TWI392208B - Driving circuit of light source and methods of powering led light source - Google Patents
Driving circuit of light source and methods of powering led light source Download PDFInfo
- Publication number
- TWI392208B TWI392208B TW101126020A TW101126020A TWI392208B TW I392208 B TWI392208 B TW I392208B TW 101126020 A TW101126020 A TW 101126020A TW 101126020 A TW101126020 A TW 101126020A TW I392208 B TWI392208 B TW I392208B
- Authority
- TW
- Taiwan
- Prior art keywords
- energy storage
- power line
- output voltage
- state
- current
- Prior art date
Links
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
本發明係有關一種驅動電路,特別是一種為發光二極體(LED)光源供電的電路和方法。The present invention relates to a drive circuit, and more particularly to a circuit and method for powering a light emitting diode (LED) light source.
在顯示系統中,驅動電路驅動一或多個光源以照亮顯示幕。例如,在使用發光二極體(LED)為背光源的液晶顯示器(LCD)中,LED陣列被用來照亮液晶顯示幕。LED陣列通常包括一或多串LED鏈,每串LED鏈包括串聯耦接的一組LED。In a display system, a drive circuit drives one or more light sources to illuminate the display. For example, in a liquid crystal display (LCD) using a light emitting diode (LED) as a backlight, an LED array is used to illuminate the liquid crystal display. An LED array typically includes one or more strings of LEDs, each string of LEDs comprising a set of LEDs coupled in series.
圖1所示為傳統光源驅動電路100的方塊圖。光源驅動電路100驅動LED鏈106,包括一轉換器電路102、一開關控制器104和一開關調節器108。轉換器電路102接收一輸入電壓VIN ,在一電源線141上為LED鏈106提供一輸出電壓VOUT 。開關調節器108包括與LED鏈106串聯連接的一電感L1。開關調節器108還包括一開關S1和二極體D1,用來控制流經電感L1的電流。更具體地說,開關控制器104提供一脈衝寬度調變(PWM)信號130以閉合或關斷開關S1。當開關S1閉合時,二極體D1被逆向偏置,一電流依序流經電源線141、LED鏈106、電感L1、開關S1、和一電阻RSEN 。輸出電壓VOUT 為LED鏈106供電,並為電感L1充電。當開關S1被斷開時,二極體D1被順向偏置,電流依序流經電感L1、二極體D1、電源線141、和LED鏈106。電感L1放電以為LED鏈106供電。因此,透過調整脈衝寬 度調變信號130的責任週期以調節流經電感L1之電流的平均值,進而調節流經LED鏈106的電流。1 is a block diagram of a conventional light source driving circuit 100. The light source driving circuit 100 drives the LED chain 106, and includes a converter circuit 102, a switch controller 104, and a switching regulator 108. Converter circuit 102 receives an input voltage V IN and provides an output voltage V OUT to LED chain 106 on a power supply line 141. Switching regulator 108 includes an inductor L1 coupled in series with LED chain 106. The switching regulator 108 also includes a switch S1 and a diode D1 for controlling the current flowing through the inductor L1. More specifically, switch controller 104 provides a pulse width modulation (PWM) signal 130 to turn switch S1 on or off. When the switch S1 is closed, the diode D1 is reversely biased, and a current flows through the power line 141, the LED chain 106, the inductor L1, the switch S1, and a resistor R SEN in sequence. The output voltage V OUT supplies power to the LED chain 106 and charges the inductor L1. When the switch S1 is turned off, the diode D1 is forward biased, and current flows sequentially through the inductor L1, the diode D1, the power supply line 141, and the LED chain 106. Inductor L1 is discharged to power LED chain 106. Therefore, by adjusting the duty cycle of the pulse width modulation signal 130 to adjust the average value of the current flowing through the inductor L1, the current flowing through the LED chain 106 is adjusted.
然而,當開關S1關斷時,二極體D1的陽極電壓上升至大於輸出電壓VOUT 以順向偏置二極體D1。於是,開關S1兩端的電壓大致等於輸出電壓VOUT 。當開關S1閉合時,二極體D1兩端電壓大致等於輸出電壓VOUT 。因此,傳統之光源驅動電路100中所使用之開關元件(例如,開關S1和二極體D1)的額定電壓必須大於輸出電壓VOUT 。否則,當工作電壓大致等於輸出電壓VOUT 時,開關元件會被損壞。當為實現更高的亮度而增加LED鏈106中的LED數目時,輸出電壓VOUT 增大。因此,具有較高額定電壓的開關元件增加了傳統驅動電路100的功耗和成本。However, when switch S1 is turned off, the anode voltage of diode D1 rises above the output voltage V OUT to bias bias diode D1 in the forward direction. Thus, the voltage across switch S1 is substantially equal to the output voltage V OUT . When the switch S1 is closed, the voltage across the diode D1 is substantially equal to the output voltage V OUT . Therefore, the switching voltages of the switching elements (for example, the switches S1 and the diodes D1) used in the conventional light source driving circuit 100 must be larger than the output voltage V OUT . Otherwise, when the operating voltage is approximately equal to the output voltage V OUT , the switching element is damaged. When the number of LEDs in the LED chain 106 is increased to achieve higher brightness, the output voltage V OUT increases. Therefore, a switching element having a higher rated voltage increases the power consumption and cost of the conventional driving circuit 100.
本發明的目的為提供一種光源驅動電路,包括:一轉換器電路,在一第一電源線上提供一第一輸出電壓為一發光二極體光源供電,並在一第二電源線上提供小於該第一輸出電壓的一第二輸出電壓;一儲能元件,耦接至該發光二極體光源,調節流經該發光二極體光源的一電流;以及一開關元件,耦接至該轉換器電路和該儲能元件,當該開關元件工作於一第一狀態時,該儲能元件充電,當該開關元件工作於一第二狀態時,該儲能元件放電,其中,該轉換器電路提供該第二輸出電壓,以在該第一狀態和該第二狀態時,保持該開關元件兩端的一工作電壓小於該第一輸出電壓。An object of the present invention is to provide a light source driving circuit comprising: a converter circuit for supplying a first output voltage to a light emitting diode light source on a first power line, and providing less than the first power line a second output voltage of the output voltage; an energy storage component coupled to the light emitting diode light source to regulate a current flowing through the light emitting diode light source; and a switching element coupled to the converter circuit And the energy storage component, the energy storage component is charged when the switching component operates in a first state, and the energy storage component is discharged when the switching component operates in a second state, wherein the converter circuit provides the And a second output voltage to maintain an operating voltage across the switching element less than the first output voltage in the first state and the second state.
本發明還提供一種光源驅動電路,包括:一轉換器電路,在一第一電源線上提供一第一輸出電壓,以對多個發光二極體光源供電,並在一第二電源線上提供小於該第一輸出電壓的一第二輸出電壓;以及多個開關調節器,耦接至該轉換器電路,調整流經該多個發光二極體光源的多個電流,每一該開關調節器包括一開關元件,當該開關元件工作於一第一狀態時,一儲能元件充電,當該開關元件工作於一第二狀態時,該儲能元件放電,透過調整該儲能元件充電和放電的持續時間比調節流經一相對應發光二極體光源的電流,該轉換器電路提供該第二輸出電壓,以在該第一狀態和該第二狀態時,保持該開關元件兩端的一工作電壓小於該第一輸出電壓。The present invention also provides a light source driving circuit, comprising: a converter circuit, providing a first output voltage on a first power line to supply power to a plurality of light emitting diode sources, and providing less than a second power line a second output voltage of the first output voltage; and a plurality of switching regulators coupled to the converter circuit to adjust a plurality of currents flowing through the plurality of light emitting diode sources, each of the switching regulators including a switching element, when the switching element operates in a first state, an energy storage component is charged, and when the switching component operates in a second state, the energy storage component discharges, by adjusting the charging and discharging of the energy storage component The time ratio adjusts a current flowing through a corresponding light emitting diode source, the converter circuit provides the second output voltage to maintain an operating voltage across the switching element less than the first state and the second state The first output voltage.
本發明還提供一種發光二極體供電方法,包括:在一第一電源線上提供一第一輸出電壓為一發光二極體光源供電;在一第二電源線上提供小於該第一輸出電壓的一第二輸出電壓;一開關元件工作於一第一狀態時,為一儲能元件充電;該開關元件工作於一第二狀態時,該儲能元件放電;調整該開關元件處於該第一狀態和該第二狀態的持續時間比來調節流經該發光二極體光源的一電流;以及提供該第二輸出電壓,以在該第一狀態和該第二狀態中,保持該開關元件兩端的一工作電壓小於該第一輸出電壓。The invention also provides a method for supplying a light emitting diode, comprising: providing a first output voltage on a first power line to supply power to a light emitting diode source; and providing a second power line on the second power line that is smaller than the first output voltage a second output voltage; when a switching element operates in a first state, charging an energy storage component; when the switching component operates in a second state, the energy storage component is discharged; adjusting the switching component in the first state and Maintaining a current flowing through the light emitting diode light source by a duration ratio of the second state; and providing the second output voltage to maintain one of the two ends of the switching element in the first state and the second state The operating voltage is less than the first output voltage.
