WO2018198594A1 - Led driver, and led drive circuit device and electronic equipment that use said led driver - Google Patents

Led driver, and led drive circuit device and electronic equipment that use said led driver Download PDF

Info

Publication number
WO2018198594A1
WO2018198594A1 PCT/JP2018/010704 JP2018010704W WO2018198594A1 WO 2018198594 A1 WO2018198594 A1 WO 2018198594A1 JP 2018010704 W JP2018010704 W JP 2018010704W WO 2018198594 A1 WO2018198594 A1 WO 2018198594A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
voltage
output
terminal
current
Prior art date
Application number
PCT/JP2018/010704
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 桂
泰典 村松
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2018198594A1 publication Critical patent/WO2018198594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to an LED driver for driving an LED (Light Emitting Diode).
  • LEDs are widely used, such as liquid crystal panels, lighting devices, traffic lights, various light sources, and the like.
  • a switching regulator is used in combination with these various devices, and this switching regulator is controlled by a PWM (Pulse Width Modulation) method.
  • PWM Pulse Width Modulation
  • LEDs are often PWM controlled.
  • Patent Document 1 discloses a semiconductor integrated circuit for power supply control that drives a switching element that causes a current to flow intermittently through an inductor, and rectifies the current flowing through the inductor to generate a drive current for the LED.
  • the power control semiconductor integrated circuit includes a plurality of external terminals that draw current from each of the plurality of LED units, a plurality of current sources respectively connected to the plurality of external terminals, and voltages of the plurality of external terminals And an error amplifier that outputs a voltage corresponding to the potential difference from the reference voltage. Then, a drive pulse for the switching element is generated based on the output corresponding to the output having the lowest voltage at the external terminal among the plurality of outputs of the error amplifier. According to this, it is possible to suppress an increase in the number of components and mounting area due to the increase in the number of LEDs, and to avoid occurrence of unevenness in the brightness of the screen.
  • Patent Document 2 discloses a drive circuit for a light-emitting element, and a light-emitting device and an electronic apparatus using the drive circuit.
  • Patent document 2 stabilizes the brightness
  • the error amplifier generates a source current corresponding to the error when the reference voltage is higher, based on the error between the lowest voltage among the voltages of each of the n LED terminals and the predetermined reference voltage. When the voltage is lower, a sink current corresponding to the error is generated, and the feedback voltage generated at the feedback terminal is changed.
  • Patent Document 1 generates a drive pulse corresponding to the voltage of an external terminal provided in a plurality of LED units and applies it to a switching element, it cannot be expected to stabilize the luminance of the plurality of LED units. This is because the detection of the voltage at the external terminal is different from the application of an appropriate voltage to the plurality of LED units.
  • the feedback voltage generated at the feedback terminal is changed by the sink current or source current output from the transconductance amplifier to control the drive voltage applied to the light emitting element. Therefore, the luminance of the light emitting element can be stabilized.
  • the feedback terminal in Patent Document 2 is an external terminal to which the output side of the error amplifier, that is, the feedback capacitor (CFB) for phase compensation and the feedback resistor (RFB) are connected in series. Therefore, it cannot be expected to control the output voltage with high accuracy, and it cannot be expected to control the stabilization of the luminance of the LED with high accuracy.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an LED driver capable of further stabilizing the luminance of a light emitting element used in an LED drive circuit device.
  • One aspect of the LED driver according to the present invention includes a switching element that allows current to flow intermittently through an inductor, smoothing means that smoothes the inductor current flowing through the inductor and outputs a predetermined output voltage to an output terminal, and the output
  • a feedback voltage generation circuit for generating a feedback voltage obtained by dividing the voltage, and a switching regulator characterized by varying the output voltage according to the feedback voltage, and using the output voltage as a drive voltage source, a plurality of A plurality of LED strings connected in series, and an LED driver capable of being connected to the LED string,
  • the LED constant current source connected to each of the plurality of LED strings via an LED connection terminal, and the LED connection terminal of the LED string having the highest total LED forward voltage among the plurality of LED strings is subsequently detected.
  • a selection unit that selects as the LED connection terminal for use, and a comparison unit that compares the voltage of the LED connection terminal for detection and the first reference voltage, and transforms the feedback voltage based on the output of the comparison unit ( First configuration).
  • the feedback voltage generation circuit includes a first voltage dividing resistor connected to the output terminal and a second voltage dividing resistor connected to the ground potential and connected in series with the first voltage dividing resistor. It is good also as comprised by (2nd structure).
  • an operational amplifier having the selection unit and the comparison unit is provided, and an output of the operational amplifier is coupled to a common connection node of the first voltage dividing resistor and the second voltage dividing resistor. It is good also as a thing (3rd structure).
  • the operational amplifier when the voltage of the detection LED connection terminal is lower than the first reference voltage, the operational amplifier causes a sink current to flow from the common connection node to the ground potential.
  • the feedback voltage may be stepped down (fourth configuration).
  • a third voltage dividing resistor is connected between the common connection node and the output side of the operational amplifier, and the third voltage dividing resistor is connected in parallel with the second voltage dividing resistor. It is good also as a thing (5th structure).
  • the operational amplifier may be a transconductance amplifier (sixth configuration).
  • the transconductance amplifier has a sink current from the common connection node to the output stage of the transconductance amplifier when the voltage of the detection LED connection terminal is lower than the first reference voltage.
  • the feedback voltage may be stepped down by flowing (seventh configuration).
  • the transconductance amplifier when the voltage of the detection LED connection terminal is higher than the first reference voltage, the transconductance amplifier has a source current from the output stage of the transconductance amplifier to the common connection node side. May be supplied to boost the feedback voltage (eighth configuration).
  • a source current supply for switching on / off of a source current flowing into a common connection node of the first voltage dividing resistor and the second voltage dividing resistor in accordance with the output of the comparator serving as the comparison unit It is good also as having a part (9th structure).
  • the source current supply unit includes a switch that is turned on / off according to an output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit,
  • the switch may be connected between both ends of one transistor in the current mirror circuit (tenth configuration).
  • the selection unit includes at least one other driver connection terminal capable of connecting another LED driver and a minimum voltage output terminal, and the selection unit includes the detection LED connection terminal. And the voltage of the other driver connection terminal may be selected and output to the comparison unit and the lowest voltage output terminal (eleventh configuration).
  • the LED constant current source may generate current intermittently by a first pulse width modulation signal (a twelfth configuration).
  • An aspect of the LED drive circuit device is an LED drive circuit device comprising the LED driver having any one of the above configurations, the switching regulator, and the LED string.
  • the switching regulator further includes a slope signal generation circuit, an error amplifier, and a PWM comparator,
  • the slope signal generation circuit generates a triangular or sawtooth slope signal
  • the error amplifier compares the feedback voltage with a second reference voltage, and outputs a difference voltage as an error voltage
  • the PWM comparator The error voltage and the slope signal are compared, a second pulse width modulation signal having a pulse width corresponding to the pulse comparison result is output, and the switching element is turned on or off by the second pulse width modulation signal. Controlled.
  • the luminance of the LED string is controlled by the switching regulator that converts the input voltage into a predetermined output voltage by the second pulse width modulation signal, and the first pulse width modulation signal.
  • the switching regulator that converts the input voltage into a predetermined output voltage by the second pulse width modulation signal, and the first pulse width modulation signal.
  • the lowest voltage among the plurality of LED strings to which the drive voltage is applied is compared with the predetermined reference voltage, and the magnitude of the feedback voltage generated by the feedback voltage generation circuit based on the comparison result. Since the drive voltage supplied to the LED string is controlled by controlling the height, it can be adjusted to an output voltage suitable for the voltage drop in the LED string, the brightness of the LED string is maintained at a predetermined brightness, and the output of the switching regulator The problem that the output voltage of the terminal becomes higher than necessary and the power consumption in the LED drive circuit device increases can be eliminated.
  • 1 is a circuit diagram showing an LED drive circuit device according to a first embodiment of the present invention.
  • 2 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively wide pulse width.
  • 2 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively narrow pulse width.
  • It is a circuit diagram which shows the LED drive circuit device which concerns on the 2nd Embodiment of this invention.
  • 3 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively wide pulse width. 3 shows signal waveforms of main nodes when the LED drive circuit device of FIG.
  • FIG. 2 is driven by a PWM signal having a relatively narrow pulse width.
  • FIG. 6 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 5 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal.
  • FIG. 1 shows an LED drive circuit device 1 according to a first embodiment of the present invention.
  • the LED drive circuit device 1 includes a switching control circuit 2, an output circuit 3, an LED driver (constant current driver) 5, and LED strings 4_1 to 4_n (n is a natural number of 2 or more).
  • the output circuit 3 includes an output voltage Vout, an inductor L1, a capacitor C1, and voltage dividing resistors R1 and R2.
  • the switching control circuit 2 and the output circuit 3 constitute a switching regulator.
  • the switching control circuit 2 steps down the input voltage Vin supplied to the input terminal IN in cooperation with the output circuit 3 and outputs a desired output voltage Vout to the output terminal OUT.
  • the switching control circuit 2 and the output circuit 3 can be configured not to be a step-down type but to be a step-up type or a step-up / step-down type.
  • the LED driving circuit device according to the present invention can be applied regardless of the step-down type, step-up type or step-up / down type switching regulator.
  • the switching control circuit 2 is composed of a semiconductor integrated circuit, and includes a switching element S1, a synchronous rectification semiconductor element S2, an error amplifier 6, an oscillation circuit 7, a slope signal generation circuit 8, a PWM comparator 9, and a drive circuit 10.
  • the switching element S1 is a switching element that causes a current to flow intermittently through the inductor L1, and the synchronous rectification semiconductor element S2 and the switching element S1 operate in a complementary manner. A current is supplied to the inductor L1 when the switching element S1 is off.
  • the switching element S1 and the synchronous rectification semiconductor element S2 are turned on / off in order to generate the output voltage Vout from the input voltage Vin.
  • the synchronous rectification semiconductor element S2 can be replaced with a diode instead of a transistor.
  • an input voltage Vin, an inductor L1, capacitors C1 to C2, voltage dividing resistors R1 to R3, a resistor R4, and a ground potential GND are connected to a plurality of external terminals prepared in the switching control circuit 2.
  • the input terminal IN to which the input voltage Vin is applied is connected to the source of the switching element S1 composed of a p-channel MOS transistor, for example.
  • the drain of the switching element S1 is connected to the switching terminal SW and the drain of the synchronous rectification semiconductor element S2.
  • the source of the synchronous rectification semiconductor element S2 composed of an n-channel MOS transistor is connected to the ground potential GND.
  • the inductor L1 is connected to the switching terminal SW.
  • the inductor current IL flows through the inductor L1 due to the intermittent switching voltage Vsw output from the switching terminal SW.
  • the other end of the inductor L1 is connected to the output terminal OUT and one end of the capacitor C1, and is connected to the output terminal OUT.
  • the other end of the capacitor C1 is grounded to the ground potential GND.
  • Capacitor C1 smoothes the electromagnetic energy accumulated in inductor L1.
  • the voltage dividing resistors R1 and R2 constituting part of the output circuit 3 are connected in series between the output terminal OUT and the ground potential GND to constitute a feedback voltage generation circuit.
  • the feedback voltage generation circuit generates a feedback voltage Vfb at the common connection node Nc of the voltage dividing resistor R1 and the voltage dividing resistor R2.
  • the feedback voltage Vfb is applied to the inverting input terminal ( ⁇ ) of the error amplifier 6 via the feedback terminal FB.
  • the error amplifier 6 compares the feedback voltage Vfb with the first reference voltage Vt1, and outputs an error signal Verr corresponding to the comparison result.
  • a phase compensation terminal COMP is prepared for the signal path of the output of the error amplifier 6 and the inverting input terminal ( ⁇ ) of the PWM comparator 9.
  • a capacitor C2 and a resistor R4 are connected in series between the phase compensation terminal COMP and the ground potential GND.
  • the voltage gain of the error amplifier 6 is set by the capacitor C2 and the resistor 4.
  • the error amplifier 6 is composed of a transconductance amplifier, for example.
  • the capacitor C2 and the resistor R4 connected in series between the phase compensation terminal COMP and the ground potential GND determine the voltage gain of the error amplifier 6 and also determine the phase characteristic of the switching regulator.
  • the frequency characteristic of the switching regulator composed of the switching regulator control circuit 2 and the output circuit 3 is appropriately corrected by the capacitor C2 and the resistor R4.
  • the oscillation circuit 7 is composed of, for example, a well-known CR oscillator, or a ring oscillator in which inverters or differential amplifiers are connected in a ring shape.
  • the oscillation circuit 7 generates a clock signal CLK.
  • the clock signal CLK is used as a set signal Sset in the drive circuit 10 at the subsequent stage.
  • the slope voltage generation circuit 8 is composed of, for example, a constant current source (not shown), a capacitor, a switching element, and the like, and generates a triangular or sawtooth slope voltage Vsl. Such a slope voltage Vsl is generated by the clock signal CLK applied from the oscillation circuit 7.
  • the PWM comparator 9 compares the error signal Verr and the slope signal Vsl, and outputs a reset signal Sreset corresponding to the comparison result to the drive circuit 10 at the subsequent stage.
  • the reset signal Sreset is output as a pulse width modulation (PWM) signal whose pulse width is modulated according to the error signal Verr.
  • PWM pulse width modulation
  • the driving circuit 10 receives the set signal Sset and the reset signal Sreset, and drives the switching element S1 and the synchronous rectification semiconductor element S2. These are driven by complementary gate signals P1 and P2, respectively.
  • An RS flip-flop (not shown), for example, is prepared inside the drive circuit 10, and a set signal Sset generated by the oscillation circuit 7 is output to the set terminal of the RS flip-flop, and output from the PWM comparator 9 to the reset terminal.
  • the reset signal Sreset is applied.
  • the LED drive circuit device 1 shown in FIG. 1 includes a plurality of LED strings 4_1 to 4_n in addition to the circuit configuration described above.
  • the LED strings 4_1 to 4_n are used as light sources and display devices for liquid crystal panels, lighting devices, traffic signals, and other various electronic devices.
  • the output voltage Vout generated by the switching regulator is supplied as a drive voltage source to the common anode side of the LED strings 4_1 to 4_n, that is, the output terminal OUT.
  • the LED forward total voltages up to the LED strings 4_1, 4_2, and 4_n are indicated by Vf1, Vf2, and Vfn, respectively.
  • the LED driver 5 supplies LED current to each LED string.
  • the LED driver 5 is composed of a semiconductor integrated circuit (IC) different from the switching control circuit 2 in order to provide versatility. Accordingly, versatility can be expanded by combining the LED string, the switching control circuit, and the output circuit in various ways.
  • the LED driver 5 is provided with LED connection terminals LED1 to LEDn for coupling to the cathode sides of the LED strings 4_1 to 4_n.
  • the LED terminal voltages generated at the LED connection terminals LED1, LED2, and LEDn viewed from the ground potential GND are indicated by VLED1, VLED2, and VLEDn, respectively.
  • the LED driver 5 has LED constant current sources Cs1 to Csn that supply LED currents ILED1 to ILEDn to the LED strings, respectively.
  • the LED constant current sources Cs1 to Csn are intermittently controlled by a pulse width modulation (PWM) signal applied from the PWM dimming means 11, for example. Such control is also called burst dimming or burst control.
  • PWM pulse width modulation
  • the constant current sources Cs1 to Csn do not need to be burst dimming or burst control, and may be configured by a general constant current source circuit.
  • the LED driver 5 further includes an operational amplifier 12.
  • the input of the operational amplifier 12 is provided with (n + 1) input terminals obtained by adding a terminal for applying a reference voltage VREF to the number output to each of the LED connection terminals LED1 to LEDn.
  • a reference voltage VREF is applied to the inverting input terminal ( ⁇ ) of the operational amplifier 12.
  • the LED terminal voltages VLED1 to VLEDn are applied to at least two non-inverting input terminals (+).
  • the operational amplifier 12 compares the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn with respect to the ground potential GND with the reference voltage VREF, and outputs the comparison result to the subsequent transistor Tr1.
  • the transistor Tr1 is connected to the output of the operational amplifier 12.
  • the transistor Tr1 is composed of, for example, a bipolar transistor, and its emitter is taken out to the ground potential GND, and its collector is taken out to the external terminal OPFB.
  • Such a circuit configuration of the transistor Tr1 can be called a generally well-known open collector.
  • the transistor Tr1 may be a MOS transistor and may have an open drain circuit configuration.
  • the transistor Tr1 is turned on when the output of the operational amplifier 12 becomes a high level H, and as a result, a sink current Isi flows.
  • the transistor Tr1 is turned on, the potential of the external terminal OPFB becomes a low level L that is substantially close to the ground potential GND.
  • the LED driver 5 also has an OR circuit 51.
  • the OR circuit 51 receives pulse width modulation signals PWM1 to PWMn.
  • the output of the OR circuit 51 is input to the operational amplifier 12.
  • the output of the OR circuit 51 is at a high level.
  • the output of the OR circuit 51 is at a low level.
  • the operational amplifier 12 turns off the transistor Tr1 when the output of the OR circuit 51 is at a low level, and turns off the transistor Tr1 when the output of the OR circuit 51 is at a high level, and the lowest LED terminal voltage and the reference voltage VREF among the LED terminal voltages VLED1 to VLEDn.
  • the comparison result is output to the transistor Tr1.
  • One end of the voltage dividing resistor R3 is connected to the external terminal OPFB, and the other end is connected to the feedback terminal FB.
  • the voltage dividing resistor R3 is connected in parallel with the voltage dividing resistor R2 when the transistor Tr1 is turned on, that is, when the external terminal OPFB is at the low level L.
  • the resistance value of the voltage dividing resistor R3 is selected to be sufficiently larger than the on-resistance of the transistor Tr1.
  • the feedback voltage Vfb at the feedback terminal FB is lower than when the transistor Tr1 is off, and at this time, the output voltage Vout is controlled to increase by the switching regulator composed of the switching control circuit 2 and the output circuit 3. .
  • the PWM dimming means 11 controls the output voltage Vout by increasing it intermittently.
  • heat generation in the LED strings 4_1 to 4_n can be suppressed.
  • the LED string may not light up due to a delay in the increase of the output voltage Vout.
  • the transistor Tr1 only controls the so-called sink current that draws current from the feedback terminal FB side toward the external terminal OPFB. Therefore, the output voltage Vout is controlled by the LED voltage. Only one of the VLED1 to VLEDn reaches the reference voltage VREF and can only be controlled to increase the output voltage Vout.
  • the LED forward total voltage Vf_max and the voltage at the LED connection terminal LED_i are LED terminal voltage VLED_min.
  • Vout Vf_max + VLED_min (1)
  • the LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4_n vary for each channel.
  • the LED forward total voltage Vf_max in the LED string 4_i is the maximum LED forward total voltage.
  • the LED terminal voltage VLED_min becomes the minimum LED terminal voltage.
  • the maximum LED forward total voltage Vf_max, the minimum LED terminal voltage VLED_min, and the LED current ILEDi flow for the LED string 4_i among the LED strings 4_1 to 4_n.
  • FIG. 2A shows a timing chart when the LED drive circuit device 1 is driven at a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is about 70%, for example.
  • 2A is a timing chart when the output voltage Vout is controlled only by the sink current as described with reference to FIG.
  • FIG. 2A (a) shows a pulse width modulation signal PWMi applied from the PWM dimming means 11 of the LED driver 5 to the LED constant current sources Cs1 to Csn.
  • the pulse width modulation signal PWMi is at a high level H at times t0 to t4 and at a low level L at times t4 to t6. This indicates that the high-level H section TH is longer than the low-level L section TL, and the so-called pulse duty ratio is a relatively large signal.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. From time t0 to t4, current flows in the high level H section, and from time t4 to t6, current does not flow in the low level L section, so that current flows intermittently. In the period from time t0 to t1, the LED current ILEDi starts to flow slightly slowly.
  • FIG. 2A (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i.
  • VLED_min the voltage of the LED connection terminal LED_i.
  • the voltage suddenly becomes lower than the reference voltage VREF, and thereafter the voltage is gradually increased in the period up to the time t3. This is because the LED current ILEDi flows through the LED string 4_i at the time t0, and at the same time, the voltage decreases by the LED forward total voltage Vf_max.
  • feedback is applied by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the operation is performed so that the reference voltage VREF is maintained.
  • the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout.
  • a symbol Vsi in the figure indicates a sink current adjustment voltage that is adjusted by a sink current Isi described later.
  • FIG. 2A (d) shows the sink current Isi flowing from the feedback terminal FB to the transistor Tr1 via the sink current output terminal OPFB provided on the LED driver 5 side.
  • the sink current Isi flows according to the LED terminal voltage VLED_min is determined.
  • the LED terminal voltage VLED_min starts to flow when it falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF.
  • the LED terminal voltage VLED_min reaches the reference voltage VREF at time t3
  • a constant sink current Isi flows until time t4. Since the output of the OR circuit 51 is at a low level from time t4 to t6, which is the section TL, the transistor Tr1 is turned off by the operational amplifier 12, and the sink current Isi stops flowing.
  • FIG. 2A (e) shows the transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi. From time t0 to t2, the sink current Isi acts to increase the output voltage Vout. The time from t0 to t2 is determined by the response of the previous stage regulator and the operational amplifier 12. From time t2 to t4, the control effect on the output voltage Vout by the sink current Isi reaches the maximum, and the output voltage Vout is controlled to have a magnitude of (VREF + Vf_max) obtained by adding the LED forward total voltage Vf_max to the reference voltage VREF. The The voltage drops steeply from time t4 to t5, and gradually drops from time t5 to t6.
  • the output voltage Vout varies according to the high level and low level of the pulse width modulation signal PWMi. This is because the LED driver 5 in FIG. 1 operates in the high level section of the pulse width modulation signal PWMi and stops in the low level section of the pulse width modulation signal PWMi. As a result, the output voltage Vout varies as the feedback voltage Vfb varies.
  • Vout (R1 + R2) ⁇ Vfb / R2 (3) That is, from the equations (2) and (3), when the pulse width modulation signal PWMi is at a high level, the output voltage Vout is boosted to a voltage of (VREF + Vf_max). For this reason, the output voltage Vout at times t4 to t5 drops sharply.
  • each waveform operation at time t0 to t6 similarly changes from time t6 to t12 and further after time t12.
  • the LED drive circuit device 1 shown in FIG. 1 can suppress heat generation in the LED string by boosting and controlling the output voltage Vout only when the pulse width modulation signal is at a high level.
  • FIG. 2B is a timing chart when the LED drive circuit device 1 is driven at a relatively small on-duty ratio such that the on-duty ratio of the PWM signal is about 2%, for example. Compared to the case where the on-duty ratio in FIG. 2A described above is relatively large, the driving conditions are not necessarily good.
  • 2B is a timing chart when the output voltage Vout is controlled only by the sink current Isi as in FIG. 2A.
  • FIG. 2B (a) shows a pulse width modulation signal PWMi applied from the PWM dimming means 11 of the LED driver 5 to the LED constant current sources Cs1 to Csn.
  • the pulse width modulation signal PWMi is at a high level H at times T0 to T2, and is at a low level L at times T2 to T4. This indicates that the so-called pulse duty ratio is a relatively small signal in which the high-level H section TH is shorter than the low-level L section TL.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. From time T0 to T2, current flows in the high level H section, and in time T2 to T4, no current flows in the low level L section, so that current flows intermittently. In the section from time T0 to T1, the LED current ILEDi starts to flow slightly slowly.
  • FIG. 2B (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i.
  • VLED_min the voltage of the LED connection terminal LED_i.
