WO2018199708A1 - 전기추진 선박용 수직축 임펠러 날개 추진 장치 - Google Patents

전기추진 선박용 수직축 임펠러 날개 추진 장치 Download PDF

Info

Publication number
WO2018199708A1
WO2018199708A1 PCT/KR2018/004998 KR2018004998W WO2018199708A1 WO 2018199708 A1 WO2018199708 A1 WO 2018199708A1 KR 2018004998 W KR2018004998 W KR 2018004998W WO 2018199708 A1 WO2018199708 A1 WO 2018199708A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
impeller
water flow
box
motor box
Prior art date
Application number
PCT/KR2018/004998
Other languages
English (en)
French (fr)
Inventor
유제우
Original Assignee
유제우
박영훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유제우, 박영훈 filed Critical 유제우
Publication of WO2018199708A1 publication Critical patent/WO2018199708A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts

Definitions

  • the present invention relates to a vertical axis impeller wing propulsion device for an electric propulsion ship, and more particularly, using an impeller wing having a vertical axis of rotation, the vertical axis impeller wing for an electric propulsion ship to completely isolate the bearing used for the rotation axis from sea water. It relates to a propulsion device.
  • the electric propulsion system has excellent adjustment performance by turning in the propulsion direction by the rotation of the propeller itself, and excellent crash stopping ability while maintaining the steering performance.
  • it is expected to be established as an essential power system for high-class ships in the future due to its excellent maintainability and reliability.
  • propulsion blades still use conventional propeller blades as propulsion blades in electric propulsion ships.Because the bearings used for the rotating shaft do not seal completely from sea water, the bearing lubricant leaks. Is a source of pollution, shortens the life of bearings, and causes seawater to enter the engine room.
  • the electric propulsion ship uses the advantage of operating the rotation of the propulsion blade using an electric motor, by using an impeller blade having a vertical axis as the propulsion wing,
  • the bearings used for the rotating shaft can be completely isolated from the seawater, thus preventing the contamination of the seawater by the lubricating oil of the bearing, prolonging the life of the bearing, and propelling the ship to prevent the inflow of seawater into the engine room.
  • the water flow casing inlet and outlet is formed; At least one impeller motor located on top of the water flow casing; A vertical rotation axis vertically connected to the lower portion of the at least one impeller motor to rotate; An impeller wing attached to an outer circumferential surface of the vertical axis of rotation; A bearing box connected to a lower portion of the vertical axis of rotation and rotating together with the vertical axis of rotation, the bearing box having a bearing space that is a space in which the lower portion is opened; A fixed vertical shaft fixed to the bottom of the water flow casing and inserted into the bearing space of the bearing box through the lower part of the bearing box; And a bearing positioned between the bearing box and the fixed vertical axis, wherein when the impeller motor rotates the rotary vertical axis and the impeller blade, fluid flows into the inlet of the water flow casing and passes through the impeller blade to be discharged to the outlet of the water flow casing, and the bearing By the gas present in the space,
  • the ship propulsion device is located under the bearing box, the bearing box gas storage chamber formed around the fixed vertical axis, the bearing box gas space is formed in the upper and lower open space therein; And a gas supply unit supplying gas to the bearing box gas space of the bearing box gas storage chamber, wherein the gas supplied by the gas supply unit blocks the fluid flowing through the lower portion of the bearing box gas storage chamber from reaching the bearing. Can be.
  • the marine propulsion device may further include a bearing box packing ring that seals between the bearing box gas reservoir and the fixed vertical shaft to block fluid flowing through the bearing box gas reservoir bottom.
  • Marine propulsion apparatus the water inlet and outlet formed water casing; At least one impeller motor located on top of the water flow casing; A vertical rotation axis vertically connected to the lower portion of the at least one impeller motor to rotate; An impeller wing attached to an outer circumferential surface of the vertical axis of rotation; A motor box fixed to an upper portion of the water flow casing so as to surround the impeller motor, and having an impeller motor space formed therein; A motor box bearing located between the inner surface of the motor box and the vertical axis of rotation; And a motor box gas storage chamber located between a lower portion of the motor box and an upper surface of the water flow casing, surrounding the rotational vertical axis, and having a motor box gas space formed therein, the upper and lower openings of which are present in the motor box gas space.
  • the gas the fluid flowing through the lower portion of the motor box gas reservoir may be blocked from reaching the motor box bearing.
  • the marine propulsion device may further include a motor box packing ring that seals between the motor box gas reservoir and the rotational vertical axis to block the fluid flowing through the motor box gas reservoir.
  • the inlet and the outlet are formed, by the rotation of the impeller blades inside, the fluid flows into the inlet and passes through the impeller blades to the outlet of the water flow casing Discharged water casing;
  • a steering rotation shaft fixed perpendicularly to the upper portion of the water flow casing;
  • a steering motor connected to an upper portion of the steering rotation shaft and rotating the steering rotation shaft;
  • a steering motor box which is fixed to the lower part of the ship and in which a steering motor is installed;
  • a steering motor box bearing positioned between an inner surface of the steering motor box and a steering shaft;
  • a steering motor box gas storage compartment positioned between a lower portion of the steering motor box and an upper surface of the water flow casing, surrounding a steering shaft, and having a steering motor box gas space formed therein, the upper and lower portions of which are open.
  • the marine propulsion device may further include a steering motor box packing ring for sealing a fluid flowing through the steering motor box gas storage compartment by sealing between the steering motor box gas storage compartment and the steering rotation shaft.
  • the water flow casing inlet and outlet are formed in the front and rear respectively; At least one impeller motor located on top of the water flow casing; A vertical rotation axis vertically connected to the lower portion of the at least one impeller motor to rotate; And an impeller blade attached to an outer circumferential surface of the vertical axis of rotation, wherein when the impeller motor rotates the vertical axis of rotation and the impeller blade, fluid flows into the inlet of the water flow casing and is discharged through the impeller wing to the outlet of the water flow casing, and the water flow casing Silver impeller wing side cover portion on the side of the water flow casing, the impeller wing side cover portion may wrap the impeller wing along the rotational trajectory of the impeller wing in the region in which the impeller wing rotates from the outlet toward the inlet.
  • Two impeller motors are positioned at the upper portion of the water flow casing, and the impeller motor may be arranged such that the fluid introduced into the inlet of the water flow casing is discharged to the outlet by passing between the rotational vertical axes.
  • the water flow casing may comprise a vortex breaker plate positioned to extend in the direction of the inlet from the inlet between the rotational vertical axes.
  • the bearing used for the vertical axis of rotation of the propulsion blade rotated by the electric motor can be completely isolated from the sea water, thereby preventing contamination of sea water by the lubricant of the bearing
  • it is possible to increase the life of the bearing to provide a marine propulsion device that can prevent the inflow of seawater into the engine room.
  • FIG. 1 is a perspective view of a marine propulsion device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view from above of a marine propulsion device according to a first embodiment of the present invention.
  • FIG 3 is a sectional view seen from the side of the ship propulsion device according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view seen from the side of the propulsion device for ships according to the second embodiment of the present invention.
  • FIG. 6 is a view showing a state in which a marine propulsion device according to a second embodiment of the present invention is installed on a vessel.
  • FIG. 7 is a view showing a first modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • FIG. 8 is a view showing a second modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • FIG. 9 is a view showing a third modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • FIG 10 is a view showing a modification of the bearing and the bearing box packing ring of the ship propulsion device according to the second embodiment of the present invention.
  • FIG. 11 is a sectional view seen from above of a marine propulsion device according to a third embodiment of the present invention.
  • FIG. 12 is a perspective view of a marine propulsion device according to a third embodiment of the present invention.
  • Fig. 13 shows a modification of the water flow casing of the marine propulsion device according to the third embodiment of the present invention.
  • one component when one component is referred to as “connected” or “coupled” with another component, the one component may be directly connected to or directly coupled to the other component, It is to be understood that unless there is an opposing substrate, it may be connected or combined via another component in the middle.
  • components represented by ' ⁇ ' in the present specification may be divided into two or more components by combining two or more components into one component, or by one or more components.
  • each component to be described below may additionally perform some or all of the functions of other components in addition to the main functions of which they are responsible, and some of the main functions of each of the components may be different. Of course, it may be carried out exclusively by the component.
  • first,” “second,” “first,” or “second,” as used in various embodiments may modify various elements in any order and / or importance, and the elements may be modified. It is not limited.
  • the first component may be referred to as a second component, and similarly, the second component may be renamed to the first component.
  • 1 is a perspective view of a marine propulsion device according to a first embodiment of the present invention.
  • 2 is a cross-sectional view from above of a marine propulsion device according to a first embodiment of the present invention.
  • 3 is a sectional view seen from the side of the ship propulsion device according to the first embodiment of the present invention.
  • 4 is a view briefly explaining Boyle's law.
  • Marine propulsion device is a water flow casing 10, impeller motor 20, vertical axis of rotation 21, impeller blade 22, bearing box 30, fixed vertical axis 32 and bearing And (37).
  • the water flow casing 10 may be formed with the inlet 11 of the fluid on the front, the outlet 12 of the fluid introduced into the inlet 11 on the back.
  • the fluid may be a fluid in which the vessel is suspended, and may be, for example, seawater or river water.
  • the impeller motor 20 may be located above the water flow casing 10. One or more impeller motors 20 may be installed, and an embodiment in which two impeller motors 20 are installed will be described later.
  • the rotating vertical shaft 21 is vertically connected to the lower portion of the impeller motor 20 to rotate, and the impeller blades 22 may be positioned on the outer circumferential surface of the rotating vertical shaft 21.
  • the water flow casing 10 may include an impeller wing side cover portion 13 on the side of the water flow casing 10 to further increase the efficiency of the propulsion device.
  • the impeller wing side cover portion 13 may have a shape in which the impeller wing 22 is roundly wrapped along the rotational trajectory of the impeller wing 22 in an area where the impeller wing 22 rotates from the outlet toward the inlet.
  • the impeller wing side cover portion 13 can minimize the reverse propulsion force generated by the rotation of the impeller blade 22 in the reverse propulsion direction.
  • the bearing box 30 may be connected to the lower portion of the rotation vertical shaft 21, may rotate together with the rotation vertical shaft 21, and a bearing space 31 may be formed in the interior of the bearing box 30.
  • the fixed vertical shaft 32 may be fixed to the bottom of the water flow casing 10 and may be inserted into the bearing space 31 of the bearing box 30 through the lower portion of the bearing box 30.
  • the bearing 47 may be located between the bearing box 30 and the fixed vertical axis 32.
  • the fixed vertical shaft 32 is preferably fixed to the bottom of the water flow casing 10 so as to be coaxial with the virtual axis of rotation extension of the rotating vertical shaft 21, the cross-sectional shape of the fixed vertical shaft 32 is as shown in FIG. It may have a 'T' shape.
  • Bearing 47 may be connected to the upper surface of the fixed vertical shaft 32 of the 'T' cross-sectional shape and the inner upper surface of the bearing box 30, the thrust bearing is preferred.
  • the bearing box to which the law of Boyle is applied in order to prevent the lubricating oil from leaking from the rotating vertical shaft 21 and the bearing 30 which should be submerged in a fluid (hereinafter, seawater will be described as an example) 30) is used.
  • the sea water 2 which may flow through the lower portion of the bearing box 30 may be blocked from reaching the bearing 37 by the gas present in the bearing space 31.
  • the empty bottle is placed in the water with the lid open, upside down, but vertically, water is not allowed into the empty bottle even though the lid is open.
  • the water can only slightly enter the inlet of the bottle at the pressure that the pressure can give to the air in the bottle.
  • Boyle's law of pressure and volume of gas if the water pressure is twice the atmospheric pressure, the water will fill half the empty bottle. 1 atm corresponds to a depth of about 10 meters of water.
  • the bearing box 30 to which this is applied may have a shape such as an inverted bottle-shaped container, and a cylindrical inlet surrounding the fixed vertical shaft 32 may be formed at a lower portion thereof.
  • the seawater 2 does not enter deep into the bearing box 30, but only slightly enters the inlet of the lower portion of the bearing box 30. It will only come in proportion to the pressure of the seawater on the bearing space 31 of the bearing box 30. That is, since the seawater 2 is only slightly introduced into the interior from the lower inlet of the bearing box 30 by the pressure generated in proportion to the depth of the ship submerged in the seawater (2), the bearing 37 and the seawater (2) are mutually You will not be able to contact them.
  • the lubricating oil of the bearing 37 does not flow into the seawater 2 inside the water flow casing 10, thereby preventing contamination of the seawater 2 and extending the life of the bearing 37. .
  • the large impeller blade 22 suitable for large ships can also be used stably.
  • the marine propulsion apparatus may further include a motor box 40, a motor box bearing 47, and a motor box gas storage chamber 43.
  • the motor box 40 may be fixed to an upper portion of the water flow casing 10 so as to surround the impeller motor 20, and an impeller motor space 41 may be formed inside the motor box 40. Can be.
  • the motor box bearing 47 is positioned between the inner surface of the motor box 40 and the rotation vertical axis 21 to enable rotation of the rotation vertical axis 21, and the motor box bearing 47 is preferably a radial bearing.
  • the motor box 40 may have a shape such as an inverted bottle-shaped container, and a cylindrical inlet may be formed at a lower portion of the motor box 40 to surround the rotation vertical axis 21.
  • a cylindrical inlet may be formed at a lower portion of the motor box 40 to surround the rotation vertical axis 21.
  • FIG. 5 is a sectional view seen from the side of the propulsion device for ships according to the second embodiment of the present invention.
  • the marine propulsion device according to the second embodiment of the present invention is a configuration in which a gas storage chamber is further added to the marine propulsion device according to the first embodiment of the present invention. Therefore, components having the same functions as those described in the first embodiment are shown with the same reference numerals, and redundant description thereof will be omitted.
  • the marine propulsion device may further include a bearing box gas storage chamber 33, a gas supply part 35, and a bearing box packing ring 36.
  • the bearing box gas storage chamber 33 may be positioned below the bearing box 30, may surround the fixed vertical shaft 32, and have a bearing box gas space 34 that is an open top and bottom space therein.
  • the gas supply part 35 may supply gas to the bearing box gas space 34 of the bearing box gas storage chamber 33.
