WO2018198799A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
WO2018198799A1
WO2018198799A1 PCT/JP2018/015397 JP2018015397W WO2018198799A1 WO 2018198799 A1 WO2018198799 A1 WO 2018198799A1 JP 2018015397 W JP2018015397 W JP 2018015397W WO 2018198799 A1 WO2018198799 A1 WO 2018198799A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
axial flow
axial
radially
Prior art date
Application number
PCT/JP2018/015397
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 佐久間
大介 小笠原
村上 淳
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880026283.3A priority Critical patent/CN110537026A/en
Publication of WO2018198799A1 publication Critical patent/WO2018198799A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps

Definitions

  • the present invention relates to a blower.
  • Patent Document 1 describes an axial fan motor in which coil windings are arranged to face a rotor magnet with a gap in the axial direction.
  • the axial fan motor as described above blows air by sending air located on one side in the axial direction of the impeller blade part to the other side in the axial direction by the impeller blade part. For this reason, the smaller the radial dimension of the impeller blade portion, the lower the amount of air that can be sent by the axial fan motor. Therefore, when the radial size of the impeller blade portion needs to be relatively small due to restrictions on the location where the axial fan motor is installed, the air flow rate of the axial fan motor may not be sufficiently obtained. It was.
  • an object of the present invention is to provide a blower that can improve the amount of blown air.
  • One aspect of the blower of the present invention includes an impeller that can rotate around a central axis that extends in the vertical direction, and a motor that rotates the impeller around the central axis, and the impeller has an outer periphery that extends in the axial direction.
  • An impeller hub having a surface, a plurality of axial flow blade portions extending radially outward from the outer peripheral surface of the impeller hub and arranged side by side along the circumferential direction, and the axial flow blade portion provided on the outer peripheral surface of the impeller hub
  • a centrifugal blade portion connected to the radially inner end portion of the axial flow blade portion on the front side in the rotational direction of the radially inner end portion, and the outer peripheral surface of the impeller hub is directed from the upper side to the lower side. It is an inclined surface with an outer diameter increasing, and the axial-flow blade portion has a first blade surface facing downward, and the first blade surface is lower as it goes from the front side in the rotational direction to the rear side in the rotational direction.
  • the centrifugal blade portion located at And the upper surface of the centrifugal blade portion is connected to the upper surface of the axial flow blade portion, the centrifugal blade portion is connected to the upper surface of the centrifugal blade portion and has a second blade surface facing the front side in the rotation direction,
  • the second blade surface is an inclined surface located on the rear side in the rotational direction as it goes from the radially inner side to the radially outer side, and the radially outer end of the second blade surface is a surface of the impeller. It connects with the connection surface extended below from the edge part of the radial direction inner side of a said 1st blade
  • a blower capable of improving the blown amount is provided.
  • FIG. 1 is a perspective view showing the blower of the first embodiment.
  • FIG. 2 is a view showing the blower of the first embodiment and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a diagram of the impeller according to the first embodiment viewed from above.
  • FIG. 4 is a perspective view showing a part of the impeller of the first embodiment.
  • FIG. 5 is a view of the impeller of the first embodiment as viewed along the radial direction.
  • FIG. 6 is a perspective view showing a part of an impeller as another example of the first embodiment.
  • FIG. 7 is a perspective view showing the blower of the second embodiment.
  • FIG. 8 is a view of the impeller of the second embodiment as viewed from above.
  • FIG. 9 is a view of a part of an impeller, which is another example of the second embodiment, viewed from above.
  • the Z-axis direction shown as appropriate in each drawing is a direction parallel to the vertical direction.
  • the positive side in the Z-axis direction is “upper side”
  • the negative side in the Z-axis direction is “lower side”.
  • the central axis J shown as appropriate in each drawing extends in the Z-axis direction, that is, the vertical direction.
  • the axial direction of the central axis J that is, the vertical direction parallel to the Z-axis direction
  • axial direction Z The radial direction centered on the central axis J
  • the circumferential direction centered on the central axis J is simply referred to as “circumferential direction ⁇ ”.
  • the vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship of each part, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be.
  • the blower 10 includes a motor support portion 40, a bearing 60, a housing 50, a motor 30, and an impeller 20 that can rotate around a central axis J.
  • the motor support unit 40 supports the motor 30.
  • the motor support portion 40 includes a stator support portion 41 and a bearing holding portion 42.
  • the stator support portion 41 extends in the radial direction.
  • the stator support portion 41 has a circular shape centered on the central axis J when viewed along the axial direction Z.
  • the outer diameter of the stator support portion 41 increases from the upper side toward the lower side. That is, the outer peripheral surface 41a of the stator support portion 41 is an inclined surface whose outer diameter increases from the upper side to the lower side.
  • the outer peripheral surface 41a of the stator support portion 41 is located on the radially outer side than the outer peripheral surface 21a of the impeller hub 21 described later.
  • the bearing holding portion 42 has a cylindrical shape protruding upward from the upper surface of the stator support portion 41. More specifically, the bearing holding portion 42 has a cylindrical shape with the central axis J as the center and opening upward.
  • the bearing 60 is held inside the bearing holding portion 42.
  • the bearing 60 extends in the axial direction Z and has a cylindrical shape centered on the central axis J.
  • the outer peripheral surface of the bearing 60 is fixed to the inner peripheral surface of the bearing holding portion 42.
  • the bearing 60 is, for example, a slide bearing.
  • the housing 50 is disposed on the radially outer side than the motor support portion 40. As shown in FIG. 1, the housing 50 has a rectangular tube shape extending in the axial direction Z. The outer shape of the housing 50 is a rounded square shape when viewed from above. As shown in FIG. 2, the housing 50 surrounds the impeller 20 and the motor 30 in the circumferential direction ⁇ from the radially outer side.
  • the housing 50 includes two members: an upper housing 51 and a lower housing 52 fixed to the upper housing 51 below the upper housing 51. Although illustration is omitted, the inner peripheral surface of the lower housing 52 and the outer peripheral surface 41a of the stator support portion 41 are connected by a plurality of ribs.
  • the motor 30 includes a shaft 31, a rotor core 32, a magnet 33, and a stator 34.
  • the shaft 31 has a cylindrical shape extending in the axial direction Z with the central axis J as the center. A lower portion of the shaft 31 is rotatably supported by the bearing 60.
  • the rotor core 32 has an annular plate shape centered on the central axis J.
  • the rotor core 32 is fixed to the bottom surface of an accommodation recess 21d provided on the lower surface of the impeller hub 21, which will be described later.
  • the magnet 33 has an annular plate shape centered on the central axis J.
  • the magnet 33 is fixed to the lower surface of the rotor core 32. Thereby, the magnet 33 is fixed to the impeller hub 21.
  • the lower surface of the magnet 33 and the lower surface of the impeller hub 21 are arranged on the same plane orthogonal to the axial direction Z.
  • the stator 34 has an annular plate shape centered on the central axis J.
  • the stator 34 is fixed to the upper surface of the stator support portion 41.
  • a bearing holding portion 42 is located inside the stator 34 in the radial direction.
  • the stator 34 faces the magnet 33 in the axial direction Z with a gap on the lower side of the magnet 33. That is, in this embodiment, the motor 30 is an axial gap type motor.
  • the stator 34 includes a substrate 34a and a coil 34b.
  • the coil 34b is configured by, for example, a wiring pattern printed on the substrate 34a.
  • the coil 34b is centered on an axis extending in the axial direction Z.
  • a plurality of the coils 34b are arranged along the circumferential direction ⁇ .
  • the impeller 20 includes an impeller hub 21, a plurality of axial flow blade portions 22, a connection portion 24, and a centrifugal blade portion 23.
  • the impeller hub 21 has an outer peripheral surface 21 a extending in the axial direction Z.
  • the impeller hub 21 has a flat, substantially truncated cone shape centered on the central axis J.
  • the outer diameter of the impeller hub 21 increases from the upper side toward the lower side. That is, the outer peripheral surface 21a of the impeller hub 21 is an inclined surface whose outer diameter increases from the upper side to the lower side.
  • the inclination of the outer peripheral surface 21a of the impeller hub 21 with respect to the axial direction Z is larger than the inclination of the outer peripheral surface 41a of the stator support portion 41 with respect to the axial direction Z.
  • the lower end portion of the outer peripheral surface 21 a of the impeller hub 21 is disposed at substantially the same position in the radial direction as the upper end portion of the outer peripheral surface 41 a of the stator support portion 41.
  • the radially outer edge at the upper end of the impeller hub 21 is rounded. Thereby, the upper surface 21e and the outer peripheral surface 21a of the impeller hub 21 are smoothly connected.
  • the upper surface 21e is a flat surface orthogonal to the axial direction Z.
  • the impeller hub 21 has a recess 21 b that is recessed upward from the lower surface of the impeller hub 21.
  • the outer shape viewed from the lower side of the recess 21b is a circular shape centered on the central axis J.
  • the upper end portion of the bearing holding portion 42 is inserted into the concave portion 21b.
  • the impeller hub 21 has an accommodating recess 21d that is recessed upward from the lower surface of the impeller hub 21 on the radially outer side of the recess 21b.
  • the housing recess 21d has an annular shape centered on the central axis J.
  • the housing recess 21d surrounds the recess 21b.
  • the housing recess 21d houses and holds the rotor core 32 and the magnet 33.
  • the impeller hub 21 has a fixing hole 21c penetrating in the axial direction Z from the bottom surface of the recess 21b to the upper surface 21e of the impeller hub 21.
  • the upper end portion of the shaft 31 is fitted and fixed to the fixing hole portion 21c.
  • the upper end surface of the shaft 31 and the upper surface 21e of the impeller hub 21 are arranged on the same plane orthogonal to the axial direction Z.
  • the impeller hub 21, the shaft 31, the rotor core 32, and the magnet 33 constitute a rotor of the motor 30 that rotates around the central axis J.
  • the motor 30 can rotate the impeller hub 21 as a part of the rotor and rotate the impeller 20 around the central axis J.
  • the motor 30 rotates the impeller 20 in a positive direction in the circumferential direction ⁇ , that is, in a counterclockwise direction when viewed from the upper side to the lower side.
  • the positive side in the circumferential direction ⁇ that is, the side proceeding counterclockwise when viewed from the upper side to the lower side is referred to as the front side in the rotational direction.
  • the negative side in the circumferential direction ⁇ that is, the side proceeding clockwise as viewed from the upper side to the lower side is referred to as the rear side in the rotational direction.
  • the plurality of axial flow blade portions 22 extend radially outward from the outer peripheral surface 21a of the impeller hub 21 and are arranged side by side along the circumferential direction ⁇ .
  • the plurality of axial flow blade portions 22 are arranged at equal intervals over the entire circumference along the circumferential direction ⁇ .
  • nine axial flow blade portions 22 are provided, for example.
  • wing part 22 is located in the rotation direction front side as it goes to a radial direction outer side from a radial direction inner side. That is, the axial flow blade portion 22 has a forward blade shape having a forward angle. Therefore, noise generated when the impeller 20 rotates can be reduced.
  • the lower surface of the axial flow blade portion 22 is a first blade surface 22a facing downward. That is, the axial flow blade portion 22 has a first blade surface 22a.
  • the first blade surface 22 a is an inclined surface that is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction.
  • the first blade surface 22a is a curved surface whose inclination with respect to a surface orthogonal to the axial direction Z increases as it goes from the front side in the rotational direction to the rear side in the rotational direction.
  • An end of the first blade surface 22a on the front side in the rotational direction is disposed below the upper surface 21e of the impeller hub 21.
  • the end of the first blade surface 22a on the rear side in the rotation direction is disposed at the same position in the axial direction Z as the lower surface of the impeller hub 21.
  • the upper surface of the axial flow blade portion 22 has a flat portion 22c and a curved portion 22b.
  • the flat portion 22c is a flat portion orthogonal to the axial direction Z.
  • the end portion on the front side in the rotation direction of the flat portion 22 c is the end portion on the front side in the rotation direction of the upper surface of the axial flow blade portion 22.
  • the flat portion 22 c is disposed below the upper surface 21 e of the impeller hub 21.
  • the curved portion 22b is connected to the end of the flat portion 22c on the rear side in the rotational direction.
  • the bending portion 22b is an inclined surface that is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction, and the inclination with respect to the plane orthogonal to the axial direction Z rotates from the front side in the rotational direction. It is a curved surface that becomes larger toward the rear side in the direction.
  • the connecting portion 24 protrudes radially outward from the outer peripheral surface 21 a of the impeller hub 21.
  • the connection part 24 is disposed below the axial flow blade part 22. More specifically, the connecting portion 24 is disposed below the end portion on the radially inner side of the axial flow blade portion 22.
  • the upper end portion of the connecting portion 24 is connected to the radially inner end portion of the axial flow blade portion 22.
  • a radially outer surface of the connection portion 24 is a connection surface 24a.
  • the connection surface 24a is a surface that extends downward from the radially inner end of the first blade surface 22a among the surfaces of the impeller 20.
