WO2022085708A1 - Ferritic stainless steel, and method for manufacturing ferritic stainless steel - Google Patents

Ferritic stainless steel, and method for manufacturing ferritic stainless steel Download PDF

Info

Publication number
WO2022085708A1
WO2022085708A1 PCT/JP2021/038703 JP2021038703W WO2022085708A1 WO 2022085708 A1 WO2022085708 A1 WO 2022085708A1 JP 2021038703 W JP2021038703 W JP 2021038703W WO 2022085708 A1 WO2022085708 A1 WO 2022085708A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
hot
steel strip
cold rolling
Prior art date
Application number
PCT/JP2021/038703
Other languages
French (fr)
Japanese (ja)
Inventor
祐太 吉村
直樹 平川
詠一朗 石丸
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to CN202180044813.9A priority Critical patent/CN115917029A/en
Priority to JP2022557573A priority patent/JP7374338B2/en
Priority to KR1020227045272A priority patent/KR20230015982A/en
Publication of WO2022085708A1 publication Critical patent/WO2022085708A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel and a method for manufacturing a ferritic stainless steel.
  • Ferritic stainless steel has excellent corrosion resistance and heat resistance, and is used in various fields such as home appliances, cooking utensils, and construction applications. On the other hand, ferritic stainless steel is inferior in ductility to austenitic stainless steel. Further, the ferritic stainless steel has a problem that rigging occurs during the molding process, and this rigging impairs the surface quality of the molded product and the polishability of the ferritic stainless steel after the forming process.
  • rigging is a surface defect that occurs on the surface of ferritic stainless steel, and specifically refers to striped or streaky undulations that occur on the surface of ferritic stainless steel in a direction parallel to the processing direction.
  • the "machining direction” is a direction in which a steel strip of ferritic stainless steel is stretched by forming. Further, as the forming process that causes rigging, press working, tensile processing, drawing processing and the like can be exemplified.
  • Patent Document 1 a ferritic stainless steel sheet having an improved r value and excellent rigging resistance is manufactured by adding an amount of Ti satisfying a predetermined condition to control the amount of precipitate deposited.
  • the technology to be used is disclosed.
  • the r value (Rankford value) is a characteristic value indicating the general anisotropy of the plate material, and is an index indicating the superiority or inferiority of the deep drawing property of the ferritic stainless steel. It is said that the larger the r value, the better the deep drawing property of the ferritic stainless steel.
  • Patent Document 2 discloses a technique for producing a ferritic stainless thin steel sheet having a large r value by cold rolling using a work roll having a predetermined roll diameter.
  • the work roll is a component of a cold rolling mill that comes into direct contact with a metal plate to be rolled during cold rolling.
  • Patent Document 1 adds Ti, which is an expensive element, so that the manufacturing cost of the ferritic stainless steel sheet is high.
  • the technique disclosed in Patent Document 2 does not specify the manufacturing conditions and the component composition for improving the rigging resistance, the ferritic stainless steel sheet manufactured based on this technique has the rigging resistance. It cannot be said that it is sufficient in terms of.
  • One aspect of the present invention has been made in view of the above-mentioned problems, and is to realize a ferritic stainless steel having excellent both deep drawing property and rigging resistance at a lower cost than the conventional one.
  • the ferritic stainless steel according to one aspect of the present invention has a mass% of C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ferritic stainless steel containing 1.0% or less, Cr: 12.0% or more and 18.0% or less, N: 0.10% or less and Al: 0.50% or less, and the balance is Fe and unavoidable impurities.
  • the average height of the waviness curve element in the rigging formed on the surface of the ferritic stainless steel is 15 ⁇ m or less
  • the r value is 0.9 or more, and in the rolling direction.
  • a martensite phase having an area ratio of 0% or more and less than 1.0% in a cross section cut in a plane that is parallel and perpendicular to the width direction is included.
  • the method for producing ferritic stainless steel according to one aspect of the present invention is, in terms of mass%, C: 0.12% or less, Si: 1.0% or less, Mn: 1.0. % Or less, Ni: 1.0% or less, Cr: 12.0% or more and 18.0% or less, N: 0.10% or less and Al: 0.50% or less, and the balance is Fe and unavoidable impurities.
  • a hot rolling process that hot-rolls a steel slab made of ferritic stainless steel to produce a hot-rolled steel strip.
  • the martensite phase in the cross section cut in a plane parallel to the rolling direction and perpendicular to the width direction of the hot-rolled hardened steel strip.
  • a cold rolling step of cold-rolling the hot-rolled annealed steel strip produced in the softening annealing step to produce a cold-rolled steel strip is included.
  • the total cold-rolling ratio which is the ratio of the difference between the thickness of the hot-rolled annealed steel strip and the thickness of the cold-rolled steel strip to the thickness of the hot-rolled annealed steel strip, is set to 60% or more.
  • the hot-rolled annealed steel strip (I) Using the first work roll having a roll diameter of 200 mm or more, the cold rolling rate per pass is 15% or more, and the cold rolling rate after the completion of all passes is 50% or more of the cold rolling rate. After cold rolling to (Ii) Further cold rolling is performed using a second work roll having a roll diameter of less than 200 mm.
  • a ferritic stainless steel having excellent both deep drawing resistance and rigging resistance can be realized at a lower cost than before.
  • the "rolling direction” is a direction in which the strip is passed through the rolling apparatus when the strip of stainless steel is rolled.
  • the martensite phase is excessively dispersed, the amount of the martensite phase will be excessively increased in the stainless steel strip after softening and annealing. Since the martensite phase has a hard and high-strength structure and the ferrite phase has a soft and excellent ductility structure, the ductility of stainless steel cannot be improved. It also causes edge cracking and coil (steel strip) breakage when the stainless steel strip after softening and annealing is cold-rolled.
  • the present inventors have appropriately dispersed the martensite phase in order to improve the ductility and rigging resistance of stainless steel while maintaining the strength at the conventional level. It was found that it is effective to cause it. Specifically, it was found that it is effective to cause the dispersion of the martensite phase so that the area ratio of the martensite phase in the stainless steel strip after softening and annealing is 5.0 to 30.0%. rice field.
  • Area ratio of martensite phase after softening annealing is the ratio of the total area of the martensite phase region contained in the cut cross section to the area of the cut cross section of the stainless steel strip after softening annealing.
  • This cut cross section is a cross section formed when the stainless steel strip after softening and annealing is cut in a plane parallel to the rolling direction and perpendicular to the width direction of the stainless steel strip.
  • first martensite area ratio the area ratio of the martensite phase after softening and annealing.
  • the first martensite area ratio can be calculated using, for example, EBSD (electron back scattering diffraction) crystal orientation analysis.
  • EBSD electron back scattering diffraction
  • an EBSD detector mounted on a scanning electron microscope (SEM) is used to acquire an EBSD pattern on the measurement surface of a stainless steel strip after softening and annealing.
  • SEM scanning electron microscope
  • the acquisition conditions are set as follows, for example.
  • an IQ (Image Quality) image is generated from the acquired EBSD pattern using OIM (Orientation Imaging Microscopy) analysis software.
  • the IQ image is an image map showing the high and low sharpness of each structure formed on the measurement surface of the hot-rolled annealed steel strip.
  • the martensite phase has a more complicated internal structure and lower sharpness than the ferrite phase. Therefore, the martensite phase region on the measurement surface appears relatively dark in the IQ image.
  • the ferrite phase has a simpler internal structure and higher sharpness than the martensite phase. Therefore, the ferrite phase region on the measurement surface appears relatively bright in the IQ image.
  • the first martensite area ratio can be calculated by binarizing this IQ image and dividing the total area of the martensite phase region by the area of the measurement surface.
  • the present inventors By setting the first martensite area ratio to 5.0% or more, the present inventors have made the waviness height of the rigging formed on the surface of the stainless steel (details will be described later) lower than before. It has been found that the surface texture of stainless steel is improved and the molding process becomes easier. Further, by setting the first martensite area ratio to 30.0% or less, the present inventors do not reduce the ductility of the stainless steel strip after softening and annealing, and edge cracks and coils during cold rolling. It was found that poor cold ductility such as breakage is less likely to occur.
  • the r value which is an index of superiority or inferiority of deep drawability in stainless steel, is the crystal orientation (hereinafter, " ⁇ 111 ⁇ crystal orientation") produced in stainless steel and having a Miller index of ⁇ 111 ⁇ . It is known that the larger the number of (abbreviation), the larger the value. Since the ⁇ 111 ⁇ crystal orientation tends to be generated at a place where rolling strain occurs, it is likely to be generated at a grain boundary where rolling strain is concentrated in stainless steel.
  • the concentration of rolling strain is concentrated on the stainless steel after cold-rolling. It tends to stay at the end of the steel strip in the plate thickness direction.
  • the concentration of rolling strain is unlikely to occur and the grain boundaries tend to be difficult to be generated.
  • the central portion of the stainless steel strip in the plate thickness direction is referred to as a "plate thickness center portion”
  • the end portion in the plate thickness direction is referred to as a "plate thickness surface layer portion”.
  • the present inventors tend to make the roll diameter larger than that of the above-mentioned general work roll, so that the concentration of rolling strain is likely to occur even in the central portion of the plate thickness, and the crystal grain boundaries are likely to be generated.
  • ⁇ 111 ⁇ I came up with the idea that many crystal orientations might be generated. The idea is that if the distance between the surface of the stainless steel strip and the axis of rotation is the same for the general work roll and the work roll with a larger roll diameter, the work roll with a larger roll diameter is the plate. It is based on the fact that it can be rolled to a part closer to the thick center.
  • the roll diameter of the work roll is set to 200 mm or more, the desired number of ⁇ 111 ⁇ is obtained in the entire portion from the plate thickness surface layer portion to the plate thickness center portion. It turned out that it may be possible to generate a crystal orientation.
  • the cold rolling rate per pass in cold rolling is low, and cold rolling using the above-mentioned work roll is performed. It has been found that if the cold rolling ratio is low, it is difficult to generate a desired number of ⁇ 111 ⁇ crystal orientations at the center of the plate thickness.
  • the cold spreading rate per pass is the thickness of the stainless steel strip one pass before and the thickness of the stainless steel strip after one pass with respect to the thickness of the stainless steel strip one pass before for any pass. It is the ratio of the difference from the thickness.
  • the present inventors further studied.
  • the size of the roll diameter of the work roll is set to 200 mm or more
  • the cold rolling rate per pass is set to 15% or more, and all. It was found that it is effective to set the cold rolling rate after the end of the pass to 50% or more of the total cold rolling rate.
  • the total cold-rolled ratio is the ratio of the difference between the thickness of the hot-rolled annealed steel strip and the thickness of the cold-rolled steel strip to the thickness of the hot-rolled annealed steel strip before cold rolling. ..
  • the cold-rolled steel strip which is the basis for calculating the total cold-rolling ratio, is after all the processing in cold rolling is completed (in this embodiment, after the first cold rolling and the second cold rolling described later are completed). Refers to the steel strip of. The cold rolling rate after the completion of all passes will be described later.
  • the size of the roll diameter of the work roll is set to 200 mm or more, the cold rolling rate per pass is set to 15% or more, and the cold rolling rate after the completion of all passes is the total cold rolling rate. It was found that by setting it to 50% or more, a desired number of ⁇ 111 ⁇ crystal orientations can be generated in the entire portion from the surface layer portion of the plate thickness to the center portion of the plate thickness.
  • a work roll having a roll diameter of 200 mm or more is referred to as a "large diameter roll”
  • a work roll having a roll diameter of less than 200 mm is referred to as a "small diameter roll”.
  • a work roll having a roll diameter of 50 to 100 mm, which is generally used in cold rolling belongs to a "small diameter roll”.
  • the cold-rolled steel strip is heated to 800 ° C. or higher and less than Ac1 at a heating rate of 50 ° C./s or lower.
  • Ac1 is a measure of the temperature at which the formation of the austenite phase is started.
  • the disappearance of the martensite phase starts when the cold-rolled steel strip reaches a certain temperature (about 700 ° C.).
  • the martensite phase in the cold-rolled steel strip is substantially eliminated by soaking the heated cold-rolled steel strip in a temperature range of 800 ° C. or higher and lower than Ac1 for 5 seconds or longer.
  • the disappearance of the martensite phase in the cold-rolled steel strip is aimed at.
  • the "disappearance of the martensite phase” in the present specification basically means that the area ratio of the martensite phase contained in the stainless steel as the final product is 0%, that is, the martensite in the stainless steel as the final product. It means that the site phase has completely disappeared.
  • the "area ratio of martensite phase contained in stainless steel as a final product” is the ratio of the total area of the martensite phase region contained in the cut cross section to the area of the cut cross section of stainless steel as a final product.
  • This cut cross section is a cross section formed when stainless steel as a final product is cut in a plane parallel to the rolling direction and perpendicular to the width direction of the stainless steel.
  • the "disappearance of the martensite phase" in the present specification is actually an area ratio of stainless steel as a final product as a result of finish annealing aiming at complete disappearance of the martensite phase (area ratio 0%). It is a concept that allows less than 1.0% of the martensite phase to remain. When the remaining martensite phase has an area ratio of less than 1.0%, the corrosion resistance and workability of stainless steel as a final product are both excellent.
  • the area ratio of the martensite phase contained in stainless steel as a final product is referred to as "second martensite area ratio”.
  • the present inventors applied the above-mentioned finish annealing to the cold-rolled steel strip to complete the recrystallization of the ferrite phase, which is the parent phase, and the martensite phase (first martensite phase) intentionally produced in the softening annealing. It was found that the site area ratio (5.0 to 30.0%) can also be eliminated. Recrystallization refers to the formation of new grain grains free of dislocations in the cold-rolled steel strip. Dislocations are an example of lattice defects that occur inside a crystal.
  • the present inventors have also found that by applying the above-mentioned finish annealing to the cold-rolled steel strip, it is possible to prevent the formation of a new martensite phase in the cold-rolled steel strip.
  • the series of methods from softening annealing to finish annealing described above is different from the general stainless steel manufacturing method aiming at the positive disappearance of the martensite phase from the time of softening annealing.
  • the stainless steel according to the embodiment of the present invention has a mass% of C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ni: 1.0% or less, Cr: 12.0 to 18.0%, N: 0.10% or less, Al: 0.50% or less, Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V : 0.15% or less, B: 0.10% or less, Ti: 0.50% or less, Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 ⁇ 0.10%, Mg: 0.0005 ⁇ 0.003%, Ca: 0.0003 ⁇ 0.003%, Y: 0.01% ⁇ 0.20%, rare earth metals (REM) excluding Y: total 0.01 to 0.10%, Sn: 0.001 to 0.50%, Sb: 0.001 to 0.50%, Pb: 0.01 to 0.10% and W: 0.01 to 0. .Contains 50%.
  • REM rare earth metals
  • the rest of this stainless steel consists of Fe and unavoidable impurities.
  • Each of Mo, Cu, O, V, B, Ti, Co, Zr, Nb, Mg, Ca, Y, REM, Sn, Sb, Pb, and W is not an essential element of this stainless steel.
  • Each of these elements is an arbitrary element as long as it contains at least one of these elements, if necessary.
  • each element contained in this stainless steel will be described.
  • C is an important element that forms a carbide with Cr to form an interface that is a source of dislocations when the stainless steel is deformed. However, if C is added in excess, the martensite phase is excessively generated, and the ductility of the present stainless steel is lowered. Therefore, the content of C is set to 0.12% or less.
  • Si has an effect as a deoxidizing agent in the melting stage. However, if Si is added in excess, the stainless steel is hardened and the ductility is lowered. Therefore, the Si content is set to 1.0% or less.
  • Mn has an effect as a deoxidizing agent. However, if Mn is excessively added, the amount of MnS produced increases and the corrosion resistance of the present stainless steel decreases. Therefore, the Mn content is set to 1.0% or less.
  • Ni is an austenite-forming element and is an effective element for controlling the first martensite area ratio and the strength of the present stainless steel.
  • the austenite phase is stabilized more than necessary, the ductility of the present stainless steel is lowered, and the raw material cost of the present stainless steel is increased. Therefore, the Ni content is set to 1.0% or less.
  • the strip of this stainless steel after softening and annealing is referred to as "hot-rolled annealed strip".
  • the steel strip of the present stainless steel after softening and annealing is an example of the hot-rolled annealed steel strip according to the present invention.
  • ⁇ Cr: 12.0 to 18.0%> Cr is required to form a passivation film on the surface of the steel strip of this stainless steel after cold rolling to improve corrosion resistance.
  • Cr is added in excess, the ductility of the present stainless steel is lowered. Therefore, the Cr content is set to 12.0 to 18.0%.
  • the steel strip of this stainless steel after cold rolling is referred to as "cold rolled steel strip".
  • the steel strip of the present stainless steel after cold rolling is an example of the cold-rolled steel strip according to the present invention.
  • N is an important element that forms a nitride with Cr to form an interface that is a source of dislocations when the stainless steel is deformed.
  • the content of N is set to 0.10% or less.
  • Al is an element effective for deoxidation and can reduce A2 inclusions which adversely affect press workability. However, if Al is added in excess, the surface defects of the present stainless steel increase. Therefore, the Al content is set to 0.50% or less.
  • Mo is an element effective for improving corrosion resistance. However, if Mo is added in excess, the raw material cost of this stainless steel increases. Therefore, the Mo content is preferably set to 0.50% or less.
  • Cu is an element effective for improving corrosion resistance.
  • the Cu content is preferably set to 1.0% or less.
  • O produces non-metal inclusions, which reduces the impact value and fatigue life of the present stainless steel. Therefore, the content of O is preferably set to 0.01% or less.
  • V is an element effective for improving hardness and strength. However, if V is added in excess, the raw material cost of the present stainless steel increases. Therefore, the V content is preferably set to 0.15% or less.
  • B is an element effective for improving toughness. However, this effect saturates above 0.10%. Therefore, the content of B is preferably set to 0.10% or less.
  • Ti is an element that forms a carbonitride, and suppresses grain boundary precipitation of Cr carbonitride during heat treatment to improve the corrosion resistance of this stainless steel. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitride, the content of the solid solution C and the solid solution N is reduced and the r value of the stainless steel is improved. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitrides, the ductility of the stainless steel can be improved and the stretcher strain can be reduced. Stretcher strains are tiny irregularities formed on the surface of stainless steel that occur due to the yield elongation of several percent that occurs during stamping of stainless steel.
  • the Ti content is preferably set to 0.50% or less.
  • Co is an element effective for improving corrosion resistance and heat resistance. However, if Co is added in excess, the raw material cost of this stainless steel increases. Therefore, the Co content is preferably set to 0.01 to 0.50%.
  • Zr is an element effective for denitrification, deoxidation and desulfurization. However, if Zr is excessively added, the raw material cost of the present stainless steel increases. Therefore, the Zr content is preferably set to 0.01 to 0.10%.
  • Nb reduces the content of solid solution C and solid solution N by fixing the solid solution C and solid solution N in the stainless steel as carbonitride, and reduces the r value of the stainless steel. Improve. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitrides, the ductility of the stainless steel can be improved and the stretcher strain can be reduced. However, since Nb is an expensive element, if Nb is excessively added, the raw material cost of the present stainless steel increases. Therefore, the Nb content is preferably set to 0.01 to 0.10%.
  • Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizing agent.
  • the Mg content is preferably set to 0.0005 to 0.003%, more preferably 0.002% or less.
  • Ca is an element effective for degassing.
  • the Ca content is preferably set to 0.0003 to 0.003%.
  • Y is an element effective for improving hot workability and oxidation resistance. However, these effects saturate above 0.20%. Therefore, the Y content is preferably set to 0.01 to 0.20%.
  • ⁇ REM preferably 0.01 to 0.10% in total> REMs (Rare Earth Metals) such as Sc and La are effective in improving hot workability and oxidation resistance, as in Y. However, these effects saturate above 0.10%. Therefore, the total content of REM is preferably set to 0.01 to 0.10%.
  • Sn is an element effective for improving corrosion resistance. However, if Sn is added in excess, the hot workability and tenacity are lowered. Therefore, the Sn content is preferably set to 0.001 to 0.50%.
  • Sb is effective in improving workability by promoting the formation of a deformed zone during rolling.
  • the Sb content is preferably set to 0.001 to 0.50%, more preferably 0.20% or less.
  • Pb is an element effective for improving free-cutting property.
  • the Pb content is preferably set to 0.01 to 0.10%.
  • W is an element effective for improving high temperature strength. However, if W is added in excess, the raw material cost of the present stainless steel increases. Therefore, the W content is preferably set to 0.01 to 0.50%.
  • the balance other than the above-mentioned components is Fe and unavoidable impurities.
  • the unavoidable impurities are impurities that are mixed from the raw materials and the manufacturing process, and are mixed within a range that does not affect the characteristics of each of the above-mentioned components.
  • the waviness height of the rigging formed on the surface is 15 ⁇ m or less.
  • the undulation height of the rigging formed on the surface of the present stainless steel hereinafter, abbreviated as” the undulation height of the present stainless steel " means the undulation of the rigging measured by the method shown below. Means height.
  • first tensile test piece a JIS No. 5 tensile test piece (hereinafter abbreviated as "first tensile test piece") specified in JIS Z 2201 is collected from the final product of this stainless steel.
  • first tensile test piece is pulled so that the direction parallel to the rolling direction is the tensile direction, with the distance between the gauge points being 50 mm.
  • a tensile strain of 16% is applied to the first tensile test piece.
  • the measurement length in the direction orthogonal to the rolling direction (in other words, the width direction of the first tensile test piece) in the portion between the gauge points of the first tensile test piece was set to 18 mm. Measure the swell height.
  • the swell height is the average height of the swell curve element measured by the surface texture measurement specified in JIS B 0601: 2001 or the like.
  • the average height of the waviness curve element of the first tensile test piece is measured by the surface texture measurement specified in JIS B 0601: 2001.
  • the average height of the waviness curve elements measured by this method is the waviness height of this stainless steel.
  • the undulation height of the rigging formed on the surface is measured by the above method, the undulation height is 20 to 50 ⁇ m, which is higher than the undulation height of this stainless steel. From this, it can be said that this stainless steel has improved rigging resistance as compared with the conventional stainless steel.
  • the JIS13B tensile test piece specified in JIS Z2201 is collected from the final product of this stainless steel. Specifically, from the above-mentioned final product, a second tensile test piece whose tensile direction is parallel to the rolling direction, a third tensile test piece whose tensile direction is a direction forming an angle of 45 ° with the rolling direction, and rolling. Each of the fourth tensile test pieces whose direction orthogonal to the direction is the tensile direction is collected. Next, each of the second to fourth tensile test pieces is pulled using an Instron type tensile tester with the distance between the gauge points set to 20 mm. Then, by this tensile test, a tensile strain of 14.4% is applied to each of the second to fourth tensile test pieces.
  • the r value of each of the second to fourth tensile test pieces is calculated using the following equation (1).
  • r ln (W / W1) / ln (t / t1) ...
  • W is the width before the tensile test
  • W1 is the width after the tensile test
  • t is the thickness before the tensile test
  • t1 is the thickness after the tensile test.
  • the "width” is the width of the portion between the gauge points in each of the second to fourth tensile test pieces.
  • the "thickness” is the thickness of the portion between the gauge points in each of the second to fourth tensile test pieces.
  • the average r value obtained by averaging the r values of the second to fourth tensile test pieces is calculated.
  • This average r value is the r value of this stainless steel.
  • Average r value (r0 + 2r45 + r90) / 4 ... (2)
  • r0 is the r value of the second tensile test piece
  • r45 is the r value of the third tensile test piece
  • r90 is the r value of the fourth tensile test piece.
  • the r value is 0.6 to 0.8, which is smaller than the r value of this stainless steel. From this, it can be said that this stainless steel has improved deep drawing property as compared with the conventional stainless steel.
  • This stainless steel has a second martensite area ratio of 0% or more and less than 1.0%.
  • the second martensite area ratio is preferably 0% from the viewpoint of improving the corrosion resistance and workability of the present stainless steel. However, if the second martensite area ratio is less than 1.0%, even if the area ratio is higher than 0%, this stainless steel has not only rigging resistance and deep drawing resistance but also corrosion resistance and workability. Excellent.
  • the second martensite area ratio can be calculated using EBSD crystal orientation analysis in the same manner as the first martensite area ratio.
  • index value In this stainless steel, the index value represented by the following equation (3) is 15 to 50. This index value is an index showing the maximum amount of austenite phase produced by annealing. In the following equation (3), each element symbol represents the mass% concentration of the element.
  • FIG. 1 A method for manufacturing stainless steel according to an embodiment of the present invention will be described with reference to FIG. 1.
  • the present stainless steel is manufactured by going through each of the melting step S1, the hot rolling step S2, the softening annealing step S3, the cold rolling step S4, and the baking step S5.
  • each step will be described, but the method for manufacturing the present stainless steel is not limited to the method shown in FIG.
  • ⁇ Melting process S1 and hot rolling process S2> In order to produce this stainless steel, first, in the melting step S1, the stainless steel containing each of the above-mentioned components is melted to produce a steel slab. In the melting step S1, a general melting apparatus for stainless steel can be used, and general melting conditions can be set. Next, in the hot rolling step S2, the hot rolled steel strip is manufactured by hot rolling the steel slab produced in the melting step S1. This hot-rolled steel strip is an example of the hot-rolled steel strip according to the present invention. In the hot rolling step S2, a general hot rolling apparatus and hot rolling conditions for stainless steel can be used.
  • the hot-rolled annealed steel strip produced in the hot rolling step S2 is softened and annealed to produce a hot-rolled annealed steel strip.
  • the softening annealing is a heat treatment in which the hot-rolled steel strip is annealed by setting the maximum temperature during the soaking process to Ac1 or higher in order to soften the hot-rolled steel strip.
  • the amount of austenite phase in the steel strip begins to increase. Then, when the temperature of the softening annealing becomes higher, the amount of the austenite phase in the steel strip increases to the peak amount and then starts to decrease. Since the austenite phase can be transformed into a martensite phase during the cooling process in the softening annealing, the first martensite area ratio is affected by the austenite phase that is increased by the softening annealing.
  • the maximum annealing temperature is the maximum temperature during the soaking process in softening annealing.
  • the maximum annealing temperature is set to 0.76 ⁇ Ac1 + 201 ° C. or higher and 1.10 ⁇ Ac1-56 ° C. or lower to obtain the first martensite area. It was found that the ratio can be set to 5.0 to 30.0%.
  • the peak amount of the austenite phase itself is small, so even if the total amount of the peak amount is transformed from the austenite phase to the martensite phase, the first martensite area ratio is 5.0 to 30. I was able to set it to 0.0%. Therefore, when Ac1 is 921 or more, it is not necessary to set the upper limit of the maximum annealing temperature to 1.10 ⁇ Ac1-56 ° C.
  • the upper limit of the maximum annealing temperature is set to 1050 ° C. I decided to set it.
  • the rate of temperature rise in the temperature rise process in softening annealing is preferably set to 10 ° C./sec or higher. If the temperature rise rate is 10 ° C./sec or more, the temperature rise time in the temperature rise process can be shortened to a practically meaningful degree, so that the total time required for manufacturing this stainless steel is also to a practically meaningful degree. Can be shortened. Therefore, the productivity of this stainless steel can be improved.
  • the heat equalization time in the heat equalization process in the softening annealing is preferably set to 5 seconds or more. If the heat soaking time is 5 seconds or more, the austenite phase can be reliably generated during the heat soaking process. Since the austenite phase transforms into the martensite phase during the cooling process after the soaking process, the first martensite area ratio is set to 5.0 to 30.0% by setting the soaking time to 5 seconds or longer. It will be easier to manage.
  • the cooling rate in the cooling process in softening annealing is set to 5.0 ° C./sec or higher. If the cooling rate is less than 5.0 ° C./sec, the cooling time in the cooling process becomes longer than necessary, and the austenite phase is transformed into a stable ferrite phase. Therefore, the area ratio of the first martensite is lowered to less than 5.0%, and the rigging resistance of the present stainless steel is lowered to be lower than that of the conventional stainless steel. For this reason, the cooling rate is set to 5.0 ° C./sec or higher in order to maintain good rigging resistance of the present stainless steel.
  • the hot-rolled annealed steel strip produced in the softening annealing step S3 is cold-rolled to produce a cold-rolled steel strip.
  • the total cold rolling ratio after the completion of the cold rolling step S4 is set to 60% or more.
  • the first cold rolling is performed by passing a hot-rolled annealed steel strip through a large-diameter roll having a roll diameter of 200 mm or more.
  • a large-diameter roll having a roll diameter of 200 mm or more is an example of a first work roll according to the present invention.
  • the cold rolling rate per pass is set to 15% or more, and the cold rolling rate after the completion of the first cold rolling (after the completion of all the passes in the first cold rolling). Is set to 50% or more of the total cold rolling ratio.
  • the cold rolling ratio after the completion of the first cold rolling is the hot rolling annealing with respect to the thickness of the hot-rolled annealed steel strip before the first cold rolling. It is the ratio of the difference between the thickness of the steel strip and the thickness of the steel strip after the completion of all passes.
  • the steel strip passed through the large diameter roll is subjected to the second cold rolling through the small diameter roll having a roll diameter of 50 to 100 mm.
  • a small diameter roll having a roll diameter of 50 to 100 mm is an example of a second work roll according to the present invention.
  • the second cold rolling only the remaining band thickness that could not be rolled in the first cold rolling is rolled.
  • the steel strip after the completion of the second cold rolling becomes a cold-rolled steel strip.
  • the reason for performing the second cold rolling after the completion of the first cold rolling will be described. That is, when comparing the first cold rolling and the second cold rolling, assuming that both cold rollings have the same rolling ratio, the first cold rolling using a large diameter roll is better. A larger rolling load is required than in the second cold rolling using a small diameter roll.
  • stainless steel is harder than ordinary steel, and in cold rolling, work hardening progresses in the latter half of the treatment, and the strength of the steel strip increases. From these facts, if cold rolling is performed only with a large diameter roll in the cold rolling step S4, the rolling load that must be applied to the steel strip in order to obtain a cold rolled steel strip having a desired strip thickness is the present stainless steel.
  • the first cold rolling is performed on the large diameter roll, and then the second cold rolling is performed on the small diameter roll.
  • a work roll having a roll diameter of 50 to 100 mm which is generally used as a small diameter roll, is used as the second work roll.
  • the second cold rolling is performed after the first cold rolling, but the first cold rolling is performed after the second cold rolling.
  • stainless steel is generally harder than ordinary steel. Further, in cold rolling, work hardening progresses in the latter half of the treatment, and the strength of the steel strip increases. Therefore, when the first cold rolling is performed after the second cold rolling, the first cold rolling is performed in order to cause the concentration of rolling strain at the center of the plate thickness of the steel strip after the second cold rolling. A larger rolling load is required than in the case of performing the second cold rolling after performing the above. From these facts, considering the manufacturability and productivity of the present stainless steel, it is preferable to perform the first cold rolling and then the second cold rolling as in the present embodiment.
  • the cold-rolled steel strip produced in the cold rolling step S4 is annealed at a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1.
  • the annealing performed in the annealing step S5 is a finish annealing for the purpose of achieving both the completion of recrystallization of the ferrite phase in the cold-rolled steel strip and the disappearance of the martensite phase.
  • the finish annealing performed in the annealing step S5 is composed of a temperature raising process, a soaking process, and a cooling process, similarly to the softening annealing in the softening annealing step S3.
  • the cold-rolled steel strip is heated to a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1 at a heating rate of 50 ° C./s or less.
  • the temperature rise rate to 50 ° C./s or less
  • the martensite phase can be eliminated in the process of temperature rise.
  • the cold-rolled steel strip after the temperature raising process is heated at a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1 for 5 seconds or longer.
  • the start temperature of recrystallization is set to 800 ° C. By setting the recrystallization start time to 800 ° C., the recrystallization of the ferrite phase is completed in a short soaking time.
  • the start temperature of recrystallization is not limited to 800 ° C., and the start temperature of recrystallization may be set to a temperature lower than, for example, 800 ° C.
  • the upper limit of the soaking temperature is set to a temperature of Ac1 or less, the martensite phase remaining in the cold-rolled steel strip is substantially eliminated while preventing the formation of a new martensite phase in the cold-rolled steel strip. be able to.
  • the cold-rolled steel strip after the soaking process is cooled at a cooling rate of 50 ° C./s or less.
  • the martensite phase can be eliminated even in the course of the cooling process.
  • the finish annealing composed of each of these treatments to the cold-rolled steel strip, it is possible to efficiently achieve both the completion of recrystallization of the ferrite phase in the cold-rolled steel strip and the disappearance of the martensite phase in the annealing step S5. can do.
  • the annealing step S5 is completed, the present stainless steel as a final product is obtained, and the production of the present stainless steel is completed.
  • the ferritic stainless steel according to one aspect of the present invention has Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V: 0.15% or less, B in mass%. It may further contain one or more selected from: 0.10% or less and Ti: 0.50% or less.
  • the ferritic stainless steel according to one aspect of the present invention has Co: 0.01% or more and 0.50% or less, Zr: 0.01% or more and 0.10% or less, Nb: 0.01% or more in mass%. 0.10% or less, Mg: 0.0005% or more and 0.003% or less, Ca: 0.0003% or more and 0.003% or less, Y: 0.01% or more and 0.20% or less, rare earth metals excluding Y : Total 0.01% or more and 0.10% or less, Sn: 0.001% or more and 0.50% or less, Sb: 0.001% or more and 0.50% or less, Pb: 0.01% or more and 0.10 % Or less and W: One or more selected from 0.01% or more and 0.50% or less may be further contained.
  • the steel slab has Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V in mass%. It may further contain one or more selected from: 0.15% or less, B: 0.10% or less, and Ti: 0.50% or less.
  • the steel slab has Co: 0.01% or more and 0.50% or less and Zr: 0.01% or more and 0.10% or less in terms of mass%.
  • Nb 0.01% or more and 0.10% or less
  • Mg 0.0005% or more and 0.003% or less
  • Ca 0.0003% or more and 0.003% or less
  • Y 0.01% or more and 0.20 % Or less
  • Sn 0.001% or more and 0.50% or less
  • Sb 0.001% or more and 0.50% or less
  • Pb One or more selected from 0.01% or more and 0.10% or less and W: 0.01% or more and 0.50% or less may be further contained.
  • the ferritic stainless steel according to the embodiment of the present invention will be referred to as "invention steel”
  • the ferritic stainless steel according to the comparative example of the present invention will be referred to as "comparative steel”.
  • the content of each element constituting the compositions A to E was within the numerical range of the content of each element contained in the ferritic stainless steel according to one aspect of the present invention.
  • Table 1 also shows the numerical value of Ac1 in each case of composition A to E.
  • the index value of the invention steel and the comparative steel produced based on the steel slab having the composition E was 85 as shown in Table 1 above, which exceeded the upper limit value 50 of the preferable numerical range in the present invention. It is presumed that such a result was obtained because the content of Cr in the composition E, which affects the index value, was 12.5%.
  • hot-rolled steel strips of each composition having a plate thickness of 3 mm and a plate width of 150 mm were manufactured.
  • the hot-rolled steel strips of each composition are subjected to softening annealing and cold rolling under the "actual conditions" shown in Table 2 below, so that the hot-rolled steel strips of each composition having a plate thickness of 1 mm and a plate width of 150 mm are cold-rolled.
  • the cold-rolled steel strips having each composition were finish-annealed to produce the 1st to 7th invention steels and the 1st to 18th comparative steels.
  • Table 2 above also shows "recommended conditions” for softening annealing and cold rolling.
  • the conditions described in the “Recommended conditions” column in Table 2 above are the same as those in the present embodiment.
  • the "lower limit temperature” in the “softening annealing” column of the “recommended conditions” indicates the lower limit of the maximum annealing temperature
  • the "upper limit temperature” in the same column indicates the upper limit of the maximum annealing temperature.
  • the numerical values described in the "lower limit temperature” and “upper limit temperature” columns are 0.76 ⁇ Ac1 + 201 ° C. or higher and 1050 ° C. or lower for each invention steel and each comparative steel of composition A. It was calculated by substituting the numerical value (942).
  • each of the invention steels of compositions B to E and each comparative steel the numerical values of each Ac1 of compositions B to E (811, 855,) in the formula of 0.76 ⁇ Ac1 + 201 ° C. or higher and 1.10 ⁇ Ac1-56 ° C. or lower. It was calculated by substituting 920 and 710).
  • Table 2 above also shows "characteristic evaluation” and "comprehensive evaluation” for each of the 1st to 7th invention steels and the 1st to 18th comparative steels.
  • the column of “waviness height” of “characteristic evaluation” shows the measurement result of the waviness height of rigging.
  • the column of “r value” of “characteristic evaluation” shows the calculation result of r value.
  • the method for measuring the swell height of the rigging and the method for calculating the r value were the same as those in the present embodiment.
  • “Comprehensive evaluation” is “ ⁇ " when the swell height of the rigging is 15 ⁇ m or less, the r value is 0.9 or more, and the second martensite area ratio is 0% or more and less than 1.0%. And said. On the other hand, if the swell height of the rigging is higher than 15 ⁇ m, the r value is less than 0.9, or the second martensite area ratio is 1.0% or more, it is evaluated as “x
  • the underlined numerical values in Table 2 above indicate numerical values outside the preferable numerical range in the present embodiment. Further, the underlined “x” in Table 2 above indicates that the cold rolling rate after the completion of all passes was less than 50% of the total cold rolling rate.
  • the swell height of the rigging was higher than 15 ⁇ m, so the overall evaluation was “x”. It became.
  • the swell height of the rigging was higher than 15 ⁇ m because the first martensite area ratio was less than 5.0% for all of the 1st, 9th, 11th, 13th, and 16th comparative steels. It is inferred that. That is, in all of the 1st, 9th, 11th, 13th, and 16th comparative steels, the amount of increase in colonies in the steel exceeded the permissible range for improving the rigging resistance, so that the swell height of the rigging was high. It is presumed that the height was higher than 15 ⁇ m.
  • the r value was less than 0.9, so that the overall evaluation was “x”. ..
  • the reason why the r value is less than 0.9 is presumed to be explained below.
  • the total cold rolling ratio is less than 60%, and the cold rolling ratio per pass is high. It is presumed that this is because it corresponds to at least one of less than 15% and the cold rolling rate after the completion of all passes is less than 50% of the total cold rolling rate.
  • the rolling strain is concentrated in the center of the plate thickness of these comparative steels. It is presumed that the r value was less than 0.9 because it did not occur sufficiently.
  • the 1st martensite area ratio was larger than 30.0% for the 14th and 15th comparative steels. That is, it is presumed that the r value of both the 14th and 15th comparative steels was less than 0.9 because the martensite phase increased more than necessary and the ductility decreased.
  • the total cold rolling ratio was less than 60%, and the first martensite area ratio was larger than 30.0%, so the r value was less than 0.9. It is presumed that it has become.
  • the characteristic evaluations of the 3rd and 4th invention steels were the best overall results among all the invention steels.
  • the steel of the third invention had the third lowest swell height of rigging among all the steels of the invention (2.39 ⁇ m). It is presumed that such a result was obtained because the first martensite area ratio was the third highest among all the invention steels (9.44%).
  • the steel of the third invention had the largest r value among all the steels of the invention (1.12). It is presumed that such a result was obtained because the total cold rolling ratio was the highest among all the invention steels (85%).
  • the steel of the third invention had the fourth lowest ratio of the area of the second martensite among all the steels of the invention (0.17%).
  • the swell height of the rigging of the 4th invention steel was the lowest among all the invention steels (2.28 ⁇ m).
  • the steel of the fourth invention had the fourth largest r value among all the steels of the invention (0.93). It is presumed that such a result was obtained because the total cold rolling ratio was the fourth highest (69%) of all invention steels.
  • the 4th invention steel had the third lowest (0.15%) of the 2nd martensite area ratio among all the invention steels.
  • the present invention can be used for manufacturing ferritic stainless steel and ferritic stainless steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Through the present invention, ferritic stainless steel that is superior both in deep drawability and ridging resistance is realized at lower cost relative to the prior art. In this ferritic stainless steel, the average height of undulating curve elements in ridging formed on the surface of the ferritic stainless steel is 15 µm or less, and the r value thereof is 0.9 or greater, and the area ratio of a martensitic phase in a cross section cut in a plane parallel to a rolling direction and perpendicular to a transverse direction is 0% to less than 1.0%.

Description

フェライト系ステンレス鋼およびフェライト系ステンレス鋼の製造方法Manufacturing method of ferritic stainless steel and ferritic stainless steel
 本発明は、フェライト系ステンレス鋼およびフェライト系ステンレス鋼の製造方法に関する。 The present invention relates to a ferritic stainless steel and a method for manufacturing a ferritic stainless steel.
 フェライト系ステンレス鋼は耐食性および耐熱性に優れており、家電製品、調理器具、建築用途等の様々な分野で使用されている。一方で、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて延性に劣る。また、フェライト系ステンレス鋼には、成形加工時にリジングが生じ、このリジングが、成形加工品の表面品質および成形加工後のフェライト系ステンレス鋼の研磨性を阻害するという問題がある。 Ferritic stainless steel has excellent corrosion resistance and heat resistance, and is used in various fields such as home appliances, cooking utensils, and construction applications. On the other hand, ferritic stainless steel is inferior in ductility to austenitic stainless steel. Further, the ferritic stainless steel has a problem that rigging occurs during the molding process, and this rigging impairs the surface quality of the molded product and the polishability of the ferritic stainless steel after the forming process.
 ここで、リジングは、フェライト系ステンレス鋼の表面に生じる表面欠陥であり、具体的には、フェライト系ステンレス鋼の表面において加工方向と平行な方向に生じる縞状または筋状の起伏を指す。「加工方向」は、フェライト系ステンレス鋼の鋼帯を成形加工によって伸ばす方向である。また、リジング発生の原因となる成形加工としては、プレス加工、引張り加工、絞り加工などを例示することができる。 Here, rigging is a surface defect that occurs on the surface of ferritic stainless steel, and specifically refers to striped or streaky undulations that occur on the surface of ferritic stainless steel in a direction parallel to the processing direction. The "machining direction" is a direction in which a steel strip of ferritic stainless steel is stretched by forming. Further, as the forming process that causes rigging, press working, tensile processing, drawing processing and the like can be exemplified.
 フェライト系ステンレス鋼の延性、特に深絞り性を向上させるには、フェライト系ステンレス鋼中のCおよびNの含有量を少なくするのが有効であることが、一般的に知られている。一方、フェライト系ステンレス鋼中のCおよびNの含有量を少なくすると耐リジング性が低下することも、一般的に知られている。これらのことから、深絞り性および耐リジング性の両方に優れるフェライト系ステンレス鋼を実現することが、従来からの課題となっている。 It is generally known that it is effective to reduce the content of C and N in the ferritic stainless steel in order to improve the ductility, particularly the deep drawing property of the ferritic stainless steel. On the other hand, it is also generally known that reducing the content of C and N in ferritic stainless steel lowers the rigging resistance. For these reasons, it has been a conventional issue to realize a ferritic stainless steel having excellent both deep drawing resistance and rigging resistance.
 前記の課題を解決するために、従来から様々な研究が進められている。例えば特許文献1には、所定の条件を満たす量のTiを添加して析出物の析出量を制御することにより、r値が向上し、かつ耐リジング性にも優れたフェライト系ステンレス鋼板を製造する技術が開示されている。r値(ランクフォード値)は、板材一般の異方性を表す特性値であり、フェライト系ステンレス鋼の深絞り性の優劣を示す指標となる。r値が大きいほど、フェライト系ステンレス鋼の深絞り性が優れているとされる。また例えば、特許文献2には、所定のロール径のワークロールを用いて冷間圧延を施すことにより、r値が大きなフェライト系ステンレス薄鋼板を製造する技術が開示されている。ワークロールは、冷間圧延の際に圧延対象である金属板と直接接触する、冷間圧延機の構成部品である。 Various researches have been conducted in order to solve the above problems. For example, in Patent Document 1, a ferritic stainless steel sheet having an improved r value and excellent rigging resistance is manufactured by adding an amount of Ti satisfying a predetermined condition to control the amount of precipitate deposited. The technology to be used is disclosed. The r value (Rankford value) is a characteristic value indicating the general anisotropy of the plate material, and is an index indicating the superiority or inferiority of the deep drawing property of the ferritic stainless steel. It is said that the larger the r value, the better the deep drawing property of the ferritic stainless steel. Further, for example, Patent Document 2 discloses a technique for producing a ferritic stainless thin steel sheet having a large r value by cold rolling using a work roll having a predetermined roll diameter. The work roll is a component of a cold rolling mill that comes into direct contact with a metal plate to be rolled during cold rolling.
日本国特開平10-130786号公報Japanese Patent Application Laid-Open No. 10-130786 日本国特開昭59-107030号公報Japanese Patent Application Laid-Open No. 59-107030
 しかしながら、特許文献1に開示された技術は、高価な元素であるTiを添加することから、フェライト系ステンレス鋼板の製造コストが高くなる。また、特許文献2に開示された技術は、耐リジング性を向上させるための製造条件および成分組成が規定されていないことから、この技術に基づいて製造されたフェライト系ステンレス薄鋼板は耐リジング性の面で十分とは言えない。 However, the technique disclosed in Patent Document 1 adds Ti, which is an expensive element, so that the manufacturing cost of the ferritic stainless steel sheet is high. Further, since the technique disclosed in Patent Document 2 does not specify the manufacturing conditions and the component composition for improving the rigging resistance, the ferritic stainless steel sheet manufactured based on this technique has the rigging resistance. It cannot be said that it is sufficient in terms of.
 本発明の一態様は、前記の問題点に鑑みてなされたものであり、深絞り性および耐リジング性の両方に優れるフェライト系ステンレス鋼を従来よりも低コストで実現することにある。 One aspect of the present invention has been made in view of the above-mentioned problems, and is to realize a ferritic stainless steel having excellent both deep drawing property and rigging resistance at a lower cost than the conventional one.
 前記の課題を解決するために、本発明の一態様に係るフェライト系ステンレス鋼は、質量%で、C:0.12%以下、Si:1.0%以下、Mn:1.0%以下、Ni:1.0%以下、Cr:12.0%以上18.0%以下、N:0.10%以下およびAl:0.50%以下を含有し、残部がFeおよび不可避的不純物からなるフェライト系ステンレス鋼であって、前記フェライト系ステンレス鋼の表面に形成されたリジングにおけるうねり曲線要素の平均高さが15μm以下であり、かつ、r値が0.9以上であり、かつ、圧延方向に平行であり幅方向に垂直な平面で切断した断面におけるマルテンサイト相の面積比率が0%以上1.0%未満のマルテンサイト相を含む。 In order to solve the above-mentioned problems, the ferritic stainless steel according to one aspect of the present invention has a mass% of C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ferritic stainless steel containing 1.0% or less, Cr: 12.0% or more and 18.0% or less, N: 0.10% or less and Al: 0.50% or less, and the balance is Fe and unavoidable impurities. It is a ferritic stainless steel, the average height of the waviness curve element in the rigging formed on the surface of the ferritic stainless steel is 15 μm or less, the r value is 0.9 or more, and in the rolling direction. A martensite phase having an area ratio of 0% or more and less than 1.0% in a cross section cut in a plane that is parallel and perpendicular to the width direction is included.
 前記の課題を解決するために、本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、質量%で、C:0.12%以下、Si:1.0%以下、Mn:1.0%以下、Ni:1.0%以下、Cr:12.0%以上18.0%以下、N:0.10%以下およびAl:0.50%以下を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延して熱延鋼帯を製造する熱間圧延工程と、
 前記熱間圧延工程で製造された前記熱延鋼帯を焼鈍して軟質化させることにより、圧延方向に平行かつ熱延焼鈍鋼帯の幅方向に垂直な平面で切断した断面におけるマルテンサイト相の面積比率が5.0%以上30.0%以下であり、かつ、前記マルテンサイト相を除いた残部がフェライト相を含んでいる前記熱延焼鈍鋼帯を製造する軟質化焼鈍工程と、
 前記軟質化焼鈍工程で製造された前記熱延焼鈍鋼帯を冷間圧延して冷延鋼帯を製造する冷間圧延工程と、を含み、
 前記冷間圧延工程では、
  前記熱延焼鈍鋼帯の厚さに対する、当該熱延焼鈍鋼帯の厚さと前記冷延鋼帯の厚さとの差分の割合である総冷延率を60%以上に設定し、
  前記熱延焼鈍鋼帯を、
   (i)ロール径が200mm以上の第1ワークロールを用いて、1パスあたりの冷延率が15%以上となり、かつ、全パス終了後の冷延率が前記冷延率の50%以上となるように冷間圧延した後、
   (ii)ロール径が200mm未満の第2ワークロールを用いてさらに冷間圧延する。
In order to solve the above-mentioned problems, the method for producing ferritic stainless steel according to one aspect of the present invention is, in terms of mass%, C: 0.12% or less, Si: 1.0% or less, Mn: 1.0. % Or less, Ni: 1.0% or less, Cr: 12.0% or more and 18.0% or less, N: 0.10% or less and Al: 0.50% or less, and the balance is Fe and unavoidable impurities. A hot rolling process that hot-rolls a steel slab made of ferritic stainless steel to produce a hot-rolled steel strip.
By baking and softening the hot-rolled steel strip produced in the hot-rolling step, the martensite phase in the cross section cut in a plane parallel to the rolling direction and perpendicular to the width direction of the hot-rolled hardened steel strip. A softening and annealing step for producing the hot-rolled annealed steel strip having an area ratio of 5.0% or more and 30.0% or less and the balance excluding the martensite phase containing a ferrite phase.
A cold rolling step of cold-rolling the hot-rolled annealed steel strip produced in the softening annealing step to produce a cold-rolled steel strip is included.
In the cold rolling process,
The total cold-rolling ratio, which is the ratio of the difference between the thickness of the hot-rolled annealed steel strip and the thickness of the cold-rolled steel strip to the thickness of the hot-rolled annealed steel strip, is set to 60% or more.
The hot-rolled annealed steel strip
(I) Using the first work roll having a roll diameter of 200 mm or more, the cold rolling rate per pass is 15% or more, and the cold rolling rate after the completion of all passes is 50% or more of the cold rolling rate. After cold rolling to
(Ii) Further cold rolling is performed using a second work roll having a roll diameter of less than 200 mm.
 本発明の一態様によれば、深絞り性および耐リジング性の両方に優れるフェライト系ステンレス鋼を従来よりも低コストで実現することができる。 According to one aspect of the present invention, a ferritic stainless steel having excellent both deep drawing resistance and rigging resistance can be realized at a lower cost than before.
本発明の一実施形態に係るフェライト系ステンレス鋼の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the ferritic stainless steel which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態について詳細に説明する。なお、本明細書において、フェライト系ステンレス鋼(以下、「ステンレス鋼」と略記)に対する各元素の含有率を、単に含有率と称する。また、含有率に関する「%」の表示については、特に断らない限り、「質量%」を意味するものとする。さらに、数値X1および数値X2(ただし、X1<X2)について、「X1~X2」は、「X1以上かつX2以下」を意味するものとする。 Hereinafter, an embodiment of the present invention will be described in detail. In this specification, the content of each element in ferrite stainless steel (hereinafter abbreviated as "stainless steel") is simply referred to as the content. In addition, the indication of "%" regarding the content rate shall mean "mass%" unless otherwise specified. Further, with respect to the numerical values X1 and X2 (however, X1 <X2), "X1 to X2" means "X1 or more and X2 or less".
 〔深絞り性および耐リジング性の向上のメカニズム〕
 本発明者らは、鋭意検討の結果、深絞り性および耐リジング性の両方に優れるステンレス鋼を従来よりも低コストで実現するための有効な方策を見出した。具体的には、(i)軟質化焼鈍後のマルテンサイト相の面積比率、ならびに、(ii)冷間圧延におけるワークロールのロール径および冷延条件、のそれぞれを適切に設定するのが有効であることを見出した。このことについて、以下に説明する。
[Mechanism for improving deep drawing resistance and rigging resistance]
As a result of diligent studies, the present inventors have found an effective measure for realizing stainless steel having excellent deep drawing resistance and rigging resistance at a lower cost than before. Specifically, it is effective to appropriately set each of (i) the area ratio of the martensite phase after softening and annealing, and (ii) the roll diameter and cold rolling conditions of the work roll in cold rolling. I found that there was. This will be described below.
 <延性および耐リジング性の向上>
 まず、前記(i)の方策に関する本発明者らの検討結果について説明する。一般的な知見として、熱間圧延後のステンレス鋼の鋼帯を軟質化焼鈍(詳細については後述)することにより、マルテンサイト相の分散が生じることが知られている。以下、ステンレス鋼の鋼帯を「ステンレス鋼帯」と称する。「マルテンサイト相の分散」とは、ステンレス鋼帯中のオーステナイト相がマルテンサイト相に変態し、当該マルテンサイト相がステンレス鋼帯中のフェライト相内に分散することを指す。マルテンサイト相の分散は、軟質化焼鈍後の冷間圧延においてフェライト相のコロニー(類似結晶方位の集合組織)を分断する効果がある。
<Improved ductility and rigging resistance>
First, the results of studies by the present inventors regarding the measure (i) described above will be described. As a general finding, it is known that the martensite phase is dispersed by softening and annealing the strip of stainless steel after hot rolling (details will be described later). Hereinafter, the stainless steel strip is referred to as a "stainless steel strip". "Dispersion of martensite phase" means that the austenite phase in the stainless steel strip is transformed into the martensite phase, and the martensite phase is dispersed in the ferrite phase in the stainless steel strip. Dispersion of the martensite phase has the effect of separating colonies of the ferrite phase (organization of similar crystal orientations) in cold rolling after softening and annealing.
 ここで、リジングは、ステンレス鋼においてコロニーが圧延方向に連なって存在することに起因して生じることから、マルテンサイト相の分散は耐リジング性を向上させる上で有効な現象となる。「圧延方向」は、ステンレス鋼の鋼帯を圧延加工する際に当該鋼帯を圧延装置に通過させる方向である。 Here, since rigging occurs due to the continuous presence of colonies in the rolling direction in stainless steel, the dispersion of the martensite phase is an effective phenomenon for improving the rigging resistance. The "rolling direction" is a direction in which the strip is passed through the rolling apparatus when the strip of stainless steel is rolled.
 但し、マルテンサイト相の分散が過度に生じると、軟質化焼鈍後のステンレス鋼帯においてマルテンサイト相の量が過剰に増えてしまう。マルテンサイト相は硬く高強度の組織であり、フェライト相は軟らかく延性に優れた組織であることから、ステンレス鋼の延性を向上させることができなくなる。また、軟質化焼鈍後のステンレス鋼帯を冷間圧延する際に、エッジ割れおよびコイル(鋼帯)破断などを引き起こす原因にもなる。 However, if the martensite phase is excessively dispersed, the amount of the martensite phase will be excessively increased in the stainless steel strip after softening and annealing. Since the martensite phase has a hard and high-strength structure and the ferrite phase has a soft and excellent ductility structure, the ductility of stainless steel cannot be improved. It also causes edge cracking and coil (steel strip) breakage when the stainless steel strip after softening and annealing is cold-rolled.
 一方、マルテンサイト相の分散が少ないと、軟質化焼鈍後の冷間圧延において、マルテンサイト相によるフェライト相のコロニーの分断が不十分になり、ステンレス鋼の耐リジング性を向上させることができなくなる。 On the other hand, if the dispersion of the martensite phase is small, in the cold rolling after softening annealing, the separation of the ferrite phase colonies by the martensite phase becomes insufficient, and the rigging resistance of the stainless steel cannot be improved. ..
 これらのことに基づいて鋭意検討した結果、本発明者らは、ステンレス鋼について、強度を従来のレベルに維持しつつ延性および耐リジング性を向上させるためには、マルテンサイト相の分散を適度に生じさせることが有効であるとの知見を得た。具体的には、軟質化焼鈍後のステンレス鋼帯におけるマルテンサイト相の面積比率が5.0~30.0%になるように、マルテンサイト相の分散を生じさせるのが有効であることを見出した。 As a result of diligent studies based on these facts, the present inventors have appropriately dispersed the martensite phase in order to improve the ductility and rigging resistance of stainless steel while maintaining the strength at the conventional level. It was found that it is effective to cause it. Specifically, it was found that it is effective to cause the dispersion of the martensite phase so that the area ratio of the martensite phase in the stainless steel strip after softening and annealing is 5.0 to 30.0%. rice field.
 「軟質化焼鈍後のマルテンサイト相の面積比率」は、軟質化焼鈍後のステンレス鋼帯における切断断面の面積に対する、当該切断断面に含まれるマルテンサイト相領域の総面積の比率である。この切断断面は、軟質化焼鈍後のステンレス鋼帯を圧延方向に平行かつ当該ステンレス鋼帯の幅方向に垂直な平面で切断したときに形成される断面である。以下、軟質化焼鈍後のマルテンサイト相の面積比率を「第1マルテンサイト面積比率」と称する。 "Area ratio of martensite phase after softening annealing" is the ratio of the total area of the martensite phase region contained in the cut cross section to the area of the cut cross section of the stainless steel strip after softening annealing. This cut cross section is a cross section formed when the stainless steel strip after softening and annealing is cut in a plane parallel to the rolling direction and perpendicular to the width direction of the stainless steel strip. Hereinafter, the area ratio of the martensite phase after softening and annealing is referred to as "first martensite area ratio".
 第1マルテンサイト面積比率は、例えばEBSD(electron back scattering diffraction)結晶方位解析を用いて算出することができる。具体的には、まず、走査型電子顕微鏡(SEM)に搭載したEBSD検出器を使用して、軟質化焼鈍後のステンレス鋼帯の測定面のEBSDパターンを取得する。EBSDパターンの取得については、取得条件を例えば以下のように設定する。
・測定面:L断面(切断断面:軟質化焼鈍後のステンレス鋼帯を圧延方向に平行かつ当該軟質化焼鈍後のステンレス鋼帯の幅方向に垂直な平面で切断したときに形成される断面)
・測定倍率:100~800倍
・測定面積:100~1000μm角
・測定ピッチ(step size):0.3~0.8μm
 次に、取得したEBSDパターンから、OIM(Orientation Imaging Microscopy)解析ソフトウェアを用いてIQ(Image Quality)画像を生成する。IQ画像は、熱延焼鈍鋼帯の測定面に形成された各組織を鮮明度の高低で表す画像マップである。マルテンサイト相は、フェライト相に比べて、内部組織が複雑であり鮮明度が低くなる。したがって、測定面におけるマルテンサイト相領域は、IQ画像では相対的に暗く映る。一方、フェライト相は、マルテンサイト相に比べて、内部組織が単純であり鮮明度が高くなる。したがって、測定面におけるフェライト相領域は、IQ画像では相対的に明るく映る。このIQ画像を二値化し、マルテンサイト相領域の総面積を測定面の面積で除することにより、第1マルテンサイト面積比率を算出することができる。
The first martensite area ratio can be calculated using, for example, EBSD (electron back scattering diffraction) crystal orientation analysis. Specifically, first, an EBSD detector mounted on a scanning electron microscope (SEM) is used to acquire an EBSD pattern on the measurement surface of a stainless steel strip after softening and annealing. For the acquisition of the EBSD pattern, the acquisition conditions are set as follows, for example.
-Measurement surface: L cross section (cut cross section: cross section formed when a stainless steel strip after softening and annealing is cut in a plane parallel to the rolling direction and perpendicular to the width direction of the softened and annealed stainless steel strip).
・ Measurement magnification: 100 to 800 times ・ Measurement area: 100 to 1000 μm square ・ Measurement pitch (step size): 0.3 to 0.8 μm
Next, an IQ (Image Quality) image is generated from the acquired EBSD pattern using OIM (Orientation Imaging Microscopy) analysis software. The IQ image is an image map showing the high and low sharpness of each structure formed on the measurement surface of the hot-rolled annealed steel strip. The martensite phase has a more complicated internal structure and lower sharpness than the ferrite phase. Therefore, the martensite phase region on the measurement surface appears relatively dark in the IQ image. On the other hand, the ferrite phase has a simpler internal structure and higher sharpness than the martensite phase. Therefore, the ferrite phase region on the measurement surface appears relatively bright in the IQ image. The first martensite area ratio can be calculated by binarizing this IQ image and dividing the total area of the martensite phase region by the area of the measurement surface.
 本発明者らは、第1マルテンサイト面積比率を5.0%以上に設定することで、ステンレス鋼の表面に形成されるリジングのうねり高さ(詳細については後述)が従来よりも低くなり、ステンレス鋼の表面性状が向上して成形加工が容易になることを見出した。また、本発明者らは、第1マルテンサイト面積比率を30.0%以下に設定することで、軟質化焼鈍後のステンレス鋼帯の延性が低下せず、冷間圧延中にエッジ割れおよびコイル破断などの冷延性不良が生じ難くなることを見出した。 By setting the first martensite area ratio to 5.0% or more, the present inventors have made the waviness height of the rigging formed on the surface of the stainless steel (details will be described later) lower than before. It has been found that the surface texture of stainless steel is improved and the molding process becomes easier. Further, by setting the first martensite area ratio to 30.0% or less, the present inventors do not reduce the ductility of the stainless steel strip after softening and annealing, and edge cracks and coils during cold rolling. It was found that poor cold ductility such as breakage is less likely to occur.
 <r値の向上>
 前記(i)の方策を採用しただけでは、ステンレス鋼の延性は向上するものの深絞り性の向上の面では十分とは言えなかった。そこで、本発明者らはさらに検討を進め、前記(ii)の方策がステンレス鋼の深絞り性を向上させる上で有効なことを見出した。以下、前記(ii)に関する本発明者らの検討結果について説明する。一般的な知見として、ステンレス鋼における深絞り性の優劣の指標となるr値は、ステンレス鋼に生成される、ミラー指数が{111}となる結晶方位(以下、「{111}結晶方位」と略記)の数が多いほど値が大きくなることが知られている。{111}結晶方位は、圧延ひずみが生じる箇所に生成される傾向にあることから、ステンレス鋼において圧延ひずみが集中している結晶粒界で生成され易い。
<Improvement of r value>
Although the ductility of stainless steel is improved only by adopting the measure (i) above, it cannot be said that it is sufficient in terms of improving the deep drawing property. Therefore, the present inventors further studied and found that the measure (ii) described above is effective in improving the deep drawing property of stainless steel. Hereinafter, the results of the study by the present inventors regarding (ii) will be described. As a general finding, the r value, which is an index of superiority or inferiority of deep drawability in stainless steel, is the crystal orientation (hereinafter, "{111} crystal orientation") produced in stainless steel and having a Miller index of {111}. It is known that the larger the number of (abbreviation), the larger the value. Since the {111} crystal orientation tends to be generated at a place where rolling strain occurs, it is likely to be generated at a grain boundary where rolling strain is concentrated in stainless steel.
 ここで、冷間圧延において一般的に用いられている、ロール径が50~100mmのワークロールで軟質化焼鈍後のステンレス鋼帯を冷間圧延すると、圧延ひずみの集中が冷間圧延後のステンレス鋼帯における板厚方向の端部に留まってしまう傾向にある。言い換えれば、冷間圧延後のステンレス鋼帯における板厚方向の中心部において、圧延ひずみの集中が生じ難く結晶粒界が生成され難い傾向にある。以下、ステンレス鋼帯における板厚方向の中心部を「板厚中心部」と称し、板厚方向の端部を「板厚表層部」と称する。r値を大きくするためには、板厚表層部から板厚中心部に亘る全部分で{111}結晶方位が多く生成されている必要があることから、前記の一般的なワークロールでは、板厚中心部において{111}結晶方位を多く生成できずステンレス鋼のr値を大きくすることが難しい。 Here, when a stainless steel strip after softening and annealing is cold-rolled with a work roll having a roll diameter of 50 to 100 mm, which is generally used in cold rolling, the concentration of rolling strain is concentrated on the stainless steel after cold-rolling. It tends to stay at the end of the steel strip in the plate thickness direction. In other words, in the central portion of the stainless steel strip after cold rolling in the plate thickness direction, the concentration of rolling strain is unlikely to occur and the grain boundaries tend to be difficult to be generated. Hereinafter, the central portion of the stainless steel strip in the plate thickness direction is referred to as a "plate thickness center portion", and the end portion in the plate thickness direction is referred to as a "plate thickness surface layer portion". In order to increase the r value, it is necessary that a large number of {111} crystal orientations are generated in the entire portion from the surface layer portion of the plate thickness to the center portion of the plate thickness. It is difficult to increase the r-value of stainless steel because many {111} crystal orientations cannot be generated in the central part of the thickness.
 これらのことから、本発明者らは、ロール径を前記の一般的なワークロールよりも大きくすれば、板厚中心部においても圧延ひずみの集中が生じ易くなって結晶粒界が生成され易くなり、{111}結晶方位が多く生成されるのではないかとの考えに至った。この考えは、ステンレス鋼帯の表面と回転軸との距離が、前記の一般的なワークロールとロール径を大きくしたワークロールとで同一であれば、ロール径を大きくしたワークロールの方が板厚中心部により近い部分まで圧延できることに基づく。 From these facts, the present inventors tend to make the roll diameter larger than that of the above-mentioned general work roll, so that the concentration of rolling strain is likely to occur even in the central portion of the plate thickness, and the crystal grain boundaries are likely to be generated. , {111} I came up with the idea that many crystal orientations might be generated. The idea is that if the distance between the surface of the stainless steel strip and the axis of rotation is the same for the general work roll and the work roll with a larger roll diameter, the work roll with a larger roll diameter is the plate. It is based on the fact that it can be rolled to a part closer to the thick center.
 前記の考えに基づいて鋭意検討した結果、ワークロールのロール径の大きさを200mm以上にすれば、板厚表層部から板厚中心部に亘る全部分において、所望する程度の数の{111}結晶方位を生成できる可能性があることが判明した。しかしながら、さらに検討を進めた結果、ワークロールのロール径の大きさを200mm以上にしたとしても、冷間圧延における1パスあたりの冷延率が低く、かつ前記のワークロールを用いた冷間圧延での冷延率が低ければ、板厚中心部において所望する程度の数の{111}結晶方位を生成するのが困難なことが判明した。なお、1パスあたりの冷延率は、任意のパスについて、1パス前のステンレス鋼帯の厚さに対する、当該1パス前のステンレス鋼帯の厚さと1パス通帯した後のステンレス鋼帯の厚さとの差分の割合である。 As a result of diligent studies based on the above idea, if the roll diameter of the work roll is set to 200 mm or more, the desired number of {111} is obtained in the entire portion from the plate thickness surface layer portion to the plate thickness center portion. It turned out that it may be possible to generate a crystal orientation. However, as a result of further studies, even if the roll diameter of the work roll is set to 200 mm or more, the cold rolling rate per pass in cold rolling is low, and cold rolling using the above-mentioned work roll is performed. It has been found that if the cold rolling ratio is low, it is difficult to generate a desired number of {111} crystal orientations at the center of the plate thickness. The cold spreading rate per pass is the thickness of the stainless steel strip one pass before and the thickness of the stainless steel strip after one pass with respect to the thickness of the stainless steel strip one pass before for any pass. It is the ratio of the difference from the thickness.
 そこで、本発明者らはさらに検討を進めた。その結果、ステンレス鋼のr値を向上させるためには、ワークロールのロール径の大きさを200mm以上に設定し、かつ、1パスあたりの冷延率を15%以上に設定し、かつ、全パス終了後の冷延率を総冷延率の50%以上に設定することが有効であるとの知見を得た。ここで、総冷延率は、冷間圧延が施される前の熱延焼鈍鋼帯の厚さに対する、当該熱延焼鈍鋼帯の厚さと冷延鋼帯の厚さとの差分の割合である。総冷延率の算出根拠となる冷延鋼帯は、冷間圧延での処理がすべて終了した後(本実施形態では、後述の第1冷間圧延および第2冷間圧延が終了した後)の鋼帯を指す。全パス終了後の冷延率については後述する。 Therefore, the present inventors further studied. As a result, in order to improve the r value of stainless steel, the size of the roll diameter of the work roll is set to 200 mm or more, the cold rolling rate per pass is set to 15% or more, and all. It was found that it is effective to set the cold rolling rate after the end of the pass to 50% or more of the total cold rolling rate. Here, the total cold-rolled ratio is the ratio of the difference between the thickness of the hot-rolled annealed steel strip and the thickness of the cold-rolled steel strip to the thickness of the hot-rolled annealed steel strip before cold rolling. .. The cold-rolled steel strip, which is the basis for calculating the total cold-rolling ratio, is after all the processing in cold rolling is completed (in this embodiment, after the first cold rolling and the second cold rolling described later are completed). Refers to the steel strip of. The cold rolling rate after the completion of all passes will be described later.
 つまり、ワークロールのロール径の大きさを200mm以上に設定し、かつ、1パスあたりの冷延率を15%以上に設定し、かつ、全パス終了後の冷延率を総冷延率の50%以上に設定することで、板厚表層部から板厚中心部に亘る全部分において、所望する程度の数の{111}結晶方位を生成できるとの知見を得た。 That is, the size of the roll diameter of the work roll is set to 200 mm or more, the cold rolling rate per pass is set to 15% or more, and the cold rolling rate after the completion of all passes is the total cold rolling rate. It was found that by setting it to 50% or more, a desired number of {111} crystal orientations can be generated in the entire portion from the surface layer portion of the plate thickness to the center portion of the plate thickness.
 なお、以下の説明では、ロール径が200mm以上のワークロールを「大径ロール」と称し、ロール径が200mm未満のワークロールを「小径ロール」と称する。これらの定義によれば、冷間圧延において一般的に用いられている、ロール径が50~100mmのワークロールは、「小径ロール」に属することになる。 In the following description, a work roll having a roll diameter of 200 mm or more is referred to as a "large diameter roll", and a work roll having a roll diameter of less than 200 mm is referred to as a "small diameter roll". According to these definitions, a work roll having a roll diameter of 50 to 100 mm, which is generally used in cold rolling, belongs to a "small diameter roll".
 <小括>
 上述した(i)および(ii)の各方策に基づいてステンレス鋼を製造すれば、深絞り性および耐リジング性の両方を向上させるために、従来の製造方法のようにTiなどの高価な元素を添加する必要がなくなる。また、深絞り性および耐リジング性の両方を向上させるための特殊な製造設備を設ける必要もない。したがって、上述した(i)および(ii)の各方策は、深絞り性および耐リジング性の両方に優れるステンレス鋼を従来よりも低コストで実現するのに有効である。
<Summary>
If stainless steel is manufactured based on the measures (i) and (ii) described above, expensive elements such as Ti are used as in the conventional manufacturing method in order to improve both deep drawing resistance and rigging resistance. Eliminates the need to add. In addition, it is not necessary to provide special manufacturing equipment for improving both deep drawing resistance and rigging resistance. Therefore, each of the above-mentioned measures (i) and (ii) is effective in realizing stainless steel having excellent deep drawing resistance and rigging resistance at a lower cost than before.
 〔耐食性および加工性の向上のメカニズム〕
 本発明者らは、さらなる検討を進めた結果、上述した(i)および(ii)の各方策に基づいて得られた冷延鋼帯中のマルテンサイト相を消失させることにより、耐食性および加工性にも優れるステンレス鋼を従来よりも低コストで実現できることを見出した。
[Mechanism for improving corrosion resistance and workability]
As a result of further studies, the present inventors have eliminated the martensite phase in the cold-rolled steel strip obtained based on the measures (i) and (ii) described above, thereby resulting in corrosion resistance and processability. We have found that it is possible to realize excellent stainless steel at a lower cost than before.
 具体的には、冷間圧延後の仕上げ焼鈍において、冷延鋼帯を50℃/s以下の昇温速度で800℃以上Ac1未満まで加熱する。Ac1は、オーステナイト相の生成が開始される温度の目安である。この加熱処理によって、冷延鋼帯が一定温度(約700℃)に達した時点からマルテンサイト相の消失が開始する。次に、加熱後の冷延鋼帯を800℃以上Ac1未満の温度域で5秒以上均熱することで、冷延鋼帯中のマルテンサイト相を略消失させる。次に、均熱後の冷延鋼帯を50℃/s以下の冷却速度で冷却することで、冷延鋼帯中のマルテンサイト相の消失を狙う。 Specifically, in the finish annealing after cold rolling, the cold-rolled steel strip is heated to 800 ° C. or higher and less than Ac1 at a heating rate of 50 ° C./s or lower. Ac1 is a measure of the temperature at which the formation of the austenite phase is started. By this heat treatment, the disappearance of the martensite phase starts when the cold-rolled steel strip reaches a certain temperature (about 700 ° C.). Next, the martensite phase in the cold-rolled steel strip is substantially eliminated by soaking the heated cold-rolled steel strip in a temperature range of 800 ° C. or higher and lower than Ac1 for 5 seconds or longer. Next, by cooling the cold-rolled steel strip after soaking at a cooling rate of 50 ° C./s or less, the disappearance of the martensite phase in the cold-rolled steel strip is aimed at.
 本明細書における「マルテンサイト相の消失」とは、基本的には、最終製品としてのステンレス鋼に含まれるマルテンサイト相の面積比率が0%であること、つまり最終製品としてのステンレス鋼においてマルテンサイト相が完全に消失していることを指す。「最終製品としてのステンレス鋼に含まれるマルテンサイト相の面積比率」は、最終製品としてのステンレス鋼における切断断面の面積に対する、当該切断断面に含まれるマルテンサイト相領域の総面積の比率である。この切断断面は、最終製品としてのステンレス鋼を圧延方向に平行かつ当該ステンレス鋼の幅方向に垂直な平面で切断したときに形成される断面である。 The "disappearance of the martensite phase" in the present specification basically means that the area ratio of the martensite phase contained in the stainless steel as the final product is 0%, that is, the martensite in the stainless steel as the final product. It means that the site phase has completely disappeared. The "area ratio of martensite phase contained in stainless steel as a final product" is the ratio of the total area of the martensite phase region contained in the cut cross section to the area of the cut cross section of stainless steel as a final product. This cut cross section is a cross section formed when stainless steel as a final product is cut in a plane parallel to the rolling direction and perpendicular to the width direction of the stainless steel.
 但し、本明細書における「マルテンサイト相の消失」は、マルテンサイト相の完全な消失(面積比率0%)を狙って仕上げ焼鈍を施した結果、実際には最終製品としてのステンレス鋼に面積比率1.0%未満のマルテンサイト相が残存することを許容する概念である。残存したマルテンサイト相が面積比率1.0%未満であれば、最終製品としてのステンレス鋼の耐食性、加工性はともに優れている。以下、最終製品としてのステンレス鋼に含まれるマルテンサイト相の面積比率を「第2マルテンサイト面積比率」と称する。 However, the "disappearance of the martensite phase" in the present specification is actually an area ratio of stainless steel as a final product as a result of finish annealing aiming at complete disappearance of the martensite phase (area ratio 0%). It is a concept that allows less than 1.0% of the martensite phase to remain. When the remaining martensite phase has an area ratio of less than 1.0%, the corrosion resistance and workability of stainless steel as a final product are both excellent. Hereinafter, the area ratio of the martensite phase contained in stainless steel as a final product is referred to as "second martensite area ratio".
 本発明者らは、上述の仕上げ焼鈍を冷延鋼帯に施すことにより、母相であるフェライト相の再結晶を完了させつつ、軟質化焼鈍において意図的に生成したマルテンサイト相(第1マルテンサイト面積比率5.0~30.0%)も消失させることができることを見出した。再結晶とは、冷延鋼帯中に転位を含まない新しい結晶粒が生成されることを指す。転位は、結晶内部に生じる格子欠陥の一例である。また、本発明者らは、上述の仕上げ焼鈍を冷延鋼帯に施すことにより、冷延鋼帯中に新規なマルテンサイト相が生成されることも防ぐことができることを見出した。以上に述べた軟質化焼鈍から仕上げ焼鈍までの一連の手法は、軟質化焼鈍を施す時点からマルテンサイト相の積極的な消失を狙う一般的なステンレス鋼の製造方法と異なる。 The present inventors applied the above-mentioned finish annealing to the cold-rolled steel strip to complete the recrystallization of the ferrite phase, which is the parent phase, and the martensite phase (first martensite phase) intentionally produced in the softening annealing. It was found that the site area ratio (5.0 to 30.0%) can also be eliminated. Recrystallization refers to the formation of new grain grains free of dislocations in the cold-rolled steel strip. Dislocations are an example of lattice defects that occur inside a crystal. The present inventors have also found that by applying the above-mentioned finish annealing to the cold-rolled steel strip, it is possible to prevent the formation of a new martensite phase in the cold-rolled steel strip. The series of methods from softening annealing to finish annealing described above is different from the general stainless steel manufacturing method aiming at the positive disappearance of the martensite phase from the time of softening annealing.
 〔成分組成〕
 本発明の一実施形態に係るステンレス鋼は、質量%で、C:0.12%以下、Si:1.0%以下、Mn:1.0%以下、Ni:1.0%以下、Cr:12.0~18.0%、N:0.10%以下、Al:0.50%以下、Mo:0.50%以下、Cu:1.0%以下、O:0.01%以下、V:0.15%以下、B:0.10%以下、Ti:0.50%以下、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.003%、Ca:0.0003~0.003%、Y:0.01%~0.20%、Yを除く希土類金属(REM):合計で0.01~0.10%、Sn:0.001~0.50%、Sb:0.001~0.50%、Pb:0.01~0.10%およびW:0.01~0.50%を含有する。なお、以下の説明では、本発明の一実施形態に係るステンレス鋼を「本ステンレス鋼」と略記する。
[Ingredient composition]
The stainless steel according to the embodiment of the present invention has a mass% of C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ni: 1.0% or less, Cr: 12.0 to 18.0%, N: 0.10% or less, Al: 0.50% or less, Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V : 0.15% or less, B: 0.10% or less, Ti: 0.50% or less, Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 ~ 0.10%, Mg: 0.0005 ~ 0.003%, Ca: 0.0003 ~ 0.003%, Y: 0.01% ~ 0.20%, rare earth metals (REM) excluding Y: total 0.01 to 0.10%, Sn: 0.001 to 0.50%, Sb: 0.001 to 0.50%, Pb: 0.01 to 0.10% and W: 0.01 to 0. .Contains 50%. In the following description, the stainless steel according to the embodiment of the present invention is abbreviated as "the present stainless steel".
 本ステンレス鋼の残部は、Feおよび不可避的不純物からなる。なお、Mo、Cu、O、V、B、Ti、Co、Zr、Nb、Mg、Ca、Y、REM、Sn、Sb、Pb、Wのそれぞれは、本ステンレス鋼の必須元素ではない。これらの各元素は、必要に応じてこれらの少なくとも1種以上の元素が含まれていればよい任意元素である。以下、本ステンレス鋼に含まれる各元素について説明する。 The rest of this stainless steel consists of Fe and unavoidable impurities. Each of Mo, Cu, O, V, B, Ti, Co, Zr, Nb, Mg, Ca, Y, REM, Sn, Sb, Pb, and W is not an essential element of this stainless steel. Each of these elements is an arbitrary element as long as it contains at least one of these elements, if necessary. Hereinafter, each element contained in this stainless steel will be described.
 <C:0.12%以下>
 Cは、Crと炭化物を形成することにより、本ステンレス鋼が変形するときに転位の発生源となる界面を生成させる重要な元素である。しかし、Cが過剰に添加されると、マルテンサイト相が過剰に生じてしまい、本ステンレス鋼の延性が低下する。そのため、Cの含有率は0.12%以下に設定される。
<C: 0.12% or less>
C is an important element that forms a carbide with Cr to form an interface that is a source of dislocations when the stainless steel is deformed. However, if C is added in excess, the martensite phase is excessively generated, and the ductility of the present stainless steel is lowered. Therefore, the content of C is set to 0.12% or less.
 <Si:1.0%以下>
 Siは、溶製段階で脱酸剤としての効果を有する。しかし、Siが過剰に添加されると、本ステンレス鋼が硬質化して延性が低下する。したがって、Siの含有率は1.0%以下に設定される。
<Si: 1.0% or less>
Si has an effect as a deoxidizing agent in the melting stage. However, if Si is added in excess, the stainless steel is hardened and the ductility is lowered. Therefore, the Si content is set to 1.0% or less.
 <Mn:1.0%以下>
 Mnは、脱酸剤としての効果を有する。しかし、Mnが過剰に添加されると、MnSの生成量が増加して本ステンレス鋼の耐食性が低下する。したがって、Mnの含有率は1.0%以下に設定される。
<Mn: 1.0% or less>
Mn has an effect as a deoxidizing agent. However, if Mn is excessively added, the amount of MnS produced increases and the corrosion resistance of the present stainless steel decreases. Therefore, the Mn content is set to 1.0% or less.