  • the gas present in the bearing box gas storage chamber 33 or the gas supplied by the gas supply unit 35 the seawater 2 flowing through the lower portion of the bearing box gas storage chamber 33 reaches the bearing 37. Can be blocked.
  • the gas supply part 35 can supply an inert gas, such as helium gas.
  • an inert gas such as helium gas.
  • the bearing box gas reservoir 33 may be added for the case where it is difficult to block the inflow of the seawater 2 by the bearing box 30 alone (for example, when the hydraulic pressure is large).
  • the pressure of the seawater 2 applied to the inside of the bearing box 30 is very high, so that the seawater 2 enters the point where the bearing 37 is installed. May occur.
  • a bearing box gas storage compartment 33 may be installed at a lower portion of the bearing box 30, and the bearing box gas space 34 may be smaller than the volume of the bearing space 31. It is desirable to set the state several times larger.
  • the pressure of the seawater 2 applied to the bearing space 31 is 10 times the atmospheric pressure, that is, the depth of the water. If the water pressure is not as high as 100 meters, the sea water 2 cannot enter the point where the bearing 37 is installed.
  • the pressure of the seawater 2 on the bearing box gas space 34 is already at the bearing box gas. Since the calculation is possible before installation of the storage compartment 33, the size and pressure of the bearing box gas storage compartment 33 can be sufficiently calculated and set before the installation of the propulsion apparatus according to the present embodiment.
  • the bearing box packing ring 36 may seal between the bearing box gas reservoir 33 and the fixed vertical shaft 32 to block the seawater 2 flowing through the bearing box gas reservoir 33 underneath.
  • the bearing box packing ring 36 may be pressurized by the gas supplied to the bearing box gas space 34, so that the sea water 2 flowing through the lower portion of the bearing box gas storage chamber 33 is loaded into the bearing box packing ring. Flow 36 may be blocked by 36 to block reaching the bearing 37.
  • the marine propulsion apparatus may further include a motor box gas storage chamber 43, a gas supply part (not shown), and a motor box packing ring 46.
  • the motor box gas storage chamber 43 is configured to perform the same function as the bearing box gas storage chamber 33.
  • the motor box gas storage chamber 43 may be located between the lower portion of the motor box 40 and the upper surface of the water flow casing 10, and the rotation vertical shaft 21 may be disposed.
  • the motor box gas space 44 which is a space in which the upper and lower portions are opened, may be formed therein.
  • the gas supply unit may supply gas to the motor box gas space 44 of the motor box gas storage chamber 43.
  • the gas supply unit can supply an inert gas such as helium gas. When the inert gas is filled in the motor box gas storage chamber 43, it is possible to prevent the bearing and the metals inside from being oxidized.
  • the sea water 2 which can flow through the lower portion of the motor box gas storage chamber 43 through the space between the water flow casing 10 and the vertical axis of rotation 21 is Reaching the motor box bearing 47 can be blocked by the gas present in the motor box gas space 44 or by the gas supplied by the gas supply. Accordingly, the lubricating oil of the motor box bearing 47 may not flow into the sea water 2 in the water flow casing 10, and the life of the motor box bearing 47 may be extended.
  • the motor box packing ring 46 may seal between the motor box gas storage chamber 43 and the rotation vertical shaft 21 to block seawater 2 flowing through the lower portion of the motor box gas storage chamber 43.
  • the motor box packing ring 46 may be pressurized by the gas supplied to the motor box gas space 44, so that the sea water 2 introduced through the lower portion of the motor box gas storage chamber 43 is filled with the motor box packing ring. Flow may be blocked by 46 to block motor box bearing 47 from reaching.
  • the ship can be swiveled in the propulsion direction by the rotation of the propulsion device itself, so the ship's adjustment performance is excellent.
  • the steering motor 60 performing the steering function may be installed at the stern of the vessel (1).
  • the lubricating oil of the steering motor box bearing 57 used for the steering shaft 51 also needs to be designed so as not to leak into the sea water 2.
  • Steering motor 60, steering shaft 51 and steering motor box bearing 57 is completely helped to the safety of the vessel (1) to make it completely shielded from the sea water (2).
  • the marine propulsion device according to the second embodiment of the present invention is a steering shaft 51, steering motor 60, steering motor box 50, steering motor box bearing 57 and steering motor.
  • the box gas reservoir 53 may be included.
  • the steering shaft 51 may be vertically fixed to the upper portion of the water flow casing 10.
  • the motor box 40 When the motor box 40 is formed on the upper portion of the water flow casing 10, the motor box 40 may be vertically fixed to the upper surface of the motor box 40.
  • the steering motor 60 is connected to an upper portion of the steering rotation shaft 51 and may rotate the steering rotation shaft 51. By the operation of the steering motor 60, the water flow casing 10 itself is rotated, the ship 1 can be rotated by this rotation.
  • the steering motor box 50 is fixed to the lower portion of the ship 1, the steering motor 60 may be installed therein.
  • a steering motor space 52 which is a space in which the lower part is opened, may be formed.
  • the steering motor box bearing 57 is located between the inner surface of the steering motor box 50 and the steering rotation shaft 51 to enable rotation of the steering rotation shaft 51, and the steering motor box bearing 57.
  • Silver radial bearings are preferred.
  • the steering motor box 50 may have a shape such as an inverted bottle-shaped container, and a cylindrical inlet may be formed at a lower portion thereof to surround the steering shaft 51.
  • a cylindrical inlet may be formed at a lower portion thereof to surround the steering shaft 51.
  • the steering motor box 50 of the steering motor box 50 passes through the space between the water flow casing 10 and the steering rotation shaft 51.
  • the sea water 2 which may flow through the lower part may be blocked from reaching the steering motor box bearing 57 by the gas present in the steering motor space 52. Accordingly, the lubricating oil of the steering motor box bearing 57 may not flow into the sea water 2 under the steering motor box 50, and the life of the steering motor box bearing 57 may be extended. Will be.
  • a steering motor box gas storage chamber 53 and a gas supply unit may be further installed at the lower portion of the steering motor box 50 to more completely prevent seawater penetration.
  • the steering motor box gas storage chamber 53 performs the same function as the bearing box gas storage chamber 33, and the steering motor box gas storage chamber 53 has a lower portion of the steering motor box 50 and a water flow casing 10.
  • the steering motor box gas space 54 may be formed between the upper surfaces and surrounds the steering rotation shaft 51 and has an open upper and lower portions therein.
  • the gas supply unit may supply gas to the steering motor box gas space 54 of the steering motor box gas storage chamber 53.
  • the gas supply unit can supply an inert gas such as helium gas. When the inert gas is filled in the steering motor box gas storage chamber 53, it is possible to prevent the bearing and the metals inside from being oxidized.
  • the sea water that can flow through the lower portion of the steering motor box gas storage chamber 53 through the space between the water flow casing 10 and the steering shaft (51) ( 2) may be blocked from reaching the steering motor box bearing 57 by the gas present in the steering motor box gas space 54 or by the gas supplied by the gas supply unit. Accordingly, the lubricating oil of the steering motor box bearing 57 may not flow into the sea water 2 under the steering motor box 50, and the life of the steering motor box bearing 57 may be extended. Will be.
  • the steering motor box packing ring 56 may seal between the steering motor box gas storage chamber 53 and the steering rotation shaft 51 to block the fluid flowing through the steering motor box gas storage chamber 53 underneath.
  • the steering motor box packing ring 56 may be pressurized by the gas supplied to the steering motor box gas space 54, and thus, the seawater 2 introduced through the lower portion of the steering motor box gas storage chamber 53 may be pressurized. ) May be blocked by the steering motor box packing ring 56 so that reaching the steering motor box bearing 57 may be blocked.
  • the propulsion device of the present embodiment since the steering motor box 50 is capable of steering even if completely attached to the stern portion of the vessel 1, it is possible to increase the safety of the vessel.
  • FIG. 7 is a view showing a first modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • 8 is a view showing a second modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • 9 is a view showing a third modification of the bearing of the marine propulsion device according to the second embodiment of the present invention.
  • the bearing 37 may use thrust bearings and radial bearings in various arrangements in order to enhance and stabilize the function of the bearings, depending on the characteristics of the ship's expertise and size.
  • a cylindrical rotary protrusion 38 is formed from the center of the inner upper surface of the bearing box 30 and extends upwardly from the outer portion of the disc-shaped plate 32a of the fixed vertical shaft 32 having a 'T' cross-sectional shape.
  • An annular fixing protrusion 39 can be formed.
  • a radial bearing 37a may be installed between the outer circumferential surface of the cylindrical rotating protrusion 38 and the annular fixed protrusion 39.
  • a thrust bearing 37b may be installed between the lower surface of the cylindrical rotating protrusion 38 and the upper surface of the disc-shaped plate 32a of the fixed vertical shaft 32.
  • the first disc-shaped plate 32b and the second disc-shaped plate 32c spaced vertically apart from each other may be formed on the fixed vertical axis 32.
  • a thrust bearing 37c may be installed between the inner upper surface of the bearing box 30 and the upper surface of the first disc-shaped plate 32b.
  • a radial bearing 37d may be installed between the outer circumferential surface of the fixed vertical shaft 32 between the first disc-shaped plate 32b and the second disc-shaped plate 32c and the inner circumferential surface of the bearing box 30.
  • the fixed vertical axis 32 may not have a 'T' cross-sectional shape, but may have a cylindrical shape.
  • the fixed vertical axis 32 is connected to a first fixed vertical axis 32a having a predetermined diameter and a lower surface of the first fixed vertical axis 32a, and has a second fixed vertical axis 32 having a diameter larger than the diameter of the first fixed vertical axis 32a ( 32b).
  • a thrust bearing 37e may be installed between the inner upper surface of the bearing box 30 and the upper surface of the second fixed vertical shaft 32b.
  • the fixed vertical axis of this shape may be easier to assemble and disassemble than the fixed vertical axis having a 'T' cross-sectional shape.
  • FIG 10 is a view showing a modification of the bearing and the bearing box packing ring of the ship propulsion device according to the second embodiment of the present invention.
  • the fixed vertical axis 32 may not have a 'T' cross-sectional shape, but may have a cylindrical shape.
  • the fixed vertical shaft 32 is connected to a first fixed vertical shaft 32c having a predetermined diameter and a lower surface of the first fixed vertical shaft 32c and has a second fixed vertical shaft having a diameter larger than the diameter of the first fixed vertical shaft 32c ( 32d) and a third fixed vertical axis 32e connected to the bottom surface of the second fixed vertical axis 32d and having a diameter larger than the diameter of the second fixed vertical axis 32d.
  • a thrust bearing 37f may be installed between the inner upper surface of the bearing box 30 and the upper surface of the second fixed vertical shaft 32d.
  • the fixed vertical axis of this shape may be easier to assemble and disassemble than the fixed vertical axis having a 'T' cross-sectional shape.
  • An annular plate 30a may be formed on the inner circumferential surface of the bearing box 30, and the bearing box packing ring 36a is positioned on an upper surface of the third fixed vertical shaft 32e and an upper surface of the annular plate 30a, and a bearing box.
  • a thrust bearing 37g may be located between the packing ring 36a and the top surface of the third fixed vertical shaft 32e and between the bearing box packing ring 36a and the top surface of the annular plate 30a.
  • the bearing box packing ring 36a can be reduced in wear due to the thrust bearing 37g.
  • an additional bearing box gas space 34a may be formed to block the thrust bearing 37g from contacting the sea water.
  • 11 is a sectional view seen from above of a marine propulsion device according to a third embodiment of the present invention.
  • 12 is a perspective view of a marine propulsion device according to a third embodiment of the present invention.
  • Marine propulsion device may include a water flow casing 110 and the vortex prevention plate 115 is installed two impeller motors.
  • components having the same functions as those described in the first and second embodiments are shown with the same reference numerals, and redundant description thereof will be omitted.
  • the present embodiment can be equally applied to the rotating structure described in the first and second embodiments and the fluid penetration preventing structure for the bearing.
  • Impeller motors are positioned at the upper portion of the water flow casing 110, and as shown in FIG. 11, fluid introduced into the inlet 111 of the water flow casing 110 passes between the rotation vertical axes 121. Impeller motors may be arranged to discharge to the outlet 112. When the impeller motors are arranged side by side to rotate the symmetrical shape can effectively center the propulsion.
  • the water flow casing 110 includes impeller wing side cover portions 113 on both sides of the water flow casing 110. can do.
  • the impeller wing side cover portion 113 has a shape in which the impeller wing 122 is roundly wrapped around the impeller wing 122 along the rotational trajectory of the impeller wing 122 in an area where the impeller wing 122 rotates from the outlet 112 toward the inlet 111.
  • Can have The impeller wing side cover portion 113 may minimize the reverse thrust force generated by the rotation of the impeller wing 122 in the reverse propulsion direction.
  • the inflow area of the inflow port 111 is preferably increased gradually toward the front of the water flow casing 110.
  • the discharge area of the outlet 112 is gradually reduced toward the rear of the water flow casing 110, so that the same effect can be obtained without increasing the rotational speed of the impeller blade 122.
  • the vortex prevention plate 115 may be installed along an imaginary center line of the inlet 111 and the outlet 112 of the water flow casing 110.
  • the anti-vortex plate 115 may extend from the inlet 11 to the outlet 12 over the entire length of the water flow casing 10 and may extend only for some lengths.
  • the motor box 140 in which the impeller motor is accommodated may be located side by side.
  • Fig. 13 shows a modification of the water flow casing of the marine propulsion device according to the third embodiment of the present invention.
  • One motor box 240 in which two impeller motors are accommodated may be formed at an upper portion of the water flow casing 210.
  • vertical steering blades 225 may be formed in the inlet 211 toward the outlet 212 at the top and / or bottom of the water flow casing 210. As illustrated in FIG. 13, the vertical steering blade 225 may smoothly connect with the curved surface of the impeller wing side cover portion 213 protruding round from both sides of the water flow casing 210 and may extend toward the outlet 212. .
  • a steering rotary shaft 251 that performs the same function as the steering rotary shaft 51 described in the first and second embodiments may be fixed to the upper portion of the water flow casing 210 or the motor box 240, and the steering may be fixed.
  • the steering shaft 251 may be rotatably connected to a steering motor box 250 that performs the same function as the steering motor box 50 described in the first and second embodiments.
  • the propulsion device for ship is an electric propulsion ship device having a vertical axis impeller wing, it is possible to completely block the contact between the bearing and the seawater generated in the rotation axis of the propulsion device and the rotation axis of the steering device Therefore, the leakage of bearing lubricant can be completely blocked.
  • oil and lubricating oils can be prevented from contaminating the ocean, which will contribute to the protection of the marine environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 수직 회전축을 지닌 임펠러 날개를 사용하되, 회전축에 사용되는 베어링을 바닷물로부터 완전히 격리시킬 수 있도록 하는 전기추진 선박용 수직축 임펠러 날개 추진 장치에 관한 것으로서, 유입구와 배출구가 형성된 수류 케이싱; 수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터; 상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축; 회전 수직축의 외주면에 부착된 임펠러 날개; 회전 수직축의 하부에 연결되어, 회전 수직축과 함께 회전하고, 내부에 하부가 개방된 공간인 베어링 공간이 형성된 베어링 박스; 수류 케이싱의 바닥에 고정되며, 베어링 박스의 하부를 통해 베어링 박스의 베어링 공간에 삽입되는 고정 수직축; 및 베어링 박스와 고정 수직축 사이에 위치되는 베어링을 포함할 수 있다.