  • connection surface 24a is disposed at the same position as the lower surface of the impeller hub 21 in the axial direction Z. As shown in FIG. 4, the connection surface 24 a is a curved surface extending along the circumferential direction ⁇ . The connection surface 24a is orthogonal to the radial direction. A plurality of connection portions 24 are provided and provided for each of the plurality of axial flow blade portions 22.
  • the impeller 20 is divided into two molds divided in the axial direction Z by providing the connecting portion 24 protruding radially outward from the outer peripheral surface 21a of the impeller hub 21.
  • the impeller 20 can be easily pulled out. Therefore, the impeller 20 can be easily manufactured using a mold.
  • the centrifugal blade portion 23 is provided on the outer peripheral surface 21 a of the impeller hub 21.
  • the centrifugal blade portion 23 protrudes radially outward from the outer peripheral surface 21 a of the impeller hub 21.
  • the centrifugal blade portion 23 is connected to the radially inner end portion of the axial flow blade portion 22 on the front side in the rotational direction of the radially inner end portion of the axial flow blade portion 22.
  • the upper surface 23 a of the centrifugal blade portion 23 is connected to the upper surface of the axial flow blade portion 22. More specifically, the end on the rear side in the rotation direction of the upper surface 23a is connected to the end on the radially inner side of the flat portion 22c.
  • the upper surface 23a and the flat portion 22c are arranged on the same plane orthogonal to the axial direction Z.
  • the shape of the upper surface 23a viewed from above is a triangular shape.
  • the centrifugal blade portion 23 has a second blade surface 23b.
  • the second blade surface 23b is a surface that is connected to the upper surface 23a of the centrifugal blade portion 23 and faces the front side in the rotation direction.
  • the second blade surface 23b extends downward from one radial outer side of the upper surface 23a.
  • the second blade surface 23b is an inclined surface located on the rear side in the rotational direction as it goes from the radially inner side to the radially outer side. That is, the second blade surface 23b has a receding angle.
  • the second blade surface 23b faces the front side in the rotational direction and faces the radially outer side.
  • the second blade surface 23b is a flat surface parallel to the axial direction Z.
  • the second blade surface 23b When viewed along a direction orthogonal to the second blade surface 23b, the second blade surface 23b has a substantially right triangle shape.
  • the second blade surface 23b includes an upper side 23c along the upper end of the second blade surface 23b, a connection side 23d extending downward from a radially outer end of the upper side 23c, and a radially inner side of the upper side 23c. And a hypotenuse 23e that connects the end and the lower end of the connecting side 23d.
  • the upper side 23c is orthogonal to the axial direction Z.
  • the connection side 23d is parallel to the axial direction Z.
  • the oblique side 23e is disposed on the outer peripheral surface 21a.
  • the dimension in the axial direction Z of the second blade surface 23b increases from the radially inner side toward the radially outer side.
  • the lower end portion of the second blade surface 23 b is connected to the lower end portion of the impeller hub 21.
  • the lower end of the second blade surface 23b is an intersection of the connection side 23d and the oblique side 23e.
  • the radially inner end of the second blade surface 23b is connected to the rotational direction rear end of the curved portion 22b of the axial flow blade 22 adjacent to the rotational direction front side and the circumferential direction ⁇ .
  • the radially outer end of the second blade surface 23b is connected to the connection surface 24a.
  • the centrifugal blade part 23 is connected to the axial flow blade part 22 and the connection part 24.
  • the radially outer end portion of the second blade surface 23b is arranged on the rear side in the rotational direction with respect to the end portion on the rear side in the rotational direction of the first blade surface 22a.
  • the radially outer end of the second blade surface 23b is a connection side 23d.
  • a plurality of centrifugal blade portions 23 are provided and provided for each of the plurality of axial flow blade portions 22.
  • the material of the impeller 20 is not particularly limited, and is, for example, resin.
  • the impeller 20 is manufactured as a single member by, for example, injection molding using a mold.
  • the blower 10 of the present embodiment is a relatively thin blower that employs an axial gap type motor as the motor 30.
  • the ratio of the dimension in the axial direction Z of the blower 10 to the dimension in the direction orthogonal to the axial direction Z of the blower 10 is preferably smaller than 0.25 and 0.2 or less.
  • the dimension in the direction orthogonal to the axial direction Z of the blower 10 is, for example, the length of one side of the outer shape of the housing 50 when viewed from above, and is the horizontal dimension of the blower 10 in FIG.
  • the dimension of the blower 10 in the axial direction Z is, for example, the dimension of the housing 50 in the axial direction Z.
  • the axial flow blade portion 22 advances forward in the rotational direction.
  • the 1st blade surface 22a which the axial flow blade part 22 has is an inclined surface located in the lower side as it goes to the rotation direction rear side from the rotation direction front side. Therefore, when the first blade surface 22a moves forward in the rotation direction along with the rotation of the axial flow blade portion 22, the air located on the front side in the rotation direction of the first blade surface 22a is along the first blade surface 22a. Sent to the bottom.
  • an air flow AF1 flowing from the upper side of the impeller 20 to the lower side of the impeller 20 is generated as shown in FIG.
  • the air flow AF ⁇ b> 1 is a flow of air that is generated when air positioned above the axial flow blade portion 22 is sent to the lower side of the axial flow blade portion 22 by the axial flow blade portion 22.
  • the air sent radially outward along the second blade surface 23b is connected to the connecting surface 24a at the radially outer end of the second blade surface 23b, and as shown in FIG. 4, the first blade surface 22a. Sent to the front side in the direction of rotation. Thereby, the air sent to the radial direction outer side along the 2nd blade surface 23b can be sent to the lower side of the impeller 20 by the 1st blade surface 22a.
  • the air flow AF ⁇ b> 2 that is drawn radially outward from the upper side of the impeller hub 21 and flows to the lower side of the impeller 20 along the second blade surface 23 b and the first blade surface 22 a in order. Occurs.
  • the air obtained by adding the air flow AF1 and the air flow AF2 can be sent in the axial direction Z.
  • the air sent by the blower is only the air by the air flow AF1 generated only by the axial flow blade portion 22.
  • the amount of air sent by the blower 10 Can do more.
  • the air blower of this embodiment can improve the air flow rate of the air blower 10 without enlarging the radial dimension of the axial flow blade part 22. Moreover, the air blower of this embodiment can improve the static pressure of air by sending air to radial direction outer side by the centrifugal blade part 23. FIG. Thereby, the static pressure of the air sent by the air blower 10 can be improved.
  • the motor for rotating the impeller is an axial gap type motor as in this embodiment
  • the impeller hub to which the magnet is fixed is likely to be enlarged in the radial direction, and the radial dimension of the axial flow blade portion is likely to be relatively reduced.
  • the radial dimension of the axial flow vane portion is reduced, the amount of air sent by the axial flow vane portion is reduced. Therefore, when the impeller is rotated using an axial gap type motor, there is a problem that the air blowing amount of the blower tends to be small.
  • the above-described effect of improving the blown air volume is particularly useful when the motor of the blower is an axial gap type motor.
  • the air blower 10 can be easily thinned in the axial direction Z by using the motor 30 as an axial gap type motor.
  • the outer peripheral surface 21a of the impeller hub 21 is an inclined surface whose outer diameter increases from the upper side toward the lower side. Therefore, it is easy to send the air located above the impeller hub 21 to the radially outer side and the lower side along the outer peripheral surface 21a. Thereby, it is easy to generate the air flow AF2 smoothly, and it is easy to reduce the loss of air. Therefore, it is possible to further improve the amount of air blown from the blower 10. Moreover, since the flow of the air flow AF2 can be made smooth, noise generated by the air flow AF2 can be reduced.
  • the outer peripheral surface 41 a of the stator support portion 41 is an inclined surface having an outer diameter that increases from the upper side to the lower side, and more radially outward than the outer peripheral surface 21 a of the impeller hub 21. Be placed. Therefore, the air sent to the lower side of the impeller 20 while proceeding radially outward and downward along the outer peripheral surface 21 a of the impeller hub 21 is radially outward and downward along the outer peripheral surface 41 a of the stator support portion 41. Sent.
  • the second blade surface 23b is an inclined surface that is located on the rear side in the rotational direction from the radially inner side toward the radially outer side. Therefore, it is easy to guide the air flowing along the second blade surface 23 b to the axial flow blade portion 22 disposed on the rear side in the rotation direction of the centrifugal blade portion 23. In addition, the air sent radially outward along the second blade surface 23b is less likely to be disturbed, and noise generated by the airflow AF2 can be further reduced.
  • the lower end portion of the second blade surface 23b is connected to the lower end portion of the impeller hub 21, so that the dimension in the axial direction Z of the second blade surface 23b is increased, It is easy to increase the area of the second blade surface 23b. Thereby, the quantity of the air sent to radial direction outer side by the 2nd blade surface 23b can be increased more. Therefore, it is possible to further improve the amount of air blown from the blower 10.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the same configurations as those in the above embodiment may be omitted by appropriately attaching the same reference numerals.
  • the second blade surface 23b may be configured like the second blade surface 123b shown in FIG.
  • the second blade surface 123 b is an inclined surface that is located radially inward from the lower side toward the upper side. That is, the second blade surface 123b faces the front side in the rotational direction and the radially outer side, and faces the upper side. Therefore, the air on the upper side of the impeller 120 is easily guided to the second blade surface 123b, and the second blade surface 123b makes it easier to send air to the front side in the rotation direction of the first blade surface 22a. Thereby, the ventilation volume of the air blower 110 can be improved more.
  • the centrifugal blade part 123 can be made into a shape having a tapered shape, the centrifugal blade part 123 can be easily extracted from the mold when the impeller 120 is manufactured by injection molding using a mold. Therefore, the impeller 120 can be easily manufactured.
  • the centrifugal blade portion 223 extends in the circumferential direction ⁇ in the impeller 220 of the blower 210 of the present embodiment.
  • An end portion on the front side in the rotational direction of the centrifugal blade portion 223 is positioned on the front side in the rotational direction with respect to a radially inner end portion of the axial flow blade portion 22 adjacent to the front side in the rotational direction.
  • the end portion on the front side in the rotation direction of the centrifugal blade portion 223 is located on the front side in the rotation direction with respect to the entire axial flow blade portion 22 adjacent to the front side in the rotation direction.
  • the centrifugal blade portions 223 adjacent to each other in the circumferential direction ⁇ partially overlap in the radial direction. Therefore, the dimension of the circumferential direction ⁇ of the second blade surface 223b can be increased, and the area of the second blade surface 223b can be increased. Thereby, the quantity of the air sent to radial direction outer side by the 2nd blade surface 223b can be increased more. Therefore, it is possible to further improve the amount of air blown by the blower 210.
  • the second blade surface 223b extends in the circumferential direction ⁇ .
  • the end portion of the second blade surface 223b on the front side in the rotation direction is located on the front side in the rotation direction with respect to the entire axial flow blade portion 22 adjacent on the front side in the rotation direction.
  • the end of the second blade surface 223b on the front side in the rotational direction is connected to the upper surface 21e of the impeller hub 21.
  • the second blade surface 223b is parallel to the axial direction Z.
  • the second blade surface 223b is a curved surface that curves in a direction that swells radially outward.
  • the upper surface 223a of the centrifugal blade part 223 extends in the circumferential direction ⁇ .
  • the upper surface 223a is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction. Therefore, it is easy to send the air above the upper surface 223a to the rear side in the rotational direction along the upper surface 223a.
  • the air sent to the rear side in the rotational direction along the upper surface 223a travels on the first blade surface 22a of the axial flow blade portion 22 adjacent to the rear side in the rotational direction along the upper surface of the axial flow blade portion 22 connected to the upper surface 223a. It is sent to the front side in the rotational direction.
  • An end portion of the upper surface 223a on the front side in the rotation direction is connected to a radially outer edge portion of the upper surface 21e of the impeller hub 21.
  • the end of the upper surface 223a on the rear side in the rotation direction is connected to the flat portion 22c.
  • the second blade surface 223b of the present embodiment may have a configuration like the second blade surface 323b shown in FIG.
  • the radially outer end of the second blade surface 323b is curved toward the rear side in the rotational direction, and is smoothly connected to the connection surface 24a. Therefore, air can be smoothly guided from the second blade surface 323b to the connection surface 24a. Thereby, it can suppress that air is disturb
  • the end of the second blade surface 323b on the outer side in the radial direction becomes smaller as the inclination with respect to the circumferential direction ⁇ goes toward the outer side in the radial direction.
  • connection surface of the connection portion may be an inclined surface inclined with respect to the axial direction Z.
  • connection part does not need to be provided.
  • a part of the outer peripheral surface of the impeller hub corresponds to the connection surface.
  • the first axial flow blade portion may have a receding blade shape having a receding angle.
  • wing part is located in the rotation direction back side as it goes to a radial direction outer side from a radial direction inner side.
  • the motor is an axial gap type motor, but is not limited thereto.
  • the type of motor is not particularly limited, and the motor may be, for example, a radial gap type motor.

