WO2018198771A1 - Hydroelectric power generation device and power generation system - Google Patents

Hydroelectric power generation device and power generation system Download PDF

Info

Publication number
WO2018198771A1
WO2018198771A1 PCT/JP2018/015191 JP2018015191W WO2018198771A1 WO 2018198771 A1 WO2018198771 A1 WO 2018198771A1 JP 2018015191 W JP2018015191 W JP 2018015191W WO 2018198771 A1 WO2018198771 A1 WO 2018198771A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
generator
power
braking device
power generation
Prior art date
Application number
PCT/JP2018/015191
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 川合
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018198771A1 publication Critical patent/WO2018198771A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/08Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator for removing foreign matter, e.g. mud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/18Regulating, i.e. acting automatically for safety purposes, e.g. preventing overspeed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a hydroelectric generator and a power generation system, and more particularly to control of a small hydroelectric generator.
  • Hydropower generator is a system that uses the kinetic energy of running water for power generation.
  • the hydroelectric generator includes, as main components, a water turbine that rotates by receiving a flow of water, a generator that is connected to the water turbine and converts rotational energy into electric energy, and a controller that controls the output of the generator and the water turbine. . Since the optimum power to be extracted from the generator varies depending on the flow velocity, the control device measures the flow velocity, the rotation speed of the water turbine, or the generated voltage of the generator, determines the optimum power to be extracted from the generator, and determines the power amount of the generator. And the generator are controlled so that the optimum values match.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-189837 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2014-202093 (Patent Document 2) disclose techniques for measures against dust generated by hydroelectric power generation.
  • Patent Document 1 discloses an example in which a dust removal facility for removing foreign substances is installed in a water channel upstream from a water turbine installation location.
  • a dust removal facility for removing foreign substances is installed in a water channel upstream from a water turbine installation location.
  • a simple dust remover such as a comb filter in the small hydroelectric generator.
  • Patent Document 2 proposes a method of crushing and removing dust by using a water turbine blade as a crushing blade for crushing foreign matter by using a generator as a motor. With such a measure, dust can be removed without a significant increase in cost.
  • the small hydroelectric generator disclosed in Japanese Patent Application Laid-Open No. 2014-202093 (Patent Document 2) has the following two problems.
  • the control device in order to drive the generator as an electric motor, the control device must have an inverter function. Since a general generator control device has only functions of a rectifier circuit and a DC / DC converter, it is difficult to easily add such functions. Second, using an inverter to make a generator function as an electric motor is not power generation, which is the original purpose, but power consumption. The functioning of the generator as an electric motor that consumes electric power is an operation opposite to the original target power generation, and is not a desired operation. Furthermore, it is necessary to secure a power supply when functioning as an electric motor.
  • the present invention is for solving the above-described problems, and an object thereof is to provide a small-sized hydroelectric generator that is easy to maintain against dust and foreign matter while suppressing cost.
  • the present disclosure relates to a hydroelectric power generation apparatus.
  • the hydroelectric power generator includes a water turbine, an electric or mechanical braking device that operates a braking force on a rotating shaft that is linked to the water wheel, and a control device that repeatedly operates and releases the braking device so that the braking force increases or decreases.
  • the control device When the amount of decrease from the power corresponding to the flow rate of the generated power of the hydroelectric generator is the first value, the control device operates the brake device a first time, and the amount of decrease in the generated power is the first value. If the second value is greater than the second value, the braking device is operated a second number of times greater than the first number of times.
  • a hydroelectric generator of another aspect disclosed in the present disclosure includes a water turbine, an electric or mechanical braking device that operates a braking force on a rotating shaft that is linked to the water turbine, and a braking device that increases or decreases the braking force. And a control device that repeats operation and release.
  • the control device operates the braking device so that the braking force exhibits the first increase / decrease pattern when the generated power decreases from the power corresponding to the flow velocity, and when the recovery of the generated power is insufficient, the first
  • the braking device is operated with a second increase / decrease pattern having a larger deceleration than the increase / decrease pattern.
  • the braking device includes a brake that applies a frictional force to a member fixed to the rotating shaft, and the control device increases or decreases the braking force by changing the frictional force.
  • the braking device includes a generator that generates electric power by rotating the water wheel, and the control device increases or decreases the braking force by increasing or decreasing the electric power extracted from the generator.
  • control device repeats the operation and release of the braking device after increasing the rotational speed of the water turbine by reducing the power generated by the hydroelectric power generation device.
  • the water wheel has a horizontal axis type propeller rotor blade.
  • the water turbine has a vertical axis type rotor blade.
  • the present disclosure also discloses a power generation system that performs ocean current power generation or tidal power generation that converts kinetic energy of flowing water into electric power using any of the above-described hydroelectric power generation apparatuses.
  • the present invention in a small hydroelectric generator, it is possible to remove dust and the like adhering to the water turbine while suppressing an increase in cost, and it is possible to prevent a decrease in power generation amount.
  • dust and grass are less likely to get entangled in the turbine blade, eliminating the need for a dust remover to remove dust installed in the water channel upstream from the water turbine installation location, or reducing the number of dust removal operations of the dust remover. It is possible to reduce the introduction cost or running cost of the entire hydroelectric power generation system. In addition, the risk of causing damage such as overflow is reduced because the water flow in the channel is not hindered.
  • FIG. 3 It is a front view which shows the structure of the hydraulic power unit which concerns on this Embodiment. It is a side view which shows the structure of the hydraulic power unit which concerns on this Embodiment. It is a block diagram which shows the structure of the hydraulic power unit which concerns on this Embodiment. 4 is a flowchart for explaining control executed by a control unit in the configuration example of FIG. 3. It is a figure which shows the relationship between the generated electric power before a brake, and the generated electric power after a brake recovered
  • FIG. 6 is a front view showing a schematic shape of a hydroelectric generator according to Embodiment 3.
  • FIG. 1 is a front view showing the configuration of the hydroelectric generator according to the present embodiment.
  • FIG. 2 is a side view showing the configuration of the hydroelectric generator according to the present embodiment.
  • the hydroelectric power generation device shown in FIGS. 1 and 2 uses a kinetic energy of a water flow for power generation, and is a small and lightweight hydroelectric power generation that can be installed in a water channel that distributes existing agricultural water, tap water, or industrial water. System.
  • the hydroelectric power generation device includes a water turbine 1, a speed increaser 2, a power generator 3, and a support portion 40.
  • the water turbine 1 has a propeller-type rotor blade having a horizontal axis as a rotation center. The water turbine 1 rotates in response to the force of water flow in the water channel.
  • the gearbox 2 is connected to the water turbine 1.
  • the speed increaser 2 increases the rotation speed of the water turbine 1 by a predetermined gear ratio, and converts the rotation of the horizontal axis into the rotation of the vertical axis and transmits the rotation to the generator 3.
  • the generator 3 is, for example, a three-phase synchronous generator.
  • the generator 3 is connected to the water turbine 1 through the speed increaser 2.
  • the generator 3 includes a rotor and a stator (both not shown).
  • the generator 3 generates AC power when the rotor rotates as the water turbine 1 rotates.
  • the power generated by the generator 3 is controlled by the control device 100 (see FIG. 3).
  • the support unit 40 supports the water turbine 1, the speed increaser 2, and the generator 3.
  • the support portion 40 includes two beams 40a and 40b, a gantry 40c, a support column 40d, and a base plate 40e.
  • the two beams 40a and 40b are arranged so as to have a parallel positional relationship.
  • a gantry 40c is provided so as to be placed on top of both of the two beams 40a and 40b.
  • the two struts 40d are disposed at one end and the other end of the gantry 40c, respectively.
  • a base plate 40e is disposed so as to connect the upper portions of the two columns 40d.
  • the generator 3 is disposed between the gantry 40c and the base plate 40e, and is fixed to the base plate 40e.
  • a column for fixing the position of the water turbine 1 and the gearbox 2 with respect to the position of the gantry 40c is provided below the gantry 40c.
  • a rotating shaft that connects the speed increaser 2 and the generator 3 is accommodated inside the column.
  • FIG. 3 is a block diagram showing a configuration of the hydroelectric generator according to the present embodiment.
  • the hydroelectric power generation device includes a water turbine 1, a speed increaser 2, a power generator 3, a rotation speed detector 6, a braking device 12, a current meter 14, Control device 100.
  • Control device 100 includes a control unit 7, a rectifier circuit 4, and a DC / AC converter 10.
  • the control unit 7 controls the braking device 12 as well as the rectifier circuit 4 and the DC / AC converter 10.
  • the water wheel 1 is rotated by the power of running water.
  • a generator 3 is connected to the water turbine 1 via a speed increaser 2.
  • the generator 3 generates power as the water turbine 1 rotates.
  • the generator 3 is a three-phase synchronous generator, and its output is output as a three-phase alternating current.
  • the three-phase AC output of the generator 3 is converted into a DC output by the rectifier circuit 4, and the DC output is output to the subsequent DC / AC converter 10.
  • the generator 3 is a three-phase synchronous generator
  • the type of the generator is not limited to this, and an arbitrary type such as a three-phase induction generator or a DC generator may be used.
  • the generator can be used in combination with a control device corresponding to the generator type.
  • a mechanical brake that converts kinetic energy into heat by friction can be used.
  • a mechanical brake electromagnettic brake, disc brake, etc.
  • a fluid brake can be used as the braking device 12.
  • the rotational speed of the water turbine 1 can be increased or decreased or the rotation can be stopped.
  • the control unit 7 measures the state of the generator 3 while measuring the state of the water flow with the velocimeter 14.
  • the control device 100 can observe that the rotational speed of the water turbine 1 has decreased or the amount of power generation has decreased even though the flow rate is sufficient.
  • the control device 100 controls the braking device 12 to repeat braking (decrease in rotational speed) and release (increase in rotational speed). Garbage and aquatic plants entangled with the water turbine blades float from the water turbine 1 when the rotation speed of the water turbine 1 decreases and the water pressure and centrifugal force due to the rotation of the water turbine blades are weakened.
  • the above control may be performed every time a certain time has elapsed.
  • FIG. 4 is a flowchart for explaining the control executed by the control unit in the configuration example of FIG. The process of this flowchart is called and executed at regular intervals from the main routine for generator control. Referring to FIGS. 3 and 4, in step S ⁇ b> 1, control unit 7 determines whether or not the dust removal operation condition is satisfied.
  • the dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases. For example, when any one of the following conditions (1) to (4) is satisfied, the control unit 7 determines that the dust removal operation condition is satisfied. Note that the control unit 7 may determine that the dust removal operation condition is satisfied when a combination of two or more of the conditions (1) to (4) is satisfied.
  • Condition (1) The average generated power of the hydroelectric generator at a certain time has decreased below the threshold value.
  • Condition (2) The average rotation speed of the water turbine 1 at a certain time has decreased to fall below a threshold value.
  • Condition (3) The average generated voltage of the hydroelectric generator at a certain time has decreased below a threshold value.
  • Condition (4) A predetermined time has elapsed since the last time the dust removal operation condition was satisfied (or released).
  • the operating conditions may be determined based on the amount of decrease in average generated power, the average current, the average rotational torque, and the like.
  • step S1 When it is determined in step S1 that the dust removal operation condition is not satisfied (NO in S1), the control unit 7 advances the process to step S10. In this case, control is returned to the main routine.
  • step S1 when it is determined in step S1 that the dust removal operation condition is satisfied (YES in S1), the control unit 7 executes the dust removal operation shown in steps S2 to S9.
  • the control unit 7 increases or decreases the braking force of the braking device 12. For example, the control unit 7 outputs a command signal to the braking device 12 so that the braking force repeats the maximum value and zero when the rotational speed detector 6 detects a decrease in the rotational speed of the generator 3. , The deceleration and acceleration of the water wheel 1 are repeated.
  • the control unit 7 sets a counter upper limit value corresponding to the amount of decrease in generated power.
  • FIG. 5 is a diagram showing the relationship between the generated power before the dust removal operation and the generated power recovered after the dust removal operation.
  • the generated power recovers to 90%. Further, if the dust removal operation is performed in a state where the generated power before the dust removal operation is 60% or more, the generated power is recovered to 100%.
  • the above conditions (1) to (3) should be set to threshold values for the respective conditions so as to correspond to the generated power of 50%, preferably 60%.
  • FIG. 6 is a graph for examining the number of times of braking by the brake.
  • the vertical axis represents the generated power (%) after braking
  • the horizontal axis represents the number of braking times
  • the generated power (%) before braking is 20%, 30%, 40%, 50%, 70%, 90 % Data are plotted.
  • FIG. 6 shows that when the pre-brake generated power is 20% and 30%, the generated power does not increase and dust is not removed no matter how many times the brake is operated. When the generated power before braking is 40%, the generated power recovers somewhat when the brake is operated, but does not increase more than 60%.
  • the generated power before braking is 50%
  • the generated power increases and recovers up to 4 times when the brake is operated, but it does not increase more than 90% even if it is operated 4 times or more.
  • the generated power before braking is 70%
  • the generated power increases and recovers up to 3 times when the brake is operated, and reaches 100% after 3 times.
  • the generated power before braking is 90%
  • the brake is operated the generated power increases and recovers up to twice, and becomes 100% after two times.
  • the operation frequency should be set appropriately to balance the recovery of generated power and the maintenance of the brake life. Is desired. Therefore, in the present embodiment, the brake operation frequency is changed according to the decrease rate of the generated power.
  • FIG. 7 is a diagram showing the relationship between the power generated before braking and the number of brake operations in the dust removal operation.
  • the dust removal operation is executed when the generated power is 50% or more in order to effectively recover the power.
  • the number of times of brake operation is three, and when the generated power before the dust removal operation is 70%.
  • the brake operation frequency is set to 4 times, and when the generated power before the dust removal operation is 50%, the brake operation frequency is set to 6 times.
  • the number of brake actuations is increased as the generated power before the dust removal operation decreases.
  • step S ⁇ b> 2 the control unit 7 determines a counter upper limit value (the number of brakes) as a numerical value corresponding to the amount of decrease in generated power based on the number of removal operations shown in the relationship shown in FIG. Subsequently, in step S3, the control unit 7 clears the built-in counter. This counter is a counter for measuring the number of repetitions. Subsequently, in step S4, the control unit 7 sets the command signal SB so that the braking device 12 generates a braking force (brake ON). Thereafter, in step S5, the control unit 7 waits until a set time (for example, 1 to 10 seconds) elapses in the brake-on state.
  • a set time for example, 1 to 10 seconds
  • step S6 the control unit 7 sets the command signal SB so that the braking device 12 does not generate a braking force (brake OFF). Thereafter, in step S7, the control unit 7 waits until a set time (for example, 1 to 10 seconds) elapses in the brake OFF state.
  • a set time for example, 1 to 10 seconds
  • control unit 7 increments the counter in step S8, and in step S9, determines whether or not the count value of the counter has reached an upper limit value (set number of repetitions of increase / decrease). In step S9, if the count value has not yet reached the upper limit value, the control unit 7 returns the process to step S4 and turns on the brake again.
  • step S9 if the count value reaches the upper limit value in step S9, the process proceeds to step S10, and the dust removal operation per time is completed.
  • the braking device 12 is installed on the rotating shaft that connects the speed increaser 2 and the generator 3 of the hydroelectric power generation device, and the braking device 12 is repeatedly turned on and off. Thereby, the rotational speed of the water turbine 1 is changed.
  • the foreign matter adhering to the water wheel 1 can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
  • the set time in S5 and the set time in S7 are fixed values while being repeated up to the upper limit value of the counter.
  • the set time may be changed.
  • FIG. 8 is a block diagram showing a modification of the configuration of the hydroelectric generator.
  • the modified hydroelectric generator includes a water turbine 1, a speed increaser 2, a generator 3, a rotational speed detector 6, a flow meter 14, and a control device 100 ⁇ / b> A.
  • the control device 100A includes a control unit 7A, a rectifier circuit 4, a DC / DC converter 9, and a DC / AC converter 10. Since water turbine 1, generator 3, rectifier circuit 4, and rotational speed detector 6 are the same as those shown in FIG. 3, the description thereof will not be repeated.
  • the control unit 7A outputs a current command signal SA to the DC / DC converter 9.
  • the DC / DC converter 9 takes out power from the output of the rectifier circuit 4 in accordance with the command of the current command signal SA, and outputs a current as commanded to the DC / AC converter 10. Along with this, the output voltage of the DC / DC converter 9 rises.
  • the DC / AC converter 10 outputs power to the subsequent stage.
  • the DC / AC converter 10 is configured to suppress an increase in the output voltage of the DC / DC converter 9 by outputting more power to the subsequent stage.
  • the optimum power that can be extracted from the water turbine 1 is determined by the flow rate of water received by the water turbine 1.
  • the flow rate and the number of rotations of the generator 3 are substantially proportional.
  • the optimum power can be determined. If the electric power that is larger than the optimum electric power is taken out from the generator 3, the rotational speed of the generator 3 is lowered. At this time, the rotational speed of the water turbine 1 connected to the generator 3 also decreases. On the contrary, when the electric power taken out from the generator 3 is less than the optimum value, for example, zero, the rotation speed of the generator increases and increases similarly to the rotation speed of the water turbine 1 connected to the generator 3.
  • the rotational speed of the water turbine 1 can be increased or decreased by increasing or decreasing the electric power extracted from the generator 3.
  • FIG. 9 is a flowchart for explaining control for removing dust adhering to the water wheel in the configuration of FIG. 8 and 9, in step S11, control unit 7A determines whether or not the dust removal operation condition is satisfied.
  • the dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases.
  • conditions (1) to (4) or combinations thereof those already described can be applied, and therefore description thereof will not be repeated here.
  • step S11 If it is determined in step S11 that the dust removal operation condition is not satisfied (NO in S11), the control unit 7A advances the process to step S20. In this case, control is returned to the main routine.
  • step S11 when it is determined in step S11 that the dust removal operation condition is satisfied (YES in S11), the control unit 7A executes the dust removal operation shown in steps S12 to S19.
  • step S12 the control unit 7A determines the counter upper limit value to a numerical value corresponding to the amount of decrease in generated power based on the number of removal operations shown in the relationship shown in FIG. Subsequently, the control unit 7A increases or decreases the current command value to the DC / DC converter 9 as the dust removal operation. For example, when the control unit 7A detects a decrease in the rotational speed of the generator 3 from the rotational speed detector 6, the control unit 7A outputs the current command signal SA so that the output current repeats the maximum value and zero. Repeat the deceleration and acceleration.
  • step S13 the control unit 7A clears the built-in counter. This counter is a counter for measuring the number of repetitions. Subsequently, in step S14, the control unit 7A sets the current command signal SA so that the DC / DC converter 9 maximizes the output current, and then in step S15, the control unit 7A sets the set time (for example, 1 to Wait 3 seconds). While the output current of the DC / DC converter 9 is maximized, a large amount of electric power is consumed and a large braking force is generated in the generator 3.
  • step S14 the control unit 7A sets the current command signal SA so that the DC / DC converter 9 maximizes the output current
  • step S15 the control unit 7A sets the set time (for example, 1 to Wait 3 seconds). While the output current of the DC / DC converter 9 is maximized, a large amount of electric power is consumed and a large braking force is generated in the generator 3.
  • step S16 the control unit 7A sets the current command signal SA so that the DC / DC converter 9 sets the output current to zero, and then in step S17, the control unit 7A sets the set time (for example, 1 to 3). Wait). In this case, since the load on the generator 3 is lighter than when the current command signal SA is set to the maximum current, the rotational speed of the generator 3 increases.
  • control unit 7A increments the counter in step S18, and determines in step S19 whether or not the count value of the counter has reached the upper limit value (set number of repetitions of increase / decrease). In step S19, if the count value has not yet reached the upper limit value, control unit 7A returns the process to step S14, and sets current command signal SA to maximize the output current again.
  • step S19 when the count value reaches the upper limit value in step S19, the process proceeds to step S20, and the dust removal operation per time is completed.
  • the load of the generator 3 that is linked to the water turbine 1 of the hydroelectric generator is varied by increasing or decreasing the current command value of the DC / DC converter 9.
  • the rotational speed of the generator 3 is changed, and the rotational speed of the water turbine 1 interlocked with the generator 3 is changed.
  • the foreign matter adhering to the water wheel 1 can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
  • the brake life is extended while effectively removing dust by determining the number of times of increase / decrease in braking force corresponding to the amount of decrease in generated power.
  • the pattern for applying the braking force is changed.
  • FIG. 10 is a flowchart for explaining control executed by the control unit in the hydroelectric generator of the second embodiment. The process of this flowchart is called and executed at regular intervals from the main routine for generator control.
  • step S51 the control unit 7 determines whether or not the dust removal operation condition is satisfied.
  • the dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases.
  • conditions (1) to (4) or combinations thereof those already described can be applied, and therefore description thereof will not be repeated here.
  • step S51 If it is determined in step S51 that the dust removal operation condition is not satisfied (NO in S51), the control unit 7 advances the process to step S55. In this case, control is returned to the main routine.
  • step S51 when it is determined in step S51 that the dust removal operation condition is satisfied (YES in S51), the control unit 7 executes the dust removal operation shown in steps S52 to S54.
  • step S52 control is performed to decelerate the water turbine 1 with the first braking pattern.
  • the first braking pattern is a braking pattern in which the load on the braking device 12 is relatively small.
  • step S54 control is returned to the main routine.
  • the second braking pattern is a braking pattern in which the load on the braking device is larger than that of the first braking pattern.
  • FIG. 11 is a waveform diagram showing a first example of the first braking pattern.
  • FIG. 12 is a waveform diagram showing a second example of the first braking pattern.
  • FIG. 13 is a waveform diagram showing a third example of the first braking pattern.
  • FIG. 14 is a waveform diagram showing a fourth example of the first braking pattern.
  • FIG. 15 is a waveform diagram showing an example of the second braking pattern.
  • the second braking pattern shown in FIG. 15 is a control in which a sudden braking is applied to the rotating water wheel 1 to temporarily stop the rotation and then the brake is released.
  • the brake is applied more slowly than in FIG. 15, or the brake is released before reaching the stop.
  • the control unit 7 tries to remove dust with the first braking pattern with a light load on the braking device 12, and when the electric power still does not recover, the second braking pattern is applied.
  • the first braking pattern can be considered and will be described with reference to FIGS.
  • the degree of deceleration at time t1 is not different from that in FIG. 15, but when the rotational speed decreases from N1 to N2, the braking force is maintained and released at time t2.
  • the degree of deceleration at times t11 to t12 is slower than that in FIG. 15, and the braking torque of the braking device 12 can be small.
  • the deceleration degree from time t21 to t22 is slower than that in FIG. 15, and the braking device 12 is released immediately at time t22, so that the amount of power generation can be reduced little.
  • FIG. 16 is a front view showing a schematic shape of the hydroelectric generator according to the third embodiment.
  • the hydraulic power generation apparatus according to Embodiment 4 includes a water turbine 1 ⁇ / b> A and a generator 3.
  • the water turbine 1 ⁇ / b> A has a vertical axis type rotary blade and rotates by a water flow.
  • the generator 3 is connected to the rotating shaft of the water turbine 1A. When the water wheel 1A rotates, the rotating shaft of the generator 3 also rotates.
  • FIGS. 3 to 15 can be used in combination in the same manner for the water turbine 1A shown in FIG. Since the control device, flowchart, and braking pattern shown in FIGS. 3 to 15 have been described in the first and second embodiments, description thereof will not be repeated here.
  • the vertical axis type water turbine 1 ⁇ / b> A is a straight wing type and exemplifies a configuration in which the upper and lower ends of the wing are bent toward the rotation axis, but is not particularly limited thereto.
  • other types such as a Darius type, a gyromill type, a Savonius type, a cross flow type, a paddle type, and an S-type rotor type may be used.
  • the rotational speed of the generator 3 can be changed, and the rotational speed of the water turbine 1A connected to the generator 3 can be changed.
  • the foreign matter attached to the water turbine 1A can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
  • the hydroelectric generator of the present embodiment includes a hydraulic turbine 1, an electric or mechanical braking device 12 that operates a braking force on a rotating shaft that is linked to the hydraulic turbine 1, and an operation of the braking device 12 so that the braking force increases or decreases. And a control device 100 that repeats release. As shown in FIG. 7, when the amount of decrease from the power corresponding to the flow rate of the generated power of the generator 3 is the first value, the control device 100 operates the braking device 12 a first number of times (for example, If the electric power corresponding to the flow rate is 100% and then 90% is reduced by 10%, the operation is performed three times).
  • the device 12 is activated a second number of times that is greater than the first number of times (eg, activated 4 times for 70% reduced by 30%, and activated 6 times for reduced 50%).
  • the rotational speed of the turbine blade is changed by installing the rotational braking device connected to the hydraulic turbine of the hydroelectric generator and repeating the braking (decreasing rotational speed) and releasing (increasing rotational speed) on the turbine blade.
  • Garbage and grass entangled with the turbine blades are lifted from the turbine blades by the inertial force because the water pressure and centrifugal force due to the rotation of the turbine blades are weakened when the rotation speed of the turbine wheels decreases.
  • braking and releasing are repeated, it becomes easy to float, and the force that pushes downstream by the water flow acts and flows downstream.
  • the reduction amount ⁇ P of the generated power may be expressed as a percentage (%) or may be expressed as electric power (W).
  • the braking device 12 includes a brake (mechanical friction brake) that applies a frictional force to a member fixed to the rotating shaft of the water turbine.
  • the control device 100 increases or decreases the braking force by changing the frictional force.
  • the braking device includes a generator 3 that generates power by the rotation of the water wheel.
  • the control device 100A increases or decreases the braking force by increasing or decreasing the electric power extracted from the generator.
  • the speed fluctuation range of the water turbine 1 is sufficiently obtained by repeatedly increasing / decreasing the braking force from the predetermined rotational speed.
  • the flow rate of water received by the water turbine 1 varies greatly in the long term, and may be greatly reduced in a season with little rainfall. Accordingly, the rotational speed of the water turbine 1 also decreases, and even when the braking force increase / decrease operation is repeated from the state in which the rotational speed of the water turbine 1 decreases, the fluctuation range of the rotational speed of the water turbine 1 is small, and predetermined dust removal The effect may not be obtained.
  • the water turbine has a horizontal axis type propeller rotor blade.
  • the water turbine has a vertical axis type rotor blade.
  • the hydroelectric generator of another aspect disclosed in the present disclosure includes a water turbine 1, an electric or mechanical brake device 12 that operates a braking force on a rotating shaft that operates in conjunction with the water turbine, and braking so that the braking force increases or decreases.
  • a control device 100 that repeats the operation and release of the device 12 is provided. As shown in FIG. 10, when the generated power is lower than the power corresponding to the flow velocity, the control device 100 performs braking so that the braking force shows the first increase / decrease pattern (any one of FIGS. 12 to 14). When the device 12 is operated and recovery of the generated power is insufficient, the braking device is operated with a second increase / decrease pattern (FIG. 15) having a deceleration larger than that of the first increase / decrease pattern.
  • the present disclosure also discloses a power generation system that performs ocean current power generation or tidal power generation that converts kinetic energy of flowing water into electric power using any of the above-described hydroelectric power generation apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

A hydroelectric power generation device comprises: a water turbine (1); an electrical or mechanical braking device (12) for causing braking force to act on a rotation shaft that interlocks with the water turbine (1); and a control device (100) for repeating the operation and release of the braking device (12) so as to increase or decrease the braking force. The control device (100) operates the braking device (12) for a first number of times when a reduction amount of generated power of a generator (3) from power corresponding to flow velocity is a first value (for example, the braking device is operated three times when the generated power is 90% after reducing by 10%), and operates the braking device (12) for a second number of times larger than the first number of times when the reduction amount of the generated power is a second value larger than the first value (for example, the braking device is operated four times when the generated power is 70% after reducing by 30%, and is operated six times when the generated power reduces by 50%). As a result, a compact hydroelectric power generation device with easy maintenance against dust and foreign matters can be provided while suppressing cost.

Description

水力発電装置および発電システムHydroelectric generator and power generation system
 この発明は、水力発電装置および発電システムに関し、特に小型の水力発電装置の制御に関する。 The present invention relates to a hydroelectric generator and a power generation system, and more particularly to control of a small hydroelectric generator.
 水力発電装置は流水が持つ運動エネルギーを発電に利用するシステムである。水力発電装置は、主な構成として、水の流れを受け回転する水車と、水車と連結され回転エネルギーを電気エネルギーに変換する発電機と、発電機の出力および水車を制御する制御装置とを含む。発電機から取り出す最適な電力は流速により変化するため、制御装置は、流速あるいは水車の回転速度あるいは発電機の発電電圧を計測し、発電機から取り出す最適な電力を決定し、発電機の電力量と最適値が一致するように発電機を制御する。 Hydropower generator is a system that uses the kinetic energy of running water for power generation. The hydroelectric generator includes, as main components, a water turbine that rotates by receiving a flow of water, a generator that is connected to the water turbine and converts rotational energy into electric energy, and a controller that controls the output of the generator and the water turbine. . Since the optimum power to be extracted from the generator varies depending on the flow velocity, the control device measures the flow velocity, the rotation speed of the water turbine, or the generated voltage of the generator, determines the optimum power to be extracted from the generator, and determines the power amount of the generator. And the generator are controlled so that the optimum values match.
 上流より発電機に漂着するゴミや水草、枝、紐は、水車に絡まり発電量の低下の要因となる。このため、水力発電では、ゴミ対策が重要である。例えば、水車の上流にゴミを除去する装置を設置することが好ましい。 ゴ ミ Garbage, aquatic plants, branches, and strings drifting from the upstream to the generator are entangled with the water wheel and cause a decrease in the amount of power generation. For this reason, countermeasures against garbage are important in hydropower generation. For example, it is preferable to install a device for removing dust upstream of the water wheel.
 特開2013-189837号公報(特許文献1)、特開2014-202093(特許文献2)には、水力発電のゴミ対策についての技術が開示されている。 Japanese Patent Application Laid-Open No. 2013-189837 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2014-202093 (Patent Document 2) disclose techniques for measures against dust generated by hydroelectric power generation.
特開2013-189837号公報JP 2013-189837 A 特開2014-202093号公報JP 2014-202093 A
 特開2013-189837号公報(特許文献1)は、水車設置場所より上流の水路に異物を除去する除塵設備を設置する例を開示している。しかしながら、小型で水路に手軽に設置可能な小水力発電装置では、このような大掛かりな除塵設備はコストアップの要因となるので使用することは難しい。このため、小水力発電装置には、例えばくし型のフィルタなど簡易的な除塵機を設置することが考えられる。 Japanese Patent Laid-Open No. 2013-189837 (Patent Document 1) discloses an example in which a dust removal facility for removing foreign substances is installed in a water channel upstream from a water turbine installation location. However, in a small hydroelectric generator that is small and can be easily installed in a water channel, it is difficult to use such a large dust removal equipment because it causes an increase in cost. For this reason, it is conceivable to install a simple dust remover such as a comb filter in the small hydroelectric generator.
 小水力発電装置において、簡易的な除塵機を設置した場合、多少のゴミや水草が水車に流れ込む場合がある。水車に流れ着いたゴミは、そのまま素通りするものもあれば、水車の水車翼(羽根)に引っかかるものもある。水車翼に引っかかったゴミは、水車翼の回転による水圧や遠心力、水流による水圧によって、水車翼に押し付けられた状態となり外れなくなる。水車に付着したゴミや水草が増えると発電力の低下を引き起こす。したがって、簡易的な除塵機は完全なゴミ対策とはならず、水車に付着したゴミの定期的な除去作業が必要となる。 ∙ When a simple dust remover is installed in a small hydroelectric generator, some garbage and aquatic plants may flow into the turbine. Some of the trash that has flown into the water turbine passes through as it is, while others are caught on the water turbine blades (blades). Garbage caught on the turbine blade is pressed against the turbine blade by the water pressure, centrifugal force, and water pressure generated by the rotation of the turbine blade. When the garbage and aquatic plants attached to the water wheel increase, the power generation decreases. Therefore, a simple dust remover is not a complete measure against dust, and it is necessary to periodically remove dust adhering to the water wheel.
 一方、特開2014-202093(特許文献2)では、発電機をモータとして機能させ、異物を破砕する破砕羽として水車羽を使用しゴミを破砕して除去する方法が提案されている。このような対策であれば、大幅なコストアップが不要でゴミが除去できる。しかし、特開2014-202093(特許文献2)に開示された小水力発電装置には、以下の2点の課題がある。 On the other hand, Japanese Patent Application Laid-Open No. 2014-202093 (Patent Document 2) proposes a method of crushing and removing dust by using a water turbine blade as a crushing blade for crushing foreign matter by using a generator as a motor. With such a measure, dust can be removed without a significant increase in cost. However, the small hydroelectric generator disclosed in Japanese Patent Application Laid-Open No. 2014-202093 (Patent Document 2) has the following two problems.
 第一に、発電機を電動機として駆動するために制御装置にインバータの機能を有する必要がある。一般的な発電機の制御装置は、整流回路とDC/DCコンバータの機能しか持たないので、このような機能を簡単に追加することは難しい。第二に、インバータを使用して発電機を電動機として機能させることは、本来の目的である発電ではなく、電力の消費である。電力を消費する電動機として発電機を機能させることは、本来の目的とする発電とは逆の動作であり、望むべき動作ではない。さらに、電動機として機能させるときの電源の確保も必要である。 First, in order to drive the generator as an electric motor, the control device must have an inverter function. Since a general generator control device has only functions of a rectifier circuit and a DC / DC converter, it is difficult to easily add such functions. Second, using an inverter to make a generator function as an electric motor is not power generation, which is the original purpose, but power consumption. The functioning of the generator as an electric motor that consumes electric power is an operation opposite to the original target power generation, and is not a desired operation. Furthermore, it is necessary to secure a power supply when functioning as an electric motor.
 この発明は、上記の課題を解決するためのものであって、その目的は、コストを抑えつつゴミや異物に対して保守容易な小型水力発電装置を提供することである。 The present invention is for solving the above-described problems, and an object thereof is to provide a small-sized hydroelectric generator that is easy to maintain against dust and foreign matter while suppressing cost.
 本開示は、水力発電装置に関するものである。水力発電装置は、水車と、水車に連動する回転軸に制動力を作動させる電気式または機械式の制動装置と、制動力が増減するように制動装置の作動と解放とを繰り返す制御装置とを備える。制御装置は、水力発電装置の発電電力の流速に対応する電力からの低下量が第1の値である場合には、制動装置を第1回数作動させ、発電電力の低下量が第1の値よりも大きい第2の値である場合には、制動装置を第1回数よりも多い第2回数作動させる。 The present disclosure relates to a hydroelectric power generation apparatus. The hydroelectric power generator includes a water turbine, an electric or mechanical braking device that operates a braking force on a rotating shaft that is linked to the water wheel, and a control device that repeatedly operates and releases the braking device so that the braking force increases or decreases. Prepare. When the amount of decrease from the power corresponding to the flow rate of the generated power of the hydroelectric generator is the first value, the control device operates the brake device a first time, and the amount of decrease in the generated power is the first value. If the second value is greater than the second value, the braking device is operated a second number of times greater than the first number of times.
 本開示で開示される他の局面の水力発電装置は、水車と、水車に連動する回転軸に制動力を作動させる電気式または機械式の制動装置と、制動力が増減するように制動装置の作動と解放とを繰り返す制御装置とを備える。制御装置は、発電電力が流速に対応する電力から低下した場合に、制動力が第1の増減パターンを示すように制動装置を作動させ、発電電力の回復が不十分であるときは、第1の増減パターンよりも減速度が大きい第2の増減パターンで制動装置を作動させる。 A hydroelectric generator of another aspect disclosed in the present disclosure includes a water turbine, an electric or mechanical braking device that operates a braking force on a rotating shaft that is linked to the water turbine, and a braking device that increases or decreases the braking force. And a control device that repeats operation and release. The control device operates the braking device so that the braking force exhibits the first increase / decrease pattern when the generated power decreases from the power corresponding to the flow velocity, and when the recovery of the generated power is insufficient, the first The braking device is operated with a second increase / decrease pattern having a larger deceleration than the increase / decrease pattern.
 好ましくは、制動装置は、回転軸に固定された部材に摩擦力を与えるブレーキを含み、制御装置は、摩擦力を変動させることによって制動力を増減させる。 Preferably, the braking device includes a brake that applies a frictional force to a member fixed to the rotating shaft, and the control device increases or decreases the braking force by changing the frictional force.
 好ましくは、制動装置は、水車の回転によって発電を行なう発電機を含み、制御装置は、発電機から取り出す電力を増減させることによって制動力を増減させる。 Preferably, the braking device includes a generator that generates electric power by rotating the water wheel, and the control device increases or decreases the braking force by increasing or decreasing the electric power extracted from the generator.
 好ましくは、制御装置は、水力発電装置の発電電力を低下させることによって水車の回転速度を増加させた後、制動装置の作動と解放とを繰り返す。 Preferably, the control device repeats the operation and release of the braking device after increasing the rotational speed of the water turbine by reducing the power generated by the hydroelectric power generation device.
 好ましくは、水車は、水平軸型のプロペラ式回転翼を有する。
 好ましくは、水車は、垂直軸型の回転翼を有する。
Preferably, the water wheel has a horizontal axis type propeller rotor blade.
Preferably, the water turbine has a vertical axis type rotor blade.
 本開示は、また、上記いずれかの水力発電装置を用いて、流水が持つ運動エネルギーを電力に変換する海流発電または潮力発電を行なう発電システムを開示する。 The present disclosure also discloses a power generation system that performs ocean current power generation or tidal power generation that converts kinetic energy of flowing water into electric power using any of the above-described hydroelectric power generation apparatuses.
 本発明によれば、小型の水力発電装置において、コストの増加を抑えつつ、水車に付着したゴミ等を除去することが可能であり、発電量の低下を防ぐことができる。 According to the present invention, in a small hydroelectric generator, it is possible to remove dust and the like adhering to the water turbine while suppressing an increase in cost, and it is possible to prevent a decrease in power generation amount.
 また、水車翼にゴミや草が絡まりにくくなるため、水車設置場所より上流の水路に設置するゴミを除去する除塵機の必要が無くなるか、または除塵機のごみ除去作業回数を減らすことができ、水力発電システム全体の導入コストまたはランニングコストを抑えることが可能である。また、水路の水流を妨げなくなるため、溢水などの被害を引き起こすリスクが減少する。 In addition, dust and grass are less likely to get entangled in the turbine blade, eliminating the need for a dust remover to remove dust installed in the water channel upstream from the water turbine installation location, or reducing the number of dust removal operations of the dust remover. It is possible to reduce the introduction cost or running cost of the entire hydroelectric power generation system. In addition, the risk of causing damage such as overflow is reduced because the water flow in the channel is not hindered.
本実施の形態に係る水力発電装置の構成を示す正面図である。It is a front view which shows the structure of the hydraulic power unit which concerns on this Embodiment. 本実施の形態に係る水力発電装置の構成を示す側面図である。It is a side view which shows the structure of the hydraulic power unit which concerns on this Embodiment. 本実施の形態に係る水力発電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the hydraulic power unit which concerns on this Embodiment. 図3の構成例において制御部が実行する制御を説明するためのフローチャートである。4 is a flowchart for explaining control executed by a control unit in the configuration example of FIG. 3. ブレーキ前の発電電力と、ごみ除去運転後に回復したブレーキ後の発電電力の関係を示す図である。It is a figure which shows the relationship between the generated electric power before a brake, and the generated electric power after a brake recovered | restored after the garbage removal driving | operation. ブレーキによる制動回数の検討を行なうためのグラフである。It is a graph for examining the frequency | count of braking by a brake. ブレーキ前発電電力と、ゴミ除去運転のブレーキ作動回数との関係を示した図である。It is the figure which showed the relationship between the electric power generated before a brake, and the frequency | count of a brake operation of garbage removal driving | operation. 水力発電装置の構成の変形例を示すブロック図である。It is a block diagram which shows the modification of a structure of a hydroelectric generator. 図8の構成において水車に付着したゴミを除去する制御を説明するためのフローチャートである。It is a flowchart for demonstrating the control which removes the dust adhering to a water turbine in the structure of FIG. 実施の形態2の水力発電装置において制御部が実行する制御を説明するためのフローチャートである。5 is a flowchart for illustrating control executed by a control unit in the hydroelectric generator of Embodiment 2. 第1制動パターンの第1例を示した波形図である。It is a wave form diagram showing the 1st example of the 1st braking pattern. 第1制動パターンの第2例を示した波形図である。It is a wave form diagram showing the 2nd example of the 1st braking pattern. 第1制動パターンの第3例を示した波形図である。It is a wave form diagram showing the 3rd example of the 1st braking pattern. 第1制動パターンの第4例を示した波形図である。It is a wave form diagram showing the 4th example of the 1st braking pattern. 第2制動パターンの例を示した波形図である。It is the wave form diagram which showed the example of the 2nd braking pattern. 実施の形態3に係る水力発電装置の概略形状を示す正面図である。FIG. 6 is a front view showing a schematic shape of a hydroelectric generator according to Embodiment 3.
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [実施の形態1]
 <水力発電装置の構成>
 図1は、本実施の形態に係る水力発電装置の構成を示す正面図である。図2は、本実施の形態に係る水力発電装置の構成を示す側面図である。
[Embodiment 1]
<Configuration of hydroelectric generator>
FIG. 1 is a front view showing the configuration of the hydroelectric generator according to the present embodiment. FIG. 2 is a side view showing the configuration of the hydroelectric generator according to the present embodiment.
 図1および図2に示す水力発電装置は、水流が持つ運動エネルギーを発電に利用し、既存の農業用水、水道用水、あるいは、工業用水などを流通する水路に設置可能な小型かつ軽量な水力発電システムである。 The hydroelectric power generation device shown in FIGS. 1 and 2 uses a kinetic energy of a water flow for power generation, and is a small and lightweight hydroelectric power generation that can be installed in a water channel that distributes existing agricultural water, tap water, or industrial water. System.
 図1および図2に示すように、水力発電装置は、水車1と、増速機2と、発電機3と、支持部40とを含む。 As shown in FIGS. 1 and 2, the hydroelectric power generation device includes a water turbine 1, a speed increaser 2, a power generator 3, and a support portion 40.
 水車1は、水平方向の軸を回転中心とするプロペラ型の回転翼を有する。水車1は、水路内において水流の力を受けて回転する。 The water turbine 1 has a propeller-type rotor blade having a horizontal axis as a rotation center. The water turbine 1 rotates in response to the force of water flow in the water channel.
 増速機2は、水車1に接続されている。増速機2は、水車1の回転速度を所定のギヤ比で増速するとともに、水平軸の回転を鉛直軸の回転に変換して発電機3に伝達する。 The gearbox 2 is connected to the water turbine 1. The speed increaser 2 increases the rotation speed of the water turbine 1 by a predetermined gear ratio, and converts the rotation of the horizontal axis into the rotation of the vertical axis and transmits the rotation to the generator 3.
 発電機3は、たとえば、3相同期発電機である。発電機3は、増速機2を介して水車1に連結される。発電機3は、ロータとステータ(いずれも図示せず)とを含む。発電機3は、水車1の回転によりロータが回転することによって交流電力を発電する。発電機3の発電電力は、制御装置100(図3参照)によって制御される。 The generator 3 is, for example, a three-phase synchronous generator. The generator 3 is connected to the water turbine 1 through the speed increaser 2. The generator 3 includes a rotor and a stator (both not shown). The generator 3 generates AC power when the rotor rotates as the water turbine 1 rotates. The power generated by the generator 3 is controlled by the control device 100 (see FIG. 3).
 支持部40は、水車1と増速機2と発電機3とを支持する。支持部40は、2本の梁40a,40bと、架台40cと、支柱40dと、ベース板40eとを含む。 The support unit 40 supports the water turbine 1, the speed increaser 2, and the generator 3. The support portion 40 includes two beams 40a and 40b, a gantry 40c, a support column 40d, and a base plate 40e.
 2本の梁40a,40bは、互いに平行な位置関係になるように配置される。2本の梁40a,40bの中央部において、2本の梁40a,40bの両方の上部に載置されるように架台40cが設けられる。2本の支柱40dは、架台40cの一方端部と他方端部とにそれぞれ配置されている。2本の支柱40dの上部を繋ぐようにベース板40eが配置されている。 The two beams 40a and 40b are arranged so as to have a parallel positional relationship. In the central part of the two beams 40a and 40b, a gantry 40c is provided so as to be placed on top of both of the two beams 40a and 40b. The two struts 40d are disposed at one end and the other end of the gantry 40c, respectively. A base plate 40e is disposed so as to connect the upper portions of the two columns 40d.
 発電機3は、架台40cとベース板40eとの間に配置され、ベース板40eに固定される。架台40cの下側には、架台40cの位置に対する水車1および増速機2の位置を固定する支柱が設けられる。支柱内部には、増速機2と発電機3とを接続する回転軸が収納される。2本の梁40a,40bが水路の幅方向に沿って水路の側壁上方に配置される場合、水車1は、支持部40によって水路内の所定位置に固定される。 The generator 3 is disposed between the gantry 40c and the base plate 40e, and is fixed to the base plate 40e. A column for fixing the position of the water turbine 1 and the gearbox 2 with respect to the position of the gantry 40c is provided below the gantry 40c. A rotating shaft that connects the speed increaser 2 and the generator 3 is accommodated inside the column. When the two beams 40 a and 40 b are arranged above the side wall of the water channel along the width direction of the water channel, the water wheel 1 is fixed to a predetermined position in the water channel by the support portion 40.
 <水力発電装置の制御構成について>
 図3は、本実施の形態に係る水力発電装置の構成を示すブロック図である。図3を参照して、本実施の形態に係る水力発電装置は、水車1と、増速機2と、発電機3と、回転速度検出器6と、制動装置12と、流速計14と、制御装置100とを含む。制御装置100は、制御部7と、整流回路4と、DC/ACコンバータ10とを含む。制御部7は、整流回路4およびDC/ACコンバータ10を制御するとともに、制動装置12を制御する。
<Regarding the control configuration of the hydroelectric generator>
FIG. 3 is a block diagram showing a configuration of the hydroelectric generator according to the present embodiment. Referring to FIG. 3, the hydroelectric power generation device according to the present embodiment includes a water turbine 1, a speed increaser 2, a power generator 3, a rotation speed detector 6, a braking device 12, a current meter 14, Control device 100. Control device 100 includes a control unit 7, a rectifier circuit 4, and a DC / AC converter 10. The control unit 7 controls the braking device 12 as well as the rectifier circuit 4 and the DC / AC converter 10.
 水車1は、流水の力で回転する。水車1には増速機2を介して発電機3が連結されている。発電機3は、水車1の回転に伴い発電を行なう。発電機3は3相同期発電機であり、その出力は3相交流で出力される。発電機3の3相交流出力は、整流回路4によって直流出力に変換され、直流出力は後段のDC/ACコンバータ10に出力される。 The water wheel 1 is rotated by the power of running water. A generator 3 is connected to the water turbine 1 via a speed increaser 2. The generator 3 generates power as the water turbine 1 rotates. The generator 3 is a three-phase synchronous generator, and its output is output as a three-phase alternating current. The three-phase AC output of the generator 3 is converted into a DC output by the rectifier circuit 4, and the DC output is output to the subsequent DC / AC converter 10.
 なお、ここでは具体例として発電機3が3相同期発電機である場合について説明するが、発電機の型式はこれに限定されず、3相誘導発電機や直流発電機など、任意の型式の発電機を、発電機の型式に対応した制御装置と組合せて使用することができる。 Here, the case where the generator 3 is a three-phase synchronous generator will be described as a specific example. However, the type of the generator is not limited to this, and an arbitrary type such as a three-phase induction generator or a DC generator may be used. The generator can be used in combination with a control device corresponding to the generator type.
 制動装置12としては、運動エネルギーを摩擦により熱に変換する機械式ブレーキを使用することができる。たとえば、制動装置12として機械式ブレーキ(電磁ブレーキ、ディスクブレーキ等)および流体式ブレーキ等を使用することができる。制動装置12で発生させる制動力を増減させることによって、水車1の回転速度を増減または回転を停止させることができる。また、制動装置12の代わりに発電機等の短絡による電気式ブレーキで水車の制動と解放を行っても良い。 As the braking device 12, a mechanical brake that converts kinetic energy into heat by friction can be used. For example, a mechanical brake (electromagnetic brake, disc brake, etc.) and a fluid brake can be used as the braking device 12. By increasing or decreasing the braking force generated by the braking device 12, the rotational speed of the water turbine 1 can be increased or decreased or the rotation can be stopped. Moreover, you may brake and release a water wheel with the electric brake by the short circuit of a generator etc. instead of the braking device 12. FIG.
 制御部7は、流速計14で水流の状態を計測しつつ、発電機3の状態を計測している。ゴミが絡まった場合、制御装置100は、流速が十分であるにもかかわらず、水車1の回転速度が低下したことまたは発電量が低下したことを観測することができる。この時、制御装置100は、制動装置12に制動(回転速度減)と解放(回転速度増)を繰り返す制御を行なう。水車翼に絡みついたゴミや水草は、水車1の回転速度が減少した時に、水車翼の回転による水圧や遠心力が弱まり、水車1から浮き上がる。一方、回転速度が増加した時には、水車1の回転が加速するため水圧や遠心力が上昇し、より強い力がゴミや水草にかかるため、ゴミ等が水車翼に付着している位置がずれる。発電機3の制動と解放を繰り返すとゴミ等が水車翼から浮き上がりやすくなり、水流による下流へ押し流す力が作用し、ゴミ等が下流へ流される。 The control unit 7 measures the state of the generator 3 while measuring the state of the water flow with the velocimeter 14. When the trash is entangled, the control device 100 can observe that the rotational speed of the water turbine 1 has decreased or the amount of power generation has decreased even though the flow rate is sufficient. At this time, the control device 100 controls the braking device 12 to repeat braking (decrease in rotational speed) and release (increase in rotational speed). Garbage and aquatic plants entangled with the water turbine blades float from the water turbine 1 when the rotation speed of the water turbine 1 decreases and the water pressure and centrifugal force due to the rotation of the water turbine blades are weakened. On the other hand, when the rotation speed increases, the rotation of the water turbine 1 accelerates, so that the water pressure and centrifugal force increase, and a stronger force is applied to the dust and aquatic plants. When braking and releasing of the generator 3 are repeated, dust and the like are easily lifted from the water turbine blades, and a force that pushes the water downstream is applied, and the dust and the like are caused to flow downstream.
 なお、流速や水量を監視しない場合であれば、ある時間が経過する毎に上記の制御を行なうようにしても良い。 If the flow rate and the amount of water are not monitored, the above control may be performed every time a certain time has elapsed.
 図4は、図3の構成例において制御部が実行する制御を説明するためのフローチャートである。このフローチャートの処理は、発電機制御のメインルーチンから一定時間ごとに呼び出されて実行される。図3、図4を参照して、ステップS1において、制御部7は、ゴミ除去運転条件が成立したか否かを判断する。 FIG. 4 is a flowchart for explaining the control executed by the control unit in the configuration example of FIG. The process of this flowchart is called and executed at regular intervals from the main routine for generator control. Referring to FIGS. 3 and 4, in step S <b> 1, control unit 7 determines whether or not the dust removal operation condition is satisfied.
 ゴミ除去運転条件は、水車1にゴミが付着した可能性が高まった場合に成立する。たとえば、以下の条件(1)~(4)のいずれか1つが成立したときに、制御部7は、ゴミ除去運転条件が成立したと判断する。なお、条件(1)~(4)のうち、2つまたはそれ以上を組み合わせた条件が成立した場合に、制御部7は、ゴミ除去運転条件が成立したと判断しても良い。 The dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases. For example, when any one of the following conditions (1) to (4) is satisfied, the control unit 7 determines that the dust removal operation condition is satisfied. Note that the control unit 7 may determine that the dust removal operation condition is satisfied when a combination of two or more of the conditions (1) to (4) is satisfied.
 条件(1):ある一定の時間における水力発電装置の平均発電電力がしきい値よりも低下したこと。条件(2):ある一定の時間における水車1の平均回転速度が低下して、しきい値を下回ったこと。条件(3):ある一定の時間における水力発電装置の平均発電電圧がしきい値よりも低下したこと。条件(4):前回のゴミ除去運転条件成立時(または解除時)から所定の時間が経過したこと。 Condition (1): The average generated power of the hydroelectric generator at a certain time has decreased below the threshold value. Condition (2): The average rotation speed of the water turbine 1 at a certain time has decreased to fall below a threshold value. Condition (3): The average generated voltage of the hydroelectric generator at a certain time has decreased below a threshold value. Condition (4): A predetermined time has elapsed since the last time the dust removal operation condition was satisfied (or released).
 なお、上記の発電電力、回転速度および発電電圧のしきい値は、水路の大きさや流速によって変更することが好ましい。上記の(1)~(4)以外であっても、平均発電電力の低下量、平均電流、平均回転トルクなどに基づいて運転条件を判断しても良い。 In addition, it is preferable to change the threshold value of said electric power generation, rotation speed, and electric power generation voltage with the magnitude | size and flow velocity of a water channel. Even in cases other than (1) to (4) above, the operating conditions may be determined based on the amount of decrease in average generated power, the average current, the average rotational torque, and the like.
 ステップS1において、ゴミ除去運転条件が成立しないと判断された場合(S1でNO)、制御部7は、ステップS10に処理を進める。この場合、制御はメインルーチンに戻される。 When it is determined in step S1 that the dust removal operation condition is not satisfied (NO in S1), the control unit 7 advances the process to step S10. In this case, control is returned to the main routine.
 一方、ステップS1において、ゴミ除去運転条件が成立したと判断された場合(S1でYES)、制御部7は、ステップS2~S9に示されるゴミ除去運転を実行する。 On the other hand, when it is determined in step S1 that the dust removal operation condition is satisfied (YES in S1), the control unit 7 executes the dust removal operation shown in steps S2 to S9.
 ゴミ除去運転では、制御部7は、制動装置12の制動力を増減させる。たとえば、制御部7は、回転速度検出器6によって発電機3の回転速度の低下を検出した時、制動力が最大値とゼロとを繰り返すように制動装置12への指令信号を出力することによって、水車1の減速と加速を繰り返す。 In the dust removal operation, the control unit 7 increases or decreases the braking force of the braking device 12. For example, the control unit 7 outputs a command signal to the braking device 12 so that the braking force repeats the maximum value and zero when the rotational speed detector 6 detects a decrease in the rotational speed of the generator 3. , The deceleration and acceleration of the water wheel 1 are repeated.
 このとき、発電電力の回復を図りつつ、制動装置12の寿命をなるべく伸ばすため、制動力の増減回数をゴミの付着状況に応じて変えることが望ましい。制動力の増減回数は、ブレーキをON/OFFさせる以下の制御ではカウンタの上限値に相当する。ゴミの付着量は、発電電力の低下量と相関があるので、ステップS2では、制御部7は、発電電力の低下量に対応するカウンタ上限値を設定する。 At this time, in order to extend the life of the braking device 12 as much as possible while restoring the generated power, it is desirable to change the number of times of increase / decrease of the braking force according to the state of dust adhesion. The number of increase / decrease of the braking force corresponds to the upper limit value of the counter in the following control for turning on / off the brake. Since the amount of dust attached has a correlation with the amount of decrease in generated power, in step S2, the control unit 7 sets a counter upper limit value corresponding to the amount of decrease in generated power.
 以下に、発電量の低下量と制動力の増減回数をどのように対応させるかについて説明する。図5は、ゴミ除去運転前の発電電力と、ごみ除去運転後に回復した発電電力との関係を示す図である。 Below, how to reduce the amount of power generation and the number of times the braking force increases or decreases will be explained. FIG. 5 is a diagram showing the relationship between the generated power before the dust removal operation and the generated power recovered after the dust removal operation.
 図5に示すように、ゴミ除去運転前発電電力が0~30%の間は、ゴミ除去運転を行なっても、ほとんど発電電力は変わらない。これに対して、ゴミ除去運転前発電電力が40%では、ゴミ除去運転を行なうと、発電電力は、60%まで回復する。 As shown in FIG. 5, when the generated power before the dust removal operation is 0 to 30%, the generated power hardly changes even if the dust removal operation is performed. On the other hand, when the generated power before the dust removal operation is 40%, the generated power recovers to 60% when the dust removal operation is performed.
 さらに、ゴミ除去運転前発電電力が50%でゴミ除去運転を行なうと、発電電力は、90%まで回復する。また、ゴミ除去運転前発電電力が60%以上の状態でゴミ除去運転を行なうと、発電電力は100%まで回復する。 Furthermore, if the power generation before the dust removal operation is 50% and the dust removal operation is performed, the generated power recovers to 90%. Further, if the dust removal operation is performed in a state where the generated power before the dust removal operation is 60% or more, the generated power is recovered to 100%.
 ゴミ除去制御において、水車翼に絡んでいるゴミの量が多いほど、ゴミを除去し難くなる。これは、ゴミが水車翼に複雑に絡んでいるため、および、ゴミが多いほど水車翼の回転速度が低いので制動をかけた際のゴミの慣性力が十分に得られず、ゴミが浮き上がらないためであると考えられる。 In the dust removal control, the larger the amount of dust entangled in the turbine blade, the more difficult it is to remove the dust. This is because garbage is entangled in the turbine blade, and the more the garbage, the lower the rotation speed of the turbine blade, so the inertial force of the dust when braking is not obtained and the dust does not rise This is probably because of this.
 以上の結果より、ごみ除去運転は、発電電力が50%に低下する前に行なうことが効果的であることが分かる。したがって、上述の条件(1)~(3)は、発電電力50%、好ましくは60%に対応するように各条件のしきい値を定めると良い。 From the above results, it can be seen that it is effective to perform the dust removal operation before the generated power drops to 50%. Therefore, the above conditions (1) to (3) should be set to threshold values for the respective conditions so as to correspond to the generated power of 50%, preferably 60%.
 図6は、ブレーキによる制動回数の検討を行なうためのグラフである。図6において、縦軸はブレーキ後発電電力(%)を示し、横軸は制動回数を示し、ブレーキ前発電電力(%)が、20%、30%、40%、50%、70%、90%の6通りのデータがプロットされている。 FIG. 6 is a graph for examining the number of times of braking by the brake. In FIG. 6, the vertical axis represents the generated power (%) after braking, the horizontal axis represents the number of braking times, and the generated power (%) before braking is 20%, 30%, 40%, 50%, 70%, 90 % Data are plotted.
 図6では、ブレーキ前発電電力が20%および30%の場合には、ブレーキを何回作動させても発電電力は増加しておらず、ゴミが除去されないことが分かる。ブレーキ前発電電力が40%の場合には、ブレーキを作動させると発電電力は多少回復するが、60%以上は増加しない。 FIG. 6 shows that when the pre-brake generated power is 20% and 30%, the generated power does not increase and dust is not removed no matter how many times the brake is operated. When the generated power before braking is 40%, the generated power recovers somewhat when the brake is operated, but does not increase more than 60%.
 ブレーキ前発電電力が50%の場合には、ブレーキを作動させると4回までは発電電力は増加回復するが、4回以上作動させても90%以上は増加しない。 When the generated power before braking is 50%, the generated power increases and recovers up to 4 times when the brake is operated, but it does not increase more than 90% even if it is operated 4 times or more.
 ブレーキ前発電電力が70%の場合には、ブレーキを作動させると3回までは発電電力は増加回復し、3回で100%となる。ブレーキ前発電電力が90%の場合には、ブレーキを作動させると2回までは発電電力は増加回復し、2回で100%となる。 When the generated power before braking is 70%, the generated power increases and recovers up to 3 times when the brake is operated, and reaches 100% after 3 times. When the generated power before braking is 90%, when the brake is operated, the generated power increases and recovers up to twice, and becomes 100% after two times.
 ブレーキは、作動回数が多いと寿命が短くなるので、水力発電装置のように長期に連続して使用される設備では、発電電力の回復とブレーキの寿命維持の兼ね合いから適切な作動頻度とすることが望まれる。そこで、本実施の形態では、発電電力の低下率によってブレーキの作動頻度を変更することとした。 Since the life of a brake will be shortened if it is operated many times, in equipment that is used continuously for a long period of time, such as a hydroelectric generator, the operation frequency should be set appropriately to balance the recovery of generated power and the maintenance of the brake life. Is desired. Therefore, in the present embodiment, the brake operation frequency is changed according to the decrease rate of the generated power.
 図7は、ブレーキ前発電電力と、ゴミ除去運転のブレーキ作動回数との関係を示した図である。図5で説明したように、有効に電力を回復させるために、発電電力が50%以上である段階でごみ除去運転を実行する。この場合、図6の関係を考慮し、ゴミ除去運転実行時にゴミ除去運転前発電電力が90%の場合にはブレーキ作動回数を3回とし、ゴミ除去運転前発電電力が70%の場合にはブレーキ作動回数を4回とし、ゴミ除去運転前発電電力が50%の場合にはブレーキ作動回数を6回とする。このように、ゴミ除去運転前発電電力が低下するほど、ブレーキ作動回数を多くする。 FIG. 7 is a diagram showing the relationship between the power generated before braking and the number of brake operations in the dust removal operation. As described with reference to FIG. 5, the dust removal operation is executed when the generated power is 50% or more in order to effectively recover the power. In this case, considering the relationship shown in FIG. 6, when the generated power before the dust removal operation is 90% when the dust removal operation is performed, the number of times of brake operation is three, and when the generated power before the dust removal operation is 70%. The brake operation frequency is set to 4 times, and when the generated power before the dust removal operation is 50%, the brake operation frequency is set to 6 times. Thus, the number of brake actuations is increased as the generated power before the dust removal operation decreases.
 図4に戻って、ステップS2において、制御部7は、図7に示す関係に示す除去運転回数に基づいて、発電電力の低下量に対応する数値にカウンタ上限値(ブレーキ回数)を決定する。続いて、ステップS3において、制御部7は、内蔵するカウンタをクリアする。このカウンタは、繰返しの回数を計測するためのカウンタである。続いて、ステップS4において、制御部7は、制動装置12が制動力を発生させるように指令信号SBを設定する(ブレーキON)。その後ステップS5において、制御部7はブレーキON状態において設定時間(たとえば1~10秒)が経過するまで待つ。 Returning to FIG. 4, in step S <b> 2, the control unit 7 determines a counter upper limit value (the number of brakes) as a numerical value corresponding to the amount of decrease in generated power based on the number of removal operations shown in the relationship shown in FIG. Subsequently, in step S3, the control unit 7 clears the built-in counter. This counter is a counter for measuring the number of repetitions. Subsequently, in step S4, the control unit 7 sets the command signal SB so that the braking device 12 generates a braking force (brake ON). Thereafter, in step S5, the control unit 7 waits until a set time (for example, 1 to 10 seconds) elapses in the brake-on state.
 次に、ステップS6において、制御部7は、制動装置12が制動力を発生させないように指令信号SBを設定する(ブレーキOFF)。その後ステップS7において、制御部7はブレーキOFF状態において設定時間(たとえば1~10秒)が経過するまで待つ。 Next, in step S6, the control unit 7 sets the command signal SB so that the braking device 12 does not generate a braking force (brake OFF). Thereafter, in step S7, the control unit 7 waits until a set time (for example, 1 to 10 seconds) elapses in the brake OFF state.
 続いて制御部7は、ステップS8においてカウンタをインクリメントし、ステップS9において、カウンタのカウント値が上限値(増減繰返しの設定回数)に達したか否かを判断する。ステップS9において、カウント値がまだ上限値に達していなければ、制御部7は処理をステップS4に戻し、再びブレーキをONさせる。 Subsequently, the control unit 7 increments the counter in step S8, and in step S9, determines whether or not the count value of the counter has reached an upper limit value (set number of repetitions of increase / decrease). In step S9, if the count value has not yet reached the upper limit value, the control unit 7 returns the process to step S4 and turns on the brake again.
 一方、ステップS9において、カウント値が上限値に達した場合には、ステップS10に処理が進められ、1回あたりのゴミ除去運転が終了する。 On the other hand, if the count value reaches the upper limit value in step S9, the process proceeds to step S10, and the dust removal operation per time is completed.
 本実施の形態では、水力発電装置の増速機2と発電機3とを連結する回転軸に制動装置12を設置し、制動装置12のオンとオフを繰り返す。これによって、水車1の回転速度を変化させる。水車1に付着した異物を加速時に力を加え、減速時に浮き上がらせ、水流の力で下流に流すことにより、異物を取り除くことができる。したがって、異物が原因で低下した発電量を回復する効果がある。 In this embodiment, the braking device 12 is installed on the rotating shaft that connects the speed increaser 2 and the generator 3 of the hydroelectric power generation device, and the braking device 12 is repeatedly turned on and off. Thereby, the rotational speed of the water turbine 1 is changed. The foreign matter adhering to the water wheel 1 can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
 なお、本実施の形態では、S5の設定時間、S7の設定時間は、カウンタの上限値まで繰り返す間、固定値を採用しているが、設定時間を変化させても良い。 In the present embodiment, the set time in S5 and the set time in S7 are fixed values while being repeated up to the upper limit value of the counter. However, the set time may be changed.
 図8は、水力発電装置の構成の変形例を示すブロック図である。図8を参照して、変形例の水力発電装置は、水車1と、増速機2と、発電機3と、回転速度検出器6と、流速計14と、制御装置100Aとを含む。 FIG. 8 is a block diagram showing a modification of the configuration of the hydroelectric generator. Referring to FIG. 8, the modified hydroelectric generator includes a water turbine 1, a speed increaser 2, a generator 3, a rotational speed detector 6, a flow meter 14, and a control device 100 </ b> A.
 制御装置100Aは、制御部7Aと、整流回路4と、DC/DCコンバータ9と、DC/ACコンバータ10とを含む。水車1、発電機3、整流回路4、回転速度検出器6は図3に示したものと同じであるため説明は繰り返さない。 The control device 100A includes a control unit 7A, a rectifier circuit 4, a DC / DC converter 9, and a DC / AC converter 10. Since water turbine 1, generator 3, rectifier circuit 4, and rotational speed detector 6 are the same as those shown in FIG. 3, the description thereof will not be repeated.
 制御部7Aは、電流指令信号SAをDC/DCコンバータ9へ出力する。DC/DCコンバータ9は、電流指令信号SAの指令に従い、整流回路4の出力から電力を取り出し、DC/ACコンバータ10に指令通りの電流を出力する。これに伴いDC/DCコンバータ9の出力電圧が上昇する。DC/ACコンバータ10は後段に電力を出力する。DC/DCコンバータ9の出力電圧が上昇すると、DC/ACコンバータ10はより多くの電力を後段に出力することによって、DC/DCコンバータ9の出力電圧の上昇を抑えるように構成されている。 The control unit 7A outputs a current command signal SA to the DC / DC converter 9. The DC / DC converter 9 takes out power from the output of the rectifier circuit 4 in accordance with the command of the current command signal SA, and outputs a current as commanded to the DC / AC converter 10. Along with this, the output voltage of the DC / DC converter 9 rises. The DC / AC converter 10 outputs power to the subsequent stage. When the output voltage of the DC / DC converter 9 increases, the DC / AC converter 10 is configured to suppress an increase in the output voltage of the DC / DC converter 9 by outputting more power to the subsequent stage.
 水車1から取り出すことができる最適な電力は、水車1が受ける水の流速で決まる。流速と発電機3の回転数は、ほぼ比例する。発電機3の回転速度を検出することによって、最適な電力を決定することができる。もし、最適な電力より過大な電力を発電機3から取り出すと、発電機3の回転速度は低下する。この時、発電機3と連結された水車1の回転速度も同様に低下する。逆に、発電機3から取り出す電力を最適値より少なく例えばゼロにすると、発電機の回転速度は上昇し、発電機3と連結された水車1の回転速度同様に上昇する。 The optimum power that can be extracted from the water turbine 1 is determined by the flow rate of water received by the water turbine 1. The flow rate and the number of rotations of the generator 3 are substantially proportional. By detecting the rotational speed of the generator 3, the optimum power can be determined. If the electric power that is larger than the optimum electric power is taken out from the generator 3, the rotational speed of the generator 3 is lowered. At this time, the rotational speed of the water turbine 1 connected to the generator 3 also decreases. On the contrary, when the electric power taken out from the generator 3 is less than the optimum value, for example, zero, the rotation speed of the generator increases and increases similarly to the rotation speed of the water turbine 1 connected to the generator 3.
 したがって、発電機3から取り出す電力を増減させることによって、水車1の回転速度を増減させることができる。 Therefore, the rotational speed of the water turbine 1 can be increased or decreased by increasing or decreasing the electric power extracted from the generator 3.
 図9は、図8の構成において水車に付着したゴミを除去する制御を説明するためのフローチャートである。図8、図9を参照して、ステップS11において、制御部7Aは、ゴミ除去運転条件が成立したか否かを判断する。 FIG. 9 is a flowchart for explaining control for removing dust adhering to the water wheel in the configuration of FIG. 8 and 9, in step S11, control unit 7A determines whether or not the dust removal operation condition is satisfied.
 ゴミ除去運転条件は、水車1にゴミが付着した可能性が高まった場合に成立する。具体的な条件(条件(1)~(4)またはこれらの組み合わせ)については、既に説明したものが適用できるので、ここでは説明は繰り返さない。 The dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases. As specific conditions (conditions (1) to (4) or combinations thereof), those already described can be applied, and therefore description thereof will not be repeated here.
 ステップS11において、ゴミ除去運転条件が成立しないと判断された場合(S11でNO)、制御部7Aは、ステップS20に処理を進める。この場合、制御はメインルーチンに戻される。 If it is determined in step S11 that the dust removal operation condition is not satisfied (NO in S11), the control unit 7A advances the process to step S20. In this case, control is returned to the main routine.
 一方、ステップS11において、ゴミ除去運転条件が成立したと判断された場合(S11でYES)、制御部7Aは、ステップS12~S19に示されるゴミ除去運転を実行する。 On the other hand, when it is determined in step S11 that the dust removal operation condition is satisfied (YES in S11), the control unit 7A executes the dust removal operation shown in steps S12 to S19.
 ステップS12では、制御部7Aは、図7に示す関係に示す除去運転回数に基づいて、発電電力の低下量に対応する数値にカウンタ上限値を決定する。続いて、制御部7Aは、ゴミ除去運転としてDC/DCコンバータ9への電流指令値を増減させる。たとえば、制御部7Aは、回転速度検出器6より発電機3の回転速度の低下を検出した時、出力電流が最大値とゼロとを繰り返すように電流指令信号SAを出力することによって、水車1の減速と加速を繰り返す。 In step S12, the control unit 7A determines the counter upper limit value to a numerical value corresponding to the amount of decrease in generated power based on the number of removal operations shown in the relationship shown in FIG. Subsequently, the control unit 7A increases or decreases the current command value to the DC / DC converter 9 as the dust removal operation. For example, when the control unit 7A detects a decrease in the rotational speed of the generator 3 from the rotational speed detector 6, the control unit 7A outputs the current command signal SA so that the output current repeats the maximum value and zero. Repeat the deceleration and acceleration.
 具体的には、ステップS13において、制御部7Aは、内蔵するカウンタをクリアする。このカウンタは、繰返しの回数を計測するためのカウンタである。続いて、ステップS14において、制御部7Aは、DC/DCコンバータ9が出力電流を最大とするように電流指令信号SAを設定して、その後ステップS15において、制御部7Aは設定時間(たとえば1~3秒)待つ。DC/DCコンバータ9の出力電流が最大となっている間、大きな電力が消費され、発電機3に大きな制動力を発生させることとなる。 Specifically, in step S13, the control unit 7A clears the built-in counter. This counter is a counter for measuring the number of repetitions. Subsequently, in step S14, the control unit 7A sets the current command signal SA so that the DC / DC converter 9 maximizes the output current, and then in step S15, the control unit 7A sets the set time (for example, 1 to Wait 3 seconds). While the output current of the DC / DC converter 9 is maximized, a large amount of electric power is consumed and a large braking force is generated in the generator 3.
 次に、ステップS16において、制御部7Aは、DC/DCコンバータ9が出力電流をゼロとするように電流指令信号SAを設定し、その後ステップS17において、制御部7Aは設定時間(たとえば1~3秒)待つ。この場合は、電流指令信号SAが最大電流に設定される場合よりも発電機3の負荷は軽くなるので、発電機3の回転速度は上昇する。 Next, in step S16, the control unit 7A sets the current command signal SA so that the DC / DC converter 9 sets the output current to zero, and then in step S17, the control unit 7A sets the set time (for example, 1 to 3). Wait). In this case, since the load on the generator 3 is lighter than when the current command signal SA is set to the maximum current, the rotational speed of the generator 3 increases.
 続いて制御部7Aは、ステップS18においてカウンタをインクリメントし、ステップS19において、カウンタのカウント値が上限値(増減繰返しの設定回数)に達したか否かを判断する。ステップS19において、カウント値がまだ上限値に達していなければ、制御部7Aは処理をステップS14に戻し、再び出力電流を最大にするように電流指令信号SAを設定する。 Subsequently, the control unit 7A increments the counter in step S18, and determines in step S19 whether or not the count value of the counter has reached the upper limit value (set number of repetitions of increase / decrease). In step S19, if the count value has not yet reached the upper limit value, control unit 7A returns the process to step S14, and sets current command signal SA to maximize the output current again.
 一方、ステップS19において、カウント値が上限値に達した場合には、ステップS20に処理が進められ、1回あたりのゴミ除去運転が終了する。 On the other hand, when the count value reaches the upper limit value in step S19, the process proceeds to step S20, and the dust removal operation per time is completed.
 実施の形態1の変形例では、DC/DCコンバータ9の電流指令値を増減させることによって、水力発電装置の水車1と連動する発電機3の負荷を変動させる。これによって、発電機3の回転速度を変化させ、発電機3に連動する水車1の回転速度を変化させる。水車1に付着した異物を加速時に力を加え、減速時に浮き上がらせ、水流の力で下流に流すことにより、異物を取り除くことができる。したがって、異物が原因で低下した発電量を回復する効果がある。 In the modification of the first embodiment, the load of the generator 3 that is linked to the water turbine 1 of the hydroelectric generator is varied by increasing or decreasing the current command value of the DC / DC converter 9. Thereby, the rotational speed of the generator 3 is changed, and the rotational speed of the water turbine 1 interlocked with the generator 3 is changed. The foreign matter adhering to the water wheel 1 can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
 [実施の形態2]
 実施の形態1では、制動力の増減回数を、発電電力の低下量に対応して定めることによって、ゴミ除去を効果的に行ないつつ、ブレーキ寿命を延長するようにした。これに対して、実施の形態2では、制動力を与えるパターンを変化させる。
[Embodiment 2]
In the first embodiment, the brake life is extended while effectively removing dust by determining the number of times of increase / decrease in braking force corresponding to the amount of decrease in generated power. On the other hand, in the second embodiment, the pattern for applying the braking force is changed.
 図10は、実施の形態2の水力発電装置において制御部が実行する制御を説明するためのフローチャートである。このフローチャートの処理は、発電機制御のメインルーチンから一定時間ごとに呼び出されて実行される。 FIG. 10 is a flowchart for explaining control executed by the control unit in the hydroelectric generator of the second embodiment. The process of this flowchart is called and executed at regular intervals from the main routine for generator control.
 図3、図10を参照して、まずステップS51において、制御部7は、ゴミ除去運転条件が成立したか否かを判断する。 3 and 10, first, in step S51, the control unit 7 determines whether or not the dust removal operation condition is satisfied.
 ゴミ除去運転条件は、水車1にゴミが付着した可能性が高まった場合に成立する。具体的な条件(条件(1)~(4)またはこれらの組み合わせ)については、既に説明したものが適用できるので、ここでは説明は繰り返さない。 The dust removal operation condition is established when the possibility that dust has adhered to the water turbine 1 increases. As specific conditions (conditions (1) to (4) or combinations thereof), those already described can be applied, and therefore description thereof will not be repeated here.
 ステップS51において、ゴミ除去運転条件が成立しないと判断された場合(S51でNO)、制御部7は、ステップS55に処理を進める。この場合、制御はメインルーチンに戻される。 If it is determined in step S51 that the dust removal operation condition is not satisfied (NO in S51), the control unit 7 advances the process to step S55. In this case, control is returned to the main routine.
 一方、ステップS51において、ゴミ除去運転条件が成立したと判断された場合(S51でYES)、制御部7は、ステップS52~S54に示されるゴミ除去運転を実行する。 On the other hand, when it is determined in step S51 that the dust removal operation condition is satisfied (YES in S51), the control unit 7 executes the dust removal operation shown in steps S52 to S54.
 ステップS52では、第1制動パターンで水車1を減速する制御が行なわれる。第1制動パターンは、制動装置12の負荷が比較的小さい制動パターンである。その後ステップS53において、発電電力が判定値まで回復しない場合には、ステップS54に処理が進められ、第2制動パターンで水車1を減速する制御が行なわれた後に制御はメインルーチンに戻される。第2制動パターンは、第1制動パターンよりも制動装置の負荷が大きい制動パターンである。一方、ステップS53において、発電電力が判定値まで回復した場合には、ステップS54の処理は実行されず、ステップS55に処理が進められ制御はメインルーチンに戻される。 In step S52, control is performed to decelerate the water turbine 1 with the first braking pattern. The first braking pattern is a braking pattern in which the load on the braking device 12 is relatively small. Thereafter, if the generated power does not recover to the determination value in step S53, the process proceeds to step S54, and after the control for decelerating the water turbine 1 with the second braking pattern is performed, the control is returned to the main routine. The second braking pattern is a braking pattern in which the load on the braking device is larger than that of the first braking pattern. On the other hand, if the generated power has recovered to the determination value in step S53, the process in step S54 is not executed, the process proceeds to step S55, and the control is returned to the main routine.
 図11は、第1制動パターンの第1例を示した波形図である。図12は、第1制動パターンの第2例を示した波形図である。図13は、第1制動パターンの第3例を示した波形図である。図14は、第1制動パターンの第4例を示した波形図である。図15は、第2制動パターンの例を示した波形図である。 FIG. 11 is a waveform diagram showing a first example of the first braking pattern. FIG. 12 is a waveform diagram showing a second example of the first braking pattern. FIG. 13 is a waveform diagram showing a third example of the first braking pattern. FIG. 14 is a waveform diagram showing a fourth example of the first braking pattern. FIG. 15 is a waveform diagram showing an example of the second braking pattern.
 図15に示す第2制動パターンは、回転している水車1に対して急ブレーキをかけて回転を一旦止め、その後にブレーキを解放する制御を繰り返すものである。これに対して、図11~図14に示す波形では、図15よりもゆっくりブレーキを掛けているか、または、停止に至る前にブレーキを解放している。 The second braking pattern shown in FIG. 15 is a control in which a sudden braking is applied to the rotating water wheel 1 to temporarily stop the rotation and then the brake is released. On the other hand, in the waveforms shown in FIGS. 11 to 14, the brake is applied more slowly than in FIG. 15, or the brake is released before reaching the stop.
 図15に示す第2制動パターンのようにt41,t44における制動力(負の角加速度)を大きくした方が、また、水車翼の回転速度を0まで減速したほうが、水車翼とゴミの速度差が大きくなり、より確実にゴミを除去することができる。さらに制動制御の回数も多いほうが、より多くのゴミを除去することができる。しかし、常時図15の波形を繰り返し与えるのでは、制動装置12も耐久性が高く大型のものを使用する必要があるとともに、制動装置12に与える衝撃が大きく制動装置12の寿命が短縮される。また、制動装置12の作動中は発電電力が減少する。 When the braking force (negative angular acceleration) at t41 and t44 is increased as shown in the second braking pattern shown in FIG. Can be removed more reliably. In addition, more dust can be removed by increasing the number of times of braking control. However, if the waveform shown in FIG. 15 is repeatedly given, it is necessary to use a large braking device 12 having high durability, and the impact applied to the braking device 12 is great and the life of the braking device 12 is shortened. Further, the generated power decreases during the operation of the braking device 12.
 そのため、まず、制御部7は、制動装置12に対して負荷が軽い第1制動パターンでゴミ除去を試み、それでも電力が回復しない場合には、第2制動パターンを適用する。第1制動パターンには種々の例が考えられるので、図11~図14に図示して説明する。 Therefore, first, the control unit 7 tries to remove dust with the first braking pattern with a light load on the braking device 12, and when the electric power still does not recover, the second braking pattern is applied. Various examples of the first braking pattern can be considered and will be described with reference to FIGS.
 図11に示した例では、時刻t1の減速度合いは図15と変わらないが、回転速度がN1からN2に低下したところで、制動力を保ち、時刻t2で解放している。 In the example shown in FIG. 11, the degree of deceleration at time t1 is not different from that in FIG. 15, but when the rotational speed decreases from N1 to N2, the braking force is maintained and released at time t2.
 また、図12に示した例では、時刻t11~t12の減速度合いが図15よりもゆっくりであり、制動装置12の制動トルクは小さくて済む。 In the example shown in FIG. 12, the degree of deceleration at times t11 to t12 is slower than that in FIG. 15, and the braking torque of the braking device 12 can be small.
 図13に示した例では、時刻t21~t22の減速度合いが図15よりもゆっくりであり、また時刻t22においてすぐ制動装置12を解放しているので、発電量の低下も少なくて済む。 In the example shown in FIG. 13, the deceleration degree from time t21 to t22 is slower than that in FIG. 15, and the braking device 12 is released immediately at time t22, so that the amount of power generation can be reduced little.
 図14に示した例では、時刻t31~t32の減速期間において、階段状に回転速度をN1からN2まで低下させている。これは、水車の慣性力が大きく、急ブレーキを掛けるのが難しく、かつ制動力の制御を連続的に行うことが難しい場合に有効である。このように、制動時間を短くして何度も制動を行なうことによって、ゴミ除去運転制御による衝撃荷重を低減し機械部品の破損を防ぐことができる。 In the example shown in FIG. 14, during the deceleration period from time t31 to t32, the rotational speed is decreased stepwise from N1 to N2. This is effective when the inertial force of the water turbine is large, it is difficult to apply the brake suddenly, and it is difficult to control the braking force continuously. Thus, by shortening the braking time and performing braking many times, it is possible to reduce the impact load due to the dust removal operation control and prevent the mechanical parts from being damaged.
 なお、上記の実施の形態2の説明では、図3に示した水力発電装置に適用した例を示したが、図8に示した水力発電装置にも同様な制御が適用可能である。 In the description of the second embodiment, the example applied to the hydroelectric generator shown in FIG. 3 is shown. However, the same control can be applied to the hydroelectric generator shown in FIG.
 [実施の形態3]
 以上説明した実施の形態1~2では、図1および図2に示した水平軸型のプロペラ式回転翼を有する水車によって流水を受けて発電を行なう発電装置を例に挙げて説明した。実施の形態3では、垂直軸型の回転翼を有する水車によって流水を受けて発電を行なう発電装置にも実施の形態1または2を変形して適用が可能であることを説明する。
[Embodiment 3]
In the first and second embodiments described above, the power generation apparatus that generates power by receiving flowing water using the water turbine having the horizontal axis type propeller type rotor blades shown in FIGS. 1 and 2 has been described as an example. In the third embodiment, it will be described that the first or second embodiment can be modified and applied to a power generation apparatus that generates power by receiving flowing water with a water turbine having a vertical axis type rotor blade.
 図16は、実施の形態3に係る水力発電装置の概略形状を示す正面図である。図16を参照して、実施の形態4に係る水力発電装置は、水車1Aと、発電機3とを含む。水車1Aは、垂直軸型の回転翼を有し、水流により回転する。発電機3は水車1Aの回転軸と連結されている。水車1Aが回転すると発電機3の回転軸も回転する。 FIG. 16 is a front view showing a schematic shape of the hydroelectric generator according to the third embodiment. Referring to FIG. 16, the hydraulic power generation apparatus according to Embodiment 4 includes a water turbine 1 </ b> A and a generator 3. The water turbine 1 </ b> A has a vertical axis type rotary blade and rotates by a water flow. The generator 3 is connected to the rotating shaft of the water turbine 1A. When the water wheel 1A rotates, the rotating shaft of the generator 3 also rotates.
 図3~図15に示した制御装置、フローチャート、制動パターンについては、図16に示した水車1Aについても同様に組み合わせて用いることができる。図3~図15に示した制御装置、フローチャート、制動パターンについては、実施の形態1~2において説明したので、ここでは説明を繰り返さない。 3 to 15 can be used in combination in the same manner for the water turbine 1A shown in FIG. Since the control device, flowchart, and braking pattern shown in FIGS. 3 to 15 have been described in the first and second embodiments, description thereof will not be repeated here.
 垂直軸型の水車1Aは、図16に示すように、直線翼式であり翼の上下の先端を回転軸に向けて曲げた構成を例示したが、とくにこれに限定されるものではない。たとえば、ダリウス式、ジャイロミル式、サボニウス式、クロスフロー式、パドル式、S型ロータ式等の他の形式であっても良い。 As shown in FIG. 16, the vertical axis type water turbine 1 </ b> A is a straight wing type and exemplifies a configuration in which the upper and lower ends of the wing are bent toward the rotation axis, but is not particularly limited thereto. For example, other types such as a Darius type, a gyromill type, a Savonius type, a cross flow type, a paddle type, and an S-type rotor type may be used.
 実施の形態3に係る水力発電装置でも、発電機3の回転速度を変化させ、発電機3に連結した水車1Aの回転速度を変化させることができる。水車1Aに付着した異物を加速時に力を加え、減速時に浮き上がらせ、水流の力で下流に流すことにより、異物を取り除くことができる。したがって、異物が原因で低下した発電量を回復する効果がある。 Also in the hydroelectric generator according to Embodiment 3, the rotational speed of the generator 3 can be changed, and the rotational speed of the water turbine 1A connected to the generator 3 can be changed. The foreign matter attached to the water turbine 1A can be removed by applying a force during acceleration, floating up when decelerating, and flowing downstream with the force of water flow. Therefore, there is an effect of recovering the power generation amount that is reduced due to the foreign matter.
 一部が上記説明と重複する部分もあるが、最後に実施の形態1~3について総括する。本実施の形態の水力発電装置は、水車1と、水車1に連動する回転軸に制動力を作動させる電気式または機械式の制動装置12と、制動力が増減するように制動装置12の作動と解放とを繰り返す制御装置100とを備える。図7に示すように、制御装置100は、発電機3の発電電力の流速に対応する電力からの低下量が第1の値である場合には、制動装置12を第1回数作動させ(たとえば、流速に対応する電力を100%とし、それから10%低下した90%の場合、3回作動)、発電電力の低下量が第1の値よりも大きい第2の値である場合には、制動装置12を第1回数よりも多い第2回数作動させる(たとえば、30%低下した70%の場合4回作動、50%低下した場合6回作動させる)。 Although some parts overlap with the above description, the first to third embodiments are summarized. The hydroelectric generator of the present embodiment includes a hydraulic turbine 1, an electric or mechanical braking device 12 that operates a braking force on a rotating shaft that is linked to the hydraulic turbine 1, and an operation of the braking device 12 so that the braking force increases or decreases. And a control device 100 that repeats release. As shown in FIG. 7, when the amount of decrease from the power corresponding to the flow rate of the generated power of the generator 3 is the first value, the control device 100 operates the braking device 12 a first number of times (for example, If the electric power corresponding to the flow rate is 100% and then 90% is reduced by 10%, the operation is performed three times). If the amount of decrease in the generated power is a second value larger than the first value, braking is performed. The device 12 is activated a second number of times that is greater than the first number of times (eg, activated 4 times for 70% reduced by 30%, and activated 6 times for reduced 50%).
 このように、水力発電装置の水車と連結した回転制動装置を設置し、水車翼に制動(回転速度減)と解放(回転速度増)を繰り返すことで、水車翼の回転速度を変化させる。水車翼に絡みついたゴミや草は、水車の回転速度が減少した時に、水車翼の回転による水圧や遠心力が弱まり、慣性力によって水車翼から浮き上がる。制動と解放を繰り返すと浮き上がりやすくなり、水流によって下流へ押し流す力が作用し、下流へ流される。なお、発電電力の低下量ΔPについては、割合(%)で表しても良く、電力(W)で表しても良い。 Thus, the rotational speed of the turbine blade is changed by installing the rotational braking device connected to the hydraulic turbine of the hydroelectric generator and repeating the braking (decreasing rotational speed) and releasing (increasing rotational speed) on the turbine blade. Garbage and grass entangled with the turbine blades are lifted from the turbine blades by the inertial force because the water pressure and centrifugal force due to the rotation of the turbine blades are weakened when the rotation speed of the turbine wheels decreases. When braking and releasing are repeated, it becomes easy to float, and the force that pushes downstream by the water flow acts and flows downstream. Note that the reduction amount ΔP of the generated power may be expressed as a percentage (%) or may be expressed as electric power (W).
 好ましくは、図3に示すように、制動装置12は、水車の回転軸に固定された部材に摩擦力を与えるブレーキ(機械式の摩擦ブレーキ)を含む。制御装置100は、摩擦力を変動させることによって制動力を増減させる。 Preferably, as shown in FIG. 3, the braking device 12 includes a brake (mechanical friction brake) that applies a frictional force to a member fixed to the rotating shaft of the water turbine. The control device 100 increases or decreases the braking force by changing the frictional force.
 好ましくは、図8に示すように、制動装置は、水車の回転によって発電を行なう発電機3を含む。図9に示すように、制御装置100Aは、発電機から取り出す電力を増減させることによって制動力を増減させる。 Preferably, as shown in FIG. 8, the braking device includes a generator 3 that generates power by the rotation of the water wheel. As shown in FIG. 9, the control device 100A increases or decreases the braking force by increasing or decreasing the electric power extracted from the generator.
 なお、水車1の回転速度が所定の回転速度から、制動力を増減することを繰り返し、水車1の速度変動幅が十分得られることが望ましい。水車1が受ける水の流速は、長期的には大きく変動し、降雨量の少ない季節では、大きく低下する場合がある。これに伴い、水車1の回転速度も低下し、水車1の回転速度が低下した状態から、制動力の増減動作を繰り返しても、水車1の回転速度の変動幅が小さく、所定のゴミ除去の効果が得られない場合がある。このように水車1の回転速度が低下している場合には、発電機3から取り出す電力を低下させ(発電負荷を低下させ)、水車1の回転速度を増加させた後、制動装置12の作動と解放とを繰り返すことが望ましい。 In addition, it is desirable that the speed fluctuation range of the water turbine 1 is sufficiently obtained by repeatedly increasing / decreasing the braking force from the predetermined rotational speed. The flow rate of water received by the water turbine 1 varies greatly in the long term, and may be greatly reduced in a season with little rainfall. Accordingly, the rotational speed of the water turbine 1 also decreases, and even when the braking force increase / decrease operation is repeated from the state in which the rotational speed of the water turbine 1 decreases, the fluctuation range of the rotational speed of the water turbine 1 is small, and predetermined dust removal The effect may not be obtained. Thus, when the rotational speed of the water turbine 1 is decreasing, the electric power taken out from the generator 3 is decreased (the power generation load is decreased), the rotational speed of the water turbine 1 is increased, and then the braking device 12 is operated. It is desirable to repeat and release.
 好ましくは、図1、図2に示すように、水車は、水平軸型のプロペラ式回転翼を有する。 Preferably, as shown in FIGS. 1 and 2, the water turbine has a horizontal axis type propeller rotor blade.
 好ましくは、図16に示すように、水車は、垂直軸型の回転翼を有する。
 本開示で開示される他の局面の水力発電装置は、水車1と、水車と連動する回転軸に制動力を作動させる電気式または機械式の制動装置12と、制動力が増減するように制動装置12の作動と解放とを繰り返す制御装置100とを備える。図10に示すように、制御装置100は、発電電力が流速に対応する電力よりも低下した場合に、制動力が第1の増減パターン(図12~図14のいずれか)を示すように制動装置12を作動させ、発電電力の回復が不十分であるときには、第1の増減パターンよりも減速度が大きい第2の増減パターン(図15)で制動装置を作動させる。
Preferably, as shown in FIG. 16, the water turbine has a vertical axis type rotor blade.
The hydroelectric generator of another aspect disclosed in the present disclosure includes a water turbine 1, an electric or mechanical brake device 12 that operates a braking force on a rotating shaft that operates in conjunction with the water turbine, and braking so that the braking force increases or decreases. A control device 100 that repeats the operation and release of the device 12 is provided. As shown in FIG. 10, when the generated power is lower than the power corresponding to the flow velocity, the control device 100 performs braking so that the braking force shows the first increase / decrease pattern (any one of FIGS. 12 to 14). When the device 12 is operated and recovery of the generated power is insufficient, the braking device is operated with a second increase / decrease pattern (FIG. 15) having a deceleration larger than that of the first increase / decrease pattern.
 本開示は、また、上記いずれかの水力発電装置を用いて、流水が持つ運動エネルギーを電力に変換する海流発電または潮力発電を行なう発電システムを開示する。 The present disclosure also discloses a power generation system that performs ocean current power generation or tidal power generation that converts kinetic energy of flowing water into electric power using any of the above-described hydroelectric power generation apparatuses.
 以上のように制動回数または制動パターンを定めることによって、制動装置等の保護を図りつつ、ゴミ等の水車翼への付着に起因する発電量の著しい低下を防ぐことができる。 By determining the number of times of braking or the braking pattern as described above, it is possible to prevent a significant decrease in the amount of power generated due to adhesion of dust to the turbine blades while protecting the braking device and the like.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1,1A 水車、2 増速機、3 発電機、4 整流回路、6 回転速度検出器、7,7A 制御部、9,10 コンバータ、12 制動装置、14 流速計、40 支持部、40a,40b 梁、40c 架台、40d 支柱、40e ベース板、100,100A 制御装置。 1, 1A water wheel, 2 speed increaser, 3 generator, 4 rectifier circuit, 6 rotation speed detector, 7, 7A control unit, 9, 10 converter, 12 braking device, 14 current meter, 40 support unit, 40a, 40b Beam, 40c stand, 40d strut, 40e base plate, 100, 100A control device.

Claims (14)

  1.  水力発電装置であって、
     水車と、
     前記水車と連動する回転軸に制動力を作動させる電気式または機械式の制動装置と、
     前記制動力が増減するように前記制動装置の作動と解放とを繰り返す制御装置とを備え、
     前記制御装置は、前記水力発電装置の発電電力の流速に対応する電力からの低下量が第1の値である場合には、前記制動装置を第1回数作動させ、前記発電電力の低下量が前記第1の値よりも大きい第2の値である場合には、前記制動装置を前記第1回数よりも多い第2回数作動させる、水力発電装置。
    A hydroelectric generator,
    With a water wheel,
    An electric or mechanical braking device that activates a braking force on a rotating shaft interlocked with the water wheel;
    A control device that repeats the operation and release of the braking device so that the braking force increases or decreases,
    When the amount of decrease from the power corresponding to the flow rate of the generated power of the hydroelectric generator is the first value, the control device operates the braking device a first time, and the amount of decrease in the generated power is A hydroelectric generator that operates the braking device a second number of times greater than the first number of times when the second value is greater than the first value.
  2.  前記制動装置は、前記回転軸に固定された部材に摩擦力を与えるブレーキを含み、
     前記制御装置は、前記摩擦力を変動させることによって前記制動力を増減させる、請求項1に記載の水力発電装置。
    The braking device includes a brake that applies a frictional force to a member fixed to the rotating shaft,
    The hydroelectric generator according to claim 1, wherein the control device increases or decreases the braking force by changing the frictional force.
  3.  前記制動装置は、前記水車の回転によって発電を行なう発電機を含み、
     前記制御装置は、前記発電機から取り出す電力を増減させることによって前記制動力を増減させる、請求項1に記載の水力発電装置。
    The braking device includes a generator that generates electricity by rotating the water wheel,
    The hydroelectric generator according to claim 1, wherein the control device increases or decreases the braking force by increasing or decreasing electric power extracted from the generator.
  4.  前記制御装置は、前記水力発電装置の発電電力を低下させることによって前記水車の回転速度を増加させた後、前記制動装置の作動と解放とを繰り返す、請求項1に記載の水力発電装置。 The hydraulic power generator according to claim 1, wherein the control device repeats the operation and release of the braking device after increasing the rotational speed of the water turbine by reducing the generated power of the hydraulic power generator.
  5.  前記水車は、水平軸型のプロペラ式回転翼を有する、請求項1~4のいずれか1項に記載の水力発電装置。 The hydroelectric generator according to any one of claims 1 to 4, wherein the water turbine has a horizontal axis type propeller type rotor blade.
  6.  前記水車は、垂直軸型の回転翼を有する、請求項1~4のいずれか1項に記載の水力発電装置。 The hydroelectric generator according to any one of claims 1 to 4, wherein the water turbine has a vertical axis type rotor blade.
  7.  請求項1~4のいずれか1項に記載の水力発電装置を用いて、流水が持つ運動エネルギーを電力に変換する海流発電または潮力発電を行なう発電システム。 A power generation system that performs ocean current power generation or tidal power generation that converts kinetic energy of flowing water into electric power using the hydroelectric power generation device according to any one of claims 1 to 4.
  8.  水力発電装置であって、
     水車と、
     前記水車に連動する回転軸に制動力を作動させる電気式または機械式の制動装置と、
     前記制動力が増減するように前記制動装置の作動と解放とを繰り返す制御装置とを備え、
     前記制御装置は、発電電力が流速に対応する電力から低下している場合に前記制動力が第1の増減パターンを示すように前記制動装置を作動させ、発電電力の回復が不十分であるときには、前記第1の増減パターンよりも減速度が大きい第2の増減パターンで前記制動装置を作動させる、水力発電装置。
    A hydroelectric generator,
    With a water wheel,
    An electric or mechanical braking device that operates a braking force on a rotating shaft interlocking with the water wheel;
    A control device that repeats the operation and release of the braking device so that the braking force increases or decreases,
    The control device operates the braking device so that the braking force exhibits the first increase / decrease pattern when the generated power is reduced from the power corresponding to the flow velocity, and when the recovery of the generated power is insufficient A hydroelectric generator that operates the braking device with a second increase / decrease pattern having a larger deceleration than the first increase / decrease pattern.
  9.  前記制動装置は、前記回転軸に固定された部材に摩擦力を与えるブレーキを含み、
     前記制御装置は、前記摩擦力を変動させることによって前記制動力を増減させる、請求項8に記載の水力発電装置。
    The braking device includes a brake that applies a frictional force to a member fixed to the rotating shaft,
    The hydroelectric generator according to claim 8, wherein the control device increases or decreases the braking force by changing the frictional force.
  10.  前記制動装置は、前記水車の回転によって発電を行なう発電機を含み、
     前記制御装置は、前記発電機から取り出す電力を増減させることによって前記制動力を増減させる、請求項8に記載の水力発電装置。
    The braking device includes a generator that generates electricity by rotating the water wheel,
    The hydroelectric generator according to claim 8, wherein the control device increases or decreases the braking force by increasing or decreasing electric power extracted from the generator.
  11.  前記制御装置は、前記水力発電装置の発電電力を低下させることによって前記水車の回転速度を増加させた後、前記制動装置の作動と解放とを繰り返す、請求項8に記載の水力発電装置。 The hydraulic power generator according to claim 8, wherein the control device repeats the operation and release of the braking device after increasing the rotational speed of the water turbine by decreasing the generated power of the hydraulic power generator.
  12.  前記水車は、水平軸型のプロペラ式回転翼を有する、請求項8~11のいずれか1項に記載の水力発電装置。 The hydroelectric generator according to any one of claims 8 to 11, wherein the water turbine has a horizontal axis type propeller type rotor blade.
  13.  前記水車は、垂直軸型の回転翼を有する、請求項8~11のいずれか1項に記載の水力発電装置。 The hydroelectric generator according to any one of claims 8 to 11, wherein the water turbine has a vertical axis type rotor blade.
  14.  請求項8~11のいずれか1項に記載の水力発電装置を用いて、流水が持つ運動エネルギーを電力に変換する海流発電または潮力発電を行なう発電システム。 A power generation system for performing ocean current power generation or tidal power generation that converts the kinetic energy of flowing water into electric power using the hydroelectric power generation device according to any one of claims 8 to 11.
PCT/JP2018/015191 2017-04-28 2018-04-11 Hydroelectric power generation device and power generation system WO2018198771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089698 2017-04-28
JP2017089698A JP6885778B2 (en) 2017-04-28 2017-04-28 Hydropower and power generation systems

Publications (1)

Publication Number Publication Date
WO2018198771A1 true WO2018198771A1 (en) 2018-11-01

Family

ID=63918338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015191 WO2018198771A1 (en) 2017-04-28 2018-04-11 Hydroelectric power generation device and power generation system

Country Status (2)

Country Link
JP (1) JP6885778B2 (en)
WO (1) WO2018198771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223792A1 (en) * 2015-11-02 2018-08-09 Ntn Corporation Hydroelectric power generation apparatus and power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484220A (en) * 1977-12-17 1979-07-05 Meidensha Electric Mfg Co Ltd Hydraulic power plant device
JPH0730373U (en) * 1992-11-11 1995-06-06 東芝エンジニアリング株式会社 Controller for small capacity turbine
JP2008261327A (en) * 2007-03-19 2008-10-30 Kawasaki Heavy Ind Ltd Shaftless hydraulic turbine start device
JP2012197703A (en) * 2011-03-18 2012-10-18 Tokyo Electric Power Co Inc:The Device and method for controlling monitoring of hydraulic turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484220A (en) * 1977-12-17 1979-07-05 Meidensha Electric Mfg Co Ltd Hydraulic power plant device
JPH0730373U (en) * 1992-11-11 1995-06-06 東芝エンジニアリング株式会社 Controller for small capacity turbine
JP2008261327A (en) * 2007-03-19 2008-10-30 Kawasaki Heavy Ind Ltd Shaftless hydraulic turbine start device
JP2012197703A (en) * 2011-03-18 2012-10-18 Tokyo Electric Power Co Inc:The Device and method for controlling monitoring of hydraulic turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180223792A1 (en) * 2015-11-02 2018-08-09 Ntn Corporation Hydroelectric power generation apparatus and power generation system
US10677214B2 (en) * 2015-11-02 2020-06-09 Ntn Corporation Hydroelectric power generation apparatus and power generation system

Also Published As

Publication number Publication date
JP6885778B2 (en) 2021-06-16
JP2018188981A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
KR102577355B1 (en) Hydroelectric power plants and power generation systems
CN102312778B (en) Methods and systems for monitoring operation of a wind turbine
JP5092017B2 (en) Wind power generator and nacelle turning method
EP2466126B1 (en) Apparatus and method for operation of an off-shore wind turbine
WO2011011358A2 (en) A system and method for providing a constant output from a variable flow input
CN112585348B (en) Hydroelectric power generation device and power generation system
EP2966297A1 (en) Wind power generation system
CN104791176A (en) Arrangement-type floating running water power generation device
CN104612896A (en) Offshore wind power generation typhoon-resistance control system
WO2013073559A1 (en) Wind power generation device and method, and program
WO2018198771A1 (en) Hydroelectric power generation device and power generation system
US20190162162A1 (en) Hydroelectric power generation apparatus and power generation system
EP2963286A1 (en) Windturbine and method for stopping the same
JP2018040306A (en) Wind and water power generation device
WO2019181474A1 (en) Hydroelectric power generating device, and power generating system
CN104047796A (en) Device for generating power by using naturally flowing river water
WO2011155278A1 (en) Fluid power generation device an method for controlling fluid power generation device
WO2017077799A1 (en) Hydroelectric power generation device and power generation system
WO2018021000A1 (en) Hydraulic power generating device and power generating system
JP4299767B2 (en) Water turbine power generation system and inverter
JP2020090892A (en) Hydroelectric generator and power generation system
CN203867780U (en) Full-load brake-free wheeled wind power generation device
JP2024048515A (en) Power generation device and power generation method
JP2007032468A (en) Wind power generation device
RU2297549C2 (en) Method and device for maximal extraction of kinetic energy from turbulizing air flow and its conversion into electrical energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791134

Country of ref document: EP

Kind code of ref document: A1