以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明 限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。A detailed description of the embodiments of the present invention will be given below. Although the invention will be described in connection with the embodiments, it should be understood that this is not intended to mean the invention Limited to these embodiments. Rather, the invention is to cover various modifications, equivalents, and equivalents of the invention as defined by the scope of the appended claims.
此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。In addition, in the following detailed description of the embodiments of the invention However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention.
圖2所示為根據本發明一實施例負載驅動電路200的方塊圖。在一實施例中,負載為一光源206。負載驅動電路200包括一轉換器電路202、一開關控制器204、一開關調節器208和一電流感測器210。轉換器電路202接收一輸入電壓VIN ,在一電源線241上產生一輸出電壓VOUT_H ,並在另一電源線242上產生小於輸出電壓VOUT_H 的另一輸出電壓VOUT_L 。輸出電壓VOUT_H 用於驅動光源206。輸出電壓VOUT_L 用於降低開關調節器208中一或多個開關元件的工作電壓。2 is a block diagram of a load drive circuit 200 in accordance with an embodiment of the present invention. In one embodiment, the load is a light source 206. The load driving circuit 200 includes a converter circuit 202, a switch controller 204, a switching regulator 208, and a current sensor 210. Converter circuit 202 receives an input voltage V IN, generates an output voltage V OUT_H on a power line 241, and generates an output voltage V OUT_H less than the other output voltage V OUT_L power source line 242 on the other. The output voltage V OUT — H is used to drive the light source 206. The output voltage V OUT — L is used to reduce the operating voltage of one or more switching elements in the switching regulator 208.
電流感測器210係耦接至光源206,產生指示流經光源206的電流的一感測信號234。在一個實施例中,開關控制器204基於感測信號234產生一開關控制信號230和一回授信號232。在一個實施例中,開關控制器204比較感測信號234和指示電流期望值的一參考信號REF。基於一比較結果,開關控制器204產生開關控制信號230。因此,開關控制信號230控制開關調節器208,以此調整流 經光源206的電流至電流期望值。回授信號232指示當流經光源206之電流具有電流期望值時,光源206所需的順向電壓。因此,轉換器電路202接收回授信號232後調整輸出電壓VOUT_H 以滿足光源206的供電需求。The current sensor 210 is coupled to the light source 206 to generate a sense signal 234 indicative of the current flowing through the light source 206. In one embodiment, switch controller 204 generates a switch control signal 230 and a feedback signal 232 based on sense signal 234. In one embodiment, switch controller 204 compares sense signal 234 with a reference signal REF indicative of a desired current value. Based on a comparison result, the switch controller 204 generates a switch control signal 230. Thus, the switch control signal 230 controls the switching regulator 208 to adjust the current flowing through the source 206 to the current desired value. The feedback signal 232 indicates the desired forward voltage of the source 206 when the current flowing through the source 206 has a current desired value. Therefore, the converter circuit 202 receives the feedback signal 232 and adjusts the output voltage V OUT — H to meet the power supply requirements of the light source 206 .
在一個實施例中,光源206包括一或多串發光二極體鏈。每串LED鏈包括一或多個串聯耦接的LED。在一個實施例中,開關調節器208包括一儲能元件220和一開關元件222。儲能元件220耦接至光源206,流經儲能元件220的電流決定流經光源206的電流。In one embodiment, light source 206 includes one or more strings of light emitting diodes. Each string of LED chains includes one or more LEDs coupled in series. In one embodiment, the switching regulator 208 includes an energy storage component 220 and a switching component 222. The energy storage component 220 is coupled to the light source 206, and the current flowing through the energy storage component 220 determines the current flowing through the light source 206.
在一個實施例中,開關元件222耦接至電源線241、電源線242和一參考節點244。例如,參考節點244若與地相連,則參考節點244的參考電壓VREF 為零。由受控於開關控制信號230的開關元件222可在多個工作狀態下工作,則開關元件222可選擇性地連接電源線241、電源線242和參考節點244至儲能元件220的埠,進而為流經儲能元件220的電流構成不同的電流路徑。In one embodiment, switching element 222 is coupled to power line 241, power line 242, and a reference node 244. For example, if reference node 244 is connected to ground, reference voltage V REF of reference node 244 is zero. The switching element 222 controlled by the switch control signal 230 can operate in a plurality of operating states, and the switching element 222 can selectively connect the power line 241, the power line 242, and the reference node 244 to the buffer of the energy storage element 220. The current flowing through the energy storage element 220 constitutes a different current path.
更具體地說,開關元件222的工作狀態包括開關閉合狀態和開關斷開狀態。在開關閉合狀態,開關元件222導通電流流經電源線241、電源線242和參考節點244之中的兩項。一具有第一電壓值之工作電壓增加流經儲能元件220之電流,因此對儲能元件220充電。在開關斷開狀態,開關元件222導通電流流經電源線241、電源線242和參考節點244中的另兩項。具有第二電壓值之工作電壓降低流經儲能元件220之電流,因此儲能元件220放電。因此,透過調整開關開啟狀態和開關斷開狀態的持續時間比,進 而調整流經光源206的電流(例如,平均值)。開關調節器208的操作將根據圖3、圖6和圖7做進一步描述。More specifically, the operating state of the switching element 222 includes a switch closed state and a switch open state. In the closed state of the switch, the switching element 222 conducts current through two of the power line 241, the power line 242, and the reference node 244. An operating voltage having a first voltage value increases the current flowing through the energy storage element 220, thereby charging the energy storage element 220. In the off state of the switch, the switching element 222 conducts current through the other two of the power line 241, the power line 242, and the reference node 244. The operating voltage having the second voltage value reduces the current flowing through the energy storage element 220, and thus the energy storage element 220 discharges. Therefore, by adjusting the duration of the switch on state and the switch off state, The current flowing through the source 206 (eg, the average) is adjusted. The operation of the switching regulator 208 will be further described with respect to Figures 3, 6, and 7.
圖3所示為根據本發明一實施例負載驅動電路300的示意圖。在一實施例中,負載為一光源206。圖3中與圖2編號相同的元件具有類似的功能。圖3將結合圖2進行描述。3 is a schematic diagram of a load drive circuit 300 in accordance with an embodiment of the present invention. In one embodiment, the load is a light source 206. Elements in Figure 3 that are numbered the same as in Figure 2 have similar functions. Figure 3 will be described in conjunction with Figure 2.
在圖3所示的例子中,光源206包括一由多個LED串聯耦接的LED鏈。負載驅動電路300包括轉換器電路202、開關控制器204、開關調節器208和電流感測器210。電流感測器210包括電阻R3,用於產生一指示流經LED鏈206的LED電流的感測信號234。在一個實施例中,感測信號234為電阻R3兩端的電壓。開關控制器204基於感測信號234產生開關控制信號230(例如,脈衝寬度調變信號)和回授信號232。In the example shown in FIG. 3, light source 206 includes an LED chain that is coupled in series by a plurality of LEDs. The load drive circuit 300 includes a converter circuit 202, a switch controller 204, a switching regulator 208, and a current sensor 210. Current sensor 210 includes a resistor R3 for generating a sense signal 234 indicative of the LED current flowing through LED chain 206. In one embodiment, sense signal 234 is the voltage across resistor R3. The switch controller 204 generates a switch control signal 230 (eg, a pulse width modulation signal) and a feedback signal 232 based on the sense signal 234.
在一個實施例中,轉換器電路202包括轉換器控制器302和雙重轉換器304。轉換器控制器302接收回授信號232,其中回授信號232指示當LED電流達到一電流期望值時,,轉換器控制器302相應地產生LED鏈206所需的順向電壓的控制信號310。雙重轉換器304接收輸入電壓VIN ,並根據控制信號310產生輸出電壓VOUT_H 和VOUT_L 。例如,根據回授信號232,轉換器控制器302調整控制信號310升高或降低輸出電壓VOUT_H ,進而調節LED電流至電流期望值。In one embodiment, converter circuit 202 includes a converter controller 302 and a dual converter 304. The converter controller 302 receives the feedback signal 232, wherein the feedback signal 232 indicates that when the LED current reaches a current desired value, the converter controller 302 accordingly generates a control signal 310 for the forward voltage required by the LED chain 206. The dual converter 304 receives the input voltage V IN and generates output voltages V OUT — H and V OUT — L according to the control signal 310 . For example, based on the feedback signal 232, the converter controller 302 adjusts the control signal 310 to raise or lower the output voltage VOUT_H , thereby adjusting the LED current to the current desired value.
在一個實施例中,雙重轉換器304所輸出之輸出電壓VOUT_H 等於輸出電壓VOUT_L 加上兩者之間之一電壓差VDIFF 。因此, VOUT_H =VOUT_L +VDIFF (1)In one embodiment, the output voltage V OUT — H output by the dual converter 304 is equal to the output voltage V OUT — L plus one of the voltage differences V DIFF between the two. Therefore, V OUT_H =V OUT_L +V DIFF (1)
如方程式(1)中所示,若電壓差VDIFF 為正值,則VOUT_L 小於VOUT_H 。雙重轉換器304的操作將根據圖4A、圖4B和圖5做進一步的描述。As shown in equation (1), if the voltage difference V DIFF is a positive value, V OUT — L is smaller than V OUT — H . The operation of the dual converter 304 will be further described with respect to Figures 4A, 4B and 5.