Abstract

In one embodiment of this blower device, an impeller has: an impeller hub; a plurality of axial flow blades extending radially outward from the outer peripheral surface of the impeller hub and arranged circumferentially side by side; and centrifugal blades which, on the front side, in a rotational direction, of the radially inner ends of the axial flow blades, connect to the radially inner ends of the axial flow blades. The outer peripheral surface of the impeller hub is a sloped surface having an outer diameter which increases from above downward. The upper surfaces of the centrifugal blades connect to the upper surfaces of the axial flow blades. The centrifugal blades have second blade surfaces connecting to the upper surfaces of the centrifugal blades and facing forward in the rotational direction. The second blade surfaces are sloped surfaces bending rearward in the rotational direction as the surfaces extend from the radially inner side toward the radially outer side. The radially outer ends of the second blade surfaces connect to the connection surfaces of a surface of the impeller, the connection surfaces extending downward from the radially inner ends of first blade surfaces.

Description

送風装置Blower
 本発明は、送風装置に関する。 The present invention relates to a blower.
 インペラの回転軸の軸方向に送風する軸流ファンモータが知られる。例えば、特許文献1には、コイル巻線がロータのマグネットと軸方向に隙間を有して対向配置される軸流ファンモータが記載される。 An axial fan motor that blows air in the axial direction of the rotation shaft of the impeller is known. For example, Patent Document 1 describes an axial fan motor in which coil windings are arranged to face a rotor magnet with a gap in the axial direction.
日本国公開公報2006-233812号公報Japanese Publication No. 2006-233812
 上記のような軸流ファンモータは、インペラブレード部の軸方向一方側に位置する空気を、インペラブレード部によって軸方向他方側へと送ることで送風する。そのため、インペラブレード部の径方向の寸法が小さくなるほど、軸流ファンモータによって送れる風量は低下する。したがって、軸流ファンモータを設置する場所の制約等によってインペラブレード部の径方向の寸法を比較的小さくする必要がある場合等に、軸流ファンモータの送風量を十分に得られない場合があった。 The axial fan motor as described above blows air by sending air located on one side in the axial direction of the impeller blade part to the other side in the axial direction by the impeller blade part. For this reason, the smaller the radial dimension of the impeller blade portion, the lower the amount of air that can be sent by the axial fan motor. Therefore, when the radial size of the impeller blade portion needs to be relatively small due to restrictions on the location where the axial fan motor is installed, the air flow rate of the axial fan motor may not be sufficiently obtained. It was.
 本発明は、上記事情に鑑みて、送風量を向上できる送風装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a blower that can improve the amount of blown air.
 本発明の送風装置の一つの態様は、上下方向に延びる中心軸周りに回転可能なインペラと、前記中心軸周りに前記インペラを回転させるモータと、を備え、前記インペラは、軸方向に延びる外周面を有するインペラハブと、前記インペラハブの外周面から径方向外側に延び、周方向に沿って並んで配置される複数の軸流羽根部と、前記インペラハブの外周面に設けられ、前記軸流羽根部の径方向内側の端部の回転方向前方側において前記軸流羽根部の径方向内側の端部と繋がる遠心羽根部と、を有し、前記インペラハブの外周面は、上側から下側に向かうに従って外径が大きくなる傾斜面であり、前記軸流羽根部は、下側を向く第1羽根面を有し、前記第1羽根面は、回転方向前方側から回転方向後方側に向かうに従って下側に位置する傾斜面であり、前記遠心羽根部の上面は、前記軸流羽根部の上面と繋がり、前記遠心羽根部は、前記遠心羽根部の上面と繋がり回転方向前方側を向く第2羽根面を有し、前記第2羽根面は、径方向内側から径方向外側に向かうに従って回転方向後方側に位置する傾斜面であり、前記第2羽根面の径方向外側の端部は、前記インペラが有する面のうち前記第1羽根面の径方向内側の端部から下側に延びる接続面と繋がる。 One aspect of the blower of the present invention includes an impeller that can rotate around a central axis that extends in the vertical direction, and a motor that rotates the impeller around the central axis, and the impeller has an outer periphery that extends in the axial direction. An impeller hub having a surface, a plurality of axial flow blade portions extending radially outward from the outer peripheral surface of the impeller hub and arranged side by side along the circumferential direction, and the axial flow blade portion provided on the outer peripheral surface of the impeller hub A centrifugal blade portion connected to the radially inner end portion of the axial flow blade portion on the front side in the rotational direction of the radially inner end portion, and the outer peripheral surface of the impeller hub is directed from the upper side to the lower side. It is an inclined surface with an outer diameter increasing, and the axial-flow blade portion has a first blade surface facing downward, and the first blade surface is lower as it goes from the front side in the rotational direction to the rear side in the rotational direction. Tilt located at And the upper surface of the centrifugal blade portion is connected to the upper surface of the axial flow blade portion, the centrifugal blade portion is connected to the upper surface of the centrifugal blade portion and has a second blade surface facing the front side in the rotation direction, The second blade surface is an inclined surface located on the rear side in the rotational direction as it goes from the radially inner side to the radially outer side, and the radially outer end of the second blade surface is a surface of the impeller. It connects with the connection surface extended below from the edge part of the radial direction inner side of a said 1st blade | wing surface.
 本発明の一つの態様によれば、送風量を向上できる送風装置が提供される。 According to one aspect of the present invention, a blower capable of improving the blown amount is provided.
図1は、第1実施形態の送風装置を示す斜視図である。FIG. 1 is a perspective view showing the blower of the first embodiment. 図2は、第1実施形態の送風装置を示す図であって、図1におけるII-II断面図である。FIG. 2 is a view showing the blower of the first embodiment and is a cross-sectional view taken along the line II-II in FIG. 図3は、第1実施形態のインペラを上側から視た図である。FIG. 3 is a diagram of the impeller according to the first embodiment viewed from above. 図4は、第1実施形態のインペラの一部を示す斜視図である。FIG. 4 is a perspective view showing a part of the impeller of the first embodiment. 図5は、第1実施形態のインペラを径方向に沿って視た図である。FIG. 5 is a view of the impeller of the first embodiment as viewed along the radial direction. 図6は、第1実施形態の他の一例であるインペラの一部を示す斜視図である。FIG. 6 is a perspective view showing a part of an impeller as another example of the first embodiment. 図7は、第2実施形態の送風装置を示す斜視図である。FIG. 7 is a perspective view showing the blower of the second embodiment. 図8は、第2実施形態のインペラを上側から視た図である。FIG. 8 is a view of the impeller of the second embodiment as viewed from above. 図9は、第2実施形態の他の一例であるインペラの一部を上側から視た図である。FIG. 9 is a view of a part of an impeller, which is another example of the second embodiment, viewed from above.
 各図に適宜示すZ軸方向は、上下方向と平行な方向である。Z軸方向の正の側を「上側」とし、Z軸方向の負の側を「下側」とする。また、各図に適宜示す中心軸Jは、Z軸方向、すなわち上下方向に延びる。以下の説明においては、中心軸Jの軸方向、すなわちZ軸方向と平行な上下方向を単に「軸方向Z」と呼ぶ。また、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向θ」と呼ぶ。なお、上下方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 The Z-axis direction shown as appropriate in each drawing is a direction parallel to the vertical direction. The positive side in the Z-axis direction is “upper side”, and the negative side in the Z-axis direction is “lower side”. Further, the central axis J shown as appropriate in each drawing extends in the Z-axis direction, that is, the vertical direction. In the following description, the axial direction of the central axis J, that is, the vertical direction parallel to the Z-axis direction is simply referred to as “axial direction Z”. The radial direction centered on the central axis J is simply referred to as “radial direction”, and the circumferential direction centered on the central axis J is simply referred to as “circumferential direction θ”. The vertical direction, the upper side, and the lower side are simply names for explaining the relative positional relationship of each part, and the actual layout relationship is a layout relationship other than the layout relationship indicated by these names. May be.
<第1実施形態>
 図1および図2に示すように、送風装置10は、モータ支持部40と、軸受60と、ハウジング50と、モータ30と、中心軸J周りに回転可能なインペラ20と、を備える。
<First Embodiment>
As shown in FIGS. 1 and 2, the blower 10 includes a motor support portion 40, a bearing 60, a housing 50, a motor 30, and an impeller 20 that can rotate around a central axis J.
 モータ支持部40は、モータ30を支持する。図2に示すように、モータ支持部40は、ステータ支持部41と、軸受保持部42と、を有する。ステータ支持部41は、径方向に拡がる。図示は省略するが、ステータ支持部41の形状は、軸方向Zに沿って視て、中心軸Jを中心とする円形状である。ステータ支持部41の外径は、上側から下側に向かうに従って大きくなる。すなわち、ステータ支持部41の外周面41aは、上側から下側に向かうに従って外径が大きくなる傾斜面である。ステータ支持部41の外周面41aは、後述するインペラハブ21の外周面21aよりも径方向外側に位置する。軸受保持部42は、ステータ支持部41の上面から上側に突出する筒状である。より詳細には、軸受保持部42は、中心軸Jを中心とし、上側に開口する円筒状である。 The motor support unit 40 supports the motor 30. As shown in FIG. 2, the motor support portion 40 includes a stator support portion 41 and a bearing holding portion 42. The stator support portion 41 extends in the radial direction. Although not shown, the stator support portion 41 has a circular shape centered on the central axis J when viewed along the axial direction Z. The outer diameter of the stator support portion 41 increases from the upper side toward the lower side. That is, the outer peripheral surface 41a of the stator support portion 41 is an inclined surface whose outer diameter increases from the upper side to the lower side. The outer peripheral surface 41a of the stator support portion 41 is located on the radially outer side than the outer peripheral surface 21a of the impeller hub 21 described later. The bearing holding portion 42 has a cylindrical shape protruding upward from the upper surface of the stator support portion 41. More specifically, the bearing holding portion 42 has a cylindrical shape with the central axis J as the center and opening upward.
 軸受保持部42の内部には、軸受60が保持される。軸受60は、軸方向Zに延び、中心軸Jを中心とする円筒状である。軸受60の外周面は、軸受保持部42の内周面に固定される。軸受60は、例えば、すべり軸受である。 The bearing 60 is held inside the bearing holding portion 42. The bearing 60 extends in the axial direction Z and has a cylindrical shape centered on the central axis J. The outer peripheral surface of the bearing 60 is fixed to the inner peripheral surface of the bearing holding portion 42. The bearing 60 is, for example, a slide bearing.
 ハウジング50は、モータ支持部40よりも径方向外側に配置される。図1に示すように、ハウジング50は、軸方向Zに延びる角筒状である。ハウジング50の外形は、上側から視て、角丸の正方形状である。図2に示すように、ハウジング50は、インペラ20およびモータ30を径方向外側から周方向θに囲んでいる。本実施形態においてハウジング50は、上側ハウジング51と、上側ハウジング51の下側において上側ハウジング51に固定される下側ハウジング52との2つの部材によって構成される。図示は省略するが、下側ハウジング52の内周面とステータ支持部41の外周面41aとは、複数のリブによって繋がれる。 The housing 50 is disposed on the radially outer side than the motor support portion 40. As shown in FIG. 1, the housing 50 has a rectangular tube shape extending in the axial direction Z. The outer shape of the housing 50 is a rounded square shape when viewed from above. As shown in FIG. 2, the housing 50 surrounds the impeller 20 and the motor 30 in the circumferential direction θ from the radially outer side. In the present embodiment, the housing 50 includes two members: an upper housing 51 and a lower housing 52 fixed to the upper housing 51 below the upper housing 51. Although illustration is omitted, the inner peripheral surface of the lower housing 52 and the outer peripheral surface 41a of the stator support portion 41 are connected by a plurality of ribs.
 モータ30は、シャフト31と、ロータコア32と、マグネット33と、ステータ34と、を有する。シャフト31は、中心軸Jを中心として軸方向Zに延びる円柱状である。シャフト31の下部は、軸受60に回転可能に支持される。ロータコア32は、中心軸Jを中心とする円環板状である。ロータコア32は、後述するインペラハブ21の下面に設けられる収容凹部21dの底面に固定される。マグネット33は、中心軸Jを中心とする円環板状である。マグネット33は、ロータコア32の下面に固定される。これにより、マグネット33は、インペラハブ21に固定される。マグネット33の下面とインペラハブ21の下面とは、軸方向Zと直交する同一平面上に配置される。 The motor 30 includes a shaft 31, a rotor core 32, a magnet 33, and a stator 34. The shaft 31 has a cylindrical shape extending in the axial direction Z with the central axis J as the center. A lower portion of the shaft 31 is rotatably supported by the bearing 60. The rotor core 32 has an annular plate shape centered on the central axis J. The rotor core 32 is fixed to the bottom surface of an accommodation recess 21d provided on the lower surface of the impeller hub 21, which will be described later. The magnet 33 has an annular plate shape centered on the central axis J. The magnet 33 is fixed to the lower surface of the rotor core 32. Thereby, the magnet 33 is fixed to the impeller hub 21. The lower surface of the magnet 33 and the lower surface of the impeller hub 21 are arranged on the same plane orthogonal to the axial direction Z.