Description

전기추진 선박용 수직축 임펠러 날개 추진 장치
본 발명은 전기 추진 선박용 수직축 임펠러 날개 추진 장치에 관한 것으로, 보다 상세하게는, 수직 회전축을 지닌 임펠러 날개를 사용하되, 회전축에 사용되는 베어링을 바닷물로부터 완전히 격리시킬 수 있도록 하는 전기추진 선박용 수직축 임펠러 날개 추진 장치에 관한 것이다.
최근 선박의 대형화는 디젤기관, 가스터빈 및 워터제트 등과 같은 추진 장치의 발달을 가속화시켰다. 특히 전기추진 시스템은 추진기 자체의 회전에 의하여 추진방향으로 선회함으로써 조정성능이 우수하고, 조타성능을 유지한 상태에서 급정지(crash stopping) 능력이 뛰어나다. 그리고 유지보수성 및 신뢰성이 우수하여 빠른 속도로 전파되어 앞으로 선박의 고급화를 위한 필수 동력 시스템으로 자리 잡을 전망이다.
그러나, 전기추진선에서도 추진 날개로는 여전히 기존의 프로펠러식 날개를 사용하고 있는데, 기존의 프로펠러식 날개는 회전축에 사용되는 베어링이 바닷물로부터 완전하게 씰링(sealing)이 되지 못하므로, 새어 나오는 베어링 윤활유는 바다의 오염원이 되고, 베어링의 수명을 단축시키며, 기관실 내부로 해수가 유입되도록 하는 원인이 되고 있다.
본 발명의 일 실시예에 따른 선박용 추진 장치의 기술적 과제는, 전기추진선이 추진날개의 회전을 전기 모터를 이용하여 작동시킨다는 장점을 이용하되, 그 추진 날개로서 수직축을 지닌 임펠러 날개를 사용함으로써, 회전축에 사용되는 베어링을 바닷물로부터 완전히 격리시킬 수 있으며, 이에 따라 베어링의 윤활유에 의한 바닷물의 오염을 막을 수 있고, 베어링의 수명을 늘릴 수 있으며, 기관실 내부로 해수가 유입되지 못하도록 할 수 있는 선박용 추진 장치를 제공하는 것이다.
본 발명의 기술적 사상에 따른 선박용 추진 장치가 이루고자 하는 기술적 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 기술적 사상에 의한 일 실시예에 따른 선박용 추진 장치는, 유입구와 배출구가 형성된 수류 케이싱; 수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터; 상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축; 회전 수직축의 외주면에 부착된 임펠러 날개; 회전 수직축의 하부에 연결되어, 회전 수직축과 함께 회전하고, 내부에 하부가 개방된 공간인 베어링 공간이 형성된 베어링 박스; 수류 케이싱의 바닥에 고정되며, 베어링 박스의 하부를 통해 베어링 박스의 베어링 공간에 삽입되는 고정 수직축; 및 베어링 박스와 고정 수직축 사이에 위치되는 베어링을 포함하되, 임펠러 모터가 회전 수직축 및 임펠러 날개를 회전시키면, 유체가 수류 케이싱의 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되며, 베어링 공간에 존재하는 가스에 의해, 베어링 박스의 하부를 통해 유입되는 유체가 베어링에 도달되는 것이 차단될 수 있다.
선박용 추진 장치는 베어링 박스 하부에 위치되며, 고정 수직축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 베어링 박스 가스 공간이 형성된 베어링 박스 가스 저장실; 및 베어링 박스 가스 저장실의 베어링 박스 가스 공간에 가스를 공급하는 가스 공급부를 더 포함하되, 가스 공급부에 의해 공급된 가스에 의해, 베어링 박스 가스 저장실의 하부를 통해 유입되는 유체가 베어링에 도달되는 것이 차단될 수 있다.
선박용 추진 장치는 베어링 박스 가스 저장실과 고정 수직축 사이를 밀봉하여 베어링 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 베어링 박스 패킹 링을 더 포함할 수 있다.
본 발명의 기술적 사상에 의한 다른 실시예에 따른 선박용 추진 장치는, 유입구와 배출구가 형성된 수류 케이싱; 수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터; 상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축; 회전 수직축의 외주면에 부착된 임펠러 날개; 임펠러 모터를 둘러싸도록 수류 케이싱의 상부에 고정되며, 내부에 하부가 개방된 공간인 임펠러 모터 공간이 형성된 모터 박스; 모터 박스의 내면과 회전 수직축 사이에 위치한 모터 박스 베어링; 및 모터 박스의 하부와 수류 케이싱 상면 사이에 위치하며, 회전 수직축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 모터 박스 가스 공간이 형성된 모터 박스 가스 저장실을 포함하되, 모터 박스 가스 공간에 존재하는 가스에 의해, 모터 박스 가스 저장실의 하부를 통해 유입되는 유체가 모터 박스 베어링에 도달되는 것이 차단될 수 있다.
선박용 추진 장치는 모터 박스 가스 저장실과 회전 수직축 사이를 밀봉하여 모터 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 모터 박스 패킹 링을 더 포함할 수 있다.
본 발명의 기술적 사상에 의한 또 다른 실시예에 따른 선박용 추진 장치는, 유입구와 배출구가 형성되고, 내부의 임펠러 날개의 회전에 의해, 유체가 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되는 수류 케이싱; 수류 케이싱의 상부에 수직으로 고정되는 조향용 회전축; 조향용 회전축의 상부에 연결되고, 조향용 회전축을 회전시키는 조향용 모터; 선박의 하부에 고정되며, 조향용 모터가 내부에 설치되는 조향용 모터 박스; 조향용 모터 박스의 내면과 조향용 회전축 사이에 위치한 조향용 모터 박스 베어링; 및 조향용 모터 박스의 하부와 수류 케이싱 상면 사이에 위치하며, 조향용 회전축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 조향용 모터 박스 가스 공간이 형성된 조향용 모터 박스 가스 저장실을 포함하되, 조향용 모터 박스 가스 공간에 존재하는 가스에 의해, 조향용 모터 박스 가스 저장실의 하부를 통해 유입되는 유체가 조향용 모터 박스 베어링에 도달되는 것이 차단될 수 있다.
선박용 추진 장치는 조향용 모터 박스 가스 저장실과 조향용 회전축 사이를 밀봉하여 조향용 모터 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 조향용 모터 박스 패킹 링을 더 포함할 수 있다.
본 발명의 기술적 사상에 의한 또 다른 실시예에 따른 선박용 추진 장치는, 전면과 후면에 각각 유입구와 배출구가 형성된 수류 케이싱; 수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터; 상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축; 및 회전 수직축의 외주면에 부착된 임펠러 날개를 포함하되, 임펠러 모터가 회전 수직축 및 임펠러 날개를 회전시키면, 유체가 수류 케이싱의 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되며, 수류 케이싱은 수류 케이싱의 측면에 임펠러 날개 측면 커버부를 포함하되, 임펠러 날개 측면 커버부는, 임펠러 날개가 배출구로부터 유입구를 향해 회전하는 영역을 임펠러 날개의 회전 궤도를 따라 임펠러 날개를 감쌀 수 있다.
임펠러 모터는 수류 케이싱의 상부에 두 개가 위치되되, 수류 케이싱의 유입구로 유입된 유체가, 회전 수직축들의 사이를 통과하여 배출구로 배출되도록 임펠러 모터가 배열될 수 있다.
수류 케이싱은 회전 수직축들 사이에 유입구로부터 배출구 방향으로 연장되도록 위치하는 와류 방지 플레이트를 포함할 수 있다.
본 발명의 일 실시예에 따른 선박용 추진 장치는, 전기 모터에 의해 회전되는 추진 날개의 수직 회전축에 사용되는 베어링을 바닷물로부터 완전히 격리시킬 수 있으며, 이에 따라 베어링의 윤활유에 의한 바닷물의 오염을 막을 수 있고, 베어링의 수명을 늘릴 수 있으며, 기관실 내부로 해수가 유입되지 못하도록 할 수 있는 선박용 추진 장치를 제공하는 것이다.
다만, 본 발명의 일 실시예에 따른 선박용 추진 장치가 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 사시도이다.
도 2는 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 위쪽에서 본 단면도이다.
도 3은 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 옆에서 본 단면도이다.
도 4는 보일의 법칙을 간략하게 설명한 도면이다.
도 5는 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 옆에서 본 단면도이다.
도 6은 본 발명의 제 2 실시예에 따른 선박용 추진 장치가 선박에 설치된 상태를 도시하는 도면이다.
도 7은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 1 변형예를 도시하는 도면이다.
도 8은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 2 변형예를 도시하는 도면이다.
도 9는 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 3 변형예를 도시하는 도면이다.
도 10은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링과 베어링 박스 패킹 링의 변형예를 도시하는 도면이다.
도 11은 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 위쪽에서 본 단면도이다.
도 12는 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 사시도이다.
도 13은 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 수류 케이싱의 변형예를 도시한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명은 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "결합된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 결합될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 결합될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부'로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
다양한 실시 예에서 사용된 "제 1", "제 2", "첫째", 또는 "둘째" 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성요소들을 한정하지 않는다. 예를 들면, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 바꾸어 명명될 수 있다.
이하, 본 발명의 기술적 사상에 의한 실시예들을 차례로 상세히 설명한다. 본 문서에서 도면 상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 사시도이다. 도 2는 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 위에서 본 단면도이다. 도 3은 본 발명의 제 1 실시예에 따른 선박용 추진 장치의 옆에서 본 단면도이다. 도 4는 보일의 법칙을 간략하게 설명한 도면이다.
본 발명의 제 1 실시예에 따른 선박용 추진 장치는 수류 케이싱(10), 임펠러 모터(20), 회전 수직축(21), 임펠러 날개(22), 베어링 박스(30), 고정 수직축(32) 및 베어링(37)을 포함할 수 있다.
수류 케이싱(10)은 전면에 유체의 유입구(11)가 형성되고, 후면에 유입구(11)로 유입된 유체의 배출구(12)가 형성될 수 있다. 여기서, 유체는 선박이 부유하는 유체가 될 수 있으며, 예를 들면 바닷물, 강물 등이 될 수 있다.
임펠러 모터(20)는 수류 케이싱(10)의 상부에 위치할 수 있다. 임펠러 모터(20)는 하나 이상이 설치될 수 있으며, 두 개의 임펠러 모터(20)가 설치된 실시예에 대해서는 후술한다.
회전 수직축(21)은 임펠러 모터(20)의 하부에 수직으로 연결되어 회전되며, 회전 수직축(21)의 외주면에는 임펠러 날개(22)가 위치할 수 있다.
임펠러 모터(20)가 회전 수직축(21) 및 임펠러 날개(22)를 회전시키면, 유체가 수류 케이싱(10)의 유입구(11)로 유입되어 임펠러 날개(22)를 통과하여 수류 케이싱(10)의 배출구(12)로 배출될 수 있다.
추진 장치의 효율을 더 높이기 위하여 도 1 및 도 2에 도시된 바와 같이 수류 케이싱(10)은 수류 케이싱(10)의 측면에 임펠러 날개 측면 커버부(13)를 포함할 수 있다. 임펠러 날개 측면 커버부(13)는, 임펠러 날개(22)가 배출구로부터 유입구를 향해 회전하는 영역을 임펠러 날개(22)의 회전 궤도를 따라 임펠러 날개(22)를 둥글게 감싸는 형상을 가질 수 있다. 임펠러 날개 측면 커버부(13)는 임펠러 날개(22)의 역추진 방향으로의 회전에 의해 발생되는 역추진력을 최소화시킬 수 있다. 또한, 도 1 및 도 2에 도시된 바와 같이 유입구(11)의 유입 면적이 수류 케이싱(10)의 전면으로 갈수록 증가되도록 하는 것이 바람직하다.
베어링 박스(30)는 회전 수직축(21)의 하부에 연결되어, 회전 수직축(21)과 함께 회전할 수 있으며, 내부에 하부가 개방된 공간인 베어링 공간(31)이 형성될 수 있다.
고정 수직축(32)은 수류 케이싱(10)의 바닥에 고정될 수 있으며, 베어링 박스(30)의 하부를 통해 베어링 박스(30)의 베어링 공간(31)에 삽입될 수 있다.
베어링(47)은 베어링 박스(30)와 고정 수직축(32) 사이에 위치될 수 있다.
고정 수직축(32)은 회전 수직축(21)의 가상의 회전축 연장선과 동축이 되도록 수류 케이싱(10)의 바닥에 고정되는 것이 바람직하며, 고정 수직축(32)의 단면 형상은 도 3에 도시된 바와 같이 'T' 형상을 가질 수 있다. 베어링(47)은 'T' 단면 형상의 고정 수직축(32)의 윗면과 베어링 박스(30)의 내부 상면에 연결될 수 있으며, 스러스트 베어링이 바람직하다. 이러한 구조에 의해, 회전 수직축(21)이 회전할 때, 고정 수직축(32)과 동축 상태로 회전하므로, 회전 수직축(21)은 좌우로 흔들리지 않고 안정적으로 회전을 할 수 있게 된다.
도 3에 도시된 바와 같이, 베어링 박스(30)의 하부 입구의 직경에 비해서 'T' 단면 형상의 고정 수직축(32)의 최대 직경이 큰 경우에는, 베어링 박스(30) 및 고정 수직축(32)이 몇 조각으로 분해/조립이 가능하도록 형성하는 것이 바람직하다. 이러한 분해/조립 구성에 의해 고정 수직축(32)의 최대 직경이 큰 경우에도 베어링 박스(30)에 분해된 상태로 삽입하여 조립을 함으로써 최종적으로 삽입이 가능하게 된다. 이러한 분해/조립 구성은 장치의 정기 점검에도 매우 유리하다.
본 발명의 제 1 실시예에서는 유체(이하에서는 바닷물을 예로 들어 설명한다)에 잠겨야 하는 회전 수직축(21)과 베어링(30)에서 윤활유가 유출되는 것을 방지하기 위하여 보일의 법칙을 적용한 베어링 박스(30)가 사용된다. 베어링 박스(30)의 하부를 통해 유입될 수 있는 바닷물(2)은 베어링 공간(31)에 존재하는 가스에 의해, 베어링(37)에 도달되는 것이 차단될 수 있다.
빈 병을 뚜껑이 열린 상태로 거꾸로 하여 물속에 집어넣되, 수직으로 집어넣으면, 뚜껑이 열려 있음에도 불구하고 빈 병 속으로 물이 들어오지 못하게 된다. 다만, 수압이 병 속의 공기에 줄 수 있는 압력만큼만 병 입구로 물이 약간 들어올 수 있게 된다. 압력과 기체의 부피에 관한 보일의 법칙에 의하면, 수압이 대기압의 2배일 경우라면, 물은 빈 병 속으로 절반 정도 차올라오게 될 것이다. 1기압은 물 10미터 정도 깊이의 압력에 해당된다.
이를 적용한 베어링 박스(30)는 거꾸로 선 빈 병 모양의 용기와 같은 형상을 가질 수 있으며, 하부에는 고정 수직축(32)을 둘러싸는 원통형 입구가 형성될 수 있다. 베어링 박스(30)가 바닷물(2) 속에 잠길 때, 베어링 박스(30) 내부로는 바닷물(2)이 깊이 들어오지 못하고 단지 베어링 박스(30)의 하부의 입구 쪽으로 약간만 들어오게 된다. 베어링 박스(30)의 베어링 공간(31)에 미치는 바닷물의 압력에 비례한 만큼만 들어오게 될 것이다. 즉, 바닷물(2)은 선박이 바닷물(2)에 잠기는 깊이에 비례해서 발생하는 압력만큼만 베어링 박스(30)의 하부 입구에서 내부로 약간만 들어오게 되므로, 베어링(37)과 바닷물(2)은 서로 접촉하지 못하게 된다.
이에 따라 베어링(37)의 윤활유는 수류 케이싱(10) 내부의 바닷물(2) 속으로 흘러나오지 않게 되어 바닷물(2)의 오염을 막을 수 있을 뿐만 아니라 베어링(37)의 수명도 연장시킬 수 있게 된다.
또한, 회전 수직축(21)의 하부를, 베어링 박스(30) 및 고정 수직축(32)을 통해 수류 케이싱(10)의 하부에 회전 가능하게 고정을 시킬 수 있으므로, 대형 선박에 적합한 대형 임펠러 날개(22)도 안정적으로 사용할 수 있게 된다.
본 발명의 제 1 실시예에 따른 선박용 추진 장치는 모터 박스(40) 및 모터 박스 베어링(47) 및 모터 박스 가스 저장실(43)을 더 포함할 수 있다.
모터 박스(40)는 임펠러 모터(20)를 둘러싸도록 수류 케이싱(10)의 상부에 고정될 수 있으며, 모터 박스(40)의 내부에 하부가 개방된 공간인 임펠러 모터 공간(41)이 형성될 수 있다.
모터 박스 베어링(47)은 모터 박스(40)의 내면과 회전 수직축(21) 사이에 위치하여 회전 수직축(21)의 회전이 가능하도록 하며, 모터 박스 베어링(47)은 레이디얼 베어링이 바람직하다.
모터 박스(40)는 거꾸로 선 빈 병 모양의 용기와 같은 형상을 가질 수 있으며, 하부에는 회전 수직축(21)을 둘러싸는 원통형 입구가 형성될 수 있다. 베어링 박스(30)에서와 동일한 원리로, 수류 케이싱(10)이 바닷물(2) 속에 잠길 때, 수류 케이싱(10)과 회전 수직축(21) 사이의 공간을 통하여 모터 박스(40)의 하부를 통해 유입될 수 있는 바닷물(2)은 임펠러 모터 공간(41)에 존재하는 가스에 의해, 모터 박스 베어링(47)에 도달되는 것이 차단될 수 있다. 이에 따라, 모터 박스 베어링(47)의 윤활유는 수류 케이싱(10) 내부의 바닷물(2) 속으로 흘러나오지 않게 될 수 있으며, 모터 박스 베어링(47)의 수명도 연장시킬 수 있게 된다.
도 5는 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 옆에서 본 단면도이다.
본 발명의 제 2 실시예에 따른 선박용 추진 장치는 본 발명의 제 1 실시예에 따른 선박용 추진 장치에 가스 저장실을 더 추가한 구성이다. 따라서, 제 1 실시예에서 설명된 구성과 동일한 기능을 가진 구성에 대해서는 동일한 참조부호를 사용하여 도시하고, 이에 대한 중복된 설명은 생략한다.
본 발명의 제 2 실시예에 따른 선박용 추진 장치는 베어링 박스 가스 저장실(33), 가스 공급부(35) 및 베어링 박스 패킹 링(36)를 더 포함할 수 있다.
베어링 박스 가스 저장실(33)은 베어링 박스(30) 하부에 위치되며, 고정 수직축(32)을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 베어링 박스 가스 공간(34)이 형성될 수 있다.
가스 공급부(35)는 베어링 박스 가스 저장실(33)의 베어링 박스 가스 공간(34)에 가스를 공급할 수 있다. 베어링 박스 가스 저장실(33)에 존재하는 가스 또는 가스 공급부(35)에 의해 공급된 가스에 의해, 베어링 박스 가스 저장실(33)의 하부를 통해 유입되는 바닷물(2)이 베어링(37)에 도달되는 것이 차단될 수 있다.
가스 공급부(35)는 헬륨 가스 등의 불활성 가스를 공급할 수 있다. 베어링 박스 가스 저장실(33)에 불활성 가스가 채워지게 되면, 베어링 및 내부의 금속들이 산화되는 것을 방지할 수 있다.
베어링 박스 가스 저장실(33)은 베어링 박스(30)만으로 바닷물(2)의 유입을 차단하는 것이 어려운 경우 (예를 들어, 수압이 큰 경우)를 위하여 추가될 수 있다. 바닷물(2) 속으로 깊이 잠기는 대형 선박에서는 베어링 박스(30)의 내부에 가해지는 바닷물(2)의 압력이 매우 높아서, 바닷물(2)이 베어링(37)이 설치되어 있는 지점까지 들어 오는 경우가 발생할 수도 있다. 이러한 경우를 대비하여, 도 5에 도시된 바와 같이 베어링 박스(30)의 하부에 베어링 박스 가스 저장실(33)을 설치할 수 있으며, 베어링 박스 가스 공간(34)은 베어링 공간(31)의 체적에 비하여 몇 배가 큰 상태로 설정되는 것이 바람직하다. 이러한 구성에 의해, 베어링 박스(30)의 내부에 가해지는 바닷물(2)의 압력이 매우 높은 경우에도, 그 압력에 밀려서 베어링 박스 가스 공간(34)의 가스의 일부가 그 위쪽의 베어링 공간(31)으로 밀려들어 가더라도, 바닷물(2)은 베어링(37)이 설치되어 있는 지점까지 들어 갈 수가 없게 된다.
예를 들어, 베어링 박스 가스 공간(34)의 체적이 베어링 공간(31)의 체적에 비해서 10배가 클 경우, 베어링 공간(31)에 가해지는 바닷물(2)의 압력이 대기압의 10배, 즉 수심 100미터의 수압만큼 높지 않으면 바닷물(2)은 베어링(37)이 설치되어 있는 지점까지 들어 갈 수가 없다.
또한, 선박(1)의 무게와 최대 하적 중량에 의해서 선박(1)이 바닷물(2) 속으로 잠기는 깊이에 따라서, 베어링 박스 가스 공간(34)에 미치는 바닷물(2)의 압력은 이미 베어링 박스 가스 저장실(33)의 설치 전에 계산이 가능하므로, 본 실시예에 따른 추진 장치의 설치 이전에 충분히 베어링 박스 가스 저장실(33)의 크기와 압력을 계산 및 설정할 수 있게 된다.
베어링 박스 패킹 링(36)은 베어링 박스 가스 저장실(33)과 고정 수직축(32) 사이를 밀봉하여 베어링 박스 가스 저장실(33) 하부를 통해 유입되는 바닷물(2)을 차단할 수 있다. 베어링 박스 가스 공간(34)에 공급된 가스에 의해 베어링 박스 패킹 링(36)이 가압될 수 있으며, 이에 따라 베어링 박스 가스 저장실(33)의 하부를 통해 유입되는 바닷물(2)이 베어링 박스 패킹 링(36)에 의해 유동이 막히게 되어 베어링(37)에 도달되는 것이 차단될 수 있다.
본 발명의 제 2 실시예에 따른 선박용 추진 장치는 모터 박스 가스 저장실(43), 가스 공급부(미도시) 및 모터 박스 패킹 링(46)를 더 포함할 수 있다.
모터 박스 가스 저장실(43)은 베어링 박스 가스 저장실(33)과 동일한 기능을 수행하는 구성으로서, 모터 박스(40)의 하부와 수류 케이싱(10) 상면 사이에 위치할 수 있으며, 회전 수직축(21)을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 모터 박스 가스 공간(44)이 형성될 수 있다.
가스 공급부는 모터 박스 가스 저장실(43)의 모터 박스 가스 공간(44)에 가스를 공급할 수 있다. 가스 공급부는 헬륨 가스 등의 불활성 가스를 공급할 수 있다. 모터 박스 가스 저장실(43)에 불활성 가스가 채워지게 되면, 베어링 및 내부의 금속들이 산화되는 것을 방지할 수 있다.
수류 케이싱(10)이 바닷물(2) 속에 잠길 때, 수류 케이싱(10)과 회전 수직축(21) 사이의 공간을 통하여 모터 박스 가스 저장실(43)의 하부를 통해 유입될 수 있는 바닷물(2)은 모터 박스 가스 공간(44)에 존재하는 가스 또는 가스 공급부에 의해 공급된 가스에 의해, 모터 박스 베어링(47)에 도달되는 것이 차단될 수 있다. 이에 따라, 모터 박스 베어링(47)의 윤활유는 수류 케이싱(10) 내부의 바닷물(2) 속으로 흘러나오지 않게 될 수 있으며, 모터 박스 베어링(47)의 수명도 연장시킬 수 있게 된다.
모터 박스 패킹 링(46)은 모터 박스 가스 저장실(43)과 회전 수직축(21) 사이를 밀봉하여 모터 박스 가스 저장실(43) 하부를 통해 유입되는 바닷물(2)을 차단할 수 있다. 모터 박스 가스 공간(44)에 공급된 가스에 의해 모터 박스 패킹 링(46)이 가압될 수 있으며, 이에 따라 모터 박스 가스 저장실(43)의 하부를 통해 유입되는 바닷물(2)이 모터 박스 패킹 링(46)에 의해 유동이 막히게 되어 모터 박스 베어링(47)에 도달되는 것이 차단될 수 있다.
전기추진 선박의 장점은, 추진 장치 자체의 회전에 의하여 추진방향으로 선박의 선회가 가능하도록 하므로 선박의 조정성능이 우수하다. 이러한 장점을 극대화시키기 위해서, 조향 기능을 수행하는 조향용 모터(60)를 선박(1)의 선미에 설치할 수 있다. 조향용 회전축(51)에 사용되는 조향용 모터 박스 베어링(57)의 윤활유 역시 바닷물(2)로 새어나오지 못하도록 설계할 필요가 있다. 조향용 모터(60), 조향용 회전축(51) 및 조향용 모터 박스 베어링(57)이 바닷물(2)과 완전히 차폐되도록 만들면 선박(1)의 안전에 절대적인 도움이 된다. 이를 위해서, 본 발명의 제 2 실시예에 따른 선박용 추진 장치는 조향용 회전축(51), 조향용 모터(60), 조향용 모터 박스(50), 조향용 모터 박스 베어링(57) 및 조향용 모터 박스 가스 저장실(53)을 포함할 수 있다.
조향용 회전축(51)은 수류 케이싱(10)의 상부에 수직으로 고정될 수 있다. 수류 케이싱(10)의 상부에 모터 박스(40)가 형성되어 있는 경우에는 모터 박스(40)의 상면에 수직으로 고정될 수 있다.
조향용 모터(60)는 조향용 회전축(51)의 상부에 연결되고, 조향용 회전축(51)을 회전시킬 수 있다. 조향용 모터(60)의 작동에 의해서 수류 케이싱(10) 자체가 회전하며, 이 회전에 의하여 선박(1)이 선회할 수 있게 된다.
조향용 모터 박스(50)는 선박(1)의 하부에 고정되며, 조향용 모터(60)가 내부에 설치될 수 있다. 조향용 모터 박스(50)의 내부에는 하부가 개방된 공간인 조향용 모터 공간(52)이 형성될 수 있다.
조향용 모터 박스 베어링(57)은 조향용 모터 박스(50)의 내면과 조향용 회전축(51) 사이에 위치하여 조향용 회전축(51)의 회전이 가능하도록 하며, 조향용 모터 박스 베어링(57)은 레이디얼 베어링이 바람직하다.
조향용 모터 박스(50)는 거꾸로 선 빈 병 모양의 용기와 같은 형상을 가질 수 있으며, 하부에는 조향용 회전축(51)을 둘러싸는 원통형 입구가 형성될 수 있다. 베어링 박스(30)에서와 동일한 원리로, 수류 케이싱(10)이 바닷물(2) 속에 잠길 때, 수류 케이싱(10)과 조향용 회전축(51) 사이의 공간을 통하여 조향용 모터 박스(50)의 하부를 통해 유입될 수 있는 바닷물(2)은 조향용 모터 공간(52)에 존재하는 가스에 의해, 조향용 모터 박스 베어링(57)에 도달되는 것이 차단될 수 있다. 이에 따라, 조향용 모터 박스 베어링(57)의 윤활유는 조향용 모터 박스(50) 하부의 바닷물(2) 속으로 흘러나오지 않게 될 수 있으며, 조향용 모터 박스 베어링(57)의 수명도 연장시킬 수 있게 된다.
도 5에 도시된 바와 같이, 조향용 모터 박스(50)의 하부에는 바닷물 침투를 더 완벽하게 방지하기 위하여 조향용 모터 박스 가스 저장실(53) 및 가스 공급부(미도시)가 더 설치될 수 있다.
조향용 모터 박스 가스 저장실(53)은 베어링 박스 가스 저장실(33)과 동일한 기능을 수행하는 구성으로서, 조향용 모터 박스 가스 저장실(53)은 조향용 모터 박스(50)의 하부와 수류 케이싱(10) 상면 사이에 위치하며, 조향용 회전축(51)을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 조향용 모터 박스 가스 공간(54)이 형성될 수 있다.
가스 공급부는 조향용 모터 박스 가스 저장실(53)의 조향용 모터 박스 가스 공간(54)에 가스를 공급할 수 있다. 가스 공급부는 헬륨 가스 등의 불활성 가스를 공급할 수 있다. 조향용 모터 박스 가스 저장실(53)에 불활성 가스가 채워지게 되면, 베어링 및 내부의 금속들이 산화되는 것을 방지할 수 있다.
수류 케이싱(10)이 바닷물(2) 속에 잠길 때, 수류 케이싱(10)과 조향용 회전축(51) 사이의 공간을 통하여 조향용 모터 박스 가스 저장실(53)의 하부를 통해 유입될 수 있는 바닷물(2)은 조향용 모터 박스 가스 공간(54)에 존재하는 가스 또는 가스 공급부에 의해 공급된 가스에 의해, 조향용 모터 박스 베어링(57)에 도달되는 것이 차단될 수 있다. 이에 따라, 조향용 모터 박스 베어링(57)의 윤활유는 조향용 모터 박스(50) 하부의 바닷물(2) 속으로 흘러나오지 않게 될 수 있으며, 조향용 모터 박스 베어링(57)의 수명도 연장시킬 수 있게 된다.
조향용 모터 박스 패킹 링(56)은 조향용 모터 박스 가스 저장실(53)과 조향용 회전축(51) 사이를 밀봉하여 조향용 모터 박스 가스 저장실(53) 하부를 통해 유입되는 유체를 차단할 수 있다. 조향용 모터 박스 가스 공간(54)에 공급된 가스에 의해 조향용 모터 박스 패킹 링(56)이 가압될 수 있으며, 이에 따라 조향용 모터 박스 가스 저장실(53)의 하부를 통해 유입되는 바닷물(2)이 조향용 모터 박스 패킹 링(56)에 의해 유동이 막히게 되어 조향용 모터 박스 베어링(57)에 도달되는 것이 차단될 수 있다.
종래의 선박에서 선박의 내부가 바닷물에 노출되는 유일한 부위는 추진축과 조향축이다. 그러나, 본 실시예의 추진 장치는 도 6에 도시된 바와 같이, 조향용 모터 박스(50)가 선박(1)의 선미부에 완전히 밀폐 부착되어도 조향이 가능한 구조이므로, 선박의 안전성을 높일 수 있다.
도 7은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 1 변형예를 도시하는 도면이다. 도 8은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 2 변형예를 도시하는 도면이다. 도 9는 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링의 제 3 변형예를 도시하는 도면이다.
베어링(37)은 배의 전문성과 크기의 특성에 따라서, 베어링의 기능을 향상시키고 안정적으로 만들기 위하여 스러스트 베어링과 레이디얼 베어링을 다양한 배열로 사용할 수 있다.
도 7에서는 베어링 박스(30)의 내부 상면의 중심부로부터 원기둥형 회전 돌출부(38)를 형성하고, 'T' 단면 형상의 고정 수직축(32)의 원판형 플레이트(32a)의 외곽부로부터 상향 연장된 환형의 고정 돌출부(39)를 형성할 수 있다. 원기둥형 회전 돌출부(38)의 외주면과 환형의 고정 돌출부(39) 사이에는 레이디얼 베어링 (37a)이 설치될 수 있다. 또한, 원기둥형 회전 돌출부(38)의 하면과 고정 수직축(32)의 원판형 플레이트(32a)의 상면 사이에는 스러스트 베어링(37b)이 설치될 수 있다.
