JP4428550B2 - Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same Download PDF

Info

Publication number
JP4428550B2
JP4428550B2 JP2001079762A JP2001079762A JP4428550B2 JP 4428550 B2 JP4428550 B2 JP 4428550B2 JP 2001079762 A JP2001079762 A JP 2001079762A JP 2001079762 A JP2001079762 A JP 2001079762A JP 4428550 B2 JP4428550 B2 JP 4428550B2
Authority
JP
Japan
Prior art keywords
less
annealing
rolling
rolled
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001079762A
Other languages
Japanese (ja)
Other versions
JP2002275595A (en
Inventor
直人 平松
宏紀 冨村
保利 國武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001079762A priority Critical patent/JP4428550B2/en
Publication of JP2002275595A publication Critical patent/JP2002275595A/en
Application granted granted Critical
Publication of JP4428550B2 publication Critical patent/JP4428550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、シンク、各種器物およびコンロ用バーナー等の家庭用機器の部品、燃料等のタンク、給油管、モーターケース、カバーおよびフランジ等の産業用機器の部品において、主にプレス加工に供される耐リジング性および深絞り加工性に優れたフェライト系ステンレス鋼板およびその鋼板の製造方法に関するものである。なお、本発明における鋼板は、鋼板および鋼帯を含むものとする。
【0002】
【従来の技術】
SUS430に代表されるフェライト系ステンレス鋼は、良好な耐食性を有し、また高価なNiを含有せず、オーステナイト系ステンレス鋼に比べると経済的な利点を併せ持つことなどから、耐久消費財を中心に広く使用されている。しかしながら、近年、ステンレス鋼のプレス成形加工においては、より厳しい加工が行われる場合が多くなり、更に優れた加工性を有するフェライト系ステンレス鋼板が要望されている。
【0003】
フェライト系ステンレス鋼板の加工性は、一般にオーステナイト系ステンレス鋼に比べて劣り、また、プレス成形時にリジングと呼ばれる独特のシワ状の表面凹凸を生じる。したがって、フェライト系ステンレス鋼において、そのプレス加工性および耐リジング性が改善されれば、加工性が厳しいためにオーステナイト系ステンレス鋼が使用されていた箇所に、従来適用困難であったより安価なフェライト系ステンレス鋼が使用できるようになる。
【0004】
ところで、フェライト系ステンレス鋼のプレス成形性はr値に依存することが知られている。このr値を示す指標として、平均的なr値を示すrが用いられている。r値を向上させる技術は、今までにも数多く試みられている。例えば、特開昭53−48018号公報には、C、Nを極力低下させ、Ti、Nbの一種または両方を添加することによりr値を向上させる技術が提案されている。しかしながら、この技術はC、Nを低下させるために精錬に時間がかかり、また高価なTiやNbを添加するために原料費が高価になるため、製鋼のコストが増加してしまう。
【0005】
また、リジング性を改善するためには、圧延中に材料を一時的に待機させてパス間時間を大きくするいわゆるディレイ圧延を用いる技術が、例えば特開昭62−199721号公報で提案されている。しかしながら、上記の技術は、低温領域で大きな歪みを与える方法であるので、噛み込み不良や形状不良を招き、また、圧延時間の増大を招き、生産性の低下をもたらす。したがって、経済的な方法とは言い難い。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、製鋼コストの増大や熱延鋼帯の生産性低下を招くことなく、プレス加工で必要とされる深絞り性を持ち、かつ満足できる耐リジング性を有するフェライト系ステンレス鋼およびそのような特性を発揮し得る、熱延以降の加工熱処理技術を提案することを目的とする。
【0007】
【課題を解決するための手段】
本発明の耐リジング性および深絞り加工性に優れるフェライト系ステンレス鋼は、その目的を達成するために、質量%で、C:0.10%以下、Si:1.5%以下、Mn:1.0%以下、P:0.050%以下、S:0.015%以下、Ni:2.0%以下、Cr:10.0〜20.0%、Al:0.10%以下、N:0.05%以下を含有し、さらに必要に応じてTi:0.05%以下、Nb:0.05%以下、Mo:1.0%以下、Cu:1.0%以下、B:0.0010〜0.0100%の1種または2種以上を含み、残部がFeおよび不可避的な不純物からなり、かつ式(5)で定義されるγmaxが20以上80未満であり、さらに、板厚の1/2深さにおける圧延面の結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が90%以上であり、さらにまた、式(6)を持つことを特徴とするものである。
【0008】
式(5)
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189式(6)
X/Y≧5
ただし、Xは板厚の1/2深さにおける圧延面の{111}面からのずれが5゜以内の結晶粒の面積で、Yは板厚の1/2深さにおける圧延面の{100}面からのずれが5°以内の結晶粒の面積。
【0009】
また、本発明の製造方法は、その目的を達成するために、上記フェライト系ステンレス鋼を製造するにあたり、それぞれの項に記載された成分からなる鋼スラブを、熱間圧延を経て熱延鋼帯となし、冷間圧延と焼鈍を組み合わせて冷延鋼板または鋼帯を製造する際に、熱延鋼帯をAc1点以上1100℃以下のフェライト+オーステナイトの2相領域に加熱する複相化焼鈍を連続焼鈍炉によって行った後、さらに圧延率10%以上50%以下の中間冷間圧延を行い、その後、箱型炉による焼鈍を施し、仕上げ冷間圧延と再結晶焼鈍を行なうことを特徴とするものである。
【0010】
【本発明の実施の態様】
本発明者等は、上記課題に向けて、製鋼コストの増大や熱延鋼帯の生産性を招くことなく、フェライト系ステンレス鋼板の深絞り性および耐リジング性を向上させるための合金組成、金属組織および熱延以降の加工熱処理に関し、詳細に検討してきた。また、選定した材料に対して、プレス加工を施し、プレス加工に対して必要とされる特性を調査した。その結果、熱延板焼鈍にAc1点以上の複相化焼鈍を施し、得られた(フェライト+マルテンサイト)2相組織に冷間圧延により加工を加え、その後、箱型炉による焼鈍を施し、仕上げ冷間圧延および再結晶焼鈍を行なったフェライト系ステンレス鋼板は、耐リジング性および深絞り性が著しく向上することを知見した。また、プレス加工に対して必要とされる特性を明らかにした。本発明は、この知見に基づき完成したものである。以下に、発明の実施の態様を実験結果に基づき説明する。
【0011】
表1の鋼種Aに示す化学成分を有する実ラインの厚さ4mmの熱延板を用い、実験室的に、熱延板→複相化焼鈍(1050℃×均熱0sec)→中間冷延→中間焼鈍(830℃×均熱9hr)→仕上げ冷延→仕上げ焼鈍を行い、板厚0.8mmの焼鈍板とした。ここで、中間圧延と仕上げ圧延の冷延圧下配分を変化させた。また、前述の熱延板を従来の製造方法、すなわち、熱延板→熱延板焼鈍(830℃×9hr)→仕上げ冷延→仕上げ焼鈍(1回冷延焼鈍)および熱延板→熱延板焼鈍(830℃×9hr)→中間冷延→中間焼鈍→仕上げ冷延→仕上げ焼鈍(2回冷延焼鈍)で作製した。
【0012】

Figure 0004428550
【0013】
以上の工程で作製された焼鈍板から試験片を採取し、r値の測定、リジング判定、EBSP法(Electron Backscattering Pattern)による結晶方位分布測定およびプレス加工テストを行った。なお、rおよびΔrはそれぞれr=(rL+2rD+rT)/4、Δr=(rL−2rD+rT)/2である。ただし、rL、rDおよびrTは、それぞれ圧延方向、圧延方向に対して45°方向および圧延方向に対して90°方向のr値を示す。また、耐リジング性の判定は、Aが最も耐リジング性が良いもの、Dが最も耐リジング性が悪いものとし、A、B、C、Dの4段階評価を行った。表2に耐リジング性の判定基準を示す。
【0014】
Figure 0004428550
【0015】
EBSP法による結晶方位分布測定は、各鋼板に対して、板厚の1/2深さにおける圧延板について、圧延方向;500μm、幅方向;800μmの範囲の結晶方位分布を測定し、得られたデータをもとに、隣接する結晶粒の方位のずれ15°以上である大角粒界の割合と({111}面からのずれが5°以内の結晶粒の面積)/({100}面からのずれが5°以内の結晶粒の面積)を解析した。
【0016】
また、プレス加工テストは、ポンチの寸法が200mm×270mm、絞り深さが100mm、ダイ肩半径が10mmの角筒絞りを行い、成形できたものは○、割れが生じたものは×と判定した。表3にr、Δr、リジング判定、EBSP法による結晶分布解析およびプレス加工テストの結果に及ぼす中間圧延と仕上げ圧延の冷延圧下配分の影響を示す。
【0017】
Figure 0004428550
【0018】
表3より、大角粒界の割合が大きいと耐リジング性が向上するよい対応関係にある。一般的に、リジングの発生は、冷延焼鈍板内に存在する結晶方位の近い結晶粒の集団(コロニー)に起因する。コロニーの起源は、凝固柱状晶が熱延焼鈍後に残存することにより形成される圧延方向に伸びた粗大な未再結晶フェライト粒が、冷延後の焼鈍時においても再結晶による結晶方位の分散が小さいため、コロニーが形成される。コロニー内部では、見かけ上は微細な結晶組織を呈しているが、結晶方位の分散が小さいためプレス成形などの塑性変形を受けるとコロニーが大きな単結晶のように変形し、それぞれのコロニーの塑性異方性の差によりリジングが発生する。
【0019】
ここで、コロニー内部の結晶粒界は隣接する結晶の方位のずれが小さく、ずれが15°以上の大角粒界は非常に少ない。すなわち、大角粒界の割合が小さい鋼板では、コロニーの形成が多くリジングが発生するのに対し、大角粒界の割合が大きいと、その鋼板のリジングの原因となるコロニーの形成が小さく耐リジング性が向上し、特に、大角粒界の割合が90%以上であるとリジング発生が軽減し、リジング判定B以上の十分な耐リジング性が得られる。
【0020】
また、深絞りに良好な面として{111}面が、r値に悪影響を及ぼす面として{100}面があり、板厚中心でこの良好な面と悪影響を及ぼす面積比で整理すれば、r値との優劣を明確にできる。つまり、(板厚の1/2深さにおける圧延面の{111}面からのずれが5°以内の結晶粒の面積)/(板厚の1/2深さにおける圧延面の{100}面からのずれが5°以内の結晶粒の面積)がrによく対応し、特に{111}面の面積/{100}面の面積が5以上においてその傾向が顕著になり、rが1.4以上となる。
表3において、プレス加工テストで成形できたものは、{111}面の面積/{100}面の面積が5以上のものであり、一方、{111}面の面積/{100}面の面積が5より小さいものは、深絞り性が不十分で、プレス途中で激しい割れが生じた。
【0021】
しかしながら、従来方法の2回冷延焼鈍材では、{111}面の面積/{100}面の面積が5.5であり、rも1.40と十分に高いがプレス加工テストで割れが生じている。この鋼板では、結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が81%と比較的低く、耐リジング性が低くr値の異方性を示すΔrが大きかったためコーナー部で割れが発生した。すなわち、{111}集合組織が発達していても大角粒界が少なくコロニーを形成していると、満足するプレス成形性が得られず、{111}面の面積/{100}面の面積が5以上であり、かつ大角粒界の割合が90%以上必要であることが明らかになった。
【0022】
複相化焼鈍を施す製造法において深絞り性および耐リジング性が改善される理由は、次のように考えられる。
まず、フェライト系ステンレス鋼の熱延板にAc1点以上の複相化焼鈍を施すと、(フェライト+マルテンサイト)2相組織が得られる。フェライト相はマルテンサイト相に比べ非常に軟質であるので、中間圧延により加工を加えると、フェライト相に歪みが蓄積される。これを、箱型炉で長時間焼鈍を施すことにより、マルテンサイト相は炭化物を十分に析出し、フェライト相へ再結晶すると同時に、非常に歪みが蓄積されたフェライト相の再結晶が促進される。この時に、リジングの原因となるような凝固柱状晶に由来した粗大なフェライト粒の再結晶も促進され、再結晶粒の結晶方位は大きく分散し、コロニーの形成を阻害し、大角粒界の割合を増大させる。
【0023】
表3において、本発明製造法の複相化焼鈍後の中間圧延率の増加とともに、結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が増加し、対リジング性も改善された結果も、このことを裏付けている。
また、箱型焼鈍後にコロニーの形成を阻害しているため、通常工程では残存しやすいr値を下げる{100}のコロニーの形成も少なく、続く、仕上げ圧延、仕上げ焼鈍により、r値に有効な{111}集合組織は発達し、{111}面の面積/{100}面の面積が5以上であり、かつ、大角粒界の割合が90%以上の鋼板を製造することができた。
【0024】
次に、本発明のフェライト系ステンレス鋼の成分、特性、製造条件の限定理由について説明する。なお、以下の説明における%表示は、すべて質量%を示す。 : 0.10%以下
Cは、γmaxを大きくする作用を呈する合金元素であり、複相化焼鈍後に得られる(フェライト+マルテンサイト)2相組織において、十分な量のマルテンサイトとその硬さを得るために有効に作用する。しかし、冷延焼鈍後の強度を上昇させる成分であり、過剰に含まれると延性を低下させることから、C含有量の上限は0.10%とした。
【0025】
Si:1.5%以下
Siは、製鋼時に脱酸剤として添加される合金成分であるが、固溶強化能が高く、過剰に含有すると材質を硬化し延性を低下させることから、その含有量の上限は1.5%に設定した。
Mn:1.0%以下
Mnはオーステナイト形成元素であり、γmaxの制御に利用できる。また、固溶強化能が小さいため、材質を硬化する影響も少ない。しかし、過剰に含有されると溶接時にMn系ヒュームが生成する等、悪影響を与えるため、その含有量の上限は1.0%に設定した。
【0026】
P:0.005%以下
Pは、その含有量に応じて熱間加工性を低下させるので、その含有量上限は0.005%とした。
S:0.015%以下
Sは、その含有量が多くなると結晶粒界に偏析して結晶粒界を脆化させるので、その含有量上限は0.015%に設定した。
Ni:2.0%以下
NiはMnと同様にオーステナイト形成元素であり、γmax制御に利用できる。しかし、Niの過剰な含有は、コストの上昇を招くことにもなるから、その含有量の上限は2.0%とした。
【0027】
Cr:10.0〜20.0%
ステンレス鋼としての耐食性を得るには、Crを10.0%以上含有させることが必要である。しかし、Cr量が高くなると、靭性や加工性の低下を招くため、その含有量は20.0%以下にする。
Al:0.10%以下
Alは製鋼時に脱酸剤として添加される合金成分であるが、過剰量の添加は非金属介在物を増加させ、靭性低下や表面欠陥の原因になるため、その含有量の上限は0.10%とする。
【0028】
N:0.05%以下
NもCと同様にγmaxを大きくする作用を呈する元素であり、複相化焼鈍時に生成するオーステナイトを増大させ、微細組織化に有効に働き、耐リジング性を向上させる。しかし、冷延焼鈍後の強度を上昇させる成分であり、過剰に含まれると延性を低下させることから、その含有量の上限は0.05%とした。
Ti:0.05%以下
TiはC、Nを固定し、加工性を向上させる元素であるが、Tiを添加すると、鋼材コストの増大を招くことから、その含有量の上限は0.05%とした。
【0029】
Nb:0.05%以下
NbはC、Nを固定し、加工性を向上させる元素であるが、Nbを添加すると、鋼材コストの増大を招くことから、その含有量の上限は0.05%とした。
Mo:1.0%以下
Moは、必要に応じて添加される元素であり、耐食性の改善に寄与する。しかし、Moが過剰に添加されると、熱間加工性が低下するため、その含有量の上限は1.0%とする。
【0030】
Cu:1.0%以下
Cuは、溶製時にスクラップ等から混入する成分であり、その含有量が多くなると熱間加工性や耐食性に悪影響を及ぼすので、上限は1.0%とする。
B:0.0010〜0.0100%
Bは、必要に応じて添加する元素であり、熱延板の変態相を均一分散化し、耐リジング性を向上させる作用を呈する。0.0010%以上の含有量でB添加の効果が顕著になるが、0.0100%を越える過剰な添加は、熱間加工性や溶接性の低下を招く。
【0031】
γmax:20以上80未満
本発明では、熱延板をAc1点以上のフェライト+オーステナイトの2相域に加熱する焼鈍を連続焼鈍炉によって行い、フェライト+マルテンサイトの2相組織を得る複相化焼鈍を有効利用することに特徴がある。したがって、本発明においては、γmaxの規定は重要な事項になる。すなわち、γmaxが20未満であると、複相化焼鈍で得られるマルテンサイト量が少なく、中間圧延工程でフェライト相に十分な歪みの蓄積がなされず、フェライトバンドの再結晶が促進されないために、r値および耐リジング性の改善が得られない。一方、γmaxを高めるためには、C、N、MnおよびNi等のオーステナイト形成元素の含有量を多くする必要があるが、これらは、鋼材の硬質化やコストの上昇を招くためγmaxは80未満にする必要がある。
【0032】
複相化焼鈍温度:Ac 1 点〜1100℃
高温でフェライト+オーステナイトの2相組織を得て、複相化焼鈍後に、フェライト+マルテンサイトの2相組織を得るためには、少なくともAc1点以上の温度で焼鈍を行うことが必須となる。しかし、1100℃を越える温度で焼鈍を行うと、結晶粒径の粗大化、さらには、高温強度の低下による鋼板の切断の危険性が高まる。したがって、複相化焼鈍の温度は、Ac1点以上1100℃以下の範囲とする。
【0033】
中間冷延圧延率:10〜50%
複相化焼鈍後の中間圧延にて、フェライト相に歪みを蓄積させるのであるが、10%より小さい圧延率では、その効果が得られない。また、50%を越える中間圧延を施すと、仕上げ圧延の圧延率が小さくなり、r値に有効な集合組織の発達が得られないため、中間圧延の圧延率は10%以上50%以下とする。
また、中間焼鈍は、マルテンサイトを炭化物とフェライトに再結晶させるために長時間焼鈍が必要となり、仮に、連続焼鈍炉で製造しようとすると、非常に効率が悪く、経済的でないため、箱型焼鈍炉による長時間焼鈍とする。
【0034】
大角粒界の割合:90%以上、圧延面からの小さいずれの結晶面の比:5以上
フェライト系ステンレス鋼板のプレス加工において、その加工性を示す因子として、平均的なr値を示すrが用いられてきた。しかしながら、実際のプレス加工では、r値が高くともΔrが大きく異方性が大きい材料や、リジングの発生が著しい材料では、加工できない場合が多い。実際のプレス加工において好ましい材料は、異方性が小さく、深絞り性と耐リジング性を兼ね備えた材料である。そこで、図1に示した事前評価結果から、これらの特性を満足させるためには、結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が90%以上であり、(板厚の1/2深さにおける圧延面の{111}面からのずれが5°以内の結晶粒の面積)/(板厚の1/2深さにおける圧延面の{100}面からのずれが5°以内の結晶粒の面積)を5以上に規定したものである。
【0035】
【実施例】
表1中にB、C、D、Eに示す化学組成の鋼を溶製し、スラブとした後、熱間圧延機にて板厚4.0mmの熱延板とした。この熱延板を、複相化焼鈍を施す製造方法として、表4に示す複相化焼鈍温度、中間圧延率を適用して、熱延板→複相化焼鈍→中間圧延→中間焼鈍→仕上げ圧延→仕上げ焼鈍を行い、板厚0.8mmの焼鈍板とした。また、前述の熱延板を従来の製造方法、すなわち、熱延板→熱延板焼鈍(830℃×均熱9hr)→仕上げ冷延→仕上げ焼鈍(1回冷延焼鈍の製造方法)および熱延板→熱延板焼鈍(830℃×均熱9hr)→中間冷延→中間焼鈍→仕上げ冷延→仕上げ焼鈍(2回冷延焼鈍の製造方法)で作製した。
【0036】
上記方法により得られた鋼板を供試材として、下記の方法でr、Δrおよび耐リジング性を測定した。
r値:JIS13B号試験片を用い15%の引張歪みを与えた後、rL、rDおよびrTを求めた。rL、rDおよびrTは、それぞれ圧延方向、圧延方向に対して45°方向および圧延方向に対して90°方向のr値を示す。上記の方法で求めたr値から、rおよびΔrはr=(rL+2rD+rT)/4、Δr=(rL−2rD+rT)/2により求めた。
【0037】
耐リジング性:圧延方向から採取したJIS5号試験片に20%の引張歪みを与えた後、耐リジング性の判定を行った。耐リジング性の判定は、Aが最も耐リジング性が良いもの、Dが最も耐リジング性が悪いものとし、A、B、C、Dの4段階評価を行った。
【0038】
プレス加工テスト:ポンチの寸法が200mm×270mm、絞り深さが100mm、ダイ肩半径が10mmの角筒絞りを行い、成形できたものは○、割れが生じたものは×と判定した。
結晶方位分布測定:EBSP法により板厚1/2深さにおける圧延面について、圧延方向;500μm、幅方向;800μmの範囲にわたって測定した。
【0039】
上記した各化学組成の鋼の各製造方法および各製造条件で得られた特性値を表4に合わせて示す。
また、各鋼板の結晶粒界のうち、隣接する結晶粒の方向のずれが15°以上である大角粒界の割合および({111}面からのずれが5°以内の結晶粒の面積)/({100}面からのずれが5°以内の結晶粒の面積)の値とプレス加工テスト結果の関係を図1に示す。
本発明の請求項に記載された要件を満たすものはすべてプレス加工テストにおいても、割れ等の不具合は生じず、良好であった。しかしながら、複相化焼鈍温度がAc1点温度より低いもの、中間圧延率が10%に満たないものでは、プレス加工時に割れが発生した。
【0040】
Figure 0004428550
【0041】
【発明の効果】
以上に説明したように、本発明によれば、製鋼コストの増大や熱延鋼帯の生産性低下を招くことなく、シンク、各種器物およびコンロ用バーナー等の家庭用機器の部品、燃料タンク、給油管、モーターケース、カバーおよびフランジ等の産業用機器の部品において、主にプレス加工に供される深絞り性および耐リジング性に優れたフェライト系ステンレス鋼板が製造できる。
【図面の簡単な説明】
【図1】 各鋼板の結晶粒界のうち、隣接する結晶粒の方向のずれが15°以上である大角粒界の割合および({111}面からのずれが5°以内の結晶粒の面積)/({100}面からのずれが5°以内の結晶粒の面積)の値とプレス加工性の関係を示す図(実施例、比較例、従来例を含む)。[0001]
[Industrial application fields]
INDUSTRIAL APPLICABILITY The present invention is mainly used for press processing in parts of household equipment such as sinks, various items and stove burners, and parts of industrial equipment such as fuel tanks, oil supply pipes, motor cases, covers and flanges. The present invention relates to a ferritic stainless steel plate excellent in ridging resistance and deep drawing workability and a method for producing the steel plate. In addition, the steel plate in this invention shall contain a steel plate and a steel strip.
[0002]
[Prior art]
Ferritic stainless steel represented by SUS430 has good corrosion resistance, does not contain expensive Ni, and has economic advantages compared to austenitic stainless steel. Widely used. However, in recent years, in the press forming of stainless steel, more severe processing is often performed, and a ferritic stainless steel plate having further excellent workability is demanded.
[0003]
The workability of a ferritic stainless steel sheet is generally inferior to that of an austenitic stainless steel, and unique wrinkle-like surface irregularities called ridging are produced during press forming. Therefore, in ferritic stainless steel, if the press workability and ridging resistance are improved, the cheaper ferritic ferritic material, which has been difficult to apply in the past, has been used where austenitic stainless steel has been used due to severe workability. Stainless steel can be used.
[0004]
By the way, it is known that the press formability of ferritic stainless steel depends on the r value. As an index indicating the r value, r indicating an average r value is used. Many techniques for improving the r value have been tried so far. For example, Japanese Patent Application Laid-Open No. 53-48018 proposes a technique for improving the r value by reducing C and N as much as possible and adding one or both of Ti and Nb. However, this technique takes time for refining in order to reduce C and N, and the cost of raw materials increases due to the addition of expensive Ti and Nb, which increases the cost of steelmaking.
[0005]
In order to improve the ridging property, a technique using so-called delay rolling in which a material is temporarily kept waiting during rolling to increase the time between passes is proposed in, for example, Japanese Patent Laid-Open No. 62-199721. . However, since the above technique is a method of giving a large strain in a low temperature region, it causes a biting failure and a shape failure, and also increases a rolling time, resulting in a decrease in productivity. Therefore, this is not an economical method.
[0006]
[Problems to be solved by the invention]
The present invention has been devised to solve such a problem, and has the deep drawability required for press working without increasing the steelmaking cost and reducing the productivity of the hot-rolled steel strip. And, it is an object to propose a ferritic stainless steel having satisfactory ridging resistance and a work heat treatment technique after hot rolling that can exhibit such characteristics.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the ferritic stainless steel excellent in ridging resistance and deep drawing workability of the present invention is C: 0.10% or less, Si: 1.5% or less, Mn: 1 0.0% or less, P: 0.050% or less, S: 0.015% or less, Ni: 2.0% or less, Cr: 10.0 to 20.0%, Al: 0.10% or less, N: If necessary, Ti: 0.05% or less, Nb: 0.05% or less, Mo: 1.0% or less, Cu: 1.0% or less, B: 0.00% or less. 1 type or 2 types or more of 0010-0.0100%, the balance consists of Fe and inevitable impurities, and γmax defined by the formula (5) is 20 or more and less than 80, The deviation of the orientation of adjacent crystal grains in the grain boundary of the rolled surface at 1/2 depth is 15 ° or more. The ratio of a certain large-angle grain boundary is 90% or more, and further has the formula (6).
[0008]
Formula (5)
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 formula (6)
X / Y ≧ 5
Where X is the area of the crystal grains within 5 ° of the rolled surface at a depth of 1/2 of the plate thickness, and Y is {100 of the rolled surface at the depth of 1/2 of the plate thickness. } The area of the crystal grain within 5 ° from the plane.
[0009]
Further, in order to achieve the object, the production method of the present invention, in producing the ferritic stainless steel, a steel slab composed of the components described in each section, hot-rolled steel strip through hot rolling When producing a cold-rolled steel sheet or steel strip by combining cold rolling and annealing, the hot-rolled steel strip is heated to a ferrite-austenite two-phase region of Ac 1 point or higher and 1100 ° C or lower. Is performed by a continuous annealing furnace, followed by further intermediate cold rolling at a rolling rate of 10% or more and 50% or less, followed by annealing in a box furnace, followed by finish cold rolling and recrystallization annealing. To do.
[0010]
[Embodiments of the present invention]
In order to solve the above-mentioned problems, the present inventors have developed an alloy composition and metal for improving the deep drawability and ridging resistance of a ferritic stainless steel sheet without increasing the steelmaking cost and inviting the productivity of a hot-rolled steel strip. We have studied in detail the microstructure and the heat treatment after hot rolling. In addition, the selected materials were subjected to press working, and the characteristics required for the press working were investigated. As a result, hot-rolled sheet annealing was subjected to multi-phase annealing at Ac 1 point or higher, and the obtained (ferrite + martensite) two-phase structure was processed by cold rolling, and then annealed in a box furnace. It has been found that the ferritic stainless steel sheet that has undergone finish cold rolling and recrystallization annealing has markedly improved ridging resistance and deep drawability. In addition, the characteristics required for press working were clarified. The present invention has been completed based on this finding. Hereinafter, embodiments of the invention will be described based on experimental results.
[0011]
Using a hot-rolled sheet with a thickness of 4 mm and having a chemical composition shown in steel type A in Table 1, in a laboratory, hot-rolled sheet → double phase annealing (1050 ° C. × soaking 0 sec) → intermediate cold rolling → Intermediate annealing (830 ° C. × soaking 9 hr) → finish cold rolling → finish annealing was performed to obtain an annealed plate having a thickness of 0.8 mm. Here, the cold rolling reduction distribution of intermediate rolling and finish rolling was changed. Moreover, the above-mentioned hot-rolled sheet is manufactured by a conventional manufacturing method, that is, hot-rolled sheet → hot-rolled sheet annealing (830 ° C. × 9 hr) → finished cold-rolled → finished annealing (one-time cold-rolled annealing) and hot-rolled sheet → hot-rolled. It was produced by sheet annealing (830 ° C. × 9 hr) → intermediate cold rolling → intermediate annealing → finish cold rolling → finish annealing (twice cold rolling annealing).
[0012]
Figure 0004428550
[0013]
Test pieces were collected from the annealed plates produced in the above steps, and subjected to r value measurement, ridging determination, crystal orientation distribution measurement by EBSP method (Electron Backscattering Pattern), and press working test. Note that r and Δr are r = (r L + 2r D + r T ) / 4 and Δr = (r L −2r D + r T ) / 2, respectively. However, r L , r D and r T indicate r values in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction, respectively. In addition, the determination of ridging resistance was evaluated by a four-step evaluation of A, B, C, and D, with A being the best ridging resistance and D being the worst ridging resistance. Table 2 shows criteria for determining ridging resistance.
[0014]
Figure 0004428550
[0015]
The crystal orientation distribution measurement by the EBSP method was obtained by measuring the crystal orientation distribution in the rolling direction: 500 μm, the width direction: 800 μm for each steel plate at the half depth of the plate thickness. Based on the data, the ratio of large-angle grain boundaries whose deviation of orientation of adjacent crystal grains is 15 ° or more and (area of crystal grains within 5 ° of deviation from {111} plane) / (from {100} plane The area of crystal grains with a deviation within 5 ° was analyzed.
[0016]
In the press work test, a rectangular tube drawing with a punch size of 200 mm × 270 mm, a drawing depth of 100 mm, and a die shoulder radius of 10 mm was performed. . Table 3 shows the influence of cold rolling reduction distribution of intermediate rolling and finish rolling on the results of r, Δr, ridging judgment, crystal distribution analysis by EBSP method, and press working test.
[0017]
Figure 0004428550
[0018]
From Table 3, when the ratio of the large-angle grain boundary is large, the ridging resistance is improved. Generally, ridging is caused by a group (colony) of crystal grains having a close crystal orientation existing in a cold-rolled annealed plate. The origin of the colony is that the coarse non-recrystallized ferrite grains extending in the rolling direction formed by the solidified columnar crystals remaining after hot rolling annealing are dispersed in the crystal orientation by recrystallization even during annealing after cold rolling. Since it is small, colonies are formed. Inside the colony, it appears to have a fine crystal structure, but since the dispersion of crystal orientation is small, the colony deforms like a large single crystal when subjected to plastic deformation such as press molding, and the plasticity of each colony is different. Ridging occurs due to the difference in directionality.
[0019]
Here, the crystal grain boundary inside the colony has a small deviation in the orientation of adjacent crystals, and there are very few large-angle grain boundaries with a deviation of 15 ° or more. That is, in a steel plate with a small proportion of large angle grain boundaries, lysing occurs with a large amount of colonies, whereas when the proportion of large angle grain boundaries is large, the formation of colonies that cause ridging of the steel plate is small and ridging resistance In particular, when the ratio of the large-angle grain boundaries is 90% or more, the generation of ridging is reduced and sufficient ridging resistance higher than the ridging judgment B is obtained.
[0020]
Also, the {111} plane is a good surface for deep drawing and the {100} plane is a surface that adversely affects the r value. The superiority and inferiority of the value can be clearly defined That is, (area of crystal grains within 5 ° of deviation from {111} plane of rolled surface at 1/2 depth of plate thickness) / ({100} surface of rolled surface at 1/2 depth of plate thickness) (The area of the crystal grains with a deviation from 5 ° within 5 °) corresponds well to r, particularly when the area of the {111} plane / the area of the {100} plane is 5 or more, and this tendency becomes remarkable. That's it.
In Table 3, what can be formed by the press working test is that the {111} plane area / {100} plane area is 5 or more, while the {111} plane area / {100} plane area. When the diameter was less than 5, the deep drawability was insufficient, and severe cracking occurred during pressing.
[0021]
However, in the conventional cold-rolled annealing material, the {111} plane area / {100} plane area is 5.5 and r is sufficiently high at 1.40, but cracking occurs in the press work test. ing. In this steel sheet, the proportion of large-angle grain boundaries in which the deviation in orientation of adjacent crystal grains is 15 ° or more of the crystal grain boundaries is relatively low at 81%, ridging resistance is low, and Δr indicating r-value anisotropy. The crack was generated at the corner because of the large. That is, even if the {111} texture is developed, if there are few large-angle grain boundaries and colonies are formed, satisfactory press formability cannot be obtained, and the area of {111} plane / area of {100} plane is It was revealed that the ratio of 5 or more and the ratio of large-angle grain boundaries required 90% or more.
[0022]
The reason why the deep drawability and ridging resistance are improved in the production method in which the multiphase annealing is performed is considered as follows.
First, when a hot-rolled sheet of ferritic stainless steel is subjected to a multiphase annealing at Ac 1 point or more, a (ferrite + martensite) two-phase structure is obtained. Since the ferrite phase is much softer than the martensite phase, strain is accumulated in the ferrite phase when processing is performed by intermediate rolling. By annealing this in a box furnace for a long time, the martensite phase sufficiently precipitates carbides and recrystallizes into the ferrite phase, and at the same time, recrystallization of the ferrite phase with very accumulated strain is promoted. . At this time, recrystallization of coarse ferrite grains derived from solidified columnar crystals that cause ridging is also promoted, the crystal orientation of the recrystallized grains is greatly dispersed, the formation of colonies is inhibited, and the ratio of large-angle grain boundaries Increase.
[0023]
In Table 3, along with the increase in the intermediate rolling rate after the multiphase annealing of the production method of the present invention, the proportion of large-angle grain boundaries in which the deviation of the orientation of adjacent crystal grains among the grain boundaries is 15 ° or more increases. The results of improved ridging properties confirm this.
In addition, since the formation of colonies is inhibited after box-type annealing, the formation of {100} colonies, which lowers the r value that tends to remain in the normal process, is small, and is effective for the r value by the subsequent finish rolling and finish annealing. The {111} texture was developed, and a steel sheet having an area of {111} face / area of {100} face of 5 or more and a large-angle grain boundary ratio of 90% or more could be produced.
[0024]
Next, the reasons for limiting the components, characteristics, and production conditions of the ferritic stainless steel of the present invention will be described. In addition, the% display in the following description shows mass% altogether. C : 0.10% or less C is an alloy element exhibiting an effect of increasing γmax, and a sufficient amount of martensite and its hardness in a two-phase structure (ferrite + martensite) obtained after double phase annealing. It works effectively to obtain. However, it is a component that increases the strength after cold rolling annealing, and if included excessively, the ductility is reduced, so the upper limit of the C content was 0.10%.
[0025]
Si: 1.5% or less Si is an alloy component added as a deoxidizer during steelmaking, but has a high solid solution strengthening ability, and if contained excessively, the material is hardened and the ductility is lowered. The upper limit was set at 1.5%.
Mn: 1.0% or less Mn is an austenite forming element and can be used to control γmax. Moreover, since the solid solution strengthening ability is small, the influence of curing the material is small. However, if it is contained excessively, it causes adverse effects such as generation of Mn-based fumes during welding, so the upper limit of its content was set to 1.0%.
[0026]
P: 0.005% or less P lowers the hot workability in accordance with its content, so the upper limit of its content was made 0.005%.
S: 0.015% or less S is segregated at the crystal grain boundaries and embrittles the crystal grain boundaries as the content increases. Therefore, the upper limit of the content is set to 0.015%.
Ni: 2.0% or less Ni, like Mn, is an austenite-forming element and can be used for γmax control. However, excessive content of Ni causes an increase in cost, so the upper limit of the content was set to 2.0%.
[0027]
Cr: 10.0-20.0%
In order to obtain the corrosion resistance as stainless steel, it is necessary to contain 10.0% or more of Cr. However, when the amount of Cr increases, the toughness and workability are reduced, so the content is made 20.0% or less.
Al: 0.10% or less Al is an alloy component that is added as a deoxidizer during steelmaking, but excessive addition increases nonmetallic inclusions and causes toughness reduction and surface defects. The upper limit of the amount is 0.10%.
[0028]
N: 0.05% or less N is also an element exhibiting an effect of increasing γmax in the same manner as C. It increases austenite generated during double phase annealing, works effectively for fine structure, and improves ridging resistance. . However, it is a component that increases the strength after cold rolling annealing, and if it is excessively contained, it lowers the ductility, so the upper limit of its content was made 0.05%.
Ti: 0.05% or less Ti is an element that fixes C and N and improves workability. However, adding Ti causes an increase in steel material cost, so the upper limit of its content is 0.05%. It was.
[0029]
Nb: 0.05% or less Nb is an element that fixes C and N and improves workability. However, if Nb is added, the steel material cost increases, so the upper limit of its content is 0.05%. It was.
Mo: 1.0% or less Mo is an element added as necessary, and contributes to improvement of corrosion resistance. However, if Mo is added excessively, the hot workability deteriorates, so the upper limit of its content is 1.0%.
[0030]
Cu: 1.0% or less Cu is a component mixed from scrap or the like at the time of melting, and if its content increases, it adversely affects hot workability and corrosion resistance, so the upper limit is made 1.0%.
B: 0.0010 to 0.0100%
B is an element that is added as necessary, and has the effect of uniformly dispersing the transformed phase of the hot-rolled sheet and improving ridging resistance. When the content is 0.0010% or more, the effect of addition of B becomes remarkable, but excessive addition exceeding 0.0100% causes a decrease in hot workability and weldability.
[0031]
[gamma] max: 20 or more and less than 80 In the present invention, annealing is performed in a continuous annealing furnace to heat a hot-rolled sheet in a two-phase region of ferrite and austenite at Ac 1 point or more, and a two-phase structure of ferrite and martensite is obtained. It is characterized by effectively using the obtained multiphase annealing. Therefore, in the present invention, the definition of γmax is an important matter. That is, if γmax is less than 20, the amount of martensite obtained by the multi-phase annealing is small, sufficient accumulation of strain is not made in the ferrite phase in the intermediate rolling process, and recrystallization of the ferrite band is not promoted. The r value and ridging resistance cannot be improved. On the other hand, in order to increase γmax, it is necessary to increase the content of austenite-forming elements such as C, N, Mn, and Ni. However, these cause hardness of the steel material and increase in cost, so γmax is less than 80. It is necessary to.
[0032]
Duplex annealing temperature: Ac 1 point to 1100 ° C
In order to obtain a two-phase structure of ferrite + austenite at a high temperature and obtain a two-phase structure of ferrite + martensite after multi-phase annealing, it is essential to perform annealing at a temperature of at least Ac 1 point or more. However, when annealing is performed at a temperature exceeding 1100 ° C., the risk of cutting the steel sheet due to the coarsening of the crystal grain size and the decrease in the high-temperature strength is increased. Therefore, the temperature of the multiphase annealing is set to a range of Ac 1 point or more and 1100 ° C. or less.
[0033]
Intermediate cold rolling ratio: 10-50%
In the intermediate rolling after the duplex annealing, strain is accumulated in the ferrite phase, but the effect cannot be obtained at a rolling rate smaller than 10%. Further, if intermediate rolling exceeding 50% is performed, the rolling rate of finish rolling becomes small and the development of a texture effective for the r value cannot be obtained. Therefore, the rolling rate of intermediate rolling is 10% or more and 50% or less. .
Also, intermediate annealing requires long-time annealing to recrystallize martensite into carbide and ferrite, and if it is attempted to manufacture in a continuous annealing furnace, it is very inefficient and not economical. Long-term annealing with a furnace.
[0034]
Ratio of large-angle grain boundaries: 90% or more, ratio of any small crystal face from rolled surface: 5 or more In press working of ferritic stainless steel sheet, average r value as a factor indicating its workability R has been used. However, in actual pressing, even if the r value is high, it is often impossible to process a material having a large Δr and a large anisotropy or a material in which ridging is significant. A material preferable for actual pressing is a material having a small anisotropy and having both deep drawability and ridging resistance. Therefore, from the preliminary evaluation results shown in FIG. 1, in order to satisfy these characteristics, the ratio of the large-angle grain boundaries in which the deviation of the orientation of the adjacent crystal grains among the grain boundaries is 15 ° or more is 90% or more. (The area of crystal grains within 5 ° of deviation from the {111} plane of the rolled surface at ½ depth of the plate thickness) / ({100} of the rolled surface at ½ depth of the plate thickness) The area of crystal grains whose deviation from the surface is within 5 ° is defined as 5 or more.
[0035]
【Example】
In Table 1, steels having chemical compositions indicated by B, C, D, and E were melted to form slabs, and then hot rolled sheets having a thickness of 4.0 mm were obtained using a hot rolling mill. As a manufacturing method for subjecting this hot-rolled sheet to multi-phase annealing, applying the multi-phase annealing temperature and intermediate rolling rate shown in Table 4, hot-rolled sheet → multi-phase annealing → intermediate rolling → intermediate annealing → finishing Rolling → finish annealing was performed to obtain an annealing plate having a thickness of 0.8 mm. Moreover, the above-mentioned hot-rolled sheet is manufactured by a conventional manufacturing method, that is, hot-rolled sheet → hot-rolled sheet annealing (830 ° C. × soaking 9 hours) → finish cold rolling → finish annealing (manufacturing method of one cold-rolled annealing) and heat. It was produced by rolled sheet → hot-rolled sheet annealing (830 ° C. × soaking 9 hr) → intermediate cold rolling → intermediate annealing → finish cold rolling → finish annealing (manufacturing method of twice cold rolling annealing).
[0036]
Using the steel sheet obtained by the above method as a test material, r, Δr, and ridging resistance were measured by the following methods.
r value : After giving a tensile strain of 15% using a JIS No. 13B test piece, r L , r D and r T were determined. r L , r D and r T represent r values in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction, respectively. From the r value obtained by the above method, r and Δr were obtained by r = (r L + 2r D + r T ) / 4 and Δr = (r L −2r D + r T ) / 2.
[0037]
Ridging resistance : 20% tensile strain was applied to a JIS No. 5 specimen taken from the rolling direction, and then ridging resistance was determined. For the determination of ridging resistance, A was the one with the best ridging resistance and D was the one with the lowest ridging resistance, and four-level evaluation of A, B, C, and D was performed.
[0038]
Press working test : A rectangular tube drawing with a punch size of 200 mm x 270 mm, a drawing depth of 100 mm, and a die shoulder radius of 10 mm was performed.
Measurement of crystal orientation distribution : Measured over the range of rolling direction: 500 μm, width direction: 800 μm on a rolled surface at a plate thickness of 1/2 depth by the EBSP method.
[0039]
Table 4 shows the characteristic values obtained by the respective production methods and production conditions of the steels having the chemical compositions described above.
Further, among the crystal grain boundaries of each steel plate, the ratio of large-angle grain boundaries whose deviation in the direction of adjacent crystal grains is 15 ° or more and (the area of crystal grains whose deviation from the {111} plane is within 5 °) / FIG. 1 shows the relationship between the value of (the area of crystal grains whose deviation from the {100} plane is within 5 °) and the press work test results.
Anything that satisfies the requirements described in the claims of the present invention did not cause defects such as cracks in the press work test, and was satisfactory. However, in the case where the duplex annealing temperature is lower than the Ac 1 point temperature and the intermediate rolling rate is less than 10%, cracks occurred during press working.
[0040]
Figure 0004428550
[0041]
【The invention's effect】
As described above, according to the present invention, without incurring an increase in steelmaking costs and a decrease in the productivity of hot-rolled steel strip, parts of household equipment such as a sink, various items and a stove burner, a fuel tank, Ferritic stainless steel sheets with excellent deep drawability and ridging resistance, which are mainly used for press processing, can be manufactured for parts of industrial equipment such as oil supply pipes, motor cases, covers and flanges.
[Brief description of the drawings]
FIG. 1 shows the ratio of large-angle grain boundaries in which the deviation in the direction of adjacent crystal grains is 15 ° or more among the grain boundaries of each steel sheet, and the area of crystal grains in which deviation from the ({111} plane is within 5 ° ) / (A graph showing the relationship between the value of (the area of crystal grains within 5 ° of deviation from the {100} plane) and press workability (including examples, comparative examples, and conventional examples).

Claims (3)

質量%で、C:0.10%以下、Si:1.5%以下、Mn:1.0%以下、P:0.050%以下、S:0.015%以下、Ni:2.0%以下、Cr:10.0〜20.0%、Al:0.10%以下、N:0.05%以下を含有し、残部がFeおよび不可避的な不純物からなり、かつ式(1)で定義されるγmaxが20以上80未満であり、さらに、板厚の1/2深さにおける圧延面の結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が90%以上であり、さらにまた、式(2)を満足することを特徴とする耐リジング性および深絞り性に優れたフェライト系ステンレス鋼板。
式(1)
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-52Al+470N+189
式(2)
X/Y≧5
ただし、Xは板厚の1/2深さにおける圧延面の{111}面からのずれが5゜以内の結晶粒の面積で、Yは板厚の1/2深さにおける圧延面の{100}面からのずれが5°以内の結晶粒の面積。
C: 0.10% or less, Si: 1.5% or less, Mn: 1.0% or less, P: 0.050% or less, S: 0.015% or less, Ni: 2.0% Hereinafter, Cr: 10.0 to 20.0%, Al: 0.10% or less, N: 0.05% or less, the balance is made of Fe and inevitable impurities, and is defined by the formula (1) The ratio of large-angle grain boundaries in which γmax is 20 or more and less than 80, and the deviation of the orientation of adjacent crystal grains is 15 ° or more among the grain boundaries of the rolled surface at ½ depth of the plate thickness is A ferritic stainless steel sheet excellent in ridging resistance and deep drawability, characterized by being 90% or more and satisfying the formula (2).
Formula (1)
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-52Al + 470N + 189
Formula (2)
X / Y ≧ 5
Where X is the area of the crystal grains within 5 ° of the rolled surface at a depth of 1/2 of the plate thickness, and Y is {100 of the rolled surface at the depth of 1/2 of the plate thickness. } The area of the crystal grain within 5 ° from the plane.
質量%で、C:0.10%以下、Si:1.5%以下、Mn:1.0%以下、P:0.050%以下、S:0.015%以下、Ni:2.0%以下、Cr:10.0〜20.0%、Al:0.10%以下、N:0.05%以下を含有し、さらに、Ti:0.05%以下、Nb:0.05%以下、Mo:1.0%以下、Cu:1.0%以下、B:0.0010〜0.0100%の1種または2種以上を含み、残部がFeおよび不可避的な不純物からなり、かつ式(3)で定義されるγmaxが20以上80未満であり、さらに、板厚の1/2深さの圧延面における結晶粒界のうち隣接する結晶粒の方位のずれが15°以上である大角粒界の割合が90%以上であり、さらにまた、式(4)を満足することを特徴とする耐リジング性および深絞り性に優れたフェライト系ステンレス鋼板。
式(3)
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189式(4)
X/Y≧5
ただし、Xは板厚の1/2深さにおける圧延面の{111}面からのずれが5゜以内の結晶粒の面積で、Yは板厚の1/2深さにおける圧延面の{100}面からのずれが5°以内の結晶粒の面積。
C: 0.10% or less, Si: 1.5% or less, Mn: 1.0% or less, P: 0.050% or less, S: 0.015% or less, Ni: 2.0% Cr: 10.0 to 20.0%, Al: 0.10% or less, N: 0.05% or less, Ti: 0.05% or less, Nb: 0.05% or less, Including one or more of Mo: 1.0% or less, Cu: 1.0% or less, B: 0.0010 to 0.0100%, the balance being Fe and inevitable impurities, and the formula ( Γmax defined in 3) is 20 or more and less than 80, and further, a large-angle grain having a deviation of the orientation of adjacent crystal grains of 15 ° or more among grain boundaries on a rolling surface having a depth of ½ of the plate thickness. Ridging resistance and deep drawability characterized in that the ratio of the boundary is 90% or more and further satisfies the formula (4) An excellent ferritic stainless steel sheet.
Formula (3)
γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 Formula (4)
X / Y ≧ 5
Where X is the area of the crystal grains within 5 ° of the rolled surface at a depth of 1/2 of the plate thickness, and Y is {100 of the rolled surface at the depth of 1/2 of the plate thickness. } The area of the crystal grain within 5 ° from the plane.
請求項1または2に記載のフェライト系ステンレス鋼を製造するにあたり、それぞれの項に記載された成分からなる鋼スラブを、熱間圧延を経て熱延鋼帯となし、冷間圧延と焼鈍を組み合わせて冷延鋼板または鋼帯を製造する際に、熱延鋼帯をAc1点以上1100℃以下のフェライト+オーステナイトの2相領域に加熱する複相化焼鈍を連続焼鈍炉によって行った後、さらに圧延率10%以上50%以下の中間冷間圧延を行い、その後、箱型炉による焼鈍を施し、仕上げ冷間圧延と再結晶焼鈍を行なうことを特徴とする耐リジング性および深絞り性に優れたフェライト系ステンレス鋼板の製造方法。In producing the ferritic stainless steel according to claim 1 or 2, a steel slab comprising the components described in the respective items is formed into a hot-rolled steel strip through hot rolling, and a combination of cold rolling and annealing. When producing a cold-rolled steel sheet or a steel strip, after performing a dual-phase annealing in which a hot-rolled steel strip is heated to a two-phase region of ferrite + austenite of Ac 1 point or more and 1100 ° C. or less by a continuous annealing furnace, It is excellent in ridging resistance and deep drawability, characterized by performing intermediate cold rolling at a rolling rate of 10% or more and 50% or less, followed by annealing in a box furnace, finish cold rolling and recrystallization annealing. A method for producing a ferritic stainless steel sheet.
JP2001079762A 2001-03-21 2001-03-21 Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same Expired - Lifetime JP4428550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079762A JP4428550B2 (en) 2001-03-21 2001-03-21 Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079762A JP4428550B2 (en) 2001-03-21 2001-03-21 Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002275595A JP2002275595A (en) 2002-09-25
JP4428550B2 true JP4428550B2 (en) 2010-03-10

Family

ID=18936148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079762A Expired - Lifetime JP4428550B2 (en) 2001-03-21 2001-03-21 Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4428550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068063A (en) 2017-12-08 2019-06-18 주식회사 포스코 High-strength ferritic stainless steel and method for manufacturing thereof
EP4261309A1 (en) * 2022-04-13 2023-10-18 ThyssenKrupp Steel Europe AG Cold-rolled steel sheet product and method for producing a cold-rolled steel sheet product

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545335B2 (en) * 2001-03-21 2010-09-15 日新製鋼株式会社 Fe-Cr steel sheet having excellent ridging resistance and method for producing the same
KR101279052B1 (en) 2009-12-23 2013-07-02 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR101316907B1 (en) 2009-12-28 2013-10-11 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
KR101279051B1 (en) 2009-12-28 2013-07-02 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
WO2017098983A1 (en) * 2015-12-11 2017-06-15 新日鐵住金株式会社 Molded product manufacturing method and molded product
JP6261648B2 (en) * 2016-05-16 2018-01-17 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet for exhaust pipe flange parts and manufacturing method
JP7320936B2 (en) * 2018-11-16 2023-08-04 日鉄ステンレス株式会社 bar steel
WO2022085708A1 (en) * 2020-10-23 2022-04-28 日鉄ステンレス株式会社 Ferritic stainless steel, and method for manufacturing ferritic stainless steel
KR102424980B1 (en) * 2020-11-19 2022-07-25 주식회사 포스코 Ferritic stainless steel with improved strength, workability and corrosion resistance
WO2023136038A1 (en) 2022-01-11 2023-07-20 日鉄ステンレス株式会社 Ferritic stainless steel sheet for clad sheet, production method therefor, and clad sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068063A (en) 2017-12-08 2019-06-18 주식회사 포스코 High-strength ferritic stainless steel and method for manufacturing thereof
EP4261309A1 (en) * 2022-04-13 2023-10-18 ThyssenKrupp Steel Europe AG Cold-rolled steel sheet product and method for producing a cold-rolled steel sheet product

Also Published As

Publication number Publication date
JP2002275595A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3584881B2 (en) Ferritic stainless steel sheet with excellent formability
KR20150105476A (en) High-strength cold-rolled steel sheet having excellent bendability
JP4428550B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP5157257B2 (en) Low yield ratio steel sheet
JP5850090B2 (en) Ferritic stainless steel sheet with excellent formability
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2020111792A (en) Ferritic stainless steel sheet, and manufacturing method thereof
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
KR20190044689A (en) Steel plate
JP2003155543A (en) Ferrite stainless steel having excellent deep drawability and reduced plane anisotropy, and production method therefor
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JP3456365B2 (en) High gloss stainless steel sheet excellent in ridging resistance and workability and method for producing the same
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2014181403A (en) Ferritic stainless steel sheet
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4428550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term