层信令指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述高层信令指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域不包括用于解调物理下行共享信道的DMRS对应的资源单元。
  21. 根据权利要求16所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于接收下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测,根据所述第二配置信息检测所述下行控制信道;
    所述检测单元,用于根据所述第二配置信息检测所述下行控制信道,具体为:
    所述检测单元,具体用于若所述第二配置信息指示所述终端设备按照第一检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述第二配置信息指示所述终端设备按照第二检测方式对所述下行控制信道进行检测,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源不包括用于解调物理下行共享信道的DMRS对应的资源单元。
  22. 根据权利要求21所述的终端设备,其特征在于,
    所述检测单元,具体还用于接收下行控制信道资源块集合的第一配置信息,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数,根据所述第一配置信息确定所述下行控制信道资源块集合对应的时域符号个数,根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道;
    所述检测单元,用于根据所述下行控制信道资源块集合对应的时域符号个数和所述第二配置信息检测所述下行控制信道,具体为:
    所述检测单元,具体用于若所述下行控制信道资源块集合对应的时域符号个数小于所述传输时间间隔对应的时域符号个数,则检测所述下行控制信道时假设所述下行控制信道资源块集合对应的时频资源包括用于解调物理下行共享信道的DMRS对应的资源单元,若所述下行控制信道资源块集合对应的时域符号个数等于所述传输时间间隔对应的时域符号个数,则根据所述第二配置信息检测所述下行控制信道。
  23. 根据权利要求16所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于在检测所述下行控制信道时假设所述下行控制信道对应的控制信道区域包括用于解调物理下行共享信道的DMRS对应的资源单元。
  24. 根据权利要求16-23任一项所述的终端设备,其特征在于,所述检测单元,用于检测基于小区参考信号CRS解调的下行控制信道,具体为:
    所述检测单元,具体用于在非多播/组播单频网络MBSFN子帧检测基于CRS解调的下行控制信道,在MBSFN子帧检测基于DMRS解调的下行控制信道。
  25. 一种网络设备,其特征在于,包括:
    发送单元,用于通过下行控制信道发送下行控制信息,所述下行控制信道基于小区参考信号CRS解调,发送所述下行控制信息调度的物理下行共享信道,所述物理下行共享信道基于解调参考信号DMRS解调;
    其中,承载所述下行控制信道和所述物理下行共享信道的传输时间间隔均小于1毫秒。
  26. 根据权利要求25所述的网络设备,其特征在于,所述发送单元,还用于发送下行控制信道资源块集合的第一配置信息,所述下行控制信道资源块集合用于承载所述下行控制信道,所述第一配置信息用于指示所述下行控制信道资源块集合对应的时域符号个数;
    所述网络设备,还包括:处理单元;
    所述处理单元,用于在所述下行控制信道资源块集合对应的时域符号个数等于所述传 输时间间隔对应的时域符号个数时,按照先时后频的规则进行所述下行控制信道对应的控制信道单元到资源单元组的映射。
  27. 根据权利要求25所述的网络设备,其特征在于,所述发送单元,还用于发送高层信令,所述高层信令用于指示终端设备按照第一检测方式或者第二检测方式对所述下行控制信道进行检测。
  28. 根据权利要求25或26所述的网络设备,其特征在于,所述发送单元,还用于发送下行控制信道资源块集合的第二配置信息,所述下行控制信道承载于所述下行控制信道资源块集合对应的时频资源上,所述第二配置信息用于指示所述终端设备按照第一检测方式或第二检测方式对所述下行控制信道进行检测。
  29. 根据权利要求25所述的网络设备,其特征在于,所述发送单元,还用于发送下行控制信道资源块集合的第三配置信息,所述第三配置信息用于指示第一下行控制信道资源块集合的配置信息和第二下行控制信道资源块集合的配置信息,所述第一下行控制信道资源块集合用于承载基于CRS解调的下行控制信道,所述第二下行控制信道资源块集合用于承载基于DMRS解调的下行控制信道。
  30. 根据权利要求29所述的网络设备,其特征在于,所述发送单元,用于通过下行控制信道发送下行控制信息,具体为:
    所述发送单元,具体用于在非MBSFN子帧通过所述第一下行控制信道资源块集合发送所述下行控制信息,在MBSFN子帧通过所述第二下行控制信道资源集合发送所述下行控制信息。
PCT/CN2017/082902 2017-05-03 2017-05-03 下行控制信息传输方法、终端设备和网络设备 WO2018201345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/082902 WO2018201345A1 (zh) 2017-05-03 2017-05-03 下行控制信息传输方法、终端设备和网络设备
CN201780089841.6A CN110546907A (zh) 2017-05-03 2017-05-03 下行控制信息传输方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082902 WO2018201345A1 (zh) 2017-05-03 2017-05-03 下行控制信息传输方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018201345A1 true WO2018201345A1 (zh) 2018-11-08

Family

ID=64015809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082902 WO2018201345A1 (zh) 2017-05-03 2017-05-03 下行控制信息传输方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN110546907A (zh)
WO (1) WO2018201345A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883368A (zh) * 2011-07-13 2013-01-16 夏普株式会社 物理下行控制信道的分配方法和设备
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency
US20160338046A1 (en) * 2015-05-12 2016-11-17 Qualcomm Incorporated Transmission time interval operation for low latency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883368A (zh) * 2011-07-13 2013-01-16 夏普株式会社 物理下行控制信道的分配方法和设备
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency
US20160338046A1 (en) * 2015-05-12 2016-11-17 Qualcomm Incorporated Transmission time interval operation for low latency

Also Published As

Publication number Publication date
CN110546907A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
EP3637908B1 (en) Data processing method and device
EP3372007B1 (en) Scheduling ues with mixed tti length
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
US20210250159A1 (en) Resource configuration method and apparatus
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2018028565A1 (zh) 通信方法和设备
US11121848B2 (en) Communication method and network device
AU2018443844B8 (en) Control channel structure design to support V2X traffic
WO2018228537A1 (zh) 信息发送、接收方法及装置
US11088804B2 (en) Reference signal transmission method, apparatus, and system
JP2020518161A (ja) 低レイテンシシステムにおける物理ダウンリンク制御チャネル構造
US10505810B2 (en) Data transmission method and device
WO2018205874A1 (zh) 传输方法、终端和网络设备
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
WO2018133173A1 (zh) 数据传输方法及装置
WO2018171461A1 (zh) 信息传输方法、装置及系统
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2018145626A1 (zh) 一种参考信号的发送方法、接收方法及相关设备
JP2012507973A (ja) 多元接続ネットワークにおける高速ネットワーク・エントリ及びリエントリのための方法及びシステム
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2018201345A1 (zh) 下行控制信息传输方法、终端设备和网络设备
KR20240042632A (ko) Pdcch 반복들에 대한 지연을 프로세싱하기 위한 방법
WO2020194264A1 (en) Methods and nodes for downlink intra-ue pre-emption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908400

Country of ref document: EP

Kind code of ref document: A1