  • the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the LED terminal voltage VLED_min does not reach the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow and the polarity of the pulse width modulation signal PWMi is inverted before the LED terminal voltage VLED_min reaches the reference voltage VREF.
  • the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout.
  • FIG. 2B (d) shows the sink current Isi flowing from the feedback terminal FB to the transistor Tr1 via the sink current output terminal OPFB provided on the LED driver 5 side.
  • the sink current Isi starts to flow when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T2 to T4, the sink current Isi stops flowing and becomes zero.
  • FIG. 2B (e) shows the transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi.
  • the sink current Isi acts to increase the output voltage Vout from time T0 to T2.
  • the pulse width modulation signal PWMi becomes a low level, sharply decreases from time T2 to T3, and gradually decreases from time T3 to T4. This is because the response of the regulator in the previous stage cannot catch up because the width of the pulse width modulation signal PWMi is extremely narrow.
  • each waveform operation at times T0 to T4 similarly changes after time T4.
  • the LED drive circuit device 1 shown in FIG. 1 boosts and controls the output voltage Vout only when the pulse width modulation signal is at a high level.
  • the on-duty ratio of the pulse width modulation signal is low, the ability to adjust the output voltage Vout becomes insufficient. This causes a problem that the LED strings 4_1 to 4_n cannot maintain sufficient luminance.
  • FIG. 3 shows a second embodiment according to the present invention.
  • the LED drive circuit device 1A shown in FIG. 3 overcomes the above-described problems existing in the LED drive circuit device 1 shown in FIG.
  • the LED drive circuit device 1A is greatly different from the LED drive circuit device 1 in the circuit configuration of the LED driver 5A. More specifically, the LED driver 5A uses an operational amplifier 13.
  • the operational amplifier 13 is composed of a transconductance amplifier called OTA (Operator Transconductance Amp).
  • OTA has a high output impedance and outputs a current proportional to the difference between the two input voltages of OTA.
  • the output stage of the OTA employed in the present invention is configured by a push-pull method.
  • the push-pull method makes it possible to control the output voltage VOUT based on two currents: a source current that flows current from the operational amplifier 13 to the feedback terminal FB side and a sink current that draws current from the feedback terminal FB side to the operational amplifier 13 side.
  • the use of OTA in an LED drive circuit device is disclosed in Patent Document 2.
  • the sink current Isi that draws a constant current from the common connection node Nc side to the operational amplifier 13 side through the external terminal substantially reduces the voltage dividing resistor R2.
  • the LED driver 5A also has an OR circuit 51.
  • the OR circuit 51 receives pulse width modulation signals PWM1 to PWMn.
  • the output of the OR circuit 51 is input to the operational amplifier 13.
  • the operational amplifier 13 stops the current output when the output of the OR circuit 51 is low level, and outputs the current according to the comparison result between the LED terminal voltage VLED_min and the reference voltage VREF when the output of the OR circuit 51 is high level.
  • the switching control circuit 2 and the LED driver 5A are each constituted by different semiconductor integrated circuits (ICs), there are some combinations of these and the LED strings 4_1 to 4_n.
  • the output voltage Vout can be controlled based on the lowest voltage of the LED terminal voltages VLED1 to VLEDn without controlling the feedback voltage Vfb.
  • the current output terminal TCFB provided on the output side of the operational amplifier 13 may be connected to the phase compensation terminal COMP without being connected to the feedback terminal FB. In such a circuit configuration, the operational amplifier 13 replaces the error amplifier 6.
  • FIG. 4A is a timing chart when the LED drive circuit device 1A of FIG. 3 is driven with a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is about 70%, for example. 4A is different from the timing charts of FIGS. 2A and 2B, the output voltage Vout is controlled by both the source current Iso and the sink current Isi.
  • FIG. 4A (a) shows the pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5A.
  • the pulse width modulation signal PWMi is at a high level H at times t0 to t2, and at a low level L at times t2 to t5.
  • the so-called pulse duty ratio is compared in which the high-level H section TH is longer than the low-level L section TL. Indicates a large signal.
  • the waveform of the pulse width modulation signal PWMi also changes in the same manner as in the times t0 to t5 after the times t5 to t9 and after the time t9.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • the LED current ILEDi flows so-called intermittently, in which the pulse width modulation signal PWMi from time t0 to t2 flows in the high level H section and does not flow in the low level L section from time t2 to t5. It should be noted that the waveform of the LED current ILEDi also changes in the same way as at times t0 to t5 after times t5 to t9 and after time t9.
  • FIG. 4A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • VLED_min sharply decreases by the LED forward total voltage Vf_max, but schematically shows that the voltage level is higher than the reference voltage VREF. Yes.
  • feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF until time t1.
  • the reference voltage VREF is reached at time t1
  • the potential is manipulated so that the reference voltage VREF is maintained until time t2 when the LED current ILEDi becomes the low level L.
  • the LED terminal voltage VLED_min is boosted to the stable output voltage Vst so as to follow the output voltage Vout.
  • reference symbol Vf_max represents the LED forward total voltage
  • reference symbol Vso represents a source current adjustment voltage adjusted by the source current Iso.
  • the stable output voltage Vst is (VREF + Vso + Vf_max) obtained by adding the source current adjustment voltage Vso and the LED forward total voltage Vf_max to the reference voltage VREF.
  • the LED terminal voltage VLED_min shows a case where it is stepped down below the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. It should be noted that after time t9, the transition is made in the same manner as at times t0 to t5.
  • FIG. 4A (d) shows a sink current Isi that flows into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and a source current Iso that flows from the operational amplifier 13 via the current output terminal TCFB, respectively.
  • the source current Iso begins to flow at time t0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the reference voltage VREF approaches.
  • a constant source current Iso flows until time t2.
  • time t2 to t5 which is the section TL, the output of the OR circuit 51 becomes low level, and the operational amplifier 13 stops current output, so that the source current Iso does not flow and becomes zero.
  • FIG. 4A (e) shows the transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time t0 to t2, the output voltage Vout is operated so as to be maintained from the stable output voltage Vst to (VREF + Vf_max). When the pulse width modulation signal PWMi becomes low level at time t2, the output voltage Vout gradually increases from time t2 to time t4. From time t4 to t5, the stable output voltage Vst is maintained.
  • FIG. 4B is a timing chart when the LED drive circuit device 1A is driven at a relatively small on-duty ratio such that the on-duty ratio of the PWM signal is about 2%, for example.
  • the driving conditions are not necessarily in a good state as compared with the case where the on-duty ratio in FIG. 4A described above is relatively large, but the behavior differs from that in FIG.
  • FIG. 4B (a) shows a pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5A.
  • the pulse width modulation signal PWMi is at a high level H at times T0 to T1, and at a low level L at times T1 to T4. This indicates that the so-called pulse duty ratio is a relatively small signal in which the high-level H section TH is shorter than the low-level L section TL. Note that after time T4, the waveform of the pulse width modulation signal PWMi changes in the same manner as at times T0 to T4.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • the LED current ILEDi flows so-called intermittently, in which the pulse width modulation signal PWMi at times T0 to T1 flows in the high level H section and does not flow in the low level L sections from time T1 to T4. Note that after time T4, the waveform of the LED current ILEDi changes in the same manner as at times T0 to T4.
  • FIG. 4B (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i.
  • VLED_min the voltage of the LED connection terminal LED_i.
  • the voltage decreases steeply by the LED forward total voltage Vf_max, but since it is higher than the reference voltage VREF, it gradually decreases toward the reference voltage VREF during the time T0 to T1. This is because feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the LED terminal voltage VLED_min does not reach the reference voltage VREF.
  • the pulse width of the pulse width modulation signal PWMi is narrow and the polarity of the pulse width modulation signal PWMi is inverted from the high level H to the low level L before the LED terminal voltage VLED_min reaches the reference voltage VREF. .
  • the stable output voltage Vst is maintained. Since the LED terminal voltage VLED_min is again higher than the reference voltage VREF in the period from time T4 to T5 in which the pulse width modulation signal PWMi is in the high level period, the source current Iso flows again.
  • Time T5 shows a state in which the LED terminal voltage VLED_min is sharply lower than the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Therefore, the sink current Isi flows during the period from time T5 to T6. It should be noted that after time T8, transition is made in the same manner as times T0 to T4.
  • FIG. 4B (d) shows a sink current Isi that flows into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and a source current Iso that flows from the operational amplifier 13 via the current output terminal TCFB, respectively.
  • the source current Iso starts to flow at time T0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the reference voltage VREF approaches. From time T1 to T4, the source current Iso does not flow and becomes zero.
  • FIG. 4B (e) shows the transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time T0 to T1, the output voltage Vout is stepped down so that it becomes (VREF + Vf_max) from the stable output voltage Vst. However, since the width of the pulse width modulation signal PWMi is narrow, the step-down stops at time T1. When the pulse width modulation signal PWMi becomes low level at time T1, the output voltage Vout gradually increases from time T1 to T3. From time T3 to T4, the stable output voltage Vst is maintained.
  • the LED drive circuit device 1A in FIG. 3 is stepped down the output voltage Vout only when the pulse width modulation signal is at a high level, unlike the LED drive device circuit 1 in FIG. Control.
  • the output voltage Vout is always maintained at (VREF + Vf_max) or higher even when the on-duty ratio of the pulse width modulation signal is low. Therefore, heat generation in the LED strings 4_1 to 4_n can be suppressed, and the LED strings 4_1 to 4_n can always maintain sufficient luminance.
  • FIG. 5 shows an LED drive circuit device 1B according to a third embodiment of the present invention.
  • the LED drive circuit device 1B has an LED driver 5B as a difference from the first and second embodiments.
  • the LED driver 5 ⁇ / b> B particularly includes a selection comparator 14 and a source current supply unit 15.
  • the LED driver 5B has LED connection terminals LED1 to LEDn as external terminals and a feedback terminal FB1.
  • the feedback terminal FB1 is a terminal for connecting to the common connection node Nc.
  • the selection comparator 14 has a function as a selection unit that selects the lowest voltage among the input LED terminal voltages VLED1 to VLEDn, and a function as a comparator that compares the selected lowest voltage with the reference voltage VREF.
  • the selection comparator 14 outputs a high level or low level signal according to the comparison result.
  • the source current supply unit 15 is a circuit unit that supplies a source current Iso as a constant current to the common connection node Nc side, and includes a switch 15A composed of a p-channel MOS transistor, a constant current circuit 15B, and a current mirror circuit. 15C.
  • a power supply voltage Vcc is applied to the source of the switch 15A, and a constant current circuit 15B is disposed between the drain of the switch 15A and the ground.
  • An output signal from the selection comparator 14 is input to the gate of the switch 15A, and the switch 15A is switched on / off according to the output level from the selection comparator 14.
  • the current mirror circuit 15C is composed of two transistors composed of p-channel MOS transistors.
  • the source of one of the two transistors is connected to the source of the switch 15A, that is, the power supply voltage Vcc is applied.
  • the drain of one transistor is connected to the drain of the switch 15A.
  • the source of one transistor is connected to the source of the other transistor.
  • the gates of the other transistor and one transistor are connected to each other.
  • the connection node and the drain of one transistor are short-circuited.
  • the drain of the other transistor is connected to the feedback terminal FB1.
  • the LED driver 5B also has an OR circuit 51.
  • the OR circuit 51 receives pulse width modulation signals PWM1 to PWMn.
  • the output of the OR circuit 51 is input to the selection comparator 14.
  • the output of the OR circuit 51 is at a high level.
  • the output of the OR circuit 51 is at a low level.
  • the selection comparator 14 outputs a low level output signal to the switch 15A when the output of the OR circuit 51 is low level. As a result, the switch 15A is turned on, and the constant current from the constant current circuit 15B flows through the switch 15A and does not flow into one transistor of the current mirror circuit 15C. Therefore, the source current Iso does not flow from the feedback terminal FB1. Further, when the output of the OR circuit 51 is at a high level, the selection comparator 14 outputs an output signal having a level corresponding to the comparison result to the switch 15A. As a result, the switch 15A is turned on or off.
  • the constant current from the constant current circuit 15B does not flow through the switch 15A but flows into one transistor of the current mirror circuit 15C. Therefore, the source current Iso flows from the feedback terminal FB1.
  • FIG. 6 shows a timing chart when the LED drive circuit device 1B is driven.
  • FIG. 6A shows a pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5B.
  • the pulse width modulation signal PWMi becomes a high level H in the section TH from time t0 to t2, and becomes a low level L in the section TL from time t2 to t4.
  • FIG. 6B shows the LED current ILEDi.
  • FIG. 6C shows the LED terminal voltage VLED_min that is the voltage of the LED connection terminal LED_i.
  • FIG. 6D shows the source current Iso that flows from the feedback terminal FB1 to the common connection node Nc by the source current supply unit 15.
  • FIG. 6E shows a transition state of the output voltage Vout.
  • the LED current ILEDi does not flow. Further, the output of the OR circuit 51 becomes a low level, the switch 15A is turned on, and the source current Iso does not flow. As a result, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and is controlled to the stable output voltage Vst. At this time, the LED terminal voltage VLED_min becomes the same stable output voltage Vst as the output voltage Vout.
  • the pulse width modulation signal PWMi becomes a high level H at time t0
  • the LED current ILEDi flows, and the LED terminal voltage VLED_min rapidly decreases from the stable output voltage Vst by the LED forward total voltage Vf_max, but the magnitude of the voltage Is higher than the reference voltage VREF.
  • the output of the OR circuit 51 is at a high level
  • the output of the selection comparator 14 is at a high level
  • the switch 15A is off, so that the constant current flowing through the constant current circuit 15B by the current mirror circuit 15C is the source current Iso. Flowing.
  • the output voltage Vout is controlled to decrease, and accordingly, the LED terminal voltage VLED_min also decreases toward the reference voltage VREF. While the LED terminal voltage VLED_min is equal to or higher than the reference voltage VREF, the selection comparator 14 is at a high level, and the source current Iso continues to flow.
  • the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and the output voltage Vout increases. In response to this, the LED terminal voltage VLED_min increases. When the LED terminal voltage VLED_min becomes equal to or higher than the reference voltage VREF, the output of the selection comparator 14 becomes a high level, the switch 15A is turned off, and the source current Iso flows. When the source current Iso flows, the output voltage Vout and the LED terminal voltage VLED_min decrease.
  • the selection comparator 14 repeatedly turns on and off the source current Iso by the source current supply unit 15, the LED terminal voltage VLED_min is controlled to the reference voltage VREF, and the output voltage Vout is controlled to VREF + Vf_max.
  • the output voltage Vout suitable for the LED forward voltage can be adjusted, and the luminance of the LED is maintained at a predetermined brightness.
  • the power consumption can be suppressed by suppressing the output voltage Vout.
  • FIG. 7 is a diagram illustrating a configuration of an LED driver 50B according to a modification of the above-described third embodiment. As will be described later, the LED driver 50B is effective when a plurality of sets of LED strings 4_1 to 4_n are used.
  • the LED driver 50B includes a first selection unit 141, a second selection unit 142, and a comparator 143.
  • the LED driver 50B includes a minimum voltage output terminal VMINOUT, other driver connection terminals VOM1 to VOM3, PWM It has an input terminal PWMIN and a PWM output terminal PWMOUT.
  • the first selection unit 141 selects and outputs the lowest voltage among the input LED terminal voltages VLED1 to VLEDn.
  • the second selection unit 142 receives the voltage applied to the other driver connection terminals VOM1 to VOM3, together with the lowest voltage selected by the first selection unit 141.
  • the other driver connection terminals VOM1 to VOM3 are terminals for connection to the lowest voltage output terminal VMINOUT in the other driver 50B, and when not connected to the other driver 50B, a predetermined internal voltage is applied.
  • the second selection unit 142 selects and outputs the lowest voltage selected from the minimum voltage selected by the first selection unit 141 and the voltages applied to the other driver connection terminals VOM1 to VOM3.
  • the lowest voltage output terminal VMINOUT is connected to the output terminal of the second selection unit 142. Therefore, the lowest voltage selected by the second selection unit 142 can be output from the lowest voltage output terminal VMINOUT.
  • the non-inverting input terminal (+) of the comparator 143 is connected to the output terminal of the second selection unit 142.
  • a reference voltage VREF is applied to the inverting input terminal ( ⁇ ) of the comparator 143.
  • the comparator 143 compares the lowest voltage selected by the second selection unit 142 with the reference voltage VREF, and outputs the comparison result as a high level or low level signal.
  • the output signal of the comparator 143 is applied to the gate of the switch 15A in the source current supply unit 15.
  • the LED driver 50B also has an OR circuit 51.
  • the voltage of the PWM input terminal PWMIN is input to the OR circuit 51 together with the pulse width modulation signals PWM1 to PWMn.
  • the output of the OR circuit 51 is input to the comparator 143 and can be output to the outside from the PWM output terminal PWMOUT.
  • the output of the OR circuit 51 is at a high level, and all the voltages at the pulse width modulation signals PWM1 to PWMn and the PWM input terminal PWMIN are at a high level.
  • the output of the OR circuit 51 is at a low level.
  • the comparator 143 outputs a low level output signal to the switch 15A when the output of the OR circuit 51 is low level. Thereby, the switch 15A is turned on, and the source current Iso does not flow from the feedback terminal FB1. Further, when the output of the OR circuit 51 is at a high level, the comparator 143 outputs an output signal having a level corresponding to the comparison result to the switch 15A.
  • FIG. 8 shows an example of a configuration that uses a plurality of LED drivers 50B having the above-described configuration to drive a plurality of LED groups, which are groups of LED strings 4_1 to 4_n.
  • a plurality of LED drivers 50B having the above-described configuration to drive a plurality of LED groups, which are groups of LED strings 4_1 to 4_n.
  • three LED groups G1 to G3 are driven is shown.
  • the anodes of the LED strings in the LED sets G1 to G3 are connected to a line where the output voltage Vout is generated.
  • an LED driver 50B1 as a master and LED drivers 50B2 and 50B3 as slaves are used.
  • the respective configurations of the LED drivers 50B1 to 50B3 are the same as the LED driver 50B of FIG. 7 described above, that is, the LED drivers 50B1 to 50B3 are the same.
  • the cathodes of the LED strings in each of the LED groups G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 50B1 to 50B3, respectively.
  • the other driver connection terminal VOM1 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B2.
  • the other driver connection terminal VOM2 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B3.
  • the other driver connection terminal VOM3 of the LED driver 50B1 is short-circuited with an external terminal (hereinafter, VCC terminal) (not shown) to which the power supply voltage Vcc is applied because no other LED driver is connected.
  • VCC terminal hereinafter, VCC terminal
  • the feedback terminal FB1 of the LED driver 50B1 is connected to the common connection node Nc, but no connection is made to the feedback terminals FB1 of the LED drivers 50B2 and 50B3. Further, no connection is made to the lowest voltage output terminal VMINOUT of the LED driver 50B1.
  • the PWM input terminal PWMIN of the LED driver 50B1 is connected to the PWM output terminal PWMOUT of the LED driver 50B2.
  • the PWM input terminal PWMIN of the LED driver 50B2 is connected to the PWM output terminal PWMOUT of the LED driver 50B3.
  • a low level voltage is applied to the PWM input terminal PWMIN of the LED driver 50B3. Further, no connection is made to the PWM output terminal PWMOUT of the LED driver 50B1.
  • the lowest voltage among the LED terminal voltages VLED1 to VLEDn related to the LED set G2 is selected and output from the lowest voltage output terminal VMINOUT of the LED driver 50B2 as a slave.
  • the lowest voltage output terminal VMINOUT of the LED driver 50B3 as a slave selects and outputs the lowest voltage among the LED terminal voltages VLED1 to VLEDn related to the LED set G3.
  • the LED driver 50B1 as a master, the lowest voltage input from the LED driver 50B2 to the other driver connection terminal VOM1, the lowest voltage input from the LED driver 50B3 to the other driver connection terminal VOM2, and the LED terminal related to the LED set G1
  • the lowest voltage among the voltages VLED1 to VLEDn is selected and output from the second selection unit 142 to the comparator 143.
  • the comparator 143 compares the selected minimum voltage with the reference voltage VREF, and the source current supply unit 15 switches from the feedback terminal FB1 to the common connection node Nc according to the comparison result of the comparator 143.
  • the source current Iso to be turned on is switched on / off.
  • the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and input to the PWM input terminal PWMIN of the LED driver 50B2.
  • the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and input to the PWM input terminal PWMIN of the LED driver 50B1. Therefore, the output of the OR circuit 51 in the LED driver 50B1 becomes high level when at least one of the pulse width modulation signals PWM1 to PWMn of the LED drivers 50B1 to 50B3 is high level, and the pulse width modulation signal of the LED drivers 50B1 to 50B3. When all of PWM1 to PWMn are at a low level, the level is low.
  • the LED terminal voltage VLED_min related to the LED string having the maximum LED forward total voltage Vf_max among the LED sets G1 to G3 is controlled to be the reference voltage VREF.
  • the output voltage Vout is controlled to VREF + Vf_max.
  • the LED driver 50B is not limited to use for driving a plurality of LED sets, but may be used for driving only one LED set. In this case, only one LED driver 50B is used, all other driver connection terminals VOM1 to VOM3 in the LED driver 50B are short-circuited to the VCC terminal, and a low-level voltage is applied to the PWM input terminal PWMIN.
  • FIG. 9 is a plan view showing an example of pin arrangement in the LED driver 50B as a semiconductor integrated circuit device (package product).
  • 16 LED strings that is, LED strings 4_1 to 4_16
  • LED strings 4_1 to 4_16 can be connected.
  • a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, a pin LED5 and LED6 are arranged side by side in the horizontal direction.
  • the pin EXTCLK is a clock signal input pin.
  • the pin VSYNC is a pin for inputting a pulse width modulation signal.
  • the pins LED1 to LED6 are pins for cathode connection of the LED string.
  • the pin LGND is a ground pin for the constant current circuit.
  • a non-connecting pin is a pin that is not connected.
  • the second side 502 extending in the vertical direction from one end of the first side 501 is pin LED7, LED8, non-connection pin, pin LGND, pin SDO, pin PWMOUT, pin TEST, pin PWMIN, pin LGND, non-connection.
  • Pins, pin LEDs 9 and LED 10 are arranged side by side in the vertical direction.
  • the pin LED 7 is disposed so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6.
  • Pins LED7 to LED10 are pins for cathode connection of LED strings.
  • the pin SDO is a data output pin.
  • the pin PWMOUT is a PWM output terminal.
  • the pin PWMIN is a PWM input terminal.
  • the pin TEST is a test mode pin.
  • the third side 503 extends in the lateral direction from the end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is opposed to the first side 501 in the vertical direction.
  • a pin LED11, LED12, a non-connecting pin, a pin LGND, a non-connecting pin, pins LED13 to LED16, a non-connecting pin, a pin FB1, and a pin VOM3 are arranged side by side in this order.
  • the pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10.
  • the pins LED11 to LED16 are pins for cathode connection of the LED string.
  • the pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG.
  • the pin VOM3 is a pin for connecting the pin VMINOUT of another LED driver, and corresponds to the other driver connection terminal VOM3 in FIG.
  • the fourth side 504 extends in the vertical direction from the end of the third side 503 that is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction.
  • a pin VOM2, a pin VOM1, a pin VMINOUT, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are arranged in the vertical direction. Be placed.
  • the pin VOM2 is arranged so as to sandwich the intersection of the third side 503 and the fourth side 504 with the pin VOM3.
  • Pin SCLK is arranged so as to sandwich the intersection of first side 501 and fourth side 504 with pin EXTCLK.
  • the pins VOM2 and VOM1 are pins for connecting the pin VMINOUT of other LED drivers and correspond to the other driver connection terminals VOM2 and VOM1 in FIG.
  • the pin VMINOUT is a pin for outputting the lowest LED terminal voltage among the 16 LED strings, and corresponds to the lowest voltage output terminal VMINOUT in FIG.
  • the pin ISET is a pin for connecting a resistor that sets the LED current.
  • the pin VREG is a pin for outputting an internal voltage.
  • the pin VCC is a VCC terminal.
  • the pin EN is a pin for setting a standby mode or an operation mode.
  • the pin GND is a pin for ground connection.
  • the pin FAIL is an abnormality detection output pin.
  • the pin SCS is a chip selection setting pin.
  • the pin SDI is a data input pin.
  • the pin SCLK is a clock input pin.
  • the output terminal of the second selection unit 142 may be connected to the input terminal of the operational amplifier instead of the comparator 143.
  • the operational amplifier those described in the first and second embodiments can be used.
  • the output voltage of the switching regulator used for driving the light emitting element can be controlled to a predetermined level by a relatively simple circuit, the power efficiency can be improved. Therefore, industrial applicability is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