 ステータ34は、中心軸Jを中心とする円環板状である。ステータ34は、ステータ支持部41の上面に固定される。ステータ34の径方向内側には、軸受保持部42が位置する。ステータ34は、マグネット33の下側において、マグネット33と軸方向Zに隙間を介して対向する。すなわち、本実施形態においてモータ30は、アキシャルギャップ型のモータである。ステータ34は、基板34aと、コイル34bと、を有する。コイル34bは、例えば、基板34aに印刷された配線パターンによって構成される。コイル34bは、軸方向Zに延びる軸を中心とする。コイル34bは、周方向θに沿って複数配置される。 The stator 34 has an annular plate shape centered on the central axis J. The stator 34 is fixed to the upper surface of the stator support portion 41. A bearing holding portion 42 is located inside the stator 34 in the radial direction. The stator 34 faces the magnet 33 in the axial direction Z with a gap on the lower side of the magnet 33. That is, in this embodiment, the motor 30 is an axial gap type motor. The stator 34 includes a substrate 34a and a coil 34b. The coil 34b is configured by, for example, a wiring pattern printed on the substrate 34a. The coil 34b is centered on an axis extending in the axial direction Z. A plurality of the coils 34b are arranged along the circumferential direction θ.
 図2および図3に示すように、インペラ20は、インペラハブ21と、複数の軸流羽根部22と、接続部24と、遠心羽根部23と、を有する。図2に示すように、インペラハブ21は、軸方向Zに延びる外周面21aを有する。インペラハブ21は、中心軸Jを中心とする扁平の略円錐台状である。インペラハブ21の外径は、上側から下側に向かうに従って大きくなる。すなわち、インペラハブ21の外周面21aは、上側から下側に向かうに従って外径が大きくなる傾斜面である。インペラハブ21の外周面21aの軸方向Zに対する傾きは、ステータ支持部41の外周面41aの軸方向Zに対する傾きよりも大きい。インペラハブ21の外周面21aの下端部は、ステータ支持部41の外周面41aの上端部と径方向においてほぼ同じ位置に配置される。インペラハブ21の上側の端部における径方向外縁部は、丸みを帯びる。これにより、インペラハブ21の上面21eと外周面21aとは、滑らかに繋がる。上面21eは、軸方向Zと直交する平坦な面である。 2 and 3, the impeller 20 includes an impeller hub 21, a plurality of axial flow blade portions 22, a connection portion 24, and a centrifugal blade portion 23. As shown in FIG. 2, the impeller hub 21 has an outer peripheral surface 21 a extending in the axial direction Z. The impeller hub 21 has a flat, substantially truncated cone shape centered on the central axis J. The outer diameter of the impeller hub 21 increases from the upper side toward the lower side. That is, the outer peripheral surface 21a of the impeller hub 21 is an inclined surface whose outer diameter increases from the upper side to the lower side. The inclination of the outer peripheral surface 21a of the impeller hub 21 with respect to the axial direction Z is larger than the inclination of the outer peripheral surface 41a of the stator support portion 41 with respect to the axial direction Z. The lower end portion of the outer peripheral surface 21 a of the impeller hub 21 is disposed at substantially the same position in the radial direction as the upper end portion of the outer peripheral surface 41 a of the stator support portion 41. The radially outer edge at the upper end of the impeller hub 21 is rounded. Thereby, the upper surface 21e and the outer peripheral surface 21a of the impeller hub 21 are smoothly connected. The upper surface 21e is a flat surface orthogonal to the axial direction Z.
 インペラハブ21は、インペラハブ21の下面から上側に窪む凹部21bを有する。凹部21bの下側から視た外形は、中心軸Jを中心とする円形状である。凹部21bには、軸受保持部42の上端部が挿入される。インペラハブ21は、凹部21bの径方向外側においてインペラハブ21の下面から上側に窪む収容凹部21dを有する。収容凹部21dは、中心軸Jを中心とする円環状である。収容凹部21dは、凹部21bを囲む。収容凹部21dは、ロータコア32とマグネット33とを収容し、保持する。 The impeller hub 21 has a recess 21 b that is recessed upward from the lower surface of the impeller hub 21. The outer shape viewed from the lower side of the recess 21b is a circular shape centered on the central axis J. The upper end portion of the bearing holding portion 42 is inserted into the concave portion 21b. The impeller hub 21 has an accommodating recess 21d that is recessed upward from the lower surface of the impeller hub 21 on the radially outer side of the recess 21b. The housing recess 21d has an annular shape centered on the central axis J. The housing recess 21d surrounds the recess 21b. The housing recess 21d houses and holds the rotor core 32 and the magnet 33.
 インペラハブ21は、凹部21bの底面からインペラハブ21の上面21eまでを軸方向Zに貫通する固定孔部21cを有する。固定孔部21cには、シャフト31の上側の端部が嵌め合わされて固定される。シャフト31の上側の端面とインペラハブ21の上面21eとは、軸方向Zと直交する同一平面上に配置される。 The impeller hub 21 has a fixing hole 21c penetrating in the axial direction Z from the bottom surface of the recess 21b to the upper surface 21e of the impeller hub 21. The upper end portion of the shaft 31 is fitted and fixed to the fixing hole portion 21c. The upper end surface of the shaft 31 and the upper surface 21e of the impeller hub 21 are arranged on the same plane orthogonal to the axial direction Z.
 本実施形態においては、インペラハブ21とシャフト31とロータコア32とマグネット33とによって、中心軸J周りに回転するモータ30のロータが構成される。これにより、モータ30は、ロータの一部としてインペラハブ21を回転させることができ、インペラ20を中心軸J周りに回転させる。 In the present embodiment, the impeller hub 21, the shaft 31, the rotor core 32, and the magnet 33 constitute a rotor of the motor 30 that rotates around the central axis J. As a result, the motor 30 can rotate the impeller hub 21 as a part of the rotor and rotate the impeller 20 around the central axis J.
 本実施形態においてモータ30は、周方向θのうち正の向き、すなわち上側から下側に向かって視て反時計回りの向きにインペラ20を回転させる。周方向θにおける正の側、すなわち上側から下側に向かって視て反時計回りに進む側を回転方向前方側と呼ぶ。周方向θにおける負の側、すなわち上側から下側に向かって視て時計回りに進む側を回転方向後方側と呼ぶ。 In the present embodiment, the motor 30 rotates the impeller 20 in a positive direction in the circumferential direction θ, that is, in a counterclockwise direction when viewed from the upper side to the lower side. The positive side in the circumferential direction θ, that is, the side proceeding counterclockwise when viewed from the upper side to the lower side is referred to as the front side in the rotational direction. The negative side in the circumferential direction θ, that is, the side proceeding clockwise as viewed from the upper side to the lower side is referred to as the rear side in the rotational direction.
 図3に示すように、複数の軸流羽根部22は、インペラハブ21の外周面21aから径方向外側に延び、周方向θに沿って並んで配置される。複数の軸流羽根部22は、周方向θに沿って一周に亘って等間隔に配置される。図3では、軸流羽根部22は、例えば、9つ設けられる。軸流羽根部22は、径方向内側から径方向外側に向かうに従って回転方向前方側に位置する。すなわち、軸流羽根部22は、前進角を有する前進翼形状である。そのため、インペラ20が回転する際に生じる騒音を低減できる。 As shown in FIG. 3, the plurality of axial flow blade portions 22 extend radially outward from the outer peripheral surface 21a of the impeller hub 21 and are arranged side by side along the circumferential direction θ. The plurality of axial flow blade portions 22 are arranged at equal intervals over the entire circumference along the circumferential direction θ. In FIG. 3, nine axial flow blade portions 22 are provided, for example. The axial-flow blade | wing part 22 is located in the rotation direction front side as it goes to a radial direction outer side from a radial direction inner side. That is, the axial flow blade portion 22 has a forward blade shape having a forward angle. Therefore, noise generated when the impeller 20 rotates can be reduced.
 図4に示すように、軸流羽根部22の下面は、下側を向く第1羽根面22aである。すなわち、軸流羽根部22は、第1羽根面22aを有する。図5に示すように、第1羽根面22aは、回転方向前方側から回転方向後方側に向かうに従って下側に位置する傾斜面である。本実施形態において第1羽根面22aは、軸方向Zと直交する面に対する傾きが回転方向前方側から回転方向後方側に向かうに従って大きくなる湾曲面である。第1羽根面22aの回転方向前方側の端部は、インペラハブ21の上面21eよりも下側に配置される。第1羽根面22aの回転方向後方側の端部は、インペラハブ21の下面と軸方向Zにおいて同じ位置に配置される。 As shown in FIG. 4, the lower surface of the axial flow blade portion 22 is a first blade surface 22a facing downward. That is, the axial flow blade portion 22 has a first blade surface 22a. As shown in FIG. 5, the first blade surface 22 a is an inclined surface that is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction. In the present embodiment, the first blade surface 22a is a curved surface whose inclination with respect to a surface orthogonal to the axial direction Z increases as it goes from the front side in the rotational direction to the rear side in the rotational direction. An end of the first blade surface 22a on the front side in the rotational direction is disposed below the upper surface 21e of the impeller hub 21. The end of the first blade surface 22a on the rear side in the rotation direction is disposed at the same position in the axial direction Z as the lower surface of the impeller hub 21.
 図1および図3に示すように、軸流羽根部22の上面は、平坦部22cと、湾曲部22bと、を有する。平坦部22cは、軸方向Zと直交する平坦な部分である。平坦部22cの回転方向前方側の端部は、軸流羽根部22の上面の回転方向前方側の端部である。平坦部22cは、インペラハブ21の上面21eよりも下側に配置される。 As shown in FIGS. 1 and 3, the upper surface of the axial flow blade portion 22 has a flat portion 22c and a curved portion 22b. The flat portion 22c is a flat portion orthogonal to the axial direction Z. The end portion on the front side in the rotation direction of the flat portion 22 c is the end portion on the front side in the rotation direction of the upper surface of the axial flow blade portion 22. The flat portion 22 c is disposed below the upper surface 21 e of the impeller hub 21.
 湾曲部22bは、平坦部22cの回転方向後方側の端部に繋がる。図5に示すように、湾曲部22bは、回転方向前方側から回転方向後方側に向かうに従って下側に位置する傾斜面であり、軸方向Zと直交する面に対する傾きが回転方向前方側から回転方向後方側に向かうに従って大きくなる湾曲面である。 The curved portion 22b is connected to the end of the flat portion 22c on the rear side in the rotational direction. As shown in FIG. 5, the bending portion 22b is an inclined surface that is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction, and the inclination with respect to the plane orthogonal to the axial direction Z rotates from the front side in the rotational direction. It is a curved surface that becomes larger toward the rear side in the direction.
 図2に示すように、接続部24は、インペラハブ21の外周面21aから径方向外側に突出する。接続部24は、軸流羽根部22の下側に配置される。より詳細には、接続部24は、軸流羽根部22の径方向内側の端部の下側に配置される。接続部24の上側の端部は、軸流羽根部22の径方向内側の端部と繋がる。接続部24の径方向外側の面は、接続面24aである。接続面24aは、インペラ20が有する面のうち第1羽根面22aの径方向内側の端部から下側に延びる面である。接続面24aの下側の端部は、インペラハブ21の下面と軸方向Zにおいて同じ位置に配置される。図4に示すように、接続面24aは、周方向θに沿って延びる湾曲面である。接続面24aは、径方向と直交する。接続部24は、複数設けられ、複数の軸流羽根部22のそれぞれに対して設けられる。 As shown in FIG. 2, the connecting portion 24 protrudes radially outward from the outer peripheral surface 21 a of the impeller hub 21. The connection part 24 is disposed below the axial flow blade part 22. More specifically, the connecting portion 24 is disposed below the end portion on the radially inner side of the axial flow blade portion 22. The upper end portion of the connecting portion 24 is connected to the radially inner end portion of the axial flow blade portion 22. A radially outer surface of the connection portion 24 is a connection surface 24a. The connection surface 24a is a surface that extends downward from the radially inner end of the first blade surface 22a among the surfaces of the impeller 20. The lower end of the connection surface 24a is disposed at the same position as the lower surface of the impeller hub 21 in the axial direction Z. As shown in FIG. 4, the connection surface 24 a is a curved surface extending along the circumferential direction θ. The connection surface 24a is orthogonal to the radial direction. A plurality of connection portions 24 are provided and provided for each of the plurality of axial flow blade portions 22.
 本実施形態のようにインペラハブの外周面が傾斜面である場合、金型を用いた射出成形でインペラを製造しようすると、軸流羽根部の径方向内側の端部が金型から抜きにくく、インペラを製造しにくい場合がある。これに対して、本実施形態によれば、インペラハブ21の外周面21aから径方向外側に突出する接続部24が設けられることで、インペラ20を軸方向Zに分割された2つの金型に樹脂を流し込む射出成形で製造する場合に、下側の金型から成形されたインペラ20を抜きやすくできる。そのため、金型を用いてインペラ20を容易に製造できる。 When the outer peripheral surface of the impeller hub is an inclined surface as in the present embodiment, when an impeller is manufactured by injection molding using a mold, the radially inner end of the axial flow blade portion is difficult to be removed from the mold, and the impeller May be difficult to manufacture. On the other hand, according to the present embodiment, the impeller 20 is divided into two molds divided in the axial direction Z by providing the connecting portion 24 protruding radially outward from the outer peripheral surface 21a of the impeller hub 21. When manufacturing by injection molding that pours in, the impeller 20 molded from the lower mold can be easily pulled out. Therefore, the impeller 20 can be easily manufactured using a mold.
 遠心羽根部23は、インペラハブ21の外周面21aに設けられる。遠心羽根部23は、インペラハブ21の外周面21aから径方向外側に突出する。遠心羽根部23は、軸流羽根部22の径方向内側の端部の回転方向前方側において、軸流羽根部22の径方向内側の端部と繋がる。遠心羽根部23の上面23aは、軸流羽根部22の上面と繋がる。より詳細には、上面23aの回転方向後方側の端部は、平坦部22cの径方向内側の端部に繋がる。上面23aと平坦部22cとは、軸方向Zと直交する同一平面上に配置される。上面23aを上側から視た形状は、三角形状である。 The centrifugal blade portion 23 is provided on the outer peripheral surface 21 a of the impeller hub 21. The centrifugal blade portion 23 protrudes radially outward from the outer peripheral surface 21 a of the impeller hub 21. The centrifugal blade portion 23 is connected to the radially inner end portion of the axial flow blade portion 22 on the front side in the rotational direction of the radially inner end portion of the axial flow blade portion 22. The upper surface 23 a of the centrifugal blade portion 23 is connected to the upper surface of the axial flow blade portion 22. More specifically, the end on the rear side in the rotation direction of the upper surface 23a is connected to the end on the radially inner side of the flat portion 22c. The upper surface 23a and the flat portion 22c are arranged on the same plane orthogonal to the axial direction Z. The shape of the upper surface 23a viewed from above is a triangular shape.
 遠心羽根部23は、第2羽根面23bを有する。第2羽根面23bは、遠心羽根部23の上面23aと繋がり回転方向前方側を向く面である。本実施形態において第2羽根面23bは、上面23aにおける径方向外側の一辺から下側に延びる。第2羽根面23bは、径方向内側から径方向外側に向かうに従って回転方向後方側に位置する傾斜面である。すなわち、第2羽根面23bは、後退角を有する。これにより、第2羽根面23bは、回転方向前方側を向くとともに、径方向外側を向く。本実施形態において第2羽根面23bは、軸方向Zと平行で平坦な面である。 The centrifugal blade portion 23 has a second blade surface 23b. The second blade surface 23b is a surface that is connected to the upper surface 23a of the centrifugal blade portion 23 and faces the front side in the rotation direction. In the present embodiment, the second blade surface 23b extends downward from one radial outer side of the upper surface 23a. The second blade surface 23b is an inclined surface located on the rear side in the rotational direction as it goes from the radially inner side to the radially outer side. That is, the second blade surface 23b has a receding angle. Thus, the second blade surface 23b faces the front side in the rotational direction and faces the radially outer side. In the present embodiment, the second blade surface 23b is a flat surface parallel to the axial direction Z.
 第2羽根面23bと直交する方向に沿って視て、第2羽根面23bは、略直角三角形状である。第2羽根面23bは、第2羽根面23bの上側の端部に沿った上辺23cと、上辺23cの径方向外側の端部から下側に延びる接続辺23dと、上辺23cの径方向内側の端部と接続辺23dの下側の端部とを繋ぐ斜辺23eと、を有する。上辺23cは、軸方向Zと直交する。接続辺23dは、軸方向Zと平行である。斜辺23eは、外周面21aに配置される。第2羽根面23bの軸方向Zの寸法は、径方向内側から径方向外側に向かうに従って大きくなる。第2羽根面23bの下側の端部は、インペラハブ21の下側の端部に繋がる。第2羽根面23bの下側の端部は、接続辺23dと斜辺23eとの交点である。 When viewed along a direction orthogonal to the second blade surface 23b, the second blade surface 23b has a substantially right triangle shape. The second blade surface 23b includes an upper side 23c along the upper end of the second blade surface 23b, a connection side 23d extending downward from a radially outer end of the upper side 23c, and a radially inner side of the upper side 23c. And a hypotenuse 23e that connects the end and the lower end of the connecting side 23d. The upper side 23c is orthogonal to the axial direction Z. The connection side 23d is parallel to the axial direction Z. The oblique side 23e is disposed on the outer peripheral surface 21a. The dimension in the axial direction Z of the second blade surface 23b increases from the radially inner side toward the radially outer side. The lower end portion of the second blade surface 23 b is connected to the lower end portion of the impeller hub 21. The lower end of the second blade surface 23b is an intersection of the connection side 23d and the oblique side 23e.
 図3に示すように、第2羽根面23bの径方向内側の端部は、回転方向前方側に隣り合う軸流羽根部22の湾曲部22bの回転方向後方側の端部と、周方向θにおいてほぼ同じ位置に配置される。図4に示すように、第2羽根面23bの径方向外側の端部は、接続面24aと繋がる。これにより、遠心羽根部23は、軸流羽根部22と接続部24とに繋がる。図5に示すように、第2羽根面23bの径方向外側の端部は、第1羽根面22aの回転方向後方側の端部よりも回転方向後方側に配置される。本実施形態において第2羽根面23bの径方向外側の端部は、接続辺23dである。遠心羽根部23は、複数設けられ、複数の軸流羽根部22のそれぞれに対して設けられる。 As shown in FIG. 3, the radially inner end of the second blade surface 23b is connected to the rotational direction rear end of the curved portion 22b of the axial flow blade 22 adjacent to the rotational direction front side and the circumferential direction θ. At approximately the same position. As shown in FIG. 4, the radially outer end of the second blade surface 23b is connected to the connection surface 24a. Thereby, the centrifugal blade part 23 is connected to the axial flow blade part 22 and the connection part 24. As shown in FIG. 5, the radially outer end portion of the second blade surface 23b is arranged on the rear side in the rotational direction with respect to the end portion on the rear side in the rotational direction of the first blade surface 22a. In the present embodiment, the radially outer end of the second blade surface 23b is a connection side 23d. A plurality of centrifugal blade portions 23 are provided and provided for each of the plurality of axial flow blade portions 22.
 インペラ20の材質は、特に限定されず、例えば、樹脂である。インペラ20は、例えば、金型を用いた射出成形によって、単一の部材として製造される。 The material of the impeller 20 is not particularly limited, and is, for example, resin. The impeller 20 is manufactured as a single member by, for example, injection molding using a mold.
 本実施形態の送風装置10は、モータ30としてアキシャルギャップ型のモータを採用した比較的薄型の送風装置である。送風装置10の軸方向Zと直交する方向の寸法に対する送風装置10の軸方向Zの寸法の比は、0.25よりも小さく、0.2以下であることが好ましい。送風装置10の軸方向Zと直交する方向の寸法は、例えば、上側から視た際におけるハウジング50の外形の一辺の長さであり、送風装置10の図2における左右方向の寸法である。送風装置10の軸方向Zの寸法は、例えば、ハウジング50の軸方向Zの寸法である。 The blower 10 of the present embodiment is a relatively thin blower that employs an axial gap type motor as the motor 30. The ratio of the dimension in the axial direction Z of the blower 10 to the dimension in the direction orthogonal to the axial direction Z of the blower 10 is preferably smaller than 0.25 and 0.2 or less. The dimension in the direction orthogonal to the axial direction Z of the blower 10 is, for example, the length of one side of the outer shape of the housing 50 when viewed from above, and is the horizontal dimension of the blower 10 in FIG. The dimension of the blower 10 in the axial direction Z is, for example, the dimension of the housing 50 in the axial direction Z.
 モータ30によってインペラ20が回転させられると、軸流羽根部22が回転方向前方側に進む。ここで、軸流羽根部22が有する第1羽根面22aは、回転方向前方側から回転方向後方側に向かうに従って下側に位置する傾斜面である。そのため、軸流羽根部22の回転に伴って第1羽根面22aが回転方向前方側に進むと、第1羽根面22aの回転方向前方側に位置する空気が、第1羽根面22aに沿って下側に送られる。これにより、インペラ20が回転して軸流羽根部22が回転すると、図2に示すようにインペラ20の上側からインペラ20の下側に流れる空気流AF1が生じる。空気流AF1は、軸流羽根部22の上側に位置する空気が軸流羽根部22によって軸流羽根部22の下側に送られることで生じる空気の流れである。 When the impeller 20 is rotated by the motor 30, the axial flow blade portion 22 advances forward in the rotational direction. Here, the 1st blade surface 22a which the axial flow blade part 22 has is an inclined surface located in the lower side as it goes to the rotation direction rear side from the rotation direction front side. Therefore, when the first blade surface 22a moves forward in the rotation direction along with the rotation of the axial flow blade portion 22, the air located on the front side in the rotation direction of the first blade surface 22a is along the first blade surface 22a. Sent to the bottom. Thereby, when the impeller 20 rotates and the axial flow blade portion 22 rotates, an air flow AF1 flowing from the upper side of the impeller 20 to the lower side of the impeller 20 is generated as shown in FIG. The air flow AF <b> 1 is a flow of air that is generated when air positioned above the axial flow blade portion 22 is sent to the lower side of the axial flow blade portion 22 by the axial flow blade portion 22.
 一方、インペラ20の回転によって遠心羽根部23が回転方向前方側に進むと、第2羽根面23bの回転方向前方側に位置する空気が、遠心力によって第2羽根面23bに沿って径方向外側に送られる。第2羽根面23bの回転方向前方側に位置する空気が径方向外側に送られることで、インペラハブ21の上側に位置する空気が、第2羽根面23bの回転方向前方側に引き込まれ、径方向外側に送られる。 On the other hand, when the centrifugal blade portion 23 moves forward in the rotational direction by the rotation of the impeller 20, the air located in the rotational direction forward side of the second blade surface 23b is radially outward along the second blade surface 23b by the centrifugal force. Sent to. The air located on the front side in the rotation direction of the second blade surface 23b is sent to the outside in the radial direction, so that the air located on the upper side of the impeller hub 21 is drawn into the front side in the rotation direction of the second blade surface 23b. Sent to the outside.
 第2羽根面23bに沿って径方向外側に送られた空気は、第2羽根面23bの径方向外側の端部が接続面24aと繋がるため、図4に示すように、第1羽根面22aの回転方向前方側に送られる。これにより、第2羽根面23bに沿って径方向外側に送られた空気を、第1羽根面22aによってインペラ20の下側に送ることができる。以上により、図2および図4に示すようにインペラハブ21の上側から径方向外側に引き込まれて、第2羽根面23bおよび第1羽根面22aを順に沿ってインペラ20の下側に流れる空気流AF2が生じる。 The air sent radially outward along the second blade surface 23b is connected to the connecting surface 24a at the radially outer end of the second blade surface 23b, and as shown in FIG. 4, the first blade surface 22a. Sent to the front side in the direction of rotation. Thereby, the air sent to the radial direction outer side along the 2nd blade surface 23b can be sent to the lower side of the impeller 20 by the 1st blade surface 22a. As described above, as shown in FIGS. 2 and 4, the air flow AF <b> 2 that is drawn radially outward from the upper side of the impeller hub 21 and flows to the lower side of the impeller 20 along the second blade surface 23 b and the first blade surface 22 a in order. Occurs.
 以上により、本実施形態の送風装置10では、軸流羽根部22と遠心羽根部23とを設けることで、空気流AF1と空気流AF2とを足し合わせた空気を軸方向Zに送ることができる。ここで、遠心羽根部23が設けられない場合では、送風装置によって送られる空気は、軸流羽根部22のみによって生じる空気流AF1による空気のみである。これに対して、本実施形態によれば、空気流AF1に加えて、遠心羽根部23と軸流羽根部22とによって空気流AF2を生じさせることができるため、送風装置10によって送る空気の量を多くできる。したがって、本実施形態の送風装置は、軸流羽根部22の径方向の寸法を大きくすることなく、送風装置10の送風量を向上できる。また、本実施形態の送風装置は、遠心羽根部23によって空気を径方向外側に送ることで、空気の静圧を向上させることができる。これにより、送風装置10によって送られる空気の静圧を向上させることができる。 As described above, in the blower device 10 of the present embodiment, by providing the axial flow blade portion 22 and the centrifugal blade portion 23, the air obtained by adding the air flow AF1 and the air flow AF2 can be sent in the axial direction Z. . Here, in the case where the centrifugal blade portion 23 is not provided, the air sent by the blower is only the air by the air flow AF1 generated only by the axial flow blade portion 22. On the other hand, according to the present embodiment, in addition to the air flow AF1, since the air flow AF2 can be generated by the centrifugal blade portion 23 and the axial flow blade portion 22, the amount of air sent by the blower 10 Can do more. Therefore, the air blower of this embodiment can improve the air flow rate of the air blower 10 without enlarging the radial dimension of the axial flow blade part 22. Moreover, the air blower of this embodiment can improve the static pressure of air by sending air to radial direction outer side by the centrifugal blade part 23. FIG. Thereby, the static pressure of the air sent by the air blower 10 can be improved.
 ここで、インペラを回転させるモータが本実施形態のようにアキシャルギャップ型のモータである場合、モータの回転トルクを得るために、マグネットを径方向に大きくする必要がある。そのため、マグネットが固定されるインペラハブが径方向に大型化しやすく、相対的に軸流羽根部の径方向の寸法が小さくなりやすい。軸流羽根部の径方向の寸法が小さくなると、軸流羽根部によって送られる空気の量が低減する。したがって、アキシャルギャップ型のモータを用いてインペラを回転させる場合、送風装置の送風量が小さくなりやすい問題があった。そのため、上述した送風量を向上できる効果は、送風装置のモータがアキシャルギャップ型のモータである場合に、特に有用である。また、モータ30をアキシャルギャップ型のモータとすることで、送風装置10を軸方向Zに薄型化しやすい。 Here, when the motor for rotating the impeller is an axial gap type motor as in this embodiment, it is necessary to enlarge the magnet in the radial direction in order to obtain the rotational torque of the motor. For this reason, the impeller hub to which the magnet is fixed is likely to be enlarged in the radial direction, and the radial dimension of the axial flow blade portion is likely to be relatively reduced. When the radial dimension of the axial flow vane portion is reduced, the amount of air sent by the axial flow vane portion is reduced. Therefore, when the impeller is rotated using an axial gap type motor, there is a problem that the air blowing amount of the blower tends to be small. Therefore, the above-described effect of improving the blown air volume is particularly useful when the motor of the blower is an axial gap type motor. Moreover, the air blower 10 can be easily thinned in the axial direction Z by using the motor 30 as an axial gap type motor.
 また、本実施形態によれば、インペラハブ21の外周面21aは、上側から下側に向かうに従って外径が大きくなる傾斜面である。そのため、インペラハブ21の上側に位置する空気を、外周面21aに沿って、径方向外側かつ下側に送りやすい。これにより、空気流AF2を滑らかに生じさせやすく、空気の損失を低減しやすい。したがって、より送風装置10の送風量を向上できる。また、空気流AF2の流れを滑らかにできるため、空気流AF2によって生じる騒音を低減できる。 Moreover, according to this embodiment, the outer peripheral surface 21a of the impeller hub 21 is an inclined surface whose outer diameter increases from the upper side toward the lower side. Therefore, it is easy to send the air located above the impeller hub 21 to the radially outer side and the lower side along the outer peripheral surface 21a. Thereby, it is easy to generate the air flow AF2 smoothly, and it is easy to reduce the loss of air. Therefore, it is possible to further improve the amount of air blown from the blower 10. Moreover, since the flow of the air flow AF2 can be made smooth, noise generated by the air flow AF2 can be reduced.
 また、本実施形態によれば、ステータ支持部41の外周面41aが、上側から下側に向かうに従って外径が大きくなる傾斜面であり、かつ、インペラハブ21の外周面21aよりも径方向外側に配置される。そのため、インペラハブ21の外周面21aに沿って径方向外側かつ下側に進みつつインペラ20の下側に送られた空気は、ステータ支持部41の外周面41aに沿って径方向外側かつ下側に送られる。これにより、外周面41aに沿って外周面41aの下端部から送風装置10の下側に放出される空気は、外周面41aから下側に離れるとともに径方向外側に離れる向きに進む。したがって、外周面41aに沿った空気が送風装置10の下側に放出される際に外周面41aから剥がれやすく、送風装置10の送風効率を向上させることができる。 Further, according to the present embodiment, the outer peripheral surface 41 a of the stator support portion 41 is an inclined surface having an outer diameter that increases from the upper side to the lower side, and more radially outward than the outer peripheral surface 21 a of the impeller hub 21. Be placed. Therefore, the air sent to the lower side of the impeller 20 while proceeding radially outward and downward along the outer peripheral surface 21 a of the impeller hub 21 is radially outward and downward along the outer peripheral surface 41 a of the stator support portion 41. Sent. Thereby, the air discharged | emitted from the lower end part of the outer peripheral surface 41a to the lower side of the air blower 10 along the outer peripheral surface 41a progresses in the direction which leaves | separates from the outer peripheral surface 41a to the lower side, and leaves radially outside. Therefore, when the air along the outer peripheral surface 41a is released to the lower side of the blower device 10, it is easy to peel off from the outer peripheral surface 41a, and the blowing efficiency of the blower device 10 can be improved.
 また、本実施形態によれば、第2羽根面23bは、径方向内側から径方向外側に向かうに従って回転方向後方側に位置する傾斜面である。これにより、第2羽根面23bに沿って流れる空気を、遠心羽根部23の回転方向後方側に配置された軸流羽根部22へと案内しやすい。また、第2羽根面23bに沿って径方向外側に送られる空気に乱れが生じにくく、空気流AF2によって生じる騒音をより低減できる。 Further, according to the present embodiment, the second blade surface 23b is an inclined surface that is located on the rear side in the rotational direction from the radially inner side toward the radially outer side. Thereby, it is easy to guide the air flowing along the second blade surface 23 b to the axial flow blade portion 22 disposed on the rear side in the rotation direction of the centrifugal blade portion 23. In addition, the air sent radially outward along the second blade surface 23b is less likely to be disturbed, and noise generated by the airflow AF2 can be further reduced.
 また、本実施形態によれば、第2羽根面23bの下側の端部は、インペラハブ21の下側の端部に繋がるため、第2羽根面23bの軸方向Zの寸法を大きくして、第2羽根面23bの面積を大きくしやすい。これにより、第2羽根面23bによって径方向外側に送る空気の量をより多くできる。したがって、より送風装置10の送風量を向上できる。 In addition, according to the present embodiment, the lower end portion of the second blade surface 23b is connected to the lower end portion of the impeller hub 21, so that the dimension in the axial direction Z of the second blade surface 23b is increased, It is easy to increase the area of the second blade surface 23b. Thereby, the quantity of the air sent to radial direction outer side by the 2nd blade surface 23b can be increased more. Therefore, it is possible to further improve the amount of air blown from the blower 10.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。以下の説明においては、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. In the following description, the same configurations as those in the above embodiment may be omitted by appropriately attaching the same reference numerals.
 第2羽根面23bは、図6に示す第2羽根面123bのような構成であってもよい。図6に示す送風装置110のインペラ120において、第2羽根面123bは、下側から上側に向かうに従って径方向内側に位置する傾斜面である。すなわち、第2羽根面123bは、回転方向前方側および径方向外側を向くとともに、上側を向く。そのため、インペラ120の上側の空気を第2羽根面123bに導きやすく、第2羽根面123bによって、第1羽根面22aの回転方向前方側に空気をより送りやすい。これにより、送風装置110の送風量をより向上できる。また、遠心羽根部123を抜きテーパを有する形状とできるため、金型を用いた射出成形でインペラ120を製造する際に、金型から遠心羽根部123を抜きやすい。したがって、インペラ120を容易に製造できる。 The second blade surface 23b may be configured like the second blade surface 123b shown in FIG. In the impeller 120 of the blower 110 illustrated in FIG. 6, the second blade surface 123 b is an inclined surface that is located radially inward from the lower side toward the upper side. That is, the second blade surface 123b faces the front side in the rotational direction and the radially outer side, and faces the upper side. Therefore, the air on the upper side of the impeller 120 is easily guided to the second blade surface 123b, and the second blade surface 123b makes it easier to send air to the front side in the rotation direction of the first blade surface 22a. Thereby, the ventilation volume of the air blower 110 can be improved more. Moreover, since the centrifugal blade part 123 can be made into a shape having a tapered shape, the centrifugal blade part 123 can be easily extracted from the mold when the impeller 120 is manufactured by injection molding using a mold. Therefore, the impeller 120 can be easily manufactured.
<第2実施形態>
 図7および図8に示すように、本実施形態の送風装置210のインペラ220において遠心羽根部223は、周方向θに延びる。遠心羽根部223の回転方向前方側の端部は、回転方向前方側に隣り合う軸流羽根部22の径方向内側の端部よりも回転方向前方側に位置する。本実施形態において遠心羽根部223の回転方向前方側の端部は、回転方向前方側に隣り合う軸流羽根部22の全体よりも回転方向前方側に位置する。
Second Embodiment
As shown in FIGS. 7 and 8, the centrifugal blade portion 223 extends in the circumferential direction θ in the impeller 220 of the blower 210 of the present embodiment. An end portion on the front side in the rotational direction of the centrifugal blade portion 223 is positioned on the front side in the rotational direction with respect to a radially inner end portion of the axial flow blade portion 22 adjacent to the front side in the rotational direction. In the present embodiment, the end portion on the front side in the rotation direction of the centrifugal blade portion 223 is located on the front side in the rotation direction with respect to the entire axial flow blade portion 22 adjacent to the front side in the rotation direction.
 図8に示すように、軸方向Zに沿って視て、周方向θに隣り合う遠心羽根部223同士は、一部が径方向に重なり合う。そのため、第2羽根面223bの周方向θの寸法を大きくすることができ、第2羽根面223bの面積を大きくできる。これにより、第2羽根面223bによって径方向外側に送る空気の量をより多くできる。したがって、より送風装置210の送風量を向上できる。 As shown in FIG. 8, when viewed along the axial direction Z, the centrifugal blade portions 223 adjacent to each other in the circumferential direction θ partially overlap in the radial direction. Therefore, the dimension of the circumferential direction θ of the second blade surface 223b can be increased, and the area of the second blade surface 223b can be increased. Thereby, the quantity of the air sent to radial direction outer side by the 2nd blade surface 223b can be increased more. Therefore, it is possible to further improve the amount of air blown by the blower 210.
 第2羽根面223bは、周方向θに延びる。本実施形態において第2羽根面223bの回転方向前方側の端部は、回転方向前方側に隣り合う軸流羽根部22の全体よりも回転方向前方側に位置する。第2羽根面223bの回転方向前方側の端部は、インペラハブ21の上面21eに繋がる。第2羽根面223bは、軸方向Zと平行である。第2羽根面223bは、径方向外側に膨らむ向きに湾曲する湾曲面である。 The second blade surface 223b extends in the circumferential direction θ. In the present embodiment, the end portion of the second blade surface 223b on the front side in the rotation direction is located on the front side in the rotation direction with respect to the entire axial flow blade portion 22 adjacent on the front side in the rotation direction. The end of the second blade surface 223b on the front side in the rotational direction is connected to the upper surface 21e of the impeller hub 21. The second blade surface 223b is parallel to the axial direction Z. The second blade surface 223b is a curved surface that curves in a direction that swells radially outward.
 遠心羽根部223の上面223aは、周方向θに延びる。上面223aは、回転方向前方側から回転方向後方側に向かうに従って下側に位置する。そのため、上面223aの上側の空気を、上面223aに沿って回転方向後方側に送りやすい。上面223aに沿って回転方向後方側に送られた空気は、上面223aが繋がる軸流羽根部22の上面に沿って、回転方向後方側に隣り合う軸流羽根部22の第1羽根面22aの回転方向前方側に送られる。これにより、軸流羽根部22の回転方向前方側に効率的に空気を送りやすく、送風装置210の送風量をより向上できる。上面223aの回転方向前方側の端部は、インペラハブ21の上面21eの径方向外縁部に繋がる。上面223aの回転方向後方側の端部は、平坦部22cに繋がる。 The upper surface 223a of the centrifugal blade part 223 extends in the circumferential direction θ. The upper surface 223a is located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction. Therefore, it is easy to send the air above the upper surface 223a to the rear side in the rotational direction along the upper surface 223a. The air sent to the rear side in the rotational direction along the upper surface 223a travels on the first blade surface 22a of the axial flow blade portion 22 adjacent to the rear side in the rotational direction along the upper surface of the axial flow blade portion 22 connected to the upper surface 223a. It is sent to the front side in the rotational direction. Thereby, it is easy to efficiently send air to the front side in the rotational direction of the axial flow blade portion 22, and the amount of air blown by the blower 210 can be further improved. An end portion of the upper surface 223a on the front side in the rotation direction is connected to a radially outer edge portion of the upper surface 21e of the impeller hub 21. The end of the upper surface 223a on the rear side in the rotation direction is connected to the flat portion 22c.
 なお、本実施形態の第2羽根面223bは、図9に示す第2羽根面323bのような構成であってもよい。図9に示す送風装置310のインペラ320において、第2羽根面323bの径方向外側の端部は、回転方向後方側に向かって湾曲し、接続面24aと滑らかに繋がる。そのため、第2羽根面323bから接続面24aへと滑らかに空気を案内することができる。これにより、第2羽根面323bと接続面24aとの接続部において空気が乱れることを抑制でき、遠心羽根部323によって送られる空気の損失を低減することができる。したがって、送風装置310の送風量をより向上できる。また、空気の流れによって生じる騒音を低減できる。第2羽根面323bの径方向外側の端部は、周方向θに対する傾きが径方向外側に向かうに従って小さくなる。 Note that the second blade surface 223b of the present embodiment may have a configuration like the second blade surface 323b shown in FIG. In the impeller 320 of the blower 310 shown in FIG. 9, the radially outer end of the second blade surface 323b is curved toward the rear side in the rotational direction, and is smoothly connected to the connection surface 24a. Therefore, air can be smoothly guided from the second blade surface 323b to the connection surface 24a. Thereby, it can suppress that air is disturb | confused in the connection part of the 2nd blade | wing surface 323b and the connection surface 24a, and the loss of the air sent by the centrifugal blade part 323 can be reduced. Therefore, the air volume of the air blower 310 can be further improved. Further, noise generated by the air flow can be reduced. The end of the second blade surface 323b on the outer side in the radial direction becomes smaller as the inclination with respect to the circumferential direction θ goes toward the outer side in the radial direction.
 上述した各実施形態において、接続部の接続面は、軸方向Zに対して傾く傾斜面であってもよい。また、接続部は、設けられなくてもよい。この場合、インペラハブの外周面の一部が、接続面に相当する。また、第1軸流羽根部は、後退角を有する後退翼形状であってもよい。この場合、第1軸流羽根部は、径方向内側から径方向外側に向かうに従って回転方向後方側に位置する。 In each embodiment described above, the connection surface of the connection portion may be an inclined surface inclined with respect to the axial direction Z. Moreover, the connection part does not need to be provided. In this case, a part of the outer peripheral surface of the impeller hub corresponds to the connection surface. Further, the first axial flow blade portion may have a receding blade shape having a receding angle. In this case, a 1st axial flow blade | wing part is located in the rotation direction back side as it goes to a radial direction outer side from a radial direction inner side.
 また、上述した各実施形態においてモータは、アキシャルギャップ型のモータとしたが、これに限られない。モータの種類は特に限定されず、モータは、例えば、ラジアルギャップ型のモータであってもよい。 In each embodiment described above, the motor is an axial gap type motor, but is not limited thereto. The type of motor is not particularly limited, and the motor may be, for example, a radial gap type motor.
 また、上述した各実施形態の送風装置の用途は、特に限定されない。上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 Moreover, the use of the air blower of each embodiment mentioned above is not specifically limited. The above-described configurations can be appropriately combined within a range that does not contradict each other.
 10,110,210,310…送風装置、20,120,220,320…インペラ、21…インペラハブ、21a…外周面、22…軸流羽根部、22a…第1羽根面、23,123,223,323…遠心羽根部、23b,123b,223b,323b…第2羽根面、24…接続部、24a…接続面、30…モータ、33…マグネット、34…ステータ、J…中心軸、Z…軸方向、θ…周方向 DESCRIPTION OF SYMBOLS 10,110,210,310 ... Air blower, 20,120,220,320 ... Impeller, 21 ... Impeller hub, 21a ... Outer peripheral surface, 22 ... Axial flow blade part, 22a ... First blade surface, 23, 123, 223 323: Centrifugal blade portion, 23b, 123b, 223b, 323b ... Second blade surface, 24 ... Connection portion, 24a ... Connection surface, 30 ... Motor, 33 ... Magnet, 34 ... Stator, J ... Central axis, Z ... Axial direction , Θ ... Circumferential direction