開關調節器208用於調節流經LED鏈206的LED電流。在圖3所示的實施例中,開關調節器208為一降壓轉換器的結構。開關調節器208中的儲能元件220包括與LED鏈206相連的電感L3。開關調節器208中的開關元件222包括開關S3和二極體D3。例如,開關S3可為N型金屬氧化物半導體(MOS)電晶體。二極體D3的陽極與開關S3的汲極一起耦接到一共同節點,共同節點透過電感L3和LED鏈206耦接至電源線241。二極體D3的陰極與電源線242相連。開關S3的源極透過電阻R3連接至地。Switching regulator 208 is used to regulate the LED current flowing through LED chain 206. In the embodiment shown in FIG. 3, the switching regulator 208 is a buck converter. The energy storage element 220 in the switching regulator 208 includes an inductance L3 coupled to the LED chain 206. The switching element 222 in the switching regulator 208 includes a switch S3 and a diode D3. For example, the switch S3 can be an N-type metal oxide semiconductor (MOS) transistor. The anode of the diode D3 is coupled to a common node together with the drain of the switch S3, and the common node is coupled to the power line 241 through the inductor L3 and the LED chain 206. The cathode of the diode D3 is connected to the power supply line 242. The source of the switch S3 is connected to ground through a resistor R3.
開關元件222根據開關控制信號230選擇性地連接地、電源線241或電源線242至電感L3。更具體地說,開關控制信號230可為脈衝寬度調變(PWM)信號。當開關控制信號230為邏輯高電位時,開關元件222工作於開關閉合狀態,此時開關S3閉合且二極體D3被逆向偏置。因此,電感L3的TA端與電源線241電性耦接,電感L3的另一端TB與地電耦接。於是,電流I1流經電源線241、LED鏈206、電感L3、電阻R3和地,然後從地經過雙重轉換器304流至電源線241。電感L3的工作電壓為第一電壓值。電感L3充電,其電流上升。Switching element 222 is selectively coupled to ground, power line 241 or power line 242 to inductor L3 in accordance with switch control signal 230. More specifically, the switch control signal 230 can be a pulse width modulated (PWM) signal. When the switch control signal 230 is at a logic high level, the switching element 222 operates in a switch closed state, at which time the switch S3 is closed and the diode D3 is reverse biased. Therefore, the TA end of the inductor L3 is electrically coupled to the power line 241, and the other end TB of the inductor L3 is electrically coupled to the ground. Then, the current I1 flows through the power source line 241, the LED chain 206, the inductor L3, the resistor R3, and the ground, and then flows from the ground through the double converter 304 to the power source line 241. The operating voltage of the inductor L3 is the first voltage value. Inductor L3 is charged and its current rises.
當開關控制信號230為邏輯低電位時,開關元件222工作於開關斷開狀態,此時開關S3斷開且二極體D3被順 向偏置。TA端與電源線241電性耦接,TB端與電源線242電性耦接。因此,電流I2透過電源線241、LED鏈206、電感L3、二極體D3和電源線242,然後從電源線242經過雙重轉換器304流至電源線241。電感L3的工作電壓為第二電壓值,第二電壓值由電壓VOUT_H 和VOUT_L 決定之。電感L3放電,其電流下降。When the switch control signal 230 is at a logic low level, the switching element 222 operates in a switch open state, at which time the switch S3 is open and the diode D3 is forward biased. The TA end is electrically coupled to the power line 241, and the TB end is electrically coupled to the power line 242. Therefore, the current I2 passes through the power line 241, the LED chain 206, the inductor L3, the diode D3, and the power line 242, and then flows from the power line 242 through the double converter 304 to the power line 241. The operating voltage of the inductor L3 is a second voltage value, and the second voltage value is determined by the voltages V OUT — H and V OUT — L . Inductor L3 discharges and its current drops.
相應地,在一個實施例中,當開關控制信號230為邏輯高時電感電流上升,當開關控制信號230為邏輯低時電感電流下降。在圖3所示的例子中,透過LED光源206的電流大致等於流經電感L3的平均電流。結果,透過控制開關控制信號230的責任週期,開關控制器204能夠調節流經LED光源206的LED電流至電流期望值。Accordingly, in one embodiment, the inductor current rises when the switch control signal 230 is logic high, and the inductor current decreases when the switch control signal 230 is logic low. In the example shown in FIG. 3, the current through LED source 206 is substantially equal to the average current flowing through inductor L3. As a result, by controlling the duty cycle of the switch control signal 230, the switch controller 204 can adjust the LED current flowing through the LED source 206 to the desired current value.
優點在於,在開關元件222的開關閉合狀態期間,二極體兩端的電壓VD3 小於VOUT_H (如VD3 大致等於VOUT_L )。在開關元件222的開關斷開狀態期間,二極體兩端的電壓VD3 也小於VOUT_H 。也就是說,透過利用雙重轉換器304的輸出電壓VOUT_L ,在開關閉合和開關斷開狀態,開關S3和二極體D3兩端的工作電壓都保持小於VOUT_H 。因此,這些元件的額定電壓降低,從而降低了驅動電路300的功耗和成本。Advantageously, during the switch closed state of switching element 222, voltage V D3 across the diode is less than V OUT — H (eg, V D3 is approximately equal to V OUT — L ). During the switch-off state of the switching element 222, the voltage V D3 across the diode is also less than V OUT — H . That is to say, by using the output voltage V OUT_L of the double converter 304, the operating voltage across the switch S3 and the diode D3 remains smaller than V OUT_H in the switch closing and switching off states. Therefore, the rated voltage of these components is lowered, thereby reducing the power consumption and cost of the driving circuit 300.
圖4A和4B所示為根據本發明一實施例的轉換器電路202的示意圖。圖4A、圖4B中與圖2、圖3編號相同的元件具有類似的功能。圖4A、圖4B將結合圖2、圖3進行描述。4A and 4B are schematic diagrams of a converter circuit 202 in accordance with an embodiment of the present invention. The components numbered in Figures 4A and 4B are the same as those of Figures 2 and 3. 4A and 4B will be described with reference to Figs. 2 and 3.
在圖4A和圖4B所示的例子中,雙重轉換器304包括一電阻402、一開關416、一變壓器T1、二極體410和412、 電容408和414。變壓器T1包括一初級線圈404、一鐵芯405和一次級線圈406。雙重轉換器304分別產生輸出電壓VOUT_L 和電壓差VDIFF 。更具體地說,如圖4A所示,變壓器T1的初級線圈404、二極體412、電容414和開關416構成了開關模式的升壓轉換器452。轉換器控制器302產生一驅動信號460控制開關416。在一個實施例中,驅動信號460為責任週期為DDUTY 的脈衝寬度調變信號,交替地閉合或斷開開關416。因此,開關模式的升壓轉換器452將輸入電壓VIN 轉換成輸出電壓VOUT_L 。如果可忽略電阻402的阻值,電源線242上的輸出電壓VOUT_L 可由方程式(2)計算得之:VOUT_L =VIN /(1-DDUTY ) (2)In the example shown in FIGS. 4A and 4B, the dual converter 304 includes a resistor 402, a switch 416, a transformer T1, diodes 410 and 412, and capacitors 408 and 414. Transformer T1 includes a primary coil 404, a core 405, and a primary coil 406. The dual converter 304 generates an output voltage V OUT — L and a voltage difference V DIFF , respectively . More specifically, as shown in FIG. 4A, the primary coil 404, the diode 412, the capacitor 414, and the switch 416 of the transformer T1 constitute a switching mode boost converter 452. Converter controller 302 generates a drive signal 460 to control switch 416. In one embodiment, drive signal 460 is a pulse width modulated signal with a duty cycle of D DUTY that alternately closes or opens switch 416. Therefore, the switch mode boost converter 452 converts the input voltage V IN into an output voltage V OUT — L . If the resistance of resistor 402 can be ignored, the output voltage V OUT_L on power line 242 can be calculated from equation (2): V OUT_L = V IN / (1-D DUTY ) (2)
此外,如圖4B所示,變壓器T1、二極體410、電容408和開關416構成了開關模式的反馳式轉換器454。反馳式轉換器454根據驅動信號460交替地閉合或斷開開關416,將輸入電壓VIN 轉換成電壓差VDIFF 。電壓差VDIFF 可表示為:VDIFF =VIN *(N406 /N404 )* DDUTY /(1-DDUTY ) (3)Further, as shown in FIG. 4B, the transformer T1, the diode 410, the capacitor 408, and the switch 416 constitute a switch mode flyback converter 454. The flyback converter 454 alternately turns the switch 416 on or off according to the drive signal 460, converting the input voltage V IN into a voltage difference V DIFF . The voltage difference V DIFF can be expressed as: V DIFF =V IN *(N 406 /N 404 )* D DUTY /(1-D DUTY ) (3)
其中,N406 /N404 代表次級線圈406對初級線圈404的匝數比。Where N 406 /N 404 represents the turns ratio of the secondary coil 406 to the primary coil 404.
