WO2018198835A1 - Material for cold-rolled stainless steel sheet, and production method therefor - Google Patents
Material for cold-rolled stainless steel sheet, and production method therefor Download PDFInfo
- Publication number
- WO2018198835A1 WO2018198835A1 PCT/JP2018/015579 JP2018015579W WO2018198835A1 WO 2018198835 A1 WO2018198835 A1 WO 2018198835A1 JP 2018015579 W JP2018015579 W JP 2018015579W WO 2018198835 A1 WO2018198835 A1 WO 2018198835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cold
- rolled
- less
- content
- steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a material for a stainless cold-rolled steel sheet suitable for producing a ferritic stainless cold-rolled steel sheet having excellent corrosion resistance and further excellent formability and ridging resistance, and a method for producing the same.
- Ferritic stainless steel sheet does not contain much Ni, so it is cheaper and more price stable than austenitic stainless steel sheet, and it is also a material with excellent rust resistance. It is used for various applications such as transportation equipment and home appliances. In particular, since it has magnetism unlike an austenitic stainless steel sheet, it is increasingly applied to cooking utensils that are compatible with the IH (induction heating) system. Most cooking utensils represented by pans and the like are formed by overhanging. Therefore, sufficient elongation is required for molding into a predetermined shape.
- the ferritic stainless steel sheet has a problem that surface irregularities (riding) that often impairs the appearance of the surface occur during forming.
- a polishing step is necessary to remove irregularities after molding. That is, when large ridging occurs, there is a problem that the manufacturing cost increases.
- ferritic stainless steel sheets tend to have larger ridging as they are subjected to greater strain, i.e., more severely processed.
- ferritic stainless steel sheets that can be processed more severely than before have been demanded. That is, a ferritic stainless steel sheet having a higher elongation is desired.
- household cooking utensils are also required to reduce manufacturing costs. That is, a ferritic stainless steel sheet with reduced ridging that causes an increase in manufacturing cost is also required. From these facts, a ferritic stainless steel sheet having a higher elongation and having a sufficiently small ridging even when a larger strain than before is applied.
- Patent Document 1 in Patent Document 1, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05 %: S: 0.01% or less, Al: 0.005% or less, Ti: 0.005% or less, Cr: 11 to 30%, Ni: 0.7% or less, and 0.06 ⁇ ( C + N) ⁇ 0.12, 1 ⁇ N / C and 1.5 ⁇ 10 ⁇ 3 ⁇ (V ⁇ N) ⁇ 1.5 ⁇ 10 ⁇ 2 (C, N, and V represent mass% of each element, respectively)
- a ferritic stainless steel sheet excellent in formability characterized by satisfying the above requirements is disclosed.
- Patent Document 2 discloses a ferritic stainless steel sheet containing 0.15% or less C by weight and 13 to 25% Cr, and the hot-rolled sheet of this steel coexists with austenite and ferrite phase 930. By annealing within a range of 10 minutes within a range of ⁇ 990 ° C., the structure becomes a two-phase structure of a martensite phase and a ferrite phase, followed by cold rolling, and annealing a cold-rolled sheet within a range of 750-860 ° C. A method for producing a ferritic stainless steel sheet excellent in ridging resistance and workability is disclosed.
- Patent Document 3 by mass, C: 0.007 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.04% S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.01 to 0.06%, with the balance being Fe and It has a metal structure composed of inevitable impurities and an area ratio of 10 to 60% of martensite phase and the balance composed of ferrite phase, and the martensite phase has a metal structure composed of ferrite phase. Furthermore, a stainless cold-rolled steel sheet material having a martensite phase hardness of HV500 or less is disclosed.
- the predistortion added for evaluating ridging is not described.
- the present inventors produced a plurality of steel plates by the method described in Patent Document 2, and evaluated the ridging height when 23% pre-strain was applied by a ridging evaluation method described later. As a result, no excellent ridging resistance was obtained in any of the steel sheets.
- the shape of the test piece used for evaluation of elongation is not described. It is a known fact that the elongation value obtained varies depending on the shape of the test piece used for evaluation.
- the inventors prepared a plurality of steel plates by the method described in Patent Document 2, and evaluated the elongation at break of the steel plates by a tensile test method described later. As a result, excellent formability was not obtained in any steel sheet.
- the present inventors produced a plurality of steel plates by the method described in Patent Document 3, and evaluated the breaking elongation of the steel plates by a tensile test method described later. As a result, excellent formability was not obtained in any steel sheet.
- the present invention has been developed in view of the above-described present situation, and is a material for stainless cold-rolled steel sheets suitable for producing ferritic stainless cold-rolled steel sheets having excellent corrosion resistance and excellent formability and ridging resistance. And it aims at providing the manufacturing method.
- excellent corrosion resistance means that the ridge area ratio measured by the method described below is 30% or less. More preferably, it is 20% or less.
- the corrosion test for evaluating the corrosion resistance is performed according to JASO M609-91. First, as a test method, the test piece is polished up to No. 600 with emery polishing paper, washed with water, and then ultrasonically degreased in ethanol for 5 minutes. Thereafter, one cycle is salt spray (5% by weight NaCl aqueous solution, 35 ° C.) 2 h ⁇ dry (60 ° C., relative humidity 40%) 4 h ⁇ wet (50 ° C., relative humidity 95% or more) 2 h. To implement. After the test, appearance of the corroded surface is photographed, and the wrinkle area ratio is calculated by image analysis from the obtained photograph for a 30 mm ⁇ 30 mm region at the center of the test piece.
- excellent formability means that the elongation at break of the steel sheet measured by the method described below is 28% or more. More preferably, it is 32% or more.
- a JIS No. 13 B tensile test piece is collected.
- a tensile test based on JIS Z 2241 is performed to measure the elongation at break (El).
- the three-way average of the obtained elongation at break ((L + 2D + C) / 4, where L, D, and C are the elongation at break (%) in each direction) is calculated as the elongation at break of the steel sheet.
- excellent ridging resistance means that the ridging height of the steel sheet surface measured by the method described below is 3.0 ⁇ m or less. More preferably, it is 2.5 ⁇ m or less. More preferably, it is 2.0 ⁇ m or less.
- a JIS No. 5 tensile test piece is taken in parallel with the rolling direction.
- the surface of the collected test piece is polished with # 600 emery paper, and then 23% tensile strain is applied.
- the surface shape is measured with a laser displacement meter in the direction perpendicular to the rolling direction on the polished surface of the parallel part of the test piece. The measurement length is 16 mm per line, and the height is measured in increments of 0.05 mm.
- a total of 50 lines are measured with an interval of each line being 0.1 mm.
- the obtained shape data of each line is subjected to smoothing and undulation removal processing using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm. .
- FIR Finite Impulse Response
- the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. taking measurement.
- the average value of 50 lines of this arithmetic average waviness Wa is defined as the ridging height of the steel sheet surface.
- the present inventors provide a material for a stainless steel cold-rolled steel sheet suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and excellent formability and ridging resistance, and a method for producing the same. investigated. As a result, the following knowledge was obtained.
- a ferritic stainless steel cold-rolled steel sheet excellent in formability and ridging resistance is obtained by using a steel plate material and then performing cold rolling and cold-rolled sheet annealing.
- the C content is set to 0.030% or less
- the Cr content is set to 14.4% or less
- the N content is set to 0.060% or less.
- the steel ingot having the above components is hot-rolled, followed by hot-rolled sheet annealing at 900 to 1100 ° C., which becomes a ferrite-austenite two-phase region.
- the steel components are adjusted so that the austenite phase is 10 to 90% in area ratio.
- almost all of the austenite phase becomes a martensite phase in the cooling process after hot-rolled sheet annealing.
- the thus obtained hot-rolled annealed sheet (material for cold-rolled steel sheet) containing the martensite phase is then cold-rolled to give colonies that cause ridging (similar crystal orientation).
- the crystal grain group) is destroyed, and rolling strain is efficiently applied to the ferrite / martensite grain boundary.
- the rolling strain is efficiently applied as described above, and further, the amount of Cr, C, and N contained in the steel is sufficiently low. Crystals are promoted. Due to the effect of promoting recrystallization, the cold-rolled sheet is sufficiently recrystallized in the temperature range of 780 to 830 ° C. in the ferrite single phase region, and a cold-rolled annealed sheet (ferritic stainless steel cold-rolled) having excellent formability. Steel plate) is obtained.
- the cold-rolled annealing board has the outstanding ridging resistance by the effect of the colony destruction mentioned above.
- the present invention is based on the above findings, and the gist of the present invention is as follows.
- C 0.005 to 0.030%
- Si 0.05 to 1.00%
- Mn 0.05 to 1.00%
- P 0.040% or less
- S 0.030% or less
- Al 0.001 to 0.150%
- Cr 10.8 to 14.4%
- Ni 0.01-2.50%
- N 0.005-0.060%
- a component composition comprising the balance of Fe and unavoidable impurities
- each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0. [4] Furthermore, in mass%, B: 0.0003 to 0.0030%, Mg: 0.0005 to 0.0100%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, and REM (rare earth metal): 0.001 to 0.100%
- B 0.0003 to 0.0030%
- Mg 0.0005 to 0.0100%
- Ca 0.0003 to 0.0030%
- Y 0.01 to 0.20%
- REM rare earth metal
- a material for a stainless steel cold-rolled steel sheet suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and further excellent formability and ridging resistance, and a method for producing the same.
- the material for stainless steel cold-rolled steel sheet of the present invention is, in mass%, C: 0.005 to 0.030%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.040% or less, S: 0.030% or less, Al: 0.001 to 0.150%, Cr: 10.8 to 14.4%, Ni: 0.01 to 2.50%, and N: A structure containing 0.005 to 0.060%, the balance being composed of Fe and inevitable impurities, including a martensite phase with an area ratio of 10 to 90%, and the balance being a ferrite phase
- a ferritic stainless steel cold-rolled steel sheet of the present invention it is possible to produce a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance, and further excellent formability and ridging resistance.
- % which is a unit of content of a component means the mass% unless there is particular notice.
- C 0.005 to 0.030%
- C is an element effective for increasing the strength of steel. Furthermore, C is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by setting the C content to 0.005% or more. However, if the C content exceeds 0.030%, the steel becomes hard and the formability decreases. Therefore, the C content is set to 0.005 to 0.030%.
- the C content is preferably 0.007% or more, and more preferably 0.010% or more. Further, the C content is preferably 0.020% or less, more preferably 0.015% or less.
- Si 0.05 to 1.00%
- Si is an element useful as a deoxidizer. This effect can be obtained by setting the Si content to 0.05% or more. However, if the Si content exceeds 1.00%, the steel becomes hard and the formability decreases. Furthermore, the austenite phase produced
- Mn 0.05 to 1.00% Mn has a deoxidizing action. Furthermore, Mn is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. These effects can be obtained by making the Mn content 0.05% or more. However, if the Mn content exceeds 1.00%, precipitation and coarsening of MnS are promoted, and this MnS becomes a starting point of rusting and the corrosion resistance is lowered. Therefore, the Mn content is 0.05 to 1.00%. The Mn content is preferably 0.10% or more, more preferably 0.15% or more. Further, the Mn content is preferably 0.80% or less, and more preferably 0.60% or less.
- P 0.040% or less
- P is an element that lowers corrosion resistance. Moreover, P reduces hot workability by segregating at the grain boundaries. Therefore, the P content is desirably as low as possible, and is set to 0.040% or less. Preferably, the P content is 0.030% or less.
- S 0.030% or less S forms Mn and precipitate MnS. This MnS becomes a starting point of pits and causes a decrease in corrosion resistance. Therefore, the lower S content is desirable, and it is 0.030% or less. Preferably, the S content is 0.020% or less.
- Al 0.001 to 0.150%
- Al is an effective element for deoxidation. This effect is obtained when the Al content is 0.001% or more. However, if the Al content exceeds 0.150%, the steel becomes hard and the formability decreases. Therefore, the Al content is set to 0.001 to 0.150%.
- the Al content is preferably 0.005% or more, and more preferably 0.010% or more. Moreover, Al content becomes like this. Preferably it is 0.100% or less, More preferably, it is 0.050% or less.
- Cr 10.8 to 14.4% Cr is an element that improves the corrosion resistance by forming a passive film on the surface. If the Cr content is less than 10.8%, sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content exceeds 14.4%, the austenite phase is not sufficiently formed in the steel in the hot-rolled sheet annealing process, the ridging resistance is lowered, the steel is further hardened, and the formability is lowered. . Therefore, the Cr content is 10.8 to 14.4%.
- the Cr content is preferably 11.0% or more, more preferably 11.5% or more, and further preferably 12.0% or more. Moreover, Cr content becomes like this. Preferably it is 14.0% or less, More preferably, it is 13.5% or less, More preferably, it is 13.0% or less.
- Ni 0.01-2.50%
- Ni is an element that suppresses active dissolution in a low pH environment.
- a so-called gap structure portion in which steel plates are overlapped a low pH environment that easily causes corrosion may be formed.
- an aqueous solution containing chloride ions that causes the steel plate to become concentrated is concentrated on the steel plate, salt is precipitated from the aqueous solution, A gap structure is formed between the steel sheets, and a low pH environment that easily causes corrosion may be formed.
- Ni suppresses the progress of corrosion in such an environment and improves the corrosion resistance of steel.
- Ni has a high effect on crevice corrosion resistance, and remarkably suppresses the progress of corrosion in the active dissolution state, thereby improving the corrosion resistance. Furthermore, Ni is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect is obtained when the Ni content is 0.01% or more. On the other hand, if it exceeds 2.50%, the steel becomes hard and its formability decreases. Therefore, the Ni content is 0.01 to 2.50%.
- the Ni content is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.10% or more. Moreover, Ni content becomes like this. Preferably it is 1.20% or less, More preferably, it is 0.80% or less, More preferably, it is 0.25% or less.
- N 0.005 to 0.060%
- N is an element effective for increasing the strength of steel.
- N is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by making the N content 0.005% or more.
- the N content is set to 0.005 to 0.060%.
- the N content is preferably 0.007% or more, and more preferably 0.010% or more.
- N content becomes like this. Preferably it is 0.020% or less, More preferably, it is 0.015% or less.
- the balance other than the above components is Fe and inevitable impurities.
- Typical examples of the inevitable impurities mentioned here include O (oxygen), Zn, Ga, Ge, As, Ag, In, Hf, Ta, Re, Os, Ir, Pt, Au, and Pb.
- O (oxygen) can be contained in a range of 0.02% or less. About another element, it can contain in 0.1% or less of total.
- Co 0.01 to 0.50%
- Co is an element that improves the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Co is contained, the Co content is preferably 0.01 to 0.50%.
- the Co content is more preferably 0.30% or less, and still more preferably 0.10% or less.
- Cu 0.01 to 0.80%
- Cu is an element that reinforces the passive film and improves the corrosion resistance.
- the content is excessive, the effect is saturated, workability is further lowered, and ⁇ -Cu is liable to precipitate, resulting in a decrease in corrosion resistance. Therefore, when Cu is contained, the Cu content is preferably set to 0.01 to 0.80%.
- the Cu content is more preferably 0.15% or more, and further preferably 0.40% or more. Further, the Cu content is more preferably 0.60% or less, and further preferably 0.45% or less.
- Mo 0.01-0.30% Mo has the effect of improving the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 0.30%. The Mo content is more preferably 0.20% or less, and still more preferably 0.10% or less.
- W 0.01 to 0.50%
- W is an element that improves the crevice corrosion resistance of stainless steel.
- the W content is preferably set to 0.01 to 0.50%.
- the W content is more preferably 0.03% or more, and even more preferably 0.05% or more.
- W content becomes like this. More preferably, it is 0.30% or less, More preferably, it is 0.10% or less.
- Ti 0.01 to 0.30%
- Ti is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving.
- the Ti content is preferably 0.01 to 0.30%.
- the Ti content is more preferably 0.02% or more. Further, the Ti content is more preferably 0.10% or less, and further preferably 0.08% or less.
- V 0.01 to 0.10%
- V is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving.
- generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when V is contained, the V content is preferably 0.01 to 0.10%.
- the V content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the V content is more preferably 0.08% or less, and still more preferably 0.05% or less.
- Zr 0.01 to 0.10%
- Zr is an element having a high affinity with C and N, and precipitates as carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving.
- the Zr content is preferably 0.01 to 0.10%.
- the Zr content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the Zr content is more preferably 0.08% or less, still more preferably 0.05% or less.
- Nb 0.01-0.30%
- Nb is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving.
- the Nb content is preferably 0.01 to 0.30%.
- the Nb content is more preferably 0.02% or more. Further, the Nb content is more preferably 0.10% or less, and further preferably 0.08% or less.
- each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0.
- the content of each element is as described above in order to obtain excellent ridging resistance.
- the value of the above formula (1) must be 0.0 or less.
- Ti, V, Zr, and Nb have an effect of inhibiting the austenite phase generation in the hot-rolled sheet annealing process.
- B 0.0003 to 0.0030%
- B is an element effective for preventing embrittlement at low temperature secondary work.
- the B content is preferably 0.0003 to 0.0030%.
- the B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0020% or less.
- Mg 0.0005 to 0.0100% Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer. On the other hand, when it contains excessively, the toughness of steel will fall and productivity will fall. Therefore, when Mg is contained, the Mg content is preferably 0.0005 to 0.0100%.
- the Mg content is more preferably 0.0010% or more. Moreover, Mg content becomes like this. More preferably, it is 0.0050% or less, More preferably, it is 0.0030% or less.
- Ca 0.0003 to 0.0030%
- Ca is an element that improves hot workability.
- the toughness of steel will fall and productivity will fall, and also corrosion resistance will fall by precipitation of CaS. Therefore, when Ca is contained, the Ca content is preferably 0.0003 to 0.0030%.
- the Ca content is more preferably 0.0010% or more. Further, the Ca content is more preferably 0.0020% or less.
- Y 0.01-0.20%
- Y is an element that decreases the viscosity of molten steel and improves cleanliness. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Y is contained, the Y content is preferably 0.01 to 0.20%. The Y content is more preferably 0.10% or less.
- REM rare earth metal
- REM rare earth metal: elements having atomic numbers 57 to 71 such as La, Ce, and Nd
- the REM content is preferably 0.001 to 0.100%.
- the REM content is more preferably 0.005% or more.
- the REM content is more preferably 0.05% or less.
- Sn 0.001 to 0.500%
- Sn is effective in improving ridging by promoting deformation band generation during rolling.
- the Sn content is preferably 0.001 to 0.500%.
- the Sn content is more preferably 0.003% or more. Further, the Sn content is more preferably 0.200% or less.
- Sb 0.001 to 0.500%
- Sb is effective in improving ridging by promoting deformation band generation during rolling.
- the Sb content is preferably 0.001 to 0.500%.
- the Sb content is more preferably 0.003% or more.
- the Sb content is more preferably 0.200% or less.
- a structure comprising a martensite phase with an area ratio of 10 to 90% and the balance being a ferrite phase
- a predetermined amount of austenite phase is generated in steel by hot-rolled sheet annealing. Almost all of the austenite phase becomes a martensite phase by being cooled after hot-rolled sheet annealing. Due to the presence of this martensite phase, colonies are destroyed in the cold rolling step, and the ridging resistance of the cold rolled annealing plate is improved. This effect is obtained when the area ratio of the martensite phase after hot-rolled sheet annealing is 10% or more.
- the area ratio of the martensite phase is 10 to 90%.
- the area ratio of the martensite phase is preferably 15% or more, more preferably 20% or more.
- the area ratio of the martensite phase is preferably 70% or less, and more preferably 50% or less.
- the method for measuring the area ratio of the martensite phase first, a specimen for observation of the structure is collected from the vicinity of the center of the width of the material for cold-rolled steel sheet, and the cross section in the rolling direction is mirror-polished and then Murakami reagent (8 Corrosion (etching) is performed with a mass% KOH-8 mass% [K 3 Fe (CN) 6 ] aqueous solution), and 10 fields of view are photographed at a magnification of 400 times centering on a 1.0 mm portion from the surface layer using an optical microscope.
- Murakami reagent 8 Corrosion (etching) is performed with a mass% KOH-8 mass% [K 3 Fe (CN) 6 ] aqueous solution
- the obtained structure photograph is binarized by image analysis, one is regarded as a martensite phase, the other as a ferrite phase, and the martensite phase and the ferrite phase are identified and separated, and the area ratio of the martensite phase is determined. taking measurement. Furthermore, this measurement result is averaged over all 10 visual fields, and the calculated value is defined as the area ratio of the martensite phase.
- the steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (steel slab) by a continuous casting method or an ingot-bundling method.
- This steel material is heated to 1000 ° C. or more and 1200 ° C. or less, and then hot-rolled to a sheet thickness of 2.0 to 6.0 mm under a finishing temperature of 700 ° C. to 1000 ° C.
- the hot-rolled sheet is annealed by holding the hot-rolled sheet for 5 seconds to 15 minutes in a temperature range of 900 ° C. to 1100 ° C., which is a two-phase region of a ferrite phase and an austenite phase.
- Hot-rolled sheet annealing is a very important process in obtaining the structure of the present invention.
- the hot-rolled sheet annealing temperature is less than 900 ° C.
- annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate.
- the hot-rolled sheet annealing temperature exceeds 1100 ° C.
- annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate.
- the time to hold by hot-rolled sheet annealing is less than 5 seconds, a sufficient amount of austenite phase is not generated in the hot-rolled sheet during hot-rolled sheet annealing.
- hot-rolled sheet annealing is performed by holding at a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes to obtain a hot-rolled annealed sheet.
- the hot-rolled sheet annealing is preferably performed in a temperature range of 950 ° C. or higher.
- hot-rolled sheet annealing in the temperature range of 1050 degrees C or less.
- the hot-rolled sheet annealing is preferably held for 20 seconds or more in the above temperature range.
- hot-rolled sheet annealing is hold
- the hot-rolled annealed plate thus produced (stainless steel for cold-rolled steel plate) may then be pickled.
- a method of manufacturing a ferritic stainless steel cold-rolled steel plate from a hot-rolled annealed plate material for stainless steel cold-rolled steel plate
- a method of forming a cold-rolled annealed sheet by subjecting the cold-rolled sheet to cold-rolled sheet annealing is exemplified.
- the cold-rolled annealed plate can be further pickled in a pickling line to remove scale.
- Skin pass rolling may be performed on the cold-rolled annealed pickled plate from which the scale has been removed.
- the conditions for the cold rolling need not be particularly defined, and can be performed according to a conventional method.
- cold rolling with a total rolling reduction of 40 to 90% can be performed.
- the cold-rolled sheet annealing is preferably a step of holding the cold-rolled sheet in a temperature range of 780 ° C. or higher and 830 ° C. or lower for 5 seconds to 5 minutes.
- the cold-rolled sheet annealing temperature is 780 ° C. or higher, it is possible to suppress the non-recrystallized structure from remaining in the manufactured ferritic stainless steel cold-rolled steel sheet, and it is possible to further improve the formability.
- the cold-rolled sheet annealing temperature is 830 ° C or lower, which suppresses the formation of an austenite phase in steel during annealing, suppresses the presence of a martensite phase in the structure after annealing, and improves formability. can do.
- the holding time in cold-rolled sheet annealing is 5 seconds or more, so that the martensite phase contained in the cold-rolled sheet can be sufficiently decomposed during annealing, and the presence of the martensite phase in the structure after annealing is suppressed. And formability can be further improved.
- the cold-rolled sheet annealing is preferably performed in a continuous annealing line.
- Each of the hot-rolled sheets described above is divided into five sheets, and four of them are annealed in the atmosphere at temperatures of 830 to 1200 ° C. shown in Table 1 for 20 seconds, and both the front and back surfaces are ground to obtain a scale. It removed and it was set as the raw material for stainless steel cold-rolled steel plates. Each raw material for cold-rolled steel sheets was sheared and divided at the longitudinal center portion, half was subjected to evaluation described later, and the other half was cold-rolled annealed pickled plate in the following steps. In addition, the remaining one sheet obtained by dividing each hot-rolled sheet was annealed at 800 ° C.
- Each obtained cold-rolled steel sheet material was then made into a cold-rolled sheet having a sheet thickness of 1.0 mm by cold rolling.
- the obtained cold-rolled plate was annealed at 800 ° C. for 20 seconds in an air atmosphere to obtain a cold-rolled annealed plate.
- the obtained cold-rolled annealed plate was pickled by a normal method to obtain a ferritic stainless steel cold-rolled annealed pickled plate.
- the material for stainless cold-rolled steel sheet and ferritic stainless steel cold-rolled annealed pickled board obtained under the above production conditions were subjected to the evaluation shown below.
- a specimen for microstructure observation was collected from the vicinity of the center of the width of the cold-rolled steel sheet, and the cross section in the rolling direction was mirror-polished and then Murakami reagent (8 mass% KOH-8 mass% [K 3 Fe (CN) 6 ]).
- Corrosion (etching) was performed with an aqueous solution, and 10 fields of view were photographed at a magnification of 400 times centering on a portion of 1.0 mm from the surface layer using an optical microscope.
- the obtained structure photograph was binarized by image analysis, the martensite phase and the ferrite phase were identified and separated, and the area ratio of the martensite phase was measured. The measurement results were averaged over all 10 fields, and the calculated value was defined as the area ratio of the martensite phase.
- ⁇ Corrosion resistance> Further, a steel sheet having a length of 80 mm and a width of 60 mm was cut from the produced cold-rolled annealed pickling plate by shearing, then the surface was polished to number 600 with emery abrasive paper, washed with water, and then washed in ethanol for 5 minutes. The test piece was obtained by ultrasonic degreasing. A corrosion test was performed on the obtained test piece in accordance with JASO M609-91 to evaluate the corrosion resistance. The test piece was placed in the test apparatus at an inclination of 60 ° with the length direction being vertical after covering the end and the back with vinyl tape.
- One cycle was salt spray (5 mass% NaCl aqueous solution, 35 ° C.) 2 h ⁇ drying (60 ° C., relative humidity 40%) 4 h ⁇ wet (50 ° C., relative humidity 95% or more) 2 h, and 3 cycles were performed. After the test, appearance of the corroded surface was photographed, and the wrinkle area ratio was calculated from the obtained photograph by image analysis for a 30 mm ⁇ 30 mm region at the center of the test piece. ⁇ The area ratio was 20% or less “ ⁇ ” (pass: excellent), 20% to 30% or less “ ⁇ ” (pass), more than 30% Evaluated as “ ⁇ ” (failed).
- ⁇ Moldability> Furthermore, from the manufactured cold-rolled annealed pickled plate, a No. 13B test piece defined in JIS Z 2241 is rolled in the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and rolling direction. Each sample was sampled so that the direction perpendicular to (C direction) was the length of the test piece, and a tensile test was performed at room temperature in accordance with the same standard to evaluate the moldability.
- smoothing and swell removal processing were performed using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm.
- FIR Finite Impulse Response
- the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. It was measured. The interval between each line was 0.1 mm, and a total of 50 lines were measured. And the average value of 50 lines of this arithmetic mean wave
- the results obtained are shown in Table 1.
- the cold rolled annealed pickled plates made from the material for cold rolled steel sheets in which the area ratio of the martensite phase is within the scope of the present invention, i.e., the cold rolled steel sheet material of the present invention example, are all evaluated for corrosion resistance. ”Or“ ⁇ ”, the evaluation of formability is“ ⁇ ”, and the evaluation of ridging resistance is“ ⁇ ”or“ ⁇ ”, which is excellent in corrosion resistance and moldability and ridging resistance. It turned out to be excellent.
- the material for cold-rolled steel sheets in which the area ratio of the martensite phase is less than the range of the present invention that is, the cold-rolled annealed pickled sheets made from the material for cold-rolled steel sheets of the comparative example, are all ridging resistant.
- the evaluation is “ ⁇ ”. Since these cold-rolled annealed pickled sheets were insufficient in the amount of martensite phase contained in the material for cold-rolled steel sheets, the colonies were not sufficiently destroyed by cold rolling, so the ridging resistance was poor. It became a thing.
- the cold-rolled annealed pickled plates produced from the materials for cold-rolled steel sheets according to the present invention each have a corrosion resistance evaluation of “ ⁇ ” or “ ⁇ ”, and a formability evaluation of “ ⁇ ” or “ ⁇ ”.
- the evaluation of ridging resistance was “ ⁇ ”, “ ⁇ ” or “ ⁇ ”, and it was found that the corrosion resistance was excellent, and the moldability and ridging resistance were also excellent.
- 2-52 was produced from a comparative cold-rolled steel sheet material having a Ti content higher than the component range of the present invention, and therefore ridging resistance was poor.
- Test No. 2-55 was produced from the material for the cold rolled steel sheet of the comparative example in which the Cr content is lower than the component range of the present invention and the value of the formula (1) exceeds 0.0. The ridging resistance was poor.
- Test No. 2-57 was produced from a comparative cold-rolled steel sheet material in which the Nb content was higher than the component range of the present invention, and therefore the ridging resistance was inferior.
- the material for stainless steel cold-rolled steel sheet of the present invention is suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and excellent formability and ridging resistance.
- Ferritic stainless steel cold-rolled steel sheets manufactured from the material for stainless steel cold-rolled steel sheets according to the present invention are excellent in corrosion resistance, and are also excellent in formability and ridging resistance. It can be suitably used for applications such as parts for accessories, automobile interior parts, automobile exhaust piping, and building materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Provided are: a material for a cold-rolled stainless steel sheet, said material being suitable for producing a cold-rolled ferritic stainless steel sheet exhibiting excellent corrosion resistance and excellent mouldability and ridging resistance; and a production method therefor. This material for a cold-rolled stainless steel sheet is provided with a component composition which includes, in mass%, 0.005-0.030% of C, 0.05-1.00% of Si, 0.05-1.00% of Mn, 0.040% or less of P, 0.030% or less of S, 0.001-0.150% of Al, 10.8-14.4% of Cr, 0.01-2.50% of Ni, and 0.005-0.060% of N, the remainder comprising Fe and unavoidable impurities. The material for the cold-rolled stainless steel sheet is provided with a structure which includes, in area ratio, 10-90% of martensite phase, the remainder comprising ferrite phase.
Description
本発明は、耐食性に優れ、さらに成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板を製造するのに好適なステンレス冷延鋼板用素材およびその製造方法に関するものである。
The present invention relates to a material for a stainless cold-rolled steel sheet suitable for producing a ferritic stainless cold-rolled steel sheet having excellent corrosion resistance and further excellent formability and ridging resistance, and a method for producing the same.
フェライト系ステンレス鋼板は、多くのNiを含有しないことからオーステナイト系ステンレス鋼板に比較して安価で価格安定性に優れた材料であり、さらに耐発銹性に優れた材料であることから、建築材料、輸送機器、家庭電化製品等の様々な用途に使用されている。特に、オーステナイト系ステンレス鋼板と異なり磁性を有することから、IH(誘導加熱)方式に対応できる調理器具への適用が増えている。鍋などに代表される調理器具は、その多くが張り出し加工によって成形される。そのため、所定の形状への成形には、十分な伸びが必要となる。
Ferritic stainless steel sheet does not contain much Ni, so it is cheaper and more price stable than austenitic stainless steel sheet, and it is also a material with excellent rust resistance. It is used for various applications such as transportation equipment and home appliances. In particular, since it has magnetism unlike an austenitic stainless steel sheet, it is increasingly applied to cooking utensils that are compatible with the IH (induction heating) system. Most cooking utensils represented by pans and the like are formed by overhanging. Therefore, sufficient elongation is required for molding into a predetermined shape.
一方、フェライト系ステンレス鋼板には、成形時にしばしば表面に美観を損ねる表面凹凸(リジング)が発生するという問題点がある。表面外観が商品価値を大きく左右する調理器具においては、リジングが発生した場合には、成形の後に凹凸を除去する研磨工程が必要となる。すなわち、大きなリジングが発生すると、製造コストが増加するという課題がある。なお、一般的に、フェライト系ステンレス鋼板には、大きなひずみを加えるほどに、すなわち、厳しい加工を施すほどに、大きなリジングが現れるという傾向がある。
On the other hand, the ferritic stainless steel sheet has a problem that surface irregularities (riding) that often impairs the appearance of the surface occur during forming. In cooking utensils whose surface appearance greatly affects the commercial value, when ridging occurs, a polishing step is necessary to remove irregularities after molding. That is, when large ridging occurs, there is a problem that the manufacturing cost increases. In general, ferritic stainless steel sheets tend to have larger ridging as they are subjected to greater strain, i.e., more severely processed.
近年、家庭用調理器具の形状の多様化に伴い、従来よりも厳しい加工を施すことが可能であるフェライト系ステンレス鋼板が求められている。すなわち、より高い伸びを有するフェライト系ステンレス鋼板が求められている。一方、家庭用調理器具には、製造コストの低廉化も求められている。すなわち、製造コストの増加を招くリジングが低減されたフェライト系ステンレス鋼板も求められている。これらのことから、より高い伸びを有し、かつ、従来よりも大きなひずみを加えた場合にもリジングが十分に小さいフェライト系ステンレス鋼板が求められている。
In recent years, with the diversification of the shape of household cooking utensils, ferritic stainless steel sheets that can be processed more severely than before have been demanded. That is, a ferritic stainless steel sheet having a higher elongation is desired. On the other hand, household cooking utensils are also required to reduce manufacturing costs. That is, a ferritic stainless steel sheet with reduced ridging that causes an increase in manufacturing cost is also required. From these facts, a ferritic stainless steel sheet having a higher elongation and having a sufficiently small ridging even when a larger strain than before is applied.
上記の課題に対して、例えば、特許文献1では、質量%で、C:0.02~0.06%、Si:1.0%以下、Mn:1.0%以下、P:0.05%以下、S:0.01%以下、Al:0.005%以下、Ti:0.005%以下、Cr:11~30%、Ni:0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性に優れたフェライト系ステンレス鋼板が開示されている。
For example, in Patent Document 1, in Patent Document 1, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05 %: S: 0.01% or less, Al: 0.005% or less, Ti: 0.005% or less, Cr: 11 to 30%, Ni: 0.7% or less, and 0.06 ≦ ( C + N) ≦ 0.12, 1 ≦ N / C and 1.5 × 10 −3 ≦ (V × N) ≦ 1.5 × 10 −2 (C, N, and V represent mass% of each element, respectively) A ferritic stainless steel sheet excellent in formability characterized by satisfying the above requirements is disclosed.
また、特許文献2では、重量%で0.15%以下のC、13~25%のCrを含有するフェライト系ステンレス鋼板であって、この鋼の熱延板をオーステナイトおよびフェライト相が共存する930~990℃の範囲で10分以内の焼鈍を行うことにより、組織をマルテンサイト相とフェライト相の二相組織とし、次いで、冷間圧延を行い、冷延板を750~860℃の範囲で焼鈍することを特徴とする耐リジング性と加工性に優れるフェライト系ステンレス鋼板の製造方法が開示されている。
Patent Document 2 discloses a ferritic stainless steel sheet containing 0.15% or less C by weight and 13 to 25% Cr, and the hot-rolled sheet of this steel coexists with austenite and ferrite phase 930. By annealing within a range of 10 minutes within a range of ˜990 ° C., the structure becomes a two-phase structure of a martensite phase and a ferrite phase, followed by cold rolling, and annealing a cold-rolled sheet within a range of 750-860 ° C. A method for producing a ferritic stainless steel sheet excellent in ridging resistance and workability is disclosed.
また、特許文献3では、質量%で、C:0.007~0.05%、Si:0.02~0.50%、Mn:0.05~1.0%、P:0.04%以下、S:0.01%以下、Cr:15.5~18.0%、Al:0.001~0.10%、N:0.01~0.06%を含有し、残部がFeおよび不可避的不純物からなり、かつ、面積率で10~60%のマルテンサイト相と残部がフェライト相からなる金属組織を有し、さらに、前記マルテンサイト相の硬度がフェライト相からなる金属組織を有し、さらに、前記マルテンサイト相の硬度がHV500以下であるステンレス冷延鋼板用素材が開示されている。
Further, in Patent Document 3, by mass, C: 0.007 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.04% S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10%, N: 0.01 to 0.06%, with the balance being Fe and It has a metal structure composed of inevitable impurities and an area ratio of 10 to 60% of martensite phase and the balance composed of ferrite phase, and the martensite phase has a metal structure composed of ferrite phase. Furthermore, a stainless cold-rolled steel sheet material having a martensite phase hardness of HV500 or less is disclosed.
特許文献1に開示された発明においては、20%の予歪みを加えた試験片をもとにリジングが評価されており、より厳しい加工が施された場合のリジングについて十分な評価がなされていない。本発明者らは、特許文献1に記載された手法で複数の鋼板を作製し、後述する方法にて、23%の予歪みを加えた場合のリジング高さを評価した。しかしながら、いずれの鋼板においても、優れた耐リジング性は得られなかった。
In the invention disclosed in Patent Document 1, ridging is evaluated based on a test piece to which 20% pre-strain is added, and sufficient evaluation has not been made for ridging when stricter processing is performed. . The inventors produced a plurality of steel plates by the method described in Patent Document 1, and evaluated the ridging height when 23% pre-strain was applied by the method described later. However, no ridging resistance was obtained in any of the steel sheets.
また、特許文献2に開示された発明においては、リジングを評価するために加えた予歪みが記載されていない。本発明者らは、特許文献2に記載された手法で複数の鋼板を作製し、後述するリジング評価方法にて、23%の予歪みを加えた場合のリジング高さを評価した。その結果、いずれの鋼板においても、優れた耐リジング性は得られなかった。また、当該の発明においては、伸びの評価に用いた試験片の形状が記載されていない。評価に用いる試験片の形状によって、得られる伸びの値が変化する事は公知の事実である。本発明者らは、特許文献2に記載された手法で複数の鋼板を作製し、後述する引張試験方法にて、鋼板の破断伸びを評価した。その結果、いずれの鋼板においても、優れた成形性は得られなかった。
Further, in the invention disclosed in Patent Document 2, the predistortion added for evaluating ridging is not described. The present inventors produced a plurality of steel plates by the method described in Patent Document 2, and evaluated the ridging height when 23% pre-strain was applied by a ridging evaluation method described later. As a result, no excellent ridging resistance was obtained in any of the steel sheets. Moreover, in the said invention, the shape of the test piece used for evaluation of elongation is not described. It is a known fact that the elongation value obtained varies depending on the shape of the test piece used for evaluation. The inventors prepared a plurality of steel plates by the method described in Patent Document 2, and evaluated the elongation at break of the steel plates by a tensile test method described later. As a result, excellent formability was not obtained in any steel sheet.
また、本発明者らは、特許文献3に記載された手法で複数の鋼板を作製し、後述する引張試験方法にて、鋼板の破断伸びを評価した。その結果、いずれの鋼板においても、優れた成形性は得られなかった。
In addition, the present inventors produced a plurality of steel plates by the method described in Patent Document 3, and evaluated the breaking elongation of the steel plates by a tensile test method described later. As a result, excellent formability was not obtained in any steel sheet.
本発明は、上記の現状に鑑み開発されたものであって、耐食性に優れ、さらに成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板を製造するのに好適なステンレス冷延鋼板用素材およびその製造方法を提供することを目的とする。
The present invention has been developed in view of the above-described present situation, and is a material for stainless cold-rolled steel sheets suitable for producing ferritic stainless cold-rolled steel sheets having excellent corrosion resistance and excellent formability and ridging resistance. And it aims at providing the manufacturing method.
なお、「優れた耐食性」とは、次に述べる方法で測定した銹面積率が30%以下であることを意味する。より好ましくは20%以下である。耐食性を評価するための腐食試験は、JASO M609-91に準拠して実施する。まず、試験方法としては、試験片を、エメリー研磨紙で600番まで研磨し、水洗後、エタノール中にて5分の超音波脱脂を行う。その後、1サイクルを塩水噴霧(5質量%NaCl水溶液、35℃)2h→乾燥(60℃、相対湿度40%)4h→湿潤(50℃、相対湿度95%以上)2hとし、3サイクルの腐食試験を実施する。試験後、腐食面を外観撮影し、試験片中心の30mm×30mmの領域について、得られた写真から画像解析にて銹面積率を算出する。
In addition, "excellent corrosion resistance" means that the ridge area ratio measured by the method described below is 30% or less. More preferably, it is 20% or less. The corrosion test for evaluating the corrosion resistance is performed according to JASO M609-91. First, as a test method, the test piece is polished up to No. 600 with emery polishing paper, washed with water, and then ultrasonically degreased in ethanol for 5 minutes. Thereafter, one cycle is salt spray (5% by weight NaCl aqueous solution, 35 ° C.) 2 h → dry (60 ° C., relative humidity 40%) 4 h → wet (50 ° C., relative humidity 95% or more) 2 h. To implement. After the test, appearance of the corroded surface is photographed, and the wrinkle area ratio is calculated by image analysis from the obtained photograph for a 30 mm × 30 mm region at the center of the test piece.
また、「優れた成形性」とは、次に述べる方法で測定した鋼板の破断伸びが28%以上であることを意味する。より好ましくは32%以上である。破断伸びを評価するために、まずは圧延方向(L方向)、圧延方向に対して45度方向(D方向)、圧延方向に対して直角方向(C方向)をそれぞれ長手方向とするJIS Z 2241に準拠したJIS13号B引張試験片を採取する。その後、JIS Z 2241に準拠した引張試験を行い、破断伸び(El)をそれぞれ測定する。得られた破断伸びの三方向平均((L+2D+C)/4、ただし、L、D、Cは各方向の破断伸び(%))を算出し、鋼板の破断伸びとする。
Further, “excellent formability” means that the elongation at break of the steel sheet measured by the method described below is 28% or more. More preferably, it is 32% or more. In order to evaluate the elongation at break, first the rolling direction (L direction), 45 degrees direction (D direction) with respect to the rolling direction, and JIS Z 2241 with the direction perpendicular to the rolling direction (C direction) as the longitudinal direction, respectively. A JIS No. 13 B tensile test piece is collected. Thereafter, a tensile test based on JIS Z 2241 is performed to measure the elongation at break (El). The three-way average of the obtained elongation at break ((L + 2D + C) / 4, where L, D, and C are the elongation at break (%) in each direction) is calculated as the elongation at break of the steel sheet.
また、「優れた耐リジング性」とは、次に述べる方法で測定した鋼板表面のリジング高さが3.0μm以下であることを意味する。より好ましくは2.5μm以下である。さらに好ましくは、2.0μm以下である。鋼板表面のリジング高さを測定するために、まず、圧延方向に平行にJIS 5号引張試験片を採取する。次いで、採取した試験片の表面を#600のエメリーペーパーを用いて研磨した後、23%の引張ひずみを付与する。次いで、試験片の平行部の研磨面で、圧延方向に直角の方向に、レーザー変位計で表面形状を測定する。測定長は1ラインあたり16mmであり、0.05mm刻みで高さを測定する。また、各ラインの間隔を0.1mmとして、合計50ライン測定する。得られた各ラインの形状データは、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmとしたHanning窓関数型のFIR(Finite Impulse Response)バンドパスフィルターを用いて、それぞれ平滑化およびうねり除去処理を行う。その後、処理を行った各ラインの形状データをもとに、各ラインの両端それぞれ2mm分のデータを排除して、JIS B 0601(2001年)で規定される算術平均うねりWaを各ラインにて測定する。この算術平均うねりWaの50ラインの平均値を、鋼板表面のリジング高さとする。
なお、従来の耐リジング性評価には、15%あるいは20%の引張ひずみを付与した試験片が多く用いられている。しかしながら、本発明は、従来よりも複雑な形状へ加工される用途を想定している。そのため、厳しい加工が行われた場合、すなわち、従来よりも多くのひずみが付与された場合を想定し、試験片に付与する引張ひずみを23%として評価した。 Further, “excellent ridging resistance” means that the ridging height of the steel sheet surface measured by the method described below is 3.0 μm or less. More preferably, it is 2.5 μm or less. More preferably, it is 2.0 μm or less. In order to measure the ridging height of the steel sheet surface, first, a JIS No. 5 tensile test piece is taken in parallel with the rolling direction. Next, the surface of the collected test piece is polished with # 600 emery paper, and then 23% tensile strain is applied. Next, the surface shape is measured with a laser displacement meter in the direction perpendicular to the rolling direction on the polished surface of the parallel part of the test piece. The measurement length is 16 mm per line, and the height is measured in increments of 0.05 mm. Further, a total of 50 lines are measured with an interval of each line being 0.1 mm. The obtained shape data of each line is subjected to smoothing and undulation removal processing using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm. . After that, based on the shape data of each processed line, the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. taking measurement. The average value of 50 lines of this arithmetic average waviness Wa is defined as the ridging height of the steel sheet surface.
In addition, in the conventional evaluation of ridging resistance, many test pieces provided with a tensile strain of 15% or 20% are used. However, the present invention envisages an application that is processed into a more complicated shape than before. Therefore, the case where severe processing was performed, that is, the case where more strain than before was assumed, and the tensile strain applied to the test piece was evaluated as 23%.
なお、従来の耐リジング性評価には、15%あるいは20%の引張ひずみを付与した試験片が多く用いられている。しかしながら、本発明は、従来よりも複雑な形状へ加工される用途を想定している。そのため、厳しい加工が行われた場合、すなわち、従来よりも多くのひずみが付与された場合を想定し、試験片に付与する引張ひずみを23%として評価した。 Further, “excellent ridging resistance” means that the ridging height of the steel sheet surface measured by the method described below is 3.0 μm or less. More preferably, it is 2.5 μm or less. More preferably, it is 2.0 μm or less. In order to measure the ridging height of the steel sheet surface, first, a JIS No. 5 tensile test piece is taken in parallel with the rolling direction. Next, the surface of the collected test piece is polished with # 600 emery paper, and then 23% tensile strain is applied. Next, the surface shape is measured with a laser displacement meter in the direction perpendicular to the rolling direction on the polished surface of the parallel part of the test piece. The measurement length is 16 mm per line, and the height is measured in increments of 0.05 mm. Further, a total of 50 lines are measured with an interval of each line being 0.1 mm. The obtained shape data of each line is subjected to smoothing and undulation removal processing using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm. . After that, based on the shape data of each processed line, the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. taking measurement. The average value of 50 lines of this arithmetic average waviness Wa is defined as the ridging height of the steel sheet surface.
In addition, in the conventional evaluation of ridging resistance, many test pieces provided with a tensile strain of 15% or 20% are used. However, the present invention envisages an application that is processed into a more complicated shape than before. Therefore, the case where severe processing was performed, that is, the case where more strain than before was assumed, and the tensile strain applied to the test piece was evaluated as 23%.
本発明者らは、上記の課題に対し、耐食性に優れ、さらに成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板を製造するのに好適なステンレス冷延鋼板用素材およびその製造方法を検討した。その結果、以下の知見を得た。
適切な成分のフェライト系ステンレス鋼に対して、熱間圧延後、冷間圧延する前に、フェライト相とオーステナイト相との二相域となる好適な温度域で焼鈍を行って製造したステンレス冷延鋼板用素材を用い、その後、冷間圧延、冷延板焼鈍を施すことで、成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板が得られる。 With respect to the above-mentioned problems, the present inventors provide a material for a stainless steel cold-rolled steel sheet suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and excellent formability and ridging resistance, and a method for producing the same. investigated. As a result, the following knowledge was obtained.
A stainless steel cold rolled steel manufactured by annealing in a suitable temperature range that is a two-phase region of a ferrite phase and an austenite phase after hot rolling and before cold rolling for ferritic stainless steel of appropriate components A ferritic stainless steel cold-rolled steel sheet excellent in formability and ridging resistance is obtained by using a steel plate material and then performing cold rolling and cold-rolled sheet annealing.
適切な成分のフェライト系ステンレス鋼に対して、熱間圧延後、冷間圧延する前に、フェライト相とオーステナイト相との二相域となる好適な温度域で焼鈍を行って製造したステンレス冷延鋼板用素材を用い、その後、冷間圧延、冷延板焼鈍を施すことで、成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板が得られる。 With respect to the above-mentioned problems, the present inventors provide a material for a stainless steel cold-rolled steel sheet suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and excellent formability and ridging resistance, and a method for producing the same. investigated. As a result, the following knowledge was obtained.
A stainless steel cold rolled steel manufactured by annealing in a suitable temperature range that is a two-phase region of a ferrite phase and an austenite phase after hot rolling and before cold rolling for ferritic stainless steel of appropriate components A ferritic stainless steel cold-rolled steel sheet excellent in formability and ridging resistance is obtained by using a steel plate material and then performing cold rolling and cold-rolled sheet annealing.
具体的には、まず鋼成分のうち、C含有量を0.030%以下とし、かつ、Cr含有量を14.4%以下とし、かつ、N含有量を0.060%以下とする。上記成分を有する鋼塊を熱間圧延し、続いてフェライト-オーステナイト二相域となる900~1100℃で熱延板焼鈍を行う。この熱延板焼鈍において、オーステナイト相が面積率で10~90%となるように鋼成分を調整する。このオーステナイト相は、本発明の鋼成分範囲においては、そのほぼ全てが、熱延板焼鈍後の冷却過程でマルテンサイト相となる。このようにして得た、マルテンサイト相を含んだ状態の熱延焼鈍板(冷延鋼板用素材)に、その後、冷間圧延を施すことで、リジングの原因となるコロニー(類似した結晶方位を有する結晶粒群)が破壊され、かつ、フェライト/マルテンサイト粒界に圧延歪みが効率的に付与される。その後さらに、冷延板焼鈍を施すことで、上述したように圧延歪みが効率的に付与されているため、さらに、鋼中に含まれるCr量、C量およびN量が十分に低いため、再結晶が促進される。再結晶が促進された効果により、780~830℃のフェライト単相域である温度範囲において、冷延板は十分に再結晶し、優れた成形性を有する冷延焼鈍板(フェライト系ステンレス冷延鋼板)が得られる。また、上述したコロニー破壊の効果により、その冷延焼鈍板は優れた耐リジング性を有することとなる。
Specifically, first, among the steel components, the C content is set to 0.030% or less, the Cr content is set to 14.4% or less, and the N content is set to 0.060% or less. The steel ingot having the above components is hot-rolled, followed by hot-rolled sheet annealing at 900 to 1100 ° C., which becomes a ferrite-austenite two-phase region. In this hot-rolled sheet annealing, the steel components are adjusted so that the austenite phase is 10 to 90% in area ratio. In the steel component range of the present invention, almost all of the austenite phase becomes a martensite phase in the cooling process after hot-rolled sheet annealing. The thus obtained hot-rolled annealed sheet (material for cold-rolled steel sheet) containing the martensite phase is then cold-rolled to give colonies that cause ridging (similar crystal orientation). The crystal grain group) is destroyed, and rolling strain is efficiently applied to the ferrite / martensite grain boundary. After that, by performing cold-rolled sheet annealing, the rolling strain is efficiently applied as described above, and further, the amount of Cr, C, and N contained in the steel is sufficiently low. Crystals are promoted. Due to the effect of promoting recrystallization, the cold-rolled sheet is sufficiently recrystallized in the temperature range of 780 to 830 ° C. in the ferrite single phase region, and a cold-rolled annealed sheet (ferritic stainless steel cold-rolled) having excellent formability. Steel plate) is obtained. Moreover, the cold-rolled annealing board has the outstanding ridging resistance by the effect of the colony destruction mentioned above.
本発明は、上記の知見に立脚するものであり、その要旨構成は次のとおりである。
[1]質量%で、
C:0.005~0.030%、
Si:0.05~1.00%、
Mn:0.05~1.00%、
P:0.040%以下、
S:0.030%以下、
Al:0.001~0.150%、
Cr:10.8~14.4%、
Ni:0.01~2.50%、および
N:0.005~0.060%
を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織と、を有する、ステンレス冷延鋼板用素材。
[2]さらに、質量%で、
Co:0.01~0.50%、
Cu:0.01~0.80%、
Mo:0.01~0.30%、および
W:0.01~0.50%
のうちから選んだ1種または2種以上を含有する成分組成を有する、[1]に記載のステンレス冷延鋼板用素材。
[3]さらに、質量%で、
Ti:0.01~0.30%、
V:0.01~0.10%、
Zr:0.01~0.10%、および
Nb:0.01~0.30%
のうちから選んだ1種または2種以上を含有し、かつ、
下記式(1)の値が0.0以下である成分組成を有する、[1]または[2]に記載のフェライト系ステンレス鋼板用素材。
54×(Ti+V+Zr+Nb)-5×Mn-19×Ni+1.0 ・・・式(1)
ただし、上記式(1)における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
[4]さらに、質量%で、
B:0.0003~0.0030%、
Mg:0.0005~0.0100%、
Ca:0.0003~0.0030%、
Y:0.01~0.20%、および
REM(希土類金属):0.001~0.100%
のうちから選んだ1種または2種以上を含有する成分組成を有する、[1]~[3]のいずれかに記載のステンレス冷延鋼板用素材。
[5]さらに、質量%で、
Sn:0.001~0.500%、および
Sb:0.001~0.500%
のうちから選んだ1種または2種を含有する成分組成を有する、[1]~[4]のいずれかに記載のステンレス冷延鋼板用素材。
[6]上記[1]~[5]のいずれかに記載のステンレス冷延鋼板用素材の製造方法であって、
前記成分組成を有する鋼スラブを熱間圧延し、熱延板とし、前記熱延板を900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍を行う、ステンレス冷延鋼板用素材の製造方法。 The present invention is based on the above findings, and the gist of the present invention is as follows.
[1] By mass%
C: 0.005 to 0.030%,
Si: 0.05 to 1.00%,
Mn: 0.05 to 1.00%
P: 0.040% or less,
S: 0.030% or less,
Al: 0.001 to 0.150%,
Cr: 10.8 to 14.4%,
Ni: 0.01-2.50%, and N: 0.005-0.060%
A component composition comprising the balance of Fe and unavoidable impurities, and
A material for a stainless cold-rolled steel sheet, comprising a martensite phase with an area ratio of 10 to 90% and a structure comprising a ferrite phase as a balance.
[2] Furthermore, in mass%,
Co: 0.01 to 0.50%,
Cu: 0.01 to 0.80%,
Mo: 0.01 to 0.30% and W: 0.01 to 0.50%
The material for a stainless cold-rolled steel sheet according to [1], having a component composition containing one or more selected from among the above.
[3] Furthermore, in mass%,
Ti: 0.01 to 0.30%,
V: 0.01 to 0.10%,
Zr: 0.01 to 0.10%, and Nb: 0.01 to 0.30%
Containing one or more selected from among, and
The material for a ferritic stainless steel sheet according to [1] or [2], which has a component composition in which a value of the following formula (1) is 0.0 or less.
54 × (Ti + V + Zr + Nb) −5 × Mn−19 × Ni + 1.0 Formula (1)
However, each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0.
[4] Furthermore, in mass%,
B: 0.0003 to 0.0030%,
Mg: 0.0005 to 0.0100%,
Ca: 0.0003 to 0.0030%,
Y: 0.01 to 0.20%, and REM (rare earth metal): 0.001 to 0.100%
The material for a stainless cold-rolled steel sheet according to any one of [1] to [3], which has a component composition containing one or more selected from among the above.
[5] Furthermore, in mass%,
Sn: 0.001 to 0.500%, and Sb: 0.001 to 0.500%
The material for a stainless cold-rolled steel sheet according to any one of [1] to [4], which has a component composition containing one or two selected from the above.
[6] A method for producing a material for a stainless cold-rolled steel sheet according to any one of [1] to [5] above,
A steel slab having the above component composition is hot-rolled to form a hot-rolled sheet, and a stainless-steel cold-rolled sheet is subjected to hot-rolled sheet annealing in which the hot-rolled sheet is held in a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes. Manufacturing method for steel plate materials.
[1]質量%で、
C:0.005~0.030%、
Si:0.05~1.00%、
Mn:0.05~1.00%、
P:0.040%以下、
S:0.030%以下、
Al:0.001~0.150%、
Cr:10.8~14.4%、
Ni:0.01~2.50%、および
N:0.005~0.060%
を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織と、を有する、ステンレス冷延鋼板用素材。
[2]さらに、質量%で、
Co:0.01~0.50%、
Cu:0.01~0.80%、
Mo:0.01~0.30%、および
W:0.01~0.50%
のうちから選んだ1種または2種以上を含有する成分組成を有する、[1]に記載のステンレス冷延鋼板用素材。
[3]さらに、質量%で、
Ti:0.01~0.30%、
V:0.01~0.10%、
Zr:0.01~0.10%、および
Nb:0.01~0.30%
のうちから選んだ1種または2種以上を含有し、かつ、
下記式(1)の値が0.0以下である成分組成を有する、[1]または[2]に記載のフェライト系ステンレス鋼板用素材。
54×(Ti+V+Zr+Nb)-5×Mn-19×Ni+1.0 ・・・式(1)
ただし、上記式(1)における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
[4]さらに、質量%で、
B:0.0003~0.0030%、
Mg:0.0005~0.0100%、
Ca:0.0003~0.0030%、
Y:0.01~0.20%、および
REM(希土類金属):0.001~0.100%
のうちから選んだ1種または2種以上を含有する成分組成を有する、[1]~[3]のいずれかに記載のステンレス冷延鋼板用素材。
[5]さらに、質量%で、
Sn:0.001~0.500%、および
Sb:0.001~0.500%
のうちから選んだ1種または2種を含有する成分組成を有する、[1]~[4]のいずれかに記載のステンレス冷延鋼板用素材。
[6]上記[1]~[5]のいずれかに記載のステンレス冷延鋼板用素材の製造方法であって、
前記成分組成を有する鋼スラブを熱間圧延し、熱延板とし、前記熱延板を900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍を行う、ステンレス冷延鋼板用素材の製造方法。 The present invention is based on the above findings, and the gist of the present invention is as follows.
[1] By mass%
C: 0.005 to 0.030%,
Si: 0.05 to 1.00%,
Mn: 0.05 to 1.00%
P: 0.040% or less,
S: 0.030% or less,
Al: 0.001 to 0.150%,
Cr: 10.8 to 14.4%,
Ni: 0.01-2.50%, and N: 0.005-0.060%
A component composition comprising the balance of Fe and unavoidable impurities, and
A material for a stainless cold-rolled steel sheet, comprising a martensite phase with an area ratio of 10 to 90% and a structure comprising a ferrite phase as a balance.
[2] Furthermore, in mass%,
Co: 0.01 to 0.50%,
Cu: 0.01 to 0.80%,
Mo: 0.01 to 0.30% and W: 0.01 to 0.50%
The material for a stainless cold-rolled steel sheet according to [1], having a component composition containing one or more selected from among the above.
[3] Furthermore, in mass%,
Ti: 0.01 to 0.30%,
V: 0.01 to 0.10%,
Zr: 0.01 to 0.10%, and Nb: 0.01 to 0.30%
Containing one or more selected from among, and
The material for a ferritic stainless steel sheet according to [1] or [2], which has a component composition in which a value of the following formula (1) is 0.0 or less.
54 × (Ti + V + Zr + Nb) −5 × Mn−19 × Ni + 1.0 Formula (1)
However, each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0.
[4] Furthermore, in mass%,
B: 0.0003 to 0.0030%,
Mg: 0.0005 to 0.0100%,
Ca: 0.0003 to 0.0030%,
Y: 0.01 to 0.20%, and REM (rare earth metal): 0.001 to 0.100%
The material for a stainless cold-rolled steel sheet according to any one of [1] to [3], which has a component composition containing one or more selected from among the above.
[5] Furthermore, in mass%,
Sn: 0.001 to 0.500%, and Sb: 0.001 to 0.500%
The material for a stainless cold-rolled steel sheet according to any one of [1] to [4], which has a component composition containing one or two selected from the above.
[6] A method for producing a material for a stainless cold-rolled steel sheet according to any one of [1] to [5] above,
A steel slab having the above component composition is hot-rolled to form a hot-rolled sheet, and a stainless-steel cold-rolled sheet is subjected to hot-rolled sheet annealing in which the hot-rolled sheet is held in a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes. Manufacturing method for steel plate materials.
本発明によれば、耐食性に優れ、さらに成形性と耐リジング性に優れるフェライト系ステンレス冷延鋼板を製造するのに好適なステンレス冷延鋼板用素材およびその製造方法が提供される。
According to the present invention, there are provided a material for a stainless steel cold-rolled steel sheet suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and further excellent formability and ridging resistance, and a method for producing the same.
以下、本発明を具体的に説明する。
本発明のステンレス冷延鋼板用素材は、質量%で、C:0.005~0.030%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.040%以下、S:0.030%以下、Al:0.001~0.150%、Cr:10.8~14.4%、Ni:0.01~2.50%、およびN:0.005~0.060%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織を有する。本発明のステンレス冷延鋼板用素材を用いることで、耐食性に優れ、さらに成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板を製造することができる。 Hereinafter, the present invention will be specifically described.
The material for stainless steel cold-rolled steel sheet of the present invention is, in mass%, C: 0.005 to 0.030%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.040% or less, S: 0.030% or less, Al: 0.001 to 0.150%, Cr: 10.8 to 14.4%, Ni: 0.01 to 2.50%, and N: A structure containing 0.005 to 0.060%, the balance being composed of Fe and inevitable impurities, including a martensite phase with an area ratio of 10 to 90%, and the balance being a ferrite phase Have By using the material for stainless steel cold-rolled steel sheet of the present invention, it is possible to produce a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance, and further excellent formability and ridging resistance.
本発明のステンレス冷延鋼板用素材は、質量%で、C:0.005~0.030%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.040%以下、S:0.030%以下、Al:0.001~0.150%、Cr:10.8~14.4%、Ni:0.01~2.50%、およびN:0.005~0.060%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織を有する。本発明のステンレス冷延鋼板用素材を用いることで、耐食性に優れ、さらに成形性および耐リジング性に優れたフェライト系ステンレス冷延鋼板を製造することができる。 Hereinafter, the present invention will be specifically described.
The material for stainless steel cold-rolled steel sheet of the present invention is, in mass%, C: 0.005 to 0.030%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.040% or less, S: 0.030% or less, Al: 0.001 to 0.150%, Cr: 10.8 to 14.4%, Ni: 0.01 to 2.50%, and N: A structure containing 0.005 to 0.060%, the balance being composed of Fe and inevitable impurities, including a martensite phase with an area ratio of 10 to 90%, and the balance being a ferrite phase Have By using the material for stainless steel cold-rolled steel sheet of the present invention, it is possible to produce a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance, and further excellent formability and ridging resistance.
まず、本発明で成分組成を上記の範囲に限定した理由について説明する。なお、成分の含有量の単位である%は、特に断らない限り質量%を意味する。
First, the reason why the component composition is limited to the above range in the present invention will be described. In addition,% which is a unit of content of a component means the mass% unless there is particular notice.
C:0.005~0.030%
Cは、鋼の強度を高めるのに有効な元素である。さらに、Cは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。この効果はC含有量を0.005%以上にすることで得られる。しかし、C含有量が0.030%を超えると、鋼が硬質化して成形性が低下する。よって、C含有量は0.005~0.030%とする。C含有量は、好ましくは0.007%以上であり、より好ましくは0.010%以上である。また、C含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。 C: 0.005 to 0.030%
C is an element effective for increasing the strength of steel. Furthermore, C is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by setting the C content to 0.005% or more. However, if the C content exceeds 0.030%, the steel becomes hard and the formability decreases. Therefore, the C content is set to 0.005 to 0.030%. The C content is preferably 0.007% or more, and more preferably 0.010% or more. Further, the C content is preferably 0.020% or less, more preferably 0.015% or less.
Cは、鋼の強度を高めるのに有効な元素である。さらに、Cは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。この効果はC含有量を0.005%以上にすることで得られる。しかし、C含有量が0.030%を超えると、鋼が硬質化して成形性が低下する。よって、C含有量は0.005~0.030%とする。C含有量は、好ましくは0.007%以上であり、より好ましくは0.010%以上である。また、C含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。 C: 0.005 to 0.030%
C is an element effective for increasing the strength of steel. Furthermore, C is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by setting the C content to 0.005% or more. However, if the C content exceeds 0.030%, the steel becomes hard and the formability decreases. Therefore, the C content is set to 0.005 to 0.030%. The C content is preferably 0.007% or more, and more preferably 0.010% or more. Further, the C content is preferably 0.020% or less, more preferably 0.015% or less.
Si:0.05~1.00%
Siは、脱酸剤として有用な元素である。この効果は、Si含有量を0.05%以上にすることで得られる。しかし、Si含有量が1.00%を超えると鋼が硬質化して成形性が低下する。さらに、熱延板焼鈍時に生成するオーステナイト相が減少し、耐リジング性が低下する。従って、Si含有量は0.05~1.00%とする。Si含有量は、好ましくは0.07%以上であり、より好ましくは0.10%以上であり、さらに好ましくは0.20%以上である。また、Si含有量は、好ましくは0.50%以下であり、より好ましくは0.40%未満であり、さらに好ましくは0.30%未満である。 Si: 0.05 to 1.00%
Si is an element useful as a deoxidizer. This effect can be obtained by setting the Si content to 0.05% or more. However, if the Si content exceeds 1.00%, the steel becomes hard and the formability decreases. Furthermore, the austenite phase produced | generated at the time of hot-rolled sheet annealing reduces, and ridging resistance falls. Therefore, the Si content is 0.05 to 1.00%. Si content becomes like this. Preferably it is 0.07% or more, More preferably, it is 0.10% or more, More preferably, it is 0.20% or more. Moreover, Si content becomes like this. Preferably it is 0.50% or less, More preferably, it is less than 0.40%, More preferably, it is less than 0.30%.
Siは、脱酸剤として有用な元素である。この効果は、Si含有量を0.05%以上にすることで得られる。しかし、Si含有量が1.00%を超えると鋼が硬質化して成形性が低下する。さらに、熱延板焼鈍時に生成するオーステナイト相が減少し、耐リジング性が低下する。従って、Si含有量は0.05~1.00%とする。Si含有量は、好ましくは0.07%以上であり、より好ましくは0.10%以上であり、さらに好ましくは0.20%以上である。また、Si含有量は、好ましくは0.50%以下であり、より好ましくは0.40%未満であり、さらに好ましくは0.30%未満である。 Si: 0.05 to 1.00%
Si is an element useful as a deoxidizer. This effect can be obtained by setting the Si content to 0.05% or more. However, if the Si content exceeds 1.00%, the steel becomes hard and the formability decreases. Furthermore, the austenite phase produced | generated at the time of hot-rolled sheet annealing reduces, and ridging resistance falls. Therefore, the Si content is 0.05 to 1.00%. Si content becomes like this. Preferably it is 0.07% or more, More preferably, it is 0.10% or more, More preferably, it is 0.20% or more. Moreover, Si content becomes like this. Preferably it is 0.50% or less, More preferably, it is less than 0.40%, More preferably, it is less than 0.30%.
Mn:0.05~1.00%
Mnには、脱酸作用がある。さらに、Mnは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。これらの効果は、Mn含有量を0.05%以上にすることで得られる。しかし、Mn含有量が1.00%を超えるとMnSの析出および粗大化が促進され、このMnSが発銹の起点となって耐食性が低下する。従って、Mn含有量は0.05~1.00%とする。Mn含有量は、好ましくは0.10%以上であり、より好ましくは0.15%以上である。また、Mn含有量は、好ましくは0.80%以下であり、より好ましくは0.60%以下である。 Mn: 0.05 to 1.00%
Mn has a deoxidizing action. Furthermore, Mn is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. These effects can be obtained by making the Mn content 0.05% or more. However, if the Mn content exceeds 1.00%, precipitation and coarsening of MnS are promoted, and this MnS becomes a starting point of rusting and the corrosion resistance is lowered. Therefore, the Mn content is 0.05 to 1.00%. The Mn content is preferably 0.10% or more, more preferably 0.15% or more. Further, the Mn content is preferably 0.80% or less, and more preferably 0.60% or less.
Mnには、脱酸作用がある。さらに、Mnは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。これらの効果は、Mn含有量を0.05%以上にすることで得られる。しかし、Mn含有量が1.00%を超えるとMnSの析出および粗大化が促進され、このMnSが発銹の起点となって耐食性が低下する。従って、Mn含有量は0.05~1.00%とする。Mn含有量は、好ましくは0.10%以上であり、より好ましくは0.15%以上である。また、Mn含有量は、好ましくは0.80%以下であり、より好ましくは0.60%以下である。 Mn: 0.05 to 1.00%
Mn has a deoxidizing action. Furthermore, Mn is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. These effects can be obtained by making the Mn content 0.05% or more. However, if the Mn content exceeds 1.00%, precipitation and coarsening of MnS are promoted, and this MnS becomes a starting point of rusting and the corrosion resistance is lowered. Therefore, the Mn content is 0.05 to 1.00%. The Mn content is preferably 0.10% or more, more preferably 0.15% or more. Further, the Mn content is preferably 0.80% or less, and more preferably 0.60% or less.
P:0.040%以下
Pは耐食性を低下させる元素である。また、Pは結晶粒界に偏析することで熱間加工性を低下させる。そのため、P含有量は可能な限り低いほうが望ましく、0.040%以下とする。好ましくは、P含有量は0.030%以下である。 P: 0.040% or less P is an element that lowers corrosion resistance. Moreover, P reduces hot workability by segregating at the grain boundaries. Therefore, the P content is desirably as low as possible, and is set to 0.040% or less. Preferably, the P content is 0.030% or less.
Pは耐食性を低下させる元素である。また、Pは結晶粒界に偏析することで熱間加工性を低下させる。そのため、P含有量は可能な限り低いほうが望ましく、0.040%以下とする。好ましくは、P含有量は0.030%以下である。 P: 0.040% or less P is an element that lowers corrosion resistance. Moreover, P reduces hot workability by segregating at the grain boundaries. Therefore, the P content is desirably as low as possible, and is set to 0.040% or less. Preferably, the P content is 0.030% or less.
S:0.030%以下
SはMnと析出物MnSを形成する。このMnSは食孔の起点となり、耐食性の低下を招く。よって、S含有量は低いほうが望ましく、0.030%以下とする。好ましくは、S含有量は0.020%以下である。 S: 0.030% or less S forms Mn and precipitate MnS. This MnS becomes a starting point of pits and causes a decrease in corrosion resistance. Therefore, the lower S content is desirable, and it is 0.030% or less. Preferably, the S content is 0.020% or less.
SはMnと析出物MnSを形成する。このMnSは食孔の起点となり、耐食性の低下を招く。よって、S含有量は低いほうが望ましく、0.030%以下とする。好ましくは、S含有量は0.020%以下である。 S: 0.030% or less S forms Mn and precipitate MnS. This MnS becomes a starting point of pits and causes a decrease in corrosion resistance. Therefore, the lower S content is desirable, and it is 0.030% or less. Preferably, the S content is 0.020% or less.
Al:0.001~0.150%
Alは、脱酸のために有効な元素である。この効果は、Al含有量が0.001%以上で得られる。しかし、Al含有量が0.150%を超えると鋼が硬質化し成形性が低下する。従って、Al含有量は0.001~0.150%とする。Al含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。また、Al含有量は、好ましくは0.100%以下であり、より好ましくは0.050%以下である。 Al: 0.001 to 0.150%
Al is an effective element for deoxidation. This effect is obtained when the Al content is 0.001% or more. However, if the Al content exceeds 0.150%, the steel becomes hard and the formability decreases. Therefore, the Al content is set to 0.001 to 0.150%. The Al content is preferably 0.005% or more, and more preferably 0.010% or more. Moreover, Al content becomes like this. Preferably it is 0.100% or less, More preferably, it is 0.050% or less.
Alは、脱酸のために有効な元素である。この効果は、Al含有量が0.001%以上で得られる。しかし、Al含有量が0.150%を超えると鋼が硬質化し成形性が低下する。従って、Al含有量は0.001~0.150%とする。Al含有量は、好ましくは0.005%以上であり、より好ましくは0.010%以上である。また、Al含有量は、好ましくは0.100%以下であり、より好ましくは0.050%以下である。 Al: 0.001 to 0.150%
Al is an effective element for deoxidation. This effect is obtained when the Al content is 0.001% or more. However, if the Al content exceeds 0.150%, the steel becomes hard and the formability decreases. Therefore, the Al content is set to 0.001 to 0.150%. The Al content is preferably 0.005% or more, and more preferably 0.010% or more. Moreover, Al content becomes like this. Preferably it is 0.100% or less, More preferably, it is 0.050% or less.
Cr:10.8~14.4%
Crは、表面に不働態皮膜を形成して耐食性を高める元素である。Cr含有量が10.8%未満では十分な耐食性が得られない。一方、Cr含有量が14.4%を超えると、熱延板焼鈍工程において鋼中にオーステナイト相が十分に生成せず、耐リジング性が低下し、さらに鋼が硬質化して成形性が低下する。よって、Cr含有量は10.8~14.4%とする。Cr含有量は、好ましくは11.0%以上であり、より好ましくは11.5%以上であり、さらに好ましくは12.0%以上である。また、Cr含有量は、好ましくは14.0%以下であり、より好ましくは13.5%以下であり、さらに好ましくは13.0%以下である。 Cr: 10.8 to 14.4%
Cr is an element that improves the corrosion resistance by forming a passive film on the surface. If the Cr content is less than 10.8%, sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content exceeds 14.4%, the austenite phase is not sufficiently formed in the steel in the hot-rolled sheet annealing process, the ridging resistance is lowered, the steel is further hardened, and the formability is lowered. . Therefore, the Cr content is 10.8 to 14.4%. The Cr content is preferably 11.0% or more, more preferably 11.5% or more, and further preferably 12.0% or more. Moreover, Cr content becomes like this. Preferably it is 14.0% or less, More preferably, it is 13.5% or less, More preferably, it is 13.0% or less.
Crは、表面に不働態皮膜を形成して耐食性を高める元素である。Cr含有量が10.8%未満では十分な耐食性が得られない。一方、Cr含有量が14.4%を超えると、熱延板焼鈍工程において鋼中にオーステナイト相が十分に生成せず、耐リジング性が低下し、さらに鋼が硬質化して成形性が低下する。よって、Cr含有量は10.8~14.4%とする。Cr含有量は、好ましくは11.0%以上であり、より好ましくは11.5%以上であり、さらに好ましくは12.0%以上である。また、Cr含有量は、好ましくは14.0%以下であり、より好ましくは13.5%以下であり、さらに好ましくは13.0%以下である。 Cr: 10.8 to 14.4%
Cr is an element that improves the corrosion resistance by forming a passive film on the surface. If the Cr content is less than 10.8%, sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content exceeds 14.4%, the austenite phase is not sufficiently formed in the steel in the hot-rolled sheet annealing process, the ridging resistance is lowered, the steel is further hardened, and the formability is lowered. . Therefore, the Cr content is 10.8 to 14.4%. The Cr content is preferably 11.0% or more, more preferably 11.5% or more, and further preferably 12.0% or more. Moreover, Cr content becomes like this. Preferably it is 14.0% or less, More preferably, it is 13.5% or less, More preferably, it is 13.0% or less.
Ni:0.01~2.50%
Niは、低pH環境において、活性溶解を抑制する元素である。鋼板同士が重ね合わせになった、いわゆる隙間構造部においては、腐食を引き起こしやすい低pH環境が形成されることがある。また、上述した鋼板同士の間に形成される隙間構造部以外においても、鋼板の発銹を招く塩化物イオンを含む水溶液が鋼板上にて濃化し、水溶液中から塩が析出し、析出塩と鋼板の間に隙間構造が形成され、腐食を引き起こしやすい低pH環境が形成されることがある。Niは、そのような環境における腐食の進行を抑制して、鋼の耐食性を向上させる。すなわちNiは、耐隙間腐食性に効果が高く、活性溶解状態における腐食の進行を顕著に抑制して耐食性を向上させる。さらに、Niは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。
この効果は、Ni含有量が0.01%以上で得られる。一方、2.50%を超えると鋼が硬質化してその成形性が低下する。従って、Ni含有量は0.01~2.50%とする。Ni含有量は、好ましくは0.03%以上であり、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Ni含有量は、好ましくは1.20%以下であり、より好ましくは0.80%以下であり、さらに好ましくは0.25%以下である。 Ni: 0.01-2.50%
Ni is an element that suppresses active dissolution in a low pH environment. In a so-called gap structure portion in which steel plates are overlapped, a low pH environment that easily causes corrosion may be formed. In addition to the gap structure formed between the steel plates described above, an aqueous solution containing chloride ions that causes the steel plate to become concentrated is concentrated on the steel plate, salt is precipitated from the aqueous solution, A gap structure is formed between the steel sheets, and a low pH environment that easily causes corrosion may be formed. Ni suppresses the progress of corrosion in such an environment and improves the corrosion resistance of steel. That is, Ni has a high effect on crevice corrosion resistance, and remarkably suppresses the progress of corrosion in the active dissolution state, thereby improving the corrosion resistance. Furthermore, Ni is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance.
This effect is obtained when the Ni content is 0.01% or more. On the other hand, if it exceeds 2.50%, the steel becomes hard and its formability decreases. Therefore, the Ni content is 0.01 to 2.50%. The Ni content is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.10% or more. Moreover, Ni content becomes like this. Preferably it is 1.20% or less, More preferably, it is 0.80% or less, More preferably, it is 0.25% or less.
Niは、低pH環境において、活性溶解を抑制する元素である。鋼板同士が重ね合わせになった、いわゆる隙間構造部においては、腐食を引き起こしやすい低pH環境が形成されることがある。また、上述した鋼板同士の間に形成される隙間構造部以外においても、鋼板の発銹を招く塩化物イオンを含む水溶液が鋼板上にて濃化し、水溶液中から塩が析出し、析出塩と鋼板の間に隙間構造が形成され、腐食を引き起こしやすい低pH環境が形成されることがある。Niは、そのような環境における腐食の進行を抑制して、鋼の耐食性を向上させる。すなわちNiは、耐隙間腐食性に効果が高く、活性溶解状態における腐食の進行を顕著に抑制して耐食性を向上させる。さらに、Niは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。
この効果は、Ni含有量が0.01%以上で得られる。一方、2.50%を超えると鋼が硬質化してその成形性が低下する。従って、Ni含有量は0.01~2.50%とする。Ni含有量は、好ましくは0.03%以上であり、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Ni含有量は、好ましくは1.20%以下であり、より好ましくは0.80%以下であり、さらに好ましくは0.25%以下である。 Ni: 0.01-2.50%
Ni is an element that suppresses active dissolution in a low pH environment. In a so-called gap structure portion in which steel plates are overlapped, a low pH environment that easily causes corrosion may be formed. In addition to the gap structure formed between the steel plates described above, an aqueous solution containing chloride ions that causes the steel plate to become concentrated is concentrated on the steel plate, salt is precipitated from the aqueous solution, A gap structure is formed between the steel sheets, and a low pH environment that easily causes corrosion may be formed. Ni suppresses the progress of corrosion in such an environment and improves the corrosion resistance of steel. That is, Ni has a high effect on crevice corrosion resistance, and remarkably suppresses the progress of corrosion in the active dissolution state, thereby improving the corrosion resistance. Furthermore, Ni is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance.
This effect is obtained when the Ni content is 0.01% or more. On the other hand, if it exceeds 2.50%, the steel becomes hard and its formability decreases. Therefore, the Ni content is 0.01 to 2.50%. The Ni content is preferably 0.03% or more, more preferably 0.05% or more, and further preferably 0.10% or more. Moreover, Ni content becomes like this. Preferably it is 1.20% or less, More preferably, it is 0.80% or less, More preferably, it is 0.25% or less.
N:0.005~0.060%
Nは、鋼の強度を高めるのに有効な元素である。さらに、Nは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。この効果はN含有量を0.005%以上にすることで得られる。しかし、N含有量が0.060%を超えると、鋼が硬質化して成形性が低下する。よって、N含有量は0.005~0.060%とする。N含有量は、好ましくは0.007%以上であり、より好ましくは0.010%以上である。また、N含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。 N: 0.005 to 0.060%
N is an element effective for increasing the strength of steel. Furthermore, N is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by making the N content 0.005% or more. However, if the N content exceeds 0.060%, the steel becomes hard and the formability decreases. Therefore, the N content is set to 0.005 to 0.060%. The N content is preferably 0.007% or more, and more preferably 0.010% or more. Moreover, N content becomes like this. Preferably it is 0.020% or less, More preferably, it is 0.015% or less.
Nは、鋼の強度を高めるのに有効な元素である。さらに、Nは、熱延板焼鈍時のオーステナイト相の生成を促進し、耐リジング性を向上させる元素である。この効果はN含有量を0.005%以上にすることで得られる。しかし、N含有量が0.060%を超えると、鋼が硬質化して成形性が低下する。よって、N含有量は0.005~0.060%とする。N含有量は、好ましくは0.007%以上であり、より好ましくは0.010%以上である。また、N含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。 N: 0.005 to 0.060%
N is an element effective for increasing the strength of steel. Furthermore, N is an element that promotes the formation of an austenite phase during hot-rolled sheet annealing and improves ridging resistance. This effect can be obtained by making the N content 0.005% or more. However, if the N content exceeds 0.060%, the steel becomes hard and the formability decreases. Therefore, the N content is set to 0.005 to 0.060%. The N content is preferably 0.007% or more, and more preferably 0.010% or more. Moreover, N content becomes like this. Preferably it is 0.020% or less, More preferably, it is 0.015% or less.
以上の成分以外の残部はFeおよび不可避的不純物である。ここで言う不可避的不純物の代表例には、O(酸素)、Zn、Ga、Ge、As、Ag、In、Hf、Ta、Re、Os、Ir、Pt、Au、Pbなどがある。これらの元素のうち、O(酸素)は0.02%以下の範囲で含むことができる。その他の元素については、合計で0.1%以下の範囲で含むことができる。
The balance other than the above components is Fe and inevitable impurities. Typical examples of the inevitable impurities mentioned here include O (oxygen), Zn, Ga, Ge, As, Ag, In, Hf, Ta, Re, Os, Ir, Pt, Au, and Pb. Among these elements, O (oxygen) can be contained in a range of 0.02% or less. About another element, it can contain in 0.1% or less of total.
本発明では上述した基本成分の他にも、以下に述べる元素を適宜含有させることができる。
In the present invention, in addition to the basic components described above, the following elements can be appropriately contained.
Co:0.01~0.50%
Coは、ステンレス鋼の耐隙間腐食性を向上させる元素である。一方、過剰に含有すると、その効果は飽和し、さらに、加工性が低下する。そのため、Coを含有する場合は、Co含有量を0.01~0.50%とすることが好ましい。Co含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。 Co: 0.01 to 0.50%
Co is an element that improves the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Co is contained, the Co content is preferably 0.01 to 0.50%. The Co content is more preferably 0.30% or less, and still more preferably 0.10% or less.
Coは、ステンレス鋼の耐隙間腐食性を向上させる元素である。一方、過剰に含有すると、その効果は飽和し、さらに、加工性が低下する。そのため、Coを含有する場合は、Co含有量を0.01~0.50%とすることが好ましい。Co含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。 Co: 0.01 to 0.50%
Co is an element that improves the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Co is contained, the Co content is preferably 0.01 to 0.50%. The Co content is more preferably 0.30% or less, and still more preferably 0.10% or less.
Cu:0.01~0.80%
Cuは不働態皮膜を強化し、耐食性を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに加工性が低下するとともに、ε-Cuが析出しやすくなり、耐食性が低下する。そのため、Cuを含有する場合は、Cu含有量を0.01~0.80%とすることが好ましい。Cu含有量は、より好ましくは0.15%以上であり、さらに好ましくは0.40%以上である。また、Cu含有量は、より好ましくは0.60%以下であり、さらに好ましくは0.45%以下である。 Cu: 0.01 to 0.80%
Cu is an element that reinforces the passive film and improves the corrosion resistance. On the other hand, when the content is excessive, the effect is saturated, workability is further lowered, and ε-Cu is liable to precipitate, resulting in a decrease in corrosion resistance. Therefore, when Cu is contained, the Cu content is preferably set to 0.01 to 0.80%. The Cu content is more preferably 0.15% or more, and further preferably 0.40% or more. Further, the Cu content is more preferably 0.60% or less, and further preferably 0.45% or less.
Cuは不働態皮膜を強化し、耐食性を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに加工性が低下するとともに、ε-Cuが析出しやすくなり、耐食性が低下する。そのため、Cuを含有する場合は、Cu含有量を0.01~0.80%とすることが好ましい。Cu含有量は、より好ましくは0.15%以上であり、さらに好ましくは0.40%以上である。また、Cu含有量は、より好ましくは0.60%以下であり、さらに好ましくは0.45%以下である。 Cu: 0.01 to 0.80%
Cu is an element that reinforces the passive film and improves the corrosion resistance. On the other hand, when the content is excessive, the effect is saturated, workability is further lowered, and ε-Cu is liable to precipitate, resulting in a decrease in corrosion resistance. Therefore, when Cu is contained, the Cu content is preferably set to 0.01 to 0.80%. The Cu content is more preferably 0.15% or more, and further preferably 0.40% or more. Further, the Cu content is more preferably 0.60% or less, and further preferably 0.45% or less.
Mo:0.01~0.30%
Moには、ステンレス鋼の耐隙間腐食性を向上させる効果がある。一方、過剰に含有するとその効果は飽和し、さらに加工性が低下する。そのため、Moを含有する場合は、Mo含有量を0.01~0.30%とすることが好ましい。Mo含有量は、より好ましくは0.20%以下であり、さらに好ましくは0.10%以下である。 Mo: 0.01-0.30%
Mo has the effect of improving the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 0.30%. The Mo content is more preferably 0.20% or less, and still more preferably 0.10% or less.
Moには、ステンレス鋼の耐隙間腐食性を向上させる効果がある。一方、過剰に含有するとその効果は飽和し、さらに加工性が低下する。そのため、Moを含有する場合は、Mo含有量を0.01~0.30%とすることが好ましい。Mo含有量は、より好ましくは0.20%以下であり、さらに好ましくは0.10%以下である。 Mo: 0.01-0.30%
Mo has the effect of improving the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 0.30%. The Mo content is more preferably 0.20% or less, and still more preferably 0.10% or less.
W:0.01~0.50%
Wは、ステンレス鋼の耐隙間腐食性の向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Wを含有する場合は、W含有量を0.01~0.50%とすることが好ましい。W含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.05%以上である。また、W含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。 W: 0.01 to 0.50%
W is an element that improves the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when W is contained, the W content is preferably set to 0.01 to 0.50%. The W content is more preferably 0.03% or more, and even more preferably 0.05% or more. Moreover, W content becomes like this. More preferably, it is 0.30% or less, More preferably, it is 0.10% or less.
Wは、ステンレス鋼の耐隙間腐食性の向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Wを含有する場合は、W含有量を0.01~0.50%とすることが好ましい。W含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.05%以上である。また、W含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。 W: 0.01 to 0.50%
W is an element that improves the crevice corrosion resistance of stainless steel. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when W is contained, the W content is preferably set to 0.01 to 0.50%. The W content is more preferably 0.03% or more, and even more preferably 0.05% or more. Moreover, W content becomes like this. More preferably, it is 0.30% or less, More preferably, it is 0.10% or less.
Ti:0.01~0.30%
Tiは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Tiを含有する場合は、Ti含有量を0.01~0.30%とすることが好ましい。Ti含有量は、より好ましくは0.02%以上である。また、Ti含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。 Ti: 0.01 to 0.30%
Ti is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Ti is contained, the Ti content is preferably 0.01 to 0.30%. The Ti content is more preferably 0.02% or more. Further, the Ti content is more preferably 0.10% or less, and further preferably 0.08% or less.
Tiは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Tiを含有する場合は、Ti含有量を0.01~0.30%とすることが好ましい。Ti含有量は、より好ましくは0.02%以上である。また、Ti含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。 Ti: 0.01 to 0.30%
Ti is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Ti is contained, the Ti content is preferably 0.01 to 0.30%. The Ti content is more preferably 0.02% or more. Further, the Ti content is more preferably 0.10% or less, and further preferably 0.08% or less.
V:0.01~0.10%
Vは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Vを含有する場合は、V含有量を0.01~0.10%とすることが好ましい。V含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。また、V含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。 V: 0.01 to 0.10%
V is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when V is contained, the V content is preferably 0.01 to 0.10%. The V content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the V content is more preferably 0.08% or less, and still more preferably 0.05% or less.
Vは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Vを含有する場合は、V含有量を0.01~0.10%とすることが好ましい。V含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。また、V含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。 V: 0.01 to 0.10%
V is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when V is contained, the V content is preferably 0.01 to 0.10%. The V content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the V content is more preferably 0.08% or less, and still more preferably 0.05% or less.
Zr:0.01~0.10%
Zrは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Zrを含有する場合は、Zr含有量を0.01~0.10%とすることが好ましい。Zr含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。また、Zr含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。 Zr: 0.01 to 0.10%
Zr is an element having a high affinity with C and N, and precipitates as carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Zr is contained, the Zr content is preferably 0.01 to 0.10%. The Zr content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the Zr content is more preferably 0.08% or less, still more preferably 0.05% or less.
Zrは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Zrを含有する場合は、Zr含有量を0.01~0.10%とすることが好ましい。Zr含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。また、Zr含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。 Zr: 0.01 to 0.10%
Zr is an element having a high affinity with C and N, and precipitates as carbide or nitride during hot rolling to reduce solid solution C and solid solution N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Zr is contained, the Zr content is preferably 0.01 to 0.10%. The Zr content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the Zr content is more preferably 0.08% or less, still more preferably 0.05% or less.
Nb:0.01~0.30%
Nbは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Nbを含有する場合は、Nb含有量を0.01~0.30%とすることが好ましい。Nb含有量は、より好ましくは0.02%以上である。また、Nb含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。 Nb: 0.01-0.30%
Nb is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Nb is contained, the Nb content is preferably 0.01 to 0.30%. The Nb content is more preferably 0.02% or more. Further, the Nb content is more preferably 0.10% or less, and further preferably 0.08% or less.
Nbは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。一方、過剰に含有すると、熱延板焼鈍工程におけるオーステナイト相の生成を阻害し、耐リジング性が低下する。そのため、Nbを含有する場合は、Nb含有量を0.01~0.30%とすることが好ましい。Nb含有量は、より好ましくは0.02%以上である。また、Nb含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。 Nb: 0.01-0.30%
Nb is an element having a high affinity with C and N, and precipitates as a carbide or nitride during hot rolling to reduce solute C and solute N in the matrix, and workability after cold-rolled sheet annealing. There is an effect of improving. On the other hand, when it contains excessively, the production | generation of the austenite phase in a hot-rolled sheet annealing process will be inhibited, and ridging resistance will fall. Therefore, when Nb is contained, the Nb content is preferably 0.01 to 0.30%. The Nb content is more preferably 0.02% or more. Further, the Nb content is more preferably 0.10% or less, and further preferably 0.08% or less.
Ti、V、Zr、Nbのうちから選んだ1種または2種以上を含有する場合には下記式(1)の値が0.0以下である
54×(Ti+V+Zr+Nb)-5×Mn-19×Ni+1.0 ・・・式(1)
ただし、上記式(1)における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
本発明を実施するにあたり、Ti、V、Zr、Nbのうちから選んだ1種または2種以上を含有する場合には、優れた耐リジング性を得るためには、各元素の含有量が上述の範囲を満たすとともに、上記式(1)の値を0.0以下とすることが必要である。
上述したように、Ti、V、Zr、Nbには、熱延板焼鈍工程におけるオーステナイト相の生成を阻害する作用がある。一方、これらの元素を含有する場合にも、オーステナイト相の生成を促進するMnおよびNiの含有量を十分に高めることで、熱延板焼鈍工程において鋼中に十分量のオーステナイト相を生成させることができる。
すなわち、Ti、V、Zr、Nbのうちから選んだ1種または2種以上を含有する場合には、式(1)の値が0.0以下となるように鋼成分を調整することで、熱延板焼鈍時に十分量のオーステナイト相を熱延板中に生成させ、熱延焼鈍板中に十分量のマルテンサイト相を存在させることが可能となり、冷延工程においてコロニーの破壊を十分として、冷延焼鈍板に優れた耐リジング性を付与する事ができる。一方、式(1)の値が0.0を超える場合、熱延板焼鈍時に十分量のオーステナイト相が熱延板中に生成せず、熱延焼鈍板中に十分量のマルテンサイト相が存在しないこととなり、冷延工程においてコロニーの破壊が不十分となり、冷延焼鈍板の耐リジング性が劣る事となる。 When one or more selected from Ti, V, Zr, and Nb are contained, the value of the following formula (1) is 0.0 or less: 54 × (Ti + V + Zr + Nb) −5 × Mn−19 × Ni + 1.0 Formula (1)
However, each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0.
In carrying out the present invention, when one or more selected from Ti, V, Zr, and Nb are contained, the content of each element is as described above in order to obtain excellent ridging resistance. In addition, the value of the above formula (1) must be 0.0 or less.
As described above, Ti, V, Zr, and Nb have an effect of inhibiting the austenite phase generation in the hot-rolled sheet annealing process. On the other hand, even when these elements are contained, by sufficiently increasing the contents of Mn and Ni that promote the formation of the austenite phase, a sufficient amount of austenite phase is generated in the steel in the hot-rolled sheet annealing process. Can do.
That is, when containing one or more selected from Ti, V, Zr, and Nb, by adjusting the steel components so that the value of the formula (1) is 0.0 or less, A sufficient amount of austenite phase is generated in the hot-rolled sheet during hot-rolled sheet annealing, and a sufficient amount of martensite phase can be present in the hot-rolled annealed sheet. Excellent ridging resistance can be imparted to the cold-rolled annealed sheet. On the other hand, when the value of formula (1) exceeds 0.0, a sufficient amount of austenite phase is not generated in the hot-rolled sheet during hot-rolled sheet annealing, and a sufficient amount of martensite phase is present in the hot-rolled annealed sheet. In other words, the colony is not sufficiently destroyed in the cold rolling process, and the ridging resistance of the cold rolled annealed sheet is inferior.
54×(Ti+V+Zr+Nb)-5×Mn-19×Ni+1.0 ・・・式(1)
ただし、上記式(1)における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
本発明を実施するにあたり、Ti、V、Zr、Nbのうちから選んだ1種または2種以上を含有する場合には、優れた耐リジング性を得るためには、各元素の含有量が上述の範囲を満たすとともに、上記式(1)の値を0.0以下とすることが必要である。
上述したように、Ti、V、Zr、Nbには、熱延板焼鈍工程におけるオーステナイト相の生成を阻害する作用がある。一方、これらの元素を含有する場合にも、オーステナイト相の生成を促進するMnおよびNiの含有量を十分に高めることで、熱延板焼鈍工程において鋼中に十分量のオーステナイト相を生成させることができる。
すなわち、Ti、V、Zr、Nbのうちから選んだ1種または2種以上を含有する場合には、式(1)の値が0.0以下となるように鋼成分を調整することで、熱延板焼鈍時に十分量のオーステナイト相を熱延板中に生成させ、熱延焼鈍板中に十分量のマルテンサイト相を存在させることが可能となり、冷延工程においてコロニーの破壊を十分として、冷延焼鈍板に優れた耐リジング性を付与する事ができる。一方、式(1)の値が0.0を超える場合、熱延板焼鈍時に十分量のオーステナイト相が熱延板中に生成せず、熱延焼鈍板中に十分量のマルテンサイト相が存在しないこととなり、冷延工程においてコロニーの破壊が不十分となり、冷延焼鈍板の耐リジング性が劣る事となる。 When one or more selected from Ti, V, Zr, and Nb are contained, the value of the following formula (1) is 0.0 or less: 54 × (Ti + V + Zr + Nb) −5 × Mn−19 × Ni + 1.0 Formula (1)
However, each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0.
In carrying out the present invention, when one or more selected from Ti, V, Zr, and Nb are contained, the content of each element is as described above in order to obtain excellent ridging resistance. In addition, the value of the above formula (1) must be 0.0 or less.
As described above, Ti, V, Zr, and Nb have an effect of inhibiting the austenite phase generation in the hot-rolled sheet annealing process. On the other hand, even when these elements are contained, by sufficiently increasing the contents of Mn and Ni that promote the formation of the austenite phase, a sufficient amount of austenite phase is generated in the steel in the hot-rolled sheet annealing process. Can do.
That is, when containing one or more selected from Ti, V, Zr, and Nb, by adjusting the steel components so that the value of the formula (1) is 0.0 or less, A sufficient amount of austenite phase is generated in the hot-rolled sheet during hot-rolled sheet annealing, and a sufficient amount of martensite phase can be present in the hot-rolled annealed sheet. Excellent ridging resistance can be imparted to the cold-rolled annealed sheet. On the other hand, when the value of formula (1) exceeds 0.0, a sufficient amount of austenite phase is not generated in the hot-rolled sheet during hot-rolled sheet annealing, and a sufficient amount of martensite phase is present in the hot-rolled annealed sheet. In other words, the colony is not sufficiently destroyed in the cold rolling process, and the ridging resistance of the cold rolled annealed sheet is inferior.
B:0.0003~0.0030%
Bは、低温二次加工脆化を防止するのに有効な元素である。一方、過剰に含有すると熱間加工性が低下する。そのため、Bを含有する場合は、B含有量を0.0003~0.0030%とすることが好ましい。B含有量は、より好ましくは0.0005%以上である。また、B含有量は、より好ましくは0.0020%以下である。 B: 0.0003 to 0.0030%
B is an element effective for preventing embrittlement at low temperature secondary work. On the other hand, when it contains excessively, hot workability will fall. Therefore, when B is contained, the B content is preferably 0.0003 to 0.0030%. The B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0020% or less.
Bは、低温二次加工脆化を防止するのに有効な元素である。一方、過剰に含有すると熱間加工性が低下する。そのため、Bを含有する場合は、B含有量を0.0003~0.0030%とすることが好ましい。B含有量は、より好ましくは0.0005%以上である。また、B含有量は、より好ましくは0.0020%以下である。 B: 0.0003 to 0.0030%
B is an element effective for preventing embrittlement at low temperature secondary work. On the other hand, when it contains excessively, hot workability will fall. Therefore, when B is contained, the B content is preferably 0.0003 to 0.0030%. The B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0020% or less.
Mg:0.0005~0.0100%
Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。一方、過剰に含有すると鋼の靱性が低下して生産性が低下する。そのため、Mgを含有する場合は、Mg含有量を0.0005~0.0100%とすることが好ましい。Mg含有量は、より好ましくは0.0010%以上である。また、Mg含有量は、より好ましくは0.0050%以下であり、さらに好ましくは0.0030%以下である。 Mg: 0.0005 to 0.0100%
Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer. On the other hand, when it contains excessively, the toughness of steel will fall and productivity will fall. Therefore, when Mg is contained, the Mg content is preferably 0.0005 to 0.0100%. The Mg content is more preferably 0.0010% or more. Moreover, Mg content becomes like this. More preferably, it is 0.0050% or less, More preferably, it is 0.0030% or less.
Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。一方、過剰に含有すると鋼の靱性が低下して生産性が低下する。そのため、Mgを含有する場合は、Mg含有量を0.0005~0.0100%とすることが好ましい。Mg含有量は、より好ましくは0.0010%以上である。また、Mg含有量は、より好ましくは0.0050%以下であり、さらに好ましくは0.0030%以下である。 Mg: 0.0005 to 0.0100%
Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer. On the other hand, when it contains excessively, the toughness of steel will fall and productivity will fall. Therefore, when Mg is contained, the Mg content is preferably 0.0005 to 0.0100%. The Mg content is more preferably 0.0010% or more. Moreover, Mg content becomes like this. More preferably, it is 0.0050% or less, More preferably, it is 0.0030% or less.
Ca:0.0003~0.0030%
Caは、熱間加工性を向上させる元素である。一方、過剰に含有すると鋼の靱性が低下して生産性が低下し、さらに、CaSの析出により耐食性が低下する。そのため、Caを含有する場合は、Ca含有量を0.0003~0.0030%とすることが好ましい。Ca含有量は、より好ましくは0.0010%以上である。また、Ca含有量は、より好ましくは0.0020%以下である。 Ca: 0.0003 to 0.0030%
Ca is an element that improves hot workability. On the other hand, when it contains excessively, the toughness of steel will fall and productivity will fall, and also corrosion resistance will fall by precipitation of CaS. Therefore, when Ca is contained, the Ca content is preferably 0.0003 to 0.0030%. The Ca content is more preferably 0.0010% or more. Further, the Ca content is more preferably 0.0020% or less.
Caは、熱間加工性を向上させる元素である。一方、過剰に含有すると鋼の靱性が低下して生産性が低下し、さらに、CaSの析出により耐食性が低下する。そのため、Caを含有する場合は、Ca含有量を0.0003~0.0030%とすることが好ましい。Ca含有量は、より好ましくは0.0010%以上である。また、Ca含有量は、より好ましくは0.0020%以下である。 Ca: 0.0003 to 0.0030%
Ca is an element that improves hot workability. On the other hand, when it contains excessively, the toughness of steel will fall and productivity will fall, and also corrosion resistance will fall by precipitation of CaS. Therefore, when Ca is contained, the Ca content is preferably 0.0003 to 0.0030%. The Ca content is more preferably 0.0010% or more. Further, the Ca content is more preferably 0.0020% or less.
Y:0.01~0.20%
Yは、溶鋼の粘度を減少させ、清浄度を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Yを含有する場合は、Y含有量を0.01~0.20%とすることが好ましい。Y含有量は、より好ましくは0.10%以下である。 Y: 0.01-0.20%
Y is an element that decreases the viscosity of molten steel and improves cleanliness. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Y is contained, the Y content is preferably 0.01 to 0.20%. The Y content is more preferably 0.10% or less.
Yは、溶鋼の粘度を減少させ、清浄度を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Yを含有する場合は、Y含有量を0.01~0.20%とすることが好ましい。Y含有量は、より好ましくは0.10%以下である。 Y: 0.01-0.20%
Y is an element that decreases the viscosity of molten steel and improves cleanliness. On the other hand, when it contains excessively, the effect will be saturated and workability will fall. Therefore, when Y is contained, the Y content is preferably 0.01 to 0.20%. The Y content is more preferably 0.10% or less.
REM(希土類金属):0.001~0.100%
REM(希土類金属:La、Ce、Ndなどの原子番号57~71の元素)は、耐高温酸化性を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、熱間圧延の際に表面欠陥が生じ、生産性が低下する。そのため、REMを含有する場合は、REM含有量を0.001~0.100%とすることが好ましい。REM含有量は、より好ましくは0.005%以上である。また、REM含有量は、より好ましくは0.05%以下である。 REM (rare earth metal): 0.001 to 0.100%
REM (rare earth metal: elements having atomic numbers 57 to 71 such as La, Ce, and Nd) is an element that improves high-temperature oxidation resistance. On the other hand, if contained excessively, the effect is saturated, and further, surface defects occur during hot rolling, and productivity is lowered. Therefore, when REM is contained, the REM content is preferably 0.001 to 0.100%. The REM content is more preferably 0.005% or more. The REM content is more preferably 0.05% or less.
REM(希土類金属:La、Ce、Ndなどの原子番号57~71の元素)は、耐高温酸化性を向上させる元素である。一方、過剰に含有するとその効果は飽和し、さらに、熱間圧延の際に表面欠陥が生じ、生産性が低下する。そのため、REMを含有する場合は、REM含有量を0.001~0.100%とすることが好ましい。REM含有量は、より好ましくは0.005%以上である。また、REM含有量は、より好ましくは0.05%以下である。 REM (rare earth metal): 0.001 to 0.100%
REM (rare earth metal: elements having atomic numbers 57 to 71 such as La, Ce, and Nd) is an element that improves high-temperature oxidation resistance. On the other hand, if contained excessively, the effect is saturated, and further, surface defects occur during hot rolling, and productivity is lowered. Therefore, when REM is contained, the REM content is preferably 0.001 to 0.100%. The REM content is more preferably 0.005% or more. The REM content is more preferably 0.05% or less.
Sn:0.001~0.500%
Snは、圧延時における変形帯生成の促進によるリジング向上に効果的である。一方、過剰に含有するとその効果は飽和し、さらに成形性が低下する。そのため、Snを含有する場合は、Sn含有量を0.001~0.500%とすることが好ましい。Sn含有量は、より好ましくは0.003%以上である。また、Sn含有量は、より好ましくは0.200%以下である。 Sn: 0.001 to 0.500%
Sn is effective in improving ridging by promoting deformation band generation during rolling. On the other hand, when it contains excessively, the effect will be saturated and a moldability will fall. Therefore, when Sn is contained, the Sn content is preferably 0.001 to 0.500%. The Sn content is more preferably 0.003% or more. Further, the Sn content is more preferably 0.200% or less.
Snは、圧延時における変形帯生成の促進によるリジング向上に効果的である。一方、過剰に含有するとその効果は飽和し、さらに成形性が低下する。そのため、Snを含有する場合は、Sn含有量を0.001~0.500%とすることが好ましい。Sn含有量は、より好ましくは0.003%以上である。また、Sn含有量は、より好ましくは0.200%以下である。 Sn: 0.001 to 0.500%
Sn is effective in improving ridging by promoting deformation band generation during rolling. On the other hand, when it contains excessively, the effect will be saturated and a moldability will fall. Therefore, when Sn is contained, the Sn content is preferably 0.001 to 0.500%. The Sn content is more preferably 0.003% or more. Further, the Sn content is more preferably 0.200% or less.
Sb:0.001~0.500%
Sbは、圧延時における変形帯生成の促進によるリジング向上に効果的である。一方、過剰に含有するとその効果は飽和し、さらに成形性が低下する。そのため、Sbを含有する場合は、Sb含有量を0.001~0.500%とすることが好ましい。Sb含有量は、より好ましくは0.003%以上である。また、Sb含有量は、より好ましくは0.200%以下である。 Sb: 0.001 to 0.500%
Sb is effective in improving ridging by promoting deformation band generation during rolling. On the other hand, when it contains excessively, the effect will be saturated and a moldability will fall. Therefore, when Sb is contained, the Sb content is preferably 0.001 to 0.500%. The Sb content is more preferably 0.003% or more. The Sb content is more preferably 0.200% or less.
Sbは、圧延時における変形帯生成の促進によるリジング向上に効果的である。一方、過剰に含有するとその効果は飽和し、さらに成形性が低下する。そのため、Sbを含有する場合は、Sb含有量を0.001~0.500%とすることが好ましい。Sb含有量は、より好ましくは0.003%以上である。また、Sb含有量は、より好ましくは0.200%以下である。 Sb: 0.001 to 0.500%
Sb is effective in improving ridging by promoting deformation band generation during rolling. On the other hand, when it contains excessively, the effect will be saturated and a moldability will fall. Therefore, when Sb is contained, the Sb content is preferably 0.001 to 0.500%. The Sb content is more preferably 0.003% or more. The Sb content is more preferably 0.200% or less.
面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織
本発明においては、組織中に所定量のマルテンサイト相を存在させることが重要である。本発明では、熱延板焼鈍によって鋼中に所定量のオーステナイト相を生成させる。このオーステナイト相のほぼ全てが、熱延板焼鈍後に冷却されることでマルテンサイト相となる。このマルテンサイト相の存在により、冷延工程においてコロニーが破壊され、冷延焼鈍板の耐リジング性が向上する。
この効果は、熱延板焼鈍後のマルテンサイト相の面積率が10%以上となった場合に得られる。一方、マルテンサイト相の面積率が90%を超えると、熱延焼鈍板が硬質化し、冷間圧延工程において圧延負荷が増大するだけでなく、耳割れや板形状不良が生じて生産性が低下する。そのため、マルテンサイト相の面積率は10~90%とする。マルテンサイト相の面積率は、好ましくは15%以上であり、より好ましくは20%以上である。また、マルテンサイト相の面積率は、好ましくは70%以下であり、より好ましくは50%以下である。 A structure comprising a martensite phase with an area ratio of 10 to 90% and the balance being a ferrite phase In the present invention, it is important that a predetermined amount of martensite phase is present in the structure. In the present invention, a predetermined amount of austenite phase is generated in steel by hot-rolled sheet annealing. Almost all of the austenite phase becomes a martensite phase by being cooled after hot-rolled sheet annealing. Due to the presence of this martensite phase, colonies are destroyed in the cold rolling step, and the ridging resistance of the cold rolled annealing plate is improved.
This effect is obtained when the area ratio of the martensite phase after hot-rolled sheet annealing is 10% or more. On the other hand, if the area ratio of the martensite phase exceeds 90%, the hot-rolled annealed sheet becomes hard, and not only the rolling load increases in the cold rolling process, but also the cracking of the ears and poor plate shape occur, resulting in a decrease in productivity. To do. Therefore, the area ratio of the martensite phase is 10 to 90%. The area ratio of the martensite phase is preferably 15% or more, more preferably 20% or more. The area ratio of the martensite phase is preferably 70% or less, and more preferably 50% or less.
本発明においては、組織中に所定量のマルテンサイト相を存在させることが重要である。本発明では、熱延板焼鈍によって鋼中に所定量のオーステナイト相を生成させる。このオーステナイト相のほぼ全てが、熱延板焼鈍後に冷却されることでマルテンサイト相となる。このマルテンサイト相の存在により、冷延工程においてコロニーが破壊され、冷延焼鈍板の耐リジング性が向上する。
この効果は、熱延板焼鈍後のマルテンサイト相の面積率が10%以上となった場合に得られる。一方、マルテンサイト相の面積率が90%を超えると、熱延焼鈍板が硬質化し、冷間圧延工程において圧延負荷が増大するだけでなく、耳割れや板形状不良が生じて生産性が低下する。そのため、マルテンサイト相の面積率は10~90%とする。マルテンサイト相の面積率は、好ましくは15%以上であり、より好ましくは20%以上である。また、マルテンサイト相の面積率は、好ましくは70%以下であり、より好ましくは50%以下である。 A structure comprising a martensite phase with an area ratio of 10 to 90% and the balance being a ferrite phase In the present invention, it is important that a predetermined amount of martensite phase is present in the structure. In the present invention, a predetermined amount of austenite phase is generated in steel by hot-rolled sheet annealing. Almost all of the austenite phase becomes a martensite phase by being cooled after hot-rolled sheet annealing. Due to the presence of this martensite phase, colonies are destroyed in the cold rolling step, and the ridging resistance of the cold rolled annealing plate is improved.
This effect is obtained when the area ratio of the martensite phase after hot-rolled sheet annealing is 10% or more. On the other hand, if the area ratio of the martensite phase exceeds 90%, the hot-rolled annealed sheet becomes hard, and not only the rolling load increases in the cold rolling process, but also the cracking of the ears and poor plate shape occur, resulting in a decrease in productivity. To do. Therefore, the area ratio of the martensite phase is 10 to 90%. The area ratio of the martensite phase is preferably 15% or more, more preferably 20% or more. The area ratio of the martensite phase is preferably 70% or less, and more preferably 50% or less.
本発明において、マルテンサイト相の面積率の測定方法としては、まず、冷延鋼板用素材の幅中央部付近から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、村上試薬(8質量%KOH-8質量%[K3Fe(CN)6]水溶液)で腐食(エッチング)し、光学顕微鏡を用いて表層から1.0mmの部分を中心に倍率400倍で10視野撮影する。そして、得られた組織写真を、画像解析によって2値化して、一方をマルテンサイト相、他方をフェライト相とみなして、マルテンサイト相とフェライト相を識別・分離し、マルテンサイト相の面積率を測定する。さらに、この測定結果を全10視野で平均し、算出された値をマルテンサイト相の面積率とする。
In the present invention, as the method for measuring the area ratio of the martensite phase, first, a specimen for observation of the structure is collected from the vicinity of the center of the width of the material for cold-rolled steel sheet, and the cross section in the rolling direction is mirror-polished and then Murakami reagent (8 Corrosion (etching) is performed with a mass% KOH-8 mass% [K 3 Fe (CN) 6 ] aqueous solution), and 10 fields of view are photographed at a magnification of 400 times centering on a 1.0 mm portion from the surface layer using an optical microscope. Then, the obtained structure photograph is binarized by image analysis, one is regarded as a martensite phase, the other as a ferrite phase, and the martensite phase and the ferrite phase are identified and separated, and the area ratio of the martensite phase is determined. taking measurement. Furthermore, this measurement result is averaged over all 10 visual fields, and the calculated value is defined as the area ratio of the martensite phase.
次に本発明のステンレス冷延鋼板用素材の好適な製造方法について説明する。上記した成分組成の鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(鋼スラブ)とする。この鋼素材を1000℃以上1200℃以下に加熱後、仕上温度を700℃以上1000℃以下の条件で、板厚2.0~6.0mmになるように熱間圧延する。
Next, a preferred method for producing the stainless steel cold rolled steel sheet material of the present invention will be described. The steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (steel slab) by a continuous casting method or an ingot-bundling method. This steel material is heated to 1000 ° C. or more and 1200 ° C. or less, and then hot-rolled to a sheet thickness of 2.0 to 6.0 mm under a finishing temperature of 700 ° C. to 1000 ° C.
次いで、熱延板を、フェライト相とオーステナイト相の二相域となる900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍をする。熱延板焼鈍は、本発明の組織を得る上で、極めて重要な工程である。
Next, the hot-rolled sheet is annealed by holding the hot-rolled sheet for 5 seconds to 15 minutes in a temperature range of 900 ° C. to 1100 ° C., which is a two-phase region of a ferrite phase and an austenite phase. Hot-rolled sheet annealing is a very important process in obtaining the structure of the present invention.
熱延板焼鈍温度が900℃未満では、フェライト単相域あるいはそれに近い温度域での焼鈍となり、熱延板中に十分な量のオーステナイト相が生成しない。また、熱延板焼鈍温度が1100℃を超えた場合にも、フェライト単相域あるいはそれに近い温度域での焼鈍となり、熱延板中に十分な量のオーステナイト相が生成しない。
また、熱延板焼鈍で保持する時間が5秒未満であると、熱延板焼鈍の間に熱延板中に十分量のオーステナイト相が生成しない。一方、熱延板焼鈍で保持する時間が15分超えであると、熱延板焼鈍の間に結晶粒が粗大となり、のちに冷延鋼板を製造する際に行われる冷延焼鈍にて得られる冷延焼鈍板の結晶粒の粗大化を招く。このような組織は、加工時に、オレンジピールと呼ばれるリジングとは異なる肌荒れを招くことになる。
よって、本発明では、900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍を行い、熱延焼鈍板を得る。熱延板焼鈍は、950℃以上の温度範囲で行うことが好ましい。また、熱延板焼鈍は、1050℃以下の温度範囲で行うことが好ましい。熱延板焼鈍は、上記温度範囲で20秒以上保持することが好ましい。また、熱延板焼鈍は、上記温度範囲で1分以下保持することが好ましい。
こうして作製した熱延焼鈍板(ステンレス冷延鋼板用素材)は、その後、酸洗してもよい。 When the hot-rolled sheet annealing temperature is less than 900 ° C., annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate. Further, even when the hot-rolled sheet annealing temperature exceeds 1100 ° C., annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate.
Moreover, when the time to hold by hot-rolled sheet annealing is less than 5 seconds, a sufficient amount of austenite phase is not generated in the hot-rolled sheet during hot-rolled sheet annealing. On the other hand, if the holding time in hot-rolled sheet annealing exceeds 15 minutes, the crystal grains become coarse during hot-rolled sheet annealing, and can be obtained by cold-rolled annealing performed later when manufacturing cold-rolled steel sheets. It causes coarsening of crystal grains of the cold-rolled annealed plate. Such a structure causes rough skin different from ridging called orange peel at the time of processing.
Therefore, in the present invention, hot-rolled sheet annealing is performed by holding at a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes to obtain a hot-rolled annealed sheet. The hot-rolled sheet annealing is preferably performed in a temperature range of 950 ° C. or higher. Moreover, it is preferable to perform hot-rolled sheet annealing in the temperature range of 1050 degrees C or less. The hot-rolled sheet annealing is preferably held for 20 seconds or more in the above temperature range. Moreover, it is preferable that hot-rolled sheet annealing is hold | maintained for 1 minute or less within the said temperature range.
The hot-rolled annealed plate thus produced (stainless steel for cold-rolled steel plate) may then be pickled.
また、熱延板焼鈍で保持する時間が5秒未満であると、熱延板焼鈍の間に熱延板中に十分量のオーステナイト相が生成しない。一方、熱延板焼鈍で保持する時間が15分超えであると、熱延板焼鈍の間に結晶粒が粗大となり、のちに冷延鋼板を製造する際に行われる冷延焼鈍にて得られる冷延焼鈍板の結晶粒の粗大化を招く。このような組織は、加工時に、オレンジピールと呼ばれるリジングとは異なる肌荒れを招くことになる。
よって、本発明では、900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍を行い、熱延焼鈍板を得る。熱延板焼鈍は、950℃以上の温度範囲で行うことが好ましい。また、熱延板焼鈍は、1050℃以下の温度範囲で行うことが好ましい。熱延板焼鈍は、上記温度範囲で20秒以上保持することが好ましい。また、熱延板焼鈍は、上記温度範囲で1分以下保持することが好ましい。
こうして作製した熱延焼鈍板(ステンレス冷延鋼板用素材)は、その後、酸洗してもよい。 When the hot-rolled sheet annealing temperature is less than 900 ° C., annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate. Further, even when the hot-rolled sheet annealing temperature exceeds 1100 ° C., annealing is performed in a ferrite single phase region or a temperature region close thereto, and a sufficient amount of austenite phase is not generated in the hot-rolled plate.
Moreover, when the time to hold by hot-rolled sheet annealing is less than 5 seconds, a sufficient amount of austenite phase is not generated in the hot-rolled sheet during hot-rolled sheet annealing. On the other hand, if the holding time in hot-rolled sheet annealing exceeds 15 minutes, the crystal grains become coarse during hot-rolled sheet annealing, and can be obtained by cold-rolled annealing performed later when manufacturing cold-rolled steel sheets. It causes coarsening of crystal grains of the cold-rolled annealed plate. Such a structure causes rough skin different from ridging called orange peel at the time of processing.
Therefore, in the present invention, hot-rolled sheet annealing is performed by holding at a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes to obtain a hot-rolled annealed sheet. The hot-rolled sheet annealing is preferably performed in a temperature range of 950 ° C. or higher. Moreover, it is preferable to perform hot-rolled sheet annealing in the temperature range of 1050 degrees C or less. The hot-rolled sheet annealing is preferably held for 20 seconds or more in the above temperature range. Moreover, it is preferable that hot-rolled sheet annealing is hold | maintained for 1 minute or less within the said temperature range.
The hot-rolled annealed plate thus produced (stainless steel for cold-rolled steel plate) may then be pickled.
また、熱延焼鈍板(ステンレス冷延鋼板用素材)から、フェライト系ステンレス冷延鋼板を製造する方法としては、前記ステンレス冷延鋼板用素材に対し、冷間圧延を行い冷延板とした後、前記冷延板を冷延板焼鈍して冷延焼鈍板とする方法が挙げられる。前記冷延焼鈍板は、さらに酸洗ラインにて酸洗を行い、スケールを除去することができる。スケールを除去した冷延焼鈍酸洗板にはスキンパス圧延を行ってもよい。なお、前記冷間圧延の条件は、特に規定する必要はなく、常法にしたがって行うことができる。一例として、冷間圧延では、総圧下率を40~90%とする冷間圧延を施すことができる。また、前記冷延板焼鈍は、前記冷延板を780℃以上830℃以下の温度範囲で5秒~5分間保持する工程とすることが好ましい。冷延板焼鈍温度が780℃以上であることで、製造したフェライト系ステンレス冷延鋼板中に未再結晶組織が残存することを抑制でき、成形性をより向上することができる。冷延板焼鈍温度が830℃以下であることで、焼鈍時に鋼中にオーステナイト相が生成することを抑制し、焼鈍後の組織にマルテンサイト相が存在することを抑制でき、成形性をより向上することができる。また、冷延板焼鈍で保持する時間が5秒以上であることで、冷延板に含まれるマルテンサイト相を焼鈍時に十分に分解でき、焼鈍後の組織にマルテンサイト相が存在することを抑制でき、成形性をより向上することができる。冷延板焼鈍で保持する時間が5分以下であることで、冷延板焼鈍の間に結晶粒が粗大となることを抑制でき、製造したフェライト系ステンレス冷延鋼板の加工時に、オレンジピールと呼ばれるリジングとは異なる肌荒れが生じることを抑制しやすくなる。なお、前記冷延板焼鈍は連続焼鈍ラインで行うことが好ましい。
Moreover, as a method of manufacturing a ferritic stainless steel cold-rolled steel plate from a hot-rolled annealed plate (material for stainless steel cold-rolled steel plate), after cold rolling the stainless steel cold-rolled steel plate material into a cold-rolled plate A method of forming a cold-rolled annealed sheet by subjecting the cold-rolled sheet to cold-rolled sheet annealing is exemplified. The cold-rolled annealed plate can be further pickled in a pickling line to remove scale. Skin pass rolling may be performed on the cold-rolled annealed pickled plate from which the scale has been removed. In addition, the conditions for the cold rolling need not be particularly defined, and can be performed according to a conventional method. As an example, in cold rolling, cold rolling with a total rolling reduction of 40 to 90% can be performed. The cold-rolled sheet annealing is preferably a step of holding the cold-rolled sheet in a temperature range of 780 ° C. or higher and 830 ° C. or lower for 5 seconds to 5 minutes. When the cold-rolled sheet annealing temperature is 780 ° C. or higher, it is possible to suppress the non-recrystallized structure from remaining in the manufactured ferritic stainless steel cold-rolled steel sheet, and it is possible to further improve the formability. The cold-rolled sheet annealing temperature is 830 ° C or lower, which suppresses the formation of an austenite phase in steel during annealing, suppresses the presence of a martensite phase in the structure after annealing, and improves formability. can do. In addition, the holding time in cold-rolled sheet annealing is 5 seconds or more, so that the martensite phase contained in the cold-rolled sheet can be sufficiently decomposed during annealing, and the presence of the martensite phase in the structure after annealing is suppressed. And formability can be further improved. By keeping the time for cold-rolled sheet annealing to 5 minutes or less, it is possible to prevent the crystal grains from becoming coarse during cold-rolled sheet annealing, and when processing the manufactured ferritic stainless steel cold-rolled steel sheet, It becomes easy to suppress that the rough skin different from the ridging called. The cold-rolled sheet annealing is preferably performed in a continuous annealing line.
表1のNo.1-1~1-3に示す成分組成(残部はFeおよび不可避的不純物)を有するフェライト系ステンレス鋼を100kg鋼塊に溶製した後、1050℃の温度に加熱して熱間圧延を行って板厚4.0mmの熱延板を得た。
No. in Table 1. A ferritic stainless steel having the composition shown in 1-1 to 1-3 (the balance is Fe and inevitable impurities) is melted in a 100 kg steel ingot, heated to a temperature of 1050 ° C., and hot rolled. A hot-rolled sheet having a thickness of 4.0 mm was obtained.
上述した各熱延板を5枚に分割し、そのうちの4枚を、大気中において、表1に示す830~1200℃の各温度にて20秒間焼鈍し、表裏両面の研削を行ってスケールを除去して、ステンレス冷延鋼板用素材とした。それぞれの冷延鋼板用素材は長手中央部でせん断して分割し、半分は後述する評価に供し、残り半分は以下に示す工程で冷延焼鈍酸洗板とした。
また、各熱延板を分割した残り1枚は、大気雰囲気中において、800℃で8時間焼鈍し、表裏両面の研削を行ってスケールを除去して、ステンレス冷延鋼板用素材とした。それぞれの冷延鋼板用素材は長手中央部でせん断して分割し、半分は後述する評価に供し、残り半分は以下に示す工程で冷延焼鈍酸洗板とした。 Each of the hot-rolled sheets described above is divided into five sheets, and four of them are annealed in the atmosphere at temperatures of 830 to 1200 ° C. shown in Table 1 for 20 seconds, and both the front and back surfaces are ground to obtain a scale. It removed and it was set as the raw material for stainless steel cold-rolled steel plates. Each raw material for cold-rolled steel sheets was sheared and divided at the longitudinal center portion, half was subjected to evaluation described later, and the other half was cold-rolled annealed pickled plate in the following steps.
In addition, the remaining one sheet obtained by dividing each hot-rolled sheet was annealed at 800 ° C. for 8 hours in an air atmosphere, and both the front and back surfaces were ground to remove the scales to obtain a material for a stainless cold-rolled steel sheet. Each raw material for cold-rolled steel sheets was sheared and divided at the longitudinal center portion, half was subjected to evaluation described later, and the other half was cold-rolled annealed pickled plate in the following steps.
また、各熱延板を分割した残り1枚は、大気雰囲気中において、800℃で8時間焼鈍し、表裏両面の研削を行ってスケールを除去して、ステンレス冷延鋼板用素材とした。それぞれの冷延鋼板用素材は長手中央部でせん断して分割し、半分は後述する評価に供し、残り半分は以下に示す工程で冷延焼鈍酸洗板とした。 Each of the hot-rolled sheets described above is divided into five sheets, and four of them are annealed in the atmosphere at temperatures of 830 to 1200 ° C. shown in Table 1 for 20 seconds, and both the front and back surfaces are ground to obtain a scale. It removed and it was set as the raw material for stainless steel cold-rolled steel plates. Each raw material for cold-rolled steel sheets was sheared and divided at the longitudinal center portion, half was subjected to evaluation described later, and the other half was cold-rolled annealed pickled plate in the following steps.
In addition, the remaining one sheet obtained by dividing each hot-rolled sheet was annealed at 800 ° C. for 8 hours in an air atmosphere, and both the front and back surfaces were ground to remove the scales to obtain a material for a stainless cold-rolled steel sheet. Each raw material for cold-rolled steel sheets was sheared and divided at the longitudinal center portion, half was subjected to evaluation described later, and the other half was cold-rolled annealed pickled plate in the following steps.
得られたそれぞれの冷延鋼板用素材は、その後、冷間圧延で板厚:1.0mmの冷延板とした。得られた冷延板に対して、大気雰囲気中において800℃で20秒間焼鈍し、冷延焼鈍板を得た。得られた冷延焼鈍板は、通常の方法で酸洗し、フェライト系ステンレス冷延焼鈍酸洗板を得た。
以上の製造条件で得られたステンレス冷延鋼板用素材およびフェライト系ステンレス鋼冷延焼鈍酸洗板を、以下に示す評価に供した。 Each obtained cold-rolled steel sheet material was then made into a cold-rolled sheet having a sheet thickness of 1.0 mm by cold rolling. The obtained cold-rolled plate was annealed at 800 ° C. for 20 seconds in an air atmosphere to obtain a cold-rolled annealed plate. The obtained cold-rolled annealed plate was pickled by a normal method to obtain a ferritic stainless steel cold-rolled annealed pickled plate.
The material for stainless cold-rolled steel sheet and ferritic stainless steel cold-rolled annealed pickled board obtained under the above production conditions were subjected to the evaluation shown below.
以上の製造条件で得られたステンレス冷延鋼板用素材およびフェライト系ステンレス鋼冷延焼鈍酸洗板を、以下に示す評価に供した。 Each obtained cold-rolled steel sheet material was then made into a cold-rolled sheet having a sheet thickness of 1.0 mm by cold rolling. The obtained cold-rolled plate was annealed at 800 ° C. for 20 seconds in an air atmosphere to obtain a cold-rolled annealed plate. The obtained cold-rolled annealed plate was pickled by a normal method to obtain a ferritic stainless steel cold-rolled annealed pickled plate.
The material for stainless cold-rolled steel sheet and ferritic stainless steel cold-rolled annealed pickled board obtained under the above production conditions were subjected to the evaluation shown below.
まず、冷延鋼板用素材の幅中央部付近から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、村上試薬(8質量%KOH-8質量%[K3Fe(CN)6]水溶液)で腐食(エッチング)し、光学顕微鏡を用いて表層から1.0mmの部分を中心に倍率400倍で10視野撮影した。得られた組織写真を、画像解析によって2値化して、マルテンサイト相とフェライト相を識別・分離し、マルテンサイト相の面積率を測定した。測定結果を全10視野で平均し、算出された値をマルテンサイト相の面積率とした。
First, a specimen for microstructure observation was collected from the vicinity of the center of the width of the cold-rolled steel sheet, and the cross section in the rolling direction was mirror-polished and then Murakami reagent (8 mass% KOH-8 mass% [K 3 Fe (CN) 6 ]). Corrosion (etching) was performed with an aqueous solution, and 10 fields of view were photographed at a magnification of 400 times centering on a portion of 1.0 mm from the surface layer using an optical microscope. The obtained structure photograph was binarized by image analysis, the martensite phase and the ferrite phase were identified and separated, and the area ratio of the martensite phase was measured. The measurement results were averaged over all 10 fields, and the calculated value was defined as the area ratio of the martensite phase.
<耐食性>
さらに、上記製造した冷延焼鈍酸洗板から、せん断加工により長さ80mm×幅60mmの鋼板を切出した後、エメリー研磨紙で表面を600番まで研磨し、水洗後、エタノール中にて5分の超音波脱脂を行い試験片を得た。得られた試験片に対してJASO M609-91に準拠し腐食試験を実施し、耐食性を評価した。試験片は、端部と裏面をビニールテープで覆った後、長さ方向を縦にして、傾き:60°で試験装置内へ設置した。1サイクルを塩水噴霧(5質量%NaCl水溶液、35℃)2h→乾燥(60℃、相対湿度40%)4h→湿潤(50℃、相対湿度95%以上)2hとし、3サイクル実施した。試験後、腐食面を外観撮影し、試験片中心の30mm×30mmの領域について、得られた写真から画像解析にて銹面積率を算出した。銹面積率が20%以下であったものを「○」(合格:優れている)、20%超~30%以下であったものを「□」(合格)、30%よりも大きかったものを「▲」(不合格)と評価した。 <Corrosion resistance>
Further, a steel sheet having a length of 80 mm and a width of 60 mm was cut from the produced cold-rolled annealed pickling plate by shearing, then the surface was polished to number 600 with emery abrasive paper, washed with water, and then washed in ethanol for 5 minutes. The test piece was obtained by ultrasonic degreasing. A corrosion test was performed on the obtained test piece in accordance with JASO M609-91 to evaluate the corrosion resistance. The test piece was placed in the test apparatus at an inclination of 60 ° with the length direction being vertical after covering the end and the back with vinyl tape. One cycle was salt spray (5 mass% NaCl aqueous solution, 35 ° C.) 2 h → drying (60 ° C., relative humidity 40%) 4 h → wet (50 ° C., relative humidity 95% or more) 2 h, and 3 cycles were performed. After the test, appearance of the corroded surface was photographed, and the wrinkle area ratio was calculated from the obtained photograph by image analysis for a 30 mm × 30 mm region at the center of the test piece. ○ The area ratio was 20% or less “○” (pass: excellent), 20% to 30% or less “□” (pass), more than 30% Evaluated as “▲” (failed).
さらに、上記製造した冷延焼鈍酸洗板から、せん断加工により長さ80mm×幅60mmの鋼板を切出した後、エメリー研磨紙で表面を600番まで研磨し、水洗後、エタノール中にて5分の超音波脱脂を行い試験片を得た。得られた試験片に対してJASO M609-91に準拠し腐食試験を実施し、耐食性を評価した。試験片は、端部と裏面をビニールテープで覆った後、長さ方向を縦にして、傾き:60°で試験装置内へ設置した。1サイクルを塩水噴霧(5質量%NaCl水溶液、35℃)2h→乾燥(60℃、相対湿度40%)4h→湿潤(50℃、相対湿度95%以上)2hとし、3サイクル実施した。試験後、腐食面を外観撮影し、試験片中心の30mm×30mmの領域について、得られた写真から画像解析にて銹面積率を算出した。銹面積率が20%以下であったものを「○」(合格:優れている)、20%超~30%以下であったものを「□」(合格)、30%よりも大きかったものを「▲」(不合格)と評価した。 <Corrosion resistance>
Further, a steel sheet having a length of 80 mm and a width of 60 mm was cut from the produced cold-rolled annealed pickling plate by shearing, then the surface was polished to number 600 with emery abrasive paper, washed with water, and then washed in ethanol for 5 minutes. The test piece was obtained by ultrasonic degreasing. A corrosion test was performed on the obtained test piece in accordance with JASO M609-91 to evaluate the corrosion resistance. The test piece was placed in the test apparatus at an inclination of 60 ° with the length direction being vertical after covering the end and the back with vinyl tape. One cycle was salt spray (5 mass% NaCl aqueous solution, 35 ° C.) 2 h → drying (60 ° C., relative humidity 40%) 4 h → wet (50 ° C., relative humidity 95% or more) 2 h, and 3 cycles were performed. After the test, appearance of the corroded surface was photographed, and the wrinkle area ratio was calculated from the obtained photograph by image analysis for a 30 mm × 30 mm region at the center of the test piece. ○ The area ratio was 20% or less “○” (pass: excellent), 20% to 30% or less “□” (pass), more than 30% Evaluated as “▲” (failed).
<成形性>
さらに、上記製造した冷延焼鈍酸洗板から、JIS Z 2241に規定される13B号試験片を、圧延方向(L方向)、圧延方向に対して45度方向(D方向)、および、圧延方向に対して直角方向(C方向)が試験片の長手となるようにそれぞれ採取し、同規格に準拠して常温で引張試験を行い、成形性を評価した。破断時全伸び(%)の三方向平均((L+2D+C)/4、ただし、L、D、Cは各方向の破断伸び(%))が32%以上であるものを「○」(合格:優れている)、32%未満28%以上であるものを「□」(合格)、28%未満であるものを「▲」(不合格)とした。 <Moldability>
Furthermore, from the manufactured cold-rolled annealed pickled plate, a No. 13B test piece defined in JIS Z 2241 is rolled in the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and rolling direction. Each sample was sampled so that the direction perpendicular to (C direction) was the length of the test piece, and a tensile test was performed at room temperature in accordance with the same standard to evaluate the moldability. Three-directional average of total elongation at break (%) ((L + 2D + C) / 4, where L, D, and C are the break elongation (%) in each direction) of 32% or more, “Good” (Pass: Excellent) ), Less than 32% and 28% or more was designated as “□” (passed), and less than 28% was designated as “▲” (failed).
さらに、上記製造した冷延焼鈍酸洗板から、JIS Z 2241に規定される13B号試験片を、圧延方向(L方向)、圧延方向に対して45度方向(D方向)、および、圧延方向に対して直角方向(C方向)が試験片の長手となるようにそれぞれ採取し、同規格に準拠して常温で引張試験を行い、成形性を評価した。破断時全伸び(%)の三方向平均((L+2D+C)/4、ただし、L、D、Cは各方向の破断伸び(%))が32%以上であるものを「○」(合格:優れている)、32%未満28%以上であるものを「□」(合格)、28%未満であるものを「▲」(不合格)とした。 <Moldability>
Furthermore, from the manufactured cold-rolled annealed pickled plate, a No. 13B test piece defined in JIS Z 2241 is rolled in the rolling direction (L direction), 45 ° direction (D direction) with respect to the rolling direction, and rolling direction. Each sample was sampled so that the direction perpendicular to (C direction) was the length of the test piece, and a tensile test was performed at room temperature in accordance with the same standard to evaluate the moldability. Three-directional average of total elongation at break (%) ((L + 2D + C) / 4, where L, D, and C are the break elongation (%) in each direction) of 32% or more, “Good” (Pass: Excellent) ), Less than 32% and 28% or more was designated as “□” (passed), and less than 28% was designated as “▲” (failed).
<耐リジング性>
さらに、上記製造した冷延焼鈍酸洗板から、JIS Z 2241に規定される5号試験片を、圧延方向が試験片の長手となるように採取し、その表面を#600のエメリーペーパーを用いて研磨した後、引張試験を同規格に準拠して行い、23%の引張ひずみを付与した。その後、その試験片の平行部中央の研磨面で圧延方向に直角の方向に、レーザー変位計を用いて表面形状を測定した。測定長は1ラインあたり16mm、0.05mm刻みで高さを測定した。また、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmとしたHanning窓関数型のFIR(Finite Impulse Response)バンドパスフィルターを用いて、平滑化およびうねり除去処理を行った。その後、処理を行った各ラインの形状データをもとに、各ラインの両端それぞれ2mm分のデータを排除して、JIS B 0601(2001年)で規定される算術平均うねりWaを各ラインにて測定した。なお、各ラインの間隔は0.1mmとして、合計50ライン測定した。そして、この算術平均うねりWaの50ラインの平均値を、鋼板表面のリジング高さとし、耐リジング性を評価した。
リジング高さが2.0μm以下の場合を「◇」(合格:特に優れている)、2.0μm超2.5μm以下の場合を「○」(合格:優れている)、2.5μm超3.0μm以下の場合を「□」(合格)、3.0μm超の場合を「▲」(不合格)とした。 <Ridging resistance>
Furthermore, from the manufactured cold-rolled annealed pickling plate, No. 5 test piece defined in JIS Z 2241 was collected so that the rolling direction was the length of the test piece, and the surface was used with # 600 emery paper. After polishing, a tensile test was performed according to the same standard, and a 23% tensile strain was applied. Thereafter, the surface shape was measured using a laser displacement meter in a direction perpendicular to the rolling direction on the polishing surface at the center of the parallel part of the test piece. The measurement length was 16 mm per line, and the height was measured in increments of 0.05 mm. In addition, smoothing and swell removal processing were performed using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm. After that, based on the shape data of each processed line, the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. It was measured. The interval between each line was 0.1 mm, and a total of 50 lines were measured. And the average value of 50 lines of this arithmetic mean wave | undulation Wa was made into the ridging height of the steel plate surface, and ridging resistance was evaluated.
The case where the ridging height is 2.0 μm or less is “◇” (pass: excellent), the case where it is more than 2.0 μm and 2.5 μm or less is “◯” (pass: excellent), and more than 2.5 μm The case of 0.0 μm or less was designated as “□” (passed), and the case of more than 3.0 μm was designated as “▲” (failed).
さらに、上記製造した冷延焼鈍酸洗板から、JIS Z 2241に規定される5号試験片を、圧延方向が試験片の長手となるように採取し、その表面を#600のエメリーペーパーを用いて研磨した後、引張試験を同規格に準拠して行い、23%の引張ひずみを付与した。その後、その試験片の平行部中央の研磨面で圧延方向に直角の方向に、レーザー変位計を用いて表面形状を測定した。測定長は1ラインあたり16mm、0.05mm刻みで高さを測定した。また、ハイカットフィルター波長0.8mm、ローカットフィルター波長8mmとしたHanning窓関数型のFIR(Finite Impulse Response)バンドパスフィルターを用いて、平滑化およびうねり除去処理を行った。その後、処理を行った各ラインの形状データをもとに、各ラインの両端それぞれ2mm分のデータを排除して、JIS B 0601(2001年)で規定される算術平均うねりWaを各ラインにて測定した。なお、各ラインの間隔は0.1mmとして、合計50ライン測定した。そして、この算術平均うねりWaの50ラインの平均値を、鋼板表面のリジング高さとし、耐リジング性を評価した。
リジング高さが2.0μm以下の場合を「◇」(合格:特に優れている)、2.0μm超2.5μm以下の場合を「○」(合格:優れている)、2.5μm超3.0μm以下の場合を「□」(合格)、3.0μm超の場合を「▲」(不合格)とした。 <Ridging resistance>
Furthermore, from the manufactured cold-rolled annealed pickling plate, No. 5 test piece defined in JIS Z 2241 was collected so that the rolling direction was the length of the test piece, and the surface was used with # 600 emery paper. After polishing, a tensile test was performed according to the same standard, and a 23% tensile strain was applied. Thereafter, the surface shape was measured using a laser displacement meter in a direction perpendicular to the rolling direction on the polishing surface at the center of the parallel part of the test piece. The measurement length was 16 mm per line, and the height was measured in increments of 0.05 mm. In addition, smoothing and swell removal processing were performed using a Hanning window function type FIR (Finite Impulse Response) bandpass filter having a high cut filter wavelength of 0.8 mm and a low cut filter wavelength of 8 mm. After that, based on the shape data of each processed line, the data of 2 mm for each end of each line is excluded, and the arithmetic average waviness Wa defined in JIS B 0601 (2001) is determined for each line. It was measured. The interval between each line was 0.1 mm, and a total of 50 lines were measured. And the average value of 50 lines of this arithmetic mean wave | undulation Wa was made into the ridging height of the steel plate surface, and ridging resistance was evaluated.
The case where the ridging height is 2.0 μm or less is “◇” (pass: excellent), the case where it is more than 2.0 μm and 2.5 μm or less is “◯” (pass: excellent), and more than 2.5 μm The case of 0.0 μm or less was designated as “□” (passed), and the case of more than 3.0 μm was designated as “▲” (failed).
得られた結果を表1に示す。マルテンサイト相の面積率が本発明の範囲内である冷延鋼板用素材、すなわち本発明例の冷延鋼板用素材から作製された冷延焼鈍酸洗板は、いずれも耐食性の評価が「○」または「□」であり、かつ、成形性の評価が「○」であり、かつ、耐リジング性の評価が「◇」または「○」であり、耐食性に優れるとともに、成形性と耐リジング性に優れることが分かった。
The results obtained are shown in Table 1. The cold rolled annealed pickled plates made from the material for cold rolled steel sheets in which the area ratio of the martensite phase is within the scope of the present invention, i.e., the cold rolled steel sheet material of the present invention example, are all evaluated for corrosion resistance. ”Or“ □ ”, the evaluation of formability is“ ◯ ”, and the evaluation of ridging resistance is“ ◇ ”or“ ◯ ”, which is excellent in corrosion resistance and moldability and ridging resistance. It turned out to be excellent.
また、マルテンサイト相の面積率が本発明の範囲に満たない冷延鋼板用素材、すなわち比較例の冷延鋼板用素材から作製された冷延焼鈍酸洗板は、いずれも、耐リジング性の評価が「▲」である。これらの冷延焼鈍酸洗板は、冷延鋼板用素材に含まれるマルテンサイト相の量が不十分であったことから、冷間圧延によってコロニーが十分に破壊されなかったため、耐リジング性に劣ることとなった。
Further, the material for cold-rolled steel sheets in which the area ratio of the martensite phase is less than the range of the present invention, that is, the cold-rolled annealed pickled sheets made from the material for cold-rolled steel sheets of the comparative example, are all ridging resistant. The evaluation is “▲”. Since these cold-rolled annealed pickled sheets were insufficient in the amount of martensite phase contained in the material for cold-rolled steel sheets, the colonies were not sufficiently destroyed by cold rolling, so the ridging resistance was poor. It became a thing.
表2-1、表2-2のNo.2-1~2-57に示す成分組成を有する冷延鋼板用素材および冷延焼鈍酸洗板を、実施例1に示した製造条件にて作製した。ただし、熱延板の焼鈍条件は、大気雰囲気中において、1000℃で20秒間焼鈍する条件とした。これらの冷延鋼板用素材および冷延焼鈍酸洗板を、実施例1に示した各試験に供し、冷延鋼板用素材の組織中のマルテンサイト相の面積率、冷延焼鈍酸洗板の耐食性、成形性および耐リジング性を評価した。
No. in Table 2-1 and Table 2-2. Cold-rolled steel sheets and cold-rolled annealed pickled sheets having the component compositions shown in 2-1 to 2-57 were produced under the production conditions shown in Example 1. However, the annealing conditions for the hot-rolled sheet were the conditions for annealing at 1000 ° C. for 20 seconds in the air atmosphere. These cold-rolled steel sheet materials and cold-rolled annealed pickling plates were subjected to the tests shown in Example 1, and the area ratio of the martensite phase in the structure of the cold-rolled steel sheet materials, Corrosion resistance, moldability and ridging resistance were evaluated.
得られた結果を表2-1、表2-2に示す。
The results obtained are shown in Tables 2-1 and 2-2.
本発明例の冷延鋼板用素材から作製された冷延焼鈍酸洗板は、いずれも耐食性の評価が「○」または「□」であり、かつ、成形性の評価が「○」または「□」であり、かつ、耐リジング性の評価が「◇」または「○」または「□」であり、耐食性に優れるとともに、成形性と耐リジング性に優れることが分かった。
The cold-rolled annealed pickled plates produced from the materials for cold-rolled steel sheets according to the present invention each have a corrosion resistance evaluation of “◯” or “□”, and a formability evaluation of “○” or “□”. In addition, the evaluation of ridging resistance was “◇”, “◯” or “□”, and it was found that the corrosion resistance was excellent, and the moldability and ridging resistance were also excellent.
試験No.2-35は、Crの含有量が本発明の成分範囲よりも低い比較例の冷延鋼板用素材から作製されたため、耐食性が劣っていた。
試験No.2-36は、Crの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-37は、Niの含有量が本発明の成分範囲よりも低い比較例の冷延鋼板用素材から作製されたため、耐食性が劣っていた。
試験No.2-38は、Niの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性が劣っていた。
試験No.2-39、2-41は、それぞれCとNとの含有量が本発明の成分範囲よりも低い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-40、2-42は、それぞれCとNとの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性が劣っていた。
試験No.2-43は、Siの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性と耐リジング性が劣っていた。
試験No.2-44は、Crの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-52は、Tiの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-53、2-54、2-56は、式(1)の値が0.0を超えている比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-55は、Crの含有量が本発明の成分範囲よりも低く、さらに、式(1)の値が0.0を超えている比較例の冷延鋼板用素材から作製されたため、耐食性と耐リジング性が劣っていた。
試験No.2-57は、Nbの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。 Test No. Since No. 2-35 was produced from a comparative cold-rolled steel sheet material having a Cr content lower than the component range of the present invention, the corrosion resistance was inferior.
Test No. Since No. 2-36 was produced from a comparative cold-rolled steel sheet material having a Cr content higher than the component range of the present invention, the ridging resistance was inferior.
Test No. Since 2-37 was produced from a comparative cold-rolled steel sheet material in which the Ni content was lower than the component range of the present invention, the corrosion resistance was inferior.
Test No. Since No. 2-38 was produced from a comparative cold-rolled steel sheet material having a Ni content higher than the component range of the present invention, the formability was inferior.
Test No. Since 2-39 and 2-41 were produced from comparative cold-rolled steel sheet materials having C and N contents lower than the component range of the present invention, ridging resistance was inferior.
Test No. Nos. 2-40 and 2-42 were inferior in formability because they were produced from comparative cold-rolled steel sheet materials in which the contents of C and N were higher than the component range of the present invention.
Test No. Since 2-43 was produced from a cold-rolled steel sheet material of Comparative Example in which the Si content was higher than the component range of the present invention, the formability and ridging resistance were inferior.
Test No. Since No. 2-44 was produced from a comparative cold-rolled steel sheet material having a Cr content higher than the component range of the present invention, the ridging resistance was poor.
Test No. No. 2-52 was produced from a comparative cold-rolled steel sheet material having a Ti content higher than the component range of the present invention, and therefore ridging resistance was poor.
Test No. Since 2-53, 2-54, and 2-56 were produced from comparative cold-rolled steel sheets having a value of formula (1) exceeding 0.0, the ridging resistance was inferior.
Test No. 2-55 was produced from the material for the cold rolled steel sheet of the comparative example in which the Cr content is lower than the component range of the present invention and the value of the formula (1) exceeds 0.0. The ridging resistance was poor.
Test No. 2-57 was produced from a comparative cold-rolled steel sheet material in which the Nb content was higher than the component range of the present invention, and therefore the ridging resistance was inferior.
試験No.2-36は、Crの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-37は、Niの含有量が本発明の成分範囲よりも低い比較例の冷延鋼板用素材から作製されたため、耐食性が劣っていた。
試験No.2-38は、Niの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性が劣っていた。
試験No.2-39、2-41は、それぞれCとNとの含有量が本発明の成分範囲よりも低い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-40、2-42は、それぞれCとNとの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性が劣っていた。
試験No.2-43は、Siの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、成形性と耐リジング性が劣っていた。
試験No.2-44は、Crの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-52は、Tiの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-53、2-54、2-56は、式(1)の値が0.0を超えている比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。
試験No.2-55は、Crの含有量が本発明の成分範囲よりも低く、さらに、式(1)の値が0.0を超えている比較例の冷延鋼板用素材から作製されたため、耐食性と耐リジング性が劣っていた。
試験No.2-57は、Nbの含有量が本発明の成分範囲よりも高い比較例の冷延鋼板用素材から作製されたため、耐リジング性が劣っていた。 Test No. Since No. 2-35 was produced from a comparative cold-rolled steel sheet material having a Cr content lower than the component range of the present invention, the corrosion resistance was inferior.
Test No. Since No. 2-36 was produced from a comparative cold-rolled steel sheet material having a Cr content higher than the component range of the present invention, the ridging resistance was inferior.
Test No. Since 2-37 was produced from a comparative cold-rolled steel sheet material in which the Ni content was lower than the component range of the present invention, the corrosion resistance was inferior.
Test No. Since No. 2-38 was produced from a comparative cold-rolled steel sheet material having a Ni content higher than the component range of the present invention, the formability was inferior.
Test No. Since 2-39 and 2-41 were produced from comparative cold-rolled steel sheet materials having C and N contents lower than the component range of the present invention, ridging resistance was inferior.
Test No. Nos. 2-40 and 2-42 were inferior in formability because they were produced from comparative cold-rolled steel sheet materials in which the contents of C and N were higher than the component range of the present invention.
Test No. Since 2-43 was produced from a cold-rolled steel sheet material of Comparative Example in which the Si content was higher than the component range of the present invention, the formability and ridging resistance were inferior.
Test No. Since No. 2-44 was produced from a comparative cold-rolled steel sheet material having a Cr content higher than the component range of the present invention, the ridging resistance was poor.
Test No. No. 2-52 was produced from a comparative cold-rolled steel sheet material having a Ti content higher than the component range of the present invention, and therefore ridging resistance was poor.
Test No. Since 2-53, 2-54, and 2-56 were produced from comparative cold-rolled steel sheets having a value of formula (1) exceeding 0.0, the ridging resistance was inferior.
Test No. 2-55 was produced from the material for the cold rolled steel sheet of the comparative example in which the Cr content is lower than the component range of the present invention and the value of the formula (1) exceeds 0.0. The ridging resistance was poor.
Test No. 2-57 was produced from a comparative cold-rolled steel sheet material in which the Nb content was higher than the component range of the present invention, and therefore the ridging resistance was inferior.
本発明のステンレス冷延鋼板用素材は、耐食性に優れ、さらに成形性と耐リジング性に優れるフェライト系ステンレス冷延鋼板を製造するのに好適である。本発明のステンレス冷延鋼板用素材から製造されたフェライト系ステンレス冷延鋼板は、耐食性に優れ、さらに成形性と耐リジング性に優れるので、家庭用調理器具をはじめとして、家電製品用部品、事務用品用部品、自動車内装用部品、自動車排気用配管、建材などの用途に対して好適に使用することができる。
The material for stainless steel cold-rolled steel sheet of the present invention is suitable for producing a ferritic stainless steel cold-rolled steel sheet having excellent corrosion resistance and excellent formability and ridging resistance. Ferritic stainless steel cold-rolled steel sheets manufactured from the material for stainless steel cold-rolled steel sheets according to the present invention are excellent in corrosion resistance, and are also excellent in formability and ridging resistance. It can be suitably used for applications such as parts for accessories, automobile interior parts, automobile exhaust piping, and building materials.
Claims (6)
- 質量%で、
C:0.005~0.030%、
Si:0.05~1.00%、
Mn:0.05~1.00%、
P:0.040%以下、
S:0.030%以下、
Al:0.001~0.150%、
Cr:10.8~14.4%、
Ni:0.01~2.50%、および
N:0.005~0.060%
を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で10~90%のマルテンサイト相を含み、残部がフェライト相からなる組織と、を有する、ステンレス冷延鋼板用素材。 % By mass
C: 0.005 to 0.030%,
Si: 0.05 to 1.00%,
Mn: 0.05 to 1.00%
P: 0.040% or less,
S: 0.030% or less,
Al: 0.001 to 0.150%,
Cr: 10.8 to 14.4%,
Ni: 0.01-2.50%, and N: 0.005-0.060%
A component composition comprising the balance of Fe and unavoidable impurities, and
A material for a stainless cold-rolled steel sheet, comprising a martensite phase with an area ratio of 10 to 90% and a structure comprising a ferrite phase as a balance. - さらに、質量%で、
Co:0.01~0.50%、
Cu:0.01~0.80%、
Mo:0.01~0.30%、および
W:0.01~0.50%
のうちから選んだ1種または2種以上を含有する成分組成を有する、請求項1に記載のステンレス冷延鋼板用素材。 Furthermore, in mass%,
Co: 0.01 to 0.50%,
Cu: 0.01 to 0.80%,
Mo: 0.01 to 0.30% and W: 0.01 to 0.50%
The raw material for stainless steel cold-rolled steel sheets according to claim 1, which has a component composition containing one or more selected from among them. - さらに、質量%で、
Ti:0.01~0.30%、
V:0.01~0.10%、
Zr:0.01~0.10%、および
Nb:0.01~0.30%
のうちから選んだ1種または2種以上を含有し、かつ、
下記式(1)の値が0.0以下である成分組成を有する、請求項1または2に記載のステンレス冷延鋼板用素材。
54×(Ti+V+Zr+Nb)-5×Mn-19×Ni+1.0 ・・・式(1)
ただし、上記式(1)における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。 Furthermore, in mass%,
Ti: 0.01 to 0.30%,
V: 0.01 to 0.10%,
Zr: 0.01 to 0.10%, and Nb: 0.01 to 0.30%
Containing one or more selected from among, and
The raw material for stainless steel cold-rolled steel sheets according to claim 1 or 2, having a component composition in which a value of the following formula (1) is 0.0 or less.
54 × (Ti + V + Zr + Nb) −5 × Mn−19 × Ni + 1.0 Formula (1)
However, each element symbol in the above formula (1) represents the content (% by mass) of each element, and the element not contained is 0. - さらに、質量%で、
B:0.0003~0.0030%、
Mg:0.0005~0.0100%、
Ca:0.0003~0.0030%、
Y:0.01~0.20%、および
REM(希土類金属):0.001~0.100%
のうちから選んだ1種または2種以上を含有する成分組成を有する、請求項1~3のいずれかに記載のステンレス冷延鋼板用素材。 Furthermore, in mass%,
B: 0.0003 to 0.0030%,
Mg: 0.0005 to 0.0100%,
Ca: 0.0003 to 0.0030%,
Y: 0.01 to 0.20%, and REM (rare earth metal): 0.001 to 0.100%
The material for a stainless cold-rolled steel sheet according to any one of claims 1 to 3, having a component composition containing one or more selected from among the above. - さらに、質量%で、
Sn:0.001~0.500%、および
Sb:0.001~0.500%
のうちから選んだ1種または2種を含有する成分組成を有する、請求項1~4のいずれかに記載のステンレス冷延鋼板用素材。 Furthermore, in mass%,
Sn: 0.001 to 0.500%, and Sb: 0.001 to 0.500%
The material for a stainless cold-rolled steel sheet according to any one of claims 1 to 4, which has a component composition containing one or two selected from among them. - 請求項1~5のいずれかに記載のステンレス冷延鋼板用素材の製造方法であって、
前記成分組成を有する鋼スラブを熱間圧延し、熱延板とし、前記熱延板を900℃以上1100℃以下の温度範囲で5秒~15分間保持する熱延板焼鈍を行う、ステンレス冷延鋼板用素材の製造方法。 A method for producing a material for a stainless cold-rolled steel sheet according to any one of claims 1 to 5,
A steel slab having the above component composition is hot-rolled to form a hot-rolled sheet, and a stainless-steel cold-rolled sheet is subjected to hot-rolled sheet annealing in which the hot-rolled sheet is held in a temperature range of 900 ° C. to 1100 ° C. for 5 seconds to 15 minutes. Manufacturing method for steel plate materials.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197030950A KR102288000B1 (en) | 2017-04-25 | 2018-04-13 | Material for cold rolled stainless steel sheet and manufacturing method thereof |
US16/607,170 US20200385834A1 (en) | 2017-04-25 | 2018-04-13 | Raw material for cold-rolled stainless steel sheet and method for manufacturing the same |
EP18792138.2A EP3594372A4 (en) | 2017-04-25 | 2018-04-13 | Material for cold-rolled stainless steel sheet, and production method therefor |
CN201880027575.9A CN110582589A (en) | 2017-04-25 | 2018-04-13 | Raw material for stainless cold-rolled steel sheet and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017086010 | 2017-04-25 | ||
JP2017-086010 | 2017-04-25 | ||
JP2018039385A JP6489254B2 (en) | 2017-04-25 | 2018-03-06 | Material for stainless cold-rolled steel sheet and manufacturing method thereof |
JP2018-039385 | 2018-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198835A1 true WO2018198835A1 (en) | 2018-11-01 |
Family
ID=63918257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015579 WO2018198835A1 (en) | 2017-04-25 | 2018-04-13 | Material for cold-rolled stainless steel sheet, and production method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018198835A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114395692A (en) * | 2022-01-27 | 2022-04-26 | 宝钢德盛不锈钢有限公司 | Production method of 200-series stainless steel 2B cold-rolled sheet for mirror surface plate |
JPWO2022085708A1 (en) * | 2020-10-23 | 2022-04-28 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS471878B1 (en) | 1967-01-14 | 1972-01-19 | Manufacturing method of ferritic stainless steel sheet having excellent workability without ridging | |
JPS584881B2 (en) | 1978-02-03 | 1983-01-28 | 八鹿鉄工株式会社 | Exhaust culm processing device and its switching operation mechanism |
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr BASED STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE AND PRODUCTION METHOD THEREFOR |
JP2010001568A (en) * | 2003-05-14 | 2010-01-07 | Jfe Steel Corp | High-strength stainless steel sheet and method for production thereof |
WO2015064077A1 (en) * | 2013-10-31 | 2015-05-07 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
WO2015111403A1 (en) | 2014-01-24 | 2015-07-30 | Jfeスチール株式会社 | Material for cold-rolled stainless steel sheet and method for producing same |
JP2015218384A (en) * | 2014-05-21 | 2015-12-07 | Jfeスチール株式会社 | HIGH-STRENGTH 13Cr-BASED STAINLESS THICK STEEL PLATE EXCELLENT IN TOUGHNESS AND WORKABILITY AND PRODUCTION METHOD THEREOF |
WO2016035235A1 (en) * | 2014-09-05 | 2016-03-10 | Jfeスチール株式会社 | Material for cold-rolled stainless steel sheets |
JP2016180143A (en) * | 2015-03-24 | 2016-10-13 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel and manufacturing method therefor |
WO2017002148A1 (en) * | 2015-07-02 | 2017-01-05 | Jfeスチール株式会社 | Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet |
-
2018
- 2018-04-13 WO PCT/JP2018/015579 patent/WO2018198835A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS471878B1 (en) | 1967-01-14 | 1972-01-19 | Manufacturing method of ferritic stainless steel sheet having excellent workability without ridging | |
JPS584881B2 (en) | 1978-02-03 | 1983-01-28 | 八鹿鉄工株式会社 | Exhaust culm processing device and its switching operation mechanism |
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr BASED STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE AND PRODUCTION METHOD THEREFOR |
JP2010001568A (en) * | 2003-05-14 | 2010-01-07 | Jfe Steel Corp | High-strength stainless steel sheet and method for production thereof |
WO2015064077A1 (en) * | 2013-10-31 | 2015-05-07 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
WO2015111403A1 (en) | 2014-01-24 | 2015-07-30 | Jfeスチール株式会社 | Material for cold-rolled stainless steel sheet and method for producing same |
JP2015218384A (en) * | 2014-05-21 | 2015-12-07 | Jfeスチール株式会社 | HIGH-STRENGTH 13Cr-BASED STAINLESS THICK STEEL PLATE EXCELLENT IN TOUGHNESS AND WORKABILITY AND PRODUCTION METHOD THEREOF |
WO2016035235A1 (en) * | 2014-09-05 | 2016-03-10 | Jfeスチール株式会社 | Material for cold-rolled stainless steel sheets |
JP2016180143A (en) * | 2015-03-24 | 2016-10-13 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel and manufacturing method therefor |
WO2017002148A1 (en) * | 2015-07-02 | 2017-01-05 | Jfeスチール株式会社 | Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet |
Non-Patent Citations (1)
Title |
---|
See also references of EP3594372A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022085708A1 (en) * | 2020-10-23 | 2022-04-28 | ||
WO2022085708A1 (en) * | 2020-10-23 | 2022-04-28 | 日鉄ステンレス株式会社 | Ferritic stainless steel, and method for manufacturing ferritic stainless steel |
JP7374338B2 (en) | 2020-10-23 | 2023-11-06 | 日鉄ステンレス株式会社 | Ferritic stainless steel and manufacturing method of ferritic stainless steel |
CN114395692A (en) * | 2022-01-27 | 2022-04-26 | 宝钢德盛不锈钢有限公司 | Production method of 200-series stainless steel 2B cold-rolled sheet for mirror surface plate |
CN114395692B (en) * | 2022-01-27 | 2023-07-07 | 宝钢德盛不锈钢有限公司 | Production method of 200-series stainless steel 2B cold-rolled sheet for mirror plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5888476B2 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
JP6432701B2 (en) | Ferritic stainless steel sheet and manufacturing method thereof | |
JP5907320B1 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
JP2013147705A (en) | Ferritic stainless steel wire rod and steel wire, and method for producing them | |
WO2018198834A1 (en) | Ferritic stainless steel sheet, and production method therefor | |
JP7114998B2 (en) | austenitic stainless steel | |
KR101949629B1 (en) | Stainless steel and production method therefor | |
JP6489254B2 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
JP2017186665A (en) | Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND MANUFACTURING METHOD THEREFOR | |
WO2018198835A1 (en) | Material for cold-rolled stainless steel sheet, and production method therefor | |
JP5217617B2 (en) | Ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof | |
KR101940427B1 (en) | Ferritic stainless steel sheet | |
JP2016113670A (en) | Ferritic stainless steel and method for producing the same | |
JP4049697B2 (en) | Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same | |
JP2023085560A (en) | Two-phase stainless steel and manufacturing method therefor | |
JP6146401B2 (en) | Ferritic stainless steel sheet | |
JP2004083972A (en) | Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor | |
JP6680279B2 (en) | Ferritic stainless steel sheet and method of manufacturing the same | |
JP5900717B1 (en) | Stainless steel sheet and manufacturing method thereof | |
JPH06184632A (en) | Production of ferritic stainless steel thin sheet | |
JP2010095742A (en) | Cold-rolled stainless steel sheet showing adequate strength-elongation balance and small ridging, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18792138 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018792138 Country of ref document: EP Effective date: 20191010 |
|
ENP | Entry into the national phase |
Ref document number: 20197030950 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |