WO2018199577A1 - 레이저 다이오드 및 그 제조 방법 - Google Patents

레이저 다이오드 및 그 제조 방법 Download PDF

Info

Publication number
WO2018199577A1
WO2018199577A1 PCT/KR2018/004692 KR2018004692W WO2018199577A1 WO 2018199577 A1 WO2018199577 A1 WO 2018199577A1 KR 2018004692 W KR2018004692 W KR 2018004692W WO 2018199577 A1 WO2018199577 A1 WO 2018199577A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
layer
manufacturing
well layer
substrate
Prior art date
Application number
PCT/KR2018/004692
Other languages
English (en)
French (fr)
Inventor
이재진
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Publication of WO2018199577A1 publication Critical patent/WO2018199577A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Definitions

  • the present invention relates to a laser diode and a method of manufacturing the same.
  • Main wavelengths of laser diodes used for optical communication include 850 nm, 980 nm, 1.3 um, and 1.55 um. Of these, the wavelengths used for long-haul or metro-network communications for long distances are 1.55 um and 1.3 um.
  • a laser diode having an indium gallium arsenide phosphide (InGaAsP) quantum well structure is used on an indium phosphide (InP) substrate to emit infrared rays of 1.3 um and 1.55 um wavelengths.
  • InGaAsP indium gallium arsenide phosphide
  • such a conventional laser diode has a poor thermal stability and has a high cost problem due to the use of an InP substrate.
  • GaAs gallium arsenide
  • the technical problem to be solved is to provide a laser diode which is excellent in thermal stability and can be manufactured at low cost, and a method of manufacturing the same.
  • a method of manufacturing a laser diode includes the steps of positioning a substrate; Growing a buffer layer on the substrate; And growing a barrier layer including GaAs and a well layer including Ge on the buffer layer to alternate with each other.
  • IBuGe In growing the well layer, IBuGe can be grown by MOCVD or MBE using Ge precursor.
  • the barrier layer and the well layer may be grown to have a superlattice structure or a quantum well structure on the buffer layer.
  • the buffer layer may grow on the substrate inclined to 15 degrees or less.
  • the barrier layer may further include at least one of In, P, and Al as a component.
  • the growth rate of the well layer may be slower than the growth rate of the barrier layer.
  • the growth rate of the well layer may be 0.01 to 100 angstroms per second, and the growth rate of the barrier layer may be 0.01 to 100 angstroms per second.
  • a pair of the well layer and the barrier layer may be grown to be 1 to 100 pairs.
  • the well layer may further include Sn or C as a component.
  • the barrier layer may be grown to a thickness of 0.3 to 500 nm.
  • the well layer may be grown to a thickness of 0.3 to 100 nm.
  • the substrate Before growing the buffer layer, the substrate may be heat treated at an AsH 3 flow rate of 1 to 2000 sccm and 60 minutes or less at 500 to 900 degrees Celsius.
  • the pressure of the reactor is set to 1013 mbar or less, the growth temperature can be maintained at 500 to 900 degrees Celsius.
  • Trimethylgallium (TMGa) or triethylgallium (TEGa) is used as the Ga precursor
  • trimethylindium (TMIn) or triethylindium (TEIn) is used as the In precursor
  • AsH 3 (arsine) or tertiarybutylarsine (TBA) is used as the As precursor
  • PH 3 (phosphine ) At least one of tertiarybutylphosphine (TBP), and ditertiarybutylphosphine (DTBP) may be used as the P precursor.
  • TMP tertiarybutylphosphine
  • DTBP ditertiarybutylphosphine
  • the substrate A buffer layer on the substrate; And a functional layer disposed on the buffer layer and stacked such that a barrier layer including GaAs and a well layer including Ge alternate with each other.
  • the well layer can be grown by MOCVD or MBE using IBuGe as Ge precursor.
  • the interface of the substrate may be inclined to 15 degrees or less.
  • the barrier layer may further include at least one of In, P, and Al as a component.
  • the barrier layer may be 0.3 to 500 nm thick, the well layer may be 0.3 to 100 nm thick, and the buffer layer may be 10 ⁇ m or less thick.
  • the well layer may further include Sn or C as a component.
  • the laser diode and its manufacturing method according to the present invention are excellent in thermal stability and can be manufactured at low cost.