在一個實施例中,由於次級線圈406的無極性端與電源線242相連,輸出電壓VOUT_H 等於輸出電壓VOUT_L 加上電壓差VDIFF ,如方程式(1)中所示。因此,基於方程式(1)、(2)和(3),VOUT_H =VOUT_L *(1+DDUTY *(N406 /N404 )) (4)In one embodiment, since the coil 406 is connected to the non-polar end of the power line 242, the output voltage equals the output voltage V OUT_H V OUT_L a voltage difference V DIFF, as in equation (1) shown in FIG. Therefore, based on equations (1), (2), and (3), V OUT_H = V OUT_L * (1 + D DUTY * (N 406 / N 404 )) (4)
如方程式(4)中所示,只要責任週期DDUTY 大於零,輸出電壓VOUT_H 大於輸出電壓VOUT_L 。另外,根據方程式(2)和(4),透過調整驅動信號460的責任週期DDUTY ,輸出電壓VOUT_H 和輸出電壓VOUT_L 都相應得到調整。As shown in equation (4), as long as the duty cycle D DUTY is greater than zero, the output voltage V OUT — H is greater than the output voltage V OUT — L . In addition, according to equations (2) and (4), by adjusting the duty cycle D DUTY of the drive signal 460, the output voltage V OUT_H and the output voltage V OUT_L are adjusted accordingly.
優點在於,圖4A所示的升壓轉換器452和圖4B所示的反馳式轉換器454具有例如初級線圈404和開關416的共同元件,這樣可減少了電路中的元件數。因此,轉換器電路202的尺寸降低,負載驅動電路200/300的成本下降。The advantage is that the boost converter 452 shown in FIG. 4A and the flyback converter 454 shown in FIG. 4B have common elements such as the primary coil 404 and the switch 416, which reduces the number of components in the circuit. Therefore, the size of the converter circuit 202 is reduced, and the cost of the load driving circuit 200/300 is lowered.
電阻402提供一電流感測信號462,感測信號462指示流經初級線圈404的電流。轉換器控制器302接收電流感測信號462,判斷雙重轉換器304是否處於一個異常或非期望的狀態,如過電流狀態。轉換器控制器302控制雙重轉換器304來防止其進入異常或非期望的狀態。例如,當電流感測信號462指示雙重轉換器304正處於過電流狀態,轉換器控制器302透過驅動信號460關斷開關416。Resistor 402 provides a current sense signal 462 that indicates the current flowing through primary coil 404. Converter controller 302 receives current sense signal 462 and determines if dual converter 304 is in an abnormal or undesired state, such as an overcurrent condition. Converter controller 302 controls dual converter 304 to prevent it from entering an abnormal or undesired state. For example, when current sense signal 462 indicates that dual converter 304 is in an over current condition, converter controller 302 turns off switch 416 through drive signal 460.
圖5所示為根據本發明另一個實施例轉換器電路202的示意圖。圖5中與圖2至圖4編號相同的元件具有類似的功能。圖5將結合圖2和圖3進行描述。FIG. 5 shows a schematic diagram of a converter circuit 202 in accordance with another embodiment of the present invention. Elements in Figure 5 that are numbered the same as Figures 2 through 4 have similar functions. Figure 5 will be described in conjunction with Figures 2 and 3.
在圖5所示的例子中,雙重轉換器304包括變壓器T2、二極體510和512、電容514和516、開關518和電阻402。變壓器T2包括初級線圈504、鐵芯505、次級線圈506和輔助線圈508。轉換器控制器302產生驅動信號460(例如,脈衝寬度調變信號)交替地閉合或斷開開關518。初級線圈504、鐵芯505、次級線圈506、開關518、二極體510和電容514構成了第一反馳式轉換器。第一反 馳式轉換器將輸入電壓VIN 轉換成電壓差VDIFF ’。電壓差VDIFF ’可表示為:VDIFF ’=VIN *(N506 /N504 )* DDUTY /(1-DDUTY ) (5)In the example shown in FIG. 5, the dual converter 304 includes a transformer T2, diodes 510 and 512, capacitors 514 and 516, a switch 518, and a resistor 402. The transformer T2 includes a primary coil 504, a core 505, a secondary coil 506, and an auxiliary coil 508. Converter controller 302 generates drive signal 460 (e.g., a pulse width modulation signal) to alternately close or open switch 518. The primary coil 504, the core 505, the secondary coil 506, the switch 518, the diode 510, and the capacitor 514 constitute a first flyback converter. The first flyback converter converts the input voltage V IN into a voltage difference V DIFF '. The voltage difference V DIFF ' can be expressed as: V DIFF '=V IN *(N 506 /N 504 )* D DUTY /(1-D DUTY ) (5)
其中,N506 /N504 代表次級線圈506對初級線圈504的匝數比。Where N 506 /N 504 represents the turns ratio of the secondary coil 506 to the primary coil 504.
相似地,初級線圈504、鐵芯505、輔助線圈508、開關518、二極體512和電容516構成了第二反馳式轉換器。第二反馳式轉換器將輸入電壓VIN 轉換成輸出電壓VOUT_L 。輸出電壓VOUT_L 可表示為:VOUT_L =VIN *(N508 /N504 )* DDUTY /(1-DDUTY ) (6)Similarly, primary coil 504, core 505, auxiliary coil 508, switch 518, diode 512, and capacitor 516 form a second flyback converter. The second flyback converter converts the input voltage V IN into an output voltage V OUT — L . The output voltage V OUT_L can be expressed as: V OUT_L = V IN * (N 508 /N 504 )* D DUTY /(1-D DUTY ) (6)
其中,N508 /N504 代表輔助線圈508對初級線圈504的匝數比。Where N 508 /N 504 represents the turns ratio of the auxiliary coil 508 to the primary coil 504.
由於次級線圈506的無極性端與電源線242相連,根據方程式(1),輸出電壓VOUT_H 等於輸出電壓VOUT_L 加上電壓差VDIFF 。基於方程式(1)、(5)和(6),輸出電壓VOUT_H 可由方程式(7)計算得之:VOUT_H =VOUT_L *(1+N506 /N508 ) (7)Since the non-polar end of the secondary coil 506 is connected to the power supply line 242, according to equation (1), the output voltage V OUT_H is equal to the output voltage V OUT — L plus the voltage difference V DIFF . Based on equations (1), (5), and (6), the output voltage V OUT_H can be calculated from equation (7): V OUT_H = V OUT_L * (1 + N 506 / N 508 ) (7)
如方程式(7)中所示,輸出電壓VOUT_H 大於輸出電壓VOUT_L 。如方程式(6)和方程式(7)中所示,根據驅動信號460的責任週期DDUTY ,輸出電壓VOUT_H 和輸出電壓VOUT_L 得到調整。As shown in equation (7), the output voltage V OUT — H is greater than the output voltage V OUT — L . As shown in equations (6) and (7), the output voltage V OUT — H and the output voltage V OUT — L are adjusted according to the duty cycle D DUTY of the drive signal 460 .
優點在於,第一反馳式轉換器和第二反馳式轉換器共用一些共同的元件,這樣減小了轉換器電路202的尺寸,降低了驅動電路200的成本。Advantageously, the first flyback converter and the second flyback converter share some common components, which reduces the size of the converter circuit 202 and reduces the cost of the drive circuit 200.
如圖3所討論的,當開關元件222處於開關閉合狀態 期間(例如,開關S3閉合),電流I1從地經過雙重轉換器304流至電源線241。當開關元件222處於開關斷開狀態期間(例如,開關S3斷開),電流I2從電源線242經過雙重轉換器304流至電源線241。如果使用圖4A和圖4B中所示的雙重轉換器304,在開關閉合狀態,次級線圈406將電流I1從地經過電容414傳遞到電源線241。在開關斷開狀態,次級線圈406將電流I2從電源線242傳遞到電源線241。如果使用如圖5中所示的雙重轉換器304,在開關閉合狀態,次級線圈506將電流I1從地經過電容516傳遞到電源線241。在開關斷開狀態,次級線圈506將電流I2從電源線242傳遞到電源線241。雙重轉換器304可包括其他結構,並不限於圖4A、4B和圖5中的實施例。As discussed in Figure 3, when the switching element 222 is in a closed state During the period (eg, switch S3 is closed), current I1 flows from ground through dual converter 304 to power line 241. When the switching element 222 is in the switch off state (eg, the switch S3 is open), the current I2 flows from the power line 242 through the dual converter 304 to the power line 241. If the dual converter 304 shown in FIGS. 4A and 4B is used, the secondary coil 406 transfers the current I1 from ground through the capacitor 414 to the power supply line 241 in the switch closed state. In the open state of the switch, the secondary coil 406 transfers the current I2 from the power line 242 to the power line 241. If a dual converter 304 as shown in FIG. 5 is used, in the switch closed state, secondary coil 506 transfers current I1 from ground through capacitor 516 to power supply line 241. In the open state of the switch, the secondary coil 506 transfers the current I2 from the power line 242 to the power line 241. The dual converter 304 can include other structures and is not limited to the embodiments of Figures 4A, 4B, and 5.
圖6所示為根據本發明另一個實施例的負載驅動電路600的示意圖。在一實施例中,負載為一光源206。圖6中與圖2、圖3編號相同的元件具有類似的功能。圖6將結合圖2至圖5進行描述。FIG. 6 shows a schematic diagram of a load drive circuit 600 in accordance with another embodiment of the present invention. In one embodiment, the load is a light source 206. Elements in Figure 6 that are numbered the same as Figures 2 and 3 have similar functions. Figure 6 will be described in conjunction with Figures 2 through 5.
在圖6所示的例子中,電流感測器210包括一電阻R6和一誤差放大器602。誤差放大器602接收電阻R6兩端的電壓,相應產生一指示流經LED鏈206電流的感測信號234。在一實施例中,連接於電流感測器210和LED鏈206之間的開關調節器208為降壓轉換器結構。開關調節器208包括開關元件222和儲能元件220。在一個實施例中,儲能元件220包括與LED鏈206相連的電感L6。開關元件222包括開關S6和二極體D6。在一個實施例中,開關S6可為P型金屬氧化物半導體電晶體。二極體D6的陽極與電源線 242相連。二極體D6的陰極和開關S6的汲極一起耦接至一個共同節點,共同節點透過電感L6和LED鏈206連接至地。開關S6的源極透過電流感測器210連接至電源線241。In the example shown in FIG. 6, current sensor 210 includes a resistor R6 and an error amplifier 602. Error amplifier 602 receives the voltage across resistor R6, which in turn produces a sense signal 234 indicative of the current flowing through LED chain 206. In an embodiment, the switching regulator 208 coupled between the current sensor 210 and the LED chain 206 is a buck converter structure. Switching regulator 208 includes switching element 222 and energy storage element 220. In one embodiment, energy storage component 220 includes an inductance L6 coupled to LED chain 206. The switching element 222 includes a switch S6 and a diode D6. In one embodiment, the switch S6 can be a P-type metal oxide semiconductor transistor. Anode D6 anode and power line 242 connected. The cathode of diode D6 and the drain of switch S6 are coupled together to a common node that is coupled to ground through inductor L6 and LED chain 206. The source of the switch S6 is connected to the power line 241 through the current sensor 210.
根據開關控制信號230(例如,脈衝寬度調變信號),開關元件222選擇性地連接地、電源線241和電源線242至電感L6。更具體地說,當開關控制信號230為邏輯低時,開關元件222工作於開關閉合狀態,此時開關S6閉合,二極體D6被逆向偏置。因此,電源線241和地電性耦接至電感L6。電流I1’流經電源線241、電阻R6、開關S6、電感L6、LED鏈206和地,然後從地經過雙重轉換器304流至電源線241。由於電流從電感L6之TA端流至TB端,輸出電壓VOUT_H 為電感L6充電,因此電流I1’上升。Switching element 222 selectively connects ground, power line 241, and power line 242 to inductor L6 in accordance with switch control signal 230 (eg, a pulse width modulation signal). More specifically, when the switch control signal 230 is logic low, the switching element 222 operates in a switch closed state, at which time the switch S6 is closed and the diode D6 is reverse biased. Therefore, the power line 241 and the ground are electrically coupled to the inductor L6. Current I1' flows through power line 241, resistor R6, switch S6, inductor L6, LED chain 206, and ground, and then flows from ground through dual converter 304 to power line 241. Since the current flows from the TA terminal of the inductor L6 to the TB terminal, the output voltage V OUT_H charges the inductor L6, so the current I1' rises.
此外,當開關控制信號230為邏輯高時,開關元件222工作於開關斷開狀態,此時開關S6斷開,二極體D6被順向偏置。因此,電源線242和地電性耦接至電感L6。電流I2’流經電源線242、二極體D6、電感L6、LED鏈206和地,然後從地經過雙重轉換器304流至電源線242。電感L6放電為LED鏈206供電,從TA端流至TB端的電流(I2’)逐漸減小。與圖3所示的驅動電路300相似,開關控制器204透過調整開關控制信號230的責任週期來調整LED電流至電流期望值。In addition, when the switch control signal 230 is logic high, the switching element 222 operates in the switch open state, at which time the switch S6 is open and the diode D6 is forward biased. Therefore, the power line 242 and the ground are electrically coupled to the inductor L6. Current I2' flows through power line 242, diode D6, inductor L6, LED chain 206, and ground, and then flows from ground through dual converter 304 to power line 242. The inductor L6 discharge supplies power to the LED chain 206, and the current (I2') flowing from the TA terminal to the TB terminal is gradually reduced. Similar to the drive circuit 300 shown in FIG. 3, the switch controller 204 adjusts the LED current to the current desired value by adjusting the duty cycle of the switch control signal 230.
優點在於,在開關閉合狀態期間,二極體D6兩端的電壓VD6 小於輸出電壓VOUT_L 。在開關斷開狀態期間,開關S6兩端的電壓大致等於輸出電壓VOUT_H 減去輸出電壓VOUT_L 的差值。也就是說,透過利用輸出電壓電壓VOUT_L ,在開關開啟 和開關斷開狀態,開關S6和二極體D6兩端的工作電壓都保持小於輸出電壓VOUT_H 。因此,開關S6和二極體D6的額定電壓降低,驅動電路300的功耗和成本降低。The advantage is that during the switch closed state, the voltage V D6 across the diode D6 is less than the output voltage V OUT — L . During the switch off state, the voltage across switch S6 is approximately equal to the difference between output voltage V OUT — H minus output voltage V OUT — L . That is to say, by using the output voltage voltage V OUT_L , the operating voltage across the switch S6 and the diode D6 remains smaller than the output voltage V OUT — H when the switch is turned on and the switch is turned off. Therefore, the rated voltage of the switch S6 and the diode D6 is lowered, and the power consumption and cost of the drive circuit 300 are lowered.
圖4A、圖4B和圖5所示例中的雙重轉換器304也可用於驅動電路600。如果使用圖4A和圖4B中所示的雙重轉換器304,在開關閉合狀態,次級線圈406將電流I1’從地經過電容414傳遞到電源線241。在開關斷開狀態,電流I2’從地流經電容414到電源線242。如果使用如圖5中所示的雙重轉換器304,在開關閉合狀態,次級線圈506將電流I1’從地經過電容516傳遞到電源線241。在開關斷開狀態,電流I2’從地流經電容516到電源線242。The dual converter 304 in the example shown in FIGS. 4A, 4B, and 5 can also be used in the drive circuit 600. If the dual converter 304 shown in Figs. 4A and 4B is used, in the switch closed state, the secondary coil 406 transfers the current I1' from the ground through the capacitor 414 to the power supply line 241. In the off state of the switch, current I2' flows from ground through capacitor 414 to power line 242. If a dual converter 304 as shown in Fig. 5 is used, in the closed state of the switch, the secondary winding 506 transfers the current I1' from ground through the capacitor 516 to the power supply line 241. In the off state of the switch, current I2' flows from ground through capacitor 516 to power line 242.
圖7所示為根據本發明另一實施例的負載驅動電路700的示意圖。圖7中與圖2、圖3編號相同的元件具有類似的功能。圖7將結合圖2至圖5進行描述。FIG. 7 shows a schematic diagram of a load drive circuit 700 in accordance with another embodiment of the present invention. Elements in Figure 7 that are numbered the same as Figures 2 and 3 have similar functions. Figure 7 will be described in conjunction with Figures 2 through 5.
在圖7所示的例子中,與LED鏈206相連的開關調節器208為升壓轉換器結構。儲備元件220包括與電源線241相連的電感L7。開關元件222包括開關S7和二極體D7。在一個實施例中,開關S7可為N型金屬氧化物半導體電晶體。二極體D7的陽極和開關S7的汲極一起耦接至一個共同節點,共同節點透過電感L7連接到電源線241。開關S7的源極與電源線242相連。二極體D7的陽極透過LED鏈206和感測器210連接到地。In the example shown in FIG. 7, switching regulator 208 coupled to LED chain 206 is a boost converter configuration. The reserve element 220 includes an inductance L7 connected to a power supply line 241. The switching element 222 includes a switch S7 and a diode D7. In one embodiment, the switch S7 can be an N-type metal oxide semiconductor transistor. The anode of the diode D7 and the drain of the switch S7 are coupled together to a common node, and the common node is connected to the power line 241 through the inductor L7. The source of switch S7 is coupled to power line 242. The anode of diode D7 is coupled to ground through LED chain 206 and sensor 210.
根據開關控制信號230(例如,脈衝寬度調變信號),開關元件222選擇性地連接地、電源線241和電源線242至電感L7。更具體地說,當開關控制信號230為邏輯高電 位時,開關元件222工作於開關閉合狀態,此時開關S7閉合且二極體D7被逆向偏置。因此,電源線241和電源線242電性耦接至電感L7。電流I1”流經電源線241、電感L7、開關S7和電源線242,然後從電源線242經過雙重轉換器304流至電源線241。電流從電感L7之TA端流至TB端。電感L7被充電,電流I1”上升。由於二極體D7被逆向偏置,電容C7為LED鏈206供電。Switching element 222 selectively connects ground, power line 241, and power line 242 to inductor L7 in accordance with switch control signal 230 (eg, a pulse width modulation signal). More specifically, when the switch control signal 230 is logic high In the bit position, the switching element 222 operates in the switch closed state, at which time the switch S7 is closed and the diode D7 is reverse biased. Therefore, the power line 241 and the power line 242 are electrically coupled to the inductor L7. The current I1" flows through the power line 241, the inductor L7, the switch S7, and the power line 242, and then flows from the power line 242 through the double converter 304 to the power line 241. The current flows from the TA end of the inductor L7 to the TB terminal. The inductor L7 is Charging, current I1" rises. Since the diode D7 is reverse biased, the capacitor C7 supplies power to the LED chain 206.
此外,當開關控制信號230為邏輯低電位時,開關元件222工作於開關斷開狀態,此時開關S7斷開且二極體D7被順向偏置。因此,電源線241和地電性耦接至電感L7。電流I2”流經電源線241、電感L7、二極體D7、LED鏈206和地,然後從地經過雙重轉換器304流至電源線241。電流從電感L7之TA端流至TB端。電流I2”下降,電感L7放電為LED鏈206供電並為電容C7充電。因此,透過調整開關控制信號230的責任週期,開關控制器204調節LED電流。Further, when the switch control signal 230 is at a logic low level, the switching element 222 operates in a switch-off state, at which time the switch S7 is open and the diode D7 is forward biased. Therefore, the power line 241 and the ground are electrically coupled to the inductor L7. Current I2" flows through power line 241, inductor L7, diode D7, LED chain 206, and ground, and then flows from ground through dual converter 304 to power line 241. Current flows from the TA terminal of inductor L7 to the TB terminal. I2" drops, inductor L7 discharges power to LED chain 206 and charges capacitor C7. Thus, by adjusting the duty cycle of the switch control signal 230, the switch controller 204 adjusts the LED current.
優點在於,在開關閉合狀態期間,二極體D7兩端的電壓VD7 小於輸出電壓VOUT_H 。在開關斷開狀態期間,開關S7兩端的電壓小於輸出電壓VOUT_H 。也就是說,透過利用輸出電壓電壓VOUT_L ,在開關閉合和開關斷開狀態,開關S7和二極體D7兩端的工作電壓都保持小於輸出電壓VOUT_H 。因此,開關S7和二極體D7的額定電壓小於輸出電壓VOUT_H ,降低了驅動電路700的功耗和成本。圖4A、圖4B和圖5所示例中的雙重轉換器304也可用於負載驅動電路700。如果使用圖4A和圖4B所示的雙重轉換器304,在開關閉 合狀態,次級線圈406將電流I1”從電源線242經過電容414傳遞到電源線241。在開關斷開狀態,電流I2”從地流經電容414到電源線241。如果使用如圖5所示的雙重轉換器304,在開關閉合狀態,次級線圈506將電流I1從電源線242經過電容516傳遞到電源線241。在開關斷開狀態,電流I2從地流經電容516到電源線241。只要結構在權力要求的範圍之內,開關調節器208可為其他結構,並不限於圖3、圖6中的降壓轉換器結構和圖7中的升壓轉換器結構。The advantage is that during the switch closed state, the voltage V D7 across the diode D7 is less than the output voltage V OUT — H . During the switch off state, the voltage across switch S7 is less than the output voltage V OUT — H . That is to say, by using the output voltage voltage V OUT_L , the operating voltage across the switch S7 and the diode D7 remains smaller than the output voltage V OUT — H in the switch closed state and the switch open state. Therefore, the rated voltage of the switch S7 and the diode D7 is smaller than the output voltage V OUT — H , which reduces the power consumption and cost of the driving circuit 700. The dual converter 304 of the example shown in FIGS. 4A, 4B, and 5 can also be used for the load driving circuit 700. If the dual converter 304 shown in Figures 4A and 4B is used, in the closed state of the switch, the secondary winding 406 passes the current I1" from the power supply line 242 through the capacitor 414 to the power supply line 241. In the open state of the switch, the current I2" From ground through capacitor 414 to power line 241. If a dual converter 304 as shown in FIG. 5 is used, in the closed state of the switch, secondary coil 506 transfers current I1 from power line 242 through capacitor 516 to power line 241. In the off state of the switch, current I2 flows from ground through capacitor 516 to power line 241. Switching regulator 208 can be other configurations as long as the structure is within the scope of the claims, and is not limited to the buck converter structure of Figures 3 and 6, and the boost converter structure of Figure 7.
圖8所示為根據本發明一實施例負載驅動電路800的電路圖。圖8與圖2編號相同的元件具有類似的功能。圖8將結合圖2、圖3、圖6和圖7進行描述。FIG. 8 is a circuit diagram of a load drive circuit 800 in accordance with an embodiment of the present invention. The components numbered in Figure 8 and Figure 2 have similar functions. FIG. 8 will be described in conjunction with FIGS. 2, 3, 6, and 7.
負載驅動電路800包括轉換器電路202,用於在電源線241上產生輸出電壓VOUT_H ,並在電源線242上產生輸出電壓VOUT_L 。在圖8所示的例子中,負載驅動電路800用於驅動多串LED鏈。儘管圖8的例子僅顯示三串LED鏈806_1、806_2和806_3,負載驅動電路800可包括其他數目的LED鏈,並不以此為限。每串LED鏈連接至電路的方式與圖3的負載驅動電路300相似。例如,LED鏈806_1連接至包括二極體D8_1、開關S8_1和電感L8_1的開關調節器。LED鏈806_2連接至包括二極體D8_2、開關S8_2和電感L8_2的開關調節器。LED鏈806_3連接至包括二極體D8_3、開關S8_3和電感L8_3的開關調節器。The load driving circuit 800 includes a converter circuit 202 for generating an output voltage V OUT_H power supply line 241, and produces an output voltage V OUT_L power supply line 242. In the example shown in FIG. 8, the load driving circuit 800 is used to drive a plurality of strings of LED chains. Although the example of FIG. 8 only shows three strings of LED chains 806_1, 806_2, and 806_3, the load driving circuit 800 may include other numbers of LED chains, and is not limited thereto. Each string of LED chains is connected to the circuit in a manner similar to the load drive circuit 300 of FIG. For example, the LED chain 806_1 is connected to a switching regulator including a diode D8_1, a switch S8_1, and an inductor L8_1. The LED chain 806_2 is connected to a switching regulator including a diode D8_2, a switch S8_2, and an inductor L8_2. The LED chain 806_3 is connected to a switching regulator including a diode D8_3, a switch S8_3, and an inductor L8_3.
負載驅動電路800還包括多個開關控制器804_1、804_2和804_3,用於分別控制流經LED鏈806_1至806_3 的LED電流。例如,開關控制器804_1至804_3分別比較感測信號ISEN_1至ISEN_3和指示電流期望值的參考信號REF,並產生開關控制信號PWM_1至PWM_3來調整LED電流至預設電流值。也就是說,開關控制器804_1至804_3能夠平衡流經LED鏈806_1至806_3的電流,因此LED鏈806_1至806_3可提供平衡亮度。The load drive circuit 800 also includes a plurality of switch controllers 804_1, 804_2, and 804_3 for controlling flow through the LED chains 806_1 through 806_3, respectively. LED current. For example, the switch controllers 804_1 to 804_3 compare the sense signals ISEN_1 to ISEN_3 and the reference signal REF indicating the current expectation value, respectively, and generate the switch control signals PWM_1 to PWM_3 to adjust the LED current to the preset current value. That is, the switch controllers 804_1 through 804_3 are capable of balancing the current flowing through the LED chains 806_1 through 806_3, so the LED chains 806_1 through 806_3 can provide balanced brightness.
開關控制器804_1至804_3還產生誤差信號VEA_1、VEA_2和VEA_3,每個誤差信號指示當流經LED鏈806_1至806_3之電流到達預設電流值時LED鏈806_1至806_3所需的順向電壓。負載驅動電路800還包括回授選擇電路812,回授選擇電路812接收誤差信號VEA_1至VEA_3,並判斷LED鏈806_1至806_3中哪一條LED鏈具有最大的順向電壓。結果,回授選擇電路812產生一回授信號810,指示具有最大順向電壓的LED鏈的LED電流。在一個實施例中,轉換器電路202根據回授信號810調整輸出電壓VOUT_H 來滿足具有最大順向電壓的LED鏈的供電需求。由於輸出電壓VOUT_H 能夠滿足具有最大順向電壓的LED鏈的供電需求,因此亦能滿足其他LED鏈的供電需求。負載驅動電路800可有其他結構,例如每條LED鏈806_1至806_3由圖6或圖7所示的電路驅動。The switch controllers 804_1 through 804_3 also generate error signals VEA_1, VEA_2, and VEA_3, each error signal indicating the desired forward voltage of the LED chains 806_1 through 806_3 when the current flowing through the LED chains 806_1 through 806_3 reaches a preset current value. The load driving circuit 800 further includes a feedback selection circuit 812 that receives the error signals VEA_1 to VEA_3 and determines which of the LED chains 806_1 to 806_3 has the largest forward voltage. As a result, feedback selection circuit 812 generates a feedback signal 810 indicating the LED current of the LED chain having the largest forward voltage. In one embodiment, converter circuit 202 adjusts output voltage VOUT_H based on feedback signal 810 to meet the power requirements of the LED chain having the largest forward voltage. Since the output voltage V OUT_H can meet the power supply requirements of the LED chain with the largest forward voltage, it can also meet the power supply requirements of other LED chains. The load drive circuit 800 can have other configurations, for example, each of the LED chains 806_1 through 806_3 is driven by the circuit shown in FIG. 6 or 7.
優點在於,由於電源線242上的輸出電壓VOUT_L 與LED鏈相關的開關元件的額定電壓下降。因此,負載驅動電路800的功耗和成本下降。The advantage is that the output voltage of the switching element associated with the LED chain drops due to the output voltage V OUT — L on the power line 242. Therefore, the power consumption and cost of the load driving circuit 800 are degraded.
圖9所示為根據本發明一實施例的負載驅動電路(例如,負載驅動電路200)的操作流程圖900。圖9將結合圖 2至圖8進行描述。儘管圖9公開了某些特定的步驟,這些步驟僅僅作為示例。本發明適合執行與圖9類似或等同的其他步驟。FIG. 9 shows an operational flow diagram 900 of a load drive circuit (e.g., load drive circuit 200) in accordance with an embodiment of the present invention. Figure 9 will be combined with the figure 2 to 8 are described. Although Figure 9 discloses certain specific steps, these steps are merely examples. The present invention is suitable for performing other steps similar or equivalent to those of FIG.
在步驟902中,第一電源線提供一第一輸出電壓(例如,輸出電壓VOUT_H )為光源(例如,LED鏈206)供電。In step 902, the first power supply line provides a first output voltage (eg, output voltage VOUT_H ) to power the light source (eg, LED chain 206).
在步驟904中,第二電源線提供一小於第一輸出電壓的第二輸出電壓(例如,輸出電壓VOUT_L )。In step 904, the second power line provides a second output voltage (eg, output voltage VOUT_L ) that is less than the first output voltage.
在步驟906中,當開關元件(例如,開關元件222)工作於第一狀態時,儲能元件(例如,儲能元件220)被充電。In step 906, when the switching element (eg, switching element 222) is operating in the first state, the energy storage element (eg, energy storage element 220) is charged.
在步驟908中,當開關元件(例如,開關元件222)工作於第二狀態時,儲能元件(例如,儲能元件220)被放電。In step 908, when the switching element (eg, switching element 222) is operating in the second state, the energy storage element (eg, energy storage element 220) is discharged.
在步驟910中,透過調整儲能元件充電和放電的持續時間比來調節流經光源的電流。在一個實施例中,儲能元件包括電感。在一個實施例中,開關元件包括電晶體和二極體。In step 910, the current flowing through the source is adjusted by adjusting the ratio of the duration of charge and discharge of the energy storage element. In one embodiment, the energy storage element comprises an inductance. In one embodiment, the switching element comprises a transistor and a diode.
在步驟912中,第二輸出電壓在第一狀態和第二狀態期間保持開關元件兩端的工作電壓小於第一輸出電壓。在一個實施例中,在第一狀態期間,儲能元件的電流導通,經過第一電源線和參考節點為儲能元件充電;在第二狀態期間,儲能元件的電流導通,經過第一電源線和第二電源線為儲能元件放電。在另一實施例中,在第一狀態期間,儲能元件的電流導通,經過第一電源線和參考節點為儲能元件充電;在第二狀態期間,儲能元件的電流導通,經過 第二電源線和參考節點為儲能元件放電。在又一個實施例中,在第一狀態期間,儲能元件的電流導通,經過第一電源線和第二電源線為儲能元件充電;在第二狀態期間,儲能元件的電流導通,經過第一電源線和參考節點為儲能元件放電。In step 912, the second output voltage maintains the operating voltage across the switching element less than the first output voltage during the first state and the second state. In one embodiment, during the first state, the current of the energy storage element is turned on, charging the energy storage element through the first power line and the reference node; during the second state, the current of the energy storage element is conducting, passing the first power source The line and the second power line discharge the energy storage element. In another embodiment, during the first state, the current of the energy storage element is turned on, charging the energy storage element through the first power line and the reference node; during the second state, the current of the energy storage element is conducting, passing The second power line and the reference node discharge the energy storage element. In still another embodiment, during the first state, the current of the energy storage element is turned on, charging the energy storage element through the first power line and the second power line; during the second state, the current of the energy storage element is turned on, The first power line and the reference node discharge the energy storage element.
根據本發明的實施例提供了一種為負載供電的驅動電路。為方便說明,本發明為發光二極體鏈的光源供電。然而,本發明並不局限於為光源供電,也可用於為其他類型的負載供電。驅動電路包括轉換器電路、儲能元件和開關元件。轉換器電路在第一電源線上提供第一輸出電壓來驅動光源,在第二電源線上提供小於第一輸出電壓的第二輸出電壓。當開關元件工作於第一狀態時,儲能元件充電,當開關元件工作於第二狀態時,儲能元件放電。透過調整第一狀態和第二狀態的持續時間比可調節流經光源的電流。A drive circuit for powering a load is provided in accordance with an embodiment of the present invention. For convenience of explanation, the present invention supplies power to a light source of a light emitting diode chain. However, the invention is not limited to powering the light source, but can also be used to power other types of loads. The drive circuit includes a converter circuit, an energy storage element, and a switching element. The converter circuit provides a first output voltage on the first power line to drive the light source and a second output voltage on the second power line that is less than the first output voltage. When the switching element operates in the first state, the energy storage element is charged, and when the switching element operates in the second state, the energy storage element is discharged. The current flowing through the light source can be adjusted by adjusting the duration ratio of the first state to the second state.
優點在於,由於第二電源線上的第二輸出電壓,在第一狀態和第二狀態期間,開關元件兩端的工作電壓保持小於第一輸出電壓。因此開關元件的額定電壓下降,驅動電路的功耗和成本降低。Advantageously, due to the second output voltage on the second power line, the operating voltage across the switching element remains less than the first output voltage during the first state and the second state. Therefore, the rated voltage of the switching element is lowered, and the power consumption and cost of the driving circuit are lowered.
上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離權利要求書所界定的本發明精神和發明範圍的前提下可以有各種增補、修改和替換。本領域技術人員應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此, 在此披露之實施例僅用於說明而非限制,本發明之範圍由後附權利要求及其合法等同物界定,而不限於此前之描述。The above detailed description and the accompanying drawings are only typical embodiments of the invention. It is apparent that various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those skilled in the art that the present invention may be changed in form, structure, arrangement, ratio, material, element, element, and other aspects without departing from the scope of the invention. therefore, The embodiments disclosed herein are intended to be illustrative and not restrictive, and the scope of the invention is defined by the appended claims
100‧‧‧光源驅動電路100‧‧‧Light source drive circuit
102‧‧‧轉換器電路102‧‧‧ converter circuit
104‧‧‧開關控制器104‧‧‧Switch controller
106‧‧‧LED鏈106‧‧‧LED chain
108‧‧‧開關調節器108‧‧‧Switching regulator
130‧‧‧脈衝寬度調變(PWM)信號130‧‧‧ Pulse width modulation (PWM) signal
141‧‧‧電源線141‧‧‧Power cord
200‧‧‧負載驅動電路200‧‧‧Load drive circuit
202‧‧‧轉換器電路202‧‧‧ converter circuit
204‧‧‧開關控制器204‧‧‧Switch controller
206‧‧‧光源206‧‧‧Light source
208‧‧‧開關調節器208‧‧‧Switching regulator
210‧‧‧電流感測器210‧‧‧ Current Sensor
220‧‧‧儲能元件220‧‧‧ energy storage components
222‧‧‧開關元件222‧‧‧Switching elements
230‧‧‧開關控制信號230‧‧‧Switch control signal
232‧‧‧回授信號232‧‧‧Return signal
234‧‧‧感測信號234‧‧‧Sensing signal
241、242‧‧‧電源線241, 242‧‧‧ power cord
244‧‧‧參考節點244‧‧‧ reference node
300‧‧‧負載驅動電路300‧‧‧Load drive circuit
302‧‧‧轉換器控制器302‧‧‧ Converter Controller
304‧‧‧雙重轉換器304‧‧‧Dual converter
310‧‧‧控制信號310‧‧‧Control signal
402‧‧‧電阻402‧‧‧resistance
404‧‧‧初級線圈404‧‧‧Primary coil
405‧‧‧鐵芯405‧‧‧ iron core
406‧‧‧次級線圈406‧‧‧secondary coil
408‧‧‧電容408‧‧‧ Capacitance
410、412‧‧‧二極體410, 412‧‧‧ diode
414‧‧‧電容414‧‧‧ Capacitance
416‧‧‧開關416‧‧‧ switch
452‧‧‧升壓轉換器452‧‧‧Boost Converter
454‧‧‧反馳式轉換器454‧‧‧Reverse converter
460‧‧‧驅動信號460‧‧‧ drive signal
462‧‧‧電流感測信號462‧‧‧ Current sensing signal
504‧‧‧初級線圈504‧‧‧Primary coil
505‧‧‧鐵芯505‧‧‧ iron core
506‧‧‧級線圈506‧‧ level coil
508‧‧‧輔助線圈508‧‧‧Auxiliary coil
510、512‧‧‧二極體510, 512‧‧‧ diode
514、516‧‧‧電容514, 516‧‧‧ capacitor
518‧‧‧開關518‧‧‧ switch
600‧‧‧負載驅動電路600‧‧‧Load Drive Circuit
602‧‧‧誤差放大器602‧‧‧Error amplifier
700‧‧‧負載驅動電路700‧‧‧Load Drive Circuit
800‧‧‧負載驅動電路800‧‧‧Load drive circuit
804_1、804_2、804_3‧‧‧開關控制器804_1, 804_2, 804_3‧‧‧ switch controller
806_1、806_2、806_3‧‧‧LED鏈806_1, 806_2, 806_3‧‧‧LED chain
810‧‧‧回授信號810‧‧‧Return signal
812‧‧‧回授選擇電路812‧‧‧Feedback selection circuit
900‧‧‧流程圖900‧‧‧Flowchart
902~912‧‧‧步驟902~912‧‧‧Steps
以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:The technical method of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. among them:
圖1所示為傳統光源驅動電路的方塊圖。Figure 1 is a block diagram showing a conventional light source driving circuit.
圖2所示為根據本發明一實施例負載驅動電路的方塊圖。2 is a block diagram of a load driving circuit in accordance with an embodiment of the present invention.
圖3所示為根據本發明一實施例負載驅動電路的方塊圖。3 is a block diagram of a load driving circuit in accordance with an embodiment of the present invention.
圖4A和4B所示為根據本發明一實施例的轉換器電路的示意圖。4A and 4B are schematic diagrams of a converter circuit in accordance with an embodiment of the present invention.
圖5所示為根據本發明另一實施例的轉換器電路的示意圖。FIG. 5 is a schematic diagram of a converter circuit in accordance with another embodiment of the present invention.
圖6所示為根據本發明另一實施例的負載驅動電路的示意圖。6 is a schematic diagram of a load driving circuit in accordance with another embodiment of the present invention.
圖7所示為根據本發明另一實施例的負載驅動電路的示意圖。FIG. 7 is a schematic diagram of a load driving circuit according to another embodiment of the present invention.
圖8所示為根據本發明一實施例負載驅動電路的電路圖。Figure 8 is a circuit diagram of a load driving circuit in accordance with an embodiment of the present invention.
圖9所示為根據本發明一實施例的負載驅動電路的操作流程圖。9 is a flow chart showing the operation of a load driving circuit in accordance with an embodiment of the present invention.
200‧‧‧負載驅動電路200‧‧‧Load drive circuit
202‧‧‧轉換器電路202‧‧‧ converter circuit
204‧‧‧開關控制器204‧‧‧Switch controller
206‧‧‧光源206‧‧‧Light source
208‧‧‧開關調節器208‧‧‧Switching regulator
210‧‧‧電流感測器210‧‧‧ Current Sensor
220‧‧‧儲能元件220‧‧‧ energy storage components
222‧‧‧開關元件222‧‧‧Switching elements
230‧‧‧開關控制信號230‧‧‧Switch control signal
232‧‧‧回授信號232‧‧‧Return signal
234‧‧‧感測信號234‧‧‧Sensing signal
241、242‧‧‧電源線241, 242‧‧‧ power cord
244‧‧‧參考節點244‧‧‧ reference node
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/274,663 US8148919B2 (en) | 2008-08-05 | 2011-10-17 | Circuits and methods for driving light sources |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201301734A TW201301734A (en) | 2013-01-01 |
TWI392208B true TWI392208B (en) | 2013-04-01 |
Family
ID=47577393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101126020A TWI392208B (en) | 2011-10-17 | 2012-07-19 | Driving circuit of light source and methods of powering led light source |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102905416B (en) |
TW (1) | TWI392208B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104660070B (en) * | 2015-02-28 | 2017-04-12 | 佛山市南海赛威科技技术有限公司 | Controller and control method for realizing synchronous and alternate working of different power switches |
TWI704755B (en) | 2019-12-20 | 2020-09-11 | 群光電能科技股份有限公司 | Power supply apparatus and method of operating the same |
CN114007307B (en) * | 2020-07-28 | 2024-02-27 | 马克西姆综合产品公司 | Transient suppression system and method in a circuit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200738048A (en) * | 2006-03-24 | 2007-10-01 | Beyond Innovation Tech Co Ltd | A current balancing circuit for LEDs |
US7276861B1 (en) * | 2004-09-21 | 2007-10-02 | Exclara, Inc. | System and method for driving LED |
US7323828B2 (en) * | 2005-04-25 | 2008-01-29 | Catalyst Semiconductor, Inc. | LED current bias control using a step down regulator |
TWM343351U (en) * | 2008-04-18 | 2008-10-21 | Taiwan Sumida Electronics Inc | Light-emitting diode driving circuit and backlight module with feedback circuit function |
US7847486B2 (en) * | 2004-08-04 | 2010-12-07 | Dr. LED (Holdings), Inc | LED lighting system |
US7880400B2 (en) * | 2007-09-21 | 2011-02-01 | Exclara, Inc. | Digital driver apparatus, method and system for solid state lighting |
US7919928B2 (en) * | 2008-05-05 | 2011-04-05 | Micrel, Inc. | Boost LED driver not using output capacitor and blocking diode |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201197211Y (en) * | 2008-01-28 | 2009-02-18 | 杭州士兰微电子股份有限公司 | Output current compensation circuit of LED driving circuit |
US7919936B2 (en) * | 2008-08-05 | 2011-04-05 | O2 Micro, Inc | Driving circuit for powering light sources |
US8339067B2 (en) * | 2008-12-12 | 2012-12-25 | O2Micro, Inc. | Circuits and methods for driving light sources |
CN101483951B (en) * | 2009-02-16 | 2012-07-18 | 湖南力芯电子科技有限责任公司 | LED driver and method for driving LED |
CN101630920A (en) * | 2009-05-21 | 2010-01-20 | 立明股份有限公司 | LED lighting lamp and power supply device thereof |
CN102076144A (en) * | 2010-10-17 | 2011-05-25 | 尹文庭 | Solution to working power supply and power of two-wire-system electronic switch |
-
2012
- 2012-05-18 CN CN201210156029.XA patent/CN102905416B/en not_active Expired - Fee Related
- 2012-07-19 TW TW101126020A patent/TWI392208B/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7847486B2 (en) * | 2004-08-04 | 2010-12-07 | Dr. LED (Holdings), Inc | LED lighting system |
US7276861B1 (en) * | 2004-09-21 | 2007-10-02 | Exclara, Inc. | System and method for driving LED |
US7323828B2 (en) * | 2005-04-25 | 2008-01-29 | Catalyst Semiconductor, Inc. | LED current bias control using a step down regulator |
TW200738048A (en) * | 2006-03-24 | 2007-10-01 | Beyond Innovation Tech Co Ltd | A current balancing circuit for LEDs |
US7880400B2 (en) * | 2007-09-21 | 2011-02-01 | Exclara, Inc. | Digital driver apparatus, method and system for solid state lighting |
TWM343351U (en) * | 2008-04-18 | 2008-10-21 | Taiwan Sumida Electronics Inc | Light-emitting diode driving circuit and backlight module with feedback circuit function |
US7919928B2 (en) * | 2008-05-05 | 2011-04-05 | Micrel, Inc. | Boost LED driver not using output capacitor and blocking diode |
Also Published As
Publication number | Publication date |
---|---|
CN102905416B (en) | 2014-02-12 |
CN102905416A (en) | 2013-01-30 |
TW201301734A (en) | 2013-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8148919B2 (en) | Circuits and methods for driving light sources | |
US8482225B2 (en) | Electronic circuits and methods for driving a diode load | |
TWI509959B (en) | Electronic circuit and method of providing a regulated voltage to a load | |
US8004204B2 (en) | Power circuit and illumination apparatus | |
US9350241B2 (en) | Buck converter and control method therefor | |
US8664877B2 (en) | Light driving apparatus | |
TWI441553B (en) | Differential driving circuit and system for powering light source | |
US8519642B2 (en) | LED light emitting device | |
TWI398072B (en) | Circuits and methods for power conversion | |
US7888920B2 (en) | Power supply device with fast output voltage switching capability | |
US7733030B2 (en) | Switching power converter with controlled startup mechanism | |
KR20060120508A (en) | Light emitting diode drive circuit | |
TWI458216B (en) | Light emitting diode luminance system having clamping device | |
US8531113B2 (en) | Driving apparatus and driving method of LED device | |
TWI392208B (en) | Driving circuit of light source and methods of powering led light source | |
JP6332629B2 (en) | LED power supply and LED lighting device | |
US9942956B1 (en) | Boost converter design with 100%-pass mode for WLED backlight and camera flash applications | |
JP5660936B2 (en) | Light emitting element drive circuit | |
KR20130044747A (en) | Over voltage protection circuit in led | |
JP2015109283A (en) | Guide light device | |
KR102261852B1 (en) | Ac direct led driver including capacitor for led driver | |
JP6791486B2 (en) | Light emitting element drive device and its drive method | |
US9287775B2 (en) | Power supply device and lighting device | |
JP5947082B2 (en) | Circuit and method for driving a light source | |
JP7444009B2 (en) | Lighting devices and luminaires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |