JP5660936B2 - Light emitting element drive circuit - Google Patents

Light emitting element drive circuit Download PDF

Info

Publication number
JP5660936B2
JP5660936B2 JP2011052508A JP2011052508A JP5660936B2 JP 5660936 B2 JP5660936 B2 JP 5660936B2 JP 2011052508 A JP2011052508 A JP 2011052508A JP 2011052508 A JP2011052508 A JP 2011052508A JP 5660936 B2 JP5660936 B2 JP 5660936B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
dimming signal
pulse
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011052508A
Other languages
Japanese (ja)
Other versions
JP2012190959A (en
Inventor
一之 宮島
一之 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2011052508A priority Critical patent/JP5660936B2/en
Publication of JP2012190959A publication Critical patent/JP2012190959A/en
Application granted granted Critical
Publication of JP5660936B2 publication Critical patent/JP5660936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Description

本発明は、調光回路とスイッチングレギュレータと発光素子を組み合わせた発光素子駆動回路において、発光素子をパルス調光する際の発光素子の点灯時間を極端に短くしても、安定した動作ができるようにした発光素子駆動回路に関する。   According to the present invention, in a light emitting element driving circuit in which a dimming circuit, a switching regulator, and a light emitting element are combined, stable operation can be performed even if the lighting time of the light emitting element is extremely shortened when the light emitting element is subjected to pulse dimming. The present invention relates to a light emitting element driving circuit.

発光素子である例えばLEDは点発光の素子であるため、面としての発光が必要な液晶ディスプレイのバックライトとして使用する場合、多数のLEDを二次元配置して同じ明るさで点灯させる必要がある。このため複数のLEDを直列に接続し、これを定電流源の電流で駆動している。また、この場合、LEDのアノード電圧を昇圧型スイッチングレギュレータによって発生させ、LEDを定電流で駆動できるようにしている。   For example, an LED, which is a light emitting element, is a point light emitting element. Therefore, when used as a backlight of a liquid crystal display that requires light emission as a surface, it is necessary to arrange a number of LEDs two-dimensionally and to light them with the same brightness. . For this reason, a plurality of LEDs are connected in series and are driven by the current of a constant current source. In this case, the anode voltage of the LED is generated by a step-up switching regulator so that the LED can be driven with a constant current.

また、発光素子駆動回路であるLED駆動回路において、LEDの明るさをPWM信号等によりパルス調光する場合、100Hz以上の周期でLEDの点灯/消灯を繰り返す方法が用いられるが、LEDが消灯している間は同時に昇圧型スイッチングレギュレータも停止させることにより、回路全体の消費電力を低く抑えることが行われる。   In addition, in the LED driving circuit which is a light emitting element driving circuit, when the brightness of the LED is subjected to pulse dimming with a PWM signal or the like, a method of repeatedly turning on / off the LED at a cycle of 100 Hz or more is used, but the LED is turned off. At the same time, the step-up switching regulator is also stopped to reduce the power consumption of the entire circuit.

上記機能を有する従来のLED駆動回路を図6に示す。10は負荷回路であり、複数のLEDを直列接続した回路で構成されている。20は調光回路であり、負荷回路10に供給する定電流をパルス調光信号P1によってオン/オフさせる。この調光回路20は、負荷回路10に直列接続された定電流源21と、入力端子22から入力したパルス調光信号P1(調光PWM信号)を波形整形するインバータINV1,INV2とによって構成され、インバータINV2の出力によって定電流源21がオン/オフされることによって、負荷回路10の各LEDがオン/オフ調光される。30は昇圧型スイッチングレギュレータであり、負荷回路10の接地側のLED11のカソード側の電圧VKを検出して、その電圧VKが後記する参照電圧VREF1となるように電源側のLED12のアノード側に印加する電圧VAを制御する。   A conventional LED driving circuit having the above function is shown in FIG. Reference numeral 10 denotes a load circuit, which is composed of a circuit in which a plurality of LEDs are connected in series. A dimming circuit 20 turns on / off a constant current supplied to the load circuit 10 by a pulse dimming signal P1. The dimming circuit 20 includes a constant current source 21 connected in series to the load circuit 10 and inverters INV1 and INV2 that shape the pulse dimming signal P1 (dimming PWM signal) input from the input terminal 22. The constant current source 21 is turned on / off by the output of the inverter INV2, whereby each LED of the load circuit 10 is dimmed on / off. 30 is a step-up switching regulator that detects the voltage VK on the cathode side of the LED 11 on the ground side of the load circuit 10 and applies it to the anode side of the LED 12 on the power source side so that the voltage VK becomes a reference voltage VREF1 described later. The voltage VA to be controlled is controlled.

この昇圧型スイッチングレギュレータ30は、負荷回路10の接地側のLED11のカソード電圧VKをスイッチSW1と抵抗RNF1を経由して取り込み、電圧源31の参照電圧VREF1と比較してその差分を誤差電圧として検出増幅するエラーアンプ32と、そのエラーアンプ32の出力電圧レベルに応じた昇圧PWM信号を生成するPWM変換回路33と、前記パルス調光信号P1が“H”のときPWM変換回路33から出力する昇圧PWM信号を通過させるアンドゲートAND1と、そのアンドゲートAND1から出力する昇圧PWM信号によってスイッチングされるNMOSのトランジスタM1と、そのトランジスタM1がオンしたとき電源電圧がVINの電圧源34からトランジスタM1に流れる電流によりエネルギーを蓄積し、トランジスタM1がオフしたときそのエネルギーの電流を整流素子D1で整流して出力用のキャパシタC1に蓄積するインダクタL1とを含む。ここで、トランジスタM1、インダクタL1、整流素子D1、キャパシタC1はチョッパ型昇圧回路(電圧生成回路)を構成する。   The step-up switching regulator 30 takes in the cathode voltage VK of the LED 11 on the ground side of the load circuit 10 via the switch SW1 and the resistor RNF1, compares it with the reference voltage VREF1 of the voltage source 31, and detects the difference as an error voltage. An error amplifier 32 to be amplified, a PWM conversion circuit 33 for generating a step-up PWM signal corresponding to the output voltage level of the error amplifier 32, and a step-up output from the PWM conversion circuit 33 when the pulse dimming signal P1 is “H”. The AND gate AND1 that passes the PWM signal, the NMOS transistor M1 that is switched by the boosted PWM signal that is output from the AND gate AND1, and the power source voltage that flows from the VIN voltage source 34 to the transistor M1 when the transistor M1 is turned on. Energy is stored by current Includes an inductor L1 to accumulate in the capacitor C1 for rectifying and outputting the current of the energy rectifying element D1 when the transistor M1 is turned off. Here, the transistor M1, the inductor L1, the rectifier element D1, and the capacitor C1 constitute a chopper type booster circuit (voltage generation circuit).

この昇圧型スイッチングレギュレータ30では、トランジスタM1のオン時間、つまりPWM変換回路33から出力する昇圧PWM信号の“H”の期間が長いほど、負荷回路10の電源側のLED12のアノードに供給する電圧VAが高くなる。PWM変換回路33から出力する昇圧PWM信号の“H”期間は、エラーアンプ32の出力電圧が高いほど長くなる。エラーアンプ32の出力電圧は、参照電圧VREF1に比べて負荷回路10の接地側のLED11のカソード側の電圧VKが低いほど高くなる。よって、電圧VKが参照電圧VREF1と一致する電圧となるように、昇圧型スイッチングレギュレータ30が負帰還動作して、負荷回路10に供給する電圧VAが制御される。   In this step-up switching regulator 30, the voltage VA supplied to the anode of the LED 12 on the power supply side of the load circuit 10 becomes longer as the ON time of the transistor M1, that is, the “H” period of the step-up PWM signal output from the PWM conversion circuit 33 is longer. Becomes higher. The “H” period of the step-up PWM signal output from the PWM conversion circuit 33 becomes longer as the output voltage of the error amplifier 32 is higher. The output voltage of the error amplifier 32 becomes higher as the voltage VK on the cathode side of the LED 11 on the ground side of the load circuit 10 is lower than the reference voltage VREF1. Therefore, the boost switching regulator 30 performs a negative feedback operation so that the voltage VK is equal to the reference voltage VREF1, and the voltage VA supplied to the load circuit 10 is controlled.

昇圧型スイッチングレギュレータ30のスイッチSW1は、パルス調光信号P1が“H”のときa側に切り替り、“L”のときb側に切り換わる。これにより、パルス調光信号P1が各LEDを駆動しているときは昇圧型スイッチングレギュレータ30の昇圧動作が行われ、パルス調光信号P1が各LEDを駆動していないきは昇圧型スイッチングレギュレータ30の昇圧動作が停止されるので、省電力が図られている。   The switch SW1 of the step-up switching regulator 30 is switched to the a side when the pulse dimming signal P1 is “H”, and is switched to the b side when it is “L”. Thus, when the pulse dimming signal P1 drives each LED, the boosting switching regulator 30 performs a boosting operation. When the pulse dimming signal P1 does not drive each LED, the boosting switching regulator 30 is driven. Since the step-up operation is stopped, power saving is achieved.

昇圧型スイッチングレギュレータ30のキャパシタCNF1は位相補償容量であり、抵抗RNFlとでローパスフィルタを形成する。負荷回路10の各LEDが消灯している間、キャパシタCNF1に蓄積された電荷が放電されてしまうと、各LEDが点灯状態に切り替わった際に、このキャパシタCNF1を再度充電する必要があり、その間、昇圧型スイッチングレギュレータ30の出力電圧VAが制御目標値より低下して、各LEDを十分に点灯できない場合がある。スイッチSW2はこれを防ぐためであり、パルス調光信号P1が“L”の期間、キャパシタCNF1の片側の端子をオープン状態にして、そのキャパシタCNF1の電荷の放電を防ぐようになっている。   The capacitor CNF1 of the step-up switching regulator 30 is a phase compensation capacitor, and forms a low-pass filter with the resistor RNF1. If the charge accumulated in the capacitor CNF1 is discharged while each LED of the load circuit 10 is turned off, it is necessary to recharge the capacitor CNF1 when each LED is switched to the on state. In some cases, the output voltage VA of the step-up switching regulator 30 falls below the control target value, and the LEDs cannot be sufficiently lit. The switch SW2 is for preventing this, and during the period when the pulse dimming signal P1 is “L”, the terminal on one side of the capacitor CNF1 is opened to prevent the discharge of the charge of the capacitor CNF1.

以上により、負荷回路10の各LEDは、調光回路20によって調光され、パルス調光信号P1の内容(PWMのデューティ)に応じた輝度に設定される。この間、昇圧型スイッチングレギュレータ30では、パルス調光信号P1の“H”の期間中だけトランジスタM1がPWM変換回路33から出力するPWM信号によってスイッチングされる。また、スイッチSW1はパルス調光信号P1の“H”の期間だけダイオード11のカソード電圧VKを検出してエラーアンプ32に送る。また、スイッチSW2はパルス調光信号P1の“H”の期間中だけキャパシタCNF1を接続して位相補償を行う。以上説明したLED駆動回路に類似するものとして、例えば特許文献1に記載のものがある。   As described above, each LED of the load circuit 10 is dimmed by the dimming circuit 20 and set to a luminance corresponding to the content of the pulse dimming signal P1 (PWM duty). During this time, in the step-up switching regulator 30, the transistor M1 is switched by the PWM signal output from the PWM conversion circuit 33 only during the “H” period of the pulse dimming signal P1. Further, the switch SW1 detects the cathode voltage VK of the diode 11 and sends it to the error amplifier 32 only during the “H” period of the pulse dimming signal P1. Further, the switch SW2 performs phase compensation by connecting the capacitor CNF1 only during the “H” period of the pulse dimming signal P1. An example similar to the LED driving circuit described above is disclosed in Patent Document 1.

特開2011−009253JP2011-009253A

近年、液晶パネルの消費電力を削減しコントラスト比を大きくするため、LEDに短い時間だけ電流を流し、可能な限りLEDを暗い状態で点灯させる動作が求められるようになってきた。このため、前述したパルス調光によりLEDの明るさを制御する際に、極端にLEDの点灯時間を短くしてもLED駆動回路が正常動作することが求められている。   In recent years, in order to reduce the power consumption of a liquid crystal panel and increase the contrast ratio, there has been a demand for an operation in which a current is passed through an LED for a short time and the LED is lit as dark as possible. For this reason, when the brightness of the LED is controlled by the pulse dimming described above, it is required that the LED drive circuit operates normally even if the LED lighting time is extremely shortened.

例えば、パルス調光信号P1の周波数を200Hzとし点灯時間(“H”期間)を全周期中の0.1%程度(PWMデューティ比が0.1)のみ点灯させる場合、LEDの点灯時間は約5μs程度になる。一方、トランジスタM1のスイッチング周波数(PWM変換回路33の昇圧PWM信号の周波数)は400kHz〜1MHzに設定されることが多く、仮に500kHzで動作させる場合では、その1周期は2μs程度になる。このため、LEDが点灯している時間中における昇圧型スイッチングレギュレータ30のスイッチングは2回程度しか行えないことになる。   For example, in the case where the frequency of the pulse dimming signal P1 is 200 Hz and the lighting time ("H" period) is lit only about 0.1% (PWM duty ratio is 0.1) in the entire cycle, the LED lighting time is about It becomes about 5 μs. On the other hand, the switching frequency of the transistor M1 (the frequency of the step-up PWM signal of the PWM conversion circuit 33) is often set to 400 kHz to 1 MHz. If the transistor M1 is operated at 500 kHz, one cycle is about 2 μs. For this reason, the step-up switching regulator 30 can be switched only about twice during the time when the LED is lit.

図7はLEDが消灯状態から点灯状態に切り替わった際の、図6中のインダクタL1に流れる電流IL1を示したものである。パルス調光信号P1の“L”期間、つまりLEDが消灯している状態では、昇圧型スイッチングレギュレータ30も動作を停止しているため、インダクタL1に流れる電流IL1は0になっている。図7(a)に示すように、パルス調光信号P1が“H”に変化しLEDが点灯状態に切り替わると、インダクタL1の電流IL1もトランジスタM1のスイッチングごとに徐々に増加していくが、図7(b)に示すように、パルス調光信号P1の“H”の期間が短く、トランジスタM1のスイッチングの回数が少ないときは、インダクタL1の電流IL1がLEDを点灯させるに十分な目標値に達する前に、パルス調光信号P1が“L”に変化し、トランジスタM1のスイッチングの動作が停止して、一次側(電圧源34側)の電力を十分に2次側(LED側)に送ることができない。   FIG. 7 shows the current IL1 flowing through the inductor L1 in FIG. 6 when the LED is switched from the unlit state to the lit state. In the “L” period of the pulse dimming signal P1, that is, in a state where the LED is turned off, the boosting switching regulator 30 also stops operating, so the current IL1 flowing through the inductor L1 is zero. As shown in FIG. 7A, when the pulse dimming signal P1 changes to “H” and the LED switches to the lighting state, the current IL1 of the inductor L1 gradually increases with each switching of the transistor M1. As shown in FIG. 7B, when the “H” period of the pulse dimming signal P1 is short and the number of times of switching of the transistor M1 is small, the current IL1 of the inductor L1 is a target value sufficient to light the LED. The pulse dimming signal P1 is changed to “L” before reaching the threshold value, the switching operation of the transistor M1 is stopped, and the primary side (voltage source 34 side) power is sufficiently switched to the secondary side (LED side). I can't send it.

この結果、昇圧型スイッチングレギュレータ30の出力電圧VAが次第に低下して、負荷回路10の各LEDに十分な電圧を印加できなくなり、LEDが点灯しなくなる。ここで、LED消灯後にも単純に昇圧型スイッチングレギュレータ30の動作時間を延長する方法を取っても、問題がある。すなわち、昇圧型スイッチングレギュレータ30はLED11のカソード側の電圧VKを検出して負帰還動作を行っているが、LEDが点灯していない状態ではアノード・カソード間の電位差が縮小して、カソード側の電圧VKは定電流源21が動作を停止した瞬間に大きく変動するので、この電圧VKを元にしては昇圧型スイッチングレギュレータ30の負帰還制御を正常に行うことができなくなる。   As a result, the output voltage VA of the step-up switching regulator 30 gradually decreases, and a sufficient voltage cannot be applied to each LED of the load circuit 10, and the LED does not light up. Here, there is a problem even if the method of simply extending the operation time of the step-up switching regulator 30 is taken even after the LED is turned off. That is, the step-up switching regulator 30 detects the voltage VK on the cathode side of the LED 11 and performs a negative feedback operation. However, when the LED is not lit, the potential difference between the anode and cathode decreases, Since the voltage VK fluctuates greatly at the moment when the constant current source 21 stops its operation, the negative feedback control of the step-up switching regulator 30 cannot be normally performed based on the voltage VK.

本発明は、上記問題点を改善し、発光素子のより短い点灯時間でもスイッチングレギュレータの出力電圧を適切な値に制御し発光素子が正常に点灯できるようにした発光素子駆動回路を提供することを目的とするものである。   The present invention provides a light emitting element driving circuit that improves the above problems and controls the output voltage of the switching regulator to an appropriate value even when the light emitting element has a shorter lighting time so that the light emitting element can be normally lit. It is the purpose.

上記目的を達成するために、請求項1にかかる発明の発光素子駆動回路は、1つの発光素子からなり又は2以上の発光素子が直列接続された負荷回路と、第1のパルス調光信号が前記発光素子を点灯させる第1の論理のときは動作し、前記第1のパルス調光信号が前記発光素子を消灯させる第2の論理のときは動作が停止される、前記負荷回路に定電流を供給する定電流源を有する調光回路と、前記第1のパルス調光信号が前記第1の論理のときは前記定電流源に印加する第1の電圧を入力側に取り込んで第1の参照電圧と比較し、前記第1のパルス調光信号が前記第2の論理のときは入力側が接地に接続されるエラーアンプ、該エラーアンプの前記入力側と出力側の間に接続された位相補償用の第1のキャパシタ、前記エラーアンプの前記比較の結果に応じたデューティをもつPWM信号を生成するPWM変換回路、および該PWM変換回路から出力する前記PWM信号に応じて電源電圧を調整した電圧VAを生成して前記負荷回路に印加する電圧生成回路を含むスイッチングレギュレータと、前記第1の電圧を前記第1の参照電圧よりも高い第2の参照電圧と比較する第1の比較器、および前記第1のパルス調光信号が前記第1の論理から前記第2の論理に変化する第1のタイミング時の前記第1の比較器の比較結果と前記第1のパルス調光信号の前記第1の論理の期間の長短とに応じて前記第1のパルス調光信号を遅延し又は遅延しない第2のパルス調光信号を生成する遅延回路を有し、該遅延回路から出力する前記第2のパルス調光信号が前記第1の論理のときに前記第1のキャパシタの接続がそのままとなると共に前記電圧生成回路が電圧を生成し、前記第2の論理のときに前記第1のキャパシタが回路から切り離されると共に前記電圧生成回路の電圧の生成が停止するようにしたパルス幅伸張回路とを備え、前記パルス幅伸張回路の前記遅延回路は、前記第1のパルス調光信号の前記第1の論理の期間が前記電圧VAが必要十分な値になる第1の時間より長いとき、又は前記第1のパルス調光信号の前記第1の論理が前記第1の時間より短かく且つ前記第1のタイミング時の前記第1の電圧が前記第2の参照電圧以上のときは、前記第2のパルス幅調光信号として前記第1のパルス調光信号をそのまま出力し、前記第1のパルス調光信号の前記第1の論理の期間が前記第1の時間より短かく且つ前記第1のタイミング時の前記第1の電圧が前記第2の参照電圧よりも低いときは、前記第1のパルス調光信号の第1の論理の期間を第2の時間だけ延長した前記第2のパルス調光信号を出力する、ことを特徴とする。
請求項2にかかる発明は、請求項1に記載の発光素子駆動回路において、前記パルス幅伸張回路の前記遅延回路は、前記第1の電圧が前記第2の参照電圧以上の期間が長いほど、前記第2の時間が短縮されることを特徴とする。
請求項3にかかる発明は、請求項1又は2に記載の発光素子駆動回路において、前記エラーアンプをトランスコンダクタンスアンプに置き換えると共に前記第1のキャパシタを前記PWM変換回路の入力側と接地側との間の接続に置き換え、前記第2のパルス調光信号が前記第2の論理のとき、前記トランスコンダクタンスアンプの出力を遮断し、又は前記トランスコンダクタンスアンプの動作を停止させるようにしたことを特徴とする。
請求項4にかかる発明は、請求項1乃至3のいずれか1つに記載の発光素子駆動回路において、前記PWM変換回路と前記電圧生成回路との間に接続されるゲート手段を設け、該ゲート手段は、前記第2のパルス調光信号が前記第1の論理のとき、前記PWM変換回路の出力信号を前記電圧生成回路に入力させることを特徴とする。


In order to achieve the above object, a light emitting element driving circuit according to a first aspect of the present invention includes a load circuit composed of one light emitting element or two or more light emitting elements connected in series, and a first pulse dimming signal. The load circuit operates when the first logic is turned on, and is stopped when the first pulse dimming signal is the second logic that turns off the light emitting element. A dimming circuit having a constant current source for supplying a first voltage applied to the constant current source when the first pulse dimming signal is the first logic, An error amplifier whose input side is connected to ground when the first pulse dimming signal is the second logic as compared with a reference voltage, and a phase connected between the input side and the output side of the error amplifier A first capacitor for compensation, and the error amplifier PWM conversion circuit for generating a PWM signal having a duty corresponding to the result of the compare, and the voltage applied to the load circuit and generates a voltage VA having an adjusted supply voltage in response to the PWM signal output from the PWM conversion circuit A switching regulator including a generation circuit; a first comparator that compares the first voltage with a second reference voltage that is higher than the first reference voltage; and the first pulse dimming signal includes the first pulse dimming signal. According to the comparison result of the first comparator at the first timing when the logic changes from the first logic to the second logic and the length of the first logic period of the first pulse dimming signal. A delay circuit that generates a second pulse dimming signal that delays or does not delay the first pulse dimming signal, and the second pulse dimming signal output from the delay circuit is the first logic Sometimes the first The voltage generation circuit generates a voltage while the connection of the capacitor remains as it is, and the first capacitor is disconnected from the circuit and the voltage generation of the voltage generation circuit stops at the second logic. The delay circuit of the pulse width expansion circuit includes a first logic period of the first pulse dimming signal in which the voltage VA is a necessary and sufficient value. When the time is longer than the time, or the first logic of the first pulse dimming signal is shorter than the first time, and the first voltage at the first timing is equal to or higher than the second reference voltage. In this case, the first pulse dimming signal is output as it is as the second pulse width dimming signal, and the first logic period of the first pulse dimming signal is greater than the first time. Short and said first tie When the first voltage at the time of ming is lower than the second reference voltage, the second pulse adjustment is obtained by extending the first logic period of the first pulse dimming signal by a second time. An optical signal is output.
The invention according to claim 2 is the light emitting element drive circuit according to claim 1, wherein the delay circuit of the pulse width expansion circuit has a longer period in which the first voltage is equal to or higher than the second reference voltage. The second time is shortened.
According to a third aspect of the present invention, in the light emitting element driving circuit according to the first or second aspect, the error amplifier is replaced with a transconductance amplifier, and the first capacitor is connected between the input side and the ground side of the PWM conversion circuit. The output of the transconductance amplifier is cut off or the operation of the transconductance amplifier is stopped when the second pulse dimming signal is the second logic. To do.
According to a fourth aspect of the present invention, in the light emitting element driving circuit according to any one of the first to third aspects, gate means connected between the PWM conversion circuit and the voltage generation circuit is provided, and the gate The means is characterized in that when the second pulse dimming signal is the first logic, the output signal of the PWM conversion circuit is input to the voltage generation circuit.


本発明によれば、第1のパルス調光信号の第1の論理の期間が第1の時間より短かく且つ第1のタイミング時の第1の電圧が第2の参照電圧よりも低いときは、第1のパルス調光信号の第1の論理の期間を第2の時間だけ延長した前記第2のパルス調光信号を出力するので、第1のパルス調光信号を用いて発光素子の点灯時間を極端に短くし、発光素子を暗い状態で点灯させる場合であっても、発光素子に電圧を供給するスイッチングレギュレータを安定させて動作させることが可能となる。   According to the present invention, when the first logic period of the first pulse dimming signal is shorter than the first time and the first voltage at the first timing is lower than the second reference voltage. Since the second pulse dimming signal obtained by extending the first logic period of the first pulse dimming signal by a second time is output, the light emitting element is turned on using the first pulse dimming signal. Even when the time is extremely shortened and the light emitting element is lit in a dark state, the switching regulator that supplies voltage to the light emitting element can be stably operated.

本発明の第1の実施例のLED駆動回路の回路図である。It is a circuit diagram of the LED drive circuit of the 1st Example of this invention. 図1のLED駆動回路の動作波形図である。It is an operation | movement waveform diagram of the LED drive circuit of FIG. 図1のLED駆動回路の動作波形図である。It is an operation | movement waveform diagram of the LED drive circuit of FIG. 本発明の第2の実施例のLED駆動回路の回路図である。It is a circuit diagram of the LED drive circuit of the 2nd Example of this invention. 本発明の第3の実施例のLED駆動回路の回路図である。It is a circuit diagram of the LED drive circuit of the 3rd Example of this invention. 従来のLED駆動回路の回路図である。It is a circuit diagram of the conventional LED drive circuit. 図6のLED駆動回路の動作波形図である。FIG. 7 is an operation waveform diagram of the LED drive circuit of FIG. 6.

<第1の実施例>
図1に本発明の第1の実施例のLED駆動回路を示す。図6で説明したものと同じものには同じ符号を付けた。本実施例は、図6に示した従来のLED駆動回路に加え、パルス幅伸張回路40を追加したものである。このパルス幅伸張回路40は、LED11のカソード側の電圧VKを参照電圧VREF2の電圧源41と比較する比較器42を有する。この参照電圧VREF2は、エラーアンプ32の参照電圧VREF1に対して、VREF2>VREF1の関係にある。また、パルス調光信号P1が“H”→“L”に切り替わる際に、比較器42の出力電圧の論理を保持するラッチ回路43を有する。さらに、パルス調光信号P1をスイッチSW2やアンドゲート34に伝達する経路に挿入した遅延回路44を有する。44aはその遅延回路44の制御端子である。
<First embodiment>
FIG. 1 shows an LED drive circuit according to a first embodiment of the present invention. The same components as those described with reference to FIG. In this embodiment, a pulse width expansion circuit 40 is added to the conventional LED driving circuit shown in FIG. The pulse width expansion circuit 40 includes a comparator 42 that compares the voltage VK on the cathode side of the LED 11 with a voltage source 41 of the reference voltage VREF2. The reference voltage VREF2 has a relationship of VREF2> VREF1 with respect to the reference voltage VREF1 of the error amplifier 32. Further, it has a latch circuit 43 that holds the logic of the output voltage of the comparator 42 when the pulse dimming signal P1 is switched from “H” to “L”. Furthermore, it has a delay circuit 44 inserted in the path for transmitting the pulse dimming signal P1 to the switch SW2 and the AND gate 34. 44a is a control terminal of the delay circuit 44.

遅延回路44は以下のような動作を行う。
(a)パルス調光信号P1の“H”期間が所定時間T1よりも長い場合は、制御端子44aが“H”、“L”のいずれの場合であっても、パルス調光信号P2として、パルス調光信号P1をそのまま出力する。この期間T1は、その期間T1の昇圧動作によって電圧VAが必要十分な値になる時間である。
(b)パルス調光信号P1の“H”期間が所定時間T1よりも短くても、制御端子44aが“L”の場合は、パルス調光信号P2として、パルス調光信号P1をそのまま出力する。
(c)パルス調光信号P1の“H”期間が所定時間T1よりも短く、且つ、制御端子44aが“H”の場合は、パルス調光信号P1が“H”→“L”に切り替わっても、その切り換わったタイミング時点から遅延時間tdfだけ“H”状態を保持した後に、“H”→“L”に切り替わるパルス調光信号P2を出力する。
The delay circuit 44 performs the following operation.
(A) When the “H” period of the pulse dimming signal P1 is longer than the predetermined time T1, the pulse dimming signal P2 is obtained regardless of whether the control terminal 44a is “H” or “L”. The pulse dimming signal P1 is output as it is. This period T1 is a time during which the voltage VA becomes a necessary and sufficient value by the boosting operation in the period T1.
(B) Even if the “H” period of the pulse dimming signal P1 is shorter than the predetermined time T1, if the control terminal 44a is “L”, the pulse dimming signal P1 is output as it is as the pulse dimming signal P2. .
(C) When the “H” period of the pulse dimming signal P1 is shorter than the predetermined time T1 and the control terminal 44a is “H”, the pulse dimming signal P1 is switched from “H” to “L”. Also, after maintaining the “H” state for the delay time tdf from the timing of the switching, the pulse dimming signal P2 that switches from “H” to “L” is output.

すなわち、パルス調光信号P1の“H”期間が所定時間T1よりも長い場合、又はパルス調光信号P1の“H”期間が所定時間T1よりも短くても、LED11のカソード側の電圧VKが参照電圧VREF2よりも高い(VK≧VREF2)ときは、比較器42の出力が“L”となるので、パルス調光信号P1が“H”→“L”に切り替わるとき、ラッチ回路43のQ出力が“L”となり、制御端子44aが“L”となるので、遅延回路44はパルス調光信号P1をパルス調光信号P2としてそのまま出力して、従来と同様な動作が行われる。   That is, when the “H” period of the pulse dimming signal P1 is longer than the predetermined time T1, or even if the “H” period of the pulse dimming signal P1 is shorter than the predetermined time T1, the voltage VK on the cathode side of the LED 11 is When the voltage is higher than the reference voltage VREF2 (VK ≧ VREF2), the output of the comparator 42 is “L”. Therefore, when the pulse dimming signal P1 is switched from “H” to “L”, the Q output of the latch circuit 43 is output. Becomes "L" and the control terminal 44a becomes "L", so that the delay circuit 44 outputs the pulse dimming signal P1 as it is as the pulse dimming signal P2, and the same operation as the conventional one is performed.

一方、パルス調光信号P1の“H”期間が所定時間T1よりも短く、カソード側の電圧VKが参照電圧VREF2よりも低い(VK<VREF2)ときは、比較器42の出力が“H”となるので、パルス調光信号P1が“H”→“L”に切り替わるとき、ラッチ回路43の出力が“H”となり、制御端子44aが“H”となるので、遅延回路44から出力するパルス調光信号P2の“H”期間が、パルス調光信号P1の“H”期間よりも遅延時間tdfだけ延長され、その分スイッチSW2は長くオンし、昇圧型スイッチングレギュレータ30が遅延時間tdf分だけ長く動作を続ける。このように、電圧VKの制御目標値が、参照電圧VREF1から参照電圧VREF2に切り替わる。   On the other hand, when the “H” period of the pulse dimming signal P1 is shorter than the predetermined time T1 and the cathode-side voltage VK is lower than the reference voltage VREF2 (VK <VREF2), the output of the comparator 42 becomes “H”. Therefore, when the pulse dimming signal P1 is switched from “H” to “L”, the output of the latch circuit 43 becomes “H” and the control terminal 44a becomes “H”. The “H” period of the optical signal P2 is extended by the delay time tdf as compared with the “H” period of the pulse dimming signal P1, and the switch SW2 is turned on correspondingly, and the step-up switching regulator 30 is increased by the delay time tdf. Continue to operate. Thus, the control target value of the voltage VK is switched from the reference voltage VREF1 to the reference voltage VREF2.

このように、本実施例のLED駆動回路は、パルス調光信号P1の“H”期間の長短とパルス調光信号P1が“H”→“L”に変化したときのLED11のカソード側の電圧VKの高低に応じて、動作状態が切り替わる。図2に、パルス調光信号P1が入力したときの図1の各部の電圧、電流を示す。VFBは抵抗RNF1と比較器42の反転入力端子の電圧、IC1はキャパシタCNF1に流れる電流である。また、パルス調光信号P1の“H”期間をtph、“L”期間をtplとしている。tdfは上記したように遅延回路44の遅延時間である。以下、詳しく説明する。   As described above, the LED driving circuit of the present embodiment is configured such that the length of the “H” period of the pulse dimming signal P1 and the voltage on the cathode side of the LED 11 when the pulse dimming signal P1 changes from “H” to “L”. The operating state is switched according to the level of VK. FIG. 2 shows the voltage and current of each part of FIG. 1 when the pulse dimming signal P1 is input. VFB is a voltage of the resistor RNF1 and the inverting input terminal of the comparator 42, and IC1 is a current flowing through the capacitor CNF1. Further, the “H” period of the pulse dimming signal P1 is tph, and the “L” period is tpl. tdf is the delay time of the delay circuit 44 as described above. This will be described in detail below.

まず、パルス調光信号P1が“H”で負荷回路10のLEDが点灯しているときは、昇圧型スイッチングレギュレータ30が起動後一定時間経過して定常状態になると、電圧VKは参照電圧VREF1に等しい電圧(VK=VREF1)になる。このため、キャパシタCNF1に流れる電流IC1はほぼ0になり、エラーアンプ32の出力電圧は一定値(ほぼ0V)に収束している。パルス調光信号P1を一定の周波数として、“H”期間が前記した時間T1よりも長い場合は、昇圧型スイッチングレギュレータ30は上記の状態を保持する。この状態を図2(a)に示した。   First, when the pulse dimming signal P1 is “H” and the LED of the load circuit 10 is lit, the voltage VK becomes the reference voltage VREF1 when the boosting switching regulator 30 is in a steady state after a certain period of time has elapsed after startup. It becomes equal voltage (VK = VREF1). For this reason, the current IC1 flowing through the capacitor CNF1 becomes almost 0, and the output voltage of the error amplifier 32 converges to a constant value (almost 0V). When the pulse dimming signal P1 is set to a constant frequency and the “H” period is longer than the above-described time T1, the step-up switching regulator 30 maintains the above state. This state is shown in FIG.

次に、パルス調光信号P1を一定の周波数として、そのパルス調光信号P1の“H”期間が前記時間T1よりも短いときは、パルス調光信号P1が“H”→“L”に切り替わったとき、直前にVK<VREF2であれば、比較器42の出力が“H”となり、ラッチ回路43のQ出力が“H”となって、制御端子44aが“H”となり、遅延回路44から出力するパルス調光信号P2は、パルス調光信号P1が“H”→“L”に変化した後でも、遅延時間tdfの間だけ“H”状態を継続する。このときは、電圧VFBは、スイッチSW1がb側に切り替わることで接地電位まで低下するが、スイッチSW2がオンした状態を維持するので、キャパシタCNF1は、遅延時間tdfの間だけ余分に充電される。このとき、スイッチSW1がb側に切り替わっているので、エラーアンプ32の出力電圧はVREF1であり、キャパシタCNF1に蓄積される電荷Qtdfは、以下のようになる。RNF1は抵抗RNF1の抵抗値である。

Figure 0005660936
Next, when the pulse dimming signal P1 is set to a constant frequency and the “H” period of the pulse dimming signal P1 is shorter than the time T1, the pulse dimming signal P1 is switched from “H” to “L”. If VK <VREF2 immediately before, the output of the comparator 42 becomes “H”, the Q output of the latch circuit 43 becomes “H”, the control terminal 44a becomes “H”, and the delay circuit 44 The pulse dimming signal P2 to be output continues to be in the “H” state only during the delay time tdf even after the pulse dimming signal P1 changes from “H” to “L”. At this time, the voltage VFB is lowered to the ground potential by switching the switch SW1 to the b side, but the switch SW2 is kept on, so that the capacitor CNF1 is charged only during the delay time tdf. . At this time, since the switch SW1 is switched to the b side, the output voltage of the error amplifier 32 is VREF1, and the charge Qtdf accumulated in the capacitor CNF1 is as follows. RNF1 is the resistance value of the resistor RNF1.
Figure 0005660936

この結果、エラーアンプ32の出力電圧は、パルス調光信号P1が“H”状態で昇圧型スイッチングレギュレータ30が収束状態にあるときよりも引き上げられる。エラーアンプ32出力電圧の増加は、PWM変換回路33により、昇圧PWM信号のデューティ比を大きくし、昇圧型スイッチングレギュレータ30の出力電圧VAを増加させる。この状態を図2(b)に示した。   As a result, the output voltage of the error amplifier 32 is raised more than when the step-up switching regulator 30 is in the convergence state when the pulse dimming signal P1 is in the “H” state. To increase the output voltage of the error amplifier 32, the PWM conversion circuit 33 increases the duty ratio of the boost PWM signal and increases the output voltage VA of the boost switching regulator 30. This state is shown in FIG.

次に、この後、再度パルス変調信号P1が“H”になったときは、LED11のカソード電圧VKの増大につながり、電圧VFBの値も参照電圧VREF1に比べ、dVREFだけ高くなる。この“H”の期間tphは、キャパシタCNF1には以下のような電流IC1(t)が流れる。

Figure 0005660936
この電流IC1(t)の向きは、式(1)の電荷Qtdfの流れる向きとは逆向きであり、エラーアンプ32の出力電圧を引き下げ、電圧VAを低下させる。 Next, when the pulse modulation signal P1 becomes “H” again after this, it leads to an increase in the cathode voltage VK of the LED 11, and the value of the voltage VFB also becomes higher by dVREF than the reference voltage VREF1. During this “H” period tph, the following current IC1 (t) flows through the capacitor CNF1.
Figure 0005660936
The direction of the current IC1 (t) is opposite to the direction in which the charge Qtdf flows in Expression (1), and the output voltage of the error amplifier 32 is lowered to lower the voltage VA.

この結果として、周期的なパルス調光信号P1を入力した状態で一定時間が経過し、エラーアンプ32の出力電圧が一定の電圧幅内に収束するためには、時間tphと時間tdfの期間中にキャパシタCNF1に流入、流出する電荷が釣り合う必要がある。このため、“H”の時間tph中は、電圧VKは変化するが、この期間の平均電圧VKavは以下の式に示す値に収束する。

Figure 0005660936
As a result, in order for the fixed time to elapse while the periodic pulse dimming signal P1 is input and the output voltage of the error amplifier 32 converge within a fixed voltage width, the period between the time tph and the time tdf Therefore, the charge flowing into and out of the capacitor CNF1 needs to be balanced. For this reason, the voltage VK changes during the time tph of “H”, but the average voltage VKav during this period converges to a value represented by the following equation.
Figure 0005660936

このように、電圧VKの平均VKavの値は、図2(a)の状態から(b)の状態を経て、パルス調光信号P1を“H”状態で固定して通常動作の場合(VK=VREF1)よりも、tdf/tph分だけ高くなる。   Thus, the value of the average VKav of the voltage VK is obtained when the pulse dimming signal P1 is fixed in the “H” state from the state of FIG. 2A to the state of (b) (VK = It is higher than VREF1) by tdf / tph.

LED12のアノード側電圧VAは、遅延時間tdfの期間中は定電流源21が動作を停止しているため上昇を続けるが、時間tphの期間中は下降し、「tph+tdf」のトータルの期間においては、一定の電圧幅内で変動する状態になる。以上の状態を図2(c)に示した。   The anode-side voltage VA of the LED 12 continues to increase during the delay time tdf because the constant current source 21 stops operating, but decreases during the time tph, and during the total period of “tph + tdf”. , The state fluctuates within a certain voltage range. The above state is shown in FIG.

一方、パルス調光信号P1の“H”期間の時間tphが更に短くなると、上記動作が昂進して、パルス調光信号P1が“L”→“H”に変化したときに、LED11のカソード側の電圧VKは更に高くなり、第2の参照電圧VREF2に達する(VK≧VREF2)。すると次に、パルス調光信号P1が“H”→“L”に変化する際の比較器42の出力電圧は“L”になるので、ラッチ回路43のQ出力は“L”となる。このため、遅延回路44はパルス調光信号P1の遅延を行わなくなり、パルス調光信号P2=P1となって、パルス調光信号P2が“L”になると同時にスイッチSW2はオフし、昇圧型スイッチングレギュレータ30も動作を停止する。   On the other hand, when the time tph of the “H” period of the pulse dimming signal P1 is further shortened, when the above operation proceeds and the pulse dimming signal P1 changes from “L” to “H”, the cathode side of the LED 11 The voltage VK becomes higher and reaches the second reference voltage VREF2 (VK ≧ VREF2). Then, since the output voltage of the comparator 42 becomes “L” when the pulse dimming signal P1 changes from “H” to “L”, the Q output of the latch circuit 43 becomes “L”. For this reason, the delay circuit 44 does not delay the pulse dimming signal P1, the pulse dimming signal P2 = P1, the pulse dimming signal P2 becomes “L”, and at the same time the switch SW2 is turned off, and the step-up switching The regulator 30 also stops operating.

この結果、VK≧VREF2である間はパルス調光信号P1が“H”期間の間中に電圧VAが低下し、再びVK<VREF2になった時点で遅延回路44の遅延時間がtdfとなり、電圧VAは上昇する。すなわち、パルス調光信号P2は、パルス調光信号P1の“H”期間を延長した場合と延長しない場合が繰り返されることになる。以上の状態を図3(a)〜(c)に示した。   As a result, while VK ≧ VREF2, the voltage VA decreases while the pulse dimming signal P1 is “H”, and when VK <VREF2 again, the delay time of the delay circuit 44 becomes tdf. VA rises. That is, the pulse dimming signal P2 is repeated when the “H” period of the pulse dimming signal P1 is extended and when it is not extended. The above state is shown in FIGS.

この繰り返しの間隔は、“H”期間延長中にキャパシタCNF1に蓄積される電荷と延長しないときにキャパシタCFN1のから放電される電荷が等しくなることにより求められる。パルス調光信号P1の“H”の延長状態になるパルス調光信号の“H”の間隔をMsとすると、この間隔Msは以下のように求められる。

Figure 0005660936
VKavtphは、LED点灯時における出電圧VKの平均値である。VKavtph≒VREF2とし、VREF1=0.6V,VREF2=1.2V,tph=4μs,tdf=8μsの場合、Ms=2回となる。 The repetition interval is obtained by equalizing the electric charge accumulated in the capacitor CNF1 during the “H” period extension and the electric charge discharged from the capacitor CFN1 when not extending. When the interval “H” of the pulse dimming signal in which the pulse dimming signal P1 is extended to “H” is Ms, this interval Ms is obtained as follows.
Figure 0005660936
VKavtph is an average value of the output voltage VK when the LED is lit. When VKavtph≈VREF2, VREF1 = 0.6V, VREF2 = 1.2V, tph = 4 μs, tdf = 8 μs, Ms = 2 times.

“H”期間がさらに短くなる場合は、VK=VREF2に達すると、“H”期間の延長状態と延長しない状態を一定の間隔で繰り返す動作に移行する。この状態では電圧VKは参照電圧VREF2から一定の電圧幅の範囲で制御される。   When the “H” period is further shortened, when VK = VREF2 is reached, the operation shifts to an operation in which the extended state of the “H” period and the non-extended state are repeated at regular intervals. In this state, the voltage VK is controlled within a certain voltage range from the reference voltage VREF2.

昇圧型スイッチングレギュレータ30のスイッチング動作は、延長状態では常に遅延時間tdf期間分だけ長く確保されるので、昇圧型スイッチングレギュレータ30は十分なスイッチ回数を確保でき、インダクタL1に負荷を駆動するのに十分な電流を流すことができる。   Since the switching operation of the step-up switching regulator 30 is always ensured by the delay time tdf in the extended state, the step-up switching regulator 30 can secure a sufficient number of switches and is sufficient to drive the load to the inductor L1. Current can flow.

以上から明らかなように、本実施例のLED駆動回路においては、パルス調光信号P1の“H”期間が短くなった場合でも、再度、パルス調光信号P1が“H”になった時点では、昇圧スイッチングレギュレータ30の出力電圧VAが高くなっており、LED11のカソード側の電圧VKが参照電圧VREF1を超えて参照電圧VREF2近くになっているので、LEDの明るさは低下しない。   As is clear from the above, in the LED drive circuit of this embodiment, even when the “H” period of the pulse dimming signal P1 is shortened, when the pulse dimming signal P1 becomes “H” again. Since the output voltage VA of the step-up switching regulator 30 is high and the cathode-side voltage VK of the LED 11 exceeds the reference voltage VREF1 and is close to the reference voltage VREF2, the brightness of the LED does not decrease.

したがって、LEDの点灯時間を昇圧型スイッチングレギュレータ30のスイッチング周波数の1周期より短い時間に設定しても、点灯時のLEDの明るさを変化させずに、安定して動作させることが可能となる。   Therefore, even if the lighting time of the LED is set to a time shorter than one cycle of the switching frequency of the step-up switching regulator 30, it becomes possible to operate stably without changing the brightness of the LED during lighting. .

<第2の実施例>
図4に本発明の第2の実施例のLED駆動回路を示す。前記した第1の実施例では、パルス調光信号P1の“L”期間に昇圧型スイッチングレギュレータ30が動作する場合としない場合が一定間隔で繰り返されることがあるが、状況によっては、例えばこれが2回から3回おきに変化する場合があり、電源への配線等から昇圧型スイッチングレギュレータ30が動作することに伴う不規則なノイズが発生する場合が考えられる。理想的にはパルス調光信号P1の“H”になる期間毎に、常に昇圧型スイッチングレギュレータ30の動作が行われることが望ましい。
<Second embodiment>
FIG. 4 shows an LED drive circuit according to a second embodiment of the present invention. In the first embodiment described above, the case where the step-up switching regulator 30 operates during the “L” period of the pulse dimming signal P1 may or may not be repeated at regular intervals. The frequency may change every three times, and there may be a case where irregular noise is generated due to the operation of the step-up switching regulator 30 from the wiring to the power source or the like. Ideally, it is desirable that the step-up switching regulator 30 is always operated every time the pulse dimming signal P1 becomes “H”.

第2の実施例はこの問題を解決する事を目的としており、新たに比較器45を設け、LED11のカソード側の電圧VKが参照電圧VREF2以上になっている(VK≧VREF2)期間は比較器45の出力電圧を“H”にして、抵抗R1を経由してキャパシタC2を充電し、このキャパシタC2に発生した電圧で、遅延回路44の制御端子44bを制御して、遅延時間tdfを変化させるようにするものである。ここでは、VK≧VREF2の状態が長く続くほど、キャパシタC2の電圧が上昇して、遅延回路44の遅延時間tdfを短くする。これにより、tdf/tphの比が大きくなるほど遅延時間tdfを短くし、パルス調光信号P1が“H”になる期間毎に昇圧型スイッチングレギュレータ30が動作するような状態に収束させることができる。   The second embodiment is intended to solve this problem, and a comparator 45 is newly provided. During the period in which the voltage VK on the cathode side of the LED 11 is equal to or higher than the reference voltage VREF2 (VK ≧ VREF2). The output voltage of 45 is set to “H”, the capacitor C2 is charged via the resistor R1, and the control terminal 44b of the delay circuit 44 is controlled by the voltage generated in the capacitor C2 to change the delay time tdf. It is what you want to do. Here, as the state of VK ≧ VREF2 continues longer, the voltage of the capacitor C2 increases and the delay time tdf of the delay circuit 44 is shortened. As a result, the delay time tdf is shortened as the ratio tdf / tph increases, and it is possible to converge to a state in which the step-up switching regulator 30 operates every time the pulse dimming signal P1 is “H”.

<第3の実施例>
図5に本発明の第3の実施例のLED駆動回路を示す。第1および第2の実施例のLED駆動回路では、エラーアンプ32を使用したが、本実施例では、これを電圧/電流変換を行うトランスコンダクタンスアンプ32Aに置き換える。この構成を採用すると、抵抗RNFB1を省略することが可能となる。この場合、第1の実施例におけるスイッチSW4は、PWM変換回路33の入力側とトランスコンダクタンスアンプ32Aの出力端子との間に接続し、位相補償用のキャパシタCNF2はPWM変換回路33の入力側と接地との間に接続する。図5においては、スイッチSW4を用いているが、遅延回路44から出力するパルス調光信号P2が“L”のときにトランスコンタクタンスアンプ32Aの電流出力を停止させるようにしても、同様の効果を得ることができる。
<Third embodiment>
FIG. 5 shows an LED drive circuit according to a third embodiment of the present invention. In the LED driving circuits of the first and second embodiments, the error amplifier 32 is used. In this embodiment, this is replaced with a transconductance amplifier 32A that performs voltage / current conversion. When this configuration is adopted, the resistor RNFB1 can be omitted. In this case, the switch SW4 in the first embodiment is connected between the input side of the PWM conversion circuit 33 and the output terminal of the transconductance amplifier 32A, and the phase compensation capacitor CNF2 is connected to the input side of the PWM conversion circuit 33. Connect to ground. Although the switch SW4 is used in FIG. 5, the same effect can be obtained even when the current output of the transconductance amplifier 32A is stopped when the pulse dimming signal P2 output from the delay circuit 44 is "L". Can be obtained.

<その他の実施例>
なお、以上の各実施例において、負荷回路10は複数のLEDを直列した回路に限られず、1個のLEDを有する場合にも適用できる。また、昇圧型スイッチングレギュレータ30、これに限られるものではなく、降圧型スイッチングレギュレータを使用する場合でも同一の動作が可能である。
<Other examples>
In each of the above embodiments, the load circuit 10 is not limited to a circuit in which a plurality of LEDs are connected in series, and can be applied to a case where there is one LED. The step-up switching regulator 30 is not limited to this, and the same operation is possible even when a step-down switching regulator is used.

10:負荷回路、11,12:LED
20:調光回路、21:定電流源
30,30A:昇圧型スイッチングレギュレータ、31:電圧源、32:エラーアンプ、33:パルス変換回路、34:電圧源
40,40A:パルス幅伸張回路、41:比較器、42:電圧源、43:ラッチ回路、44:遅延回路、44a,44a:制御端子、45:比較器
10: Load circuit, 11, 12: LED
20: Dimming circuit, 21: Constant current source 30, 30A: Step-up switching regulator, 31: Voltage source, 32: Error amplifier, 33: Pulse conversion circuit, 34: Voltage source 40, 40A: Pulse width expansion circuit, 41 : Comparator, 42: Voltage source, 43: Latch circuit, 44: Delay circuit, 44a, 44a: Control terminal, 45: Comparator

Claims (4)

1つの発光素子からなり又は2以上の発光素子が直列接続された負荷回路と、
第1のパルス調光信号が前記発光素子を点灯させる第1の論理のときは動作し、前記第1のパルス調光信号が前記発光素子を消灯させる第2の論理のときは動作が停止される、前記負荷回路に定電流を供給する定電流源を有する調光回路と、
前記第1のパルス調光信号が前記第1の論理のときは前記定電流源に印加する第1の電圧を入力側に取り込んで第1の参照電圧と比較し、前記第1のパルス調光信号が前記第2の論理のときは入力側が接地に接続されるエラーアンプ、該エラーアンプの前記入力側と出力側の間に接続された位相補償用の第1のキャパシタ、前記エラーアンプの前記比較の結果に応じたデューティをもつPWM信号を生成するPWM変換回路、および該PWM変換回路から出力する前記PWM信号に応じて電源電圧を調整した電圧VAを生成して前記負荷回路に印加する電圧生成回路を含むスイッチングレギュレータと、
前記第1の電圧を前記第1の参照電圧よりも高い第2の参照電圧と比較する第1の比較器、および前記第1のパルス調光信号が前記第1の論理から前記第2の論理に変化する第1のタイミング時の前記第1の比較器の比較結果と前記第1のパルス調光信号の前記第1の論理の期間の長短とに応じて前記第1のパルス調光信号を遅延し又は遅延しない第2のパルス調光信号を生成する遅延回路を有し、該遅延回路から出力する前記第2のパルス調光信号が前記第1の論理のときに前記第1のキャパシタの接続がそのままとなると共に前記電圧生成回路が電圧を生成し、前記第2の論理のときに前記第1のキャパシタが回路から切り離されると共に前記電圧生成回路の電圧の生成が停止するようにしたパルス幅伸張回路とを備え、
前記パルス幅伸張回路の前記遅延回路は、前記第1のパルス調光信号の前記第1の論理の期間が前記電圧VAが必要十分な値になる第1の時間より長いとき、又は前記第1のパルス調光信号の前記第1の論理が前記第1の時間より短かく且つ前記第1のタイミング時の前記第1の電圧が前記第2の参照電圧以上のときは、前記第2のパルス幅調光信号として前記第1のパルス調光信号をそのまま出力し、前記第1のパルス調光信号の前記第1の論理の期間が前記第1の時間より短かく且つ前記第1のタイミング時の前記第1の電圧が前記第2の参照電圧よりも低いときは、前記第1のパルス調光信号の第1の論理の期間を第2の時間だけ延長した前記第2のパルス調光信号を出力する、
ことを特徴とする発光素子駆動回路。
A load circuit comprising one light emitting element or two or more light emitting elements connected in series;
The operation is performed when the first pulse dimming signal is in the first logic for turning on the light emitting element, and the operation is stopped when the first pulse dimming signal is in the second logic for turning off the light emitting element. A dimming circuit having a constant current source for supplying a constant current to the load circuit;
When the first pulse dimming signal has the first logic, the first voltage to be applied to the constant current source is taken into the input side and compared with the first reference voltage, and the first pulse dimming is performed. When the signal is the second logic, an error amplifier whose input side is connected to the ground, a first capacitor for phase compensation connected between the input side and the output side of the error amplifier, and the error amplifier A PWM conversion circuit that generates a PWM signal having a duty according to the comparison result, and a voltage that generates a voltage VA adjusted in a power supply voltage according to the PWM signal output from the PWM conversion circuit and applies the voltage VA to the load circuit A switching regulator including a generation circuit;
A first comparator that compares the first voltage to a second reference voltage that is higher than the first reference voltage; and the first pulse dimming signal is from the first logic to the second logic. The first pulse dimming signal is changed according to the comparison result of the first comparator at the first timing when the first timing is changed and the length of the first logic period of the first pulse dimming signal. A delay circuit that generates a second pulse dimming signal that is delayed or not delayed, and the second pulse dimming signal output from the delay circuit is of the first logic, and A pulse in which the voltage generation circuit generates a voltage while the connection remains as it is, and the generation of the voltage of the voltage generation circuit is stopped while the first capacitor is disconnected from the circuit in the second logic. A width expansion circuit,
The delay circuit of the pulse width expansion circuit is configured such that the first logic period of the first pulse dimming signal is longer than a first time when the voltage VA is a necessary and sufficient value , or the first When the first logic of the pulse dimming signal is shorter than the first time and the first voltage at the first timing is greater than or equal to the second reference voltage, the second pulse The first pulse dimming signal is output as it is as a width dimming signal, and the first logic period of the first pulse dimming signal is shorter than the first time and at the first timing. When the first voltage of the first pulse is lower than the second reference voltage, the second pulse dimming signal obtained by extending the first logic period of the first pulse dimming signal by a second time Output,
A light-emitting element driving circuit.
請求項1に記載の発光素子駆動回路において、
前記パルス幅伸張回路の前記遅延回路は、前記第1の電圧が前記第2の参照電圧以上の期間が長いほど、前記第2の時間が短縮されることを特徴とする発光素子駆動回路。
In the light emitting element drive circuit according to claim 1,
The light emitting element driving circuit according to claim 1, wherein the delay circuit of the pulse width expansion circuit shortens the second time as the period of the first voltage equal to or higher than the second reference voltage is longer.
請求項1又は2に記載の発光素子駆動回路において、
前記エラーアンプをトランスコンダクタンスアンプに置き換えると共に前記第1のキャパシタを前記PWM変換回路の入力側と接地側との間の接続に置き換え、前記第2のパルス調光信号が前記第2の論理のとき、前記トランスコンダクタンスアンプの出力を遮断し、又は前記トランスコンダクタンスアンプの動作を停止させるようにしたことを特徴とする発光素子駆動回路。
In the light emitting element drive circuit according to claim 1 or 2,
When the error amplifier is replaced with a transconductance amplifier and the first capacitor is replaced with a connection between the input side and the ground side of the PWM conversion circuit, and the second pulse dimming signal is the second logic A light emitting element driving circuit characterized in that the output of the transconductance amplifier is cut off or the operation of the transconductance amplifier is stopped.
請求項1乃至3のいずれか1つに記載の発光素子駆動回路において、
前記PWM変換回路と前記電圧生成回路との間に接続されるゲート手段を設け、該ゲート手段は、前記第2のパルス調光信号が前記第1の論理のとき、前記PWM変換回路の出力信号を前記電圧生成回路に入力させることを特徴とする発光素子駆動回路。
In the light emitting element drive circuit according to any one of claims 1 to 3,
Gate means connected between the PWM conversion circuit and the voltage generation circuit is provided, and the gate means outputs an output signal of the PWM conversion circuit when the second pulse dimming signal is the first logic. Is input to the voltage generation circuit.
JP2011052508A 2011-03-10 2011-03-10 Light emitting element drive circuit Active JP5660936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052508A JP5660936B2 (en) 2011-03-10 2011-03-10 Light emitting element drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052508A JP5660936B2 (en) 2011-03-10 2011-03-10 Light emitting element drive circuit

Publications (2)

Publication Number Publication Date
JP2012190959A JP2012190959A (en) 2012-10-04
JP5660936B2 true JP5660936B2 (en) 2015-01-28

Family

ID=47083815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052508A Active JP5660936B2 (en) 2011-03-10 2011-03-10 Light emitting element drive circuit

Country Status (1)

Country Link
JP (1) JP5660936B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235281B2 (en) * 2013-09-20 2017-11-22 ローム株式会社 LIGHT EMITTING ELEMENT DRIVE CIRCUIT, ITS CONTROL CIRCUIT, CONTROL METHOD, AND LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME
WO2016051739A1 (en) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 Light switch device
KR102539962B1 (en) 2017-09-05 2023-06-05 삼성전자주식회사 Led driving apparatus and lighting apparatus
CN117479381B (en) * 2023-12-25 2024-03-26 深圳利普芯微电子有限公司 Dimming control circuit, driving chip and LED driving system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529718B2 (en) * 2000-10-03 2004-05-24 ローム株式会社 Light emitting device of portable telephone and driving IC therefor
JP4763225B2 (en) * 2003-01-29 2011-08-31 新日本無線株式会社 LED drive circuit
JP2006262103A (en) * 2005-03-17 2006-09-28 Fuji Electric Holdings Co Ltd Volt-ampere converting circuit and error amplifying circuit
JP4890837B2 (en) * 2005-11-07 2012-03-07 ローム株式会社 Power supply
JP5225940B2 (en) * 2009-06-23 2013-07-03 新日本無線株式会社 Load drive circuit

Also Published As

Publication number Publication date
JP2012190959A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5523917B2 (en) Switching power supply control circuit, control method, and light emitting device and electronic apparatus using them
JP5616768B2 (en) LIGHT EMITTING ELEMENT DRIVE CIRCUIT, LIGHT EMITTING DEVICE USING THE SAME, AND ELECTRONIC DEVICE
JP5513829B2 (en) Current drive circuit
KR101775159B1 (en) Control circuit and control method of switching power supply and light emitting apparatus and electronic device using the same
US8026676B2 (en) Dimming control circuit
JP4871970B2 (en) Power supply
JP5819313B2 (en) Electronic driver dimming control for large area solid state OLED using lamp pulse modulation
US20120286686A1 (en) Lighting device for solid-state light source and illumination apparatus using same
JP2010040878A (en) Lighting device for light-emitting diode
JP2006050894A (en) Power feeding for multiple load by dc-dc converter
KR102019051B1 (en) LED driving circuit
US9030114B2 (en) LED drive circuit and LED driving method
JP5660936B2 (en) Light emitting element drive circuit
US20120146542A1 (en) Ramp controlled driver for series/parallel solid state lighting devices
CN102752906B (en) Lighting device and illumination apparatus having the same
WO2018198594A1 (en) Led driver, and led drive circuit device and electronic equipment that use said led driver
CN102469665B (en) Drive system and drive method of light-emitting diode
TWI392208B (en) Driving circuit of light source and methods of powering led light source
JP5839222B2 (en) Constant current power supply
JP5154531B2 (en) LED drive device
US9287775B2 (en) Power supply device and lighting device
JP5553540B2 (en) Driver circuit and control circuit
JP7415854B2 (en) lighting equipment
JP7345113B2 (en) Lighting systems and lighting equipment
JP7425399B2 (en) Power supplies and lighting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R150 Certificate of patent or registration of utility model

Ref document number: 5660936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250