  • 1 is a view for explaining one step of the manufacturing method of a laser diode according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining two steps of a method of manufacturing a laser diode according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining three steps of a method of manufacturing a laser diode according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the four steps of the manufacturing method of the laser diode according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating five steps of a method of manufacturing a laser diode and a manufactured laser diode according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a laser diode according to another embodiment of the present invention.
  • FIG. 7 is a view for explaining photoluminescence of a laser diode according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the laminated structure of a laser diode according to an embodiment of the present invention through a TEM photograph.
  • FIGS. 1 to 4 are views for explaining steps 1 to 4 of the method of manufacturing a laser diode according to an embodiment of the present invention
  • Figure 5 is a five step of the manufacturing method of a laser diode and It is a figure for demonstrating the manufactured laser diode.
  • the substrate 100 is positioned. Specifically, the substrate 100 may be positioned in a metalorganic chemical vapor deposition (MOCVD) device.
  • the substrate 100 may include at least one of GaAs, Si, and Ge.
  • MOCVD is one of chemical vapor deposition (CVD) methods in which a source gas flows out on a high temperature substrate to cause a decomposition reaction on the surface thereof to form a thin film, and the organometallic complex is included in the source gas.
  • CVD chemical vapor deposition
  • a molecular beam epitaxy (MBE) device may be used.
  • the interface of the substrate 100 may be inclined to 15 degrees or less.
  • the interface of the substrate 100 may be inclined 6 degrees in the [111] direction.
  • the buffer layer 200 may be grown on the substrate 100.
  • the buffer layer 200 may include at least one of GaAs and Si 1 - x Ge x (x is equal to or greater than 0 and equal to or less than 1).
  • the buffer layer 200 may include GaAs.
  • the substrate 100 comprises a Si (silicon) Si is 1 - can comprise x Ge x (x is not less than 0 but not more than 1).
  • the buffer layer 200 may include at least one of GaAs and Ge.
  • the substrate 100 before the buffer layer 200 is grown, the substrate 100 may be heat-treated at 60 minutes or less at an AsH 3 flow rate of 1 to 2000 sccm and 500 to 900 degrees Celsius.
  • the substrate 100 may be heat treated for 5 minutes at an AsH 3 flow rate of 30 sccm and 670 degrees Celsius before the buffer layer 200 is grown.
  • the thin film may be grown while the natural oxide film on the surface of the substrate 100 is removed.
  • H 2 or N 2 is used as a carrier gas for depositing a thin film on the substrate 100
  • the pressure of the reactor is set to 1013 mbar or less
  • the growth temperature is Celsius It can be maintained at 500 to 900 degrees.
  • the pressure in the reactor is fixed at 100 mbar and the growth temperature can be maintained at 650 degrees Celsius.
  • the grown buffer layer 200 may have a thickness of 10 ⁇ m or less. Preferably, the grown buffer layer 200 may have a thickness of 200 nm.
  • the well layer and the barrier layer to be described later may be grown to have a quantum well structure or a superlattice structure.
  • barrier layers 300 and 300_1 including GaAs and well layers 400_1 including Ge (germanium) may be grown alternately on the buffer layer 200. Therefore, the well layer 400_1 is positioned to be interposed between the barrier layers 300 and 300_1, and the electrons are formed due to the difference between the energy gap of the barrier layers 300 and 300_1 and the energy gap of the well layer 400_1.
  • the laser diode 10 using the confinement in the well layer 400_1 is formed.
  • the group of the barrier layers 300 and 300_1 and the well layer 400_1 is called a functional layer.
  • the present embodiment in particular, in growing the well layer 400_1, it is possible to grow by MOCVD using IBuGe (isobutylgermane) as a Ge precursor.
  • the Ge layer was grown by ultra-high vacuum chemical vapor deposition (UHV-CVD) mainly using germane gas.
  • UHV-CVD can be used to grow group III-V compound semiconductors. Therefore, it is not applicable to this embodiment based on GaAs. Therefore, the present embodiment is characterized in that the well layer 400_1 can be grown in-situ on the III-V compound using MOCVD using IBuGe as a Ge precursor.
  • IBuGe can be grown as MBE using Ge precursors.
  • At least one of germane, dimethylamino germanium trichloride (DiMAGeC), tetramethylgermane (TGM), and tetraethylgermane (TGE) may be used as a Ge precursor, for example, using MOCVD or MBE. Can grow. Those skilled in the art will be able to use other types of metalorganic sources not described herein as Ge precursors.
  • the well layer 400_1 may further include Sn (Tin) or C (Carbon) as a component.
  • the well layer 400_1 may add an appropriate amount of Sn or C as an impurity so that the laser diode 10 emits a wavelength in the 1200 to 1700 nm band through band gap optimization.
  • the thickness and the composition of each well layer 400_1 or the barrier layers 300 and 300_1 may be adjusted to adjust the band of the wavelength.
  • the barrier layers 300 and 300_1 may be made of GaAs, but may be formed of other compositions.
  • the barrier layers 300 and 300_1 may be made of indium gallium arsenide (InGaAs) by further including In (indium) as a constituent.
  • the barrier layers 300 and 300_1 may be made of InGaAsP further including P (phosphorus) as a component.
  • the barrier layers 300 and 300_1 may be made of AlGaAs by further including Al (aluminum) as a component.
  • trimethylgallium (TMGa) or triethylgallium (TEGa) is used as a gallium (Ga) precursor
  • trimethylindium (TE) or triethylindium (TEIn) is used as an In precursor
  • at least one of PH 3 (phosphine), tertiarybutylphosphine (TBP), and dietarybutylphosphine (DTBP) may be used as the P precursor.
  • the growth rate of the well layer 400_1 may be slower than the growth rate of the barrier layers 300 and 300_1.
  • the growth rate of the well layer 400_1 may be 0.01 to 100 angstroms per second, and the growth rate of the barrier layers 300 and 300_1 may be 0.01 to 100 angstroms per second.
  • the growth rate of the well layer 400_1 may be 4.4 angstroms per second, and the growth rate of the barrier layers 300 and 300_1 may be 5.2 angstroms per second.
  • the grown well layer 400_1 may be 0.3 to 100 nm thick. Preferably, the grown well layer 400_1 may be 5 or 20 nm thick.
  • the grown barrier layers 300 and 300_1 may be 0.3 to 500 nm thick.
  • the grown barrier layers 300 and 300_1 may be 40 nm thick.
  • FIG. 6 is a view for explaining a laser diode according to another embodiment of the present invention.
  • the laser diode 10 of the embodiment of FIG. 5 has one quantum well 300, 400_1, 300_1.
  • the laser diode 20 may be configured to have a plurality of quantum wells.
  • the laser diode 20 includes n pairs (pair_1, ..., pair_n) when one well layer 400_1 and one barrier layer 300_1 are paired. It may have a laminated structure. That is, the barrier layer 300 may be first positioned on the buffer layer 200, and n pairs of the well layer and the barrier layer may be positioned thereon.
  • n is a natural number, and according to one embodiment of the present invention, n may be a natural number between 1 and 100. Preferably n may be 5, 10, or 15.
  • barrier layer 300 and the well layer 400_1 may be paired. Accordingly, the upper laminated structure may be different.
  • FIG. 7 is a view for explaining photoluminescence of a laser diode according to an embodiment of the present invention.
  • photoluminescence of a laser diode having a structure in which a 5 nm Ge well layer and a 20 nm GaAs barrier layer are stacked in 15 pairs is shown as a first graph (graph1), and 5 nm
  • a photoluminescence of a laser diode having a structure in which a Ge well layer of and a 15 nm InGaAs barrier layer is stacked in 15 pairs is shown in a second graph (graph2).
  • graph1, graph2 it can be seen that emits strong infrared rays at room temperature near 1700 nm wavelength.
  • an appropriate amount of impurities may be added to the well layer, or the thickness of at least one of the well layer and the barrier layer may be adjusted.
  • the laser diode 20 including the Ge-based well layer fabricated by MOCVD using IBuGe as a Ge precursor according to an embodiment of the present invention is a laser diode fabricated using the conventional molecular beam epitaxy (MBE). It can be confirmed that it generates a very strong photoluminescence compared to.
  • MBE molecular beam epitaxy
  • FIG. 8 is a view for explaining a stacked structure of a laser diode according to an embodiment of the present invention through a transmission electron microscopy (TEM) photograph.
  • TEM transmission electron microscopy
  • a Ge well layer (21.6 nm, 20.6 nm, 20.8 nm, 20.5 nm) having a thickness of approximately 20 nm and a GaAs barrier layer having a thickness of approximately 30 nm may be used. It can be seen that (29.3 nm, 25.7 nm, 29.8 nm, 30 nm, 30 nm) are alternately stacked neatly.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명의 레이저 다이오드의 제조 방법은 기판을 위치시키는 단계; 상기 기판 상에 버퍼층을 성장시키는 단계; 및 상기 버퍼층 상에 GaAs를 포함하는 배리어층 및 Ge를 포함하는 우물층이 서로 교번하도록 성장시키는 단계를 포함한다.

Description

레이저 다이오드 및 그 제조 방법
본 발명은 레이저 다이오드 및 그 제조 방법에 관한 것이다.
광통신에 사용하는 레이저 다이오드의 주요 파장은 850 nm, 980 nm, 1.3 um, 및 1.55 um 등이 있다. 이 중에서 장거리용 롱-하울(long-haul) 또는 메트로네트워크(metro-network) 통신에 사용되는 파장은 1.55 um와 1.3 um이다.
일반적으로, 1.3 um 및 1.55 um 파장의 적외선을 방출하기 위해서 InP(indium phosphide) 기판 위에 InGaAsP(indium gallium arsenide phosphide) 양자우물 구조를 갖는 레이저 다이오드를 사용한다. 하지만 이러한 종래의 레이저 다이오드는 열적 안정성이 취약하고, InP 기판 사용으로 인한 고비용 문제가 있다.
따라서 상대적으로 저렴하고 열적 안정성이 우수한 GaAs(gallium arsenide) 기반의 레이저 다이오드를 생산하고자 하는 시도가 있었으나, 다양한 기술적인 문제로 인해서 아직까지 상용화되지 못하고 있는 실정이다.
해결하고자 하는 기술적 과제는, 열적 안정성이 우수하고 저비용으로 제조 가능한 레이저 다이오드 및 그 제조 방법을 제공하는 데 있다.
본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법은, 기판을 위치시키는 단계; 상기 기판 상에 버퍼층을 성장시키는 단계; 및 상기 버퍼층 상에 GaAs를 포함하는 배리어층 및 Ge를 포함하는 우물층이 서로 교번하도록 성장시키는 단계를 포함한다.
상기 우물층을 성장시킴에 있어서, IBuGe을 Ge 전구체로 사용하여 MOCVD 또는 MBE로 성장시킬 수 있다.
상기 배리어층 및 상기 우물층은 상기 버퍼층 상에서 초격자(superlattice) 구조 또는 양자 우물 구조를 갖도록 성장될 수 있다.
상기 버퍼층은 15 도 이하로 기울어진 상기 기판 상에서 성장할 수 있다.
상기 배리어층은 In, P, 및 Al 중 적어도 하나를 구성 성분으로 더 포함할 수 있다.
상기 우물층을 성장시키는 속도는 상기 배리어층을 성장시키는 속도보다 느릴 수 있다.
상기 우물층을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬이고, 상기 배리어층을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬일 수 있다.
상기 버퍼층 상에, 상기 우물층 및 상기 배리어층의 쌍(pair)이 1 내지 100 쌍이 되도록 성장시킬 수 있다.
상기 우물층은 Sn 또는 C를 구성 성분으로 더 포함할 수 있다.
상기 배리어층은 0.3 내지 500 nm 두께로 성장될 수 있다.
상기 우물층은 0.3 내지 100 nm 두께로 성장될 수 있다.
상기 버퍼층을 성장시키기 전에 상기 기판을 1 내지 2000 sccm의 AsH3 유량 및 섭씨 500 내지 900 도에서 60분 이하로 열처리할 수 있다.
운반가스로 H2 또는 N2가 사용되고, 반응기(reactor)의 압력은 1013 mbar 이하로 설정되고, 성장온도는 섭씨 500 내지 900 도로 유지될 수 있다.
TMGa(trimethylgallium) 또는 TEGa(triethylgallium)가 Ga 전구체로서 사용되고, TMIn(trimethylindium) 또는 TEIn(triethylindium)가 In 전구체로서 사용되고, AsH3(arsine) 또는 TBA(tertiarybutylarsine)가 As 전구체로서 사용되고, PH3(phosphine), TBP(tertiarybutylphosphine), 및 DTBP(ditertiarybutylphosphine) 중 적어도 하나가 P 전구체로서 사용될 수 있다.
본 발명의 한 실시예에 따른 레이저 다이오드는, 기판; 상기 기판 상에 위치하는 버퍼층; 및 상기 버퍼층 상에 위치하고, GaAs를 포함하는 배리어층 및 Ge를 포함하는 우물층이 서로 교번하도록 적층된 기능층을 포함한다.
상기 우물층은 IBuGe을 Ge 전구체로 사용하여 MOCVD 또는 MBE로 성장될 수 있다.
상기 기판의 계면은 15 도 이하로 기울어질 수 있다.
상기 배리어층은 In, P, 및 Al 중 적어도 하나를 구성 성분으로 더 포함할 수 있다.
상기 배리어층은 0.3 내지 500 nm 두께이고, 상기 우물층은 0.3 내지 100 nm 두께이고, 상기 버퍼층은 10 um 이하의 두께일 수 있다.
상기 우물층은 Sn 또는 C를 구성 성분으로 더 포함할 수 있다.
본 발명에 따른 레이저 다이오드 및 그 제조 방법은 열적 안정성이 우수하고 저비용으로 제조 가능하다.
도 1은 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 1 단계를 설명하기 위한 도면이다.
도 2는 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 2 단계를 설명하기 위한 도면이다.
도 3은 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 3 단계를 설명하기 위한 도면이다.
도 4는 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 4 단계를 설명하기 위한 도면이다.
도 5는 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 5 단계 및 제조된 레이저 다이오드를 설명하기 위한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 레이저 다이오드를 설명하기 위한 도면이다.
도 7은 본 발명의 실시예에 따른 레이저 다이오드의 포토루미네슨스를 설명하기 위한 도면이다.
도 8은 본 발명의 한 실시예에 따른 레이저 다이오드의 적층 구조를 TEM 사진을 통해 설명하기 위한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시 예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 따라서 앞서 설명한 참조 부호는 다른 도면에서도 사용할 수 있다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 과장되게 나타낼 수 있다.
도 1 내지 4는 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 1 내지 4 단계를 설명하기 위한 도면이고, 도 5는 본 발명의 한 실시예에 따른 레이저 다이오드의 제조 방법의 5 단계 및 제조된 레이저 다이오드를 설명하기 위한 도면이다.
도 1을 참조하면, 우선 기판(100)을 위치시킨다. 구체적으로 기판(100)을 MOCVD(metalorganic chemical vapor deposition) 장치에 위치시킬 수 있다. 기판(100)은 GaAs, Si, 및 Ge 중 적어도 하나를 포함하여 구성될 수 있다.
MOCVD는 고온의 기판 위에 원료 가스를 유출시켜, 그 표면상에서 분해반응을 일으켜 박막을 형성하는 화학증착법(chemical vapor deposition, CVD)의 하나로서, 원료 가스 중에 유기 금속 착물을 포함하게 된다.
다른 실시예에 따르면, MBE(molecular beam epitaxy) 장치를 사용할 수도 있다.
한 실시예에 따르면, 기판(100)의 계면은 15 도 이하로 기울어져 있을 수 있다. 바람직하게는 기판(100)의 계면은 [111] 방향으로 6 도 기울어져 있을 수 있다.
도 2를 참조하면, 다음으로 기판(100) 상에 버퍼층(200)을 성장시킬 수 있다. 버퍼층(200)은 GaAs 및 Si1 - xGex(x는 0 이상 1 이하) 중 적어도 하나를 포함하여 구성될 수 있다. 예를 들어, 기판(100)이 GaAs를 포함하는 경우 버퍼층(200)은 GaAs를 포함하여 구성될 수 있다. 다른 실시예에서, 기판(100)이 Si(silicon)를 포함하는 경우 버퍼층(200)은 Si1 - xGex(x는 0 이상 1 이하)를 포함하여 구성될 수 있다. 다른 실시예에서, 기판(100)이 Ge를 포함하는 경우 버퍼층(200)은 GaAs 및 Ge 중 적어도 하나를 포함하여 구성될 수 있다.
한 실시예에 따르면, 버퍼층(200)을 성장시키기 전에 기판(100)을 1 내지 2000 sccm의 AsH3 유량 및 섭씨 500 내지 900 도에서 60분 이하로 열처리할 수 있다. 바람직하게는, 버퍼층(200)을 성장시키기 전에 기판(100)을 30 sccm의 AsH3 유량 및 섭씨 670 도에서 5 분 동안 열처리할 수 있다. 이러한 과정을 통해서 기판(100) 표면의 자연 산화막이 제거된 상태에서 박막을 성장시킬 수 있다.
한 실시예에 따르면, 기판(100) 상에 박막을 증착하기 위한 운반가스(carrier gas)로 H2 또는 N2가 사용되고, 반응기(reactor)의 압력은 1013 mbar 이하로 설정되고, 성장온도는 섭씨 500 내지 900 도로 유지될 수 있다. 바람직하게는, 반응기의 압력은 100 mbar로 고정되고, 성장온도는 섭씨 650 도로 유지될 수 있다.
성장된 버퍼층(200)은 10 um 이하의 두께를 가질 수 있다. 바람직하게는, 성장된 버퍼층(200)은 200 nm 두께를 가질 수 있다.
이러한 버퍼층(200)을 통해 후술하는 우물층과 배리어층은 양자 우물 구조 또는 초격자(superlattice) 구조를 갖도록 성장될 수 있다.
도 3 내지 5를 참조하면, 버퍼층(200) 상에 GaAs를 포함하는 배리어층(300, 300_1) 및 Ge(germanium)를 포함하는 우물층(400_1)이 서로 교번하도록 성장시킬 수 있다. 따라서 우물층(400_1)은 배리어층(300, 300_1) 사이에 개재되도록 위치하게 되고, 배리어층(300, 300_1)의 에너지 갭(energy gap)과 우물층(400_1)의 에너지 갭의 차이로 인해서 전자가 우물층(400_1)에 속박됨을 이용하는 레이저 다이오드(10)가 형성된다. 본 실시예에서는 배리어층(300, 300_1)과 우물층(400_1)의 그룹을 기능층으로 명명한다.
본 실시예에서는, 특히, 우물층(400_1)을 성장시킴에 있어서, IBuGe(isobutylgermane)를 Ge 전구체로 사용하여 MOCVD로 성장시킬 수 있다. 기존 연구에서는 Ge 층을 성장시킴에 있어서 주로 저메인 가스(germane gas)를 이용해 UHV-CVD(ultra-high vacuum chemical vapor deposition)로 성장시켰는데, UHV-CVD로는 III-V족 화합물 반도체를 성장시킬 수 없으므로, GaAs를 기반으로 하는 본 실시예에 적용이 불가능하다. 따라서, 본 실시예는 IBuGe를 Ge 전구체로 사용한 MOCVD를 이용하여 III-V족 화합물 위에 우물층(400_1)을 인사이투(in-situ)로 성장시킬 수 있는 점에 큰 특징이 있다. 다른 실시예에서는 IBuGe를 Ge 전구체로 사용하여 MBE로 성장시킬 수 있다.
또한 다른 실시예에서는 우물층(400_1)을 성장시킴에 있어서, 저메인(germane), DiMAGeC(dimethylamino germanium trichloride), TMGe(tetramethylgermane), 및 TEGe(tetraethylgermane) 중 적어도 하나를 Ge 전구체로 사용하여 MOCVD 또는 MBE로 성장시킬 수 있다. 당업자라면 본 명세서에 기재되지 않은 다른 종류의 금속유기 소스(metalorganic source)를 Ge 전구체로 이용해볼 수 있을 것이다.
한 실시예에 따르면 우물층(400_1)은 Sn(Tin) 또는 C(Carbon)를 구성 성분으로 더 포함할 수 있다. 우물층(400_1)은 적당량의 Sn 또는 C를 불순물으로 첨가하여 밴드갭 최적화를 통해 레이저 다이오드(10) 가 1200 내지 1700 nm 대역의 파장을 방출하도록 할 수도 있다. 파장의 대역을 조절하기 위하여 각 우물층(400_1) 또는 배리어층(300, 300_1)의 두께 및 조성을 조절할 수도 있다.
배리어층(300, 300_1)은 GaAs를 기반으로 이루어지나, 다른 조성으로 구성될 수도 있다. 예를 들어, 배리어층(300, 300_1)은 In(indium)을 구성 성분으로 더 포함하여 InGaAs(indium gallium arsenide)로 조성될 수 있다. 또한, 배리어층(300, 300_1)은 P(phosphorus)를 구성 성분으로 더 포함하여 InGaAsP로 조성될 수 있다. 또한, 배리어층(300, 300_1)은 Al(aluminum)을 구성성분으로 더 포함하여 AlGaAs로 조성될 수도 있다.
한 실시예에서는 이러한 조성을 위해, TMGa(trimethylgallium) 또는 TEGa(triethylgallium)가 Ga(gallium) 전구체로서 사용되고, TMIn(trimethylindium) 또는 TEIn(triethylindium)가 In 전구체로서 사용되고, AsH3(arsine) 또는 TBA(tertiarybutylarsine)가 As 전구체로서 사용되고, PH3(phosphine), TBP(tertiarybutylphosphine), 및 DTBP(ditertiarybutylphosphine) 중 적어도 하나가 P 전구체로서 사용될 수 있다.
한 실시예에 따르면 우물층(400_1)을 성장시키는 속도는 배리어층(300, 300_1)을 성장시키는 속도보다 느릴 수 있다. 구체적으로, 우물층(400_1)을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬이고, 배리어층(300, 300_1)을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬일 수 있다. 바람직하게는, 우물층(400_1)을 성장시키는 속도는 초당 4.4 옹스트롬이고, 배리어층(300, 300_1)을 성장시키는 속도는 초당 5.2 옹스트롬일 수 있다.
한 실시예에 따르면 성장된 우물층(400_1)은 0.3 내지 100 nm 두께일 수 있다. 바람직하게는 성장된 우물층(400_1)은 5 또는 20 nm 두께일 수 있다.
한 실시예에 따르면 성장된 배리어층(300, 300_1)은 0.3 내지 500 nm 두께일 수 있다. 바람직하게는 성장된 배리어층(300, 300_1)은 40 nm 두께일 수 있다.
도 6은 본 발명의 다른 실시예에 따른 레이저 다이오드을 설명하기 위한 도면이다.
도 5의 실시예의 레이저 다이오드(10)는 하나의 양자 우물(300, 400_1, 300_1)을 갖는다. 하지만 도 6의 실시예와 같이 레이저 다이오드(20)는 복수의 양자 우물을 갖도록 구성될 수도 있다.
도 6을 참조하면, 레이저 다이오드(20)는, 하나의 우물층(400_1)과 하나의 배리어층(300_1)을 한 쌍(pair_1)으로 할 때, n 쌍(pair_1, ..., pair_n)의 적층 구조를 가질 수 있다. 즉, 버퍼층(200) 상에 배리어층(300)이 먼저 위치하고, 그 위에 우물층 및 배리어층의 쌍이 n 쌍 위치할 수 있다. n은 자연수이며, 본 발명의 한 실시예에 따르면 n은 1 내지 100 사이의 자연수일 수 있다. 바람직하게는 n은 5, 10, 또는 15일 수 있다.
다른 실시예에서는 배리어층(300)과 우물층(400_1)이 쌍을 이룰 수도 있다. 그에 따라 상부 적층 구조가 달라 질 수 있다.
도 7은 본 발명의 실시예에 따른 레이저 다이오드의 포토루미네슨스를 설명하기 위한 도면이다.
도 7을 참조하면 5 nm의 Ge 우물층 및 20 nm의 GaAs 배리어층을 15 쌍으로 적층한 구조의 레이저 다이오드의 포토루미네슨스(photoluminescence)가 제1 그래프(graph1)로 도시되어 있고, 5 nm의 Ge 우물층 및 20 nm의 InGaAs 배리어층을 15 쌍으로 적층한 구조의 레이저 다이오드의 포토루미네슨스가 제2 그래프(graph2)로 도시되어 있다.
제1 및 제2 그래프(graph1, graph2)를 참조하면 1700 nm 파장 부근에서 강한 적외선을 상온에서 방출함을 확인할 수 있다. 전술한 바와 같이 이러한 파장을 1550 nm로 맞추기 위해서 우물층에 적당량의 불순물을 첨가하거나, 우물층 및 배리어층 중 적어도 하나의 두께를 조절할 수 있다.
이상으로, 본 발명의 한 실시예에 따라 IBuGe를 Ge 전구체로 사용하여 MOCVD로 제작된 Ge 기반 우물층을 포함하는 레이저 다이오드(20)는 기존의 MBE(molecular beam epitaxy)를 이용하여 제작한 레이저 다이오드에 비해 매우 강한 포토루미네슨스를 발생시킴을 확인할 수 있었다.
도 8은 본 발명의 한 실시예에 따른 레이저 다이오드의 적층 구조를 TEM(transmission electron microscopy) 사진을 통해 설명하기 위한 도면이다.
도 8을 참조하면, 본 발명의 실시예에 따라 레이저 다이오드를 제조하는 경우, 대략 20 nm 두께의 Ge 우물층(21.6 nm, 20.6 nm, 20.8 nm, 20.5 nm)과 대략 30 nm 두께의 GaAs 배리어층(29.3 nm, 25.7 nm, 29.8 nm, 30 nm, 30 nm)이 서로 교번하면서 깔끔하게 적층되어 있음을 확인할 수 있다.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (20)

  1. 기판을 위치시키는 단계;
    상기 기판 상에 버퍼층을 성장시키는 단계; 및
    상기 버퍼층 상에 GaAs를 포함하는 배리어층 및 Ge를 포함하는 우물층이 서로 교번하도록 성장시키는 단계를 포함하는
    레이저 다이오드의 제조 방법.
  2. 제1 항에 있어서,
    상기 우물층을 성장시킴에 있어서,
    IBuGe을 Ge 전구체로 사용하여 MOCVD 또는 MBE로 성장시키는,
    레이저 다이오드의 제조 방법.
  3. 제1 항에 있어서,
    상기 배리어층 및 상기 우물층은 상기 버퍼층 상에서 초격자(superlattice) 구조 또는 양자 우물 구조를 갖도록 성장되는,
    레이저 다이오드의 제조 방법.
  4. 제1 항에 있어서,
    상기 버퍼층은 15 도 이하로 기울어진 상기 기판 상에서 성장하는,
    레이저 다이오드의 제조 방법.
  5. 제1 항에 있어서,
    상기 배리어층은 In, P, 및 Al 중 적어도 하나를 구성 성분으로 더 포함하는,
    레이저 다이오드의 제조 방법.
  6. 제1 항에 있어서,
    상기 우물층을 성장시키는 속도는 상기 배리어층을 성장시키는 속도보다 느린,
    레이저 다이오드의 제조 방법.
  7. 제1 항에 있어서,
    상기 우물층을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬이고,
    상기 배리어층을 성장시키는 속도는 초당 0.01 내지 100 옹스트롬인,
    레이저 다이오드의 제조 방법.
  8. 제1 항에 있어서,
    상기 버퍼층 상에,
    상기 우물층 및 상기 배리어층의 쌍(pair)이 1 내지 100 쌍이 되도록 성장시키는,
    레이저 다이오드의 제조 방법.
  9. 제1 항에 있어서,
    상기 우물층은 Sn 또는 C를 구성 성분으로 더 포함하는,
    레이저 다이오드의 제조 방법.
  10. 제1 항에 있어서,
    상기 배리어층은 0.3 내지 500 nm 두께로 성장되는,
    레이저 다이오드의 제조 방법.
  11. 제10 항에 있어서,
    상기 우물층은 0.3 내지 100 nm 두께로 성장되는,
    레이저 다이오드의 제조 방법.
  12. 제1 항에 있어서,
    상기 버퍼층을 성장시키기 전에 상기 기판을 1 내지 2000 sccm의 AsH3 유량 및 섭씨 500 내지 900 도에서 60분 이하로 열처리하는,
    레이저 다이오드의 제조 방법.
  13. 제1 항에 있어서,
    운반가스로 H2 또는 N2가 사용되고, 반응기(reactor)의 압력은 1013 mbar 이하로 설정되고, 성장온도는 섭씨 500 내지 900 도로 유지되는,
    레이저 다이오드의 제조 방법.
  14. 제5 항에 있어서,
    TMGa(trimethylgallium) 또는 TEGa(triethylgallium)가 Ga 전구체로서 사용되고, TMIn(trimethylindium) 또는 TEIn(triethylindium)가 In 전구체로서 사용되고, AsH3(arsine) 또는 TBA(tertiarybutylarsine)가 As 전구체로서 사용되고, PH3(phosphine), TBP(tertiarybutylphosphine), 및 DTBP(ditertiarybutylphosphine) 중 적어도 하나가 P 전구체로서 사용되는,
    레이저 다이오드의 제조 방법.
  15. 기판;
    상기 기판 상에 위치하는 버퍼층; 및
    상기 버퍼층 상에 위치하고, GaAs를 포함하는 배리어층 및 Ge를 포함하는 우물층이 서로 교번하도록 적층된 기능층을 포함하는
    레이저 다이오드.
  16. 제15 항에 있어서,
    상기 우물층은 IBuGe을 Ge 전구체로 사용하여 MOCVD 또는 MBE로 성장된,
    레이저 다이오드.
  17. 제15 항에 있어서,
    상기 기판의 계면은 15 도 이하로 기울어진,
    레이저 다이오드.
  18. 제15 항에 있어서,
    상기 배리어층은 In, P, 및 Al 중 적어도 하나를 구성 성분으로 더 포함하는,
    레이저 다이오드.
  19. 제15 항에 있어서,
    상기 배리어층은 0.3 내지 500 nm 두께이고,
    상기 우물층은 0.3 내지 100 nm 두께이고,
    상기 버퍼층은 10 um 이하의 두께인,
    레이저 다이오드.
  20. 제15 항에 있어서,
    상기 우물층은 Sn 또는 C를 구성 성분으로 더 포함하는,
    레이저 다이오드.
PCT/KR2018/004692 2017-04-24 2018-04-23 레이저 다이오드 및 그 제조 방법 WO2018199577A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170052479A KR101996424B1 (ko) 2017-04-24 2017-04-24 레이저 다이오드 및 그 제조 방법
KR10-2017-0052479 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018199577A1 true WO2018199577A1 (ko) 2018-11-01

Family

ID=63920295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004692 WO2018199577A1 (ko) 2017-04-24 2018-04-23 레이저 다이오드 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR101996424B1 (ko)
WO (1) WO2018199577A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092253A (ko) * 2007-04-11 2008-10-15 스미토모덴키고교가부시키가이샤 Ⅲ-ⅴ족 화합물 반도체의 제조 방법, 쇼트키 배리어 다이오드, 발광 다이오드, 레이저 다이오드 및 이들의 제조 방법
US7596158B2 (en) * 2005-10-28 2009-09-29 Massachusetts Institute Of Technology Method and structure of germanium laser on silicon
KR20110110868A (ko) * 2004-07-27 2011-10-07 크리 인코포레이티드 Ⅲ 족 나이트라이드계 발광 다이오드 및 ⅲ 족 나이트라이드계 반도체 디바이스
KR20150014470A (ko) * 2012-04-26 2015-02-06 어플라이드 머티어리얼스, 인코포레이티드 Led 제조를 위한 pvd 버퍼 층들
KR20160102774A (ko) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541355A (ja) * 1991-08-05 1993-02-19 Fujitsu Ltd 変調半導体材料およびそれを用いた半導体装置
US7158545B2 (en) 2003-09-12 2007-01-02 Massachusetts Institute Of Technology Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion
KR101278117B1 (ko) * 2010-05-20 2013-06-24 아주대학교산학협력단 다중접합 태양전지 및 그 제작방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110868A (ko) * 2004-07-27 2011-10-07 크리 인코포레이티드 Ⅲ 족 나이트라이드계 발광 다이오드 및 ⅲ 족 나이트라이드계 반도체 디바이스
US7596158B2 (en) * 2005-10-28 2009-09-29 Massachusetts Institute Of Technology Method and structure of germanium laser on silicon
KR20080092253A (ko) * 2007-04-11 2008-10-15 스미토모덴키고교가부시키가이샤 Ⅲ-ⅴ족 화합물 반도체의 제조 방법, 쇼트키 배리어 다이오드, 발광 다이오드, 레이저 다이오드 및 이들의 제조 방법
KR20150014470A (ko) * 2012-04-26 2015-02-06 어플라이드 머티어리얼스, 인코포레이티드 Led 제조를 위한 pvd 버퍼 층들
KR20160102774A (ko) * 2015-02-23 2016-08-31 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛

Also Published As

Publication number Publication date
KR20180119039A (ko) 2018-11-01
KR101996424B1 (ko) 2019-07-04

Similar Documents

Publication Publication Date Title
KR102278439B1 (ko) 게르마늄 주석을 포함하는 막의 형성 방법 그리고 그 막을 포함하는 구조물 및 디바이스
US9793115B2 (en) Structures and devices including germanium-tin films and methods of forming same
US7842595B2 (en) Fabricating electronic-photonic devices having an active layer with spherical quantum dots
US6750075B2 (en) Multi color detector
US20040062283A1 (en) System and method for fabricating efficient semiconductor lasers via use of precursors having a direct bond between a group III atom and a nitrogen atom
KR101096331B1 (ko) 화합물 반도체의 제조 방법 및 반도체 장치의 제조 방법
JPH05243614A (ja) 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法
TWI541863B (zh) 用於光活性裝置及相關結構之稀釋氮化物材料的形成方法
KR20080084541A (ko) 반도체 광소자의 제조 방법
WO2018199577A1 (ko) 레이저 다이오드 및 그 제조 방법
JPH0584078B2 (ko)
JP2004235632A (ja) 半導体材料の層を成長させる方法
CN113300214B (zh) 一种高速铝铟镓砷分布反馈式激光器外延结构生长方法
KR100203376B1 (ko) 수평 방향 반도체 피엔 접합 어레이 제조방법
WO2014092320A1 (en) Method of growing gallium nitride based semiconductor layers and method of fabricating light emitting device therewith
WO2013147453A1 (ko) 질화갈륨계 발광 다이오드
KR102602680B1 (ko) 저마늄-주석 막들을 포함하는 구조들과 소자들 및 이들의 제조 방법
CN115189232B (zh) 一种半导体激光器的外延片、外延片制备方法,以及半导体激光器
WO2015083868A1 (ko) 이종 접합 구조를 가지는 발광 다이오드 및 이의 제조방법
CN109300853B (zh) 一种新型发光二极管量子阱及其制备方法
JP2011216800A (ja) 光半導体装置及びその製造方法
CN114566423A (zh) 硅上iii-v族半导体外延结构及其制备方法
WO2013066057A1 (en) Light emitting diode and method for fabricating the same
WO2010064837A2 (ko) 3족 질화물 반도체 발광소자의 제조방법
CN114883916A (zh) 大应变红外量子级联激光器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792330

Country of ref document: EP

Kind code of ref document: A1