An LED driver comprising: an LED constant current source connected to a plurality of LED strings individually with an LED connection terminal interposed therebetween; a selection unit for selecting the LED connection terminal of the LED string, among the plurality of LED strings, for which the LED forward total voltage is greatest as a subsequent detection LED connection terminal; and a comparator for comparing the voltage of the detection LED connection terminal and a first reference voltage; a feedback voltage for which the output voltage has undergone voltage-division undergoing voltage transformation on the basis of the output of the comparator.

Description

LEDドライバ、並びに、これを用いるLED駆動回路装置および電子機器LED driver, and LED drive circuit device and electronic apparatus using the same
 本発明は、LED(Light Emitting Diode)を駆動するLEDドライバに関する。 The present invention relates to an LED driver for driving an LED (Light Emitting Diode).
 昨今、LEDは例えば、液晶パネル、照明装置、交通信号機、各種光源等、多種多様に採用されている。こうした各種装置にはスイッチングレギュレータが併用され、このスイッチングレギュレータはPWM(Pulse Width Modulation)方式で制御される。また、LEDもPWM制御されることも少なくない。 Nowadays, LEDs are widely used, such as liquid crystal panels, lighting devices, traffic lights, various light sources, and the like. A switching regulator is used in combination with these various devices, and this switching regulator is controlled by a PWM (Pulse Width Modulation) method. Also, LEDs are often PWM controlled.
 特許文献1は、インダクタに間歇的に電流を流すスイッチング素子を駆動し、このインダクタに流れる電流を整流してLEDの駆動電流を生成する電源制御用半導体集積回路を開示する。この電源制御用半導体集積回路は、複数のLEDユニットのそれぞれから電流を引き込む複数の外部端子と、この複数の外部端子にそれぞれ接続された複数の電流源と、前記複数の外部端子の電圧と所定の参照電圧との電位差に応じた電圧を出力する誤差増幅器を備える。そして、誤差増幅器の複数の出力のうち、前記外部端子の電圧が最も低いものに対応した出力に基づいてスイッチング素子の駆動パルスを生成する。これによれば、LEDの多灯化に伴う部品点数や実装面積の増加を抑制できること、また、画面の明るさにムラが生じるのを回避できるとしている。 Patent Document 1 discloses a semiconductor integrated circuit for power supply control that drives a switching element that causes a current to flow intermittently through an inductor, and rectifies the current flowing through the inductor to generate a drive current for the LED. The power control semiconductor integrated circuit includes a plurality of external terminals that draw current from each of the plurality of LED units, a plurality of current sources respectively connected to the plurality of external terminals, and voltages of the plurality of external terminals And an error amplifier that outputs a voltage corresponding to the potential difference from the reference voltage. Then, a drive pulse for the switching element is generated based on the output corresponding to the output having the lowest voltage at the external terminal among the plurality of outputs of the error amplifier. According to this, it is possible to suppress an increase in the number of components and mounting area due to the increase in the number of LEDs, and to avoid occurrence of unevenness in the brightness of the screen.
 特許文献2は、発光素子の駆動回路およびそれを用いた発光装置および電子機器を開示する。特許文献2は、スキャンニング動作時の発光素子の輝度を安定化する。そのために誤差増幅器はn個のLED端子それぞれの電圧のうち最も低い電圧と所定の基準電圧との誤差に基づき、基準電圧の方が高いときに誤差に応じたソース電流を生成し、基準電圧の方が低いときに誤差に応じたシンク電流を生成し、フィードバック端子に生ずるフィードバック電圧を変化させる。 Patent Document 2 discloses a drive circuit for a light-emitting element, and a light-emitting device and an electronic apparatus using the drive circuit. Patent document 2 stabilizes the brightness | luminance of the light emitting element at the time of a scanning operation | movement. For this purpose, the error amplifier generates a source current corresponding to the error when the reference voltage is higher, based on the error between the lowest voltage among the voltages of each of the n LED terminals and the predetermined reference voltage. When the voltage is lower, a sink current corresponding to the error is generated, and the feedback voltage generated at the feedback terminal is changed.
特開2013-21117号公報JP 2013-21117 A 特開2013-109921号公報JP 2013-109921 A
 特許文献1は、複数のLEDユニットに設けた外部端子の電圧に応じた駆動パルスを生成してスイッチング素子に印加はするが、複数のLEDユニットの輝度を安定化することは期待できない。なぜならば、外部端子の電圧を検出することと複数のLEDユニットに適正な電圧が印加されていることとは別のことであるからである。 Although Patent Document 1 generates a drive pulse corresponding to the voltage of an external terminal provided in a plurality of LED units and applies it to a switching element, it cannot be expected to stabilize the luminance of the plurality of LED units. This is because the detection of the voltage at the external terminal is different from the application of an appropriate voltage to the plurality of LED units.
 特許文献2は、特許文献1に開示される回路構成に加えて、フィードバック端子に生ずるフィードバック電圧をトランスコンダクタンスアンプから出力されるシンク電流又はソース電流で変化させて発光素子に印加する駆動電圧を制御するので発光素子の輝度の安定化は図れる。しかし、特許文献2のフィードバック端子とは、誤差増幅器の出力側すなわち位相補償用のフィードバックキャパシタ(CFB)とフィードバック抵抗(RFB)とが直列に接続される外部端子である。したがって、出力電圧を精度よく制御することは期待できず、LEDの輝度の安定化を精度高く制御することは期待できない。 In Patent Document 2, in addition to the circuit configuration disclosed in Patent Document 1, the feedback voltage generated at the feedback terminal is changed by the sink current or source current output from the transconductance amplifier to control the drive voltage applied to the light emitting element. Therefore, the luminance of the light emitting element can be stabilized. However, the feedback terminal in Patent Document 2 is an external terminal to which the output side of the error amplifier, that is, the feedback capacitor (CFB) for phase compensation and the feedback resistor (RFB) are connected in series. Therefore, it cannot be expected to control the output voltage with high accuracy, and it cannot be expected to control the stabilization of the luminance of the LED with high accuracy.
 本発明は、上記問題点に鑑みてなされたものであり、LED駆動回路装置に用いられる発光素子の輝度の安定化がより図れるLEDドライバを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an LED driver capable of further stabilizing the luminance of a light emitting element used in an LED drive circuit device.
 本発明に係るLEDドライバの一態様は、インダクタに間歇的に電流を流すスイッチング素子と、前記インダクタに流れるインダクタ電流を平滑して、出力端子に所定の出力電圧を出力する平滑手段と、前記出力電圧を分圧した帰還電圧を生成する帰還電圧生成回路と、を備え、前記帰還電圧に応じて前記出力電圧を変動させることを特徴としたスイッチングレギュレータと、前記出力電圧を駆動電圧源として、複数のLEDが直列に接続される複数のLEDストリングと、に接続することが可能なLEDドライバであって、
 前記複数のLEDストリングには各別にLED接続端子を介して接続されたLED定電流源と、前記複数のLEDストリングの内、LED順方向総電圧がもっとも大きいLEDストリングの前記LED接続端子を以降検出用LED接続端子として選択する選択部と、前記検出用LED接続端子の電圧と第1参照電圧とを比較する比較部と、を備え、前記比較部の出力に基づき、前記帰還電圧を変圧させる(第1の構成)。
One aspect of the LED driver according to the present invention includes a switching element that allows current to flow intermittently through an inductor, smoothing means that smoothes the inductor current flowing through the inductor and outputs a predetermined output voltage to an output terminal, and the output A feedback voltage generation circuit for generating a feedback voltage obtained by dividing the voltage, and a switching regulator characterized by varying the output voltage according to the feedback voltage, and using the output voltage as a drive voltage source, a plurality of A plurality of LED strings connected in series, and an LED driver capable of being connected to the LED string,
The LED constant current source connected to each of the plurality of LED strings via an LED connection terminal, and the LED connection terminal of the LED string having the highest total LED forward voltage among the plurality of LED strings is subsequently detected. A selection unit that selects as the LED connection terminal for use, and a comparison unit that compares the voltage of the LED connection terminal for detection and the first reference voltage, and transforms the feedback voltage based on the output of the comparison unit ( First configuration).
 また、上記第1の構成において、前記帰還電圧生成回路は前記出力端子に接続される第1分圧抵抗と接地電位に接続され前記第1分圧抵抗と直列に接続される第2分圧抵抗で構成されることとしてもよい(第2の構成)。 In the first configuration, the feedback voltage generation circuit includes a first voltage dividing resistor connected to the output terminal and a second voltage dividing resistor connected to the ground potential and connected in series with the first voltage dividing resistor. It is good also as comprised by (2nd structure).
 また、上記第2の構成において、前記選択部と前記比較部とを有するオペアンプを有し、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードに前記オペアンプの出力が結合されることとしてもよい(第3の構成)。 In the second configuration, an operational amplifier having the selection unit and the comparison unit is provided, and an output of the operational amplifier is coupled to a common connection node of the first voltage dividing resistor and the second voltage dividing resistor. It is good also as a thing (3rd structure).
 また、上記第3の構成において、前記オペアンプは、前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記共通接続ノードから前記接地電位に電流を引き込むシンク電流が流れることにより前記帰還電圧を降圧させることとしてもよい(第4の構成)。 In the third configuration, when the voltage of the detection LED connection terminal is lower than the first reference voltage, the operational amplifier causes a sink current to flow from the common connection node to the ground potential. The feedback voltage may be stepped down (fourth configuration).
 また、上記第4の構成において、前記共通接続ノードと前記オペアンプの出力側との間に第3分圧抵抗が接続され、前記第3分圧抵抗が前記第2分圧抵抗と並列に接続されることとしてもよい(第5の構成)。 In the fourth configuration, a third voltage dividing resistor is connected between the common connection node and the output side of the operational amplifier, and the third voltage dividing resistor is connected in parallel with the second voltage dividing resistor. It is good also as a thing (5th structure).
 また、上記第3の構成において、前記オペアンプは、トランスコンダクタンスアンプであることとしてもよい(第6の構成)。 In the third configuration, the operational amplifier may be a transconductance amplifier (sixth configuration).
 また、上記第6の構成において、前記トランスコンダクタンスアンプは、前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記共通接続ノードから前記トランスコンダクタンスアンプの出力段にシンク電流が流れることにより前記帰還電圧を降圧することとしてもよい(第7の構成)。 In the sixth configuration, the transconductance amplifier has a sink current from the common connection node to the output stage of the transconductance amplifier when the voltage of the detection LED connection terminal is lower than the first reference voltage. The feedback voltage may be stepped down by flowing (seventh configuration).
 また、上記第6の構成において、前記トランスコンダクタンスアンプは、前記検出用LED接続端子の電圧が前記第1参照電圧よりも高いとき、前記トランスコンダクタンスアンプの出力段から前記共通接続ノード側にソース電流を供給して前記帰還電圧を昇圧させることとしてもよい(第8の構成)。 In the sixth configuration, when the voltage of the detection LED connection terminal is higher than the first reference voltage, the transconductance amplifier has a source current from the output stage of the transconductance amplifier to the common connection node side. May be supplied to boost the feedback voltage (eighth configuration).
 また、上記第2の構成において、前記比較部であるコンパレータの出力に応じて、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードへ流し込むソース電流のオンオフを切替えるソース電流供給部を有することとしてもよい(第9の構成)。 In the second configuration, a source current supply for switching on / off of a source current flowing into a common connection node of the first voltage dividing resistor and the second voltage dividing resistor in accordance with the output of the comparator serving as the comparison unit. It is good also as having a part (9th structure).
 また、上記第9の構成において、前記ソース電流供給部は、前記コンパレータの出力に応じてオンオフされるスイッチと、前記スイッチに接続される定電流回路と、カレントミラー回路と、を有し、前記スイッチは、前記カレントミラー回路における一方のトランジスタの両端間に接続されることとしてもよい(第10の構成)。 In the ninth configuration, the source current supply unit includes a switch that is turned on / off according to an output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit, The switch may be connected between both ends of one transistor in the current mirror circuit (tenth configuration).
 また、上記第1の構成において、他のLEDドライバを接続することが可能な少なくとも一つの他ドライバ接続端子と、最低電圧出力端子と、を有し、前記選択部は、前記検出用LED接続端子の電圧と、前記他ドライバ接続端子の電圧とのうち最低の電圧を選択し、前記比較部および前記最低電圧出力端子へ出力することとしてもよい(第11の構成)。 In the first configuration, the selection unit includes at least one other driver connection terminal capable of connecting another LED driver and a minimum voltage output terminal, and the selection unit includes the detection LED connection terminal. And the voltage of the other driver connection terminal may be selected and output to the comparison unit and the lowest voltage output terminal (eleventh configuration).
 また、上記第1の構成において、前記LED定電流源は、第1パルス幅変調信号によって間歇的に電流を生成することとしてもよい(第12の構成)。 In the first configuration, the LED constant current source may generate current intermittently by a first pulse width modulation signal (a twelfth configuration).
 また、本発明に係るLED駆動回路装置の一態様は、上記いずれかの構成のLEDドライバと、前記スイッチングレギュレータと、前記LEDストリングと、を備えるLED駆動回路装置であって、
 前記スイッチングレギュレータは、スロープ信号生成回路、誤差増幅器、及びPWMコンパレータをさらに備え、
 前記スロープ信号生成回路は三角波状またはのこぎり波状のスロープ信号を生成し、前記誤差増幅器は前記帰還電圧と第2参照電圧とを比較して両者差分の電圧を誤差電圧として出力し、前記PWMコンパレータは、前記誤差電圧と前記スロープ信号とを比較し、そのパルス比較結果に応じたパルス幅を有する第2パルス幅変調信号を出力し、前記第2パルス幅変調信号によって、前記スイッチング素子がオンまたはオフに制御される。
An aspect of the LED drive circuit device according to the present invention is an LED drive circuit device comprising the LED driver having any one of the above configurations, the switching regulator, and the LED string.
The switching regulator further includes a slope signal generation circuit, an error amplifier, and a PWM comparator,
The slope signal generation circuit generates a triangular or sawtooth slope signal, the error amplifier compares the feedback voltage with a second reference voltage, and outputs a difference voltage as an error voltage, and the PWM comparator The error voltage and the slope signal are compared, a second pulse width modulation signal having a pulse width corresponding to the pulse comparison result is output, and the switching element is turned on or off by the second pulse width modulation signal. Controlled.
 また、本発明に係る電子機器の一態様は、第2パルス幅変調信号によって、入力電圧を所定の出力電圧に変換するスイッチングレギュレータと、第1パルス幅変調信号によってLEDストリングの輝度が制御される表示装置又は照明装置と、上記いずれかの構成のLEDドライバと、を備える。 According to another aspect of the electronic apparatus of the present invention, the luminance of the LED string is controlled by the switching regulator that converts the input voltage into a predetermined output voltage by the second pulse width modulation signal, and the first pulse width modulation signal. A display device or a lighting device and the LED driver having any one of the above-described configurations are provided.
 この発明によれば、駆動電圧が印加される複数のLEDストリングの中で最も低い電圧を所定の参照電圧と比較し、かつ、その比較結果に基づき帰還電圧生成回路で生成される帰還電圧の大きさを制御してLEDストリングに供給する駆動電圧を制御するのでLEDストリングでの降下電圧に適合した出力電圧に調整でき、LEDストリングの輝度を所定の明るさに維持し、かつ、スイッチングレギュレータの出力端子の出力電圧が必要以上に高くなり、LED駆動回路装置での電力消費が増大するという不具合を排除することができる。 According to the present invention, the lowest voltage among the plurality of LED strings to which the drive voltage is applied is compared with the predetermined reference voltage, and the magnitude of the feedback voltage generated by the feedback voltage generation circuit based on the comparison result. Since the drive voltage supplied to the LED string is controlled by controlling the height, it can be adjusted to an output voltage suitable for the voltage drop in the LED string, the brightness of the LED string is maintained at a predetermined brightness, and the output of the switching regulator The problem that the output voltage of the terminal becomes higher than necessary and the power consumption in the LED drive circuit device increases can be eliminated.
本発明の第1の実施形態に係るLED駆動回路装置を示す回路図である。1 is a circuit diagram showing an LED drive circuit device according to a first embodiment of the present invention. 図1のLED駆動回路装置を比較的広いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示す。2 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively wide pulse width. 図1のLED駆動回路装置を比較的狭いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示す。2 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively narrow pulse width. 本発明の第2の実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram which shows the LED drive circuit device which concerns on the 2nd Embodiment of this invention. 図2のLED駆動回路装置を比較的広いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示す。3 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively wide pulse width. 図2のLED駆動回路装置を比較的狭いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示す。3 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively narrow pulse width. 本発明の第3の実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram which shows the LED drive circuit device which concerns on the 3rd Embodiment of this invention. 図5のLED駆動回路装置をPWM信号で駆動したときの主なノードの信号波形を示す。6 shows signal waveforms of main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal. 本発明の第3の実施形態の変形例に係るLEDドライバの構成を示す図である。It is a figure which shows the structure of the LED driver which concerns on the modification of the 3rd Embodiment of this invention. 複数のLED組を駆動させる構成の一例を示す図である。It is a figure which shows an example of the structure which drives a some LED group. 本発明の第3の実施形態の変形例に係るLEDドライバにおけるピン配置の一例を示す平面図である。It is a top view which shows an example of the pin arrangement in the LED driver which concerns on the modification of the 3rd Embodiment of this invention.
(第1の実施形態)
 図1は本発明の第1の実施形態に係るLED駆動回路装置1を示す。LED駆動回路装置1はスイッチング制御回路2、出力回路3、LEDドライバ(定電流ドライバ)5、及びLEDストリング4_1~4_n(nは2以上の自然数)を備える。スイッチング制御回路2にはいくつかの外部端子が用意される。出力回路3は、出力電圧Vout、インダクタL1、キャパシタC1、及び分圧抵抗R1,R2で構成される。スイッチング制御回路2と出力回路3でスイッチングレギュレータを構成する。スイッチング制御回路2は、出力回路3と協働して入力端子INに供給される入力電圧Vinを降圧して所望の出力電圧Voutを出力端子OUTに出力する。図1に示すスイッチングレギュレータはよく知られた降圧型を構成する。なお、スイッチング制御回路2及び出力回路3は降圧型ではなく昇圧型または昇降圧型に適合させるように構成することもできる。本発明に係るLED駆動回路装置は降圧型、昇圧型または昇降圧型のスイッチングレギュレータに関係なく適用が可能である。
(First embodiment)
FIG. 1 shows an LED drive circuit device 1 according to a first embodiment of the present invention. The LED drive circuit device 1 includes a switching control circuit 2, an output circuit 3, an LED driver (constant current driver) 5, and LED strings 4_1 to 4_n (n is a natural number of 2 or more). Several external terminals are prepared in the switching control circuit 2. The output circuit 3 includes an output voltage Vout, an inductor L1, a capacitor C1, and voltage dividing resistors R1 and R2. The switching control circuit 2 and the output circuit 3 constitute a switching regulator. The switching control circuit 2 steps down the input voltage Vin supplied to the input terminal IN in cooperation with the output circuit 3 and outputs a desired output voltage Vout to the output terminal OUT. The switching regulator shown in FIG. 1 constitutes a well-known step-down type. Note that the switching control circuit 2 and the output circuit 3 can be configured not to be a step-down type but to be a step-up type or a step-up / step-down type. The LED driving circuit device according to the present invention can be applied regardless of the step-down type, step-up type or step-up / down type switching regulator.
 スイッチング制御回路2は、半導体集積回路で構成され、スイッチング素子S1、同期整流半導体素子S2、エラーアンプ6、発振回路7、スロープ信号生成回路8、PWMコンパレータ9及び駆動回路10を備える。スイッチング素子S1はインダクタL1に間歇的に電流を流すスイッチング素子として、同期整流半導体素子S2とスイッチング素子S1は相補的に動作する。スイッチング素子S1がオフのときにインダクタL1に電流を供給する。スイッチング素子S1と同期整流半導体素子S2は、入力電圧Vinから出力電圧Voutを生成するためにオン/オフされる。なお、同期整流半導体素子S2はトランジスタではなく、ダイオードに置き換えることができる。 The switching control circuit 2 is composed of a semiconductor integrated circuit, and includes a switching element S1, a synchronous rectification semiconductor element S2, an error amplifier 6, an oscillation circuit 7, a slope signal generation circuit 8, a PWM comparator 9, and a drive circuit 10. The switching element S1 is a switching element that causes a current to flow intermittently through the inductor L1, and the synchronous rectification semiconductor element S2 and the switching element S1 operate in a complementary manner. A current is supplied to the inductor L1 when the switching element S1 is off. The switching element S1 and the synchronous rectification semiconductor element S2 are turned on / off in order to generate the output voltage Vout from the input voltage Vin. The synchronous rectification semiconductor element S2 can be replaced with a diode instead of a transistor.
 さらに、スイッチング制御回路2に用意された複数の外部端子には、入力電圧Vin、インダクタL1、キャパシタC1~C2、分圧抵抗R1~R3、抵抗R4、及び接地電位GNDが接続されている。 Furthermore, an input voltage Vin, an inductor L1, capacitors C1 to C2, voltage dividing resistors R1 to R3, a resistor R4, and a ground potential GND are connected to a plurality of external terminals prepared in the switching control circuit 2.
 入力電圧Vinが印加される入力端子INは、例えばpチャネル型MOSトランジスタで構成されるスイッチング素子S1のソースに接続される。スイッチング素子S1のドレインはスイッチング端子SW及び同期整流半導体素子S2のドレインに接続される。例えばnチャネル型MOSトランジスタで構成される同期整流半導体素子S2のソースは接地電位GNDに接続されている。 The input terminal IN to which the input voltage Vin is applied is connected to the source of the switching element S1 composed of a p-channel MOS transistor, for example. The drain of the switching element S1 is connected to the switching terminal SW and the drain of the synchronous rectification semiconductor element S2. For example, the source of the synchronous rectification semiconductor element S2 composed of an n-channel MOS transistor is connected to the ground potential GND.
 インダクタL1の一端はスイッチング端子SWに接続されている。スイッチング端子SWから出力される間歇的なスイッチング電圧VswによってインダクタL1にインダクタ電流ILが流れる。インダクタL1の他端は出力端子OUT及びキャパシタC1の一端に接続され、出力端子OUTに接続される。キャパシタC1の他端は接地電位GNDに接地されている。キャパシタC1はインダクタL1に蓄積された電磁エネルギーを平滑する。 One end of the inductor L1 is connected to the switching terminal SW. The inductor current IL flows through the inductor L1 due to the intermittent switching voltage Vsw output from the switching terminal SW. The other end of the inductor L1 is connected to the output terminal OUT and one end of the capacitor C1, and is connected to the output terminal OUT. The other end of the capacitor C1 is grounded to the ground potential GND. Capacitor C1 smoothes the electromagnetic energy accumulated in inductor L1.
 出力回路3の一部を構成する分圧抵抗R1及びR2は出力端子OUTと接地電位GNDとの間に直列接続され帰還電圧生成回路を構成する。帰還電圧生成回路は分圧抵抗R1及び分圧抵抗R2の共通接続ノードNcに帰還電圧Vfbを生成する。帰還電圧Vfbは帰還端子FBを介して、エラーアンプ6の反転入力端子(-)に印加される。 The voltage dividing resistors R1 and R2 constituting part of the output circuit 3 are connected in series between the output terminal OUT and the ground potential GND to constitute a feedback voltage generation circuit. The feedback voltage generation circuit generates a feedback voltage Vfb at the common connection node Nc of the voltage dividing resistor R1 and the voltage dividing resistor R2. The feedback voltage Vfb is applied to the inverting input terminal (−) of the error amplifier 6 via the feedback terminal FB.
 エラーアンプ6は、帰還電圧Vfbを第1基準電圧Vt1と比較し、その比較結果に応じた誤差信号Verrを出力する。 The error amplifier 6 compares the feedback voltage Vfb with the first reference voltage Vt1, and outputs an error signal Verr corresponding to the comparison result.
 エラーアンプ6の出力とPWMコンパレータ9の反転入力端子(-)の信号経路には位相補償端子COMPが用意される。位相補償端子COMPと接地電位GNDとの間にはキャパシタC2と抵抗R4が直列に接続されている。こうしたキャパシタC2及び抵抗4によってエラーアンプ6の電圧利得が設定される。エラーアンプ6は例えばトランスコンダクタンスアンプで構成される。 A phase compensation terminal COMP is prepared for the signal path of the output of the error amplifier 6 and the inverting input terminal (−) of the PWM comparator 9. A capacitor C2 and a resistor R4 are connected in series between the phase compensation terminal COMP and the ground potential GND. The voltage gain of the error amplifier 6 is set by the capacitor C2 and the resistor 4. The error amplifier 6 is composed of a transconductance amplifier, for example.
 位相補償端子COMPと接地電位GNDとの間に直列接続されるキャパシタC2及び抵抗R4は、エラーアンプ6の電圧利得を決定すると共にスイッチングレギュレータの位相特性も決定する。キャパシタC2及び抵抗R4によってスイッチングレギュレータ制御回路2と出力回路3で構成されるスイッチングレギュレータの周波数特性が適正に補正される。 The capacitor C2 and the resistor R4 connected in series between the phase compensation terminal COMP and the ground potential GND determine the voltage gain of the error amplifier 6 and also determine the phase characteristic of the switching regulator. The frequency characteristic of the switching regulator composed of the switching regulator control circuit 2 and the output circuit 3 is appropriately corrected by the capacitor C2 and the resistor R4.
 発振回路7は、例えばよく知られたCR発振器や、インバータまたは差動増幅器をリング状に接続したリングオシレータで構成されている。発振回路7は、クロック信号CLKを生成する。クロック信号CLKは、後段の駆動回路10にセット信号Ssetとして用いられる。 The oscillation circuit 7 is composed of, for example, a well-known CR oscillator, or a ring oscillator in which inverters or differential amplifiers are connected in a ring shape. The oscillation circuit 7 generates a clock signal CLK. The clock signal CLK is used as a set signal Sset in the drive circuit 10 at the subsequent stage.
 スロープ電圧生成回路8は、図示しない例えば定電流源、キャパシタ及びスイッチング素子等で構成されており、三角波状や鋸波状のスロープ電圧Vslを生成する。こうしたスロープ電圧Vslは、発振回路7から印加されるクロック信号CLKによって生成される。 The slope voltage generation circuit 8 is composed of, for example, a constant current source (not shown), a capacitor, a switching element, and the like, and generates a triangular or sawtooth slope voltage Vsl. Such a slope voltage Vsl is generated by the clock signal CLK applied from the oscillation circuit 7.
 PWMコンパレータ9は、誤差信号Verrとスロープ信号Vslとを比較し、比較結果に応じたリセット信号Sresetを後段の駆動回路10へ出力する。リセット信号Sresetは、誤差信号Verrに応じてパルス幅が変調されるパルス幅変調(PWM)信号として出力される。 The PWM comparator 9 compares the error signal Verr and the slope signal Vsl, and outputs a reset signal Sreset corresponding to the comparison result to the drive circuit 10 at the subsequent stage. The reset signal Sreset is output as a pulse width modulation (PWM) signal whose pulse width is modulated according to the error signal Verr.
 駆動回路10は、セット信号Sset、リセット信号Sresetを受け、スイッチング素子S1と同期整流半導体素子S2を駆動する。これらはそれぞれ相補的なゲート信号P1及びゲート信号P2によって駆動される。 The driving circuit 10 receives the set signal Sset and the reset signal Sreset, and drives the switching element S1 and the synchronous rectification semiconductor element S2. These are driven by complementary gate signals P1 and P2, respectively.
 駆動回路10の内部には図示しない、例えばRSフリップフロップが用意されており、このRSフリップフロップのセット端子には発振回路7で生成されるセット信号Ssetが、リセット端子にはPWMコンパレータ9から出力されるリセット信号Sresetがそれぞれ印加される。 An RS flip-flop (not shown), for example, is prepared inside the drive circuit 10, and a set signal Sset generated by the oscillation circuit 7 is output to the set terminal of the RS flip-flop, and output from the PWM comparator 9 to the reset terminal. The reset signal Sreset is applied.
 さて、図1に示すLED駆動回路装置1は、上記の回路構成の他に複数のLEDストリング4_1~4_nを備える。LEDストリング4_1~4_nは、液晶パネル、照明装置、交通信号機、その他各種電子機器等の光源や表示装置として用いられる。LEDストリング4_1~4_nの共通アノード側すなわち出力端子OUTには、スイッチングレギュレータで生成された出力電圧Voutが駆動電圧源として供給されている。なお、LEDストリング4_1、4_2及び4_nまでのLED順方向総電圧をそれぞれVf1、Vf2、及びVfnで示している。 The LED drive circuit device 1 shown in FIG. 1 includes a plurality of LED strings 4_1 to 4_n in addition to the circuit configuration described above. The LED strings 4_1 to 4_n are used as light sources and display devices for liquid crystal panels, lighting devices, traffic signals, and other various electronic devices. The output voltage Vout generated by the switching regulator is supplied as a drive voltage source to the common anode side of the LED strings 4_1 to 4_n, that is, the output terminal OUT. The LED forward total voltages up to the LED strings 4_1, 4_2, and 4_n are indicated by Vf1, Vf2, and Vfn, respectively.
 LEDドライバ5は、各LEDストリングにLED電流を供給する。LEDドライバ5は、汎用性をもたせるためにスイッチング制御回路2とは別の半導体集積回路(IC)で構成されている。これによって、LEDストリング、スイッチング制御回路、及び出力回路を各種各様に応じて組み合わせすることで汎用性を拡げることができる。LEDドライバ5には、LEDストリング4_1~4_nの各カソード側と結合させるためのLED接続端子LED1~LEDnが用意されている。なお、接地電位GNDからみたLED接続端子LED1、LED2及びLEDnに生ずるLED端子電圧をそれぞれVLED1、VLED2、及びVLEDnで示している。 LED driver 5 supplies LED current to each LED string. The LED driver 5 is composed of a semiconductor integrated circuit (IC) different from the switching control circuit 2 in order to provide versatility. Accordingly, versatility can be expanded by combining the LED string, the switching control circuit, and the output circuit in various ways. The LED driver 5 is provided with LED connection terminals LED1 to LEDn for coupling to the cathode sides of the LED strings 4_1 to 4_n. The LED terminal voltages generated at the LED connection terminals LED1, LED2, and LEDn viewed from the ground potential GND are indicated by VLED1, VLED2, and VLEDn, respectively.
 LEDドライバ5は、各LEDストリングにLED電流ILED1~ILEDnを各別に供給するLED定電流源Cs1~Csnを有する。LED定電流源Cs1~Csnは、例えばPWM調光手段11から印加されるパルス幅変調(PWM)信号によって間歇的に制御される。この様な制御は、バースト調光、バースト制御とも称される。定電流源Cs1~Csnは、バースト調光、バースト制御にする必要はなく、一般的な定電流源回路で構成してもかまわない。 The LED driver 5 has LED constant current sources Cs1 to Csn that supply LED currents ILED1 to ILEDn to the LED strings, respectively. The LED constant current sources Cs1 to Csn are intermittently controlled by a pulse width modulation (PWM) signal applied from the PWM dimming means 11, for example. Such control is also called burst dimming or burst control. The constant current sources Cs1 to Csn do not need to be burst dimming or burst control, and may be configured by a general constant current source circuit.
 LEDドライバ5は、さらにオペアンプ12を備える。オペアンプ12の入力には、LED接続端子LED1~LEDnにそれぞれ出力される数に、参照電圧VREFを与える端子を加えた(n+1)個の入力端子が用意されている。オペアンプ12の反転入力端子(-)には参照電圧VREFが与えられている。少なくとも2つの非反転入力端子(+)にはLED端子電圧VLED1~VLEDnが印加される。オペアンプ12は接地電位GNDからみて、LED端子電圧VLED1~VLEDnの中で最も低いLED端子電圧と参照電圧VREFとを比較し、その比較結果を後段のトランジスタTr1へ出力する。 The LED driver 5 further includes an operational amplifier 12. The input of the operational amplifier 12 is provided with (n + 1) input terminals obtained by adding a terminal for applying a reference voltage VREF to the number output to each of the LED connection terminals LED1 to LEDn. A reference voltage VREF is applied to the inverting input terminal (−) of the operational amplifier 12. The LED terminal voltages VLED1 to VLEDn are applied to at least two non-inverting input terminals (+). The operational amplifier 12 compares the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn with respect to the ground potential GND with the reference voltage VREF, and outputs the comparison result to the subsequent transistor Tr1.
 トランジスタTr1は、オペアンプ12の出力に接続される。トランジスタTr1は例えばバイポーラトランジスタからなり、そのエミッタは接地電位GNDに、そのコレクタは外部端子OPFBに取り出される。こうしたトランジスタTr1の回路構成は一般的によく知られるオープンコレクタと称することができる。なお、トランジスタTr1はMOSトランジスタで構成しオープンドレインの回路構成としてもよい。 The transistor Tr1 is connected to the output of the operational amplifier 12. The transistor Tr1 is composed of, for example, a bipolar transistor, and its emitter is taken out to the ground potential GND, and its collector is taken out to the external terminal OPFB. Such a circuit configuration of the transistor Tr1 can be called a generally well-known open collector. The transistor Tr1 may be a MOS transistor and may have an open drain circuit configuration.
 トランジスタTr1は、オペアンプ12の出力がハイレベルHとなるとオンし、その結果シンク電流Isiが流れる。トランジスタTr1がオンすると、外部端子OPFBの電位はほぼ接地電位GNDに近いローレベルLとなる。 The transistor Tr1 is turned on when the output of the operational amplifier 12 becomes a high level H, and as a result, a sink current Isi flows. When the transistor Tr1 is turned on, the potential of the external terminal OPFB becomes a low level L that is substantially close to the ground potential GND.
 ここで、LEDドライバ5は、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、オペアンプ12に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。オペアンプ12は、OR回路51の出力がローレベルの場合、トランジスタTr1をオフとし、OR回路51の出力がハイレベルの場合、LED端子電圧VLED1~VLEDnの中で最も低いLED端子電圧と参照電圧VREFとの比較結果をトランジスタTr1に出力する。 Here, the LED driver 5 also has an OR circuit 51. The OR circuit 51 receives pulse width modulation signals PWM1 to PWMn. The output of the OR circuit 51 is input to the operational amplifier 12. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become. The operational amplifier 12 turns off the transistor Tr1 when the output of the OR circuit 51 is at a low level, and turns off the transistor Tr1 when the output of the OR circuit 51 is at a high level, and the lowest LED terminal voltage and the reference voltage VREF among the LED terminal voltages VLED1 to VLEDn. The comparison result is output to the transistor Tr1.
 分圧抵抗R3の一端は外部端子OPFBに、その他端は帰還端子FBにそれぞれ接続される。分圧抵抗R3は、トランジスタTr1がオンしたとき、すなわち外部端子OPFBがローレベルLになると分圧抵抗R2と並列に接続される。分圧抵抗R3の抵抗値はトランジスタTr1のオン抵抗よりも十分に大きく選ばれる。帰還端子FBの帰還電圧VfbはトランジスタTr1がオフのときと比べると低下し、このとき、スイッチング制御回路2および出力回路3で構成されるスイッチングレギュレータによって、出力電圧Voutは上昇するように制御される。 One end of the voltage dividing resistor R3 is connected to the external terminal OPFB, and the other end is connected to the feedback terminal FB. The voltage dividing resistor R3 is connected in parallel with the voltage dividing resistor R2 when the transistor Tr1 is turned on, that is, when the external terminal OPFB is at the low level L. The resistance value of the voltage dividing resistor R3 is selected to be sufficiently larger than the on-resistance of the transistor Tr1. The feedback voltage Vfb at the feedback terminal FB is lower than when the transistor Tr1 is off, and at this time, the output voltage Vout is controlled to increase by the switching regulator composed of the switching control circuit 2 and the output circuit 3. .
 これによって、PWM調光手段11で、出力電圧Voutを間歇的に上昇させ制御する。このことにより、LEDストリング4_1~4_nにおける発熱を抑えることができる。しかし、スイッチング制御回路2および出力回路3で構成されるスイッチングレギュレータの応答性により、出力電圧Voutの上昇が遅れることでLEDストリングが点灯しない事がある。 Thus, the PWM dimming means 11 controls the output voltage Vout by increasing it intermittently. Thus, heat generation in the LED strings 4_1 to 4_n can be suppressed. However, due to the responsiveness of the switching regulator composed of the switching control circuit 2 and the output circuit 3, the LED string may not light up due to a delay in the increase of the output voltage Vout.
 なお、図1に示すLED駆動回路装置1においてトランジスタTr1は、帰還端子FB側から外部端子OPFBに向かって電流を引き込む、いわゆるシンク電流の制御のみであるので、出力電圧Voutの制御は、LED電圧VLED1~VLEDnのいずれかが、参照電圧VREFに達したときであり、かつ出力電圧Voutを上昇させる方向しか制御できない。 In the LED drive circuit device 1 shown in FIG. 1, the transistor Tr1 only controls the so-called sink current that draws current from the feedback terminal FB side toward the external terminal OPFB. Therefore, the output voltage Vout is controlled by the LED voltage. Only one of the VLED1 to VLEDn reaches the reference voltage VREF and can only be controlled to increase the output voltage Vout.
 LEDストリング4_1~4_n中、あるLEDストリング4_i(1≦i≦n)について、LED順方向総電圧Vf_max、そしてLED接続端子LED_iにおける電圧をLED端子電圧VLED_minとする。LEDストリング4_1~4_nが点灯している期間において、以下の関係式(1)が成り立つ。
 Vout=Vf_max+VLED_min           ・・・(1)
Among the LED strings 4_1 to 4_n, for a certain LED string 4_i (1 ≦ i ≦ n), the LED forward total voltage Vf_max and the voltage at the LED connection terminal LED_i are LED terminal voltage VLED_min. In the period in which the LED strings 4_1 to 4_n are lit, the following relational expression (1) is established.
Vout = Vf_max + VLED_min (1)
 LEDストリング4_1~4_nのLED順方向総電圧Vf1~Vfnは、チャンネルごとにばらつく。ここで、LEDストリング4_iにおけるLED順方向総電圧Vf_maxは、最大LED順方向総電圧である。この時、式(1)より、LED端子電圧VLED_minは最小のLED端子電圧となる。以下、LEDストリング4_1~4_n中、LEDストリング4_iについて、最大のLED順方向総電圧Vf_max、最小のLED端子電圧VLED_minおよびLED電流ILEDiが流れるものとする。 The LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4_n vary for each channel. Here, the LED forward total voltage Vf_max in the LED string 4_i is the maximum LED forward total voltage. At this time, from the formula (1), the LED terminal voltage VLED_min becomes the minimum LED terminal voltage. Hereinafter, it is assumed that the maximum LED forward total voltage Vf_max, the minimum LED terminal voltage VLED_min, and the LED current ILEDi flow for the LED string 4_i among the LED strings 4_1 to 4_n.
 図2Aは、PWM信号のオンデューティ比が例えば約70%という具合に比較的大きなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートを示す。なお、図2Aは図1で説明したように出力電圧Voutの制御はシンク電流のみによって行われる場合のタイミングチャートである。 FIG. 2A shows a timing chart when the LED drive circuit device 1 is driven at a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is about 70%, for example. 2A is a timing chart when the output voltage Vout is controlled only by the sink current as described with reference to FIG.
 図2A(a)は、LEDドライバ5のPWM調光手段11からLED定電流源Cs1~Csnに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t4でハイレベルH、時刻t4~t6でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも長い、いわゆるパルスデューティ比が比較的大きな信号であることを示す。 FIG. 2A (a) shows a pulse width modulation signal PWMi applied from the PWM dimming means 11 of the LED driver 5 to the LED constant current sources Cs1 to Csn. The pulse width modulation signal PWMi is at a high level H at times t0 to t4 and at a low level L at times t4 to t6. This indicates that the high-level H section TH is longer than the low-level L section TL, and the so-called pulse duty ratio is a relatively large signal.
 図2A(b)の、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。時刻t0~t4でハイレベルHの区間に電流が流れ、時刻t4~t6でローレベルLの区間では電流は流れない、いわゆる間歇的に電流が流れる。時刻t0~t1の区間において、LED電流ILEDiは少し緩やかに流れ始める。 2A (b), the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. From time t0 to t4, current flows in the high level H section, and from time t4 to t6, current does not flow in the low level L section, so that current flows intermittently. In the period from time t0 to t1, the LED current ILEDi starts to flow slightly slowly.
 図2A(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻t0において急峻に参照電圧VREFよりも低くなり、その後時刻t3までの区間おいては徐々に昇圧する。これは時刻t0でLEDストリング4_iにLED電流ILEDiが流れると同時にLED順方向総電圧Vf_maxだけ、降圧するためである。時刻t0~t3においては、オペアンプ12によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられる。時刻t3~t4までの区間において、参照電圧VREFに維持される様に操作される。時刻t4~t6においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように昇圧する。図中符号Vsiは、後述のシンク電流Isiで調整されるシンク電流調整電圧を示す。 FIG. 2A (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i. At the time t0 when the LED current ILEDi begins to flow, the voltage suddenly becomes lower than the reference voltage VREF, and thereafter the voltage is gradually increased in the period up to the time t3. This is because the LED current ILEDi flows through the LED string 4_i at the time t0, and at the same time, the voltage decreases by the LED forward total voltage Vf_max. From time t0 to t3, feedback is applied by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. In the section from time t3 to t4, the operation is performed so that the reference voltage VREF is maintained. When the LED current ILEDi stops flowing from time t4 to t6, the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout. A symbol Vsi in the figure indicates a sink current adjustment voltage that is adjusted by a sink current Isi described later.
 図2A(d)は、LEDドライバ5側に設けたシンク電流出力端子OPFBを介して帰還端子FBからトランジスタTr1に流れ込むシンク電流Isiを示す。シンク電流Isiは、LED端子電圧VLED_minに応じて流れるか否かが決まる。とりわけ時刻t0において、LED端子電圧VLED_minが参照電圧VREFを下回ったときに流れ始め、LED端子電圧VLED_minが参照電圧VREFに近づくにつれて増加する。時刻t3において、LED端子電圧VLED_minが参照電圧VREFに達すると以降時刻t4まで一定のシンク電流Isiが流れる。区間TLである時刻t4~t6で、OR回路51の出力はローレベルとなるので、オペアンプ12によりトランジスタTr1はオフとされ、シンク電流Isiは流れなくなり0となる。 FIG. 2A (d) shows the sink current Isi flowing from the feedback terminal FB to the transistor Tr1 via the sink current output terminal OPFB provided on the LED driver 5 side. Whether or not the sink current Isi flows according to the LED terminal voltage VLED_min is determined. In particular, at time t0, the LED terminal voltage VLED_min starts to flow when it falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. When the LED terminal voltage VLED_min reaches the reference voltage VREF at time t3, a constant sink current Isi flows until time t4. Since the output of the OR circuit 51 is at a low level from time t4 to t6, which is the section TL, the transistor Tr1 is turned off by the operational amplifier 12, and the sink current Isi stops flowing.
 図2A(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isiの挙動に応動する。時刻t0~t2に向かってシンク電流Isiは出力電圧Voutを高めようとして作用する。なお、時刻t0~t2の時間は前段のレギュレータ及びオペアンプ12の応答性により決まる。時刻t2~t4ではシンク電流Isiによる出力電圧Voutに対する制御効果は最大に達し、出力電圧Voutは、参照電圧VREFにLED順方向総電圧Vf_maxを加えた(VREF+Vf_max)の大きさになるように制御される。時刻t4~t5において、急峻に降圧し、時刻t5~t6において、徐々に降圧する。 FIG. 2A (e) shows the transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi. From time t0 to t2, the sink current Isi acts to increase the output voltage Vout. The time from t0 to t2 is determined by the response of the previous stage regulator and the operational amplifier 12. From time t2 to t4, the control effect on the output voltage Vout by the sink current Isi reaches the maximum, and the output voltage Vout is controlled to have a magnitude of (VREF + Vf_max) obtained by adding the LED forward total voltage Vf_max to the reference voltage VREF. The The voltage drops steeply from time t4 to t5, and gradually drops from time t5 to t6.
 出力電圧Voutは、パルス幅変調信号PWMiのハイレベル、ローレベルに応じて変動する。これは図1中の、LEDドライバ5がパルス幅変調信号PWMiのハイレベル区間に動作し、パルス幅変調信号PWMiのローレベル区間に停止するためである。これにより、帰還電圧Vfbが変動することで出力電圧Voutが変動する。 The output voltage Vout varies according to the high level and low level of the pulse width modulation signal PWMi. This is because the LED driver 5 in FIG. 1 operates in the high level section of the pulse width modulation signal PWMi and stops in the low level section of the pulse width modulation signal PWMi. As a result, the output voltage Vout varies as the feedback voltage Vfb varies.
 パルス幅変調信号PWMiがハイレベルのとき、出力電圧Vout、抵抗R1,R2,R3及び第1基準電圧Vt1には以下の関係式(2)が成り立つ。
 Vout=(R1・R2+R2・R3+R3・R1)・Vt1/R2・R3                                 ・・・(2)
 パルス幅変調信号PWMiがローレベルのとき、出力電圧Vout、抵抗R1,R2及び第1基準電圧Vt1には以下の関係式(3)が成り立つ。
 Vout=(R1+R2)・Vfb/R2            ・・・(3)
 即ち、式(2),(3)より、パルス幅変調信号PWMiがハイレベルのとき、出力電圧Voutは(VREF+Vf_max)の電圧に昇圧される。このため、時刻t4~t5における出力電圧Voutは急峻に降圧する。
When the pulse width modulation signal PWMi is at a high level, the following relational expression (2) is established for the output voltage Vout, the resistors R1, R2, R3, and the first reference voltage Vt1.
Vout = (R1, R2 + R2, R3 + R3, R1), Vt1 / R2, R3 (2)
When the pulse width modulation signal PWMi is at a low level, the following relational expression (3) is established for the output voltage Vout, the resistors R1 and R2, and the first reference voltage Vt1.
Vout = (R1 + R2) · Vfb / R2 (3)
That is, from the equations (2) and (3), when the pulse width modulation signal PWMi is at a high level, the output voltage Vout is boosted to a voltage of (VREF + Vf_max). For this reason, the output voltage Vout at times t4 to t5 drops sharply.
 また、時刻t0~t6における、各波形動作は時刻t6~t12、さらに時刻t12以降も同様に遷移する。 In addition, each waveform operation at time t0 to t6 similarly changes from time t6 to t12 and further after time t12.
 以上述べたように図1に示すLED駆動回路装置1は、パルス幅変調信号がハイレベルの時だけ、出力電圧Voutを昇圧して制御することでLEDストリングにおける発熱を抑えることが可能となる。 As described above, the LED drive circuit device 1 shown in FIG. 1 can suppress heat generation in the LED string by boosting and controlling the output voltage Vout only when the pulse width modulation signal is at a high level.
 図2Bは、PWM信号のオンデューティ比が例えば約2%という具合に比較的小さなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートである。先に述べた図2Aのオンデューティ比が比較的大きい場合に比べると駆動条件は必ずしもよい状態とはいえなくなる。なお、図2Bは図2Aと同様に出力電圧Voutの制御はシンク電流Isiのみによって行われた場合のタイミングチャートである。 FIG. 2B is a timing chart when the LED drive circuit device 1 is driven at a relatively small on-duty ratio such that the on-duty ratio of the PWM signal is about 2%, for example. Compared to the case where the on-duty ratio in FIG. 2A described above is relatively large, the driving conditions are not necessarily good. 2B is a timing chart when the output voltage Vout is controlled only by the sink current Isi as in FIG. 2A.
 図2B(a)は、LEDドライバ5のPWM調光手段11からLED定電流源Cs1~Csnに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻T0~T2でハイレベルH、時刻T2~T4でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも短い、いわゆるパルスデューティ比が比較的小さな信号であることを示す。 FIG. 2B (a) shows a pulse width modulation signal PWMi applied from the PWM dimming means 11 of the LED driver 5 to the LED constant current sources Cs1 to Csn. The pulse width modulation signal PWMi is at a high level H at times T0 to T2, and is at a low level L at times T2 to T4. This indicates that the so-called pulse duty ratio is a relatively small signal in which the high-level H section TH is shorter than the low-level L section TL.
 図2B(b)の、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。時刻T0~T2でハイレベルHの区間に電流が流れ、時刻T2~T4でローレベルLの区間では電流は流れない、いわゆる間歇的に電流が流れる。時刻T0~T1の区間において、LED電流ILEDiは少し緩やかに流れ始める。 2B (b), the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. From time T0 to T2, current flows in the high level H section, and in time T2 to T4, no current flows in the low level L section, so that current flows intermittently. In the section from time T0 to T1, the LED current ILEDi starts to flow slightly slowly.
 図2B(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻T0において急峻に参照電圧VREFよりも低くなり、その後時刻T2までの区間おいては徐々に昇圧する。オペアンプ12によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられる。しかし、時刻T2に至ってもLED端子電圧VLED_minは参照電圧VREFまでは達していない。これは、パルス幅変調信号PWMiのパルス幅が狭く、LED端子電圧VLED_minが参照電圧VREFに達する前にパルス幅変調信号PWMiの極性が反転しまうからである。時刻T2~T4においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように昇圧する。 FIG. 2B (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i. At the time T0 when the LED current ILEDi begins to flow, the voltage suddenly becomes lower than the reference voltage VREF, and thereafter, the voltage is gradually increased in the period up to the time T2. Feedback is applied by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. However, even at time T2, the LED terminal voltage VLED_min does not reach the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow and the polarity of the pulse width modulation signal PWMi is inverted before the LED terminal voltage VLED_min reaches the reference voltage VREF. When the LED current ILEDi stops flowing from time T2 to T4, the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout.
 図2B(d)は、LEDドライバ5側に設けたシンク電流出力端子OPFBを介して帰還端子FBからトランジスタTr1に流れ込むシンク電流Isiを示す。時刻T0において、LED端子電圧VLED_minが参照電圧VREFを下回ったときに流れ始め、LED端子電圧VLED_minが参照電圧VREFに近づくにつれて増加する。時刻T2~T4で、シンク電流Isiは流れなくなり0となる。 FIG. 2B (d) shows the sink current Isi flowing from the feedback terminal FB to the transistor Tr1 via the sink current output terminal OPFB provided on the LED driver 5 side. At time T0, it starts to flow when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T2 to T4, the sink current Isi stops flowing and becomes zero.
 図2B(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isiの挙動に応動する。時刻T0~T2に向かってシンク電流Isiは出力電圧Voutを高めようとして作用する。しかし、その効果により出力電圧Voutが(VREF+Vf_max)に到達する前に、パルス幅変調信号PWMiがローレベルになり、時刻T2~T3で急峻に、時刻T3~T4まで徐々に降圧が始まる。これは、パルス幅変調信号PWMiの幅が極端に狭いことから、前段のレギュレータの応答が追いつかないためである。 FIG. 2B (e) shows the transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi. The sink current Isi acts to increase the output voltage Vout from time T0 to T2. However, before the output voltage Vout reaches (VREF + Vf_max) due to the effect, the pulse width modulation signal PWMi becomes a low level, sharply decreases from time T2 to T3, and gradually decreases from time T3 to T4. This is because the response of the regulator in the previous stage cannot catch up because the width of the pulse width modulation signal PWMi is extremely narrow.
 また、時刻T0~T4における、各波形動作は時刻T4以降も同様に遷移する。 Also, each waveform operation at times T0 to T4 similarly changes after time T4.
 以上述べたように図1に示すLED駆動回路装置1は、パルス幅変調信号がハイレベルの時だけ、出力電圧Voutを昇圧して制御する。パルス幅変調信号のオンデューディ比が低いとき、出力電圧Voutの調整能力が不十分となる。このため、LEDストリング4_1~4_nが十分な輝度を維持できないといった不具合が生じる。 As described above, the LED drive circuit device 1 shown in FIG. 1 boosts and controls the output voltage Vout only when the pulse width modulation signal is at a high level. When the on-duty ratio of the pulse width modulation signal is low, the ability to adjust the output voltage Vout becomes insufficient. This causes a problem that the LED strings 4_1 to 4_n cannot maintain sufficient luminance.
(第2の実施形態)
 図3は本発明に係る第2の実施形態を示す。図3に示すLED駆動回路装置1Aは、図1に示したLED駆動回路装置1に存在する上記不具合を克服する。
(Second Embodiment)
FIG. 3 shows a second embodiment according to the present invention. The LED drive circuit device 1A shown in FIG. 3 overcomes the above-described problems existing in the LED drive circuit device 1 shown in FIG.
 LED駆動回路装置1AがLED駆動回路装置1と大きく異なるのは、LEDドライバ5Aの回路構成にある。さらに詳細に述べると、LEDドライバ5Aはオペアンプ13を用いた点である。オペアンプ13は、OTA(Operatinal Transconductance Amp)と呼ばれる、トランスコンダクタンスアンプで構成される。OTAは、出力インピーダンスが高く、OTAの2つの入力電圧の差に比例した電流を出力する。本発明で採用するOTAは、その出力段がプッシュプル方式で構成される。プッシュプル方式によって、オペアンプ13から帰還端子FB側に電流を流し込むソース電流と、帰還端子FB側からオペアンプ13側に電流を引き込むシンク電流の2つの電流に基づき出力電圧VOUTを制御することが可能となる。なお、OTAをLED駆動回路装置に用いることは特許文献2に開示されている。 The LED drive circuit device 1A is greatly different from the LED drive circuit device 1 in the circuit configuration of the LED driver 5A. More specifically, the LED driver 5A uses an operational amplifier 13. The operational amplifier 13 is composed of a transconductance amplifier called OTA (Operator Transconductance Amp). OTA has a high output impedance and outputs a current proportional to the difference between the two input voltages of OTA. The output stage of the OTA employed in the present invention is configured by a push-pull method. The push-pull method makes it possible to control the output voltage VOUT based on two currents: a source current that flows current from the operational amplifier 13 to the feedback terminal FB side and a sink current that draws current from the feedback terminal FB side to the operational amplifier 13 side. Become. The use of OTA in an LED drive circuit device is disclosed in Patent Document 2.
 LED端子電圧VLED1~VLEDnの最低電圧が参照電圧VREFよりも低いときには、外部端子を介して定電流を共通接続ノードNc側からオペアンプ13側に引き込むシンク電流Isiによって、分圧抵抗R2の実質的な抵抗値が小さくなるように出力電圧VOUTを、VOUT=VREF+Vf_maxになるように制御する。 When the minimum voltage of the LED terminal voltages VLED1 to VLEDn is lower than the reference voltage VREF, the sink current Isi that draws a constant current from the common connection node Nc side to the operational amplifier 13 side through the external terminal substantially reduces the voltage dividing resistor R2. The output voltage VOUT is controlled to be VOUT = VREF + Vf_max so that the resistance value becomes small.
 一方、LED端子電圧VLED_minが参照電圧VREFよりも高いときには、電流出力端子TCFBを介して定電流をオペアンプ13側から共通接続ノードNc側に定電流を流し込むソース電流Isoによって、分圧抵抗R2の実質的な抵抗値大きくなるように出力電圧VOUTを、VOUT=VREF+Vf_maxになるように制御する。こうした2つの電流による出力電圧VOUTの制御は図1に示すLED駆動回路装置1には期待できない。 On the other hand, when the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso that causes a constant current to flow from the operational amplifier 13 side to the common connection node Nc side through the current output terminal TCFB causes the voltage divider resistor R2 to The output voltage VOUT is controlled so as to become VOUT = VREF + Vf_max so as to increase the resistance value. Such control of the output voltage VOUT by the two currents cannot be expected from the LED drive circuit device 1 shown in FIG.
 ここで、LEDドライバ5Aは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、オペアンプ13に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。オペアンプ13は、OR回路51の出力がローレベルの場合、電流出力を停止し、OR回路51の出力がハイレベルの場合、LED端子電圧VLED_minと参照電圧VREFとの比較結果に応じた電流を出力する。 Here, the LED driver 5A also has an OR circuit 51. The OR circuit 51 receives pulse width modulation signals PWM1 to PWMn. The output of the OR circuit 51 is input to the operational amplifier 13. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become. The operational amplifier 13 stops the current output when the output of the OR circuit 51 is low level, and outputs the current according to the comparison result between the LED terminal voltage VLED_min and the reference voltage VREF when the output of the OR circuit 51 is high level. To do.
 図3に示すLED駆動回路装置1Aは、スイッチング制御回路2と、LEDドライバ5Aはそれぞれ別の半導体集積回路(IC)で構成するならば、これらとLEDストリング4_1~4_nとの組み合わせにいくつかの適用例を生み出すことができる。例えば、帰還電圧Vfbを制御せずにLED端子電圧VLED1~VLEDnの最も低い電圧に基づき出力電圧Voutを制御することが可能となる。こうした回路構成を望むときは、オペアンプ13の出力側に設けた電流出力端子TCFBを帰還端子FBに接続せずに位相補償端子COMPに接続すればよい。こうした回路構成ではオペアンプ13がエラーアンプ6の代替となる。このとき、帰還端子FBには図3に示すものと同様に分圧抵抗R1,R2は接続したままで、出力電圧Voutの大きさを検出できるようにしておくならば、本来の帰還端子FBを過電圧保護(OVP)端子として使用することができる。 In the LED drive circuit device 1A shown in FIG. 3, if the switching control circuit 2 and the LED driver 5A are each constituted by different semiconductor integrated circuits (ICs), there are some combinations of these and the LED strings 4_1 to 4_n. Application examples can be created. For example, the output voltage Vout can be controlled based on the lowest voltage of the LED terminal voltages VLED1 to VLEDn without controlling the feedback voltage Vfb. When such a circuit configuration is desired, the current output terminal TCFB provided on the output side of the operational amplifier 13 may be connected to the phase compensation terminal COMP without being connected to the feedback terminal FB. In such a circuit configuration, the operational amplifier 13 replaces the error amplifier 6. At this time, if it is possible to detect the magnitude of the output voltage Vout while the voltage dividing resistors R1 and R2 remain connected to the feedback terminal FB in the same manner as shown in FIG. It can be used as an overvoltage protection (OVP) terminal.
 図4Aは、図3のLED駆動回路装置1AをPWM信号のオンデューティ比が例えば約70%という具合に比較的大きなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートである。なお、図4Aは図2A、図2Bのタイミングチャートとは異なり、出力電圧Voutの制御はソース電流Isoとシンク電流Isiの両者によって行われる。 FIG. 4A is a timing chart when the LED drive circuit device 1A of FIG. 3 is driven with a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is about 70%, for example. 4A is different from the timing charts of FIGS. 2A and 2B, the output voltage Vout is controlled by both the source current Iso and the sink current Isi.
 図4A(a)は、LEDドライバ5AのPWM調光手段11からLED定電流源Cs1~Csnに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t2でハイレベルH、時刻t2~t5でローレベルLであり、ハイレベルHの区間THがローレベルLの区間TLよりも長い、いわゆるパルスデューティ比が比較的大きな信号であることを示す。なお、時刻t5~t9と時刻t9以降もパルス幅変調信号PWMiの波形は時刻t0~t5と同様に遷移する。 FIG. 4A (a) shows the pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5A. The pulse width modulation signal PWMi is at a high level H at times t0 to t2, and at a low level L at times t2 to t5. The so-called pulse duty ratio is compared in which the high-level H section TH is longer than the low-level L section TL. Indicates a large signal. Note that the waveform of the pulse width modulation signal PWMi also changes in the same manner as in the times t0 to t5 after the times t5 to t9 and after the time t9.
 図4A(b)は、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。LED電流ILEDiは、時刻t0~t2のパルス幅変調信号PWMiがハイレベルH区間に流れ、時刻t2~t5のローレベルL区間には流れない、いわゆる間歇的に電流が流れる。なお、時刻t5~t9と時刻t9以降もLED電流ILEDiの波形は時刻t0~t5と同様に遷移する。 4A (b), the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. The LED current ILEDi flows so-called intermittently, in which the pulse width modulation signal PWMi from time t0 to t2 flows in the high level H section and does not flow in the low level L section from time t2 to t5. It should be noted that the waveform of the LED current ILEDi also changes in the same way as at times t0 to t5 after times t5 to t9 and after time t9.
 図4A(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。時刻t0においてLED電流ILEDiが流れると、LED端子電圧VLED_minは急峻にLED順方向総電圧Vf_max分低下するが、その電圧の大きさは参照電圧VREFよりも高い状態であることを模式的に示している。その後時刻t1までLED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。時刻t1で参照電圧VREFに達すると、その電位はLED電流ILEDiがローレベルLとなる時刻t2まで参照電圧VREFに維持される様に操作される。時刻t2~t5においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように安定出力電圧Vstまで昇圧する。図中符号Vf_maxはLED順方向総電圧を、符号Vsoはソース電流Isoで調整されるソース電流調整電圧を示す。安定出力電圧Vstは、参照電圧VREFにソース電流調整電圧Vso、及びLED順方向総電圧Vf_maxを加えた、(VREF+Vso+Vf_max)となる。 FIG. 4A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. When the LED current ILEDi flows at the time t0, the LED terminal voltage VLED_min sharply decreases by the LED forward total voltage Vf_max, but schematically shows that the voltage level is higher than the reference voltage VREF. Yes. Thereafter, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF until time t1. When the reference voltage VREF is reached at time t1, the potential is manipulated so that the reference voltage VREF is maintained until time t2 when the LED current ILEDi becomes the low level L. When the LED current ILEDi stops flowing from time t2 to t5, the LED terminal voltage VLED_min is boosted to the stable output voltage Vst so as to follow the output voltage Vout. In the figure, reference symbol Vf_max represents the LED forward total voltage, and reference symbol Vso represents a source current adjustment voltage adjusted by the source current Iso. The stable output voltage Vst is (VREF + Vso + Vf_max) obtained by adding the source current adjustment voltage Vso and the LED forward total voltage Vf_max to the reference voltage VREF.
 時刻t6において、LED端子電圧VLED_minは何らかの原因で急峻に参照電圧VREF以下に降圧した場合を示す。この時も、LED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 At time t6, the LED terminal voltage VLED_min shows a case where it is stepped down below the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. It should be noted that after time t9, the transition is made in the same manner as at times t0 to t5.
 図4A(d)は、LEDドライバ5A側に設けた電流出力端子TCFBを介してオペアンプ13に流れ込むシンク電流Isi及び電流出力端子TCFBを介してオペアンプ13から流しだすソース電流Isoをそれぞれ示す。ソース電流Isoは、LED端子電圧VLED_minが参照電圧VREFよりも高い時刻t0で流れ始め、参照電圧VREFに近づくにつれ増加する。時刻t1において、LED端子電圧VLED_minが参照電圧VREFに達すると以降時刻t2まで一定のソース電流Isoが流れる。区間TLである時刻t2~t5で、OR回路51の出力がローレベルとなり、オペアンプ13は電流出力を停止するので、ソース電流Isoは流れなくなり0となる。 FIG. 4A (d) shows a sink current Isi that flows into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and a source current Iso that flows from the operational amplifier 13 via the current output terminal TCFB, respectively. The source current Iso begins to flow at time t0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the reference voltage VREF approaches. When the LED terminal voltage VLED_min reaches the reference voltage VREF at time t1, a constant source current Iso flows until time t2. At time t2 to t5, which is the section TL, the output of the OR circuit 51 becomes low level, and the operational amplifier 13 stops current output, so that the source current Iso does not flow and becomes zero.
 時刻t5~t6まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも高い場合、ソース電流Isoが流れる。時刻t6~t7まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも低い場合、シンク電流Isiが流れる。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 From time t5 to t6, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso flows. From time t6 to t7, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is lower than the reference voltage VREF, the sink current Isi flows. It should be noted that after time t9, the transition is made in the same manner as at times t0 to t5.
 図4A(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isi又はソース電流Isoの挙動に応動する。時刻t0~t2において、出力電圧Voutは安定出力電圧Vstから(VREF+Vf_max)に維持されるように操作される。時刻t2において、パルス幅変調信号PWMiがローレベルになった時、出力電圧Voutは時刻t2~t4まで徐々に昇圧する。時刻t4~t5は安定出力電圧Vstに維持される。 FIG. 4A (e) shows the transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time t0 to t2, the output voltage Vout is operated so as to be maintained from the stable output voltage Vst to (VREF + Vf_max). When the pulse width modulation signal PWMi becomes low level at time t2, the output voltage Vout gradually increases from time t2 to time t4. From time t4 to t5, the stable output voltage Vst is maintained.
 時刻t5~t6まで、出力電圧Voutは徐々に降圧し、時刻t6~t7まで、出力電圧Voutは徐々に昇圧する。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 From time t5 to t6, the output voltage Vout gradually decreases, and from time t6 to t7, the output voltage Vout gradually increases. It should be noted that after time t9, the transition is made in the same manner as at times t0 to t5.
 以上述べたように図3に示すLED駆動回路装置1Aにおいて、LED端子電圧VLED_minが参照電圧VREFよりも高い場合には、ソース電流Isoによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。また、LED端子電圧VLED_minが参照電圧VREFよりも低い場合には、シンク電流Isiによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。いずれにしても、LED端子電圧VLED_minと参照電圧VREFとの大小関係が逆転しても図3に示すLED駆動回路装置1Aは出力電圧Voutを所定の大きさに制御することが実現できる。 As described above, in the LED drive circuit device 1A shown in FIG. 3, when the LED terminal voltage VLED_min is higher than the reference voltage VREF, the output voltage Vout is controlled to be Vout = VREF + Vf_max by the source current Iso. When the LED terminal voltage VLED_min is lower than the reference voltage VREF, the output voltage Vout is controlled to be Vout = VREF + Vf_max by the sink current Isi. In any case, even if the magnitude relationship between the LED terminal voltage VLED_min and the reference voltage VREF is reversed, the LED drive circuit device 1A shown in FIG. 3 can control the output voltage Vout to a predetermined level.
 図4Bは、PWM信号のオンデューティ比が例えば約2%という具合に比較的小さなオンデューティ比でLED駆動回路装置1Aが駆動されるときのタイミングチャートである。先に述べた図4Aのオンデューティ比が比較的大きい場合に比べると駆動条件は必ずしも良い状態とはいえないが、図1のものとは違う挙動を示す。 FIG. 4B is a timing chart when the LED drive circuit device 1A is driven at a relatively small on-duty ratio such that the on-duty ratio of the PWM signal is about 2%, for example. The driving conditions are not necessarily in a good state as compared with the case where the on-duty ratio in FIG. 4A described above is relatively large, but the behavior differs from that in FIG.
 図4B(a)は、LEDドライバ5AのPWM調光手段11からLED定電流源Cs1~Csnに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻T0~T1でハイレベルH、時刻T1~T4でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも短い、いわゆるパルスデューティ比が比較的小さな信号であることを示す。なお、時刻T4以降もパルス幅変調信号PWMiの波形は時刻T0~T4と同様に遷移する。 FIG. 4B (a) shows a pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5A. The pulse width modulation signal PWMi is at a high level H at times T0 to T1, and at a low level L at times T1 to T4. This indicates that the so-called pulse duty ratio is a relatively small signal in which the high-level H section TH is shorter than the low-level L section TL. Note that after time T4, the waveform of the pulse width modulation signal PWMi changes in the same manner as at times T0 to T4.
 図4B(b)は、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。LED電流ILEDiは、時刻T0~T1のパルス幅変調信号PWMiがハイレベルH区間に流れ、時刻T1~T4のローレベルL区間には流れない、いわゆる間歇的に電流が流れる。なお、時刻T4以降もLED電流ILEDiの波形は時刻T0~T4と同様に遷移する。 4B (b), the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. The LED current ILEDi flows so-called intermittently, in which the pulse width modulation signal PWMi at times T0 to T1 flows in the high level H section and does not flow in the low level L sections from time T1 to T4. Note that after time T4, the waveform of the LED current ILEDi changes in the same manner as at times T0 to T4.
 図4B(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻T0において急峻にLED順方向総電圧Vf_max分低下するが、参照電圧VREFよりも高いため、時刻T0~T1の区間においては参照電圧VREFに向かって徐々に低下する。これはオペアンプ13によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられるからである。しかし、時刻T1においては、LED端子電圧VLED_minは参照電圧VREFまでは達していない。これは、パルス幅変調信号PWMiのパルス幅が狭く、LED端子電圧VLED_minが参照電圧VREFに達する前にパルス幅変調信号PWMiの極性がハイレベルHからローレベルLに反転してしまうことに起因する。時刻T1~T4の区間は、LED電流ILEDiが0であるので安定出力電圧Vstが維持される。パルス幅変調信号PWMiがハイレベルの区間内である、時刻T4~T5の区間においてLED端子電圧VLED_minは再度、参照電圧VREFよりも高いため再度ソース電流Isoが流れる。 FIG. 4B (c) shows the LED terminal voltage VLED_min, which is the voltage of the LED connection terminal LED_i. At the time T0 when the LED current ILEDi begins to flow, the voltage decreases steeply by the LED forward total voltage Vf_max, but since it is higher than the reference voltage VREF, it gradually decreases toward the reference voltage VREF during the time T0 to T1. This is because feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. However, at time T1, the LED terminal voltage VLED_min does not reach the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow and the polarity of the pulse width modulation signal PWMi is inverted from the high level H to the low level L before the LED terminal voltage VLED_min reaches the reference voltage VREF. . During the period from time T1 to time T4, since the LED current ILEDi is 0, the stable output voltage Vst is maintained. Since the LED terminal voltage VLED_min is again higher than the reference voltage VREF in the period from time T4 to T5 in which the pulse width modulation signal PWMi is in the high level period, the source current Iso flows again.
 時刻T5は何らかの原因によってLED端子電圧VLED_minが急峻に参照電圧VREFを下回った状態を示す。この時も、LED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。そのため、時刻T5~T6の区間においてシンク電流Isiが流れる。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 Time T5 shows a state in which the LED terminal voltage VLED_min is sharply lower than the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Therefore, the sink current Isi flows during the period from time T5 to T6. It should be noted that after time T8, transition is made in the same manner as times T0 to T4.
 図4B(d)は、LEDドライバ5A側に設けた電流出力端子TCFBを介してオペアンプ13に流れ込むシンク電流Isi及び電流出力端子TCFBを介してオペアンプ13から流しだすソース電流Isoをそれぞれ示す。ソース電流Isoは、LED端子電圧VLED_minが参照電圧VREFよりも高い時刻T0で流れ始め、参照電圧VREFに近づくにつれ増加する。時刻T1~T4で、ソース電流Isoは流れなくなり0となる。 FIG. 4B (d) shows a sink current Isi that flows into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and a source current Iso that flows from the operational amplifier 13 via the current output terminal TCFB, respectively. The source current Iso starts to flow at time T0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the reference voltage VREF approaches. From time T1 to T4, the source current Iso does not flow and becomes zero.
 時刻T4~T5まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも高い場合、ソース電流Isoが流れる。時刻T5~T6まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも低い場合、シンク電流Isiが流れる。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 From time T4 to T5, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso flows. From time T5 to T6, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is lower than the reference voltage VREF, the sink current Isi flows. It should be noted that after time T8, transition is made in the same manner as times T0 to T4.
 図4B(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isi又はソース電流Isoの挙動に応動する。時刻T0~T1において、出力電圧Voutは安定出力電圧Vstから(VREF+Vf_max)になるように、降圧が行われるが、パルス幅変調信号PWMiの幅が狭いため時刻T1で降圧は止まる。時刻T1において、パルス幅変調信号PWMiがローレベルになった時、出力電圧Voutは時刻T1~T3まで徐々に昇圧する。時刻T3~T4は安定出力電圧Vstに維持される。 FIG. 4B (e) shows the transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time T0 to T1, the output voltage Vout is stepped down so that it becomes (VREF + Vf_max) from the stable output voltage Vst. However, since the width of the pulse width modulation signal PWMi is narrow, the step-down stops at time T1. When the pulse width modulation signal PWMi becomes low level at time T1, the output voltage Vout gradually increases from time T1 to T3. From time T3 to T4, the stable output voltage Vst is maintained.
 時刻T4~T5まで、出力電圧Voutは徐々に降圧し、時刻T5~T8まで、出力電圧Voutは徐々に昇圧する。ここで、時刻T5~T6まではシンク電流Isiの動作に応じた昇圧であり、時刻T6~T8はスイッチングレギュレータの能力によるものである。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 From time T4 to T5, the output voltage Vout gradually decreases, and from time T5 to T8, the output voltage Vout gradually increases. Here, the voltage is boosted according to the operation of the sink current Isi from time T5 to T6, and time T6 to T8 is due to the ability of the switching regulator. It should be noted that after time T8, transition is made in the same manner as times T0 to T4.
 以上述べたように図3に示すLED駆動回路装置1Aにおいては、パルス幅変調信号PWMiのパルス幅が狭い(パルスデューティ比が小さい)場合であってもそれが広い場合と同様に、LED端子電圧VLED_minが参照電圧VREFよりも高い場合には、ソース電流Isoによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。また、LED端子電圧VLED_minが参照電圧VREFよりも低い場合には、シンク電流Isiによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。 As described above, in the LED drive circuit device 1A shown in FIG. 3, even when the pulse width of the pulse width modulation signal PWMi is narrow (the pulse duty ratio is small), the LED terminal voltage When VLED_min is higher than the reference voltage VREF, the output voltage Vout is controlled to be Vout = VREF + Vf_max by the source current Iso. When the LED terminal voltage VLED_min is lower than the reference voltage VREF, the output voltage Vout is controlled to be Vout = VREF + Vf_max by the sink current Isi.
 図3のLED駆動回路装置1Aについて、図4A,図4Bを用いて説明したように図1のLED駆動装置回路1と異なり、パルス幅変調信号がハイレベルの時だけ、出力電圧Voutを降圧して制御する。この様に制御することで、パルス幅変調信号のオンデューディ比が低いときも、出力電圧Voutが常に(VREF+Vf_max)以上に維持される。このため、LEDストリング4_1~4_nにおける発熱を抑え、かつ常にLEDストリング4_1~4_nが十分な輝度を維持できる。 As described with reference to FIGS. 4A and 4B, the LED drive circuit device 1A in FIG. 3 is stepped down the output voltage Vout only when the pulse width modulation signal is at a high level, unlike the LED drive device circuit 1 in FIG. Control. By controlling in this way, the output voltage Vout is always maintained at (VREF + Vf_max) or higher even when the on-duty ratio of the pulse width modulation signal is low. Therefore, heat generation in the LED strings 4_1 to 4_n can be suppressed, and the LED strings 4_1 to 4_n can always maintain sufficient luminance.
(第3の実施形態)
 図5は、本発明の第3の実施形態に係るLED駆動回路装置1Bを示す。LED駆動回路装置1Bは、先の第1、第2の実施形態との相違点として、LEDドライバ5Bを有する。LEDドライバ5Bは、特に、選択コンパレータ14と、ソース電流供給部15と、を有する。また、LEDドライバ5Bは、外部端子として、LED接続端子LED1~LEDnを有するとともに、フィードバック端子FB1を有する。フィードバック端子FB1は、共通接続ノードNcに接続するための端子である。
(Third embodiment)
FIG. 5 shows an LED drive circuit device 1B according to a third embodiment of the present invention. The LED drive circuit device 1B has an LED driver 5B as a difference from the first and second embodiments. The LED driver 5 </ b> B particularly includes a selection comparator 14 and a source current supply unit 15. The LED driver 5B has LED connection terminals LED1 to LEDn as external terminals and a feedback terminal FB1. The feedback terminal FB1 is a terminal for connecting to the common connection node Nc.
 選択コンパレータ14は、入力されるLED端子電圧VLED1~VLEDnのうち最低電圧を選択する選択部としての機能と、選択された最低電圧と参照電圧VREFとを比較するコンパレータとしての機能と、を有する。選択コンパレータ14は、比較結果に応じてハイレベルまたはローレベルの信号を出力する。 The selection comparator 14 has a function as a selection unit that selects the lowest voltage among the input LED terminal voltages VLED1 to VLEDn, and a function as a comparator that compares the selected lowest voltage with the reference voltage VREF. The selection comparator 14 outputs a high level or low level signal according to the comparison result.
 ソース電流供給部15は、共通接続ノードNc側に定電流としてのソース電流Isoを供給する回路部であり、pチャネル型MOSトランジスタで構成されるスイッチ15Aと、定電流回路15Bと、カレントミラー回路15Cと、を有する。 The source current supply unit 15 is a circuit unit that supplies a source current Iso as a constant current to the common connection node Nc side, and includes a switch 15A composed of a p-channel MOS transistor, a constant current circuit 15B, and a current mirror circuit. 15C.
 スイッチ15Aのソースには、電源電圧Vccが印加され、スイッチ15Aのドレインとグランドとの間には定電流回路15Bが配置される。スイッチ15Aのゲートには、選択コンパレータ14からの出力信号が入力され、スイッチ15Aは、選択コンパレータ14からの出力レベルに応じてオンオフが切替えられる。 A power supply voltage Vcc is applied to the source of the switch 15A, and a constant current circuit 15B is disposed between the drain of the switch 15A and the ground. An output signal from the selection comparator 14 is input to the gate of the switch 15A, and the switch 15A is switched on / off according to the output level from the selection comparator 14.
 カレントミラー回路15Cは、pチャネル型MOSトランジスタで構成される二つのトランジスタから構成される。二つのトランジスタのうち一方のトランジスタのソースには、スイッチ15Aのソースが接続され、すなわち、電源電圧Vccが印加される。一方のトランジスタのドレインは、スイッチ15Aのドレインに接続される。他方のトランジスタのソースには、一方のトランジスタのソースが接続される。他方のトランジスタと一方のトランジスタのゲート同士は接続される。その接続ノードと、一方のトランジスタのドレインは、短絡される。他方のトランジスタのドレインは、フィードバック端子FB1に接続される。 The current mirror circuit 15C is composed of two transistors composed of p-channel MOS transistors. The source of one of the two transistors is connected to the source of the switch 15A, that is, the power supply voltage Vcc is applied. The drain of one transistor is connected to the drain of the switch 15A. The source of one transistor is connected to the source of the other transistor. The gates of the other transistor and one transistor are connected to each other. The connection node and the drain of one transistor are short-circuited. The drain of the other transistor is connected to the feedback terminal FB1.
 ここで、LEDドライバ5Bは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、選択コンパレータ14に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。 Here, the LED driver 5B also has an OR circuit 51. The OR circuit 51 receives pulse width modulation signals PWM1 to PWMn. The output of the OR circuit 51 is input to the selection comparator 14. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become.
 選択コンパレータ14は、OR回路51の出力がローレベルの場合、ローレベルの出力信号をスイッチ15Aへ出力する。これにより、スイッチ15Aはオンとなり、定電流回路15Bによる定電流がスイッチ15Aを流れ、カレントミラー回路15Cの一方のトランジスタに流れない。よって、フィードバック端子FB1からソース電流Isoは流れない。また、選択コンパレータ14は、OR回路51の出力がハイレベルの場合、比較結果に応じたレベルの出力信号をスイッチ15Aへ出力する。これにより、スイッチ15Aはオンまたはオフとなる。選択コンパレータ14の出力がハイレベルで、スイッチ15Aがオフの場合、定電流回路15Bによる定電流がスイッチ15Aを流れず、カレントミラー回路15Cの一方のトランジスタに流れる。よって、フィードバック端子FB1からソース電流Isoが流れる。 The selection comparator 14 outputs a low level output signal to the switch 15A when the output of the OR circuit 51 is low level. As a result, the switch 15A is turned on, and the constant current from the constant current circuit 15B flows through the switch 15A and does not flow into one transistor of the current mirror circuit 15C. Therefore, the source current Iso does not flow from the feedback terminal FB1. Further, when the output of the OR circuit 51 is at a high level, the selection comparator 14 outputs an output signal having a level corresponding to the comparison result to the switch 15A. As a result, the switch 15A is turned on or off. When the output of the selection comparator 14 is at a high level and the switch 15A is OFF, the constant current from the constant current circuit 15B does not flow through the switch 15A but flows into one transistor of the current mirror circuit 15C. Therefore, the source current Iso flows from the feedback terminal FB1.
 図6は、LED駆動回路装置1Bが駆動されるときのタイミングチャートを示す。図6(a)は、LEDドライバ5BのPWM調光手段11からLED定電流源Cs1~Csnに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t2の区間THでハイレベルH、時刻t2~t4の区間TLでローレベルLとなる。 FIG. 6 shows a timing chart when the LED drive circuit device 1B is driven. FIG. 6A shows a pulse width modulation signal PWMi applied to the LED constant current sources Cs1 to Csn from the PWM dimming means 11 of the LED driver 5B. The pulse width modulation signal PWMi becomes a high level H in the section TH from time t0 to t2, and becomes a low level L in the section TL from time t2 to t4.
 図6(b)は、LED電流ILEDiを示す。図6(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。図6(d)は、ソース電流供給部15によりフィードバック端子FB1から共通接続ノードNcへ流れ込むソース電流Isoを示す。図6(e)は、出力電圧Voutの遷移状態を示す。 FIG. 6B shows the LED current ILEDi. FIG. 6C shows the LED terminal voltage VLED_min that is the voltage of the LED connection terminal LED_i. FIG. 6D shows the source current Iso that flows from the feedback terminal FB1 to the common connection node Nc by the source current supply unit 15. FIG. 6E shows a transition state of the output voltage Vout.
 時刻t0より前では、パルス幅変調信号PWMiがローレベルLであるため、LED電流ILEDiは流れない。また、OR回路51の出力がローレベルとなり、スイッチ15Aはオンとなり、ソース電流Isoは流れない。これにより、出力電圧Voutは、分圧抵抗R1,R2により決定され、安定出力電圧Vstに制御される。このとき、LED端子電圧VLED_minは、出力電圧Voutと同じ安定出力電圧Vstとなる。 Prior to time t0, since the pulse width modulation signal PWMi is at the low level L, the LED current ILEDi does not flow. Further, the output of the OR circuit 51 becomes a low level, the switch 15A is turned on, and the source current Iso does not flow. As a result, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and is controlled to the stable output voltage Vst. At this time, the LED terminal voltage VLED_min becomes the same stable output voltage Vst as the output voltage Vout.
 時刻t0でパルス幅変調信号PWMiがハイレベルHとなると、LED電流ILEDiが流れ、LED端子電圧VLED_minは、急峻に安定出力電圧VstからLED順方向総電圧Vf_max分低下するが、その電圧の大きさは参照電圧VREFよりも高い状態である。このとき、OR回路51の出力はハイレベルとなり、選択コンパレータ14の出力はハイレベルとなってスイッチ15Aはオフであるので、カレントミラー回路15Cによって定電流回路15Bに流れる定電流がソース電流Isoとして流れる。 When the pulse width modulation signal PWMi becomes a high level H at time t0, the LED current ILEDi flows, and the LED terminal voltage VLED_min rapidly decreases from the stable output voltage Vst by the LED forward total voltage Vf_max, but the magnitude of the voltage Is higher than the reference voltage VREF. At this time, the output of the OR circuit 51 is at a high level, the output of the selection comparator 14 is at a high level, and the switch 15A is off, so that the constant current flowing through the constant current circuit 15B by the current mirror circuit 15C is the source current Iso. Flowing.
 ソース電流Isoが流れると出力電圧Voutは低下するように制御され、これに応じてLED端子電圧VLED_minも基準電圧VREFに向かって低下する。LED端子電圧VLED_minが基準電圧VREF以上である間は選択コンパレータ14はハイレベルとなり、ソース電流Isoは流れ続ける。 When the source current Iso flows, the output voltage Vout is controlled to decrease, and accordingly, the LED terminal voltage VLED_min also decreases toward the reference voltage VREF. While the LED terminal voltage VLED_min is equal to or higher than the reference voltage VREF, the selection comparator 14 is at a high level, and the source current Iso continues to flow.
 そして、時刻t1でLED端子電圧VLED_minが基準電圧VREFより低くなると、選択コンパレータ14の出力はローレベルとなり、スイッチ15Aはオンとなる。これにより、定電流回路15Bによる定電流はカレントミラー回路15Cを通らず、スイッチ15Aを流れるので、ソース電流Isoは流れなくなる。 When the LED terminal voltage VLED_min becomes lower than the reference voltage VREF at time t1, the output of the selection comparator 14 becomes low level and the switch 15A is turned on. As a result, the constant current from the constant current circuit 15B does not flow through the current mirror circuit 15C, but flows through the switch 15A, so that the source current Iso does not flow.
 ソース電流Isoが流れないと、出力電圧Voutは分圧抵抗R1,R2により決まる状態となり、出力電圧Voutは上昇する。これに応じて、LED端子電圧VLED_minは、上昇する。そして、LED端子電圧VLED_minが基準電圧VREF以上となると、選択コンパレータ14の出力はハイレベルとなり、スイッチ15Aはオフとなり、ソース電流Isoが流れる。ソース電流Isoが流れると、出力電圧VoutおよびLED端子電圧VLED_minは、低下する。 If the source current Iso does not flow, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and the output voltage Vout increases. In response to this, the LED terminal voltage VLED_min increases. When the LED terminal voltage VLED_min becomes equal to or higher than the reference voltage VREF, the output of the selection comparator 14 becomes a high level, the switch 15A is turned off, and the source current Iso flows. When the source current Iso flows, the output voltage Vout and the LED terminal voltage VLED_min decrease.
 パルス幅変調信号PWMiがローレベルLとなる時刻t2まで、上記の動作が繰り返される。このように、選択コンパレータ14によりソース電流供給部15によるソース電流Isoのオンオフが繰り返され、LED端子電圧VLED_minは基準電圧VREFに制御され、出力電圧VoutはVREF+Vf_maxに制御される。 The above operation is repeated until time t2 when the pulse width modulation signal PWMi becomes the low level L. As described above, the selection comparator 14 repeatedly turns on and off the source current Iso by the source current supply unit 15, the LED terminal voltage VLED_min is controlled to the reference voltage VREF, and the output voltage Vout is controlled to VREF + Vf_max.
 時刻t2でパルス幅変調信号PWMiがローレベルLとなると、電流ILEDiは流れず、OR回路51の出力がローレベルとなり、スイッチ15Aがオンとされ、ソース電流Isoは流れなくなり、出力電圧Voutは時刻t3で安定出力電圧Vstとなるまで上昇し、一定に制御される。LED端子電圧VLED_minは、時刻t2で急峻にVREF+Vf_maxまで上昇した後、時刻t3で安定出力電圧Vstとなるまで上昇し、一定に制御される。 When the pulse width modulation signal PWMi becomes low level L at time t2, the current ILEDi does not flow, the output of the OR circuit 51 becomes low level, the switch 15A is turned on, the source current Iso does not flow, and the output voltage Vout At t3, the voltage rises until it reaches the stable output voltage Vst and is controlled to be constant. The LED terminal voltage VLED_min rises steeply to VREF + Vf_max at time t2, then rises to the stable output voltage Vst at time t3, and is controlled to be constant.
 このような本実施形態によれば、パルス幅変調信号PWMiがハイレベルHであるときに、LED順方向電圧に適合した出力電圧Voutに調整でき、LEDの輝度を所定の明るさに維持し、かつ、出力電圧Voutを抑制して電力消費を抑制することができる。 According to the present embodiment, when the pulse width modulation signal PWMi is at the high level H, the output voltage Vout suitable for the LED forward voltage can be adjusted, and the luminance of the LED is maintained at a predetermined brightness. In addition, the power consumption can be suppressed by suppressing the output voltage Vout.
(第3の実施形態の変形例)
 図7は、先述した第3の実施形態の変形例に係るLEDドライバ50Bの構成を示す図である。LEDドライバ50Bは、後述するように、LEDストリング4_1~4_nからなる組を複数用いる場合に有効となる構成である。
(Modification of the third embodiment)
FIG. 7 is a diagram illustrating a configuration of an LED driver 50B according to a modification of the above-described third embodiment. As will be described later, the LED driver 50B is effective when a plurality of sets of LED strings 4_1 to 4_n are used.
 LEDドライバ50Bは、特に、第1選択部141と、第2選択部142と、コンパレータ143と、を有するとともに、外部端子として、最低電圧出力端子VMINOUTと、他ドライバ接続端子VOM1~VOM3と、PWM入力端子PWMINと、PWM出力端子PWMOUTと、を有する。 In particular, the LED driver 50B includes a first selection unit 141, a second selection unit 142, and a comparator 143. As the external terminals, the LED driver 50B includes a minimum voltage output terminal VMINOUT, other driver connection terminals VOM1 to VOM3, PWM It has an input terminal PWMIN and a PWM output terminal PWMOUT.
 第1選択部141は、入力されるLED端子電圧VLED1~VLEDnのうち最低電圧を選択して出力する。第2選択部142は、第1選択部141によって選択された最低電圧とともに、他ドライバ接続端子VOM1~VOM3にそれぞれ印加される電圧が入力される。他ドライバ接続端子VOM1~VOM3は、他のドライバ50Bにおける最低電圧出力端子VMINOUTとの接続用の端子であり、他のドライバ50Bと接続しない場合は所定の内部電圧が印加される。 The first selection unit 141 selects and outputs the lowest voltage among the input LED terminal voltages VLED1 to VLEDn. The second selection unit 142 receives the voltage applied to the other driver connection terminals VOM1 to VOM3, together with the lowest voltage selected by the first selection unit 141. The other driver connection terminals VOM1 to VOM3 are terminals for connection to the lowest voltage output terminal VMINOUT in the other driver 50B, and when not connected to the other driver 50B, a predetermined internal voltage is applied.
 第2選択部142は、第1選択部141によって選択された最低電圧と、他ドライバ接続端子VOM1~VOM3にそれぞれ印加される電圧とのうちの最低電圧を選択して出力する。最低電圧出力端子VMINOUTは、第2選択部142の出力端に接続される。従って、第2選択部142によって選択された最低電圧は、最低電圧出力端子VMINOUTから出力可能である。 The second selection unit 142 selects and outputs the lowest voltage selected from the minimum voltage selected by the first selection unit 141 and the voltages applied to the other driver connection terminals VOM1 to VOM3. The lowest voltage output terminal VMINOUT is connected to the output terminal of the second selection unit 142. Therefore, the lowest voltage selected by the second selection unit 142 can be output from the lowest voltage output terminal VMINOUT.
 また、コンパレータ143の非反転入力端子(+)は、第2選択部142の出力端に接続される。コンパレータ143の反転入力端子(-)には、参照電圧VREFが印加される。コンパレータ143は、第2選択部142によって選択された最低電圧と参照電圧VREFとを比較し、比較結果をハイレベルまたはローレベルの信号として出力する。コンパレータ143の出力信号は、ソース電流供給部15におけるスイッチ15Aのゲートに印加される。 Further, the non-inverting input terminal (+) of the comparator 143 is connected to the output terminal of the second selection unit 142. A reference voltage VREF is applied to the inverting input terminal (−) of the comparator 143. The comparator 143 compares the lowest voltage selected by the second selection unit 142 with the reference voltage VREF, and outputs the comparison result as a high level or low level signal. The output signal of the comparator 143 is applied to the gate of the switch 15A in the source current supply unit 15.
 また、LEDドライバ50Bは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnとともにPWM入力端子PWMINの電圧が入力される。OR回路51の出力は、コンパレータ143に入力されるとともに、PWM出力端子PWMOUTから外部へ出力可能である。パルス幅変調信号PWM1~PWMnおよびPWM入力端子PWMINの電圧のうち少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnおよびPWM入力端子PWMINの電圧の全てがローレベルのときはOR回路51の出力はローレベルとなる。 The LED driver 50B also has an OR circuit 51. The voltage of the PWM input terminal PWMIN is input to the OR circuit 51 together with the pulse width modulation signals PWM1 to PWMn. The output of the OR circuit 51 is input to the comparator 143 and can be output to the outside from the PWM output terminal PWMOUT. When at least one of the pulse width modulation signals PWM1 to PWMn and the voltage at the PWM input terminal PWMIN is at a high level, the output of the OR circuit 51 is at a high level, and all the voltages at the pulse width modulation signals PWM1 to PWMn and the PWM input terminal PWMIN are at a high level. When is at a low level, the output of the OR circuit 51 is at a low level.
 コンパレータ143は、OR回路51の出力がローレベルの場合、ローレベルの出力信号をスイッチ15Aに出力する。これにより、スイッチ15Aはオンとなり、フィードバック端子FB1からソース電流Isoは流れない。また、コンパレータ143は、OR回路51の出力がハイレベルの場合、比較結果に応じたレベルの出力信号をスイッチ15Aへ出力する。 The comparator 143 outputs a low level output signal to the switch 15A when the output of the OR circuit 51 is low level. Thereby, the switch 15A is turned on, and the source current Iso does not flow from the feedback terminal FB1. Further, when the output of the OR circuit 51 is at a high level, the comparator 143 outputs an output signal having a level corresponding to the comparison result to the switch 15A.
 図8は、このような構成のLEDドライバ50Bを複数用いて、LEDストリング4_1~4_nからなる組であるLED組を複数駆動させる構成の一例を示す。ここでは、三つのLED組G1~G3を駆動させる例を示す。LED組G1~G3における各LEDストリングのアノードは、出力電圧Voutが発生するラインに接続される。 FIG. 8 shows an example of a configuration that uses a plurality of LED drivers 50B having the above-described configuration to drive a plurality of LED groups, which are groups of LED strings 4_1 to 4_n. Here, an example in which three LED groups G1 to G3 are driven is shown. The anodes of the LED strings in the LED sets G1 to G3 are connected to a line where the output voltage Vout is generated.
 図8に示すように、LED組G1~G3を駆動させるために、マスターとしてのLEDドライバ50B1と、それぞれスレーブとしてのLEDドライバ50B2,50B3を用いる。LEDドライバ50B1~50B3のそれぞれの構成は、先述した図7のLEDドライバ50Bと同様であり、すなわち、LEDドライバ50B1~50B3は、同一のものである。LED組G1~G3のそれぞれにおけるLEDストリングのカソードは、それぞれLEDドライバ50B1~50B3のLED接続端子LED1~LEDnに接続される。 As shown in FIG. 8, in order to drive the LED groups G1 to G3, an LED driver 50B1 as a master and LED drivers 50B2 and 50B3 as slaves are used. The respective configurations of the LED drivers 50B1 to 50B3 are the same as the LED driver 50B of FIG. 7 described above, that is, the LED drivers 50B1 to 50B3 are the same. The cathodes of the LED strings in each of the LED groups G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 50B1 to 50B3, respectively.
 LEDドライバ50B1の他ドライバ接続端子VOM1には、LEDドライバ50B2の最低電圧出力端子VMINOUTが接続される。LEDドライバ50B1の他ドライバ接続端子VOM2には、LEDドライバ50B3の最低電圧出力端子VMINOUTが接続される。LEDドライバ50B1の他ドライバ接続端子VOM3は、他のLEDドライバが接続されないので、電源電圧Vccが印加される不図示の外部端子(以下、VCC端子)とショートされる。LEDドライバ50B2,50B3のそれぞれの他ドライバ接続端子VOM1~VOM3は、他のLEDドライバが接続されないので、VCC端子とショートされる。 The other driver connection terminal VOM1 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B2. The other driver connection terminal VOM2 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B3. The other driver connection terminal VOM3 of the LED driver 50B1 is short-circuited with an external terminal (hereinafter, VCC terminal) (not shown) to which the power supply voltage Vcc is applied because no other LED driver is connected. The other driver connection terminals VOM1 to VOM3 of the LED drivers 50B2 and 50B3 are short-circuited to the VCC terminal because the other LED drivers are not connected.
 LEDドライバ50B1のフィードバック端子FB1は、共通接続ノードNcに接続されるが、LEDドライバ50B2,50B3のそれぞれのフィードバック端子FB1には、接続は行われない。また、LEDドライバ50B1の最低電圧出力端子VMINOUTには、接続は行われない。 The feedback terminal FB1 of the LED driver 50B1 is connected to the common connection node Nc, but no connection is made to the feedback terminals FB1 of the LED drivers 50B2 and 50B3. Further, no connection is made to the lowest voltage output terminal VMINOUT of the LED driver 50B1.
 また、LEDドライバ50B1のPWM入力端子PWMINは、LEDドライバ50B2のPWM出力端子PWMOUTに接続される。LEDドライバ50B2のPWM入力端子PWMINは、LEDドライバ50B3のPWM出力端子PWMOUTに接続される。LEDドライバ50B3のPWM入力端子PWMINには、ローレベルの電圧が印加される。また、LEDドライバ50B1のPWM出力端子PWMOUTには、接続は行われない。 Further, the PWM input terminal PWMIN of the LED driver 50B1 is connected to the PWM output terminal PWMOUT of the LED driver 50B2. The PWM input terminal PWMIN of the LED driver 50B2 is connected to the PWM output terminal PWMOUT of the LED driver 50B3. A low level voltage is applied to the PWM input terminal PWMIN of the LED driver 50B3. Further, no connection is made to the PWM output terminal PWMOUT of the LED driver 50B1.
 図8に示すような構成であると、スレーブとしてのLEDドライバ50B2の最低電圧出力端子VMINOUTからは、LED組G2に係るLED端子電圧VLED1~VLEDnのうち最低の電圧が選択されて出力される。同様に、スレーブとしてのLEDドライバ50B3の最低電圧出力端子VMINOUTからは、LED組G3に係るLED端子電圧VLED1~VLEDnのうち最低の電圧が選択されて出力される。 In the configuration as shown in FIG. 8, the lowest voltage among the LED terminal voltages VLED1 to VLEDn related to the LED set G2 is selected and output from the lowest voltage output terminal VMINOUT of the LED driver 50B2 as a slave. Similarly, the lowest voltage output terminal VMINOUT of the LED driver 50B3 as a slave selects and outputs the lowest voltage among the LED terminal voltages VLED1 to VLEDn related to the LED set G3.
 マスターとしてのLEDドライバ50B1においては、LEDドライバ50B2から他ドライバ接続端子VOM1に入力される最低電圧と、LEDドライバ50B3から他ドライバ接続端子VOM2に入力される最低電圧と、LED組G1に係るLED端子電圧VLED1~VLEDnとのうち最低の電圧が選択され、第2選択部142からコンパレータ143へ出力される。LEDドライバ50B1において、コンパレータ143は、上記選択された最低電圧と参照電圧VREFとの比較を行い、ソース電流供給部15は、コンパレータ143での比較結果に応じてフィードバック端子FB1から共通接続ノードNcに流し込むソース電流Isoのオンオフを切替える。 In the LED driver 50B1 as a master, the lowest voltage input from the LED driver 50B2 to the other driver connection terminal VOM1, the lowest voltage input from the LED driver 50B3 to the other driver connection terminal VOM2, and the LED terminal related to the LED set G1 The lowest voltage among the voltages VLED1 to VLEDn is selected and output from the second selection unit 142 to the comparator 143. In the LED driver 50B1, the comparator 143 compares the selected minimum voltage with the reference voltage VREF, and the source current supply unit 15 switches from the feedback terminal FB1 to the common connection node Nc according to the comparison result of the comparator 143. The source current Iso to be turned on is switched on / off.
 なお、LEDドライバ50B3において、OR回路51の出力信号はPWM出力端子PWMOUTから出力され、LEDドライバ50B2のPWM入力端子PWMINに入力される。LEDドライバ50B2において、OR回路51の出力信号はPWM出力端子PWMOUTから出力され、LEDドライバ50B1のPWM入力端子PWMINに入力される。従って、LEDドライバ50B1におけるOR回路51の出力は、LEDドライバ50B1~50B3のパルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルの場合に、ハイレベルとなり、LEDドライバ50B1~50B3のパルス幅変調信号PWM1~PWMnの全てがローレベルの場合に、ローレベルとなる。 In the LED driver 50B3, the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and input to the PWM input terminal PWMIN of the LED driver 50B2. In the LED driver 50B2, the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and input to the PWM input terminal PWMIN of the LED driver 50B1. Therefore, the output of the OR circuit 51 in the LED driver 50B1 becomes high level when at least one of the pulse width modulation signals PWM1 to PWMn of the LED drivers 50B1 to 50B3 is high level, and the pulse width modulation signal of the LED drivers 50B1 to 50B3. When all of PWM1 to PWMn are at a low level, the level is low.
 これにより、パルス幅変調信号PWMiがハイレベルHのときに、LED組G1~G3のうち最大のLED順方向総電圧Vf_maxとなるLEDストリングに係るLED端子電圧VLED_minが参照電圧VREFとなるように制御され、出力電圧VoutはVREF+Vf_maxに制御される。このように、複数のLED組G1~G3を共通の構成であるLEDドライバ50B1~50B3を用いて駆動することができる。 As a result, when the pulse width modulation signal PWMi is at the high level H, the LED terminal voltage VLED_min related to the LED string having the maximum LED forward total voltage Vf_max among the LED sets G1 to G3 is controlled to be the reference voltage VREF. The output voltage Vout is controlled to VREF + Vf_max. Thus, the plurality of LED sets G1 to G3 can be driven using the LED drivers 50B1 to 50B3 having a common configuration.
 なお、LEDドライバ50Bは、複数のLED組を駆動するのに用いることには限らず、一つのみのLED組を駆動するのに使用してもよい。この場合、一つのLEDドライバ50Bのみを使用し、LEDドライバ50Bにおいて全ての他ドライバ接続端子VOM1~VOM3は、VCC端子にショートさせ、PWM入力端子PWMINには、ローレベルの電圧を印加させる。 The LED driver 50B is not limited to use for driving a plurality of LED sets, but may be used for driving only one LED set. In this case, only one LED driver 50B is used, all other driver connection terminals VOM1 to VOM3 in the LED driver 50B are short-circuited to the VCC terminal, and a low-level voltage is applied to the PWM input terminal PWMIN.
 図9は、半導体集積回路装置(パッケージ品)としてのLEDドライバ50Bにおけるピン配置の一例を示す平面図である。ここでは、一例として、LEDストリングは16個(すなわちLEDストリング4_1~4_16)を接続可能な構成としている。 FIG. 9 is a plan view showing an example of pin arrangement in the LED driver 50B as a semiconductor integrated circuit device (package product). Here, as an example, 16 LED strings (that is, LED strings 4_1 to 4_16) can be connected.
 平面視で矩形状のLEDドライバ50Bにおける横方向に延びる第1辺501には、順に、ピンEXTCLK、ピンVSYNC、非接続ピン、ピンLED1~LED4、非接続ピン、ピンLGND、非接続ピン、ピンLED5,LED6が横方向に並んで配置される。 In the first side 501 extending in the lateral direction in the rectangular LED driver 50B in plan view, a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, a pin LED5 and LED6 are arranged side by side in the horizontal direction.
 ピンEXTCLKは、クロック信号入力用のピンである。ピンVSYNCは、パルス幅変調信号入力用のピンである。ピンLED1~LED6は、LEDストリングのカソード接続用のピンである。ピンLGNDは、定電流回路のグランド用のピンである。非接続ピンは、接続が行われないピンである。 The pin EXTCLK is a clock signal input pin. The pin VSYNC is a pin for inputting a pulse width modulation signal. The pins LED1 to LED6 are pins for cathode connection of the LED string. The pin LGND is a ground pin for the constant current circuit. A non-connecting pin is a pin that is not connected.
 第1辺501の一方端から縦方向に延びる第2辺502には、順に、ピンLED7,LED8、非接続ピン、ピンLGND、ピンSDO、ピンPWMOUT、ピンTEST、ピンPWMIN、ピンLGND、非接続ピン、ピンLED9,LED10が縦方向に並んで配置される。ピンLED7は、ピンLED6とで第1辺501と第2辺502との交点を挟むように配置される。 In order, the second side 502 extending in the vertical direction from one end of the first side 501 is pin LED7, LED8, non-connection pin, pin LGND, pin SDO, pin PWMOUT, pin TEST, pin PWMIN, pin LGND, non-connection. Pins, pin LEDs 9 and LED 10 are arranged side by side in the vertical direction. The pin LED 7 is disposed so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6.
 ピンLED7~LED10は、LEDストリングのカソード接続用のピンである。ピンSDOは、データ出力用のピンである。ピンPWMOUTは、PWM出力端子である。ピンPWMINは、PWM入力端子である。ピンTESTは、テストモード用のピンである。 Pins LED7 to LED10 are pins for cathode connection of LED strings. The pin SDO is a data output pin. The pin PWMOUT is a PWM output terminal. The pin PWMIN is a PWM input terminal. The pin TEST is a test mode pin.
 第3辺503は、第2辺502における第1辺501側ではない端部から横方向に延びる。すなわち、第3辺503は、第1辺501と縦方向に対向する。第3辺503には、順に、ピンLED11,LED12、非接続ピン、ピンLGND、非接続ピン、ピンLED13~LED16、非接続ピン、ピンFB1、ピンVOM3が横方向に並んで配置される。ピンLED11は、ピンLED10とで第2辺502と第3辺503との交点を挟むように配置される。 The third side 503 extends in the lateral direction from the end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is opposed to the first side 501 in the vertical direction. On the third side 503, a pin LED11, LED12, a non-connecting pin, a pin LGND, a non-connecting pin, pins LED13 to LED16, a non-connecting pin, a pin FB1, and a pin VOM3 are arranged side by side in this order. The pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10.
 ピンLED11~LED16は、LEDストリングのカソード接続用のピンである。ピンFB1は、フィードバック端子用のピンであり、図7のフィードバック端子FB1に相当する。ピンVOM3は、他のLEDドライバのピンVMINOUTを接続するためのピンであり、図7の他ドライバ接続端子VOM3に相当する。 The pins LED11 to LED16 are pins for cathode connection of the LED string. The pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG. The pin VOM3 is a pin for connecting the pin VMINOUT of another LED driver, and corresponds to the other driver connection terminal VOM3 in FIG.
 第4辺504は、第3辺503における第2辺502側ではない端部から縦方向に延びる。すなわち、第4辺504は、第2辺502と横方向に対向する。第4辺504には、順に、ピンVOM2、ピンVOM1、ピンVMINOUT、ピンISET、ピンVREG、ピンVCC、ピンEN、ピンGND、ピンFAIL、ピンSCS、ピンSDI、ピンSCLKが縦方向に並んで配置される。ピンVOM2は、ピンVOM3とで第3辺503と第4辺504との交点を挟むように配置される。ピンSCLKは、ピンEXTCLKとで第1辺501と第4辺504との交点を挟むように配置される。 The fourth side 504 extends in the vertical direction from the end of the third side 503 that is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction. On the fourth side 504, a pin VOM2, a pin VOM1, a pin VMINOUT, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are arranged in the vertical direction. Be placed. The pin VOM2 is arranged so as to sandwich the intersection of the third side 503 and the fourth side 504 with the pin VOM3. Pin SCLK is arranged so as to sandwich the intersection of first side 501 and fourth side 504 with pin EXTCLK.
 ピンVOM2,VOM1は、他のLEDドライバのピンVMINOUTを接続するためのピンであり、図7の他ドライバ接続端子VOM2,VOM1に相当する。ピンVMINOUTは、16個のLEDストリングのうち最低のLED端子電圧を出力するためのピンであり、図7の最低電圧出力端子VMINOUTに相当する。ピンISETは、LED電流を設定する抵抗を接続するためのピンである。ピンVREGは、内部電圧を出力するためのピンである。ピンVCCは、VCC端子である。ピンENは、スタンバイモードまたは動作モードを設定するためのピンである。ピンGNDは、グランド接続用のピンである。ピンFAILは、異常検出出力用のピンである。ピンSCSは、チップ選択設定用のピンである。ピンSDIは、データ入力用のピンである。ピンSCLKは、クロック入力用のピンである。 The pins VOM2 and VOM1 are pins for connecting the pin VMINOUT of other LED drivers and correspond to the other driver connection terminals VOM2 and VOM1 in FIG. The pin VMINOUT is a pin for outputting the lowest LED terminal voltage among the 16 LED strings, and corresponds to the lowest voltage output terminal VMINOUT in FIG. The pin ISET is a pin for connecting a resistor that sets the LED current. The pin VREG is a pin for outputting an internal voltage. The pin VCC is a VCC terminal. The pin EN is a pin for setting a standby mode or an operation mode. The pin GND is a pin for ground connection. The pin FAIL is an abnormality detection output pin. The pin SCS is a chip selection setting pin. The pin SDI is a data input pin. The pin SCLK is a clock input pin.
 なお、先述した図7の構成において、例えば、第2選択部142の出力端をコンパレータ143の代わりにオペアンプの入力端に接続する構成でもよい。当該オペアンプは、第1、第2の実施形態で述べたものを用いることができる。 In the configuration of FIG. 7 described above, for example, the output terminal of the second selection unit 142 may be connected to the input terminal of the operational amplifier instead of the comparator 143. As the operational amplifier, those described in the first and second embodiments can be used.
 本発明は、比較的簡便な回路により発光素子の駆動に用いるスイッチングレギュレータの出力電圧を所定の大きさに制御できるので電源効率の向上が図れる。このため産業上の利用可能性は極めて高い。 In the present invention, since the output voltage of the switching regulator used for driving the light emitting element can be controlled to a predetermined level by a relatively simple circuit, the power efficiency can be improved. Therefore, industrial applicability is extremely high.
  1,1A  LED駆動回路装置
  2  スイッチング制御回路
  3  出力回路
  4_1~4_n  LEDストリング
  5,5A  LEDドライバ(定電流ドライバ)
  6  エラーアンプ
  7  発振器
  8  スロープ信号生成回路
  9  PWMコンパレータ
  10  PWM制御回路
  11  PWM調光手段
  12  オペアンプ 
  13  オペアンプ(トランスコンダクタンスアンプ)
  C1,C2  キャパシタ
  COMP  位相補償用端子
  Cs1~Csn  LED定電流源
  ILED1~ILEDn  LED電流
  Isi  シンク電流
  Iso  ソース電流
  L1  インダクタ
  LED1~LEDn  LED接続端子
  OPFB,TCFB  電流出力端子
  PWM1~PWMn  PWM調光信号
  R1~R3  分圧抵抗
  R4  抵抗
  S1  スイッチング素子
  S2  同期整流素子
  Tr1  トランジスタ
  Vf1~Vfn  LED順方向総電圧
  VLED1~VLEDn  LED端子電圧
  VREF  参照電圧
  Vt1  第1基準電圧
  Vsl  スロープ電圧
  Vst  安定出力電圧
  1B  LED駆動回路装置
  5B,50B,50B1~50B3  LEDドライバ
  51  OR回路
  14  選択コンパレータ
  15  ソース電流供給部
  15A  スイッチ
  15B  定電流回路
  15C  カレントミラー回路
  FB1  フィードバック端子
  141  第1選択部
  142  第2選択部
  143  コンパレータ
  VOM1~VOM3  他ドライバ接続端子
  VMINOUT  最低電圧出力端子
  PWMIN  PWM入力端子
  PWMOUT  PWM出力端子
  G1~G3  LED組
DESCRIPTION OF SYMBOLS 1,1A LED drive circuit device 2 Switching control circuit 3 Output circuit 4_1 to 4_n LED string 5,5A LED driver (constant current driver)
6 Error amplifier 7 Oscillator 8 Slope signal generation circuit 9 PWM comparator 10 PWM control circuit 11 PWM dimming means 12 Operational amplifier
13 Operational amplifier (transconductance amplifier)
C1, C2 Capacitor COMP Phase compensation terminal Cs1 to Csn LED constant current source ILED1 to ILEDn LED current Isi Sink current Iso source current L1 Inductor LED1 to LEDn LED connection terminal OPFB, TCFB Current output terminal PWM1 to PWMn PWM dimming signal R1 to R3 voltage dividing resistor R4 resistor S1 switching element S2 synchronous rectifier element Tr1 transistor Vf1 to Vfn LED forward total voltage VLED1 to VLEDn LED terminal voltage VREF reference voltage Vt1 first reference voltage Vsl slope voltage Vst stable output voltage 1B LED drive circuit device 5B , 50B, 50B1 to 50B3 LED driver 51 OR circuit 14 selection comparator 15 source current supply unit 15A switch 5B constant current circuit 15C current mirror circuit FB1 feedback terminal 141 first selector 142 second selection unit 143 comparators VOM1 ~ VOM3 other driver connection terminal VMINOUT minimum voltage output terminal PWMIN PWM input PWMOUT PWM output pin G1 ~ G3 LED sets

Claims (14)

  1.  インダクタに間歇的に電流を流すスイッチング素子と、
     前記インダクタに流れるインダクタ電流を平滑して、出力端子に所定の出力電圧を出力する平滑手段と、
     前記出力電圧を分圧した帰還電圧を生成する帰還電圧生成回路と、を備え、
     前記帰還電圧に応じて前記出力電圧を変動させることを特徴としたスイッチングレギュレータと、
     前記出力電圧を駆動電圧源として、複数のLEDが直列に接続される複数のLEDストリングと、
     に接続することが可能なLEDドライバであって、
     前記複数のLEDストリングには各別にLED接続端子を介して接続されたLED定電流源と、
     前記複数のLEDストリングの内、LED順方向総電圧がもっとも大きいLEDストリングの前記LED接続端子を以降検出用LED接続端子として選択する選択部と、
     前記検出用LED接続端子の電圧と第1参照電圧とを比較する比較部と、を備え、
     前記比較部の出力に基づき、前記帰還電圧を変圧させることを特徴としたLEDドライバ。
    A switching element for passing current intermittently through the inductor;
    Smoothing means for smoothing an inductor current flowing through the inductor and outputting a predetermined output voltage to an output terminal;
    A feedback voltage generation circuit that generates a feedback voltage obtained by dividing the output voltage,
    A switching regulator characterized by varying the output voltage according to the feedback voltage;
    A plurality of LED strings in which a plurality of LEDs are connected in series using the output voltage as a driving voltage source;
    An LED driver that can be connected to
    An LED constant current source connected to each of the plurality of LED strings via an LED connection terminal;
    A selection unit that selects the LED connection terminal of the LED string having the largest LED forward total voltage among the plurality of LED strings as a detection LED connection terminal;
    A comparator that compares the voltage of the LED connection terminal for detection with a first reference voltage;
    An LED driver characterized in that the feedback voltage is transformed based on an output of the comparison unit.
  2.  前記帰還電圧生成回路は前記出力端子に接続される第1分圧抵抗と接地電位に接続され前記第1分圧抵抗と直列に接続される第2分圧抵抗で構成される請求項1に記載のLEDドライバ。 2. The feedback voltage generation circuit includes a first voltage dividing resistor connected to the output terminal and a second voltage dividing resistor connected to a ground potential and connected in series with the first voltage dividing resistor. LED driver.
  3.  前記選択部と前記比較部とを有するオペアンプを有し、
     前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードに前記オペアンプの出力が結合される請求項2に記載のLEDドライバ。
    An operational amplifier having the selection unit and the comparison unit;
    The LED driver according to claim 2, wherein an output of the operational amplifier is coupled to a common connection node of the first voltage dividing resistor and the second voltage dividing resistor.
  4.  前記オペアンプは、
     前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記共通接続ノードから前記接地電位に電流を引き込むシンク電流が流れることにより前記帰還電圧を降圧させる請求項3に記載のLEDドライバ。
    The operational amplifier is
    4. The LED according to claim 3, wherein when the voltage of the detection LED connection terminal is lower than the first reference voltage, a sink current that draws a current from the common connection node to the ground potential flows to reduce the feedback voltage. driver.
  5.  前記共通接続ノードと前記オペアンプの出力側との間に第3分圧抵抗が接続され、
     前記第3分圧抵抗が前記第2分圧抵抗と並列に接続される請求項4に記載のLEDドライバ。
    A third voltage dividing resistor is connected between the common connection node and the output side of the operational amplifier;
    The LED driver according to claim 4, wherein the third voltage dividing resistor is connected in parallel with the second voltage dividing resistor.
  6.  前記オペアンプは、トランスコンダクタンスアンプである請求項3に記載のLEDドライバ。 4. The LED driver according to claim 3, wherein the operational amplifier is a transconductance amplifier.
  7.  前記トランスコンダクタンスアンプは、
     前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記共通接続ノードから前記トランスコンダクタンスアンプの出力段にシンク電流が流れることにより前記帰還電圧を降圧する請求項6に記載のLEDドライバ。
    The transconductance amplifier is
    7. The feedback voltage is stepped down when a sink current flows from the common connection node to an output stage of the transconductance amplifier when the voltage of the detection LED connection terminal is lower than the first reference voltage. LED driver.
  8.  前記トランスコンダクタンスアンプは、
     前記検出用LED接続端子の電圧が前記第1参照電圧よりも高いとき、前記トランスコンダクタンスアンプの出力段から前記共通接続ノード側にソース電流を供給して前記帰還電圧を昇圧させる請求項6に記載のLEDドライバ。
    The transconductance amplifier is
    7. The feedback voltage is boosted by supplying a source current from the output stage of the transconductance amplifier to the common connection node when the voltage of the detection LED connection terminal is higher than the first reference voltage. LED driver.
  9.  前記比較部であるコンパレータの出力に応じて、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードへ流し込むソース電流のオンオフを切替えるソース電流供給部を有する請求項2に記載のLEDドライバ。 3. The source current supply unit according to claim 2, further comprising: a source current supply unit configured to switch on / off of a source current flowing into a common connection node of the first voltage dividing resistor and the second voltage dividing resistor according to an output of a comparator serving as the comparison unit. LED driver.
  10.  前記ソース電流供給部は、前記コンパレータの出力に応じてオンオフされるスイッチと、前記スイッチに接続される定電流回路と、カレントミラー回路と、を有し、
     前記スイッチは、前記カレントミラー回路における一方のトランジスタの両端間に接続される請求項9に記載のLEDドライバ。
    The source current supply unit includes a switch that is turned on / off according to the output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit,
    The LED driver according to claim 9, wherein the switch is connected between both ends of one transistor in the current mirror circuit.
  11.  他のLEDドライバを接続することが可能な少なくとも一つの他ドライバ接続端子と、最低電圧出力端子と、を有し、
     前記選択部は、前記検出用LED接続端子の電圧と、前記他ドライバ接続端子の電圧とのうち最低の電圧を選択し、前記比較部および前記最低電圧出力端子へ出力する請求項1に記載のLEDドライバ。 
    Having at least one other driver connection terminal capable of connecting another LED driver, and a minimum voltage output terminal;
    The said selection part selects the lowest voltage among the voltage of the said LED connection terminal for a detection, and the voltage of the said other driver connection terminal, and outputs it to the said comparison part and the said lowest voltage output terminal. LED driver.
  12.  前記LED定電流源は、第1パルス幅変調信号によって間歇的に電流を生成する請求項1に記載のLEDドライバ。 The LED driver according to claim 1, wherein the LED constant current source generates a current intermittently by a first pulse width modulation signal.
  13.  請求項1~12のいずれか一項に記載のLEDドライバと、前記スイッチングレギュレータと、前記LEDストリングと、を備えるLED駆動回路装置であって、
     前記スイッチングレギュレータは、
     スロープ信号生成回路、誤差増幅器、及びPWMコンパレータをさらに備え、
     前記スロープ信号生成回路は三角波状またはのこぎり波状のスロープ信号を生成し、前記誤差増幅器は前記帰還電圧と第2参照電圧とを比較して両者差分の電圧を誤差電圧として出力し、前記PWMコンパレータは、前記誤差電圧と前記スロープ信号とを比較し、そのパルス比較結果に応じたパルス幅を有する第2パルス幅変調信号を出力し、前記第2パルス幅変調信号によって、前記スイッチング素子がオンまたはオフに制御されるLED駆動回路装置。
    An LED drive circuit device comprising the LED driver according to any one of claims 1 to 12, the switching regulator, and the LED string,
    The switching regulator is
    A slope signal generation circuit, an error amplifier, and a PWM comparator;
    The slope signal generation circuit generates a triangular or sawtooth slope signal, the error amplifier compares the feedback voltage with a second reference voltage, and outputs a difference voltage as an error voltage, and the PWM comparator The error voltage and the slope signal are compared, a second pulse width modulation signal having a pulse width corresponding to the pulse comparison result is output, and the switching element is turned on or off by the second pulse width modulation signal. LED drive circuit device controlled by.
  14.  第2パルス幅変調信号によって、入力電圧を所定の出力電圧に変換するスイッチングレギュレータと、第1パルス幅変調信号によってLEDストリングの輝度が制御される表示装置又は照明装置と、請求項1~12のいずれか一項に記載のLEDドライバと、を備える電子機器。 A switching regulator that converts an input voltage into a predetermined output voltage by a second pulse width modulation signal, a display device or an illumination device in which the brightness of the LED string is controlled by the first pulse width modulation signal, and An electronic device comprising the LED driver according to any one of the above.
PCT/JP2018/010704 2017-04-28 2018-03-19 Led driver, and led drive circuit device and electronic equipment that use said led driver WO2018198594A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017090515 2017-04-28
JP2017-090515 2017-04-28
JP2017-213432 2017-11-06
JP2017213432 2017-11-06

Publications (1)

Publication Number Publication Date
WO2018198594A1 true WO2018198594A1 (en) 2018-11-01

Family

ID=63918412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010704 WO2018198594A1 (en) 2017-04-28 2018-03-19 Led driver, and led drive circuit device and electronic equipment that use said led driver

Country Status (1)

Country Link
WO (1) WO2018198594A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158859A1 (en) * 2019-02-01 2020-08-06 オムロン株式会社 Resonant converter, and control circuit and control method for same
CN114845436A (en) * 2022-07-04 2022-08-02 深圳贝特莱电子科技股份有限公司 LED drive circuit multiplexing to general IO port of touch MCU
EP3937161A4 (en) * 2019-10-31 2022-10-05 Honor Device Co., Ltd. Backlight control circuit and control method therefor, and display terminal
RU2786087C1 (en) * 2019-10-31 2022-12-16 Хонор Дивайс Ко., Лтд. Backlight control circuit, its control method and display terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100201278A1 (en) * 2009-02-09 2010-08-12 Freescale Semiconductor, Inc. Serial configuration for dynamic power control in led displays
JP2012157172A (en) * 2011-01-26 2012-08-16 Rohm Co Ltd Phase shift controller, phase shift method, and light-emitting device and electronic equipment using those
US20120250379A1 (en) * 2011-04-04 2012-10-04 Advanced Analogic Technologies, Inc. OTA Feedback Mechanism for Fixed Feedback Voltage Regulators
JP2012204679A (en) * 2011-03-25 2012-10-22 Rohm Co Ltd Light-emitting element drive switching power supply control circuit, light-emitting device, and electronic equipment
JP2013021117A (en) * 2011-07-11 2013-01-31 Rohm Co Ltd Led drive device, luminaire, and liquid crystal display device
US20130113445A1 (en) * 2011-11-04 2013-05-09 Atmel Corporation Power conversion feedback control circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100201278A1 (en) * 2009-02-09 2010-08-12 Freescale Semiconductor, Inc. Serial configuration for dynamic power control in led displays
JP2012157172A (en) * 2011-01-26 2012-08-16 Rohm Co Ltd Phase shift controller, phase shift method, and light-emitting device and electronic equipment using those
JP2012204679A (en) * 2011-03-25 2012-10-22 Rohm Co Ltd Light-emitting element drive switching power supply control circuit, light-emitting device, and electronic equipment
US20120250379A1 (en) * 2011-04-04 2012-10-04 Advanced Analogic Technologies, Inc. OTA Feedback Mechanism for Fixed Feedback Voltage Regulators
JP2013021117A (en) * 2011-07-11 2013-01-31 Rohm Co Ltd Led drive device, luminaire, and liquid crystal display device
US20130113445A1 (en) * 2011-11-04 2013-05-09 Atmel Corporation Power conversion feedback control circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158859A1 (en) * 2019-02-01 2020-08-06 オムロン株式会社 Resonant converter, and control circuit and control method for same
JP2020127268A (en) * 2019-02-01 2020-08-20 オムロン株式会社 Resonance-type converter control circuit, control method of the same, and resonance-type converter
US11515799B2 (en) 2019-02-01 2022-11-29 Omron Corporation Resonant converter controller circuit for controlling resonant converter converting input DC voltage into DC voltage
EP3937161A4 (en) * 2019-10-31 2022-10-05 Honor Device Co., Ltd. Backlight control circuit and control method therefor, and display terminal
RU2786087C1 (en) * 2019-10-31 2022-12-16 Хонор Дивайс Ко., Лтд. Backlight control circuit, its control method and display terminal
CN114845436A (en) * 2022-07-04 2022-08-02 深圳贝特莱电子科技股份有限公司 LED drive circuit multiplexing to general IO port of touch MCU

Similar Documents

Publication Publication Date Title
US9699844B2 (en) Multichannel constant current LED driving circuit, driving method and LED driving power
US10187938B2 (en) Multichannel constant current LED controlling circuit and controlling method
US9924569B2 (en) LED driving circuit
KR101775159B1 (en) Control circuit and control method of switching power supply and light emitting apparatus and electronic device using the same
KR101835255B1 (en) Boost then floating buck mode converter for led driver using common switch control signal
JP5523917B2 (en) Switching power supply control circuit, control method, and light emitting device and electronic apparatus using them
US7224128B2 (en) Device for driving light emitting diode strings
US8456097B2 (en) Modified dimming LED driver
US8810144B2 (en) Driver circuits for dimmable solid state lighting apparatus
EP2630843B1 (en) Led circuit arrangement
JP4796849B2 (en) DC power supply, light-emitting diode power supply, and lighting device
KR100867551B1 (en) Led array driving apparatus
KR101883001B1 (en) Driving circuit of light emitting element, light emitting device using the same, and electronic device
US8884545B2 (en) LED driving system and driving method thereof
US8604699B2 (en) Self-power for device driver
JP6189591B2 (en) LIGHT EMITTING DEVICE CONTROL CIRCUIT, LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME, AND LIGHT EMITTING DEVICE CONTROL METHOD
WO2018198594A1 (en) Led driver, and led drive circuit device and electronic equipment that use said led driver
WO2020071067A1 (en) Led driving circuit device and electronic instrument
JP2017005827A (en) Switching converter and its control circuit, lighting device using the same, and electronic apparatus
CN109392217B (en) Light emitting element drive circuit and control method thereof
US9030116B2 (en) Load driving apparatus and driving method thereof
JP6247455B2 (en) LIGHT EMITTING ELEMENT DRIVE CIRCUIT, AND LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP5660936B2 (en) Light emitting element drive circuit
KR101854693B1 (en) Backlight unit
JP2013097928A (en) Drive circuit for light-emitting element, light-emitting device using the same, and display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP