WO2018198865A1 - サイロ - Google Patents
サイロ Download PDFInfo
- Publication number
- WO2018198865A1 WO2018198865A1 PCT/JP2018/015753 JP2018015753W WO2018198865A1 WO 2018198865 A1 WO2018198865 A1 WO 2018198865A1 JP 2018015753 W JP2018015753 W JP 2018015753W WO 2018198865 A1 WO2018198865 A1 WO 2018198865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal
- silo
- side wall
- temperature measuring
- measuring cable
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01F—PROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
- A01F25/00—Storing agricultural or horticultural produce; Hanging-up harvested fruit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D90/00—Component parts, details or accessories for large containers
- B65D90/48—Arrangements of indicating or measuring devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/10—Thermometers specially adapted for specific purposes for measuring temperature within piled or stacked materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
Definitions
- the present invention relates to a silo, and more particularly to a coal silo for storing coal.
- thermocouple in order to monitor the heat generation of coal stored in a coal silo, a temperature measuring cable equipped with a thermocouple is suspended in a substantially central portion of the coal silo and embedded in the stored coal, and a signal from the thermocouple is received.
- a method for monitoring the heat generation of coal by detection is known (see, for example, Patent Document 1).
- the position of the thermocouple of the temperature measuring cable changes as the coal is taken in and out, and it may or may not be possible to measure the temperature at a place where heat generation is likely to occur.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique capable of appropriately detecting the heat generation of the stored item in the silo.
- a silo in order to solve the above-described problem, includes a side wall erected on a foundation and a temperature sensor for detecting heat generation of a stored product.
- the temperature sensor is embedded in the storage near the side wall.
- the temperature sensor may be provided on a cable that hangs in the vicinity of the side wall.
- the cable may be suspended near the side wall via a pulley provided on the side wall.
- the gas pipe for detecting the gas generated when the stored material is heated may be provided in the cable.
- FIG. 1 is a diagram for explaining a configuration of a coal silo 100 according to an embodiment of the present invention.
- the coal silo 100 may be, for example, a large one having an inner diameter of 60 m, a height of 75 m, and a coal capacity of 100,000 tons.
- the coal silo 100 includes a base 102, a side wall 104 standing on the base 102, and a roof 106 formed on the side wall 104.
- Coal 120 is stored in the coal silo 100.
- the side wall 104 includes a substantially cylindrical lower side wall 104a and a substantially truncated cone-shaped upper side wall 104b formed on the lower side wall 104a.
- a loading station stage 108 is provided at the top of the coal silo 100.
- the loading station stage 108 is provided with a carry-in conveyor 110 for carrying coal. Coal carried by the carry-in conveyor 110 is dropped from the loading station stage 108 and stored in the coal silo 100.
- a plurality of small cones (small partition plates, small partition walls) 112 and a plurality of large cones (large partition plates, large partition walls) 114 are provided.
- a carry-out conveyor 116 is provided below the small cone 112. The coal 120 stored in the coal silo 100 is discharged to the carry-out conveyor 116 from the opening provided at the bottom, and is carried out of the coal silo 100 by the carry-out conveyor 116.
- the coal silo 100 includes a temperature sensor for detecting the heat generation of the stored coal 120.
- the coal silo 100 of this embodiment includes a temperature measuring cable 10 for detecting the temperature in stored coal.
- the temperature measuring cable 10 includes a thermocouple as a temperature sensor. One end 10 a of the temperature measuring cable 10 is fixed to the lower surface of the loading station stage 108.
- the temperature measuring cable 10 extends obliquely downward along the upper side wall 104b from the loading station stage 108, and hangs down in the vicinity of the lower side wall 104a via a pulley 12 provided near the boundary between the upper side wall 104b and the lower side wall 104a. And embedded in the coal in the vicinity of the lower side wall 104a.
- FIG. 2 is a schematic cross-sectional view for explaining the structure of the temperature measuring cable 10.
- six sheathed thermocouples 21 are inserted into the stainless steel flexible tube 20, and a plurality of wire ropes 22 are wound around the stainless steel flexible tube 20.
- coal and the sheath thermocouple 21 are in direct contact with each other and the sheath thermocouple 21 is damaged. Can be prevented.
- the six sheathed thermocouples 21 have different lengths up to their tips, and can measure six temperatures at equal intervals in the height direction of the coal silo 100.
- FIG. 3 shows an example of the coal temperature distribution when coal is stored in the coal silo 100 for a long period of time.
- the temperature of coal is represented by hatching.
- the temperature measuring cable 30 shown with the broken line in FIG. 3 shows the example of arrangement
- the position of the thermocouple changes with the loading and unloading of the coal, and the temperature is measured at a place where heat generation is likely to occur. It can be difficult to do. That is, the position of the thermocouple in the temperature measuring cable is not stable and depends on chance. For example, if the thermocouple in the temperature measuring cable is located in the vicinity of the side wall, the temperature can be measured at a place where heat generation is likely to occur (for example, at 80 ° C. or 89 ° C. or more in FIG. 3). If it is located in the central part of the area, the temperature at a place where heat generation is not so much (for example, a place at 30 ° C. in FIG. 3) is measured.
- the temperature measuring cable 10 is suspended near the side wall 104, it is possible to appropriately detect the temperature of the coal near the side wall 104 where heat generation is likely to occur.
- the position of the temperature measuring cable 10 may fluctuate somewhat according to the loading / unloading of coal, the fluctuation is small as compared with the case where the temperature measuring cable 10 is hung on the substantially central portion of the coal silo.
- a downward frictional force is generated between the temperature measuring cable 10 and the coal as the coal is taken in and out.
- an excessive load may act on the loading station stage 108.
- the temperature measuring cable 10 is suspended via the pulley 12, the downward frictional force generated between the temperature measuring cable 10 and the coal is caused by the loading station stage 108. And the pulley 12. As a result, the load acting on the loading station stage 108 can be reduced.
- FIG. 4 is a schematic cross-sectional view for explaining a modified example of the temperature measuring cable.
- the same or corresponding components as those of the temperature measurement cable 10 shown in FIG. 1 are identical or corresponding components as those of the temperature measurement cable 10 shown in FIG.
- the temperature measuring cable 4 is different from the temperature measuring cable 10 shown in FIG. 2 in that a gas pipe 41 is inserted in the stainless steel flexible tube 20 in addition to the sheath thermocouple 21.
- the gas pipe 41 is for detecting gas generated when coal generates heat.
- the gas that has entered the gas pipe 41 passes through the gas pipe 41 and is detected by, for example, a gas sensor (not shown) provided on the loading station stage 108.
- gas detection is performed, so that, for example, even when one of the sensors fails, one of temperature detection by the temperature sensor and gas detection by the gas sensor.
- the heat generation of coal can be detected based on one side, or the heat generation of coal is detected with higher accuracy by detecting the heat generation of coal based on both the temperature detection by the temperature sensor and the gas detection by the gas sensor. You can also.
- the temperature measuring cable 10 is suspended via the pulley 12.
- a hook (hook) or the like is used instead of the pulley 12. Also good.
- the side wall 104 is composed of the lower side wall 104a having a substantially cylindrical shape and the upper side wall 104b having a substantially truncated cone shape, but the coal silo of the present invention may have any shape.
- it is good also as a substantially rectangular solid-shaped coal silo which makes the longitudinal direction the carrying-in / out direction of coal by a carrying-in conveyor or a carrying-out conveyor.
- four carry-out conveyors 116 are provided in parallel, but one or two carry-out conveyors 116 may be provided.
- the present invention has been described using a coal silo that stores coal as an example.
- the present invention is not limited to coal silos, and can be applied to other silos such as grain silos, biomass silos, and recycled solid fuel silos.
- the present invention can be used for silos that store coal or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Storage Of Harvested Produce (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
Abstract
石炭サイロ100は、基礎102上に立設された側壁104と、石炭サイロ100内に貯蔵された石炭の発熱を検出するための熱電対を含む測温ケーブル10とを備える。測温ケーブル10は、側壁104の近傍に垂下され、熱電対は側壁104の近傍の石炭中に埋設される。
Description
本発明は、サイロに関し、特に石炭を貯蔵する石炭サイロに関する。
石炭火力発電所等に設置される石炭サイロでは、石炭の貯蔵期間が長くなると石炭サイロ内で石炭が酸化発熱して自然発火が生じる場合がある。そこで、石炭サイロ内に貯蔵された石炭の発熱を監視し、発熱が発生した場合には石炭の払い出しや放水を行って発熱箇所の冷却を行っている。
従来、石炭サイロ内に貯蔵された石炭の発熱を監視するために、熱電対を備えた測温ケーブルを石炭サイロの略中央部分に吊り下げて貯蔵石炭中に埋め込み、該熱電対からの信号を検出することにより、石炭の発熱を監視する方法が知られている(例えば特許文献1参照)。
しかしながら、上記のような方法の場合、石炭の出し入れに伴い測温ケーブルの熱電対の位置が変わり、発熱の生じやすい箇所の温度測定を行うことが難しい可能性やできない可能性がある。
本発明は、こうした状況を鑑みてなされたものであり、その目的は、サイロ内の貯蔵物の発熱を適切に検知できる技術を提供することにある。
上記課題を解決するために、本発明のある態様のサイロは、基礎上に立設された側壁と、貯蔵された貯蔵物の発熱を検出するための温度センサとを備える。温度センサは、側壁の近傍の貯蔵物中に埋設される。
温度センサは、側壁の近傍に垂下されるケーブルに設けられていてもよい。
ケーブルは、側壁に設けられた滑車を介して、側壁の近傍に垂下されてもよい。
貯蔵物の発熱時に生じたガスを検知するためのガスパイプがケーブルに設けられてもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、サイロ内の貯蔵物の発熱を適切に検知できる。
図1は、本発明の実施形態に係る石炭サイロ100の構成を説明するための図である。
石炭サイロ100は、例えば、内径60m、高さ75m、石炭容量10万トンの大型のものであってよい。
図1に示すように、石炭サイロ100は、基礎102と、基礎102上に立設された側壁104と、側壁104の上に形成された屋根106とを備える。石炭サイロ100内には石炭120が貯蔵される。側壁104は、略円筒形状の下部側壁104aと、下部側壁104aの上に形成された略円錐台形状の上部側壁104bとから成る。
石炭サイロ100の上部には積付所ステージ108が設けられている。積付所ステージ108には、石炭を搬入するための搬入コンベヤ110が設けられている。搬入コンベヤ110によって運ばれた石炭は、積付所ステージ108から落下されて石炭サイロ100内に貯蔵される。
石炭サイロ100の底部には、複数の小コーン(小仕切板、小仕切壁)112と、複数の大コーン(大仕切板、大仕切壁)114が設けられている。小コーン112の下方には、搬出コンベヤ116が設けられている。石炭サイロ100内に貯蔵された石炭120は、底部に設けられた開口部から搬出コンベヤ116に払い出され、搬出コンベヤ116によって石炭サイロ100の外に搬出される。
石炭サイロ100は、貯蔵された石炭120の発熱を検出するための温度センサを備える。本実施形態の石炭サイロ100は、貯蔵された石炭中の温度を検出するための測温ケーブル10を備える。
測温ケーブル10は、内部に温度センサとして熱電対を備える。測温ケーブル10の一端10aは、積付所ステージ108の下面に固定される。測温ケーブル10は、積付所ステージ108から上部側壁104bに沿って斜め下方に延び、上部側壁104bと下部側壁104aの境界部付近に設けられた滑車12を介して下部側壁104aの近傍に垂下され、下部側壁104aの近傍の石炭中に埋設されている。
図2は、測温ケーブル10の構造を説明するための概略断面図である。図2に示すように、ステンレスフレキシブルチューブ20内に6本のシース熱電対21が挿通されており、さらにステンレスフレキシブルチューブ20を外周に複数本のワイヤーロープ22が巻回されている。このようにシース熱電対21をステンレスフレキシブルチューブ20で保護し、さらにステンレスフレキシブルチューブ20をワイヤーロープ22で覆うことにより、石炭とシース熱電対21が直接接触してシース熱電対21が破損するのを防ぐことができる。6本のシース熱電対21は、その先端までの長さがそれぞれ異なっており、石炭サイロ100の高さ方向において等間隔で6箇所の温度を測定できるようになっている。
図3は、石炭サイロ100内に石炭を長期間貯蔵したときの石炭温度分布の一例を示す。図3ではハッチングにより石炭の温度を表している。また、図3中の破線で示す測温ケーブル30は、石炭サイロの略中央部分に吊り下げた従来の測温ケーブルの配置例を示す。
図3から、石炭サイロ100の側壁104(下部側壁104a)の近傍に位置する石炭に発熱が生じやすいことが分かる。石炭サイロ100では、石炭を搬出コンベヤ116に払い出すために底部に設けられた開口部から空気が上方に流れ、この空気により石炭が酸化されて発熱が生じる(図3において矢印は空気の流れを表す)。石炭サイロ100で上方から石炭を落下させて貯蔵する場合、側壁104の近傍には大きな石炭塊が偏って位置しやすいため、側壁104の近傍は空隙が多く空気の流れが速くなる。その結果、側壁104の近傍に位置する石炭は酸化反応が促進されやすく、発熱が生じやすい。
図3中に破線で示す従来のように測温ケーブル30を石炭サイロの略中央部分に吊り下げた場合、石炭の出し入れに伴って熱電対の位置が変わり、発熱の生じやすい箇所の温度測定を行うことが難しい可能性がある。すなわち、測温ケーブル中の熱電対の位置は安定せず、偶然に左右されるということである。例えば測温ケーブル内の熱電対が側壁の近傍に位置すれば発熱の生じやすい箇所(例えば図3で80℃や89℃以上の箇所)の温度測定を行うことができるが、熱電対が石炭サイロの中央部分に位置すれば発熱があまり生じない箇所(例えば図3で30℃の箇所)の温度を測定していることになる。
一方、本実施形態に係る石炭サイロ100では、測温ケーブル10が側壁104の近傍に垂下されているので、発熱が生じやすい側壁104の近傍の石炭の温度を適切に検知することができる。石炭の出し入れに応じて多少、測温ケーブル10の位置が変動することはあるが、石炭サイロの略中央部分に吊り下げた場合と比べればその変動は小さい。
本実施形態で用いているような吊り下げ式の測温ケーブル10では、石炭の出し入れに伴って、測温ケーブル10と石炭との間に下向きの摩擦力が生じる。従来のように石炭サイロの略中央部分に吊り下げた場合、積付所ステージ108に過度の荷重が作用するおそれがある。
一方、本実施形態に係る石炭サイロ100では、測温ケーブル10は滑車12を介して吊り下げられているので、測温ケーブル10と石炭との間に生じる下向きの摩擦力が積付所ステージ108と滑車12とに分散される。その結果、積付所ステージ108に作用する荷重を軽減することができる。
図4は、測温ケーブルの変形例を説明するための概略断面図である。図4に示す測温ケーブル40において、図2に示す測温ケーブル10と同一または対応する構成要素には同一の符号を付し、重複する説明は適宜省略する。
図4に示す測温ケーブル40は、ステンレスフレキシブルチューブ20内にシース熱電対21に加えてガスパイプ41が挿通されている点が図2に示す測温ケーブル10と異なる。このガスパイプ41は、石炭の発熱時に生じるガスを検知するためのものである。ガスパイプ41内に入ったガスは、ガスパイプ41内を通って例えば積付所ステージ108上に設けられたガスセンサ(図示せず)により検知される。このように、シース熱電対21による温度検知に加えて、ガス検知を行う構成とすることにより、例えば一方のセンサが故障した場合などでも、温度センサによる温度検知とガスセンサによるガス検知とのいずれか一方に基づいて石炭の発熱を検出することもできるし、温度センサによる温度検知とガスセンサによるガス検知との両方に基づいて石炭の発熱を検出することによって、石炭の発熱をより高い精度で検出することもできる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上述の実施形態の石炭サイロ100では、測温ケーブル10は滑車12を介して吊り下げられているものとしたが、滑車12に代えて、例えば釣り針状などの吊り具(フック)を用いるものとしてもよい。
上述の実施形態の石炭サイロ100は、側壁104が略円筒形状の下部側壁104aと略円錐台形状の上部側壁104bとから成るものとしたが、本発明の石炭サイロはいかなる形状としてもよい。例えば、搬入コンベヤや搬出コンベヤによる石炭の搬入出方向を長手方向とする略直方体形状の石炭サイロとしてもよい。また、搬出コンベヤ116は、並列に4本設けられているものとしたが、1本や2本設けられているものとしても構わない。
上述の実施形態では、石炭を貯蔵する石炭サイロを例として本発明を説明した。しかしながら、本発明は石炭サイロに限定されず、例えば、穀物サイロ、バイオマスサイロ、リサイクル固形燃料サイロ等の他のサイロにも適用可能である。
10、30 測温ケーブル、 12 滑車、 20 ステンレスフレキシブルチューブ、 21 シース熱電対、 22 ワイヤーロープ、 40 測温ケーブル、 41 ガスパイプ、 100 石炭サイロ、 102 基礎、 104 側壁、 106 屋根、 108 積付所ステージ、 110 搬入コンベヤ、 112 小コーン、 114 大コーン、 116 搬出コンベヤ、 120 石炭。
本発明は、石炭等を貯蔵するサイロに利用できる。
Claims (4)
- 基礎上に立設された側壁と、
貯蔵された貯蔵物の発熱を検出するための温度センサと、
を備え、
前記温度センサは、前記側壁の近傍の貯蔵物中に埋設されることを特徴とするサイロ。 - 前記温度センサは、前記側壁の近傍に垂下されるケーブルに設けられていることを特徴とする請求項1に記載のサイロ。
- 前記ケーブルは、前記側壁に設けられた滑車を介して、前記側壁の近傍に垂下されることを特徴とする請求項2に記載のサイロ。
- 貯蔵物の発熱時に生じたガスを検知するためのガスパイプが前記ケーブルに設けられることを特徴とする請求項2または3に記載のサイロ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-088226 | 2017-04-27 | ||
JP2017088226A JP6864540B2 (ja) | 2017-04-27 | 2017-04-27 | サイロ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198865A1 true WO2018198865A1 (ja) | 2018-11-01 |
Family
ID=63918288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015753 WO2018198865A1 (ja) | 2017-04-27 | 2018-04-16 | サイロ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6864540B2 (ja) |
WO (1) | WO2018198865A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102076107B1 (ko) * | 2019-02-22 | 2020-02-11 | (주)아이스메카텍 | 슬립방지와 내열성에 의한 측정오류가 최소화되는 서모커플 교체형 사이로 화재감시 및 진압용 유닛 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5969945U (ja) * | 1982-11-02 | 1984-05-12 | 株式会社竹中工務店 | 貯炭サイロの異常監視制御装置 |
JPS63206617A (ja) * | 1987-02-23 | 1988-08-25 | Chino Corp | 温度・レベル測定装置 |
JP2004035783A (ja) * | 2002-07-04 | 2004-02-05 | Electric Power Dev Co Ltd | 発熱・発火の防止剤及びその防止方法 |
JP2007271289A (ja) * | 2006-03-30 | 2007-10-18 | Kurimoto Ltd | 貯留槽内温度測定装置 |
JP2009068954A (ja) * | 2007-09-12 | 2009-04-02 | Kobe Steel Ltd | 石炭サイロ用測温ケーブルおよびその製造方法 |
-
2017
- 2017-04-27 JP JP2017088226A patent/JP6864540B2/ja active Active
-
2018
- 2018-04-16 WO PCT/JP2018/015753 patent/WO2018198865A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5969945U (ja) * | 1982-11-02 | 1984-05-12 | 株式会社竹中工務店 | 貯炭サイロの異常監視制御装置 |
JPS63206617A (ja) * | 1987-02-23 | 1988-08-25 | Chino Corp | 温度・レベル測定装置 |
JP2004035783A (ja) * | 2002-07-04 | 2004-02-05 | Electric Power Dev Co Ltd | 発熱・発火の防止剤及びその防止方法 |
JP2007271289A (ja) * | 2006-03-30 | 2007-10-18 | Kurimoto Ltd | 貯留槽内温度測定装置 |
JP2009068954A (ja) * | 2007-09-12 | 2009-04-02 | Kobe Steel Ltd | 石炭サイロ用測温ケーブルおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018185263A (ja) | 2018-11-22 |
JP6864540B2 (ja) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018198869A1 (ja) | 貯蔵物の発熱監視システム、貯蔵物の発熱監視方法、およびサイロ | |
WO2018198870A1 (ja) | 貯蔵物の発熱監視システムおよびサイロ | |
WO2018198865A1 (ja) | サイロ | |
JP6580686B2 (ja) | 管式反応器 | |
JP2009174032A (ja) | 焼結機の焼成点検出方法及び装置 | |
CN108538005A (zh) | 危险品货位火灾监测方法及系统 | |
JP3404976B2 (ja) | コンベア温度監視装置 | |
JP3256889B2 (ja) | 火災検知方式 | |
JP2018185262A (ja) | 石炭の発熱監視システム、石炭の発熱監視方法、および石炭サイロ | |
CN202670535U (zh) | 一种筒仓 | |
JP2002205813A (ja) | ベルトコンベア設備における発火監視装置及びベルトコンベア装置 | |
JP5274511B2 (ja) | 石炭貯蔵設備 | |
JP3835186B2 (ja) | バラ荷重量物搬送容器の整備状態及び操作性の判定方法 | |
KR20130060727A (ko) | 석탄 사일로의 내부 온도 감지장치 | |
KR102020498B1 (ko) | 이송후크 변형 경보시스템 | |
US20180257289A1 (en) | Temperature measurement method of honeycomb formed body, and temperature measurement device | |
JP2011241052A (ja) | 石炭貯蔵設備及び石炭貯蔵方法 | |
JP5100021B2 (ja) | 電気抵抗炉用電極の傾きと電極に加わる外力を検出する方法及び装置 | |
JP2008101933A (ja) | 鋼構造物の表面温度測定方法 | |
JP6086072B2 (ja) | ガスホルダーレベル計監視装置およびガスホルダーレベル計監視方法 | |
JP2006097112A (ja) | 耐火物の乾燥状態判断方法、乾燥状態監視装置および耐火物配設工事管理方法 | |
KR102701442B1 (ko) | 흑연화 원료 측정 방법 및 이를 사용하는 흑연 제조 장치 | |
CN207963957U (zh) | 煤仓环境智能监控系统 | |
JP7516318B2 (ja) | 温度リスク判定方法及び温度リスク判定システム | |
JP2024057935A (ja) | レベル測定装置付ホッパー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791057 Country of ref document: EP Kind code of ref document: A1 |