도 8에서는 고정 수직축(32)에 상하로 이격된 제 1 원판형 플레이트(32b)와 제 2 원판형 플레이트(32c)가 형성될 수 있다. 베어링 박스(30)의 내부 상면과 제 1 원판형 플레이트(32b)의 상면 사이에는 스러스트 베어링(37c)이 설치될 수 있다. 또한 제 1 원판형 플레이트(32b)와 제 2 원판형 플레이트(32c) 사이의 고정 수직축(32)의 외주면과 베어링 박스(30)의 내주면 사이에는 레이디얼 베어링(37d)가 설치될 수 있다.
도 9에서는 고정 수직축(32)이 'T' 단면 형상을 가지는 것이 아니라, 원기둥형 형상을 가질 수 있다. 고정 수직축(32)은 소정 직경을 가지는 제 1 고정 수직축(32a)과, 제 1 고정 수직축(32a)의 하면에 연결되며 제 1 고정 수직축(32a)의 직경보다 큰 직경을 가지는 제 2 고정 수직축(32b)로 이루어질 수 있다. 베어링 박스(30)의 내부 상면과 제 2 고정 수직축(32b)의 상면 사이에는 스러스트 베어링(37e)가 설치될 수 있다. 이러한 형상의 고정 수직축은 'T' 단면 형상을 가지는 고정 수직축보다 조립과 분해가 더 용이할 수 있다.
도 10은 본 발명의 제 2 실시예에 따른 선박용 추진 장치의 베어링과 베어링 박스 패킹 링의 변형예를 도시하는 도면이다.
도 10에서는 고정 수직축(32)이 'T' 단면 형상을 가지는 것이 아니라, 원기둥형 형상을 가질 수 있다. 고정 수직축(32)은 소정 직경을 가지는 제 1 고정 수직축(32c)과, 제 1 고정 수직축(32c)의 하면에 연결되며 제 1 고정 수직축(32c)의 직경보다 큰 직경을 가지는 제 2 고정 수직축(32d)과, 제 2 고정 수직축(32d)의 하면에 연결되며 제 2 고정 수직축(32d)의 직경보다 큰 직경을 가지는 제 3 고정 수직축(32e)로 이루어질 수 있다.
베어링 박스(30)의 내부 상면과 제 2 고정 수직축(32d)의 상면 사이에는 스러스트 베어링(37f)가 설치될 수 있다. 이러한 형상의 고정 수직축은 'T' 단면 형상을 가지는 고정 수직축보다 조립과 분해가 더 용이할 수 있다.
베어링 박스(30)의 내주면에 환형 플레이트(30a)가 형성될 수 있으며, 베어링 박스 패킹 링(36a)은 제 3 고정 수직축(32e)의 상면과 환형 플레이트(30a)의 상면에 위치되며, 베어링 박스 패킹 링(36a)과 제 3 고정 수직축(32e)의 상면 사이와, 베어링 박스 패킹 링(36a)과 환형 플레이트(30a)의 상면 사이에는 스러스트 베어링(37g)가 위치될 수 있다. 베어링 박스 패킹 링(36a)은 스러스트 베어링(37g)으로 인해 마모가 감소될 수 있다. 베어링 박스 패킹 링(36a)의 아래에는, 스러스트 베어링(37g)과 바닷물의 접촉을 차단하기 위하여 추가적인 베어링 박스 가스 공간(34a)을 형성할 수 있다.
도 7 내지 도 10에 도시된 구성은 베어링 박스(30)와 연결된 구성을 기준으로 변형예를 설명하였으나, 변형예의 구성은 모터 박스(40)와 연결된 구성 및 조향용 모터 박스(50)와 연결된 구성에 동일한 방식으로 적용이 가능하다.
도 11은 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 위쪽에서 본 단면도이다. 도 12는 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 사시도이다.
본 발명의 제 3 실시예에 따른 선박용 추진 장치는 두 개의 임펠러 모터들이 설치된 수류 케이싱(110) 및 와류 방지 플레이트(115)를 포함할 수 있다. 본 실시예에 대한 설명에서, 제 1 및 2 실시예에서 설명된 구성과 동일한 기능을 가진 구성에 대해서는 동일한 참조부호를 사용하여 도시하고, 이에 대한 중복된 설명은 생략한다. 또한, 본 실시예는 제 1 및 2 실시예에서 설명된 회전 구조 및 베어링에 대한 유체 침투 방지 구조가 동일하게 적용될 수 있다.
임펠러 모터들은 수류 케이싱(110)의 상부에 두 개가 위치되되, 도 11에 도시된 바와 같이, 수류 케이싱(110)의 유입구(111)로 유입된 유체가, 회전 수직축(121)들의 사이를 통과하여 배출구(112)로 배출되도록 임펠러 모터들이 배열될 수 있다. 임펠러 모터들을 나란히 배열하여 회전시키는 경우에 좌우 대칭 형상으로 인해 효과적으로 추진 중심을 잡을 수 있게 된다.
제 1 실시예와 마찬가지로, 추진 장치의 효율을 더 높이기 위하여 도 11 및 도 12에 도시된 바와 같이 수류 케이싱(110)은 수류 케이싱(110)의 양 측면에 임펠러 날개 측면 커버부(113)를 포함할 수 있다. 임펠러 날개 측면 커버부(113)는, 임펠러 날개(122)가 배출구(112)로부터 유입구(111)를 향해 회전하는 영역을 임펠러 날개(122)의 회전 궤도를 따라 임펠러 날개(122)를 둥글게 감싸는 형상을 가질 수 있다. 임펠러 날개 측면 커버부(113)는 임펠러 날개(122)의 역추진 방향으로의 회전에 의해 발생되는 역추진력을 최소화시킬 수 있다. 또한, 도 11 및 도 12에 도시된 바와 같이 유입구(111)의 유입 면적이 수류 케이싱(110)의 전면으로 갈수록 점점 증가되도록 하는 것이 바람직하다.
일반적으로 모터에 의한 회전 속도를 높이기 위해서는 변속기어 등이 필요한데 변속기어를 사용하면 에너지 효율이 나빠지게 된다. 본 실시예에서는 배출구(112)의 배출 면적이 수류 케이싱(110)의 후면으로 갈수록 점점 감소되도록 함으로써, 임펠러 날개(122)의 회전 속도를 높이지 않고도, 동일한 효과를 얻을 수 있게 된다.
두개의 임펠러 날개(122)가 양 쪽에서 나란히 회전하여 바닷물을 수류 케이싱(110)의 중앙으로 모을 때, 수류 케이싱(110) 내부에서는 와류가 발생될 수 있다. 이를 방지하기 위하여, 수류 케이싱(110)의 유입구(111)와 배출구(112)의 가상의 중앙선을 따라서 와류 방지 플레이트(115)를 설치할 수 있다. 와류 방지 플레이트(115)는 유입구(11)로부터 배출구(12) 방향으로 수류 케이싱(10)의 전 길이에 걸쳐 연장될 수 있으며, 일부 길이에 대해서만 연장될 수도 있다.
수류 케이싱(110)의 상부에는 임펠러 모터가 수용된 모터박스(140)들이 나란하게 위치될 수 있다.
도 13은 본 발명의 제 3 실시예에 따른 선박용 추진 장치의 수류 케이싱의 변형예를 도시한다.
수류 케이싱(210)의 상부에는 2개의 임펠러 모터가 수용된 하나의 모터박스(240)가 형성될 수 있다.
조향 기능을 향상시키기 위해, 수류 케이싱(210)의 상부 및/또는 하부에 유입구(211)에서 배출구(212) 방향으로 수직 조향 날개(225)를 형성할 수 있다. 수직 조향 날개(225)는 도 13에 도시된 바와 같이, 수류 케이싱(210)의 양 측면에서 둥글게 돌출한 임펠러 날개 측면 커버부(213)의 곡면과 부드럽게 이어지며 배출구(212) 쪽으로 연장될 수 있다.
수류 케이싱(210)의 상부 또는 모터 박스(240)의 상부에는 제 1 및 2 실시예에서 설명된 조향용 회전축(51)과 동일한 기능을 수행하는 조향용 회전축(251)이 고정될 수 있으며, 조향용 회전축(251)에는 제 1 및 2 실시예에서 설명된 조향용 모터 박스(50)와 동일한 기능을 수행하는 조향용 모터 박스(250)가 회전 가능하게 연결될 수 있다.
기존의 선박이 지금까지 임펠러식 회전축을 지닌 선박 추진 장치를 개발하지 못한 이유는, 기존의 내연기관 엔진이나 가스 터빈 등은 엔진 회전 동력이 수평축을 통해서 만들어지기 때문에, 추진 날개에 있어서 수직축 임펠러 날개를 사용하는 것이 불가능하였다. 이 경우에 수직축 임펠러 날개를 사용하려고 한다면 회전 운동축의 방향을 수직 방향으로 바꾸어야 하는데, 그 과정에서 에너지 손실이 매우 많이 발생하게 된다.
그러나 전기 모터로 회전축을 돌리는 전기추진 선박의 경우는, 전기모터의 회전축을 수평으로 놓거나 수직으로 놓거나, 에너지 손실 측면에서 큰 차이가 없기 때문에 수직축 임펠러 날개를 사용하는 것이 가능하다.
그런데 추진 날개를 수직축 임펠러 날개로 바꾼다고 하여도, 기존의 기계공학적 방식으로는 바닷물에 잠겨야 하는 수직 회전축의 상부와 하부에 사용되어야 하는 베어링의 윤활유가 유출되는 것을 막을 수가 없기 때문에, 수평축 프로펠러 방식보다 더 큰 문제를 발생시킬 수 있다.
그러나, 본 발명의 일 실시예에 따른 선박용 추진 장치는 수직축 임펠러식 날개를 지닌 전기추진 선박 장치로서, 추진 장치의 회전축과 조향 장치의 회전축에서 발생하는 베어링과 바닷물이 접촉하는 것을 완벽하게 차단할 수 있고, 이에 따라 베어링 윤활유의 유출도 완벽하게 차단할 수가 있다.
이로 인해, 추진 장치의 수명 연장은 물론, 주기적으로 기관실을 오일링 해야 하는 번거로움을 없앨 수 있을 뿐 아니라, 모든 배의 선미에서 회전축 실링의 불완전함 때문에 발생하는 기관실의 침수도 완벽하게 막을 수 있다.
또한, 오일 및 윤활유가 해양을 오염시키는 것도 막을 수 있어서 바다 환경의 보호에도 큰 기여를 할 것이다.
이는 조선 산업에 있어서 새로운 시장을 확대시킴으로써, 국내외적으로 경제에 새로운 활력을 불어넣을 것이 기대된다.
이상, 본 발명의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.
[부호의 설명]
10, 110, 210: 수류 케이싱
13, 113, 213: 임펠러 날개 측면 커버부
20: 임펠러 모터
21, 121: 회전 수직축
22, 122: 임펠러 날개
30: 베어링 박스
31: 베어링 공간
32: 고정 수직축
33: 베어링 박스 가스 저장실
34: 베어링 박스 가스 공간
35: 가스 공급부
36: 베어링 박스 패킹 링
37: 베어링
40, 140: 모터 박스
41: 임펠러 모터 공간
43: 모터 박스 가스 저장실
44: 모터 박스 가스 공간
46: 모터 박스 패킹 링
47: 모터 박스 베어링
50: 조향용 모터 박스
51: 조향용 회전축
53: 조향용 모터 박스 가스 저장실
54: 조향용 모터 박스 가스 공간
56: 조향용 모터 박스 패킹 링
57: 조향용 모터 박스 베어링
60: 조향용 모터
115: 와류 방지 플레이트
225: 수직 조향 날개

Claims (10)

  1. 유입구와 배출구가 형성된 수류 케이싱;
    수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터;
    상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축;
    회전 수직축의 외주면에 부착된 임펠러 날개;
    회전 수직축의 하부에 연결되어, 회전 수직축과 함께 회전하고, 내부에 하부가 개방된 공간인 베어링 공간이 형성된 베어링 박스;
    수류 케이싱의 바닥에 고정되며, 베어링 박스의 하부를 통해 베어링 박스의 베어링 공간에 삽입되는 고정 수직축; 및
    베어링 박스와 고정 수직축 사이에 위치되는 베어링을 포함하되, 임펠러 모터가 회전 수직축 및 임펠러 날개를 회전시키면, 유체가 수류 케이싱의 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되며,
    베어링 공간에 존재하는 가스에 의해, 베어링 박스의 하부를 통해 유입되는 유체가 베어링에 도달되는 것이 차단되는 것을 특징으로 하는 선박용 추진 장치.
  2. 제 1 항에 있어서, 선박용 추진 장치는
    베어링 박스 하부에 위치되며, 고정 수직축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 베어링 박스 가스 공간이 형성된 베어링 박스 가스 저장실; 및
    베어링 박스 가스 저장실의 베어링 박스 가스 공간에 가스를 공급하는 가스 공급부를 더 포함하되,
    가스 공급부에 의해 공급된 가스에 의해, 베어링 박스 가스 저장실의 하부를 통해 유입되는 유체가 베어링에 도달되는 것이 차단되는 것을 특징으로 하는 선박용 추진 장치.
  3. 제 2 항에 있어서, 선박용 추진 장치는
    베어링 박스 가스 저장실과 고정 수직축 사이를 밀봉하여 베어링 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 베어링 박스 패킹 링을 더 포함하는 것을 특징으로 하는 선박용 추진 장치.
  4. 유입구와 배출구가 형성된 수류 케이싱;
    수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터;
    상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축;
    회전 수직축의 외주면에 부착된 임펠러 날개;
    임펠러 모터를 둘러싸도록 수류 케이싱의 상부에 고정되며, 내부에 하부가 개방된 공간인 임펠러 모터 공간이 형성된 모터 박스;
    모터 박스의 내면과 회전 수직축 사이에 위치한 모터 박스 베어링; 및
    모터 박스의 하부와 수류 케이싱 상면 사이에 위치하며, 회전 수직축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 모터 박스 가스 공간이 형성된 모터 박스 가스 저장실을 포함하되,
    모터 박스 가스 공간에 존재하는 가스에 의해, 모터 박스 가스 저장실의 하부를 통해 유입되는 유체가 모터 박스 베어링에 도달되는 것이 차단되는 것을 특징으로 하는 선박용 추진 장치.
  5. 제 4 항에 있어서, 선박용 추진 장치는
    모터 박스 가스 저장실과 회전 수직축 사이를 밀봉하여 모터 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 모터 박스 패킹 링을 더 포함하는 것을 특징으로 하는 선박용 추진 장치.
  6. 유입구와 배출구가 형성되고, 내부의 임펠러 날개의 회전에 의해, 유체가 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되는 수류 케이싱;
    수류 케이싱의 상부에 수직으로 고정되는 조향용 회전축;
    조향용 회전축의 상부에 연결되고, 조향용 회전축을 회전시키는 조향용 모터;
    선박의 하부에 고정되며, 조향용 모터가 내부에 설치되는 조향용 모터 박스;
    조향용 모터 박스의 내면과 조향용 회전축 사이에 위치한 조향용 모터 박스 베어링; 및
    조향용 모터 박스의 하부와 수류 케이싱 상면 사이에 위치하며, 조향용 회전축을 둘러싸고, 내부에 상부와 하부가 개방된 공간인 조향용 모터 박스 가스 공간이 형성된 조향용 모터 박스 가스 저장실을 포함하되,
    조향용 모터 박스 가스 공간에 존재하는 가스에 의해, 조향용 모터 박스 가스 저장실의 하부를 통해 유입되는 유체가 조향용 모터 박스 베어링에 도달되는 것이 차단되는 것을 특징으로 하는 선박용 추진 장치.
  7. 제 6 항에 있어서, 선박용 추진 장치는
    조향용 모터 박스 가스 저장실과 조향용 회전축 사이를 밀봉하여 조향용 모터 박스 가스 저장실 하부를 통해 유입되는 유체를 차단하는 조향용 모터 박스 패킹 링을 더 포함하는 것을 특징으로 하는 선박용 추진 장치.
  8. 전면과 후면에 각각 유입구와 배출구가 형성된 수류 케이싱;
    수류 케이싱의 상부에 위치한 적어도 하나의 임펠러 모터;
    상기 적어도 하나의 임펠러 모터의 하부에 수직으로 연결되어 회전되는 회전 수직축; 및
    회전 수직축의 외주면에 부착된 임펠러 날개를 포함하되,
    임펠러 모터가 회전 수직축 및 임펠러 날개를 회전시키면, 유체가 수류 케이싱의 유입구로 유입되어 임펠러 날개를 통과하여 수류 케이싱의 배출구로 배출되며,
    수류 케이싱은 수류 케이싱의 측면에 임펠러 날개 측면 커버부를 포함하되,
    임펠러 날개 측면 커버부는, 임펠러 날개가 배출구로부터 유입구를 향해 회전하는 영역을 임펠러 날개의 회전 궤도를 따라 임펠러 날개를 감싸는 것을 특징으로 하는 선박용 추진 장치.
  9. 제 8 항에 있어서,
    임펠러 모터는 수류 케이싱의 상부에 두 개가 위치되되,
    수류 케이싱의 유입구로 유입된 유체가, 회전 수직축들의 사이를 통과하여 배출구로 배출되도록 임펠러 모터가 배열된 것을 특징으로 하는 선박용 추진 장치.
  10. 제 9 항에 있어서,
    수류 케이싱은 회전 수직축들 사이에 유입구로부터 배출구 방향으로 연장되도록 위치하는 와류 방지 플레이트를 포함하는 것을 특징으로 하는 선박용 추진 장치.
PCT/KR2018/004998 2017-04-28 2018-04-30 전기추진 선박용 수직축 임펠러 날개 추진 장치 WO2018199708A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0055232 2017-04-28
KR20170055232 2017-04-28
KR20170058411 2017-05-11
KR10-2017-0058411 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018199708A1 true WO2018199708A1 (ko) 2018-11-01

Family

ID=63919897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004998 WO2018199708A1 (ko) 2017-04-28 2018-04-30 전기추진 선박용 수직축 임펠러 날개 추진 장치

Country Status (2)

Country Link
KR (1) KR101916147B1 (ko)
WO (1) WO2018199708A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987729A (zh) * 2022-05-30 2022-09-02 中国船舶重工集团公司第七一九研究所 集成电机推进装置及船舶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230148507A (ko) 2022-04-18 2023-10-25 경상국립대학교산학협력단 선박의 배터리 열 관리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025236A (ko) * 2000-06-07 2003-03-28 롤스 로이스 아베 선박용 추진 시스템
US7387556B1 (en) * 2006-03-01 2008-06-17 Brunswick Corporation Exhaust system for a marine propulsion device having a driveshaft extending vertically through a bottom portion of a boat hull
WO2010086958A1 (ja) * 2009-01-27 2010-08-05 シーベルインターナショナル株式会社 水力発電装置
KR20130000091A (ko) * 2011-06-22 2013-01-02 한국해양연구원 아지무스 추진기
KR20130025326A (ko) * 2011-08-31 2013-03-11 이성우 수직축 선박추진장치와 선박발전장치
KR20140108321A (ko) * 2011-12-28 2014-09-05 바르실라 핀랜드 오이 해상 선박 추진 장치의 윤활 시스템 개선 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965983B1 (ja) 1998-10-29 1999-10-18 川崎重工業株式会社 立型ウオータジェット推進機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025236A (ko) * 2000-06-07 2003-03-28 롤스 로이스 아베 선박용 추진 시스템
US7387556B1 (en) * 2006-03-01 2008-06-17 Brunswick Corporation Exhaust system for a marine propulsion device having a driveshaft extending vertically through a bottom portion of a boat hull
WO2010086958A1 (ja) * 2009-01-27 2010-08-05 シーベルインターナショナル株式会社 水力発電装置
KR20130000091A (ko) * 2011-06-22 2013-01-02 한국해양연구원 아지무스 추진기
KR20130025326A (ko) * 2011-08-31 2013-03-11 이성우 수직축 선박추진장치와 선박발전장치
KR20140108321A (ko) * 2011-12-28 2014-09-05 바르실라 핀랜드 오이 해상 선박 추진 장치의 윤활 시스템 개선 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114987729A (zh) * 2022-05-30 2022-09-02 中国船舶重工集团公司第七一九研究所 集成电机推进装置及船舶
CN114987729B (zh) * 2022-05-30 2024-03-26 中国船舶重工集团公司第七一九研究所 集成电机推进装置及船舶

Also Published As

Publication number Publication date
KR20180121426A (ko) 2018-11-07
KR101916147B1 (ko) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2018199708A1 (ko) 전기추진 선박용 수직축 임펠러 날개 추진 장치
KR101313512B1 (ko) 추력발생장치
US7472549B2 (en) Monocoque turbo-generator
CA2683740C (en) Fluid pump system
EP1451449B1 (en) Method and device for minimizing oil consumption in a gas turbine engine
US8449245B2 (en) Vertically rotatable shaft assembly with thermally insulated housing
KR101256764B1 (ko) 추력발생장치
US5291087A (en) Sealed electric motor assembly
US3746128A (en) Procedure for improving the sealing of an aerodynamic pressure wave machine and a device to effect the procedure
WO2015137746A1 (ko) 원심력 추진장치 및 이를 포함하는 선박
WO2009127774A1 (en) Propulsion and bearing arrangement for a ship and bearing arrangement
KR20040029131A (ko) 엔진이나 발전기를 포함한 내충격 전기 선박 엔진
JP2009516808A (ja) 磁気シール組立体
WO2010107276A2 (ko) 축류형 다단터빈
CN108045496A (zh) 全回转舵桨装置的修换方法
CN201090446Y (zh) 罗茨风机输入轴上的集装式双端面密封装置
WO2020189967A1 (ko) 선박용 발전기
WO2020122304A1 (ko) 무급유 베어링이 구비된 전동 과급기
CN108457894A (zh) 高效无泄漏屏蔽泵
CN115126777B (zh) 推力轴承和船舶推进器
JPH04275044A (ja) 水中機械
WO2017195987A1 (ko) 수직형 인라인 소수력발전장치
CN216278631U (zh) 一种立式高温电石渣浆泵的保护结构
WO2022114755A1 (ko) 전기 모터 일체형 로켓 엔진 펌프
JPS63248455A (ja) 対向方向にかつ相並んで回転する二つのロータシステムのための駆動兼支承装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2017-0055232

Country of ref document: KR

Date of ref document: 20191025

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 10-2017-0058411

Country of ref document: KR

Date of ref document: 20191025

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18791729

Country of ref document: EP

Kind code of ref document: A1