 <Ni:1.0%以下>
 Niは、オーステナイト生成元素であり、第1マルテンサイト面積比率および本ステンレス鋼の強度を制御するために有効な元素である。しかしNiが過剰に添加されると、オーステナイト相が必要以上に安定化され、本ステンレス鋼の延性が低下するとともに、本ステンレス鋼の原料コストが上昇する。したがって、Niの含有率は1.0%以下に設定される。なお、以下の説明では、軟質化焼鈍後の本ステンレス鋼の鋼帯を「熱延焼鈍鋼帯」と称する。軟質化焼鈍後の本ステンレス鋼の鋼帯は、本発明に係る熱延焼鈍鋼帯の一例である。
<Ni: 1.0% or less>
Ni is an austenite-forming element and is an effective element for controlling the first martensite area ratio and the strength of the present stainless steel. However, if Ni is excessively added, the austenite phase is stabilized more than necessary, the ductility of the present stainless steel is lowered, and the raw material cost of the present stainless steel is increased. Therefore, the Ni content is set to 1.0% or less. In the following description, the strip of this stainless steel after softening and annealing is referred to as "hot-rolled annealed strip". The steel strip of the present stainless steel after softening and annealing is an example of the hot-rolled annealed steel strip according to the present invention.
 <Cr:12.0~18.0%>
 Crは、冷間圧延後の本ステンレス鋼の鋼帯の表面に不動態皮膜を形成して、耐食性を高めるために必要である。しかし、Crが過剰に添加されると、本ステンレス鋼の延性が低下する。したがって、Crの含有率は12.0~18.0%に設定される。なお、以下の説明では、冷間圧延後の本ステンレス鋼の鋼帯を「冷延鋼帯」と称する。冷間圧延後の本ステンレス鋼の鋼帯は、本発明に係る冷延鋼帯の一例である。
<Cr: 12.0 to 18.0%>
Cr is required to form a passivation film on the surface of the steel strip of this stainless steel after cold rolling to improve corrosion resistance. However, if Cr is added in excess, the ductility of the present stainless steel is lowered. Therefore, the Cr content is set to 12.0 to 18.0%. In the following description, the steel strip of this stainless steel after cold rolling is referred to as "cold rolled steel strip". The steel strip of the present stainless steel after cold rolling is an example of the cold-rolled steel strip according to the present invention.
 <N:0.10%以下>
 Nは、Crと窒化物を形成することにより、本ステンレス鋼が変形するときに転位の発生源となる界面を生成させる重要な元素である。しかし、Nが過剰に添加されると、マルテンサイト相が過剰に生じてしまい、本ステンレス鋼の延性が低下する。したがって、Nの含有率は0.10%以下に設定される。
<N: 0.10% or less>
N is an important element that forms a nitride with Cr to form an interface that is a source of dislocations when the stainless steel is deformed. However, if N is added in excess, the martensite phase is excessively generated, and the ductility of the present stainless steel is lowered. Therefore, the content of N is set to 0.10% or less.
 <Al:0.50%以下>
 Alは、脱酸に有効な元素であるとともに、プレス加工性に悪影響を及ぼすA系介在物を低減することができる。しかし、Alが過剰に添加されると、本ステンレス鋼の表面欠陥が増加する。したがって、Alの含有率は0.50%以下に設定される。
<Al: 0.50% or less>
Al is an element effective for deoxidation and can reduce A2 inclusions which adversely affect press workability. However, if Al is added in excess, the surface defects of the present stainless steel increase. Therefore, the Al content is set to 0.50% or less.
 <Mo:好ましくは0.5%以下>
 Moは、耐食性の向上に有効な元素である。しかし、Moが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Moの含有率は0.50%以下に設定されることが好ましい。
<Mo: preferably 0.5% or less>
Mo is an element effective for improving corrosion resistance. However, if Mo is added in excess, the raw material cost of this stainless steel increases. Therefore, the Mo content is preferably set to 0.50% or less.
 <Cu:好ましくは1.0%以下>
 Cuは、耐食性の向上に有効な元素である。Cuの含有率は1.0%以下に設定されることが好ましい。
<Cu: preferably 1.0% or less>
Cu is an element effective for improving corrosion resistance. The Cu content is preferably set to 1.0% or less.
 <O:好ましくは0.01%以下>
 Oは、非金属介在物を生成するため、本ステンレス鋼の衝撃値および疲れ寿命を低下させる。したがって、Oの含有率は0.01%以下に設定されることが好ましい。
<O: preferably 0.01% or less>
O produces non-metal inclusions, which reduces the impact value and fatigue life of the present stainless steel. Therefore, the content of O is preferably set to 0.01% or less.
 <V:好ましくは0.15%以下>
 Vは、硬度および強度の向上に有効な元素である。しかし、Vが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Vの含有率は0.15%以下に設定されることが好ましい。
<V: preferably 0.15% or less>
V is an element effective for improving hardness and strength. However, if V is added in excess, the raw material cost of the present stainless steel increases. Therefore, the V content is preferably set to 0.15% or less.
 <B:好ましくは0.10%以下>
 Bは、靭性改善に有効な元素である。しかし、この効果は、0.10%を超えると飽和する。したがって、Bの含有率は0.10%以下に設定されることが好ましい。
<B: preferably 0.10% or less>
B is an element effective for improving toughness. However, this effect saturates above 0.10%. Therefore, the content of B is preferably set to 0.10% or less.
 <Ti:好ましくは0.50%以下>
 Tiは、炭窒化物を形成する元素であり、熱処理時におけるCr炭窒化物の粒界析出を抑制して本ステンレス鋼の耐食性を向上させる。また、本ステンレス鋼中の固溶Cおよび固溶Nを炭窒化物として固定することにより、固溶Cおよび固溶Nの含有量を少なくして本ステンレス鋼のr値を向上させる。さらに、本ステンレス鋼中の固溶Cおよび固溶Nを炭窒化物として固定することにより、本ステンレス鋼の延性を向上させるとともにストレッチャーストレインを低減することができる。ストレッチャーストレインは、ステンレス鋼のプレス加工時に生じる数%の降伏伸びに起因して発生する、ステンレス鋼の表面に形成される微小な凹凸である。
<Ti: preferably 0.50% or less>
Ti is an element that forms a carbonitride, and suppresses grain boundary precipitation of Cr carbonitride during heat treatment to improve the corrosion resistance of this stainless steel. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitride, the content of the solid solution C and the solid solution N is reduced and the r value of the stainless steel is improved. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitrides, the ductility of the stainless steel can be improved and the stretcher strain can be reduced. Stretcher strains are tiny irregularities formed on the surface of stainless steel that occur due to the yield elongation of several percent that occurs during stamping of stainless steel.
 しかし、Tiは高価な元素であるので、Tiが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Tiの含有率は0.50%以下に設定されることが好ましい。 However, since Ti is an expensive element, if Ti is added in excess, the raw material cost of this stainless steel will increase. Therefore, the Ti content is preferably set to 0.50% or less.
 <Co:好ましくは0.01~0.50%>
 Coは、耐食性および耐熱性の向上に有効な元素である。しかし、Coが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Coの含有率は0.01~0.50%に設定されることが好ましい。
<Co: preferably 0.01 to 0.50%>
Co is an element effective for improving corrosion resistance and heat resistance. However, if Co is added in excess, the raw material cost of this stainless steel increases. Therefore, the Co content is preferably set to 0.01 to 0.50%.
 <Zr:好ましくは0.01~0.10%>
 Zrは、脱窒、脱酸および脱硫に有効な元素である。しかし、Zrが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Zrの含有率は0.01~0.10%に設定されることが好ましい。
<Zr: preferably 0.01 to 0.10%>
Zr is an element effective for denitrification, deoxidation and desulfurization. However, if Zr is excessively added, the raw material cost of the present stainless steel increases. Therefore, the Zr content is preferably set to 0.01 to 0.10%.
 <Nb:好ましくは0.01~0.10%>
 Nbは、Tiと同様、本ステンレス鋼中の固溶Cおよび固溶Nを炭窒化物として固定することにより、固溶Cおよび固溶Nの含有量を少なくして本ステンレス鋼のr値を向上させる。また、本ステンレス鋼中の固溶Cおよび固溶Nを炭窒化物として固定することにより、本ステンレス鋼の延性を向上させるとともにストレッチャーストレインを低減することができる。しかし、Nbは高価な元素であるので、Nbが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Nbの含有率は0.01~0.10%に設定されることが好ましい。
<Nb: preferably 0.01 to 0.10%>
Similar to Ti, Nb reduces the content of solid solution C and solid solution N by fixing the solid solution C and solid solution N in the stainless steel as carbonitride, and reduces the r value of the stainless steel. Improve. Further, by fixing the solid solution C and the solid solution N in the stainless steel as carbonitrides, the ductility of the stainless steel can be improved and the stretcher strain can be reduced. However, since Nb is an expensive element, if Nb is excessively added, the raw material cost of the present stainless steel increases. Therefore, the Nb content is preferably set to 0.01 to 0.10%.
 <Mg:好ましくは0.0005~0.003%>
 Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。しかし、過Mgが過剰に添加されると、本ステンレス鋼の靱性が低下し、ひいては製造性が低下する。そのため、Mgの含有率は0.0005~0.003%に設定されることが好ましく、0.002%以下に設定されることがより好ましい。
<Mg: preferably 0.0005 to 0.003%>
Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizing agent. However, if excess Mg is added in excess, the toughness of the present stainless steel is lowered, and as a result, the manufacturability is lowered. Therefore, the Mg content is preferably set to 0.0005 to 0.003%, more preferably 0.002% or less.
 <Ca:好ましくは0.0003~0.003%>
 Caは、脱ガスに有効な元素である。Caの含有率は0.0003~0.003%に設定されることが好ましい。
<Ca: preferably 0.0003 to 0.003%>
Ca is an element effective for degassing. The Ca content is preferably set to 0.0003 to 0.003%.
 <Y:好ましくは0.01~0.20%>
 Yは、熱間加工性および耐酸化性の向上に有効な元素である。しかし、これらの効果は、0.20%を超えると飽和する。したがって、Yの含有率は0.01~0.20%に設定されることが好ましい。
<Y: preferably 0.01 to 0.20%>
Y is an element effective for improving hot workability and oxidation resistance. However, these effects saturate above 0.20%. Therefore, the Y content is preferably set to 0.01 to 0.20%.
 <REM:好ましくは合計で0.01~0.10%>
 ScおよびLaなどのREM(Rare Earth Metal)は、Yと同様、熱間加工性および耐酸化性の向上に有効である。しかし、これらの効果は、0.10%を超えると飽和する。したがって、REMの含有率の合計は0.01~0.10%に設定されることが好ましい。
<REM: preferably 0.01 to 0.10% in total>
REMs (Rare Earth Metals) such as Sc and La are effective in improving hot workability and oxidation resistance, as in Y. However, these effects saturate above 0.10%. Therefore, the total content of REM is preferably set to 0.01 to 0.10%.
 <Sn:好ましくは0.001~0.50%>
 Snは、耐食性の向上に有効な元素である。しかし、Snが過剰に添加されると、熱間加工性および粘り強さが低下する。したがって、Snの含有率は0.001~0.50%に設定されることが好ましい。
<Sn: preferably 0.001 to 0.50%>
Sn is an element effective for improving corrosion resistance. However, if Sn is added in excess, the hot workability and tenacity are lowered. Therefore, the Sn content is preferably set to 0.001 to 0.50%.
 <Sb:好ましくは0.001~0.50%>
 Sbは、圧延時における変形帯生成の促進による加工性の向上に効果的である。しかし、Sbが過剰に添加されるとこの効果は飽和し、過剰に添加されるSbの量によっては加工性が低下する。そのため、Sbの含有率は0.001~0.50%に設定されることが好ましく、0.20%以下に設定されることがより好ましい。
<Sb: preferably 0.001 to 0.50%>
Sb is effective in improving workability by promoting the formation of a deformed zone during rolling. However, when Sb is excessively added, this effect is saturated, and the processability is lowered depending on the amount of Sb added excessively. Therefore, the Sb content is preferably set to 0.001 to 0.50%, more preferably 0.20% or less.
 <Pb:好ましくは0.01~0.10%>
 Pbは、快削性の向上に有効な元素である。Pbの含有率は0.01~0.10%に設定されることが好ましい。
<Pb: preferably 0.01 to 0.10%>
Pb is an element effective for improving free-cutting property. The Pb content is preferably set to 0.01 to 0.10%.
 <W:好ましくは0.01~0.50%>
 Wは、高温強さの向上に有効な元素である。しかし、Wが過剰に添加されると、本ステンレス鋼の原料コストが上昇する。したがって、Wの含有率は0.01~0.50%に設定されることが好ましい。
<W: preferably 0.01 to 0.50%>
W is an element effective for improving high temperature strength. However, if W is added in excess, the raw material cost of the present stainless steel increases. Therefore, the W content is preferably set to 0.01 to 0.50%.
 <その他>
 本ステンレス鋼において、上述した各成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物は、原料由来および製造プロセス由来で混入する不純物であり、上述した各成分の特性に影響を及ぼさない範囲で混入している。
<Others>
In this stainless steel, the balance other than the above-mentioned components is Fe and unavoidable impurities. The unavoidable impurities are impurities that are mixed from the raw materials and the manufacturing process, and are mixed within a range that does not affect the characteristics of each of the above-mentioned components.
 〔リジングのうねり高さ〕
 本ステンレス鋼は、表面に形成されたリジングのうねり高さが15μm以下である。本明細書において、「本ステンレス鋼の表面に形成されたリジングのうねり高さ(以下、「本ステンレス鋼のうねり高さ」と略記)」とは、以下に示す方法で測定されたリジングのうねり高さを意味する。
[Rising swell height]
In this stainless steel, the waviness height of the rigging formed on the surface is 15 μm or less. In the present specification, "the undulation height of the rigging formed on the surface of the present stainless steel (hereinafter, abbreviated as" the undulation height of the present stainless steel ")" means the undulation of the rigging measured by the method shown below. Means height.
 まず、本ステンレス鋼の最終製品から、JIS Z 2201に規定されるJIS5号引張試験片(以下、「第1引張試験片」と略記)を採取する。次に、インストロン型引張試験機を用いて、標点間距離を50mmとして、圧延方向と平行な方向が引張方向となるように第1引張試験片を引っ張る。そして、この引張試験により、第1引張試験片に対して16%の引張ひずみを付与する。次に、表面粗さ測定機を用いて、第1引張試験片の標点間の部分における、圧延方向と直交する方向(言い換えれば第1引張試験片の幅方向)の測定長を18mmとしたうねり高さを測定する。 First, a JIS No. 5 tensile test piece (hereinafter abbreviated as "first tensile test piece") specified in JIS Z 2201 is collected from the final product of this stainless steel. Next, using an Instron type tensile tester, the first tensile test piece is pulled so that the direction parallel to the rolling direction is the tensile direction, with the distance between the gauge points being 50 mm. Then, by this tensile test, a tensile strain of 16% is applied to the first tensile test piece. Next, using a surface roughness measuring machine, the measurement length in the direction orthogonal to the rolling direction (in other words, the width direction of the first tensile test piece) in the portion between the gauge points of the first tensile test piece was set to 18 mm. Measure the swell height.
 うねり高さは、JIS B 0601:2001等に規定される表面性状測定にて測定される、うねり曲線要素の平均高さである。本実施形態では、第1引張試験片のうねり曲線要素の平均高さを、JIS B 0601:2001に規定される表面性状測定にて測定する。この方法で測定されたうねり曲線要素の平均高さが、本ステンレス鋼のうねり高さとなる。 The swell height is the average height of the swell curve element measured by the surface texture measurement specified in JIS B 0601: 2001 or the like. In the present embodiment, the average height of the waviness curve element of the first tensile test piece is measured by the surface texture measurement specified in JIS B 0601: 2001. The average height of the waviness curve elements measured by this method is the waviness height of this stainless steel.
 従来のステンレス鋼について、表面に形成されたリジングのうねり高さを上述の方法で測定した場合、うねり高さは20~50μmとなり、本ステンレス鋼のうねり高さよりも高くなる。このことから、本ステンレス鋼は、従来のステンレス鋼に比べて耐リジング性が向上していると言える。 For conventional stainless steel, when the undulation height of the rigging formed on the surface is measured by the above method, the undulation height is 20 to 50 μm, which is higher than the undulation height of this stainless steel. From this, it can be said that this stainless steel has improved rigging resistance as compared with the conventional stainless steel.
 〔r値〕
 本ステンレス鋼は、r値が0.9以上である。本明細書において、「本ステンレス鋼のr値」とは、以下に示す方法で算出されたr値を意味する。
[R value]
This stainless steel has an r value of 0.9 or more. In the present specification, the "r value of the present stainless steel" means the r value calculated by the method shown below.
 まず、本ステンレス鋼の最終製品から、JIS Z 2201に規定されるJIS13B号引張試験片を採取する。具体的には、前記の最終製品から、圧延方向と平行な方向が引張方向となる第2引張試験片、圧延方向と45°の角度をなす方向が引張方向となる第3引張試験片、圧延方向と直交する方向が引張方向となる第4引張試験片を、それぞれ採取する。次に、第2~第4引張試験片のそれぞれについて、標点間距離を20mmとして、インストロン型引張試験機を用いて引っ張る。そして、この引張試験により、第2~第4引張試験片のそれぞれに対して14.4%の引張ひずみを付与する。 First, the JIS13B tensile test piece specified in JIS Z2201 is collected from the final product of this stainless steel. Specifically, from the above-mentioned final product, a second tensile test piece whose tensile direction is parallel to the rolling direction, a third tensile test piece whose tensile direction is a direction forming an angle of 45 ° with the rolling direction, and rolling. Each of the fourth tensile test pieces whose direction orthogonal to the direction is the tensile direction is collected. Next, each of the second to fourth tensile test pieces is pulled using an Instron type tensile tester with the distance between the gauge points set to 20 mm. Then, by this tensile test, a tensile strain of 14.4% is applied to each of the second to fourth tensile test pieces.
 次に、下記の(1)式を用いて、第2~第4引張試験片のそれぞれのr値を算出する。r=ln(W/W1)/ln(t/t1) ・・・(1)
 ここで、Wは引張試験前の幅、W1は引張試験後の幅、tは引張試験前の厚さ、t1は引張試験後の厚さである。「幅」は、第2~第4引張試験片のそれぞれにおける、標点間の部分の幅である。「厚さ」は、第2~第4引張試験片のそれぞれにおける、標点間の部分の厚さである。
Next, the r value of each of the second to fourth tensile test pieces is calculated using the following equation (1). r = ln (W / W1) / ln (t / t1) ... (1)
Here, W is the width before the tensile test, W1 is the width after the tensile test, t is the thickness before the tensile test, and t1 is the thickness after the tensile test. The "width" is the width of the portion between the gauge points in each of the second to fourth tensile test pieces. The "thickness" is the thickness of the portion between the gauge points in each of the second to fourth tensile test pieces.
 次に、下記の(2)式を用いて、第2~第4引張試験片のそれぞれのr値を平均した平均r値を算出する。この平均r値が、本ステンレス鋼のr値となる。
平均r値=(r0+2r45+r90)/4 ・・・(2)
 ここで、r0は第2引張試験片のr値、r45は第3引張試験片のr値、r90は第4引張試験片のr値である。
Next, using the following equation (2), the average r value obtained by averaging the r values of the second to fourth tensile test pieces is calculated. This average r value is the r value of this stainless steel.
Average r value = (r0 + 2r45 + r90) / 4 ... (2)
Here, r0 is the r value of the second tensile test piece, r45 is the r value of the third tensile test piece, and r90 is the r value of the fourth tensile test piece.
 従来のステンレス鋼について、r値を上述の方法で算出した場合、r値は0.6~0.8となり本ステンレス鋼のr値よりも小さくなる。このことから、本ステンレス鋼は、従来のステンレス鋼に比べて深絞り性が向上していると言える。 For conventional stainless steel, when the r value is calculated by the above method, the r value is 0.6 to 0.8, which is smaller than the r value of this stainless steel. From this, it can be said that this stainless steel has improved deep drawing property as compared with the conventional stainless steel.
 〔第2マルテンサイト面積比率〕
 本ステンレス鋼は、第2マルテンサイト面積比率が0%以上1.0%未満である。第2マルテンサイト面積比率は、本ステンレス鋼の耐食性および加工性の向上の観点から0%が好ましい。但し、第2マルテンサイト面積比率が1.0%未満であれば、当該面積比率が0%より高くても、本ステンレス鋼は、耐リジング性、深絞り性のみならず耐食性および加工性にも優れる。第2マルテンサイト面積比率は、第1マルテンサイト面積比率と同様にEBSD結晶方位解析を用いて算出することができる。
[Second martensite area ratio]
This stainless steel has a second martensite area ratio of 0% or more and less than 1.0%. The second martensite area ratio is preferably 0% from the viewpoint of improving the corrosion resistance and workability of the present stainless steel. However, if the second martensite area ratio is less than 1.0%, even if the area ratio is higher than 0%, this stainless steel has not only rigging resistance and deep drawing resistance but also corrosion resistance and workability. Excellent. The second martensite area ratio can be calculated using EBSD crystal orientation analysis in the same manner as the first martensite area ratio.
 〔指標値〕
 本ステンレス鋼は、下記の(3)式で表される指標値が15~50になる。この指標値は、焼鈍によるオーステナイト相の最大生成量を表す指標である。下記の(3)式において、各元素記号は、当該元素の質量%濃度を表している。
[Index value]
In this stainless steel, the index value represented by the following equation (3) is 15 to 50. This index value is an index showing the maximum amount of austenite phase produced by annealing. In the following equation (3), each element symbol represents the mass% concentration of the element.
 (指標値)=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-52Al+470N+189 ・・・(3)
 焼鈍時に生成されるオーステナイト相は、冷却過程でマルテンサイト相に変態し得る。そこで、指標値が15~50になるように前記の(3)式における各元素の質量%濃度を調整することで、冷却過程で生成されるマルテンサイト相の量を適切に管理することができる。「適切に管理する」とは、具体的には、冷却過程で生成されるマルテンサイト相の量が、深絞り性の向上および耐リジング性の向上の両方を実現できる程度の量になるように、焼鈍によるオーステナイト相の最大生成量を制御することを指す。また、指標値が15~50であることによりマルテンサイト相の量が適切に管理されているため、第1マルテンサイト面積比率を5.0~30.0%に管理することが容易になる。
(Index value) = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-52Al + 470N + 189 ... (3)
The austenite phase produced during annealing can be transformed into a martensite phase during the cooling process. Therefore, by adjusting the mass% concentration of each element in the above formula (3) so that the index value becomes 15 to 50, the amount of martensite phase produced in the cooling process can be appropriately controlled. .. "Properly managed" specifically means that the amount of martensite phase produced during the cooling process is sufficient to achieve both improved deep drawing and improved rigging resistance. , Refers to controlling the maximum amount of austenite phase produced by annealing. Further, since the amount of the martensite phase is appropriately controlled when the index value is 15 to 50, it becomes easy to control the first martensite area ratio to 5.0 to 30.0%.
 〔ステンレス鋼の製造方法〕
 図1を用いて、本発明の一実施形態に係るステンレス鋼の製造方法について説明する。本ステンレス鋼は、図1に示すように、溶製工程S1、熱間圧延工程S2、軟質化焼鈍工程S3、冷間圧延工程S4および焼鈍工程S5の各工程を踏むことにより製造される。以下、各工程について説明するが、本ステンレス鋼の製造方法は図1に示す方法に限られるものではない。
[Manufacturing method of stainless steel]
A method for manufacturing stainless steel according to an embodiment of the present invention will be described with reference to FIG. 1. As shown in FIG. 1, the present stainless steel is manufactured by going through each of the melting step S1, the hot rolling step S2, the softening annealing step S3, the cold rolling step S4, and the baking step S5. Hereinafter, each step will be described, but the method for manufacturing the present stainless steel is not limited to the method shown in FIG.
 <溶製工程S1および熱間圧延工程S2>
 本ステンレス鋼を製造するためには、まず、溶製工程S1で、上述した各成分を含有するステンレス鋼を溶製して鋼スラブを製造する。溶製工程S1では、ステンレス鋼の一般的な溶製装置を用いることができ、かつ一般的な溶製条件を設定することができる。次に、熱間圧延工程S2では、溶製工程S1で製造された鋼スラブを熱間圧延することにより、熱延鋼帯を製造する。この熱延鋼帯は、本発明に係る熱延鋼帯の一例である。熱間圧延工程S2では、ステンレス鋼の一般的な熱間圧延装置および熱間圧延条件を使用することができる。
<Melting process S1 and hot rolling process S2>
In order to produce this stainless steel, first, in the melting step S1, the stainless steel containing each of the above-mentioned components is melted to produce a steel slab. In the melting step S1, a general melting apparatus for stainless steel can be used, and general melting conditions can be set. Next, in the hot rolling step S2, the hot rolled steel strip is manufactured by hot rolling the steel slab produced in the melting step S1. This hot-rolled steel strip is an example of the hot-rolled steel strip according to the present invention. In the hot rolling step S2, a general hot rolling apparatus and hot rolling conditions for stainless steel can be used.
 <軟質化焼鈍工程S3>
 次に、軟質化焼鈍工程S3では、熱間圧延工程S2で製造された熱延鋼帯を軟質化焼鈍することにより、熱延焼鈍鋼帯を製造する。軟質化焼鈍は、熱延鋼帯を軟質化するために、均熱過程時の最高温度をAc1以上に設定して熱延鋼帯を焼鈍する熱処理である。軟質化焼鈍を施して熱延鋼帯を軟質化しておくことにより、その後の冷間圧延工程S4で熱延焼鈍鋼帯の厚さの調整が容易になる。
<Softening annealing step S3>
Next, in the softening annealing step S3, the hot-rolled annealed steel strip produced in the hot rolling step S2 is softened and annealed to produce a hot-rolled annealed steel strip. The softening annealing is a heat treatment in which the hot-rolled steel strip is annealed by setting the maximum temperature during the soaking process to Ac1 or higher in order to soften the hot-rolled steel strip. By softening and annealing to soften the hot-rolled steel strip, it becomes easy to adjust the thickness of the hot-rolled annealed steel strip in the subsequent cold rolling step S4.
 一般的に、軟質化焼鈍における均熱過程時の温度がAc1を超えると、鋼帯中のオーステナイト相の量が増加し始める。そして、軟質化焼鈍の温度がさらに高くなると、鋼帯中のオーステナイト相の量がピーク量まで増加した後、減少に転じる。オーステナイト相は、軟質化焼鈍における冷却過程でマルテンサイト相に変態し得るので、第1マルテンサイト面積比率は、軟質化焼鈍によって増加するオーステナイト相の影響を受ける。したがって、第1マルテンサイト面積比率を5.0~30.0%にするためには、最高焼鈍温度を、Ac1以上かつオーステナイト相の量が増加し過ぎない温度以下に設定する必要がある。最高焼鈍温度は、軟質化焼鈍における均熱過程時の最高温度である。 Generally, when the temperature during the soaking process in softening annealing exceeds Ac1, the amount of austenite phase in the steel strip begins to increase. Then, when the temperature of the softening annealing becomes higher, the amount of the austenite phase in the steel strip increases to the peak amount and then starts to decrease. Since the austenite phase can be transformed into a martensite phase during the cooling process in the softening annealing, the first martensite area ratio is affected by the austenite phase that is increased by the softening annealing. Therefore, in order to make the first martensite area ratio 5.0 to 30.0%, it is necessary to set the maximum annealing temperature to a temperature equal to or higher than Ac1 and a temperature at which the amount of the austenite phase does not increase too much. The maximum annealing temperature is the maximum temperature during the soaking process in softening annealing.
 しかしながら、Ac1はあくまで回帰式上の目安の温度であって、オーステナイト相が生成し始める実際の温度とは一致しない。そこで、本発明者らが鋭意検討した結果、Ac1が921未満の場合では、最高焼鈍温度を0.76×Ac1+201℃以上1.10×Ac1-56℃以下とすることにより、第1マルテンサイト面積比率を5.0~30.0%に設定できることを見出した。 However, Ac1 is just a guideline temperature in the regression equation and does not match the actual temperature at which the austenite phase begins to form. Therefore, as a result of diligent studies by the present inventors, when Ac1 is less than 921, the maximum annealing temperature is set to 0.76 × Ac1 + 201 ° C. or higher and 1.10 × Ac1-56 ° C. or lower to obtain the first martensite area. It was found that the ratio can be set to 5.0 to 30.0%.
 一方、Ac1が921以上の場合では、オーステナイト相のピーク量そのものが少ないことから、ピーク量の全量がオーステナイト相からマルテンサイト相に変態しても、第1マルテンサイト面積比率を5.0~30.0%に設定することができた。したがって、Ac1が921以上の場合、最高焼鈍温度の上限値を1.10×Ac1-56℃にする必要がない。ここで、過度な高温での軟質化焼鈍は、熱延焼鈍鋼帯中の結晶粒の粗大化、および加工時の肌荒れ等の特性劣化を招くことから、最高焼鈍温度の上限値を1050℃に設定することとした。 On the other hand, when Ac1 is 921 or more, the peak amount of the austenite phase itself is small, so even if the total amount of the peak amount is transformed from the austenite phase to the martensite phase, the first martensite area ratio is 5.0 to 30. I was able to set it to 0.0%. Therefore, when Ac1 is 921 or more, it is not necessary to set the upper limit of the maximum annealing temperature to 1.10 × Ac1-56 ° C. Here, since softening and annealing at an excessively high temperature causes coarsening of crystal grains in the hot-rolled annealed steel strip and deterioration of characteristics such as rough skin during processing, the upper limit of the maximum annealing temperature is set to 1050 ° C. I decided to set it.
 具体的には、最高焼鈍温度は次のように設定される。まず、鋼スラブの組成に基づいて、下記の(4)式で表されるAc1を算出する。下記の(4)式において、各元素記号は、当該元素の質量%濃度を表している。当該Ac1は、予め算出されていればよい。
Ac1=35×(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40B-7.14C-8.0N-3.24Ni-1.89Mn-0.51Cu)+310 ・・・(4)
 そして、前記の(4)式により算出されたAc1が921未満の場合、最高焼鈍温度を0.76×Ac1+201℃以上1.10×Ac1-56℃以下に設定する。一方、前記の(4)式により算出されたAc1が921以上の場合、最高焼鈍温度を、0.76×Ac1+201℃以上1050℃以下に設定する。
Specifically, the maximum annealing temperature is set as follows. First, Ac1 represented by the following formula (4) is calculated based on the composition of the steel slab. In the following equation (4), each element symbol represents the mass% concentration of the element. The Ac1 may be calculated in advance.
Ac1 = 35 × (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40B-7.14C-8.0N-3.24Ni-1.89Mn-0.51Cu) +310 ... (4)
When Ac1 calculated by the above equation (4) is less than 921, the maximum annealing temperature is set to 0.76 × Ac1 + 201 ° C. or higher and 1.10 × Ac1-56 ° C. or lower. On the other hand, when Ac1 calculated by the above equation (4) is 921 or more, the maximum annealing temperature is set to 0.76 × Ac1 + 201 ° C. or more and 1050 ° C. or less.
 軟質化焼鈍における昇温過程での昇温速度は、10℃/sec以上に設定されることが好ましい。昇温速度が10℃/sec以上であれば、昇温過程での昇温時間を実用的に有意義な程度まで短縮できるので、本ステンレス鋼の製造に要する総時間も実用的に有意義な程度まで短縮することができる。そのため、本ステンレス鋼の生産性を向上することができる。また、軟質化焼鈍における均熱過程での均熱時間は、5秒以上に設定されることが好ましい。均熱時間が5秒以上であれば、均熱過程中にオーステナイト相を確実に生成することができる。オーステナイト相は、均熱過程後の冷却過程中にマルテンサイト相に変態することから、均熱時間を5秒以上に設定することにより、第1マルテンサイト面積比率を5.0~30.0%に管理することがさらに容易になる。 The rate of temperature rise in the temperature rise process in softening annealing is preferably set to 10 ° C./sec or higher. If the temperature rise rate is 10 ° C./sec or more, the temperature rise time in the temperature rise process can be shortened to a practically meaningful degree, so that the total time required for manufacturing this stainless steel is also to a practically meaningful degree. Can be shortened. Therefore, the productivity of this stainless steel can be improved. Further, the heat equalization time in the heat equalization process in the softening annealing is preferably set to 5 seconds or more. If the heat soaking time is 5 seconds or more, the austenite phase can be reliably generated during the heat soaking process. Since the austenite phase transforms into the martensite phase during the cooling process after the soaking process, the first martensite area ratio is set to 5.0 to 30.0% by setting the soaking time to 5 seconds or longer. It will be easier to manage.
 さらに、軟質化焼鈍における冷却過程での冷却速度は、5.0℃/sec以上に設定される。冷却速度が5.0℃/sec未満であると、冷却過程での冷却時間が必要以上に長くなり、オーステナイト相が安定状態のフェライト相に変態する。そのため、第1マルテンサイト面積比率が5.0%未満に低下し、本ステンレス鋼の耐リジング性が従来のステンレス鋼以下に低下してしまう。このことから、本ステンレス鋼の耐リジング性を良好に保つべく、前記の冷却速度は5.0℃/sec以上に設定される。 Furthermore, the cooling rate in the cooling process in softening annealing is set to 5.0 ° C./sec or higher. If the cooling rate is less than 5.0 ° C./sec, the cooling time in the cooling process becomes longer than necessary, and the austenite phase is transformed into a stable ferrite phase. Therefore, the area ratio of the first martensite is lowered to less than 5.0%, and the rigging resistance of the present stainless steel is lowered to be lower than that of the conventional stainless steel. For this reason, the cooling rate is set to 5.0 ° C./sec or higher in order to maintain good rigging resistance of the present stainless steel.
 <冷間圧延工程S4>
 次に、冷間圧延工程S4では、軟質化焼鈍工程S3で製造された熱延焼鈍鋼帯を冷間圧延することにより、冷延鋼帯を製造する。冷延条件として、冷間圧延工程S4終了後の総冷延率を60%以上に設定する。
<Cold rolling process S4>
Next, in the cold rolling step S4, the hot-rolled annealed steel strip produced in the softening annealing step S3 is cold-rolled to produce a cold-rolled steel strip. As a cold rolling condition, the total cold rolling ratio after the completion of the cold rolling step S4 is set to 60% or more.
 冷間圧延工程S4における冷間圧延では、まず、ロール径が200mm以上の大径ロールに熱延焼鈍鋼帯を通帯する第1冷間圧延を行う。ロール径が200mm以上の大径ロールは、本発明に係る第1ワークロールの一例である。第1冷間圧延の冷延条件として、1パスあたりの冷延率を15%以上に設定し、かつ第1冷間圧延終了後(第1冷間圧延における全パス終了後)の冷延率を総冷延率の50%以上に設定する。第1冷間圧延終了後(第1冷間圧延における全パス終了後)の冷延率は、第1冷間圧延が施される前の熱延焼鈍鋼帯の厚さに対する、当該熱延焼鈍鋼帯の厚さと全パス終了後の鋼帯の厚さとの差分の割合である。 In the cold rolling in the cold rolling step S4, first, the first cold rolling is performed by passing a hot-rolled annealed steel strip through a large-diameter roll having a roll diameter of 200 mm or more. A large-diameter roll having a roll diameter of 200 mm or more is an example of a first work roll according to the present invention. As the cold rolling conditions for the first cold rolling, the cold rolling rate per pass is set to 15% or more, and the cold rolling rate after the completion of the first cold rolling (after the completion of all the passes in the first cold rolling). Is set to 50% or more of the total cold rolling ratio. The cold rolling ratio after the completion of the first cold rolling (after the completion of all passes in the first cold rolling) is the hot rolling annealing with respect to the thickness of the hot-rolled annealed steel strip before the first cold rolling. It is the ratio of the difference between the thickness of the steel strip and the thickness of the steel strip after the completion of all passes.
 第1冷間圧延の終了後、前記の大径ロールに通帯された鋼帯を、ロール径が50~100mmの小径ロールに通帯する第2冷間圧延を行う。ロール径が50~100mmの小径ロールは、本発明に係る第2ワークロールの一例である。第2冷間圧延では、第1冷間圧延で圧延し切れなかった残りの帯厚分だけ圧延する。第2冷間圧延終了後の鋼帯が、冷延鋼帯となる。 After the completion of the first cold rolling, the steel strip passed through the large diameter roll is subjected to the second cold rolling through the small diameter roll having a roll diameter of 50 to 100 mm. A small diameter roll having a roll diameter of 50 to 100 mm is an example of a second work roll according to the present invention. In the second cold rolling, only the remaining band thickness that could not be rolled in the first cold rolling is rolled. The steel strip after the completion of the second cold rolling becomes a cold-rolled steel strip.
 ここで、第1冷間圧延の終了後に第2冷間圧延を行う理由について説明する。すなわち、第1冷間圧延と第2冷間圧延とを比較した場合、両冷間圧延ともに同じ圧延率であることを前提とすれば、大径ロールを用いた第1冷間圧延の方が小径ロールを用いた第2冷間圧延よりも大きな圧延荷重が必要となる。また一般的に、ステンレス鋼は普通鋼に比べて硬いとともに、冷間圧延では処理の後半になるほど加工硬化が進んで鋼帯の強度が上昇する。これらのことから、冷間圧延工程S4において大径ロールのみで冷間圧延を行えば、所望の帯厚の冷延鋼帯を得るまでに鋼帯に加えなければならない圧延荷重が、本ステンレス鋼の製造性および生産性の観点で許容できる範囲を超えてしまう。そのため、本実施形態のように、大径ロールで第1冷間圧延を行った後、小径ロールで第2冷間圧延を行う。本実施形態では、ロール径200mm未満の小径ロールのうち、小径ロールとして一般的に用いられているロール径50~100mmのワークロールを、第2ワークロールとして用いている。 Here, the reason for performing the second cold rolling after the completion of the first cold rolling will be described. That is, when comparing the first cold rolling and the second cold rolling, assuming that both cold rollings have the same rolling ratio, the first cold rolling using a large diameter roll is better. A larger rolling load is required than in the second cold rolling using a small diameter roll. In general, stainless steel is harder than ordinary steel, and in cold rolling, work hardening progresses in the latter half of the treatment, and the strength of the steel strip increases. From these facts, if cold rolling is performed only with a large diameter roll in the cold rolling step S4, the rolling load that must be applied to the steel strip in order to obtain a cold rolled steel strip having a desired strip thickness is the present stainless steel. It exceeds the acceptable range in terms of manufacturability and productivity. Therefore, as in the present embodiment, the first cold rolling is performed on the large diameter roll, and then the second cold rolling is performed on the small diameter roll. In the present embodiment, among the small diameter rolls having a roll diameter of less than 200 mm, a work roll having a roll diameter of 50 to 100 mm, which is generally used as a small diameter roll, is used as the second work roll.
 なお本実施形態では、冷間圧延工程S4において、第1冷間圧延を行った後に第2冷間圧延を行っているが、第2冷間圧延を行った後に第1冷間圧延を行ってもよい。但し、ステンレス鋼は普通鋼に比べて一般的に硬い。さらに、冷間圧延では、処理の後半になるほど加工硬化が進んで鋼帯の強度が上昇する。そのため、第2冷間圧延を行った後に第1冷間圧延を行う場合、第2冷間圧延後の鋼帯の板厚中心部において圧延ひずみの集中を生じさせるには、第1冷間圧延を行った後に第2冷間圧延を行う場合よりも大きな圧延荷重が必要となる。これらのことから、本ステンレス鋼の製造性および生産性を考慮すると、本実施形態のように第1冷間圧延を行った後に第2冷間圧延を行うのが好ましい。 In the present embodiment, in the cold rolling step S4, the second cold rolling is performed after the first cold rolling, but the first cold rolling is performed after the second cold rolling. May be good. However, stainless steel is generally harder than ordinary steel. Further, in cold rolling, work hardening progresses in the latter half of the treatment, and the strength of the steel strip increases. Therefore, when the first cold rolling is performed after the second cold rolling, the first cold rolling is performed in order to cause the concentration of rolling strain at the center of the plate thickness of the steel strip after the second cold rolling. A larger rolling load is required than in the case of performing the second cold rolling after performing the above. From these facts, considering the manufacturability and productivity of the present stainless steel, it is preferable to perform the first cold rolling and then the second cold rolling as in the present embodiment.
 <焼鈍工程S5>
 次に、焼鈍工程S5では、冷間圧延工程S4で製造された冷延鋼帯を再結晶の開始温度以上かつAc1以下の温度で焼鈍する。焼鈍工程S5で行われる焼鈍は、冷延鋼帯におけるフェライト相の再結晶の完了とマルテンサイト相の消失との両立を目的とする仕上げ焼鈍である。焼鈍工程S5で行われる仕上げ焼鈍は、軟質化焼鈍工程S3における軟質化焼鈍と同様に、昇温過程、均熱過程および冷却過程で構成される。
<Annealing step S5>
Next, in the annealing step S5, the cold-rolled steel strip produced in the cold rolling step S4 is annealed at a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1. The annealing performed in the annealing step S5 is a finish annealing for the purpose of achieving both the completion of recrystallization of the ferrite phase in the cold-rolled steel strip and the disappearance of the martensite phase. The finish annealing performed in the annealing step S5 is composed of a temperature raising process, a soaking process, and a cooling process, similarly to the softening annealing in the softening annealing step S3.
 昇温過程では、冷延鋼帯を50℃/s以下の昇温速度で再結晶の開始温度以上かつAc1以下の温度まで加熱する。昇温速度を50℃/s以下に設定することで、昇温過程の過程でマルテンサイト相を消失させることができる。均熱過程では、昇温過程後の冷延鋼帯を再結晶の開始温度以上かつAc1以下の温度で5秒以上均熱する。本実施形態では、再結晶の開始温度を800℃に設定する。再結晶の開始時間を800℃に設定することにより、短い均熱時間でフェライト相の再結晶が完了する。但し、再結晶の開始温度は800℃に限定されず、再結晶の開始温度を例えば800℃よりも低い温度に設定してもよい。一方、均熱温度の上限をAc1以下の温度とすることにより、冷延鋼帯に新規なマルテンサイト相が生成されることを防ぎつつ、冷延鋼帯に残存するマルテンサイト相を略消失させることができる。 In the heating process, the cold-rolled steel strip is heated to a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1 at a heating rate of 50 ° C./s or less. By setting the temperature rise rate to 50 ° C./s or less, the martensite phase can be eliminated in the process of temperature rise. In the heat equalization process, the cold-rolled steel strip after the temperature raising process is heated at a temperature equal to or higher than the start temperature of recrystallization and lower than Ac1 for 5 seconds or longer. In this embodiment, the start temperature of recrystallization is set to 800 ° C. By setting the recrystallization start time to 800 ° C., the recrystallization of the ferrite phase is completed in a short soaking time. However, the start temperature of recrystallization is not limited to 800 ° C., and the start temperature of recrystallization may be set to a temperature lower than, for example, 800 ° C. On the other hand, by setting the upper limit of the soaking temperature to a temperature of Ac1 or less, the martensite phase remaining in the cold-rolled steel strip is substantially eliminated while preventing the formation of a new martensite phase in the cold-rolled steel strip. be able to.
 冷却過程では、均熱過程後の冷延鋼帯を50℃/s以下の冷却速度で冷却する。50℃/s以下の冷却速度で冷却することにより、冷却過程の過程でもマルテンサイト相を消失させることができる。これらの各処理で構成される仕上げ焼鈍を冷延鋼帯に施すことで、焼鈍工程S5において、冷延鋼帯におけるフェライト相の再結晶の完了とマルテンサイト相の消失との両立を効率良く実現することができる。焼鈍工程S5が終了することにより、最終製品としての本ステンレス鋼が得られ、当該本ステンレス鋼の製造が終了する。 In the cooling process, the cold-rolled steel strip after the soaking process is cooled at a cooling rate of 50 ° C./s or less. By cooling at a cooling rate of 50 ° C./s or less, the martensite phase can be eliminated even in the course of the cooling process. By applying the finish annealing composed of each of these treatments to the cold-rolled steel strip, it is possible to efficiently achieve both the completion of recrystallization of the ferrite phase in the cold-rolled steel strip and the disappearance of the martensite phase in the annealing step S5. can do. When the annealing step S5 is completed, the present stainless steel as a final product is obtained, and the production of the present stainless steel is completed.
 〔まとめ〕
 本発明の一態様に係るフェライト系ステンレス鋼は、質量%で、Mo:0.50%以下、Cu:1.0%以下、O:0.01%以下、V:0.15%以下、B:0.10%以下およびTi:0.50%以下のうちから選択される1種または2種以上をさらに含有してもよい。
〔summary〕
The ferritic stainless steel according to one aspect of the present invention has Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V: 0.15% or less, B in mass%. It may further contain one or more selected from: 0.10% or less and Ti: 0.50% or less.
 本発明の一態様に係るフェライト系ステンレス鋼は、質量%で、Co:0.01%以上0.50%以下、Zr:0.01%以上0.10%以下、Nb:0.01%以上0.10%以下、Mg:0.0005%以上0.003%以下、Ca:0.0003%以上0.003%以下、Y:0.01%以上0.20%以下、Yを除く希土類金属:合計で0.01%以上0.10%以下、Sn:0.001%以上0.50%以下、Sb:0.001%以上0.50%以下、Pb:0.01%以上0.10%以下およびW:0.01%以上0.50%以下のうちから選択される1種または2種以上をさらに含有してもよい。 The ferritic stainless steel according to one aspect of the present invention has Co: 0.01% or more and 0.50% or less, Zr: 0.01% or more and 0.10% or less, Nb: 0.01% or more in mass%. 0.10% or less, Mg: 0.0005% or more and 0.003% or less, Ca: 0.0003% or more and 0.003% or less, Y: 0.01% or more and 0.20% or less, rare earth metals excluding Y : Total 0.01% or more and 0.10% or less, Sn: 0.001% or more and 0.50% or less, Sb: 0.001% or more and 0.50% or less, Pb: 0.01% or more and 0.10 % Or less and W: One or more selected from 0.01% or more and 0.50% or less may be further contained.
 本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、前記鋼スラブは、質量%で、Mo:0.50%以下、Cu:1.0%以下、O:0.01%以下、V:0.15%以下、B:0.10%以下およびTi:0.50%以下のうちから選択される1種または2種以上をさらに含有してもよい。 In the method for producing ferritic stainless steel according to one aspect of the present invention, the steel slab has Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V in mass%. It may further contain one or more selected from: 0.15% or less, B: 0.10% or less, and Ti: 0.50% or less.
 本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、前記鋼スラブは、質量%で、Co:0.01%以上0.50%以下、Zr:0.01%以上0.10%以下、Nb:0.01%以上0.10%以下、Mg:0.0005%以上0.003%以下、Ca:0.0003%以上0.003%以下、Y:0.01%以上0.20%以下、Yを除く希土類金属:合計で0.01%以上0.10%以下、Sn:0.001%以上0.50%以下、Sb:0.001%以上0.50%以下、Pb:0.01%以上0.10%以下およびW:0.01%以上0.50%以下のうちから選択される1種または2種以上をさらに含有してもよい。 In the method for producing ferritic stainless steel according to one aspect of the present invention, the steel slab has Co: 0.01% or more and 0.50% or less and Zr: 0.01% or more and 0.10% or less in terms of mass%. , Nb: 0.01% or more and 0.10% or less, Mg: 0.0005% or more and 0.003% or less, Ca: 0.0003% or more and 0.003% or less, Y: 0.01% or more and 0.20 % Or less, rare earth metal excluding Y: 0.01% or more and 0.10% or less in total, Sn: 0.001% or more and 0.50% or less, Sb: 0.001% or more and 0.50% or less, Pb: One or more selected from 0.01% or more and 0.10% or less and W: 0.01% or more and 0.50% or less may be further contained.
 〔付記事項〕
 本発明は本実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、本実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the present embodiment, and various modifications can be made within the scope of the claims, and the embodiment obtained by appropriately combining the technical means disclosed in the present embodiment is also available. , Included in the technical scope of the present invention.
 〔実施例〕
 本発明の実施例および比較例に係るフェライト系ステンレス鋼について評価した結果について、以下に説明する。以下、本発明の実施例に係るフェライト系ステンレス鋼を「発明鋼」と称し、本発明の比較例に係るフェライト系ステンレス鋼を「比較鋼」と称する。本実施例では、まず、下記の表1に示す組成A~Eのいずれかを有する5種類の鋼スラブを、実操業ラインで溶製することにより製造した。組成A~Eを構成する各元素の含有率は、いずれも、本発明の一態様に係るフェライト系ステンレス鋼に含まれる各元素の含有率の数値範囲内であった。なお、表1には、組成がA~Eのそれぞれの場合におけるAc1の数値も示されている。
〔Example〕
The results of evaluation of the ferrite-based stainless steel according to the examples and comparative examples of the present invention will be described below. Hereinafter, the ferritic stainless steel according to the embodiment of the present invention will be referred to as "invention steel", and the ferritic stainless steel according to the comparative example of the present invention will be referred to as "comparative steel". In this example, first, five kinds of steel slabs having any of the compositions A to E shown in Table 1 below were produced by melting on an actual operation line. The content of each element constituting the compositions A to E was within the numerical range of the content of each element contained in the ferritic stainless steel according to one aspect of the present invention. In addition, Table 1 also shows the numerical value of Ac1 in each case of composition A to E.
Figure JPOXMLDOC01-appb-T000001
 組成Eを有する鋼スラブに基づいて製造された発明鋼および比較鋼の指標値は、前記の表1に示すように85となり、本発明における好ましい数値範囲の上限値50を超える結果となった。このような結果になったのは、組成Eのうち、指標値に影響を与えるCrの含有率が12.5%だったためであると推察される。
Figure JPOXMLDOC01-appb-T000001
The index value of the invention steel and the comparative steel produced based on the steel slab having the composition E was 85 as shown in Table 1 above, which exceeded the upper limit value 50 of the preferable numerical range in the present invention. It is presumed that such a result was obtained because the content of Cr in the composition E, which affects the index value, was 12.5%.
 次に、各組成の鋼スラブを熱間圧延することにより、板厚3mm、板幅150mmの各組成の熱延鋼帯を製造した。次に、各組成の熱延鋼帯に対して、下記の表2に示す「実績条件」で軟質化焼鈍および冷間圧延を施すことにより、板厚1mm、板幅150mmの各組成の冷延鋼帯を製造した。そして、各組成の冷延鋼帯を仕上げ焼鈍することにより、第1~第7発明鋼および第1~第18比較鋼を製造した。 Next, by hot rolling the steel slabs of each composition, hot-rolled steel strips of each composition having a plate thickness of 3 mm and a plate width of 150 mm were manufactured. Next, the hot-rolled steel strips of each composition are subjected to softening annealing and cold rolling under the "actual conditions" shown in Table 2 below, so that the hot-rolled steel strips of each composition having a plate thickness of 1 mm and a plate width of 150 mm are cold-rolled. Manufactured steel strips. Then, the cold-rolled steel strips having each composition were finish-annealed to produce the 1st to 7th invention steels and the 1st to 18th comparative steels.
Figure JPOXMLDOC01-appb-T000002
 前記の表2には、軟質化焼鈍および冷間圧延の「推奨条件」も示されている。前記の表2における「推奨条件」の欄に記載された各条件は、本実施形態と同一の条件とした。また、「推奨条件」の「軟質化焼鈍」の欄における「下限温度」は最高焼鈍温度の下限値を示し、同欄の「上限温度」は最高焼鈍温度の上限値を示す。「下限温度」および「上限温度」の各欄に記載された数値は、組成Aの各発明鋼および各比較鋼については、0.76×Ac1+201℃以上1050℃以下の式に組成AのAc1の数値(942)を代入して算出した。一方、組成B~Eの各発明鋼および各比較鋼については、0.76×Ac1+201℃以上1.10×Ac1-56℃以下の式に組成B~Eの各Ac1の数値(811、855、920、710)を代入して算出した。
Figure JPOXMLDOC01-appb-T000002
Table 2 above also shows "recommended conditions" for softening annealing and cold rolling. The conditions described in the “Recommended conditions” column in Table 2 above are the same as those in the present embodiment. Further, the "lower limit temperature" in the "softening annealing" column of the "recommended conditions" indicates the lower limit of the maximum annealing temperature, and the "upper limit temperature" in the same column indicates the upper limit of the maximum annealing temperature. The numerical values described in the "lower limit temperature" and "upper limit temperature" columns are 0.76 × Ac1 + 201 ° C. or higher and 1050 ° C. or lower for each invention steel and each comparative steel of composition A. It was calculated by substituting the numerical value (942). On the other hand, for each of the invention steels of compositions B to E and each comparative steel, the numerical values of each Ac1 of compositions B to E (811, 855,) in the formula of 0.76 × Ac1 + 201 ° C. or higher and 1.10 × Ac1-56 ° C. or lower. It was calculated by substituting 920 and 710).
 また前記の表2には、第1~第7発明鋼および第1~第18比較鋼のそれぞれについて、「特性評価」および「総合評価」も示されている。「特性評価」の「うねり高さ」の欄は、リジングのうねり高さの測定結果を示す。また、「特性評価」の「r値」の欄は、r値の算出結果を示す。なお、リジングのうねり高さの測定方法、およびr値の算出方法は本実施形態と同一の方法とした。「総合評価」は、リジングのうねり高さが15μm以下であり、かつr値が0.9以上であり、かつ第2マルテンサイト面積比率が0%以上1.0%未満の場合を「○」とした。一方、リジングのうねり高さが15μmよりも高い場合、r値が0.9未満の場合、または第2マルテンサイト面積比率が1.0%以上の場合のいずれかであれば「×」とした。 Table 2 above also shows "characteristic evaluation" and "comprehensive evaluation" for each of the 1st to 7th invention steels and the 1st to 18th comparative steels. The column of "waviness height" of "characteristic evaluation" shows the measurement result of the waviness height of rigging. Further, the column of "r value" of "characteristic evaluation" shows the calculation result of r value. The method for measuring the swell height of the rigging and the method for calculating the r value were the same as those in the present embodiment. "Comprehensive evaluation" is "○" when the swell height of the rigging is 15 μm or less, the r value is 0.9 or more, and the second martensite area ratio is 0% or more and less than 1.0%. And said. On the other hand, if the swell height of the rigging is higher than 15 μm, the r value is less than 0.9, or the second martensite area ratio is 1.0% or more, it is evaluated as “x”. ..
 前記の表2中の下線が付されている数値は、本実施形態における好ましい数値範囲の範囲外にある数値を示す。また、前記の表2中の下線が付されている「×」は、全パス終了後の冷延率が総冷延率の50%未満であったことを示す。 The underlined numerical values in Table 2 above indicate numerical values outside the preferable numerical range in the present embodiment. Further, the underlined “x” in Table 2 above indicates that the cold rolling rate after the completion of all passes was less than 50% of the total cold rolling rate.
 前記の表2に示すように、第1・第9・第11・第13・第16比較鋼については、リジングのうねり高さがいずれも15μmよりも高かったことから、総合評価が「×」となった。リジングのうねり高さが15μmよりも高くなったのは、第1・第9・第11・第13・第16比較鋼のいずれについても第1マルテンサイト面積比率が5.0%未満であったためと推察される。つまり、第1・第9・第11・第13・第16比較鋼のいずれについても、鋼中のコロニーの増加量が耐リジング性を向上させる上での許容範囲を超えたため、リジングのうねり高さが15μmよりも高くなったものと推察される。 As shown in Table 2 above, for the 1st, 9th, 11th, 13th, and 16th comparative steels, the swell height of the rigging was higher than 15 μm, so the overall evaluation was “x”. It became. The swell height of the rigging was higher than 15 μm because the first martensite area ratio was less than 5.0% for all of the 1st, 9th, 11th, 13th, and 16th comparative steels. It is inferred that. That is, in all of the 1st, 9th, 11th, 13th, and 16th comparative steels, the amount of increase in colonies in the steel exceeded the permissible range for improving the rigging resistance, so that the swell height of the rigging was high. It is presumed that the height was higher than 15 μm.
 また前記の表2に示すように、第1・第9・第18比較鋼以外の各比較鋼については、r値が0.9未満であったことから、総合評価が「×」となった。r値が0.9未満になった要因としては、以下に説明することが推察される。まず、第2・第3比較鋼、第5~第8比較鋼、第10~第13比較鋼および第16比較鋼については、総冷延率が60%未満、1パスあたりの冷延率が15%未満、および全パス終了後の冷延率が総冷延率の50%未満、の少なくともいずれか1つに該当したためと推察される。つまり、第2・第3比較鋼、第5~第8比較鋼、第10~第13比較鋼および第16比較鋼のいずれについても、これらの比較鋼の板厚中心部に圧延ひずみの集中が十分に生じなかったため、r値が0.9未満になったものと推察される。 Further, as shown in Table 2 above, for each of the comparative steels other than the 1st, 9th, and 18th comparative steels, the r value was less than 0.9, so that the overall evaluation was “x”. .. The reason why the r value is less than 0.9 is presumed to be explained below. First, for the 2nd and 3rd comparative steels, the 5th to 8th comparative steels, the 10th to 13th comparative steels, and the 16th comparative steels, the total cold rolling ratio is less than 60%, and the cold rolling ratio per pass is high. It is presumed that this is because it corresponds to at least one of less than 15% and the cold rolling rate after the completion of all passes is less than 50% of the total cold rolling rate. That is, in all of the second and third comparative steels, the fifth to eighth comparative steels, the tenth to thirteenth comparative steels, and the sixteenth comparative steels, the rolling strain is concentrated in the center of the plate thickness of these comparative steels. It is presumed that the r value was less than 0.9 because it did not occur sufficiently.
 次に、第14および第15比較鋼については、第1マルテンサイト面積比率が30.0%よりも大きかったためと推察される。つまり、第14および第15比較鋼のいずれについても、マルテンサイト相が必要以上に増加して延性が低下したため、r値が0.9未満になったものと推察される。次に、第17比較鋼については、総冷延率が60%未満であったことに加えて、第1マルテンサイト面積比率が30.0%よりも大きかったため、r値が0.9未満になったものと推察される。 Next, it is presumed that the 1st martensite area ratio was larger than 30.0% for the 14th and 15th comparative steels. That is, it is presumed that the r value of both the 14th and 15th comparative steels was less than 0.9 because the martensite phase increased more than necessary and the ductility decreased. Next, for the 17th comparative steel, the total cold rolling ratio was less than 60%, and the first martensite area ratio was larger than 30.0%, so the r value was less than 0.9. It is presumed that it has become.
 さらに、前記の表2に示すように、第14・第15・第17・第18比較鋼については、第2マルテンサイト面積比率が1.0%以上であったことから、総合評価が「×」となった。 Furthermore, as shown in Table 2 above, for the 14th, 15th, 17th, and 18th comparative steels, the second martensite area ratio was 1.0% or more, so the overall evaluation was "x". It became.
 一方、第1~第7発明鋼については、第3および第4発明鋼の特性評価が、全発明鋼の中で総合的に最も良好な結果となった。具体的には、第3発明鋼は、リジングのうねり高さについては全発明鋼の中で3番目に低かった(2.39μm)。このような結果になったのは、第1マルテンサイト面積比率が全発明鋼の中で3番目に高かった(9.44%)ためと推察される。また、第3発明鋼は、r値については全発明鋼の中で最も数値が大きかった(1.12)。このような結果になったのは、総冷延率が全発明鋼の中で最も高かった(85%)ためと推察される。さらに、第3発明鋼は、第2マルテンサイト面積比率については全発明鋼の中で4番目に低かった(0.17%)。 On the other hand, for the 1st to 7th invention steels, the characteristic evaluations of the 3rd and 4th invention steels were the best overall results among all the invention steels. Specifically, the steel of the third invention had the third lowest swell height of rigging among all the steels of the invention (2.39 μm). It is presumed that such a result was obtained because the first martensite area ratio was the third highest among all the invention steels (9.44%). In addition, the steel of the third invention had the largest r value among all the steels of the invention (1.12). It is presumed that such a result was obtained because the total cold rolling ratio was the highest among all the invention steels (85%). Furthermore, the steel of the third invention had the fourth lowest ratio of the area of the second martensite among all the steels of the invention (0.17%).
 第4発明鋼は、リジングのうねり高さについては全発明鋼の中で最も数値が低かった(2.28μm)。また、第4発明鋼は、r値については全発明鋼の中で4番目に数値が大きかった(0.93)。このような結果になったのは、総冷延率が全発明鋼の4番目に高かった(69%)ためと推察される。さらに、第4発明鋼は、第2マルテンサイト面積比率については全発明鋼の中で3番目に低かった(0.15%)。 The swell height of the rigging of the 4th invention steel was the lowest among all the invention steels (2.28 μm). In addition, the steel of the fourth invention had the fourth largest r value among all the steels of the invention (0.93). It is presumed that such a result was obtained because the total cold rolling ratio was the fourth highest (69%) of all invention steels. Furthermore, the 4th invention steel had the third lowest (0.15%) of the 2nd martensite area ratio among all the invention steels.
 本発明は、フェライト系ステンレス鋼およびフェライト系ステンレス鋼の製造方法に利用することができる。 The present invention can be used for manufacturing ferritic stainless steel and ferritic stainless steel.
S1 溶製工程
S2 熱間圧延工程
S3 軟質化焼鈍工程
S4 冷間圧延工程
S5 焼鈍工程

 
S1 Melting process S2 Hot rolling process S3 Softening annealing process S4 Cold rolling process S5 Annealing process

Claims (6)

  1.  質量%で、C:0.12%以下、Si:1.0%以下、Mn:1.0%以下、Ni:1.0%以下、Cr:12.0%以上18.0%以下、N:0.10%以下およびAl:0.50%以下を含有し、残部がFeおよび不可避的不純物からなるフェライト系ステンレス鋼であって、
     前記フェライト系ステンレス鋼の表面に形成されたリジングにおけるうねり曲線要素の平均高さが15μm以下であり、かつ、r値が0.9以上であり、かつ、圧延方向に平行であり幅方向に垂直な平面で切断した断面におけるマルテンサイト相の面積比率が0%以上1.0%未満のマルテンサイト相を含む、フェライト系ステンレス鋼。
    By mass%, C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ni: 1.0% or less, Cr: 12.0% or more and 18.0% or less, N Ferrite-based stainless steel containing 0.10% or less and Al: 0.50% or less, with the balance being Fe and unavoidable impurities.
    The average height of the waviness curve element in the rigging formed on the surface of the ferritic stainless steel is 15 μm or less, the r value is 0.9 or more, and it is parallel to the rolling direction and perpendicular to the width direction. A ferritic stainless steel containing a martensite phase in which the area ratio of the martensite phase in a cross section cut on a flat surface is 0% or more and less than 1.0%.
  2.  質量%で、Mo:0.50%以下、Cu:1.0%以下、O:0.01%以下、V:0.15%以下、B:0.10%以下およびTi:0.50%以下のうちから選択される1種または2種以上をさらに含有する、請求項1に記載のフェライト系ステンレス鋼。 By mass%, Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V: 0.15% or less, B: 0.10% or less and Ti: 0.50% The ferrite-based stainless steel according to claim 1, further comprising one or more selected from the following.
  3.  質量%で、Co:0.01%以上0.50%以下、Zr:0.01%以上0.10%以下、Nb:0.01%以上0.10%以下、Mg:0.0005%以上0.003%以下、Ca:0.0003%以上0.003%以下、Y:0.01%以上0.20%以下、Yを除く希土類金属:合計で0.01%以上0.10%以下、Sn:0.001%以上0.50%以下、Sb:0.001%以上0.50%以下、Pb:0.01%以上0.10%以下およびW:0.01%以上0.50%以下のうちから選択される1種または2種以上をさらに含有する、請求項1または2に記載のフェライト系ステンレス鋼。 By mass%, Co: 0.01% or more and 0.50% or less, Zr: 0.01% or more and 0.10% or less, Nb: 0.01% or more and 0.10% or less, Mg: 0.0005% or more 0.003% or less, Ca: 0.0003% or more and 0.003% or less, Y: 0.01% or more and 0.20% or less, rare earth metals excluding Y: 0.01% or more and 0.10% or less in total , Sn: 0.001% or more and 0.50% or less, Sb: 0.001% or more and 0.50% or less, Pb: 0.01% or more and 0.10% or less and W: 0.01% or more and 0.50 The ferritic stainless steel according to claim 1 or 2, further containing one or more selected from% or less.
  4.  質量%で、C:0.12%以下、Si:1.0%以下、Mn:1.0%以下、Ni:1.0%以下、Cr:12.0%以上18.0%以下、N:0.10%以下およびAl:0.50%以下を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを熱間圧延して熱延鋼帯を製造する熱間圧延工程と、
     前記熱間圧延工程で製造された前記熱延鋼帯を焼鈍して軟質化させることにより、圧延方向に平行かつ熱延焼鈍鋼帯の幅方向に垂直な平面で切断した断面におけるマルテンサイト相の面積比率が5.0%以上30.0%以下であり、かつ、前記マルテンサイト相を除いた残部がフェライト相を含んでいる前記熱延焼鈍鋼帯を製造する軟質化焼鈍工程と、
     前記軟質化焼鈍工程で製造された前記熱延焼鈍鋼帯を冷間圧延して冷延鋼帯を製造する冷間圧延工程と、を含み、
     前記冷間圧延工程では、
      前記熱延焼鈍鋼帯の厚さに対する、当該熱延焼鈍鋼帯の厚さと前記冷延鋼帯の厚さとの差分の割合である総冷延率を60%以上に設定し、
      前記熱延焼鈍鋼帯を、
       (i)ロール径が200mm以上の第1ワークロールを用いて、1パスあたりの冷延率が15%以上となり、かつ、全パス終了後の冷延率が前記総冷延率の50%以上となるように冷間圧延した後、
       (ii)ロール径が200mm未満の第2ワークロールを用いてさらに冷間圧延する、フェライト系ステンレス鋼の製造方法。
    By mass%, C: 0.12% or less, Si: 1.0% or less, Mn: 1.0% or less, Ni: 1.0% or less, Cr: 12.0% or more and 18.0% or less, N A hot rolling step of hot rolling a steel slab containing 0.10% or less and Al: 0.50% or less, the balance of which is Fe and unavoidable impurities, to produce a hot-rolled steel strip.
    By baking and softening the hot-rolled steel strip produced in the hot-rolling step, the martensite phase in the cross section cut in a plane parallel to the rolling direction and perpendicular to the width direction of the hot-rolled hardened steel strip. A softening and annealing step for producing the hot-rolled annealed steel strip having an area ratio of 5.0% or more and 30.0% or less and the balance excluding the martensite phase containing a ferrite phase.
    A cold rolling step of cold-rolling the hot-rolled annealed steel strip produced in the softening annealing step to produce a cold-rolled steel strip is included.
    In the cold rolling process,
    The total cold rolling ratio, which is the ratio of the difference between the thickness of the hot-rolled annealed steel strip and the thickness of the cold-rolled steel strip to the thickness of the hot-rolled annealed steel strip, is set to 60% or more.
    The hot-rolled annealed steel strip
    (I) Using a first work roll having a roll diameter of 200 mm or more, the cold rolling rate per pass is 15% or more, and the cold rolling rate after the completion of all passes is 50% or more of the total cold rolling rate. After cold rolling to
    (Ii) A method for producing ferritic stainless steel, which is further cold-rolled using a second work roll having a roll diameter of less than 200 mm.
  5.  前記鋼スラブは、質量%で、Mo:0.50%以下、Cu:1.0%以下、O:0.01%以下、V:0.15%以下、B:0.10%以下およびTi:0.50%以下のうちから選択される1種または2種以上をさらに含有する、請求項4に記載のフェライト系ステンレス鋼の製造方法。 In terms of mass%, the steel slab has Mo: 0.50% or less, Cu: 1.0% or less, O: 0.01% or less, V: 0.15% or less, B: 0.10% or less, and Ti. : The method for producing a ferritic stainless steel according to claim 4, further containing one or more selected from 0.50% or less.
  6.  前記鋼スラブは、質量%で、Co:0.01%以上0.50%以下、Zr:0.01%以上0.10%以下、Nb:0.01%以上0.10%以下、Mg:0.0005%以上0.003%以下、Ca:0.0003%以上0.003%以下、Y:0.01%以上0.20%以下、Yを除く希土類金属:合計で0.01%以上0.10%以下、Sn:0.001%以上0.50%以下、Sb:0.001%以上0.50%以下、Pb:0.01%以上0.10%以下およびW:0.01%以上0.50%以下のうちから選択される1種または2種以上をさらに含有する、請求項4または5に記載のフェライト系ステンレス鋼の製造方法。 In terms of mass%, the steel slab has Co: 0.01% or more and 0.50% or less, Zr: 0.01% or more and 0.10% or less, Nb: 0.01% or more and 0.10% or less, Mg: 0.0005% or more and 0.003% or less, Ca: 0.0003% or more and 0.003% or less, Y: 0.01% or more and 0.20% or less, rare earth metals excluding Y: 0.01% or more in total 0.10% or less, Sn: 0.001% or more and 0.50% or less, Sb: 0.001% or more and 0.50% or less, Pb: 0.01% or more and 0.10% or less and W: 0.01 The method for producing a ferritic stainless steel according to claim 4 or 5, further comprising one or more selected from% or more and 0.50% or less.
PCT/JP2021/038703 2020-10-23 2021-10-20 Ferritic stainless steel, and method for manufacturing ferritic stainless steel WO2022085708A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180044813.9A CN115917029A (en) 2020-10-23 2021-10-20 Ferritic stainless steel and method for producing ferritic stainless steel
JP2022557573A JP7374338B2 (en) 2020-10-23 2021-10-20 Ferritic stainless steel and manufacturing method of ferritic stainless steel
KR1020227045272A KR20230015982A (en) 2020-10-23 2021-10-20 Ferritic stainless steel and ferritic stainless steel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178304 2020-10-23
JP2020178304 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085708A1 true WO2022085708A1 (en) 2022-04-28

Family

ID=81290602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038703 WO2022085708A1 (en) 2020-10-23 2021-10-20 Ferritic stainless steel, and method for manufacturing ferritic stainless steel

Country Status (4)

Country Link
JP (1) JP7374338B2 (en)
KR (1) KR20230015982A (en)
CN (1) CN115917029A (en)
WO (1) WO2022085708A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214122B2 (en) * 1982-12-09 1990-04-06 Nippon Steel Corp
JPH0215283B2 (en) * 1982-08-26 1990-04-11 Nippon Steel Corp
WO2014045542A1 (en) * 2012-09-24 2014-03-27 Jfeスチール株式会社 Easily worked ferrite stainless-steel sheet
WO2014119796A1 (en) * 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same
WO2015111403A1 (en) * 2014-01-24 2015-07-30 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet and method for producing same
WO2017002147A1 (en) * 2015-07-02 2017-01-05 Jfeスチール株式会社 Ferritic stainless steel sheet and method for manufacturing same
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
WO2018198835A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet, and production method therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290598B2 (en) 1996-10-25 2002-06-10 川崎製鉄株式会社 Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JP4428550B2 (en) * 2001-03-21 2010-03-10 日新製鋼株式会社 Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
CN101649418B (en) * 2009-09-10 2011-06-01 山西太钢不锈钢股份有限公司 Ferrite stainless steel cold-rolled steel band and manufacturing method thereof
JP4998757B2 (en) * 2010-03-26 2012-08-15 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with excellent deep drawability
CN106715740B (en) * 2014-10-02 2019-09-27 杰富意钢铁株式会社 Ferrite-group stainless steel and its manufacturing method
EP3231883B1 (en) * 2014-12-11 2019-08-21 JFE Steel Corporation Ferritic stainless steel and process for producing same
CN109072378A (en) * 2016-03-30 2018-12-21 日新制钢株式会社 Ferrite series stainless steel plate and its manufacturing method containing Nb
KR101921595B1 (en) * 2016-12-13 2018-11-26 주식회사 포스코 Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
JP6432701B2 (en) * 2017-04-25 2018-12-05 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
JP6851269B2 (en) * 2017-06-16 2021-03-31 日鉄ステンレス株式会社 Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
CN109136735A (en) * 2017-06-27 2019-01-04 宝钢不锈钢有限公司 Ferritic stainless steel and its manufacturing method with favorable forming property

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215283B2 (en) * 1982-08-26 1990-04-11 Nippon Steel Corp
JPH0214122B2 (en) * 1982-12-09 1990-04-06 Nippon Steel Corp
WO2014045542A1 (en) * 2012-09-24 2014-03-27 Jfeスチール株式会社 Easily worked ferrite stainless-steel sheet
WO2014119796A1 (en) * 2013-02-04 2014-08-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent workability and process for producing same
WO2015111403A1 (en) * 2014-01-24 2015-07-30 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet and method for producing same
WO2017002147A1 (en) * 2015-07-02 2017-01-05 Jfeスチール株式会社 Ferritic stainless steel sheet and method for manufacturing same
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor
WO2018198835A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet, and production method therefor

Also Published As

Publication number Publication date
KR20230015982A (en) 2023-01-31
JP7374338B2 (en) 2023-11-06
CN115917029A (en) 2023-04-04
JPWO2022085708A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP6729823B2 (en) Method of manufacturing wear-resistant steel
EP2484791B1 (en) Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
US20120040203A1 (en) High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP7131687B2 (en) Hot-rolled steel sheet and manufacturing method thereof
EP3239335B1 (en) Ferritic stainless steel having excellent ductility and method for manufacturing same
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
WO2021205876A1 (en) Ferritic stainless steel, and method for manufacturing ferritic stainless steel
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP4428550B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
EP2220260A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP6342056B2 (en) Ferritic stainless steel sheet
WO2022085708A1 (en) Ferritic stainless steel, and method for manufacturing ferritic stainless steel
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP3714232B2 (en) High strength steel plate with excellent HIC resistance and method for producing the same
WO2022149365A1 (en) Steel sheet pile and manufacturing method therefor
JP7555080B2 (en) Manufacturing method of cold rolled steel sheet and manufacturing method of steel parts
JP7201136B1 (en) Steel sheet pile and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557573

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227045272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882849

Country of ref document: EP

Kind code of ref document: A1