Claims (9)

  1.  送風装置であって、
     上下方向に延びる中心軸周りに回転可能なインペラと、
     前記中心軸周りに前記インペラを回転させるモータと、
     を備え、
     前記インペラは、
      軸方向に延びる外周面を有するインペラハブと、
      前記インペラハブの外周面から径方向外側に延び、周方向に沿って並んで配置される複数の軸流羽根部と、
      前記インペラハブの外周面に設けられ、前記軸流羽根部の径方向内側の端部の回転方向前方側において前記軸流羽根部の径方向内側の端部と繋がる遠心羽根部と、
     を有し、
     前記インペラハブの外周面は、上側から下側に向かうに従って外径が大きくなる傾斜面であり、
     前記軸流羽根部は、下側を向く第1羽根面を有し、
     前記第1羽根面は、回転方向前方側から回転方向後方側に向かうに従って下側に位置する傾斜面であり、
     前記遠心羽根部の上面は、前記軸流羽根部の上面と繋がり、
     前記遠心羽根部は、前記遠心羽根部の上面と繋がり回転方向前方側を向く第2羽根面を有し、
     前記第2羽根面は、径方向内側から径方向外側に向かうに従って回転方向後方側に位置する傾斜面であり、
     前記第2羽根面の径方向外側の端部は、前記インペラが有する面のうち前記第1羽根面の径方向内側の端部から下側に延びる接続面と繋がる。
    A blower,
    An impeller rotatable around a central axis extending in the vertical direction;
    A motor for rotating the impeller around the central axis;
    With
    The impeller is
    An impeller hub having an outer peripheral surface extending in the axial direction;
    A plurality of axial flow blade portions extending radially outward from the outer peripheral surface of the impeller hub and arranged side by side along the circumferential direction;
    A centrifugal blade portion provided on an outer peripheral surface of the impeller hub and connected to a radially inner end portion of the axial flow blade portion on a rotation direction front side of a radially inner end portion of the axial flow blade portion;
    Have
    The outer peripheral surface of the impeller hub is an inclined surface whose outer diameter increases from the upper side toward the lower side,
    The axial flow blade portion has a first blade surface facing downward,
    The first blade surface is an inclined surface located on the lower side from the front side in the rotational direction toward the rear side in the rotational direction,
    The upper surface of the centrifugal blade portion is connected to the upper surface of the axial flow blade portion,
    The centrifugal blade portion has a second blade surface that is connected to the upper surface of the centrifugal blade portion and faces the front side in the rotation direction,
    The second blade surface is an inclined surface located on the rear side in the rotational direction as it goes from the radially inner side to the radially outer side,
    The radially outer end of the second blade surface is connected to a connecting surface extending downward from the radially inner end of the first blade surface among the surfaces of the impeller.
  2.  前記第2羽根面の下側の端部は、前記インペラハブの下側の端部に繋がる、請求項1に記載の送風装置。 The blower according to claim 1, wherein the lower end of the second blade surface is connected to the lower end of the impeller hub.
  3.  前記インペラは、前記インペラハブの外周面から径方向外側に突出する接続部を有し、
     前記接続部は、前記軸流羽根部の下側に配置され、
     前記接続部の径方向外側の面は、前記接続面である、請求項1に記載の送風装置。
    The impeller has a connecting portion that protrudes radially outward from the outer peripheral surface of the impeller hub,
    The connecting portion is disposed below the axial flow blade portion,
    The blower according to claim 1, wherein a radially outer surface of the connection portion is the connection surface.
  4.  前記遠心羽根部は、周方向に延び、かつ、前記軸流羽根部のそれぞれに対して設けられ、
     軸方向に沿って視て、周方向に隣り合う前記遠心羽根部同士は、一部が径方向に重なり合う、請求項1に記載の送風装置。
    The centrifugal blade portion extends in the circumferential direction, and is provided for each of the axial flow blade portions,
    The blower device according to claim 1, wherein the centrifugal blade portions adjacent in the circumferential direction as viewed along the axial direction partially overlap in the radial direction.
  5.  前記遠心羽根部の上面は、周方向に延び、回転方向前方側から回転方向後方側に向かうに従って下側に位置する、請求項1に記載の送風装置。 The blower device according to claim 1, wherein an upper surface of the centrifugal blade portion extends in a circumferential direction and is located on a lower side from the front side in the rotation direction toward the rear side in the rotation direction.
  6.  前記接続面は、周方向に沿って延び、
     前記第2羽根面の径方向外側の端部は、回転方向後方側に向かって湾曲し、前記接続面と滑らかに繋がる、請求項1に記載の送風装置。
    The connection surface extends along a circumferential direction,
    The air blower according to claim 1, wherein an end portion on the radially outer side of the second blade surface is curved toward the rear side in the rotation direction and smoothly connected to the connection surface.
  7.  前記第2羽根面は、下側から上側に向かうに従って径方向内側に位置する傾斜面である、請求項1に記載の送風装置。 The air blower according to claim 1, wherein the second blade surface is an inclined surface positioned radially inward from the lower side toward the upper side.
  8.  前記軸流羽根部は、径方向内側から径方向外側に向かうに従って回転方向前方側に位置する、請求項1に記載の送風装置。 The blower according to claim 1, wherein the axial-flow blade portion is positioned on the front side in the rotational direction from the radially inner side toward the radially outer side.
  9.  前記モータは、
      前記インペラハブに固定されるマグネットと、
      前記マグネットの下側において、前記マグネットと軸方向に隙間を介して対向するステータと、
     を有する、請求項1に記載の送風装置。
    The motor is
    A magnet fixed to the impeller hub;
    On the lower side of the magnet, a stator facing the magnet with a gap in the axial direction;
    The air blower according to claim 1, comprising:
PCT/JP2018/015397 2017-04-27 2018-04-12 Blower device WO2018198799A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880026283.3A CN110537026A (en) 2017-04-27 2018-04-12 Air supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088260 2017-04-27
JP2017-088260 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198799A1 true WO2018198799A1 (en) 2018-11-01

Family

ID=63918202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015397 WO2018198799A1 (en) 2017-04-27 2018-04-12 Blower device

Country Status (2)

Country Link
CN (1) CN110537026A (en)
WO (1) WO2018198799A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170736A1 (en) * 2019-02-22 2020-08-27 日本電産株式会社 Motor and blower device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110898A (en) * 1987-10-22 1989-04-27 Mitsubishi Electric Corp Axial fan
JP2006233812A (en) * 2005-02-23 2006-09-07 Nidec Copal Corp Fan motor
JP2007151368A (en) * 2005-11-30 2007-06-14 Nidec Copal Corp Fan motor
JP2009013855A (en) * 2007-07-03 2009-01-22 Usui Kokusai Sangyo Kaisha Ltd Axial flow fan
US20130259667A1 (en) * 2012-03-30 2013-10-03 Asustek Computer Inc. Impeller and fan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103758790B (en) * 2008-05-07 2017-01-04 台达电子工业股份有限公司 Fan and flow-guiding structure thereof
CN204783835U (en) * 2015-07-03 2015-11-18 讯凯国际股份有限公司 Modular flabellum
CN205225853U (en) * 2015-11-03 2016-05-11 东莞动利电子有限公司 Structure is promoted to flabellum amount of wind on axial fan's primary fan leaf

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110898A (en) * 1987-10-22 1989-04-27 Mitsubishi Electric Corp Axial fan
JP2006233812A (en) * 2005-02-23 2006-09-07 Nidec Copal Corp Fan motor
JP2007151368A (en) * 2005-11-30 2007-06-14 Nidec Copal Corp Fan motor
JP2009013855A (en) * 2007-07-03 2009-01-22 Usui Kokusai Sangyo Kaisha Ltd Axial flow fan
US20130259667A1 (en) * 2012-03-30 2013-10-03 Asustek Computer Inc. Impeller and fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170736A1 (en) * 2019-02-22 2020-08-27 日本電産株式会社 Motor and blower device

Also Published As

Publication number Publication date
CN110537026A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
JP5259164B2 (en) Blower impeller
JPWO2016068282A1 (en) Blower and vacuum cleaner
US20080085189A1 (en) Micro fan
US20120269665A1 (en) Blower fan
JP2013185440A (en) Centrifugal fan
TW202102781A (en) Fan motor and manufacturing method thereof
JP2019157656A (en) Centrifugal fan
JP6012034B2 (en) Axial fan
CN108571466A (en) Aerofoil fan
WO2018198799A1 (en) Blower device
CN204783822U (en) Centrifugal aerator
JP5907205B2 (en) Blower
JP4519734B2 (en) Rotating impeller and propeller fan
JP2020020320A (en) Impeller, and centrifugal fan
KR101521703B1 (en) Impeller for electric blower
JP5008386B2 (en) Centrifugal multiblade blower
WO2006082877A1 (en) Axial flow blower
JP2019113000A (en) Centrifugal fan
JP2010216280A (en) Centrifugal fan
JPWO2019012880A1 (en) Blower
JP2017145763A (en) Electric blower
JP2011174385A (en) Impeller and centrifugal fan
JP2018053863A (en) Impeller, centrifugal fan and air blower
JP6204016B2 (en) Centrifugal blower
JP5310404B2 (en) Multi-blade blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP