WO2020071067A1 - Led driving circuit device and electronic instrument - Google Patents

Led driving circuit device and electronic instrument

Info

Publication number
WO2020071067A1
WO2020071067A1 PCT/JP2019/035641 JP2019035641W WO2020071067A1 WO 2020071067 A1 WO2020071067 A1 WO 2020071067A1 JP 2019035641 W JP2019035641 W JP 2019035641W WO 2020071067 A1 WO2020071067 A1 WO 2020071067A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
voltage
terminal
output
feedback
Prior art date
Application number
PCT/JP2019/035641
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 桂
亮輔 金光
泰典 村松
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2020071067A1 publication Critical patent/WO2020071067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to an LED driving device that drives a plurality of LED (Light Emitting Diode) sets.
  • LEDs are widely used, for example, in liquid crystal panels, lighting devices, traffic signals, various light sources, and the like.
  • a switching regulator is used together with such various devices, and the switching regulator is controlled by a PWM (Pulse Width Modulation) method.
  • PWM Pulse Width Modulation
  • LEDs are often PWM-controlled.
  • Patent Document 1 discloses a power supply control semiconductor integrated circuit that drives a switching element that allows current to flow intermittently through an inductor and rectifies the current flowing through the inductor to generate a drive current for an LED.
  • the power supply control semiconductor integrated circuit includes a plurality of external terminals for drawing current from each of the plurality of LED units, a plurality of current sources respectively connected to the plurality of external terminals, a voltage of the plurality of external terminals and a predetermined voltage. And an error amplifier that outputs a voltage corresponding to a potential difference from the reference voltage. Then, a drive pulse for the switching element is generated based on the output corresponding to the one having the lowest voltage of the external terminal among the plurality of outputs of the error amplifier. According to this, it is possible to suppress an increase in the number of components and mounting area due to an increase in the number of LEDs, and to avoid occurrence of unevenness in screen brightness.
  • Patent Document 2 discloses a driving circuit of a light emitting element, a light emitting device and an electronic apparatus using the same.
  • Patent Document 2 stabilizes the luminance of a light emitting element during a scanning operation. Therefore, the error amplifier generates a source current corresponding to the error when the reference voltage is higher, based on the error between the lowest voltage of each of the n LED terminals and a predetermined reference voltage. When it is lower, a sink current corresponding to the error is generated, and the feedback voltage generated at the feedback terminal is changed.
  • Patent Document 1 generates a drive pulse corresponding to the voltage of an external terminal provided in a plurality of LED units and applies it to a switching element, but cannot expect to stabilize the brightness of the plurality of LED units. This is because detecting the voltage of the external terminal is different from applying appropriate voltages to the plurality of LED units.
  • Patent Document 2 in addition to the circuit configuration disclosed in Patent Document 1, a driving voltage for applying a feedback voltage generated at a feedback terminal to a light emitting element by a sink current or a source current output from a transconductance amplifier is controlled, so that light is emitted.
  • the luminance of the element can be stabilized.
  • the feedback terminal in Patent Document 2 is an external terminal on the output side of the error amplifier, that is, a feedback capacitor (CFB) for phase compensation and a feedback resistor (RFB) connected in series. Therefore, it is not expected that the output voltage is controlled with high accuracy, and it is not expected that the stabilization of the luminance of the LED is controlled with high accuracy.
  • CFB feedback capacitor
  • RFB feedback resistor
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an LED drive circuit device capable of stabilizing the luminance of a light emitting element.
  • One embodiment of the LED drive circuit device is an LED drive circuit device including a power supply device and including a plurality of sets of an LED driver and at least one LED string, wherein the power supply device outputs an output voltage of the power supply device.
  • a feedback voltage generation circuit that generates a divided feedback voltage; and an output voltage adjustment unit that varies the output voltage according to the feedback voltage, wherein each of the at least one LED string drives the output voltage by a drive voltage.
  • a plurality of LEDs are connected in series as a source, each of the LED drivers includes a plurality of LED constant current sources that can be individually connected to the at least one LED string via LED connection terminals, and the at least one LED string.
  • the LED connection terminal of the LED string with the highest total LED forward voltage is A selection unit that selects the output LED connection terminal; a comparison unit that compares the voltage of the detection LED connection terminal with a first reference voltage; and a feedback terminal that outputs a current based on the output of the comparison unit.
  • the feedback voltage generation circuit includes a first voltage dividing resistor connected to an output terminal of the power supply device and a second voltage dividing resistor connected to a ground potential and connected in series with the first voltage dividing circuit; The plurality of sets of the feedback terminals are connected to a common connection node between the first voltage dividing resistor and the second voltage dividing resistor (first configuration).
  • each of the LED drivers may include an operational amplifier having the selection unit and the comparison unit, and an output of the operational amplifier may be coupled to the feedback terminal (second embodiment). Constitution).
  • the feedback terminal when the voltage of the detection LED connection terminal is lower than the first reference voltage, the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal. (Third configuration).
  • each of the plurality of sets of third voltage-dividing resistors may be connected between the common connection node and each of the plurality of sets of the feedback terminals (fourth configuration).
  • the operational amplifier may be a transconductance amplifier (fifth configuration).
  • the feedback terminal when the voltage of the detection LED connection terminal is lower than the first reference voltage, the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal. (Sixth configuration).
  • the feedback terminal may output a source current flowing from the feedback terminal to the common connection node (seventh embodiment). Constitution).
  • each of the LED drivers is configured to determine a source current flowing into a common connection node between the first voltage dividing resistor and the second voltage dividing resistor in accordance with an output of a comparator serving as the comparing unit.
  • a source current supply unit for switching on and off may be provided (eighth configuration).
  • the source current supply unit includes a switch that is turned on / off according to an output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit, The switch may be connected between both ends of one of the transistors in the current mirror circuit (a ninth configuration).
  • the LED constant current source may generate a current intermittently with a first pulse width modulation signal (tenth configuration).
  • the power supply device includes a switching element that intermittently supplies a current to the inductor, and smoothes an inductor current that flows through the inductor, and outputs the output voltage to the output terminal.
  • a slope signal generation circuit generates a triangular or sawtooth-shaped slope signal
  • the error amplifier generates the feedback voltage and a feedback voltage.
  • the PWM comparator compares the error voltage with the slope signal, and outputs a second pulse having a pulse width corresponding to the pulse comparison result. Outputting a width modulation signal, wherein the switching element is controlled to be turned on or off by the second pulse width modulation signal. It may be a Rukoto (eleventh configuration).
  • one embodiment of an electronic device includes the LED drive circuit device having any one of the above-described configurations.
  • the lowest voltage among the plurality of LED strings to which the driving voltage is applied is compared with the predetermined reference voltage, and the magnitude of the feedback voltage generated by the feedback voltage generating circuit based on the comparison result. Since the driving voltage supplied to the LED string is controlled by controlling the output voltage, the output voltage can be adjusted to a voltage suitable for the voltage drop in the LED string, the brightness of the LED string is maintained at a predetermined brightness, and the output of the power supply. The disadvantage that the output voltage of the terminal becomes unnecessarily high and power consumption in the LED drive circuit device increases can be eliminated.
  • 2 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively wide pulse width.
  • 2 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively narrow pulse width.
  • 3 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively wide pulse width.
  • 3 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG.
  • FIG. 1 is a circuit diagram showing an LED drive circuit device 1 according to the first embodiment.
  • the LED drive circuit device 1 includes a switching control circuit 2, an output circuit 3, an LED driver (constant current driver) 5, and LED strings 4_1 to 4_n (n is a natural number of 2 or more).
  • the switching control circuit 2 has several external terminals.
  • the output circuit 3 includes an inductor L1, a capacitor C1, and voltage dividing resistors R1 and R2.
  • the switching control circuit 2 and the output circuit 3 constitute a switching regulator.
  • the switching control circuit 2 cooperates with the output circuit 3 to reduce the input voltage Vin supplied to the input terminal IN and output a desired output voltage Vout to the output terminal OUT.
  • step-down 1 constitutes a well-known step-down type.
  • the switching control circuit 2 and the output circuit 3 may be configured so as to be adapted to a step-up or step-up / step-down type instead of a step-down type.
  • the LED drive circuit device described in this specification can be applied regardless of the step-down, step-up or step-up / step-down switching regulation.
  • the switching control circuit 2 is composed of a semiconductor integrated circuit, and includes a switching element S1, a synchronous rectification semiconductor element S2, an error amplifier 6, an oscillation circuit 7, a slope signal generation circuit 8, a PWM comparator 9, and a drive circuit 10.
  • the switching element S1 operates complementarily to the synchronous rectification semiconductor element S2 as a switching element that allows current to flow intermittently through the inductor L1.
  • a current is supplied to the inductor L1.
  • the switching element S1 and the synchronous rectification semiconductor element S2 are turned on / off to generate an output voltage Vout from the input voltage Vin.
  • the synchronous rectification semiconductor element S2 can be replaced with a diode instead of a transistor.
  • the input voltage Vin, the inductor L1, the capacitors C1 to C2, the voltage dividing resistors R1 to R3, the resistor R4, and the ground potential GND are connected to a plurality of external terminals prepared in the switching control circuit 2.
  • the input terminal IN to which the input voltage Vin is applied is connected to the source of the switching element S1 composed of, for example, a p-channel MOS transistor.
  • the drain of the switching element S1 is connected to the switching terminal SW and the drain of the synchronous rectification semiconductor element S2.
  • the source of the synchronous rectification semiconductor element S2 composed of an n-channel MOS transistor is connected to the ground potential GND.
  • One end of the inductor L1 is connected to the switching terminal SW.
  • the intermittent switching voltage Vsw output from the switching terminal SW causes the inductor current IL to flow through the inductor L1.
  • the other end of the inductor L1 is connected to the output terminal OUT and one end of the capacitor C1, and is connected to the output terminal OUT.
  • the other end of the capacitor C1 is grounded to the ground potential GND.
  • Capacitor C1 smoothes the electromagnetic energy stored in inductor L1.
  • the voltage dividing resistors R1 and R2 forming a part of the output circuit 3 are connected in series between the output terminal OUT and the ground potential GND to form a feedback voltage generating circuit.
  • the feedback voltage generation circuit generates a feedback voltage Vfb at a common connection node Nc of the voltage dividing resistors R1 and R2.
  • the feedback voltage Vfb is applied to the inverting input terminal ( ⁇ ) of the error amplifier 6 via the feedback terminal FB.
  • the error amplifier 6 compares the feedback voltage Vfb with the first reference voltage Vt1, and outputs an error signal Verr according to the comparison result.
  • a phase compensation terminal COMP is provided in the signal path between the output of the error amplifier 6 and the inverting input terminal (-) of the PWM comparator 9.
  • a capacitor C2 and a resistor R4 are connected in series between the phase compensation terminal COMP and the ground potential GND.
  • the voltage gain of the error amplifier 6 is set by the capacitor C2 and the resistor R4.
  • the error amplifier 6 is composed of, for example, a transconductance amplifier.
  • the capacitor C2 and the resistor R4 connected in series between the phase compensation terminal COMP and the ground potential GND determine the voltage gain of the error amplifier 6 and also determine the phase characteristics of the switching regulator.
  • the frequency characteristics of the switching regulator including the switching control circuit 2 and the output circuit 3 are properly corrected by the capacitor C2 and the resistor R4.
  • the oscillation circuit 7 is constituted by, for example, a well-known CR oscillator or a ring oscillator in which inverters or differential amplifiers are connected in a ring shape.
  • the oscillation circuit 7 generates a clock signal CLK.
  • the clock signal CLK is used as a set signal Sset for the driving circuit 10 at the subsequent stage.
  • the slope signal generation circuit 8 includes, for example, a not-shown constant current source, a capacitor, a switching element, and the like, and generates a triangular or sawtooth-shaped slope voltage Vsl. Such a slope voltage Vsl is generated by a clock signal CLK applied from the oscillation circuit 7.
  • the PWM comparator 9 compares the error signal Verr with the slope signal Vsl, and outputs a reset signal Reset corresponding to the comparison result to the driving circuit 10 at the subsequent stage.
  • the reset signal Reset is output as a pulse width modulation (PWM) signal whose pulse width is modulated according to the error signal Verr.
  • the drive circuit 10 receives the set signal Sset and the reset signal Sreset, and drives the switching element S1 and the synchronous rectification semiconductor element S2. These are driven by complementary gate signals P1 and P2, respectively.
  • An unillustrated RS flip-flop for example, is provided inside the drive circuit 10.
  • the set terminal of the RS flip-flop receives a set signal Sset generated by the oscillation circuit 7, and a reset terminal outputs the set signal Sset from the PWM comparator 9. Reset signal Reset is applied.
  • the LED drive circuit device 1 shown in FIG. 1 includes a plurality of LED strings 4_1 to 4_n in addition to the above circuit configuration.
  • the LED strings 4_1 to 4_n are used as a light source or a display device of a liquid crystal panel, a lighting device, a traffic signal, other various electronic devices, and the like.
  • the output voltage Vout generated by the switching regulator is supplied as a drive voltage source to the common anode side of the LED strings 4_1 to 4_n, that is, the output terminal OUT.
  • the total forward voltage of the LEDs up to the LED strings 4_1, 4_2, and 4_n is indicated by Vf1, Vf2, and Vfn, respectively.
  • the LED driver 5 supplies an LED current to each LED string.
  • the LED driver 5 is configured by a semiconductor integrated circuit (IC) different from the switching control circuit 2 for providing versatility. Thereby, the versatility can be expanded by combining the LED string, the switching control circuit, and the output circuit according to various kinds.
  • the LED driver 5 is provided with LED connection terminals LED1 to LEDn for coupling to the respective cathode sides of the LED strings 4_1 to 4_n.
  • the LED terminal voltages generated at the LED connection terminals LED1, LED2, and LEDn as viewed from the ground potential GND are indicated by VLED1, VLED2, and VLEDn, respectively.
  • the LED driver 5 has LED constant current sources Cs1 to Csn that individually supply LED currents ILED1 to ILEDn to each LED string.
  • the LED constant current sources Cs1 to Csn are intermittently controlled by, for example, a pulse width modulation (PWM) signal applied from the PWM dimming unit 11. Such control is also called burst dimming or burst control.
  • PWM pulse width modulation
  • the constant current sources Cs1 to Csn do not need to perform burst dimming and burst control, and may be configured by a general constant current source circuit.
  • the LED driver 5 further includes an operational amplifier 12.
  • the input of the operational amplifier 12 is provided with (n + 1) input terminals obtained by adding a terminal for applying the reference voltage VREF to the number output to the LED connection terminals LED1 to LEDn.
  • the reference voltage VREF is supplied to the inverting input terminal ( ⁇ ) of the operational amplifier 12.
  • LED terminal voltages VLED1 to VLEDn are applied to at least two non-inverting input terminals (+).
  • the operational amplifier 12 compares the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn with respect to the ground potential GND and the reference voltage VREF, and outputs the comparison result to the transistor Tr1 in the subsequent stage.
  • the transistor Tr1 is connected to the output of the operational amplifier 12.
  • the transistor Tr1 is, for example, a bipolar transistor, the emitter of which is connected to the ground potential GND, and the collector of which is connected to the external terminal OPFB.
  • Such a circuit configuration of the transistor Tr1 can be generally called an open collector.
  • the transistor Tr1 may be configured by a MOS transistor and may have an open drain circuit configuration.
  • the transistor Tr1 is turned on when the output of the operational amplifier 12 becomes high level H, and as a result, the sink current Isi flows.
  • the transistor Tr1 is turned on, the potential of the external terminal OPFB becomes a low level L which is almost close to the ground potential GND.
  • the LED driver 5 also has an OR circuit 51.
  • the pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51.
  • the output of the OR circuit 51 is input to the operational amplifier 12.
  • the output of the OR circuit 51 is at a high level.
  • the output of the OR circuit 51 is at a low level.
  • the operational amplifier 12 turns off the transistor Tr1 when the output of the OR circuit 51 is at a low level, and when the output of the OR circuit 51 is at a high level, the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn and the reference voltage VREF. Is output to the transistor Tr1.
  • One end of the voltage dividing resistor R3 is connected to the external terminal OPFB, and the other end is connected to the feedback terminal FB.
  • the voltage dividing resistor R3 is connected in parallel with the voltage dividing resistor R2 when the transistor Tr1 is turned on, that is, when the external terminal OPFB becomes low level L.
  • the resistance value of the voltage dividing resistor R3 is selected to be sufficiently larger than the on-resistance of the transistor Tr1.
  • the feedback voltage Vfb at the feedback terminal FB is lower than when the transistor Tr1 is off. At this time, the switching regulator formed by the switching control circuit 2 and the output circuit 3 controls the output voltage Vout to increase. .
  • the PWM dimming unit 11 intermittently raises and controls the output voltage Vout.
  • heat generation in the LED strings 4_1 to 4_n can be suppressed.
  • the rise of the output voltage Vout may be delayed and the LED string may not be lit.
  • the transistor Tr1 draws current from the feedback terminal FB side to the external terminal OPFB, that is, controls only a so-called sink current. Therefore, the output voltage Vout is controlled by the LED voltage. Only when any one of VLED1 to VLEDn reaches the reference voltage VREF and only the direction in which the output voltage Vout is increased can be controlled.
  • the LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4_n vary from channel to channel.
  • the LED forward total voltage Vf_max in the LED string 4_i is the maximum LED forward total voltage.
  • the LED terminal voltage VLED_min is the minimum LED terminal voltage.
  • the maximum LED forward total voltage Vf_max and the minimum LED terminal voltage VLED_min are generated for the LED string 4_i among the LED strings 4_1 to 4_n, and the LED current ILEDi flows.
  • FIG. 2A is a timing chart when the LED drive circuit device 1 is driven at a relatively large on-duty ratio, for example, when the on-duty ratio of the PWM signal is about 70%.
  • FIG. 2A is a timing chart when the control of the output voltage Vout is performed only by the sink current as described with reference to FIG.
  • FIG. 2A (a) shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5 to the LED constant current source Csi.
  • the pulse width modulation signal PWMi is at a high level H from time t0 to t4 and at a low level L from time t4 to t6. This indicates that the signal TH having a so-called pulse duty ratio is relatively large, that is, the section TH of the high level H is longer than the section TL of the low level L.
  • the LED current ILEDi in FIG. 2A (b) follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • a current flows in a high-level H section from time t0 to t4, and no current flows in a low-level L section from time t4 to t6, that is, a so-called intermittent current flows.
  • the LED current ILEDi starts to flow a little more slowly.
  • FIG. 2A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • VLED_min is the voltage of the LED connection terminal LED_i.
  • the voltage suddenly becomes lower than the reference voltage VREF, and thereafter gradually rises in a section until time t3. This is because the LED current ILEDi flows through the LED string 4_i at the time t0, and at the same time, the voltage is reduced by the LED forward total voltage Vf_max.
  • feedback is applied by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the operation is performed so as to be maintained at the reference voltage VREF.
  • Vsi indicates a sink current adjustment voltage adjusted by a sink current Isi described later.
  • FIG. 2A (d) shows the sink current Isi flowing into the transistor Tr1 from the feedback terminal FB via the sink current output terminal OPFB provided on the LED driver 5 side.
  • Whether the sink current Isi flows according to the LED terminal voltage VLED_min is determined. In particular, at time t0, the flow starts when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. At time t3, when the LED terminal voltage VLED_min reaches the reference voltage VREF, a constant sink current Isi flows until time t4. Since the output of the OR circuit 51 is at a low level in the period TL from time t4 to t6, the transistor Tr1 is turned off by the operational amplifier 12, and the sink current Isi stops flowing and becomes 0.
  • FIG. 2A (e) shows a transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi. From time t0 to time t2, the sink current Isi acts to increase the output voltage Vout. The time from time t0 to time t2 is determined by the responsiveness of the previous stage regulator and the operational amplifier 12. From time t2 to time t4, the control effect on the output voltage Vout by the sink current Isi reaches the maximum, and the output voltage Vout is controlled so as to have a value (VREF + Vf_max) obtained by adding the LED forward total voltage Vf_max to the reference voltage VREF. You. The voltage drops sharply between times t4 and t5, and gradually drops between times t5 and t6.
  • the output voltage Vout varies according to the high level and the low level of the pulse width modulation signal PWMi. This is because the LED driver 5 in FIG. 1 operates during the high level section of the pulse width modulation signal PWMi and stops during the low level section of the pulse width modulation signal PWMi. Accordingly, the output voltage Vout fluctuates due to the fluctuation of the feedback voltage Vfb.
  • Vout (R1 + R2) ⁇ Vt1 / R2 (3) That is, according to equations (2) and (3), when the pulse width modulation signal PWMi is at a high level, the output voltage Vout is boosted to a voltage of (VREF + Vf_max). Therefore, the output voltage Vout from time t4 to t5 drops sharply.
  • the LED drive circuit device 1 shown in FIG. 1 can suppress heat generation in the LED string by boosting and controlling the output voltage Vout only when the pulse width modulation signal is at the high level.
  • FIG. 2B is a timing chart when the LED drive circuit device 1 is driven with a relatively small on-duty ratio such as an on-duty ratio of a PWM signal of, for example, about 2%.
  • the driving condition is not always in a good state as compared with the case where the on-duty ratio of FIG. 2A is relatively large.
  • FIG. 2B is a timing chart in the case where the control of the output voltage Vout is performed only by the sink current Isi as in FIG. 2A.
  • FIG. 2B (a) shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5 to the LED constant current source Csi.
  • the pulse width modulation signal PWMi is at a high level H between times T0 and T2 and at a low level L between times T2 and T4. This indicates that the signal TH having a shorter pulse duty ratio is shorter in the high level H section TH than in the low level L section TL.
  • the LED current ILEDi in FIG. 2B (b) follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • a current flows in a section of a high level H from time T0 to T2, and no current flows in a section of a low level L from time T2 to T4, that is, a so-called intermittent current flows.
  • the LED current ILEDi starts to flow slightly slowly.
  • FIG. 2B (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • VLED_min is the voltage of the LED connection terminal LED_i.
  • the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the LED terminal voltage VLED_min has not reached the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow, and the polarity of the pulse width modulation signal PWMi is inverted before the LED terminal voltage VLED_min reaches the reference voltage VREF.
  • the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout.
  • FIG. 2B (d) shows the sink current Isi flowing into the transistor Tr1 from the feedback terminal FB via the sink current output terminal OPFB provided on the LED driver 5 side.
  • the flow starts when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T2 to T4, the sink current Isi stops flowing and becomes 0.
  • FIG. 2B (e) shows a transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi. From time T0 to time T2, the sink current Isi acts to increase the output voltage Vout. However, due to this effect, before the output voltage Vout reaches (VREF + Vf_max), the pulse width modulation signal PWMi goes to a low level, and the voltage drops sharply from time T2 to T3 and gradually from time T3 to T4. This is because the width of the pulse width modulation signal PWMi is extremely narrow, so that the response of the preceding regulator cannot catch up.
  • the LED drive circuit device 1 shown in FIG. 1 boosts and controls the output voltage Vout only when the pulse width modulation signal is at a high level.
  • the on-duty ratio of the pulse width modulation signal is low, the ability to adjust the output voltage Vout is insufficient. This causes a problem that the LED strings 4_1 to 4_n cannot maintain sufficient luminance.
  • FIG. 3 is a circuit diagram showing an LED drive circuit device 1A according to the second embodiment.
  • the LED drive circuit device 1A shown in FIG. 3 overcomes the above-mentioned disadvantages existing in the LED drive circuit device 1 shown in FIG.
  • the LED drive circuit device 1A is largely different from the LED drive circuit device 1 in the circuit configuration of the LED driver 5A. More specifically, the LED driver 5A is different from the LED driver 5 included in the LED drive circuit device 1 in that an operational amplifier 13 is used.
  • the operational amplifier 13 is configured by a transconductance amplifier called OTA (Operative @ Transconductance @ Amp).
  • OTA has a high output impedance and outputs a current proportional to the difference between two input voltages of the OTA.
  • the output stage of the OTA employed in the present embodiment is configured by a push-pull system.
  • the sink current Isi that draws a constant current from the common connection node Nc to the operational amplifier 13 via the external terminal substantially causes the voltage dividing resistor R2 to operate.
  • the source current Iso which is a constant current, flows from the operational amplifier 13 side to the common connection node Nc side via the current output terminal TCFB, thereby realizing the voltage dividing resistor R2.
  • the LED driver 5A also has an OR circuit 51.
  • the pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51.
  • the output of the OR circuit 51 is input to the operational amplifier 13.
  • the output of the OR circuit 51 is at a high level.
  • the output of the OR circuit 51 is at a low level.
  • the operational amplifier 13 stops current output when the output of the OR circuit 51 is at a low level, and outputs a current corresponding to a comparison result between the LED terminal voltage VLED_min and the reference voltage VREF when the output of the OR circuit 51 is at a high level, or And outputs a constant current.
  • the switching control circuit 2 and the LED driver 5A are formed of different semiconductor integrated circuits (ICs), some of them may be combined with the LED strings 4_1 to 4_n. Can be applied. For example, it is possible to control the output voltage Vout based on the lowest voltage among the LED terminal voltages VLED1 to VLEDn without controlling the feedback voltage Vfb. If such a circuit configuration is desired, the current output terminal TCFB provided on the output side of the operational amplifier 13 may be connected to the phase compensation terminal COMP without connecting to the feedback terminal FB. In such a circuit configuration, the operational amplifier 13 replaces the error amplifier 6.
  • ICs semiconductor integrated circuits
  • FIG. 4A is a timing chart when the LED drive circuit device 1 of FIG. 3 is driven at a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is, for example, about 70%. Note that FIG. 4A is different from the timing charts of FIGS. 2A and 2B in that the output voltage Vout is controlled by both the source current Iso and the sink current Isi.
  • FIG. 4A (a) shows a pulse width modulation signal PWMi applied to the LED constant current source Csi from the PWM dimmer 11 of the LED driver 5A.
  • the pulse width modulation signal PWMi has a high level H from time t0 to t2 and a low level L from time t2 to t5, and the high level H section TH is longer than the low level L section TL. It shows that the signal is large. Note that the waveform of the pulse width modulation signal PWMi transitions from time t5 to t9 and after time t9 in the same manner as from time t0 to t5.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • the pulse width modulation signal PWMi from time t0 to t2 flows in the high level H section, and does not flow in the low level L section from time t2 to t5, that is, the current flows intermittently.
  • the waveform of the LED current ILEDi transitions from time t5 to t9 and after time t9 in the same manner as from time t0 to t5.
  • FIG. 4A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • VLED_min sharply decreases by the LED forward total voltage Vf_max, but the magnitude of the voltage is schematically higher than the reference voltage VREF. I have.
  • the feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF.
  • the reference voltage VREF reaches the reference voltage VREF at time t1
  • the operation is performed so that the potential is maintained at the reference voltage VREF until time t2 when the LED current ILEDi becomes the low level L.
  • Vf_max indicates the total forward voltage of the LED
  • Vso indicates a source current adjustment voltage adjusted by the source current Iso.
  • the stable output voltage Vst is (VREF + Vso + Vf_max) obtained by adding the source current adjustment voltage Vso and the LED forward total voltage Vf_max to the reference voltage VREF.
  • the LED terminal voltage VLED_min suddenly drops to the reference voltage VREF or lower for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Note that after time t9, the transition is made in the same manner as at times t0 to t5.
  • the source current Iso starts flowing at time t0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. At time t1, when the LED terminal voltage VLED_min reaches the reference voltage VREF, a constant source current Iso flows thereafter until time t2. From time t2 to time t5 in the section TL, the output of the OR circuit 51 becomes low level, and the operational amplifier 13 stops outputting current, so that the source current Iso stops flowing and becomes zero.
  • FIG. 4A (e) shows a transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time t0 to t2, the output voltage Vout is operated so as to be maintained from the stable output voltage Vst to (VREF + Vf_max). At time t2, when the pulse width modulation signal PWMi goes low, the output voltage Vout gradually increases from time t2 to t4. The time t4 to t5 is maintained at the stable output voltage Vst.
  • FIG. 4B is a timing chart when the LED drive circuit device 1A is driven with a relatively small on-duty ratio, such as when the on-duty ratio of the PWM signal is, for example, about 2%.
  • the driving condition is not necessarily in a good state as compared with the case where the on-duty ratio in FIG. 4A is relatively large, but the behavior is different from that in FIG.
  • FIG. 4B (a) shows the pulse width modulation signal PWMi applied to the LED constant current source Csi from the PWM dimming unit 11 of the LED driver 5A.
  • the pulse width modulation signal PWMi is at a high level H between times T0 and T1, and at a low level L between times T1 and T4. This indicates that the signal TH having a shorter pulse duty ratio is shorter in the high level H section TH than in the low level L section TL. Note that after time T4, the waveform of the pulse width modulation signal PWMi transitions similarly to times T0 to T4.
  • the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi.
  • the pulse width modulation signal PWMi from time T0 to T1 flows in the high level H section, and does not flow in the low level L section from time T1 to T4, that is, the current flows intermittently. Note that after time T4, the waveform of the LED current ILEDi transitions similarly to times T0 to T4.
  • FIG. 4B (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • VLED_min which is the voltage of the LED connection terminal LED_i.
  • the LED current suddenly drops by the LED total forward voltage Vf_max, but is higher than the reference voltage VREF, so that it gradually decreases toward the reference voltage VREF in the section from time T0 to T1. This is because feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the reference voltage VREF.
  • the LED terminal voltage VLED_min has not reached the reference voltage VREF.
  • the pulse width of the pulse width modulation signal PWMi is narrow, and the polarity of the pulse width modulation signal PWMi is inverted from the high level H to the low level L before the LED terminal voltage VLED_min reaches the reference voltage VREF. .
  • the stable output voltage Vst is maintained.
  • the LED terminal voltage VLED_min is higher than the reference voltage VREF again, so that the source current Iso flows again.
  • Time T5 indicates a state in which the LED terminal voltage VLED_min sharply falls below the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Therefore, the sink current Isi flows in the section between times T5 and T6. Note that, after time T8, transition is made in the same manner as time T0 to T4.
  • FIG. 4B (d) shows the sink current Isi flowing into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and the source current Iso flowing from the operational amplifier 13 via the current output terminal TCFB.
  • the source current Iso starts to flow at time T0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T1 to T4, the source current Iso stops flowing and becomes 0.
  • FIG. 4B (e) shows a transition state of the output voltage Vout.
  • the output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time T0 to T1, the output voltage Vout is stepped down from the stable output voltage Vst to (VREF + Vf_max), but stops at time T1 because the width of the pulse width modulation signal PWMi is narrow. At time T1, when the pulse width modulation signal PWMi goes low, the output voltage Vout gradually increases from time T1 to T3. From time T3 to T4, the stable output voltage Vst is maintained.
  • the output voltage Vout gradually decreases, and from time T5 to T8, the output voltage Vout gradually increases.
  • the boosting according to the operation of the sink current Isi is performed from time T5 to T6, and the time T6 to T8 is based on the capability of the switching regulator. Note that, after the time T8, the transition is made in the same manner as the times T0 to T4.
  • the LED terminal voltage is the same as when the pulse width is wide.
  • VLED_min is higher than the reference voltage VREF
  • the LED terminal voltage VLED_min is lower than the reference voltage VREF
  • the LED drive circuit device 1A of FIG. 3 is different from the LED drive device circuit 1 of FIG.
  • the output voltage Vout is stepped down and controlled. With such control, the output voltage Vout is always maintained at (VREF + Vf_max) or more even when the on-duty ratio of the pulse width modulation signal is low. Therefore, heat generation in the LED strings 4_1 to 4_n can be suppressed, and the LED strings 4_1 to 4_n can always maintain sufficient luminance.
  • FIG. 5 is a circuit diagram showing an LED drive circuit device 1B according to the third embodiment.
  • the LED drive circuit device 1B has an LED driver 5B as a difference from the first and second embodiments.
  • the LED driver 5B particularly includes a selection comparator 14 and a source current supply unit 15.
  • the LED driver 5B has LED connection terminals LED1 to LEDn as external terminals, and also has a feedback terminal FB1.
  • the feedback terminal FB1 is a terminal for connecting to the common connection node Nc.
  • the selection comparator 14 has a function as a selector for selecting the lowest voltage among the input LED terminal voltages VLED1 to VLEDn, and a function as a comparator for comparing the selected lowest voltage with the reference voltage VREF.
  • the selection comparator 14 outputs a high-level or low-level signal according to the comparison result.
  • the source current supply section 15 is a circuit section that supplies a source current Iso as a constant current to the common connection node Nc side, and includes a switch 15A formed of a p-channel MOS transistor, a constant current circuit 15B, and a current mirror circuit. 15C.
  • the power supply voltage Vcc is applied to the source of the switch 15A, and a constant current circuit 15B is arranged between the drain of the switch 15A and the ground.
  • the output signal from the selection comparator 14 is input to the gate of the switch 15A, and the switch 15A is turned on and off according to the output level from the selection comparator 14.
  • the current mirror circuit 15C is composed of two transistors composed of p-channel MOS transistors.
  • the source of one of the two transistors is connected to the source of the switch 15A, that is, the power supply voltage Vcc is applied.
  • the drain of one transistor is connected to the drain of switch 15A.
  • the source of the other transistor is connected to the source of the other transistor.
  • the gates of the other transistor and one transistor are connected.
  • the connection node and the drain of one transistor are short-circuited.
  • the drain of the other transistor is connected to the feedback terminal FB1.
  • the LED driver 5B also has an OR circuit 51.
  • the pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51.
  • the output of the OR circuit 51 is input to the selection comparator 14. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become.
  • the selection comparator 14 When the output of the OR circuit 51 is at a low level, the selection comparator 14 outputs a low-level output signal to the switch 15A. As a result, the switch 15A is turned on, and the constant current from the constant current circuit 15B flows through the switch 15A and does not flow through one of the transistors of the current mirror circuit 15C. Therefore, the source current Iso does not flow from the feedback terminal FB1.
  • the selection comparator 14 outputs an output signal of a level corresponding to the comparison result to the switch 15A. Thus, the switch 15A is turned on or off.
  • the constant current from the constant current circuit 15B does not flow through the switch 15A but flows through one transistor of the current mirror circuit 15C. Therefore, the source current Iso flows from the feedback terminal FB1.
  • FIG. 6 is a timing chart when the LED drive circuit device 1B is driven.
  • FIG. 6A shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5B to the LED constant current source Csi.
  • the pulse width modulation signal PWMi is at a high level H during a section TH between times t0 and t2 and at a low level L during a section TL between times t2 and t4.
  • FIG. 6B shows the LED current ILEDi.
  • FIG. 6C shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i.
  • FIG. 6D shows the source current Iso flowing into the common connection node Nc from the feedback terminal FB1 by the source current supply unit 15.
  • FIG. 6E shows a transition state of the output voltage Vout.
  • the LED current ILEDi does not flow. Further, the output of the OR circuit 51 becomes low level, the switch 15A is turned on, and the source current Iso does not flow. As a result, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and is controlled to the stable output voltage Vst. At this time, the LED terminal voltage VLED_min becomes the same stable output voltage Vst as the output voltage Vout.
  • the pulse width modulation signal PWMi becomes the high level H at the time t0
  • the LED current ILEDi flows, and the LED terminal voltage VLED_min sharply decreases from the stable output voltage Vst by the LED forward total voltage Vf_max. Is higher than the reference voltage VREF.
  • the output of the OR circuit 51 becomes high level
  • the output of the selection comparator 14 becomes high level
  • the switch 15A is turned off. Therefore, the constant current flowing to the constant current circuit 15B by the current mirror circuit 15C is used as the source current Iso. Flows.
  • the output voltage Vout is controlled to decrease, and accordingly, the LED terminal voltage VLED_min also decreases toward the reference voltage VREF. While the LED terminal voltage VLED_min is equal to or higher than the reference voltage VREF, the selection comparator 14 is at a high level, and the source current Iso continues to flow.
  • the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and the output voltage Vout rises. Accordingly, the LED terminal voltage VLED_min increases.
  • the LED terminal voltage VLED_min becomes equal to or higher than the reference voltage VREF
  • the output of the selection comparator 14 becomes high level
  • the switch 15A is turned off, and the source current Iso flows.
  • the output voltage Vout and the LED terminal voltage VLED_min decrease.
  • the selection comparator 14 repeats the on / off of the source current Iso by the source current supply unit 15, the LED terminal voltage VLED_min is controlled to the reference voltage VREF, and the output voltage Vout is controlled to VREF + Vf_max.
  • the pulse width modulation signal PWMi when the pulse width modulation signal PWMi is at the high level H, it is possible to adjust the output voltage Vout suitable for the LED forward voltage, to maintain the LED brightness at a predetermined brightness, In addition, the power consumption can be suppressed by suppressing the output voltage Vout.
  • FIG. 7 is a diagram illustrating a configuration of an LED driver 50B according to a modification of the above-described third embodiment.
  • the LED driver 50B has a configuration that is effective when a plurality of sets each including the LED strings 4_1 to 4_n are used.
  • the LED driver 50B has, in particular, a first selector 141, a second selector 142, and a comparator 143, and as external terminals, a minimum voltage output terminal VMINOUT, other driver connection terminals VOM1 to VOM3, and PWM. It has an input terminal PWMIN and a PWM output terminal PWMOUT.
  • the first selector 141 selects and outputs the lowest voltage among the input LED terminal voltages VLED1 to VLEDn.
  • the second selection unit 142 receives the lowest voltage selected by the first selection unit 141 and the voltages applied to the other driver connection terminals VOM1 to VOM3.
  • the other driver connection terminals VOM1 to VOM3 are terminals for connection with the lowest voltage output terminal VMINOUT of the other driver 50B, and a predetermined internal voltage is applied when not connected to the other driver 50B.
  • the second selector 142 selects and outputs the lowest voltage selected from the lowest voltage selected by the first selector 141 and the voltage applied to each of the other driver connection terminals VOM1 to VOM3.
  • the lowest voltage output terminal VMINOUT is connected to the output terminal of the second selector 142. Therefore, the lowest voltage selected by the second selector 142 can be output from the lowest voltage output terminal VMINOUT.
  • the non-inverting input terminal (+) of the comparator 143 is connected to the output terminal of the second selector 142.
  • the reference voltage VREF is applied to the inverting input terminal ( ⁇ ) of the comparator 143.
  • the comparator 143 compares the lowest voltage selected by the second selector 142 with the reference voltage VREF, and outputs a result of the comparison as a high-level or low-level signal.
  • the output signal of the comparator 143 is applied to the gate of the switch 15A in the source current supply unit 15.
  • the LED driver 50B also has an OR circuit 51.
  • the voltage of the PWM input terminal PWMIN is input to the OR circuit 51 together with the pulse width modulation signals PWM1 to PWMn.
  • the output of the OR circuit 51 is input to the comparator 143 and can be output from the PWM output terminal PWMOUT to the outside.
  • the output of the OR circuit 51 is at a high level, and all the voltages of the pulse width modulation signals PWM1 to PWMn and the PWM input terminal PWMIN Is low level, the output of the OR circuit 51 is low level.
  • the comparator 143 When the output of the OR circuit 51 is at a low level, the comparator 143 outputs a low-level output signal to the switch 15A. As a result, the switch 15A is turned on, and the source current Iso does not flow from the feedback terminal FB1. When the output of the OR circuit 51 is at a high level, the comparator 143 outputs an output signal of a level corresponding to the comparison result to the switch 15A.
  • FIG. 8 is a diagram showing an example of a configuration in which a plurality of LED sets, which are sets of LED strings 4_1 to 4_n, are driven using a plurality of LED drivers 50B having such a configuration.
  • a plurality of LED sets which are sets of LED strings 4_1 to 4_n
  • LED drivers 50B having such a configuration.
  • an example in which three LED sets G1 to G3 are driven will be described.
  • the anode of each LED string in the LED sets G1 to G3 is connected to a line where the output voltage Vout is generated.
  • an LED driver 50B1 as a master and LED drivers 50B2 and 50B3 as slaves are used.
  • the configuration of each of the LED drivers 50B1 to 50B3 is the same as that of the LED driver 50B of FIG. 7 described above, that is, the LED drivers 50B1 to 50B3 are the same.
  • the cathodes of the LED strings in each of the LED sets G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 50B1 to 50B3, respectively.
  • the lowest voltage output terminal VMINOUT of the LED driver 50B2 is connected to the other driver connection terminal VOM1 of the LED driver 50B1.
  • the other driver connection terminal VOM2 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B3.
  • the other driver connection terminal VOM3 of the LED driver 50B1 is short-circuited to an external terminal (not shown) (not shown) to which the power supply voltage Vcc is applied because another LED driver is not connected.
  • the other driver connection terminals VOM1 to VOM3 of the LED drivers 50B2 and 50B3 are short-circuited to the VCC terminal because no other LED driver is connected.
  • the feedback terminal FB1 of the LED driver 50B1 is connected to the common connection node Nc, but is not connected to the feedback terminals FB1 of the LED drivers 50B2 and 50B3. No connection is made to the lowest voltage output terminal VMINOUT of the LED driver 50B1.
  • the PWM input terminal PWMIN of the LED driver 50B1 is connected to the PWM output terminal PWMOUT of the LED driver 50B2.
  • the PWM input terminal PWMIN of the LED driver 50B2 is connected to the PWM output terminal PWMOUT of the LED driver 50B3.
  • a low-level voltage is applied to the PWM input terminal PWMIN of the LED driver 50B3. No connection is made to the PWM output terminal PWMOUT of the LED driver 50B1.
  • the lowest voltage among the LED terminal voltages VLED1 to VLEDn of the LED group G2 is selected and output from the lowest voltage output terminal VMINOUT of the LED driver 50B2 as a slave.
  • the lowest voltage output terminal VMINOUT of the LED driver 50B3 as a slave selects and outputs the lowest voltage among the LED terminal voltages VLED1 to VLEDn of the LED group G3.
  • the LED driver 50B1 as a master, the lowest voltage input from the LED driver 50B2 to the other driver connection terminal VOM1, the lowest voltage input from the LED driver 50B3 to the other driver connection terminal VOM2, and the LED terminal related to the LED group G1.
  • the lowest voltage among the voltages VLED1 to VLEDn is selected, and is output from the second selector 142 to the comparator 143.
  • the comparator 143 compares the selected minimum voltage with the reference voltage VREF, and the source current supply unit 15 transmits the feedback signal from the feedback terminal FB1 to the common connection node Nc according to the comparison result of the comparator 143.
  • the on / off of the source current Iso to be supplied is switched.
  • the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and is input to the PWM input terminal PWMIN of the LED driver 50B2.
  • the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT, and is input to the PWM input terminal PWMIN of the LED driver 50B1. Accordingly, the output of the OR circuit 51 in the LED driver 50B1 becomes a high level when at least one of the pulse width modulation signals PWM1 to PWMn of the LED drivers 50B1 to 50B3 is at a high level, and the pulse width modulation signals of the LED drivers 50B1 to 50B3 are output. When all of PWM1 to PWMn are at the low level, the level becomes the low level.
  • the LED terminal voltage VLED_min of the LED string having the maximum total LED forward voltage Vf_max of the LED sets G1 to G3 is controlled to the reference voltage VREF.
  • the output voltage Vout is controlled to VREF + Vf_max.
  • the plurality of LED groups G1 to G3 can be driven using the LED drivers 50B1 to 50B3 having a common configuration.
  • the LED driver 50B is not limited to being used to drive a plurality of LED sets, but may be used to drive only one LED set. In this case, only one LED driver 50B is used, and in the LED driver 50B, all other driver connection terminals VOM1 to VOM3 are short-circuited to the VCC terminal, and a low-level voltage is applied to the PWM input terminal PWMIN.
  • FIG. 9 is a plan view showing an example of a pin arrangement in an LED driver 50B as a semiconductor integrated circuit device (package product). Each pin is formed on the bottom surface of the semiconductor integrated circuit device (package product).
  • the configuration is such that 16 LED strings (ie, LED strings 4_1 to 4_16) can be connected.
  • the first side 501 extending in the horizontal direction of the rectangular LED driver 50B in plan view includes, in order, a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, and a pin.
  • the LEDs 5 and 6 are arranged side by side in the horizontal direction.
  • the pin EXTCLK is a pin for inputting a clock signal.
  • the pin VSYNC is a pin for inputting a synchronization signal.
  • the pins LED1 to LED6 are pins for connecting the cathode of the LED string.
  • the pin LGND is a ground pin of the constant current circuit. Non-connection pins are pins that are not connected.
  • the pins LED7, LED8, the non-connection pin, the pin LGND, the pin SDO, the pin PWMOUT, the pin TEST, the pin PWMIN, the pin LGND, and the non-connection Pins, pins LED9 and LED10 are arranged side by side in the vertical direction.
  • the pin LED 7 is arranged so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6.
  • Pins LED7 to LED10 are pins for connecting the cathode of the LED string.
  • the pin SDO is a data output pin.
  • the pin PWMOUT is a PWM output terminal.
  • Pin PWMIN is a PWM input terminal.
  • the pin TEST is a pin for a test mode.
  • the third side 503 extends laterally from an end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is vertically opposed to the first side 501.
  • the pins LED11, LED12, non-connection pin, pin LGND, non-connection pin, pins LED13 to LED16, non-connection pin, pin FB1, and pin VOM3 are arranged in order in the horizontal direction.
  • the pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10.
  • the -pin LEDs 11 to 16 are pins for connecting the cathode of the LED string.
  • the pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG.
  • the pin VOM3 is a pin for connecting the pin VMINOUT of another LED driver, and corresponds to the other driver connection terminal VOM3 in FIG.
  • the fourth side 504 extends in the vertical direction from the end of the third side 503 which is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction.
  • a pin VOM2, a pin VOM1, a pin VMINOUT, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are arranged in order in the vertical direction. Be placed.
  • the pin VOM2 is arranged so as to sandwich the intersection of the third side 503 and the fourth side 504 with the pin VOM3.
  • the pin SCLK is arranged so as to sandwich the intersection of the first side 501 and the fourth side 504 with the pin EXTCLK.
  • the pins VOM2 and VOM1 are pins for connecting the pin VMINOUT of another LED driver, and correspond to the other driver connection terminals VOM2 and VOM1 in FIG.
  • the pin VMINOUT is a pin for outputting the lowest LED terminal voltage of the 16 LED strings, and corresponds to the lowest voltage output terminal VMINOUT in FIG.
  • the pin ISET is a pin for connecting a resistor for setting the LED current.
  • the pin VREG is a pin for outputting an internal voltage.
  • Pin VCC is a VCC terminal.
  • Pin EN is a pin for setting a standby mode or an operation mode.
  • the pin GND is a pin for ground connection.
  • the pin FAIL is a pin for abnormality detection output.
  • the pin SCS is a chip selection setting pin.
  • the pin SDI is a data input pin.
  • the pin SCLK is a clock input pin.
  • the output terminal of the second selector 142 may be connected to the input terminal of the operational amplifier instead of the comparator 143, for example.
  • the operational amplifier those described in the first and second embodiments can be used.
  • FIG. 10 is a circuit diagram showing an LED drive circuit device according to the fourth embodiment.
  • the LED drive circuit device according to the present embodiment has an advantage that the wiring can be simplified as compared with the LED drive circuit device shown in FIG.
  • the LED drive circuit device includes a switching regulator (not shown in FIG. 10), and includes a plurality of sets of LED drivers 5B and LED strings 4_1 to 4n.
  • the switching regulator may have, for example, the same configuration as the above-described switching regulator of FIG.
  • an example in which three LED sets, which are sets composed of the LED strings 4_1 to 4n, are driven that is, an example in which three LED sets G1 to G3 are driven will be described.
  • the anode of each LED string in the LED sets G1 to G3 is connected to a line where the output voltage Vout is generated.
  • the LED drivers 5B1 to 5B3 are used to drive the LED sets G1 to G3.
  • the configuration of each of the LED drivers 5B1 to 5B3 is the same as that of the LED driver 5B of FIG. 5 described above, that is, the LED drivers 5B1 to 5B3 are the same.
  • the cathodes of the LED strings in each of the LED sets G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 5B1 to 5B3, respectively.
  • the feedback terminals FB1 of the LED drivers 5B1 to 5B3 are connected to the common connection node Nc.
  • LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4n forming the LED set G1 are 3.2 [V]
  • the total LED forward direction voltages of the LED strings 4_1 to 4n forming the LED set G2 are set.
  • Vf1 to Vfn are all 3.1 [V]
  • LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4n constituting the LED group G3 are all 3.0 [V]
  • the LED drivers 5B1 to 5B3 The general operation of the LED drive circuit device according to the present embodiment will be described by taking as an example a case where the reference voltages VREF used in the above are all 1.0 [V].
  • the LED terminal voltage LED_min becomes equal to or lower than the reference voltage VREF not only in the LED driver 5B1 but also in the LED driver 5B2, so that each feedback of the LED drivers 5B1 and 5B2 is performed.
  • the source current Iso is no longer output from the terminal FB1. Since the LED terminal voltage LED_min is still higher than the reference voltage VREF in the LED driver 5B3, the source current Iso is output from the feedback terminal FB1 of the LED driver 5B3.
  • the LED terminal voltage LED_min becomes equal to or lower than the reference voltage VREF not only in the LED drivers 5B1 and 5B but also in the LED driver 5B3, so that the LED drivers 5B1 to 5B3
  • the source current Iso is no longer output from each feedback terminal FB1.
  • Becomes 1.0 [V] ( 4.0 [V] -3.0 [V]). Therefore, if the minimum drive voltage of the LED constant current sources Cs1 to Csn (the minimum voltage required for driving the LED constant current sources) is 0.8 [V] or less, the LED sets G1 to G3 light without any problem. I do.
  • FIG. 11 is a plan view showing an example of a pin arrangement in the LED drivers 5B1 to 5B3 according to the fourth embodiment.
  • Each pin is formed on the bottom surface of the semiconductor integrated circuit device (package product).
  • the configuration is such that 16 LED strings (ie, LED strings 4_1 to 4_16) can be connected.
  • a first side 501 extending in the horizontal direction of the LED driver 5B having a rectangular shape in a plan view includes, in order, a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, and a pin.
  • the LEDs 5 and 6 are arranged side by side in the horizontal direction.
  • the pin EXTCLK is a clock signal input pin.
  • the pin VSYNC is a pin for inputting a synchronization signal.
  • the pins LED1 to LED6 are pins for connecting the cathode of the LED string.
  • the pin LGND is a ground pin of the constant current circuit.
  • Non-connection pins are pins that are not connected.
  • a second side 502 extending in the vertical direction from one end of the first side 501 has pins LED7, LED8, a non-connection pin, a pin LGND, a pin SDO, a pin TEST1, a pin TEST2, a non-connection pin, a pin LGND, and a non-pin.
  • the connection pins, the pins LED9 and LED10 are arranged side by side in the vertical direction.
  • the pin LED 7 is arranged so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6.
  • the pins LED7 to LED10 are pins for connecting the cathode of the LED string.
  • the pin SDO is a data output pin.
  • the pins TEST1 and TEST2 are pins for a test mode.
  • the third side 503 extends laterally from an end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is vertically opposed to the first side 501.
  • the pins LED11, LED12, non-connection pin, pin LGND, non-connection pin, pins LED13 to LED16, non-connection pin, pin FB1, and non-connection pin are arranged in order in the horizontal direction.
  • the pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10.
  • the pins LED11 to LED16 are pins for connecting the cathode of the LED string.
  • the pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG.
  • the fourth side 504 extends in the vertical direction from an end of the third side 503 which is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction.
  • a non-connection pin, a non-connection pin, a non-connection pin, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are sequentially arranged in the vertical direction.
  • the pin SCLK is arranged so as to sandwich the intersection of the first side 501 and the fourth side 504 with the pin EXTCLK.
  • the pin ISET is a pin for connecting a resistor for setting the LED current.
  • the pin VREG is a pin for outputting an internal voltage.
  • Pin VCC is a VCC terminal.
  • Pin EN is a pin for setting a standby mode or an operation mode.
  • the pin GND is a pin for ground connection.
  • the pin FAIL is a pin for abnormality detection output.
  • the pin SCS is a chip selection setting pin.
  • the pin SDI is a data input pin.
  • the pin SCLK is a clock input pin.
  • the dimming control of the LED drive circuit device shown in FIG. 10 is performed by, for example, a microcomputer (not shown).
  • the microcomputer transmits, for example, the dimming data DATA shown in FIG. 12 to the pin SDI of the LED driver 5B1.
  • the LED driver 5B1 outputs the dimming data DATA received at the pin SDI from the pin SDO.
  • the pin SDO of the LED driver 5B1 and the pin SDI of the LED driver 5B2 are connected by wiring. Therefore, the LED driver 5B1 transmits the dimming data DATA to the pin SDI of the LED driver 5B2.
  • the LED driver 5B2 outputs the dimming data DATA received at the pin SDI from a pin SDO.
  • the pin SDO of the LED driver 5B2 and the pin SDI of the LED driver 5B3 are connected by wiring. Therefore, the LED driver 5B2 transmits the dimming data DATA to the pin SDI of the LED driver 5B3.
  • the setting data of the reference voltage VREF is also transmitted via the pins SDI and SDO in the same manner as the dimming data DATA.
  • at least one of the non-connection pins in the present embodiment is replaced with a reference voltage VREF setting pin, and the reference voltage is set according to the circuit constant of a passive element connected to the reference voltage VREF setting pin. The value of VREF may be set.
  • the microcomputer sends the pulse signal P1 shown in FIG. 12 to the pin VSYNC of the LED driver 5B1, sends the pulse signal P2 shown in FIG. 12 to the pin VSYNC of the LED driver 5B2, and sends the pulse signal P3 shown in FIG. Send to pin 5SYNC of 5B3.
  • the PWM dimming unit 11 of each of the LED drivers 5B1 to 5B3 recognizes the dimming data in the high level period of the pulse signal received at the pin VSYNC of each of the LED drivers 5B1 to 5B3, and determines the pulse width based on the recognized dimming data. Modulation signals PWM1 to PWMn are generated.
  • the LED driver 5B shown in FIG. 5 is used, but the LED driver 5 shown in FIG. 1 or the LED driver 5A shown in FIG. 3 may be used instead of the LED driver 5B.
  • the number of LED drivers is three, but the number of LED drivers may be a plurality other than three. Further, in the present embodiment, a plurality of LED strings are connected to each LED driver, but one LED string may be connected to one LED driver.
  • the switching regulator is used as the power supply device, but a linear regulator may be used instead of the switching regulator.
  • the output voltage of the power supply device used for driving the light emitting element can be controlled to a predetermined value by a relatively simple circuit, so that the power supply efficiency can be improved. Therefore, industrial applicability is extremely high.

Abstract

Each of a plurality of sets of LED drivers comprises: a plurality of LED constant current sources that can be connected individually through an LED connection terminal to one or more LED strings; a selection unit for selecting, as a subsequent-detection LED connection terminal, the LED connection terminal of the LED string among the one or more LED strings in which the LED forward-direction total voltage is the largest; a comparator for comparing the voltage of a detection LED connection terminal and a first reference voltage; and a feedback terminal for outputting a current based on the output of the comparator. A feedback voltage generation circuit of a power supply device comprises a first voltage division resistor connected to an output terminal and a second voltage division resistor connected to ground potential and serially connected to a first voltage division circuit. A plurality of sets of feedback terminals are connected to a common connection node between the first voltage division resistor and the second voltage division resistor.

Description

LED駆動回路装置および電子機器LED drive circuit device and electronic equipment
 本発明は、複数のLED(Light Emitting Diode)組を駆動するLED駆動装置に関する。 The present invention relates to an LED driving device that drives a plurality of LED (Light Emitting Diode) sets.
 昨今、LEDは例えば、液晶パネル、照明装置、交通信号機、各種光源等、多種多様に採用されている。こうした各種装置にはスイッチングレギュレータが併用され、このスイッチングレギュレータはPWM(Pulse Width Modulation)方式で制御される。また、LEDもPWM制御されることも少なくない。 今 In recent years, LEDs are widely used, for example, in liquid crystal panels, lighting devices, traffic signals, various light sources, and the like. A switching regulator is used together with such various devices, and the switching regulator is controlled by a PWM (Pulse Width Modulation) method. In addition, LEDs are often PWM-controlled.
 特許文献1は、インダクタに間歇的に電流を流すスイッチング素子を駆動し、このインダクタに流れる電流を整流してLEDの駆動電流を生成する電源制御用半導体集積回路を開示する。この電源制御用半導体集積回路は、複数のLEDユニットのそれぞれから電流を引き込む複数の外部端子と、この複数の外部端子にそれぞれ接続された複数の電流源と、前記複数の外部端子の電圧と所定の参照電圧との電位差に応じた電圧を出力する誤差増幅器を備える。そして、誤差増幅器の複数の出力のうち、前記外部端子の電圧が最も低いものに対応した出力に基づいてスイッチング素子の駆動パルスを生成する。これによれば、LEDの多灯化に伴う部品点数や実装面積の増加を抑制できること、また、画面の明るさにムラが生じるのを回避できるとしている。 Patent Document 1 discloses a power supply control semiconductor integrated circuit that drives a switching element that allows current to flow intermittently through an inductor and rectifies the current flowing through the inductor to generate a drive current for an LED. The power supply control semiconductor integrated circuit includes a plurality of external terminals for drawing current from each of the plurality of LED units, a plurality of current sources respectively connected to the plurality of external terminals, a voltage of the plurality of external terminals and a predetermined voltage. And an error amplifier that outputs a voltage corresponding to a potential difference from the reference voltage. Then, a drive pulse for the switching element is generated based on the output corresponding to the one having the lowest voltage of the external terminal among the plurality of outputs of the error amplifier. According to this, it is possible to suppress an increase in the number of components and mounting area due to an increase in the number of LEDs, and to avoid occurrence of unevenness in screen brightness.
 特許文献2は、発光素子の駆動回路およびそれを用いた発光装置および電子機器を開示する。特許文献2は、スキャンニング動作時の発光素子の輝度を安定化する。そのために誤差増幅器はn個のLED端子それぞれの電圧のうち最も低い電圧と所定の基準電圧との誤差に基づき、基準電圧の方が高いときに誤差に応じたソース電流を生成し、基準電圧の方が低いときに誤差に応じたシンク電流を生成し、フィードバック端子に生ずるフィードバック電圧を変化させる。 Patent Document 2 discloses a driving circuit of a light emitting element, a light emitting device and an electronic apparatus using the same. Patent Document 2 stabilizes the luminance of a light emitting element during a scanning operation. Therefore, the error amplifier generates a source current corresponding to the error when the reference voltage is higher, based on the error between the lowest voltage of each of the n LED terminals and a predetermined reference voltage. When it is lower, a sink current corresponding to the error is generated, and the feedback voltage generated at the feedback terminal is changed.
特開2010-11808号公報JP 2010-11808 A 特開2013-109921号公報JP 2013-109921 A
 特許文献1は、複数のLEDユニットに設けた外部端子の電圧に応じた駆動パルスを生成してスイッチング素子に印加はするが、複数のLEDユニットの輝度を安定化することは期待できない。なぜならば、外部端子の電圧を検出することと複数のLEDユニットに適正な電圧が印加されていることとは別のことであるからである。 Patent Document 1 generates a drive pulse corresponding to the voltage of an external terminal provided in a plurality of LED units and applies it to a switching element, but cannot expect to stabilize the brightness of the plurality of LED units. This is because detecting the voltage of the external terminal is different from applying appropriate voltages to the plurality of LED units.
 特許文献2は、特許文献1に開示される回路構成に加えて、フィードバック端子に生ずるフィードバック電圧をトランスコンダクタンスアンプから出力されるシンク電流又はソース電流で発光素子に印加する駆動電圧を制御するので発光素子の輝度の安定化は図れる。しかし、特許文献2のフィードバック端子とは、誤差増幅器の出力側すなわち位相補償用のフィードバックキャパシタ(CFB)とフィードバック抵抗(RFB)とが直列に接続される外部端子である。したがって、出力電圧を精度よく制御することは期待できず、LEDの輝度の安定化を精度高く制御することは期待できない。 In Patent Document 2, in addition to the circuit configuration disclosed in Patent Document 1, a driving voltage for applying a feedback voltage generated at a feedback terminal to a light emitting element by a sink current or a source current output from a transconductance amplifier is controlled, so that light is emitted. The luminance of the element can be stabilized. However, the feedback terminal in Patent Document 2 is an external terminal on the output side of the error amplifier, that is, a feedback capacitor (CFB) for phase compensation and a feedback resistor (RFB) connected in series. Therefore, it is not expected that the output voltage is controlled with high accuracy, and it is not expected that the stabilization of the luminance of the LED is controlled with high accuracy.
 本発明は、上記問題点に鑑みてなされたものであり、発光素子の輝度の安定化がより図れるLED駆動回路装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an LED drive circuit device capable of stabilizing the luminance of a light emitting element.
 本発明に係るLED駆動回路装置の一態様は、電源装置を備え、LEDドライバ及び少なくとも一つのLEDストリングを複数組備えるLED駆動回路装置であって、前記電源装置は、前記電源装置の出力電圧を分圧した帰還電圧を生成する帰還電圧生成回路と、前記帰還電圧に応じて前記出力電圧を変動させる出力電圧調整部と、を備え、前記少なくとも一つのLEDストリングそれぞれは、前記出力電圧を駆動電圧源として、複数のLEDが直列に接続され、前記LEDドライバそれぞれは、前記少なくとも一つのLEDストリングに各別にLED接続端子を介して接続可能な複数のLED定電流源と、前記少なくとも一つのLEDストリングの内、LED順方向総電圧がもっとも大きいLEDストリングの前記LED接続端子を以降検出用LED接続端子として選択する選択部と、前記検出用LED接続端子の電圧と第1参照電圧とを比較する比較部と、前記比較部の出力に基づく電流を出力する帰還端子と、を備え、前記帰還電圧生成回路は前記電源装置の出力端子に接続される第1分圧抵抗と接地電位に接続され前記第1分圧回路と直列に接続される第2分圧抵抗で構成され、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードに前記複数組の前記帰還端子が接続される(第1の構成)。 One embodiment of the LED drive circuit device according to the present invention is an LED drive circuit device including a power supply device and including a plurality of sets of an LED driver and at least one LED string, wherein the power supply device outputs an output voltage of the power supply device. A feedback voltage generation circuit that generates a divided feedback voltage; and an output voltage adjustment unit that varies the output voltage according to the feedback voltage, wherein each of the at least one LED string drives the output voltage by a drive voltage. A plurality of LEDs are connected in series as a source, each of the LED drivers includes a plurality of LED constant current sources that can be individually connected to the at least one LED string via LED connection terminals, and the at least one LED string. Of the LED strings, the LED connection terminal of the LED string with the highest total LED forward voltage is A selection unit that selects the output LED connection terminal; a comparison unit that compares the voltage of the detection LED connection terminal with a first reference voltage; and a feedback terminal that outputs a current based on the output of the comparison unit. Wherein the feedback voltage generation circuit includes a first voltage dividing resistor connected to an output terminal of the power supply device and a second voltage dividing resistor connected to a ground potential and connected in series with the first voltage dividing circuit; The plurality of sets of the feedback terminals are connected to a common connection node between the first voltage dividing resistor and the second voltage dividing resistor (first configuration).
 また、上記第1の構成において、前記LEDドライバそれぞれは、前記選択部と前記比較部とを有するオペアンプを有し、前記帰還端子に前記オペアンプの出力が結合されることとしてもよい(第2の構成)。 Further, in the first configuration, each of the LED drivers may include an operational amplifier having the selection unit and the comparison unit, and an output of the operational amplifier may be coupled to the feedback terminal (second embodiment). Constitution).
 また、上記第2の構成において、前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記帰還端子が、前記共通接続ノードから前記帰還端子に引き込まれるシンク電流を出力することとしてもよい(第3の構成)。 Further, in the second configuration, when the voltage of the detection LED connection terminal is lower than the first reference voltage, the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal. (Third configuration).
 また、上記第3の構成において、前記共通接続ノードと前記複数組の前記帰還端子それぞれとの間に前記複数組の第3分圧抵抗それぞれが接続されることとしてもよい(第4の構成)。 In the third configuration, each of the plurality of sets of third voltage-dividing resistors may be connected between the common connection node and each of the plurality of sets of the feedback terminals (fourth configuration). .
 また、上記第2の構成において、前記オペアンプは、トランスコンダクタンスアンプであることとしてもよい(第5の構成)。 In the second configuration, the operational amplifier may be a transconductance amplifier (fifth configuration).
 また、上記第5の構成において、前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記帰還端子が、前記共通接続ノードから前記帰還端子に引き込まれるシンク電流を出力することとしてもよい(第6の構成)。 Further, in the fifth configuration, when the voltage of the detection LED connection terminal is lower than the first reference voltage, the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal. (Sixth configuration).
 また、前記検出用LED接続端子の電圧が前記第1参照電圧よりも高いとき、前記帰還端子が、前記帰還端子から前記共通接続ノードに流れだすソース電流を出力することとしてもよい(第7の構成)。 When the voltage of the detection LED connection terminal is higher than the first reference voltage, the feedback terminal may output a source current flowing from the feedback terminal to the common connection node (seventh embodiment). Constitution).
 また、上記第1の構成において、前記LEDドライバそれぞれは、前記比較部であるコンパレータの出力に応じて、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードへ流し込むソース電流のオンオフを切替えるソース電流供給部を有することとしてもよい(第8の構成)。 Further, in the first configuration, each of the LED drivers is configured to determine a source current flowing into a common connection node between the first voltage dividing resistor and the second voltage dividing resistor in accordance with an output of a comparator serving as the comparing unit. A source current supply unit for switching on and off may be provided (eighth configuration).
 また、上記第8の構成において、前記ソース電流供給部は、前記コンパレータの出力に応じてオンオフされるスイッチと、前記スイッチに接続される定電流回路と、カレントミラー回路と、を有し、前記スイッチは、前記カレントミラー回路における一方のトランジスタの両端間に接続されることとしてもよい(第9の構成)。 Further, in the eighth configuration, the source current supply unit includes a switch that is turned on / off according to an output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit, The switch may be connected between both ends of one of the transistors in the current mirror circuit (a ninth configuration).
 また、上記第1~9いずれかの構成において、前記LED定電流源は、第1パルス幅変調信号によって間歇的に電流を生成することとしてもよい(第10の構成)。 In any one of the first to ninth configurations, the LED constant current source may generate a current intermittently with a first pulse width modulation signal (tenth configuration).
 また、上記第1~10いずれかの構成において、前記電源装置は、インダクタに間歇的に電流を流すスイッチング素子と、前記インダクタに流れるインダクタ電流を平滑して、前記出力端子に前記出力電圧を出力する平滑部と、スロープ信号生成回路と、誤差増幅器と、PWMコンパレータと、をさらに備え、前記スロープ信号生成回路は三角波状またはのこぎり波状のスロープ信号を生成し、前記誤差増幅器は前記帰還電圧と第2参照電圧とを比較して両者差分の電圧を誤差電圧として出力し、前記PWMコンパレータは、前記誤差電圧と前記スロープ信号とを比較し、そのパルス比較結果に応じたパルス幅を有する第2パルス幅変調信号を出力し、前記第2パルス幅変調信号によって、前記スイッチング素子がオンまたはオフに制御されることとしてもよい(第11の構成)。 In any one of the first to tenth configurations, the power supply device includes a switching element that intermittently supplies a current to the inductor, and smoothes an inductor current that flows through the inductor, and outputs the output voltage to the output terminal. And a slope signal generation circuit, an error amplifier, and a PWM comparator. The slope signal generation circuit generates a triangular or sawtooth-shaped slope signal, and the error amplifier generates the feedback voltage and a feedback voltage. The PWM comparator compares the error voltage with the slope signal, and outputs a second pulse having a pulse width corresponding to the pulse comparison result. Outputting a width modulation signal, wherein the switching element is controlled to be turned on or off by the second pulse width modulation signal. It may be a Rukoto (eleventh configuration).
 また、本発明に係る電子機器の一態様は、上記いずれかの構成のLED駆動回路装置を備える。 の 一 Further, one embodiment of an electronic device according to the present invention includes the LED drive circuit device having any one of the above-described configurations.
 この発明によれば、駆動電圧が印加される複数のLEDストリングの中で最も低い電圧を所定の参照電圧と比較し、かつ、その比較結果に基づき帰還電圧生成回路で生成される帰還電圧の大きさを制御してLEDストリングに供給する駆動電圧を制御するのでLEDストリングでの降下電圧に適合した出力電圧に調整でき、LEDストリングの輝度を所定の明るさに維持し、かつ、電源装置の出力端子の出力電圧が必要以上に高くなり、LED駆動回路装置での電力消費が増大するという不具合を排除することができる。 According to the present invention, the lowest voltage among the plurality of LED strings to which the driving voltage is applied is compared with the predetermined reference voltage, and the magnitude of the feedback voltage generated by the feedback voltage generating circuit based on the comparison result. Since the driving voltage supplied to the LED string is controlled by controlling the output voltage, the output voltage can be adjusted to a voltage suitable for the voltage drop in the LED string, the brightness of the LED string is maintained at a predetermined brightness, and the output of the power supply The disadvantage that the output voltage of the terminal becomes unnecessarily high and power consumption in the LED drive circuit device increases can be eliminated.
第1実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram showing the LED drive circuit device according to the first embodiment. 図1のLED駆動回路装置を比較的広いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示すタイミングチャートである。2 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively wide pulse width. 図1のLED駆動回路装置を比較的狭いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示すタイミングチャートである。2 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 1 is driven by a PWM signal having a relatively narrow pulse width. 第2実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram showing the LED drive circuit device according to the second embodiment. 図2のLED駆動回路装置を比較的広いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示すタイミングチャートである。3 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively wide pulse width. 図2のLED駆動回路装置を比較的狭いパルス幅のPWM信号で駆動したときの主なノードの信号波形を示すタイミングチャートである。3 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 2 is driven by a PWM signal having a relatively narrow pulse width. 第3実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram showing the LED drive circuit device concerning a 3rd embodiment. 図5のLED駆動回路装置をPWM信号で駆動したときの主なノードの信号波形を示すタイミングチャートである。6 is a timing chart showing signal waveforms at main nodes when the LED drive circuit device of FIG. 5 is driven by a PWM signal. 第3実施形態の変形例に係るLEDドライバの構成を示す図である。It is a figure showing the composition of the LED driver concerning a modification of a 3rd embodiment. 複数のLED組を駆動させる構成の一例を示す図である。It is a figure showing an example of the composition which drives a plurality of LED sets. 第3実施形態の変形例に係るLEDドライバにおけるピン配置の一例を示す平面図である。It is a top view showing an example of pin arrangement in an LED driver concerning a modification of a 3rd embodiment. 第4実施形態に係るLED駆動回路装置を示す回路図である。It is a circuit diagram showing an LED drive circuit device according to a fourth embodiment. 第4実施形態に係るLEDドライバにおけるピン配置の一例を示す平面図である。It is a top view showing an example of the pin arrangement in the LED driver concerning a 4th embodiment. マイクロコンピュータから出力される調光データ及びパルス信号のタイミングチャートである。4 is a timing chart of dimming data and pulse signals output from the microcomputer.
(第1実施形態)
 図1は第1実施形態に係るLED駆動回路装置1を示す回路図である。LED駆動回路装置1はスイッチング制御回路2、出力回路3、LEDドライバ(定電流ドライバ)5、及びLEDストリング4_1~4_n(nは2以上の自然数)を備える。スイッチング制御回路2にはいくつかの外部端子が用意される。出力回路3は、インダクタL1、キャパシタC1、及び分圧抵抗R1,R2で構成される。スイッチング制御回路2と出力回路3でスイッチングレギュレータを構成する。スイッチング制御回路2は、出力回路3と協働して入力端子INに供給される入力電圧Vinを降圧して所望の出力電圧Voutを出力端子OUTに出力する。図1に示すスイッチングレギュレータはよく知られた降圧型を構成する。なお、スイッチング制御回路2及び出力回路3は降圧型ではなく昇圧型または昇降圧型に適合させるように構成することもできる。本明細書で説明するLED駆動回路装置は降圧型、昇圧型または昇降圧型のスイッチングレギュレーに関係なく適用が可能である。
(1st Embodiment)
FIG. 1 is a circuit diagram showing an LED drive circuit device 1 according to the first embodiment. The LED drive circuit device 1 includes a switching control circuit 2, an output circuit 3, an LED driver (constant current driver) 5, and LED strings 4_1 to 4_n (n is a natural number of 2 or more). The switching control circuit 2 has several external terminals. The output circuit 3 includes an inductor L1, a capacitor C1, and voltage dividing resistors R1 and R2. The switching control circuit 2 and the output circuit 3 constitute a switching regulator. The switching control circuit 2 cooperates with the output circuit 3 to reduce the input voltage Vin supplied to the input terminal IN and output a desired output voltage Vout to the output terminal OUT. The switching regulator shown in FIG. 1 constitutes a well-known step-down type. Note that the switching control circuit 2 and the output circuit 3 may be configured so as to be adapted to a step-up or step-up / step-down type instead of a step-down type. The LED drive circuit device described in this specification can be applied regardless of the step-down, step-up or step-up / step-down switching regulation.
 スイッチング制御回路2は、半導体集積回路で構成され、スイッチング素子S1、同期整流半導体素子S2、エラーアンプ6、発振回路7、スロープ信号生成回路8、PWMコンパレータ9及び駆動回路10を備える。スイッチング素子S1はインダクタL1に間歇的に電流を流すスイッチング素子として、同期整流半導体素子S2と相補的に動作する。スイッチング素子S1がオフのときにインダクタL1に電流を供給する。スイッチング素子S1と同期整流半導体素子S2は、入力電圧Vinから出力電圧Voutを生成するためにオン/オフされる。なお、同期整流半導体素子S2はトランジスタではなく、ダイオードに置き換えることができる。 The switching control circuit 2 is composed of a semiconductor integrated circuit, and includes a switching element S1, a synchronous rectification semiconductor element S2, an error amplifier 6, an oscillation circuit 7, a slope signal generation circuit 8, a PWM comparator 9, and a drive circuit 10. The switching element S1 operates complementarily to the synchronous rectification semiconductor element S2 as a switching element that allows current to flow intermittently through the inductor L1. When the switching element S1 is off, a current is supplied to the inductor L1. The switching element S1 and the synchronous rectification semiconductor element S2 are turned on / off to generate an output voltage Vout from the input voltage Vin. The synchronous rectification semiconductor element S2 can be replaced with a diode instead of a transistor.
 さらに、スイッチング制御回路2に用意された複数の外部端子には、入力電圧Vin、インダクタL1、キャパシタC1~C2、分圧抵抗R1~R3、抵抗R4、及び接地電位GNDが接続されている。 (4) The input voltage Vin, the inductor L1, the capacitors C1 to C2, the voltage dividing resistors R1 to R3, the resistor R4, and the ground potential GND are connected to a plurality of external terminals prepared in the switching control circuit 2.
 入力電圧Vinが印加される入力端子INは、例えばpチャネル型MOSトランジスタで構成されるスイッチング素子S1のソースに接続される。スイッチング素子S1のドレインはスイッチング端子SW及び同期整流半導体素子S2のドレインに接続される。例えばnチャネル型MOSトランジスタで構成される同期整流半導体素子S2のソースは接地電位GNDに接続されている。 (4) The input terminal IN to which the input voltage Vin is applied is connected to the source of the switching element S1 composed of, for example, a p-channel MOS transistor. The drain of the switching element S1 is connected to the switching terminal SW and the drain of the synchronous rectification semiconductor element S2. For example, the source of the synchronous rectification semiconductor element S2 composed of an n-channel MOS transistor is connected to the ground potential GND.
 インダクタL1の一端はスイッチング端子SWに接続されている。スイッチング端子SWから出力される間歇的なスイッチング電圧VswによってインダクタL1にインダクタ電流ILが流れる。インダクタL1の他端は出力端子OUT及びキャパシタC1の一端に接続され、出力端子OUTに接続される。キャパシタC1の他端は接地電位GNDに接地されている。キャパシタC1はインダクタL1に蓄積された電磁エネルギーを平滑する。 一端 One end of the inductor L1 is connected to the switching terminal SW. The intermittent switching voltage Vsw output from the switching terminal SW causes the inductor current IL to flow through the inductor L1. The other end of the inductor L1 is connected to the output terminal OUT and one end of the capacitor C1, and is connected to the output terminal OUT. The other end of the capacitor C1 is grounded to the ground potential GND. Capacitor C1 smoothes the electromagnetic energy stored in inductor L1.
 出力回路3の一部を構成する分圧抵抗R1及びR2は出力端子OUTと接地電位GNDとの間に直列接続され帰還電圧生成回路を構成する。帰還電圧生成回路は分圧抵抗R1及び分圧抵抗R2の共通接続ノードNcに帰還電圧Vfbを生成する。帰還電圧Vfbは帰還端子FBを介して、エラーアンプ6の反転入力端子(-)に印加される。 (4) The voltage dividing resistors R1 and R2 forming a part of the output circuit 3 are connected in series between the output terminal OUT and the ground potential GND to form a feedback voltage generating circuit. The feedback voltage generation circuit generates a feedback voltage Vfb at a common connection node Nc of the voltage dividing resistors R1 and R2. The feedback voltage Vfb is applied to the inverting input terminal (−) of the error amplifier 6 via the feedback terminal FB.
 エラーアンプ6は、帰還電圧Vfbを第1基準電圧Vt1と比較し、その比較結果に応じた誤差信号Verrを出力する。 The error amplifier 6 compares the feedback voltage Vfb with the first reference voltage Vt1, and outputs an error signal Verr according to the comparison result.
 エラーアンプ6の出力とPWMコンパレータ9の反転入力端子(-)の信号経路には位相補償端子COMPが用意される。位相補償端子COMPと接地電位GNDとの間にはキャパシタC2と抵抗R4が直列に接続されている。こうしたキャパシタC2及び抵抗R4によってエラーアンプ6の電圧利得が設定される。エラーアンプ6は例えばトランスコンダクタンスアンプで構成される。 (4) A phase compensation terminal COMP is provided in the signal path between the output of the error amplifier 6 and the inverting input terminal (-) of the PWM comparator 9. A capacitor C2 and a resistor R4 are connected in series between the phase compensation terminal COMP and the ground potential GND. The voltage gain of the error amplifier 6 is set by the capacitor C2 and the resistor R4. The error amplifier 6 is composed of, for example, a transconductance amplifier.
 位相補償端子COMPと接地電位GNDとの間に直列接続されるキャパシタC2及び抵抗R4は、エラーアンプ6の電圧利得を決定すると共にスイッチングレギュレータの位相特性も決定する。キャパシタC2及び抵抗R4によってスイッチング制御回路2と出力回路3で構成されるスイッチングレギュレータの周波数特性が適正に補正される。 The capacitor C2 and the resistor R4 connected in series between the phase compensation terminal COMP and the ground potential GND determine the voltage gain of the error amplifier 6 and also determine the phase characteristics of the switching regulator. The frequency characteristics of the switching regulator including the switching control circuit 2 and the output circuit 3 are properly corrected by the capacitor C2 and the resistor R4.
 発振回路7は、例えばよく知られたCR発振器や、インバータまたは差動増幅器をリング状に接続したリングオシレータで構成されている。発振回路7は、クロック信号CLKを生成する。クロック信号CLKは、後段の駆動回路10にセット信号Ssetとして用いられる。 The oscillation circuit 7 is constituted by, for example, a well-known CR oscillator or a ring oscillator in which inverters or differential amplifiers are connected in a ring shape. The oscillation circuit 7 generates a clock signal CLK. The clock signal CLK is used as a set signal Sset for the driving circuit 10 at the subsequent stage.
 スロープ信号生成回路8は、図示しない例えば定電流源、キャパシタ及びスイッチング素子等で構成されており、三角波状や鋸波状のスロープ電圧Vslを生成する。こうしたスロープ電圧Vslは、発振回路7から印加されるクロック信号CLKによって生成される。 The slope signal generation circuit 8 includes, for example, a not-shown constant current source, a capacitor, a switching element, and the like, and generates a triangular or sawtooth-shaped slope voltage Vsl. Such a slope voltage Vsl is generated by a clock signal CLK applied from the oscillation circuit 7.
 PWMコンパレータ9は、誤差信号Verrとスロープ信号Vslとを比較し、比較結果に応じたリセット信号Sresetを後段の駆動回路10へ出力する。リセット信号Sresetは、誤差信号Verrに応じてパルス幅が変調されるパルス幅変調(PWM)信号として出力される。 The PWM comparator 9 compares the error signal Verr with the slope signal Vsl, and outputs a reset signal Reset corresponding to the comparison result to the driving circuit 10 at the subsequent stage. The reset signal Reset is output as a pulse width modulation (PWM) signal whose pulse width is modulated according to the error signal Verr.
 駆動回路10は、セット信号Sset、リセット信号Sresetを受け、スイッチング素子S1と同期整流半導体素子S2を駆動する。これらはそれぞれ相補的なゲート信号P1及びゲート信号P2によって駆動される。 (4) The drive circuit 10 receives the set signal Sset and the reset signal Sreset, and drives the switching element S1 and the synchronous rectification semiconductor element S2. These are driven by complementary gate signals P1 and P2, respectively.
 駆動回路10の内部には図示しない、例えばRSフリップフロップが用意されており、このRSフリップフロップのセット端子には発振回路7で生成されるセット信号Ssetが、リセット端子にはPWMコンパレータ9から出力されるリセット信号Sresetがそれぞれ印加される。 An unillustrated RS flip-flop, for example, is provided inside the drive circuit 10. The set terminal of the RS flip-flop receives a set signal Sset generated by the oscillation circuit 7, and a reset terminal outputs the set signal Sset from the PWM comparator 9. Reset signal Reset is applied.
 さて、図1に示すLED駆動回路装置1は、上記の回路構成の他に複数のLEDストリング4_1~4_nを備える。LEDストリング4_1~4_nは、液晶パネル、照明装置、交通信号機、その他各種電子機器等の光源や表示装置として用いられる。LEDストリング4_1~4_nの共通アノード側すなわち出力端子OUTには、スイッチングレギュレータで生成された出力電圧Voutが駆動電圧源として供給されている。なお、LEDストリング4_1、4_2及び4_nまでのLED順方向総電圧をそれぞれVf1、Vf2、及びVfnで示している。 The LED drive circuit device 1 shown in FIG. 1 includes a plurality of LED strings 4_1 to 4_n in addition to the above circuit configuration. The LED strings 4_1 to 4_n are used as a light source or a display device of a liquid crystal panel, a lighting device, a traffic signal, other various electronic devices, and the like. The output voltage Vout generated by the switching regulator is supplied as a drive voltage source to the common anode side of the LED strings 4_1 to 4_n, that is, the output terminal OUT. The total forward voltage of the LEDs up to the LED strings 4_1, 4_2, and 4_n is indicated by Vf1, Vf2, and Vfn, respectively.
 LEDドライバ5は、各LEDストリングにLED電流を供給する。LEDドライバ5は、汎用性をもたせるためにスイッチング制御回路2とは別の半導体集積回路(IC)で構成されている。これによって、LEDストリング、スイッチング制御回路、及び出力回路を各種各様に応じて組み合わせすることで汎用性を拡げることができる。LEDドライバ5には、LEDストリング4_1~4_nの各カソード側と結合させるためのLED接続端子LED1~LEDnが用意されている。なお、接地電位GNDからみたLED接続端子LED1、LED2及びLEDnに生ずるLED端子電圧をそれぞれVLED1、VLED2、及びVLEDnで示している。 The LED driver 5 supplies an LED current to each LED string. The LED driver 5 is configured by a semiconductor integrated circuit (IC) different from the switching control circuit 2 for providing versatility. Thereby, the versatility can be expanded by combining the LED string, the switching control circuit, and the output circuit according to various kinds. The LED driver 5 is provided with LED connection terminals LED1 to LEDn for coupling to the respective cathode sides of the LED strings 4_1 to 4_n. The LED terminal voltages generated at the LED connection terminals LED1, LED2, and LEDn as viewed from the ground potential GND are indicated by VLED1, VLED2, and VLEDn, respectively.
 LEDドライバ5は、各LEDストリングにLED電流ILED1~ILEDnを各別に供給するLED定電流源Cs1~Csnを有する。LED定電流源Cs1~Csnは、例えばPWM調光部11から印加されるパルス幅変調(PWM)信号によって間歇的に制御される。この様な制御は、バースト調光、バースト制御とも称される。定電流源Cs1~Csnは、バースト調光、バースト制御にする必要はなく、一般的な定電流源回路で構成してもかまわない。 The LED driver 5 has LED constant current sources Cs1 to Csn that individually supply LED currents ILED1 to ILEDn to each LED string. The LED constant current sources Cs1 to Csn are intermittently controlled by, for example, a pulse width modulation (PWM) signal applied from the PWM dimming unit 11. Such control is also called burst dimming or burst control. The constant current sources Cs1 to Csn do not need to perform burst dimming and burst control, and may be configured by a general constant current source circuit.
 LEDドライバ5は、さらにオペアンプ12を備える。オペアンプ12の入力には、LED接続端子LED1~LEDnにそれぞれ出力される数に、参照電圧VREFを与える端子を加えた(n+1)個の入力端子が用意されている。オペアンプ12の反転入力端子(-)には参照電圧VREFが与えられている。少なくとも2つの非反転入力端子(+)にはLED端子電圧VLED1~VLEDnが印加される。オペアンプ12は接地電位GNDからみて、LED端子電圧VLED1~VLEDnの中で最も低いLED端子電圧と参照電圧VREFとを比較し、その比較結果を後段のトランジスタTr1へ出力する。 The LED driver 5 further includes an operational amplifier 12. The input of the operational amplifier 12 is provided with (n + 1) input terminals obtained by adding a terminal for applying the reference voltage VREF to the number output to the LED connection terminals LED1 to LEDn. The reference voltage VREF is supplied to the inverting input terminal (−) of the operational amplifier 12. LED terminal voltages VLED1 to VLEDn are applied to at least two non-inverting input terminals (+). The operational amplifier 12 compares the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn with respect to the ground potential GND and the reference voltage VREF, and outputs the comparison result to the transistor Tr1 in the subsequent stage.
 トランジスタTr1は、オペアンプ12の出力に接続される。トランジスタTr1は例えばバイポーラトランジスタからなり、そのエミッタは接地電位GNDに、そのコレクタは外部端子OPFBに接続される。こうしたトランジスタTr1の回路構成は一般的によく知られるオープンコレクタと称することができる。なお、トランジスタTr1はMOSトランジスタで構成しオープンドレインの回路構成としてもよい。 (4) The transistor Tr1 is connected to the output of the operational amplifier 12. The transistor Tr1 is, for example, a bipolar transistor, the emitter of which is connected to the ground potential GND, and the collector of which is connected to the external terminal OPFB. Such a circuit configuration of the transistor Tr1 can be generally called an open collector. Note that the transistor Tr1 may be configured by a MOS transistor and may have an open drain circuit configuration.
 トランジスタTr1は、オペアンプ12の出力がハイレベルHとなるとオンし、その結果シンク電流Isiが流れる。トランジスタTr1がオンすると、外部端子OPFBの電位はほぼ接地電位GNDに近いローレベルLとなる。 (4) The transistor Tr1 is turned on when the output of the operational amplifier 12 becomes high level H, and as a result, the sink current Isi flows. When the transistor Tr1 is turned on, the potential of the external terminal OPFB becomes a low level L which is almost close to the ground potential GND.
 ここで、LEDドライバ5は、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、オペアンプ12に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。オペアンプ12は、OR回路51の出力がローレベルの場合、トランジスタTr1をオフとし、OR回路51の出力がハイレベルの場合、LED端子電圧VLED1~VLEDnの中で最も低いLED端子電圧と参照電圧VREFとの比較結果をトランジスタTr1に出力する。 Here, the LED driver 5 also has an OR circuit 51. The pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51. The output of the OR circuit 51 is input to the operational amplifier 12. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become. The operational amplifier 12 turns off the transistor Tr1 when the output of the OR circuit 51 is at a low level, and when the output of the OR circuit 51 is at a high level, the lowest LED terminal voltage among the LED terminal voltages VLED1 to VLEDn and the reference voltage VREF. Is output to the transistor Tr1.
 分圧抵抗R3の一端は外部端子OPFBに、その他端は帰還端子FBにそれぞれ接続される。分圧抵抗R3は、トランジスタTr1がオンしたとき、すなわち外部端子OPFBがローレベルLになると分圧抵抗R2と並列に接続される。分圧抵抗R3の抵抗値はトランジスタTr1のオン抵抗よりも十分に大きく選ばれる。帰還端子FBの帰還電圧VfbはトランジスタTr1がオフのときと比べると低下し、このとき、スイッチング制御回路2および出力回路3で構成されるスイッチングレギュレータによって、出力電圧Voutは上昇するように制御される。 一端 One end of the voltage dividing resistor R3 is connected to the external terminal OPFB, and the other end is connected to the feedback terminal FB. The voltage dividing resistor R3 is connected in parallel with the voltage dividing resistor R2 when the transistor Tr1 is turned on, that is, when the external terminal OPFB becomes low level L. The resistance value of the voltage dividing resistor R3 is selected to be sufficiently larger than the on-resistance of the transistor Tr1. The feedback voltage Vfb at the feedback terminal FB is lower than when the transistor Tr1 is off. At this time, the switching regulator formed by the switching control circuit 2 and the output circuit 3 controls the output voltage Vout to increase. .
 これによって、PWM調光部11で、出力電圧Voutを間歇的に上昇させ制御する。このことにより、LEDストリング4_1~4_nにおける発熱を抑えることができる。しかし、スイッチング制御回路2および出力回路3で構成されるスイッチングレギュレータの応答性により、出力電圧Voutの上昇が遅れることでLEDストリングが点灯しない事がある。 に よ っ て Thereby, the PWM dimming unit 11 intermittently raises and controls the output voltage Vout. Thus, heat generation in the LED strings 4_1 to 4_n can be suppressed. However, due to the responsiveness of the switching regulator constituted by the switching control circuit 2 and the output circuit 3, the rise of the output voltage Vout may be delayed and the LED string may not be lit.
 なお、図1に示すLED駆動回路装置1においてトランジスタTr1は、帰還端子FB側から外部端子OPFBに向かって電流を引き込む、いわゆるシンク電流の制御のみであるので、出力電圧Voutの制御は、LED電圧VLED1~VLEDnのいずれかが、参照電圧VREFに達したときであり、かつ出力電圧Voutを上昇させる方向しか制御できない。 Note that, in the LED drive circuit device 1 shown in FIG. 1, the transistor Tr1 draws current from the feedback terminal FB side to the external terminal OPFB, that is, controls only a so-called sink current. Therefore, the output voltage Vout is controlled by the LED voltage. Only when any one of VLED1 to VLEDn reaches the reference voltage VREF and only the direction in which the output voltage Vout is increased can be controlled.
 LEDストリング4_1~4_n中、あるLEDストリング4_i(1≦i≦n)について、LED順方向総電圧Vf_max、そしてLED接続端子LED_iにおける電圧をLED端子電圧VLED_minとする。LEDストリング4_1~4_nが点灯している期間において、以下の関係式(1)が成り立つ。
 Vout=Vf_max+VLED_min       ・・・(1)
In the LED strings 4_1 to 4_n, for a certain LED string 4_i (1 ≦ i ≦ n), the LED forward total voltage Vf_max and the voltage at the LED connection terminal LED_i are set to the LED terminal voltage VLED_min. During a period in which the LED strings 4_1 to 4_n are lit, the following relational expression (1) holds.
Vout = Vf_max + VLED_min (1)
 LEDストリング4_1~4_nのLED順方向総電圧Vf1~Vfnは、チャンネルごとにばらつく。ここで、LEDストリング4_iにおけるLED順方向総電圧Vf_maxは、最大LED順方向総電圧である。この時、式(1)より、LED端子電圧VLED_minは最小のLED端子電圧となる。以下、LEDストリング4_1~4_n中、LEDストリング4_iについて、最大のLED順方向総電圧Vf_max、最小のLED端子電圧VLED_minが発生し、LED電流ILEDiが流れるものとする。 (4) The LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4_n vary from channel to channel. Here, the LED forward total voltage Vf_max in the LED string 4_i is the maximum LED forward total voltage. At this time, from the equation (1), the LED terminal voltage VLED_min is the minimum LED terminal voltage. Hereinafter, it is assumed that the maximum LED forward total voltage Vf_max and the minimum LED terminal voltage VLED_min are generated for the LED string 4_i among the LED strings 4_1 to 4_n, and the LED current ILEDi flows.
 図2Aは、PWM信号のオンデューティ比が例えば約70%という具合に比較的大きなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートである。なお、図2Aは図1で説明したように出力電圧Voutの制御はシンク電流のみによって行われる場合のタイミングチャートである。 FIG. 2A is a timing chart when the LED drive circuit device 1 is driven at a relatively large on-duty ratio, for example, when the on-duty ratio of the PWM signal is about 70%. FIG. 2A is a timing chart when the control of the output voltage Vout is performed only by the sink current as described with reference to FIG.
 図2A(a)は、LEDドライバ5のPWM調光部11からLED定電流源Csiに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t4でハイレベルH、時刻t4~t6でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも長い、いわゆるパルスデューティ比が比較的大きな信号であることを示す。 FIG. 2A (a) shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5 to the LED constant current source Csi. The pulse width modulation signal PWMi is at a high level H from time t0 to t4 and at a low level L from time t4 to t6. This indicates that the signal TH having a so-called pulse duty ratio is relatively large, that is, the section TH of the high level H is longer than the section TL of the low level L.
 図2A(b)の、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。時刻t0~t4でハイレベルHの区間に電流が流れ、時刻t4~t6でローレベルLの区間では電流は流れない、いわゆる間歇的に電流が流れる。時刻t0~t1の区間において、LED電流ILEDiは少し緩やかに流れ始める。 LEDThe LED current ILEDi in FIG. 2A (b) follows the high level H and the low level L of the pulse width modulation signal PWMi. A current flows in a high-level H section from time t0 to t4, and no current flows in a low-level L section from time t4 to t6, that is, a so-called intermittent current flows. In the section from time t0 to t1, the LED current ILEDi starts to flow a little more slowly.
 図2A(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻t0において急峻に参照電圧VREFよりも低くなり、その後時刻t3までの区間おいては徐々に昇圧する。これは時刻t0でLEDストリング4_iにLED電流ILEDiが流れると同時にLED順方向総電圧Vf_maxだけ、降圧するためである。時刻t0~t3においては、オペアンプ12によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられる。時刻t3~t4までの区間において、参照電圧VREFに維持される様に操作される。時刻t4~t6においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように昇圧する。図中符号Vsiは、後述のシンク電流Isiで調整されるシンク電流調整電圧を示す。 2A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. At time t0 when the LED current ILEDi starts to flow, the voltage suddenly becomes lower than the reference voltage VREF, and thereafter gradually rises in a section until time t3. This is because the LED current ILEDi flows through the LED string 4_i at the time t0, and at the same time, the voltage is reduced by the LED forward total voltage Vf_max. From time t0 to t3, feedback is applied by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. In the section from time t3 to t4, the operation is performed so as to be maintained at the reference voltage VREF. When the LED current ILEDi stops flowing from the time t4 to t6, the LED terminal voltage VLED_min is boosted to follow the output voltage Vout. In the figure, reference numeral Vsi indicates a sink current adjustment voltage adjusted by a sink current Isi described later.
 図2A(d)は、LEDドライバ5側に設けたシンク電流出力端子OPFBを介して帰還端子FBからトランジスタTr1に流れ込むシンク電流Isiを示す。シンク電流Isiは、LED端子電圧VLED_minに応じて流れるか否かが決まる。とりわけ時刻t0において、LED端子電圧VLED_minが参照電圧VREFを下回ったときに流れ始め、LED端子電圧VLED_minが参照電圧VREFに近づくにつれて増加する。時刻t3において、LED端子電圧VLED_minが参照電圧VREFに達すると以降時刻t4まで一定のシンク電流Isiが流れる。区間TLである時刻t4~t6で、OR回路51の出力はローレベルとなるので、オペアンプ12によりトランジスタTr1はオフとされ、シンク電流Isiは流れなくなり0となる。 FIG. 2A (d) shows the sink current Isi flowing into the transistor Tr1 from the feedback terminal FB via the sink current output terminal OPFB provided on the LED driver 5 side. Whether the sink current Isi flows according to the LED terminal voltage VLED_min is determined. In particular, at time t0, the flow starts when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. At time t3, when the LED terminal voltage VLED_min reaches the reference voltage VREF, a constant sink current Isi flows until time t4. Since the output of the OR circuit 51 is at a low level in the period TL from time t4 to t6, the transistor Tr1 is turned off by the operational amplifier 12, and the sink current Isi stops flowing and becomes 0.
 図2A(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isiの挙動に応動する。時刻t0~t2に向かってシンク電流Isiは出力電圧Voutを高めようとして作用する。なお、時刻t0~t2の時間は前段のレギュレータ及びオペアンプ12の応答性により決まる。時刻t2~t4ではシンク電流Isiによる出力電圧Voutに対する制御効果は最大に達し、出力電圧Voutは、参照電圧VREFにLED順方向総電圧Vf_maxを加えた(VREF+Vf_max)の大きさになるように制御される。時刻t4~t5において、急峻に降圧し、時刻t5~t6において、徐々に降圧する。 FIG. 2A (e) shows a transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi. From time t0 to time t2, the sink current Isi acts to increase the output voltage Vout. The time from time t0 to time t2 is determined by the responsiveness of the previous stage regulator and the operational amplifier 12. From time t2 to time t4, the control effect on the output voltage Vout by the sink current Isi reaches the maximum, and the output voltage Vout is controlled so as to have a value (VREF + Vf_max) obtained by adding the LED forward total voltage Vf_max to the reference voltage VREF. You. The voltage drops sharply between times t4 and t5, and gradually drops between times t5 and t6.
 出力電圧Voutは、パルス幅変調信号PWMiのハイレベル、ローレベルに応じて変動する。これは図1中の、LEDドライバ5がパルス幅変調信号PWMiのハイレベル区間に動作し、パルス幅変調信号PWMiのローレベル区間に停止するためである。これにより、帰還電圧Vfbが変動することで出力電圧Voutが変動する。 (4) The output voltage Vout varies according to the high level and the low level of the pulse width modulation signal PWMi. This is because the LED driver 5 in FIG. 1 operates during the high level section of the pulse width modulation signal PWMi and stops during the low level section of the pulse width modulation signal PWMi. Accordingly, the output voltage Vout fluctuates due to the fluctuation of the feedback voltage Vfb.
 パルス幅変調信号PWMiがハイレベルのとき、出力電圧Vout、抵抗R1,R2,R3及び第1基準電圧Vt1には以下の関係式(2)が成り立つ。
 Vout=(R1・R2+R2・R3+R3・R1)・Vt1/(R2・R3)    ・・・(2)
 パルス幅変調信号PWMiがローレベルのとき、出力電圧Vout、抵抗R1,R2及び第1基準電圧Vt1には以下の関係式(3)が成り立つ。
 Vout=(R1+R2)・Vt1/R2       ・・・(3)
 即ち、式(2),(3)より、パルス幅変調信号PWMiがハイレベルのとき、出力電圧Voutは(VREF+Vf_max)の電圧に昇圧される。このため、時刻t4~t5における出力電圧Voutは急峻に降圧する。
When the pulse width modulation signal PWMi is at a high level, the following relational expression (2) holds for the output voltage Vout, the resistors R1, R2, R3, and the first reference voltage Vt1.
Vout = (R1 · R2 + R2 · R3 + R3 · R1) · Vt1 / (R2 · R3) (2)
When the pulse width modulation signal PWMi is at a low level, the following relational expression (3) holds for the output voltage Vout, the resistors R1, R2, and the first reference voltage Vt1.
Vout = (R1 + R2) · Vt1 / R2 (3)
That is, according to equations (2) and (3), when the pulse width modulation signal PWMi is at a high level, the output voltage Vout is boosted to a voltage of (VREF + Vf_max). Therefore, the output voltage Vout from time t4 to t5 drops sharply.
 また、時刻t0~t6における、各波形動作は時刻t6~t12、さらに時刻t12以降も同様に遷移する。 {Circle around (2)} The waveform operations from time t0 to t6 also transit similarly from time t6 to t12 and after time t12.
 以上述べたように図1に示すLED駆動回路装置1は、パルス幅変調信号がハイレベルの時だけ、出力電圧Voutを昇圧して制御することでLEDストリングにおける発熱を抑えることが可能となる。 As described above, the LED drive circuit device 1 shown in FIG. 1 can suppress heat generation in the LED string by boosting and controlling the output voltage Vout only when the pulse width modulation signal is at the high level.
 図2Bは、PWM信号のオンデューティ比が例えば約2%という具合に比較的小さなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートである。先に述べた図2Aのオンデューティ比が比較的大きい場合に比べると駆動条件は必ずしもよい状態とはいえなくなる。なお、図2Bは図2Aと同様に出力電圧Voutの制御はシンク電流Isiのみによって行われた場合のタイミングチャートである。 FIG. 2B is a timing chart when the LED drive circuit device 1 is driven with a relatively small on-duty ratio such as an on-duty ratio of a PWM signal of, for example, about 2%. The driving condition is not always in a good state as compared with the case where the on-duty ratio of FIG. 2A is relatively large. FIG. 2B is a timing chart in the case where the control of the output voltage Vout is performed only by the sink current Isi as in FIG. 2A.
 図2B(a)は、LEDドライバ5のPWM調光部11からLED定電流源Csiに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻T0~T2でハイレベルH、時刻T2~T4でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも短い、いわゆるパルスデューティ比が比較的小さな信号であることを示す。 FIG. 2B (a) shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5 to the LED constant current source Csi. The pulse width modulation signal PWMi is at a high level H between times T0 and T2 and at a low level L between times T2 and T4. This indicates that the signal TH having a shorter pulse duty ratio is shorter in the high level H section TH than in the low level L section TL.
 図2B(b)の、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。時刻T0~T2でハイレベルHの区間に電流が流れ、時刻T2~T4でローレベルLの区間では電流は流れない、いわゆる間歇的に電流が流れる。時刻T0~T1の区間において、LED電流ILEDiは少し緩やかに流れ始める。 LEDThe LED current ILEDi in FIG. 2B (b) follows the high level H and the low level L of the pulse width modulation signal PWMi. A current flows in a section of a high level H from time T0 to T2, and no current flows in a section of a low level L from time T2 to T4, that is, a so-called intermittent current flows. In the section from time T0 to T1, the LED current ILEDi starts to flow slightly slowly.
 図2B(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻T0において急峻に参照電圧VREFよりも低くなり、その後時刻T2までの区間おいては徐々に昇圧する。オペアンプ12によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられる。しかし、時刻T2に至ってもLED端子電圧VLED_minは参照電圧VREFまでは達していない。これは、パルス幅変調信号PWMiのパルス幅が狭く、LED端子電圧VLED_minが参照電圧VREFに達する前にパルス幅変調信号PWMiの極性が反転しまうからである。時刻T2~T4においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように昇圧する。 FIG. 2B (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. At time T0 at which the LED current ILEDi starts to flow, the voltage suddenly becomes lower than the reference voltage VREF, and thereafter gradually increases in a section up to time T2. Feedback is performed by the operational amplifier 12 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. However, even at time T2, the LED terminal voltage VLED_min has not reached the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow, and the polarity of the pulse width modulation signal PWMi is inverted before the LED terminal voltage VLED_min reaches the reference voltage VREF. When the LED current ILEDi stops flowing between times T2 and T4, the LED terminal voltage VLED_min is boosted so as to follow the output voltage Vout.
 図2B(d)は、LEDドライバ5側に設けたシンク電流出力端子OPFBを介して帰還端子FBからトランジスタTr1に流れ込むシンク電流Isiを示す。時刻T0において、LED端子電圧VLED_minが参照電圧VREFを下回ったときに流れ始め、LED端子電圧VLED_minが参照電圧VREFに近づくにつれて増加する。時刻T2~T4で、シンク電流Isiは流れなくなり0となる。 FIG. 2B (d) shows the sink current Isi flowing into the transistor Tr1 from the feedback terminal FB via the sink current output terminal OPFB provided on the LED driver 5 side. At time T0, the flow starts when the LED terminal voltage VLED_min falls below the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T2 to T4, the sink current Isi stops flowing and becomes 0.
 図2B(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isiの挙動に応動する。時刻T0~T2に向かってシンク電流Isiは出力電圧Voutを高めようとして作用する。しかし、その効果により出力電圧Voutが(VREF+Vf_max)に到達する前に、パルス幅変調信号PWMiがローレベルになり、時刻T2~T3で急峻に、時刻T3~T4まで徐々に降圧が始まる。これは、パルス幅変調信号PWMiの幅が極端に狭いことから、前段のレギュレータの応答が追いつかないためである。 FIG. 2B (e) shows a transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi. From time T0 to time T2, the sink current Isi acts to increase the output voltage Vout. However, due to this effect, before the output voltage Vout reaches (VREF + Vf_max), the pulse width modulation signal PWMi goes to a low level, and the voltage drops sharply from time T2 to T3 and gradually from time T3 to T4. This is because the width of the pulse width modulation signal PWMi is extremely narrow, so that the response of the preceding regulator cannot catch up.
 また、時刻T0~T4における、各波形動作は時刻T4以降も同様に遷移する。 {Circle around (2)} From time T0 to time T4, each waveform operation similarly transits after time T4.
 以上述べたように図1に示すLED駆動回路装置1は、パルス幅変調信号がハイレベルの時だけ、出力電圧Voutを昇圧して制御する。パルス幅変調信号のオンデューディ比が低いとき、出力電圧Voutの調整能力が不十分となる。このため、LEDストリング4_1~4_nが十分な輝度を維持できないといった不具合が生じる。 As described above, the LED drive circuit device 1 shown in FIG. 1 boosts and controls the output voltage Vout only when the pulse width modulation signal is at a high level. When the on-duty ratio of the pulse width modulation signal is low, the ability to adjust the output voltage Vout is insufficient. This causes a problem that the LED strings 4_1 to 4_n cannot maintain sufficient luminance.
(第2実施形態)
 図3は第2実施形態に係るLED駆動回路装置1Aを示す回路図である。図3に示すLED駆動回路装置1Aは、図1に示したLED駆動回路装置1に存在する上記不具合を克服する。
(2nd Embodiment)
FIG. 3 is a circuit diagram showing an LED drive circuit device 1A according to the second embodiment. The LED drive circuit device 1A shown in FIG. 3 overcomes the above-mentioned disadvantages existing in the LED drive circuit device 1 shown in FIG.
 LED駆動回路装置1AがLED駆動回路装置1と大きく異なるのは、LEDドライバ5Aの回路構成にある。さらに詳細に述べると、LEDドライバ5Aは、オペアンプ13を用いた点で、LED駆動回路装置1が備えるLEDドライバ5と異なる。オペアンプ13は、OTA(Operatinal Transconductance Amp)と呼ばれる、トランスコンダクタンスアンプで構成される。OTAは、出力インピーダンスが高く、OTAの2つの入力電圧の差に比例した電流を出力する。本実施形態で採用するOTAは、その出力段がプッシュプル方式で構成される。プッシュプル方式によって、オペアンプ13から帰還端子FB側に流れだすソース電流と、帰還端子FB側からオペアンプ13側に引き込まれるシンク電流の2つの電流に基づき出力電圧Voutを制御することが可能となる。なお、OTAをLED駆動回路装置に用いることは特許文献2に開示されている。 The LED drive circuit device 1A is largely different from the LED drive circuit device 1 in the circuit configuration of the LED driver 5A. More specifically, the LED driver 5A is different from the LED driver 5 included in the LED drive circuit device 1 in that an operational amplifier 13 is used. The operational amplifier 13 is configured by a transconductance amplifier called OTA (Operative @ Transconductance @ Amp). The OTA has a high output impedance and outputs a current proportional to the difference between two input voltages of the OTA. The output stage of the OTA employed in the present embodiment is configured by a push-pull system. By the push-pull method, it is possible to control the output voltage Vout based on two currents, a source current flowing from the operational amplifier 13 to the feedback terminal FB side and a sink current drawn from the feedback terminal FB side to the operational amplifier 13 side. The use of OTA in an LED drive circuit device is disclosed in Patent Document 2.
 LED端子電圧VLED1~VLEDnの最低電圧が参照電圧VREFよりも低いときには、外部端子を介して定電流を共通接続ノードNc側からオペアンプ13側に引き込むシンク電流Isiによって、分圧抵抗R2の実質的な抵抗値が小さくなるように出力電圧Voutを、Vout=VREF+Vf_maxになるように制御する。 When the minimum voltage of the LED terminal voltages VLED1 to VLEDn is lower than the reference voltage VREF, the sink current Isi that draws a constant current from the common connection node Nc to the operational amplifier 13 via the external terminal substantially causes the voltage dividing resistor R2 to operate. The output voltage Vout is controlled such that Vout = VREF + Vf_max so that the resistance value decreases.
 一方、LED端子電圧VLED_minが参照電圧VREFよりも高いときには、電流出力端子TCFBを介してオペアンプ13側から共通接続ノードNc側に定電流であるソース電流Isoを流し込むことによって、分圧抵抗R2の実質的な抵抗値が大きくなるように出力電圧Voutを、Vout=VREF+Vf_maxになるように制御する。こうした2つの電流による出力電圧Voutの制御は図1に示すLED駆動回路装置1には期待できない。 On the other hand, when the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso, which is a constant current, flows from the operational amplifier 13 side to the common connection node Nc side via the current output terminal TCFB, thereby realizing the voltage dividing resistor R2. The output voltage Vout is controlled such that Vout = VREF + Vf_max so that the actual resistance value increases. Control of the output voltage Vout by these two currents cannot be expected in the LED drive circuit device 1 shown in FIG.
 ここで、LEDドライバ5Aは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、オペアンプ13に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。オペアンプ13は、OR回路51の出力がローレベルの場合、電流出力を停止し、OR回路51の出力がハイレベルの場合、LED端子電圧VLED_minと参照電圧VREFとの比較結果に応じた電流、又は、定電流を出力する。 Here, the LED driver 5A also has an OR circuit 51. The pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51. The output of the OR circuit 51 is input to the operational amplifier 13. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become. The operational amplifier 13 stops current output when the output of the OR circuit 51 is at a low level, and outputs a current corresponding to a comparison result between the LED terminal voltage VLED_min and the reference voltage VREF when the output of the OR circuit 51 is at a high level, or And outputs a constant current.
 図3に示すLED駆動回路装置1Aは、スイッチング制御回路2と、LEDドライバ5Aとをそれぞれ別の半導体集積回路(IC)で構成するならば、これらとLEDストリング4_1~4_nとの組み合わせにいくつかの適用例を生み出すことができる。例えば、帰還電圧Vfbを制御せずにLED端子電圧VLED1~VLEDnの最も低い電圧に基づき出力電圧Voutを制御することが可能となる。こうした回路構成を望むときは、オペアンプ13の出力側に設けた電流出力端子TCFBを帰還端子FBに接続せずに位相補償端子COMPに接続すればよい。こうした回路構成ではオペアンプ13がエラーアンプ6の代替となる。このとき、帰還端子FBには図3に示すものと同様に分圧抵抗R1,R2は接続したままで、出力電圧Voutの大きさを検出できるようにしておくならば、本来の帰還端子FBを過電圧保護(OVP)端子として使用することができる。 In the LED drive circuit device 1A shown in FIG. 3, if the switching control circuit 2 and the LED driver 5A are formed of different semiconductor integrated circuits (ICs), some of them may be combined with the LED strings 4_1 to 4_n. Can be applied. For example, it is possible to control the output voltage Vout based on the lowest voltage among the LED terminal voltages VLED1 to VLEDn without controlling the feedback voltage Vfb. If such a circuit configuration is desired, the current output terminal TCFB provided on the output side of the operational amplifier 13 may be connected to the phase compensation terminal COMP without connecting to the feedback terminal FB. In such a circuit configuration, the operational amplifier 13 replaces the error amplifier 6. At this time, if the magnitude of the output voltage Vout can be detected while the voltage dividing resistors R1 and R2 are connected to the feedback terminal FB in the same manner as that shown in FIG. It can be used as an overvoltage protection (OVP) terminal.
 図4Aは、図3のLED駆動回路装置1AをPWM信号のオンデューティ比が例えば約70%という具合に比較的大きなオンデューティ比でLED駆動回路装置1が駆動されるときのタイミングチャートである。なお、図4Aは図2A、図2Bのタイミングチャートとは異なり、出力電圧Voutの制御はソース電流Isoとシンク電流Isiの両者によって行われる。 FIG. 4A is a timing chart when the LED drive circuit device 1 of FIG. 3 is driven at a relatively large on-duty ratio such that the on-duty ratio of the PWM signal is, for example, about 70%. Note that FIG. 4A is different from the timing charts of FIGS. 2A and 2B in that the output voltage Vout is controlled by both the source current Iso and the sink current Isi.
 図4A(a)は、LEDドライバ5AのPWM調光部11からLED定電流源Csiに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t2でハイレベルH、時刻t2~t5でローレベルLであり、ハイレベルHの区間THがローレベルLの区間TLよりも長い、いわゆるパルスデューティ比が比較的大きな信号であることを示す。なお、時刻t5~t9と時刻t9以降もパルス幅変調信号PWMiの波形は時刻t0~t5と同様に遷移する。 FIG. 4A (a) shows a pulse width modulation signal PWMi applied to the LED constant current source Csi from the PWM dimmer 11 of the LED driver 5A. The pulse width modulation signal PWMi has a high level H from time t0 to t2 and a low level L from time t2 to t5, and the high level H section TH is longer than the low level L section TL. It shows that the signal is large. Note that the waveform of the pulse width modulation signal PWMi transitions from time t5 to t9 and after time t9 in the same manner as from time t0 to t5.
 図4A(b)は、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。LED電流ILEDiは、時刻t0~t2のパルス幅変調信号PWMiがハイレベルH区間に流れ、時刻t2~t5のローレベルL区間には流れない、いわゆる間歇的に電流が流れる。なお、時刻t5~t9と時刻t9以降もLED電流ILEDiの波形は時刻t0~t5と同様に遷移する。 4A (b) shows that the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. In the LED current ILEDi, the pulse width modulation signal PWMi from time t0 to t2 flows in the high level H section, and does not flow in the low level L section from time t2 to t5, that is, the current flows intermittently. Note that the waveform of the LED current ILEDi transitions from time t5 to t9 and after time t9 in the same manner as from time t0 to t5.
 図4A(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。時刻t0においてLED電流ILEDiが流れると、LED端子電圧VLED_minは急峻にLED順方向総電圧Vf_max分低下するが、その電圧の大きさは参照電圧VREFよりも高い状態であることを模式的に示している。その後時刻t1までLED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。時刻t1で参照電圧VREFに達すると、その電位はLED電流ILEDiがローレベルLとなる時刻t2まで参照電圧VREFに維持される様に操作される。時刻t2~t5においてLED電流ILEDiが流れなくなると、LED端子電圧VLED_minは出力電圧Voutに追従するように安定出力電圧Vstまで昇圧する。図中符号Vf_maxはLED順方向総電圧を、符号Vsoはソース電流Isoで調整されるソース電流調整電圧を示す。安定出力電圧Vstは、参照電圧VREFにソース電流調整電圧Vso、及びLED順方向総電圧Vf_maxを加えた、(VREF+Vso+Vf_max)となる。 FIG. 4A (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. When the LED current ILEDi flows at time t0, the LED terminal voltage VLED_min sharply decreases by the LED forward total voltage Vf_max, but the magnitude of the voltage is schematically higher than the reference voltage VREF. I have. Thereafter, until the time t1, the feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. When the reference voltage VREF reaches the reference voltage VREF at time t1, the operation is performed so that the potential is maintained at the reference voltage VREF until time t2 when the LED current ILEDi becomes the low level L. When the LED current ILEDi stops flowing between times t2 and t5, the LED terminal voltage VLED_min rises to a stable output voltage Vst so as to follow the output voltage Vout. In the figure, reference numeral Vf_max indicates the total forward voltage of the LED, and reference numeral Vso indicates a source current adjustment voltage adjusted by the source current Iso. The stable output voltage Vst is (VREF + Vso + Vf_max) obtained by adding the source current adjustment voltage Vso and the LED forward total voltage Vf_max to the reference voltage VREF.
 時刻t6において、LED端子電圧VLED_minは何らかの原因で急峻に参照電圧VREF以下に降圧した場合を示す。この時も、LED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 At time t6, the LED terminal voltage VLED_min suddenly drops to the reference voltage VREF or lower for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Note that after time t9, the transition is made in the same manner as at times t0 to t5.
 図4A(d)は、LEDドライバ5A側に設けた電流出力端子TCFBを介してオペアンプ13に流れ込むシンク電流Isi及び電流出力端子TCFBを介してオペアンプ13から流れだすソース電流Isoをそれぞれ示す。ソース電流Isoは、LED端子電圧VLED_minが参照電圧VREFよりも高い時刻t0で流れ始め、参照電圧VREFに近づくにつれ増加する。時刻t1において、LED端子電圧VLED_minが参照電圧VREFに達すると以降時刻t2まで一定のソース電流Isoが流れる。区間TLである時刻t2~t5で、OR回路51の出力がローレベルとなり、オペアンプ13は電流出力を停止するので、ソース電流Isoは流れなくなり0となる。 4D shows the sink current Isi flowing into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side and the source current Iso flowing from the operational amplifier 13 via the current output terminal TCFB, respectively. The source current Iso starts flowing at time t0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. At time t1, when the LED terminal voltage VLED_min reaches the reference voltage VREF, a constant source current Iso flows thereafter until time t2. From time t2 to time t5 in the section TL, the output of the OR circuit 51 becomes low level, and the operational amplifier 13 stops outputting current, so that the source current Iso stops flowing and becomes zero.
 時刻t5~t6まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも高い場合、ソース電流Isoが流れる。時刻t6~t7まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも低い場合、シンク電流Isiが流れる。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 From time t5 to time t6, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso flows. From time t6 to time t7, when the pulse width modulation signal PWMi is at the high level and the LED terminal voltage VLED_min is lower than the reference voltage VREF, the sink current Isi flows. Note that after time t9, the transition is made in the same manner as at times t0 to t5.
 図4A(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isi又はソース電流Isoの挙動に応動する。時刻t0~t2において、出力電圧Voutは安定出力電圧Vstから(VREF+Vf_max)に維持されるように操作される。時刻t2において、パルス幅変調信号PWMiがローレベルになった時、出力電圧Voutは時刻t2~t4まで徐々に昇圧する。時刻t4~t5は安定出力電圧Vstに維持される。 FIG. 4A (e) shows a transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time t0 to t2, the output voltage Vout is operated so as to be maintained from the stable output voltage Vst to (VREF + Vf_max). At time t2, when the pulse width modulation signal PWMi goes low, the output voltage Vout gradually increases from time t2 to t4. The time t4 to t5 is maintained at the stable output voltage Vst.
 時刻t5~t6まで、出力電圧Voutは徐々に降圧し、時刻t6~t7まで、出力電圧Voutは徐々に昇圧する。なお、時刻t9以降は、時刻t0~t5と同様に遷移するものとする。 出力 From time t5 to t6, the output voltage Vout gradually decreases, and from time t6 to t7, the output voltage Vout gradually increases. Note that after time t9, the transition is made in the same manner as at times t0 to t5.
 以上述べたように図3に示すLED駆動回路装置1Aにおいて、LED端子電圧VLED_minが参照電圧VREFよりも高い場合には、ソース電流Isoによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。また、LED端子電圧VLED_minが参照電圧VREFよりも低い場合には、シンク電流Isiによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。いずれにしても、LED端子電圧VLED_minと参照電圧VREFとの大小関係が逆転しても図3に示すLED駆動回路装置1Aは出力電圧Voutを所定の大きさに制御することが実現できる。 As described above, in the LED drive circuit device 1A shown in FIG. 3, when the LED terminal voltage VLED_min is higher than the reference voltage VREF, the output voltage Vout is controlled by the source current Iso so that Vout = VREF + Vf_max. When the LED terminal voltage VLED_min is lower than the reference voltage VREF, the output voltage Vout is controlled by the sink current Isi so that Vout = VREF + Vf_max. In any case, even if the magnitude relationship between the LED terminal voltage VLED_min and the reference voltage VREF is reversed, the LED drive circuit device 1A shown in FIG. 3 can control the output voltage Vout to a predetermined magnitude.
 図4Bは、PWM信号のオンデューティ比が例えば約2%という具合に比較的小さなオンデューティ比でLED駆動回路装置1Aが駆動されるときのタイミングチャートである。先に述べた図4Aのオンデューティ比が比較的大きい場合に比べると駆動条件は必ずしも良い状態とはいえないが、図1のものとは違う挙動を示す。 FIG. 4B is a timing chart when the LED drive circuit device 1A is driven with a relatively small on-duty ratio, such as when the on-duty ratio of the PWM signal is, for example, about 2%. The driving condition is not necessarily in a good state as compared with the case where the on-duty ratio in FIG. 4A is relatively large, but the behavior is different from that in FIG.
 図4B(a)は、LEDドライバ5AのPWM調光部11からLED定電流源Csiに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻T0~T1でハイレベルH、時刻T1~T4でローレベルLである。ハイレベルHの区間THがローレベルLの区間TLよりも短い、いわゆるパルスデューティ比が比較的小さな信号であることを示す。なお、時刻T4以降もパルス幅変調信号PWMiの波形は時刻T0~T4と同様に遷移する。 FIG. 4B (a) shows the pulse width modulation signal PWMi applied to the LED constant current source Csi from the PWM dimming unit 11 of the LED driver 5A. The pulse width modulation signal PWMi is at a high level H between times T0 and T1, and at a low level L between times T1 and T4. This indicates that the signal TH having a shorter pulse duty ratio is shorter in the high level H section TH than in the low level L section TL. Note that after time T4, the waveform of the pulse width modulation signal PWMi transitions similarly to times T0 to T4.
 図4B(b)は、LED電流ILEDiは、パルス幅変調信号PWMiのハイレベルH及びローレベルLに追随する。LED電流ILEDiは、時刻T0~T1のパルス幅変調信号PWMiがハイレベルH区間に流れ、時刻T1~T4のローレベルL区間には流れない、いわゆる間歇的に電流が流れる。なお、時刻T4以降もLED電流ILEDiの波形は時刻T0~T4と同様に遷移する。 4B (b) shows that the LED current ILEDi follows the high level H and the low level L of the pulse width modulation signal PWMi. In the LED current ILEDi, the pulse width modulation signal PWMi from time T0 to T1 flows in the high level H section, and does not flow in the low level L section from time T1 to T4, that is, the current flows intermittently. Note that after time T4, the waveform of the LED current ILEDi transitions similarly to times T0 to T4.
 図4B(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。LED電流ILEDiが流れ始める時刻T0において急峻にLED順方向総電圧Vf_max分低下するが、参照電圧VREFよりも高いため、時刻T0~T1の区間においては参照電圧VREFに向かって徐々に低下する。これはオペアンプ13によってLED端子電圧VLED_minが参照電圧VREFになるように帰還が掛けられるからである。しかし、時刻T1においては、LED端子電圧VLED_minは参照電圧VREFまでは達していない。これは、パルス幅変調信号PWMiのパルス幅が狭く、LED端子電圧VLED_minが参照電圧VREFに達する前にパルス幅変調信号PWMiの極性がハイレベルHからローレベルLに反転してしまうことに起因する。時刻T1~T4の区間は、LED電流ILEDiが0であるので安定出力電圧Vstが維持される。パルス幅変調信号PWMiがハイレベルの区間内である、時刻T4~T5の区間においてLED端子電圧VLED_minは再度、参照電圧VREFよりも高いため再度ソース電流Isoが流れる。 FIG. 4B (c) shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. At the time T0 at which the LED current ILEDi starts to flow, the LED current suddenly drops by the LED total forward voltage Vf_max, but is higher than the reference voltage VREF, so that it gradually decreases toward the reference voltage VREF in the section from time T0 to T1. This is because feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the reference voltage VREF. However, at time T1, the LED terminal voltage VLED_min has not reached the reference voltage VREF. This is because the pulse width of the pulse width modulation signal PWMi is narrow, and the polarity of the pulse width modulation signal PWMi is inverted from the high level H to the low level L before the LED terminal voltage VLED_min reaches the reference voltage VREF. . In the section from time T1 to T4, since the LED current ILEDi is 0, the stable output voltage Vst is maintained. In the section from time T4 to T5, in which the pulse width modulation signal PWMi is in the high level section, the LED terminal voltage VLED_min is higher than the reference voltage VREF again, so that the source current Iso flows again.
 時刻T5は何らかの原因によってLED端子電圧VLED_minが急峻に参照電圧VREFを下回った状態を示す。この時も、LED端子電圧VLED_minは参照電圧VREFと同じ電位になるようにオペアンプ13によって帰還が掛けられる。そのため、時刻T5~T6の区間においてシンク電流Isiが流れる。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 Time T5 indicates a state in which the LED terminal voltage VLED_min sharply falls below the reference voltage VREF for some reason. Also at this time, feedback is applied by the operational amplifier 13 so that the LED terminal voltage VLED_min becomes the same potential as the reference voltage VREF. Therefore, the sink current Isi flows in the section between times T5 and T6. Note that, after time T8, transition is made in the same manner as time T0 to T4.
 図4B(d)は、LEDドライバ5A側に設けた電流出力端子TCFBを介してオペアンプ13に流れ込むシンク電流Isi及び電流出力端子TCFBを介してオペアンプ13から流れだすソース電流Isoをそれぞれ示す。ソース電流Isoは、LED端子電圧VLED_minが参照電圧VREFよりも高い時刻T0で流れ始め、参照電圧VREFに近づくにつれ増加する。時刻T1~T4で、ソース電流Isoは流れなくなり0となる。 4B (d) shows the sink current Isi flowing into the operational amplifier 13 via the current output terminal TCFB provided on the LED driver 5A side, and the source current Iso flowing from the operational amplifier 13 via the current output terminal TCFB. The source current Iso starts to flow at time T0 when the LED terminal voltage VLED_min is higher than the reference voltage VREF, and increases as the LED terminal voltage VLED_min approaches the reference voltage VREF. From time T1 to T4, the source current Iso stops flowing and becomes 0.
 時刻T4~T5まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも高い場合、ソース電流Isoが流れる。時刻T5~T6まで、パルス幅変調信号PWMiがハイレベルかつLED端子電圧VLED_minが参照電圧VREFよりも低い場合、シンク電流Isiが流れる。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 ま で From time T4 to T5, when the pulse width modulation signal PWMi is at a high level and the LED terminal voltage VLED_min is higher than the reference voltage VREF, the source current Iso flows. From time T5 to time T6, when the pulse width modulation signal PWMi is at the high level and the LED terminal voltage VLED_min is lower than the reference voltage VREF, the sink current Isi flows. Note that, after the time T8, the transition is made in the same manner as the times T0 to T4.
 図4B(e)は、出力電圧Voutの遷移状態を示す。出力電圧Voutはシンク電流Isi又はソース電流Isoの挙動に応動する。時刻T0~T1において、出力電圧Voutは安定出力電圧Vstから(VREF+Vf_max)になるように、降圧が行われるが、パルス幅変調信号PWMiの幅が狭いため時刻T1で降圧は止まる。時刻T1において、パルス幅変調信号PWMiがローレベルになった時、出力電圧Voutは時刻T1~T3まで徐々に昇圧する。時刻T3~T4は安定出力電圧Vstに維持される。 FIG. 4B (e) shows a transition state of the output voltage Vout. The output voltage Vout responds to the behavior of the sink current Isi or the source current Iso. From time T0 to T1, the output voltage Vout is stepped down from the stable output voltage Vst to (VREF + Vf_max), but stops at time T1 because the width of the pulse width modulation signal PWMi is narrow. At time T1, when the pulse width modulation signal PWMi goes low, the output voltage Vout gradually increases from time T1 to T3. From time T3 to T4, the stable output voltage Vst is maintained.
 時刻T4~T5まで、出力電圧Voutは徐々に降圧し、時刻T5~T8まで、出力電圧Voutは徐々に昇圧する。ここで、時刻T5~T6まではシンク電流Isiの動作に応じた昇圧であり、時刻T6~T8はスイッチングレギュレータの能力によるものである。なお、時刻T8以降は、時刻T0~T4と同様に遷移するものとする。 出力 From time T4 to T5, the output voltage Vout gradually decreases, and from time T5 to T8, the output voltage Vout gradually increases. Here, the boosting according to the operation of the sink current Isi is performed from time T5 to T6, and the time T6 to T8 is based on the capability of the switching regulator. Note that, after the time T8, the transition is made in the same manner as the times T0 to T4.
 以上述べたように図3に示すLED駆動回路装置1Aにおいては、パルス幅変調信号PWMiのパルス幅が狭い(パルスデューティ比が小さい)場合であってもそれが広い場合と同様に、LED端子電圧VLED_minが参照電圧VREFよりも高い場合には、ソース電流Isoによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。また、LED端子電圧VLED_minが参照電圧VREFよりも低い場合には、シンク電流Isiによって、出力電圧VoutをVout=VREF+Vf_maxになるように制御する。 As described above, in the LED drive circuit device 1A shown in FIG. 3, even when the pulse width of the pulse width modulation signal PWMi is narrow (the pulse duty ratio is small), the LED terminal voltage is the same as when the pulse width is wide. When VLED_min is higher than the reference voltage VREF, the output voltage Vout is controlled by the source current Iso so that Vout = VREF + Vf_max. When the LED terminal voltage VLED_min is lower than the reference voltage VREF, the output voltage Vout is controlled by the sink current Isi so that Vout = VREF + Vf_max.
 図3のLED駆動回路装置1Aについて、図4A,図4Bを用いて説明したように図1のLED駆動装置回路1と異なり、パルス幅変調信号がハイレベルであってLED端子電圧VLED_minが参照電圧VREFよりも高い場合に、出力電圧Voutを降圧して制御する。この様に制御することで、パルス幅変調信号のオンデューディ比が低いときも、出力電圧Voutが常に(VREF+Vf_max)以上に維持される。このため、LEDストリング4_1~4_nにおける発熱を抑え、かつ常にLEDストリング4_1~4_nが十分な輝度を維持できる。 As described with reference to FIGS. 4A and 4B, the LED drive circuit device 1A of FIG. 3 is different from the LED drive device circuit 1 of FIG. When it is higher than VREF, the output voltage Vout is stepped down and controlled. With such control, the output voltage Vout is always maintained at (VREF + Vf_max) or more even when the on-duty ratio of the pulse width modulation signal is low. Therefore, heat generation in the LED strings 4_1 to 4_n can be suppressed, and the LED strings 4_1 to 4_n can always maintain sufficient luminance.
(第3実施形態)
 図5は、第3実施形態に係るLED駆動回路装置1Bを示す回路図である。LED駆動回路装置1Bは、先の第1、第2実施形態との相違点として、LEDドライバ5Bを有する。LEDドライバ5Bは、特に、選択コンパレータ14と、ソース電流供給部15と、を有する。また、LEDドライバ5Bは、外部端子として、LED接続端子LED1~LEDnを有するとともに、フィードバック端子FB1を有する。フィードバック端子FB1は、共通接続ノードNcに接続するための端子である。
(Third embodiment)
FIG. 5 is a circuit diagram showing an LED drive circuit device 1B according to the third embodiment. The LED drive circuit device 1B has an LED driver 5B as a difference from the first and second embodiments. The LED driver 5B particularly includes a selection comparator 14 and a source current supply unit 15. The LED driver 5B has LED connection terminals LED1 to LEDn as external terminals, and also has a feedback terminal FB1. The feedback terminal FB1 is a terminal for connecting to the common connection node Nc.
 選択コンパレータ14は、入力されるLED端子電圧VLED1~VLEDnのうち最低電圧を選択する選択部としての機能と、選択された最低電圧と参照電圧VREFとを比較するコンパレータとしての機能と、を有する。選択コンパレータ14は、比較結果に応じてハイレベルまたはローレベルの信号を出力する。 The selection comparator 14 has a function as a selector for selecting the lowest voltage among the input LED terminal voltages VLED1 to VLEDn, and a function as a comparator for comparing the selected lowest voltage with the reference voltage VREF. The selection comparator 14 outputs a high-level or low-level signal according to the comparison result.
 ソース電流供給部15は、共通接続ノードNc側に定電流としてのソース電流Isoを供給する回路部であり、pチャネル型MOSトランジスタで構成されるスイッチ15Aと、定電流回路15Bと、カレントミラー回路15Cと、を有する。 The source current supply section 15 is a circuit section that supplies a source current Iso as a constant current to the common connection node Nc side, and includes a switch 15A formed of a p-channel MOS transistor, a constant current circuit 15B, and a current mirror circuit. 15C.
 スイッチ15Aのソースには、電源電圧Vccが印加され、スイッチ15Aのドレインとグランドとの間には定電流回路15Bが配置される。スイッチ15Aのゲートには、選択コンパレータ14からの出力信号が入力され、スイッチ15Aは、選択コンパレータ14からの出力レベルに応じてオンオフが切替えられる。 The power supply voltage Vcc is applied to the source of the switch 15A, and a constant current circuit 15B is arranged between the drain of the switch 15A and the ground. The output signal from the selection comparator 14 is input to the gate of the switch 15A, and the switch 15A is turned on and off according to the output level from the selection comparator 14.
 カレントミラー回路15Cは、pチャネル型MOSトランジスタで構成される二つのトランジスタから構成される。二つのトランジスタのうち一方のトランジスタのソースには、スイッチ15Aのソースが接続され、すなわち、電源電圧Vccが印加される。一方のトランジスタのドレインは、スイッチ15Aのドレインに接続される。他方のトランジスタのソースには、一方のトランジスタのソースが接続される。他方のトランジスタと一方のトランジスタのゲート同士は接続される。その接続ノードと、一方のトランジスタのドレインは、短絡される。他方のトランジスタのドレインは、フィードバック端子FB1に接続される。 The current mirror circuit 15C is composed of two transistors composed of p-channel MOS transistors. The source of one of the two transistors is connected to the source of the switch 15A, that is, the power supply voltage Vcc is applied. The drain of one transistor is connected to the drain of switch 15A. The source of the other transistor is connected to the source of the other transistor. The gates of the other transistor and one transistor are connected. The connection node and the drain of one transistor are short-circuited. The drain of the other transistor is connected to the feedback terminal FB1.
 ここで、LEDドライバ5Bは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnが入力される。OR回路51の出力は、選択コンパレータ14に入力される。パルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnの全てがローレベルのときはOR回路51の出力はローレベルとなる。 Here, the LED driver 5B also has an OR circuit 51. The pulse width modulation signals PWM1 to PWMn are input to the OR circuit 51. The output of the OR circuit 51 is input to the selection comparator 14. When at least one of the pulse width modulation signals PWM1 to PWMn is at a high level, the output of the OR circuit 51 is at a high level. When all of the pulse width modulation signals PWM1 to PWMn are at a low level, the output of the OR circuit 51 is at a low level. Become.
 選択コンパレータ14は、OR回路51の出力がローレベルの場合、ローレベルの出力信号をスイッチ15Aへ出力する。これにより、スイッチ15Aはオンとなり、定電流回路15Bによる定電流がスイッチ15Aを流れ、カレントミラー回路15Cの一方のトランジスタに流れない。よって、フィードバック端子FB1からソース電流Isoは流れない。また、選択コンパレータ14は、OR回路51の出力がハイレベルの場合、比較結果に応じたレベルの出力信号をスイッチ15Aへ出力する。これにより、スイッチ15Aはオンまたはオフとなる。選択コンパレータ14の出力がハイレベルで、スイッチ15Aがオフの場合、定電流回路15Bによる定電流がスイッチ15Aを流れず、カレントミラー回路15Cの一方のトランジスタに流れる。よって、フィードバック端子FB1からソース電流Isoが流れる。 When the output of the OR circuit 51 is at a low level, the selection comparator 14 outputs a low-level output signal to the switch 15A. As a result, the switch 15A is turned on, and the constant current from the constant current circuit 15B flows through the switch 15A and does not flow through one of the transistors of the current mirror circuit 15C. Therefore, the source current Iso does not flow from the feedback terminal FB1. When the output of the OR circuit 51 is at a high level, the selection comparator 14 outputs an output signal of a level corresponding to the comparison result to the switch 15A. Thus, the switch 15A is turned on or off. When the output of the selection comparator 14 is at a high level and the switch 15A is off, the constant current from the constant current circuit 15B does not flow through the switch 15A but flows through one transistor of the current mirror circuit 15C. Therefore, the source current Iso flows from the feedback terminal FB1.
 図6は、LED駆動回路装置1Bが駆動されるときのタイミングチャートである。図6(a)は、LEDドライバ5BのPWM調光部11からLED定電流源Csiに印加されるパルス幅変調信号PWMiを示す。パルス幅変調信号PWMiは、時刻t0~t2の区間THでハイレベルH、時刻t2~t4の区間TLでローレベルLとなる。 FIG. 6 is a timing chart when the LED drive circuit device 1B is driven. FIG. 6A shows a pulse width modulation signal PWMi applied from the PWM dimming unit 11 of the LED driver 5B to the LED constant current source Csi. The pulse width modulation signal PWMi is at a high level H during a section TH between times t0 and t2 and at a low level L during a section TL between times t2 and t4.
 図6(b)は、LED電流ILEDiを示す。図6(c)は、LED接続端子LED_iの電圧であるLED端子電圧VLED_minを示す。図6(d)は、ソース電流供給部15によりフィードバック端子FB1から共通接続ノードNcへ流れ込むソース電流Isoを示す。図6(e)は、出力電圧Voutの遷移状態を示す。 FIG. 6B shows the LED current ILEDi. FIG. 6C shows the LED terminal voltage VLED_min which is the voltage of the LED connection terminal LED_i. FIG. 6D shows the source current Iso flowing into the common connection node Nc from the feedback terminal FB1 by the source current supply unit 15. FIG. 6E shows a transition state of the output voltage Vout.
 時刻t0より前では、パルス幅変調信号PWMiがローレベルLであるため、LED電流ILEDiは流れない。また、OR回路51の出力がローレベルとなり、スイッチ15Aはオンとなり、ソース電流Isoは流れない。これにより、出力電圧Voutは、分圧抵抗R1,R2により決定され、安定出力電圧Vstに制御される。このとき、LED端子電圧VLED_minは、出力電圧Voutと同じ安定出力電圧Vstとなる。 前 Before time t0, since the pulse width modulation signal PWMi is at the low level L, the LED current ILEDi does not flow. Further, the output of the OR circuit 51 becomes low level, the switch 15A is turned on, and the source current Iso does not flow. As a result, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and is controlled to the stable output voltage Vst. At this time, the LED terminal voltage VLED_min becomes the same stable output voltage Vst as the output voltage Vout.
 時刻t0でパルス幅変調信号PWMiがハイレベルHとなると、LED電流ILEDiが流れ、LED端子電圧VLED_minは、急峻に安定出力電圧VstからLED順方向総電圧Vf_max分低下するが、その電圧の大きさは参照電圧VREFよりも高い状態である。このとき、OR回路51の出力はハイレベルとなり、選択コンパレータ14の出力はハイレベルとなってスイッチ15Aはオフであるので、カレントミラー回路15Cによって定電流回路15Bに流れる定電流がソース電流Isoとして流れる。 When the pulse width modulation signal PWMi becomes the high level H at the time t0, the LED current ILEDi flows, and the LED terminal voltage VLED_min sharply decreases from the stable output voltage Vst by the LED forward total voltage Vf_max. Is higher than the reference voltage VREF. At this time, the output of the OR circuit 51 becomes high level, the output of the selection comparator 14 becomes high level, and the switch 15A is turned off. Therefore, the constant current flowing to the constant current circuit 15B by the current mirror circuit 15C is used as the source current Iso. Flows.
 ソース電流Isoが流れると出力電圧Voutは低下するように制御され、これに応じてLED端子電圧VLED_minも基準電圧VREFに向かって低下する。LED端子電圧VLED_minが基準電圧VREF以上である間は選択コンパレータ14はハイレベルとなり、ソース電流Isoは流れ続ける。 (4) When the source current Iso flows, the output voltage Vout is controlled to decrease, and accordingly, the LED terminal voltage VLED_min also decreases toward the reference voltage VREF. While the LED terminal voltage VLED_min is equal to or higher than the reference voltage VREF, the selection comparator 14 is at a high level, and the source current Iso continues to flow.
 そして、時刻t1でLED端子電圧VLED_minが基準電圧VREFより低くなると、選択コンパレータ14の出力はローレベルとなり、スイッチ15Aはオンとなる。これにより、定電流回路15Bによる定電流はカレントミラー回路15Cを通らず、スイッチ15Aを流れるので、ソース電流Isoは流れなくなる。 When the LED terminal voltage VLED_min becomes lower than the reference voltage VREF at time t1, the output of the selection comparator 14 becomes low level, and the switch 15A turns on. As a result, the constant current from the constant current circuit 15B does not pass through the current mirror circuit 15C but flows through the switch 15A, so that the source current Iso stops flowing.
 ソース電流Isoが流れないと、出力電圧Voutは分圧抵抗R1,R2により決まる状態となり、出力電圧Voutは上昇する。これに応じて、LED端子電圧VLED_minは、上昇する。そして、LED端子電圧VLED_minが基準電圧VREF以上となると、選択コンパレータ14の出力はハイレベルとなり、スイッチ15Aはオフとなり、ソース電流Isoが流れる。ソース電流Isoが流れると、出力電圧VoutおよびLED端子電圧VLED_minは、低下する。 If the source current Iso does not flow, the output voltage Vout is determined by the voltage dividing resistors R1 and R2, and the output voltage Vout rises. Accordingly, the LED terminal voltage VLED_min increases. When the LED terminal voltage VLED_min becomes equal to or higher than the reference voltage VREF, the output of the selection comparator 14 becomes high level, the switch 15A is turned off, and the source current Iso flows. When the source current Iso flows, the output voltage Vout and the LED terminal voltage VLED_min decrease.
 パルス幅変調信号PWMiがローレベルLとなる時刻t2まで、上記の動作が繰り返される。このように、選択コンパレータ14によりソース電流供給部15によるソース電流Isoのオンオフが繰り返され、LED端子電圧VLED_minは基準電圧VREFに制御され、出力電圧VoutはVREF+Vf_maxに制御される。 動作 The above operation is repeated until time t2 when the pulse width modulation signal PWMi becomes the low level L. Thus, the selection comparator 14 repeats the on / off of the source current Iso by the source current supply unit 15, the LED terminal voltage VLED_min is controlled to the reference voltage VREF, and the output voltage Vout is controlled to VREF + Vf_max.
 時刻t2でパルス幅変調信号PWMiがローレベルLとなると、電流ILEDiは流れず、OR回路51の出力がローレベルとなり、スイッチ15Aがオンとされ、ソース電流Isoは流れなくなり、出力電圧Voutは時刻t3で安定出力電圧Vstとなるまで上昇し、一定に制御される。LED端子電圧VLED_minは、時刻t2で急峻にVREF+Vf_maxまで上昇した後、時刻t3で安定出力電圧Vstとなるまで上昇し、一定に制御される。 When the pulse width modulation signal PWMi goes low at time t2, the current ILEDi does not flow, the output of the OR circuit 51 goes low, the switch 15A is turned on, the source current Iso stops flowing, and the output voltage Vout changes at time t2. At t3, it rises until it reaches the stable output voltage Vst, and is controlled to be constant. The LED terminal voltage VLED_min sharply rises to VREF + Vf_max at time t2, and then rises to a stable output voltage Vst at time t3, and is controlled to be constant.
 このような本実施形態によれば、パルス幅変調信号PWMiがハイレベルHであるときに、LED順方向電圧に適合した出力電圧Voutに調整でき、LEDの輝度を所定の明るさに維持し、かつ、出力電圧Voutを抑制して電力消費を抑制することができる。 According to the present embodiment, when the pulse width modulation signal PWMi is at the high level H, it is possible to adjust the output voltage Vout suitable for the LED forward voltage, to maintain the LED brightness at a predetermined brightness, In addition, the power consumption can be suppressed by suppressing the output voltage Vout.
(第3実施形態の変形例)
 図7は、先述した第3実施形態の変形例に係るLEDドライバ50Bの構成を示す図である。LEDドライバ50Bは、後述するように、LEDストリング4_1~4_nからなる組を複数用いる場合に有効となる構成である。
(Modification of Third Embodiment)
FIG. 7 is a diagram illustrating a configuration of an LED driver 50B according to a modification of the above-described third embodiment. As will be described later, the LED driver 50B has a configuration that is effective when a plurality of sets each including the LED strings 4_1 to 4_n are used.
 LEDドライバ50Bは、特に、第1選択部141と、第2選択部142と、コンパレータ143と、を有するとともに、外部端子として、最低電圧出力端子VMINOUTと、他ドライバ接続端子VOM1~VOM3と、PWM入力端子PWMINと、PWM出力端子PWMOUTと、を有する。 The LED driver 50B has, in particular, a first selector 141, a second selector 142, and a comparator 143, and as external terminals, a minimum voltage output terminal VMINOUT, other driver connection terminals VOM1 to VOM3, and PWM. It has an input terminal PWMIN and a PWM output terminal PWMOUT.
 第1選択部141は、入力されるLED端子電圧VLED1~VLEDnのうち最低電圧を選択して出力する。第2選択部142は、第1選択部141によって選択された最低電圧とともに、他ドライバ接続端子VOM1~VOM3にそれぞれ印加される電圧が入力される。他ドライバ接続端子VOM1~VOM3は、他のドライバ50Bにおける最低電圧出力端子VMINOUTとの接続用の端子であり、他のドライバ50Bと接続しない場合は所定の内部電圧が印加される。 The first selector 141 selects and outputs the lowest voltage among the input LED terminal voltages VLED1 to VLEDn. The second selection unit 142 receives the lowest voltage selected by the first selection unit 141 and the voltages applied to the other driver connection terminals VOM1 to VOM3. The other driver connection terminals VOM1 to VOM3 are terminals for connection with the lowest voltage output terminal VMINOUT of the other driver 50B, and a predetermined internal voltage is applied when not connected to the other driver 50B.
 第2選択部142は、第1選択部141によって選択された最低電圧と、他ドライバ接続端子VOM1~VOM3にそれぞれ印加される電圧とのうちの最低電圧を選択して出力する。最低電圧出力端子VMINOUTは、第2選択部142の出力端に接続される。従って、第2選択部142によって選択された最低電圧は、最低電圧出力端子VMINOUTから出力可能である。 (4) The second selector 142 selects and outputs the lowest voltage selected from the lowest voltage selected by the first selector 141 and the voltage applied to each of the other driver connection terminals VOM1 to VOM3. The lowest voltage output terminal VMINOUT is connected to the output terminal of the second selector 142. Therefore, the lowest voltage selected by the second selector 142 can be output from the lowest voltage output terminal VMINOUT.
 また、コンパレータ143の非反転入力端子(+)は、第2選択部142の出力端に接続される。コンパレータ143の反転入力端子(-)には、参照電圧VREFが印加される。コンパレータ143は、第2選択部142によって選択された最低電圧と参照電圧VREFとを比較し、比較結果をハイレベルまたはローレベルの信号として出力する。コンパレータ143の出力信号は、ソース電流供給部15におけるスイッチ15Aのゲートに印加される。 (5) The non-inverting input terminal (+) of the comparator 143 is connected to the output terminal of the second selector 142. The reference voltage VREF is applied to the inverting input terminal (−) of the comparator 143. The comparator 143 compares the lowest voltage selected by the second selector 142 with the reference voltage VREF, and outputs a result of the comparison as a high-level or low-level signal. The output signal of the comparator 143 is applied to the gate of the switch 15A in the source current supply unit 15.
 また、LEDドライバ50Bは、OR回路51も有する。OR回路51には、パルス幅変調信号PWM1~PWMnとともにPWM入力端子PWMINの電圧が入力される。OR回路51の出力は、コンパレータ143に入力されるとともに、PWM出力端子PWMOUTから外部へ出力可能である。パルス幅変調信号PWM1~PWMnおよびPWM入力端子PWMINの電圧のうち少なくとも1つがハイレベルのときにOR回路51の出力はハイレベルとなり、パルス幅変調信号PWM1~PWMnおよびPWM入力端子PWMINの電圧の全てがローレベルのときはOR回路51の出力はローレベルとなる。 The LED driver 50B also has an OR circuit 51. The voltage of the PWM input terminal PWMIN is input to the OR circuit 51 together with the pulse width modulation signals PWM1 to PWMn. The output of the OR circuit 51 is input to the comparator 143 and can be output from the PWM output terminal PWMOUT to the outside. When at least one of the pulse width modulation signals PWM1 to PWMn and the voltage of the PWM input terminal PWMMIN is at a high level, the output of the OR circuit 51 is at a high level, and all the voltages of the pulse width modulation signals PWM1 to PWMn and the PWM input terminal PWMIN Is low level, the output of the OR circuit 51 is low level.
 コンパレータ143は、OR回路51の出力がローレベルの場合、ローレベルの出力信号をスイッチ15Aに出力する。これにより、スイッチ15Aはオンとなり、フィードバック端子FB1からソース電流Isoは流れない。また、コンパレータ143は、OR回路51の出力がハイレベルの場合、比較結果に応じたレベルの出力信号をスイッチ15Aへ出力する。 When the output of the OR circuit 51 is at a low level, the comparator 143 outputs a low-level output signal to the switch 15A. As a result, the switch 15A is turned on, and the source current Iso does not flow from the feedback terminal FB1. When the output of the OR circuit 51 is at a high level, the comparator 143 outputs an output signal of a level corresponding to the comparison result to the switch 15A.
 図8は、このような構成のLEDドライバ50Bを複数用いて、LEDストリング4_1~4_nからなる組であるLED組を複数駆動させる構成の一例を示す図である。ここでは、三つのLED組G1~G3を駆動させる例を示す。LED組G1~G3における各LEDストリングのアノードは、出力電圧Voutが発生するラインに接続される。 FIG. 8 is a diagram showing an example of a configuration in which a plurality of LED sets, which are sets of LED strings 4_1 to 4_n, are driven using a plurality of LED drivers 50B having such a configuration. Here, an example in which three LED sets G1 to G3 are driven will be described. The anode of each LED string in the LED sets G1 to G3 is connected to a line where the output voltage Vout is generated.
 図8に示すように、LED組G1~G3を駆動させるために、マスターとしてのLEDドライバ50B1と、それぞれスレーブとしてのLEDドライバ50B2,50B3を用いる。LEDドライバ50B1~50B3のそれぞれの構成は、先述した図7のLEDドライバ50Bと同様であり、すなわち、LEDドライバ50B1~50B3は、同一のものである。LED組G1~G3のそれぞれにおけるLEDストリングのカソードは、それぞれLEDドライバ50B1~50B3のLED接続端子LED1~LEDnに接続される。 As shown in FIG. 8, in order to drive the LED sets G1 to G3, an LED driver 50B1 as a master and LED drivers 50B2 and 50B3 as slaves are used. The configuration of each of the LED drivers 50B1 to 50B3 is the same as that of the LED driver 50B of FIG. 7 described above, that is, the LED drivers 50B1 to 50B3 are the same. The cathodes of the LED strings in each of the LED sets G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 50B1 to 50B3, respectively.
 LEDドライバ50B1の他ドライバ接続端子VOM1には、LEDドライバ50B2の最低電圧出力端子VMINOUTが接続される。LEDドライバ50B1の他ドライバ接続端子VOM2には、LEDドライバ50B3の最低電圧出力端子VMINOUTが接続される。LEDドライバ50B1の他ドライバ接続端子VOM3は、他のLEDドライバが接続されないので、電源電圧Vccが印加される不図示の外部端子(以下、VCC端子)とショートされる。LEDドライバ50B2,50B3のそれぞれの他ドライバ接続端子VOM1~VOM3は、他のLEDドライバが接続されないので、VCC端子とショートされる。 最低 The lowest voltage output terminal VMINOUT of the LED driver 50B2 is connected to the other driver connection terminal VOM1 of the LED driver 50B1. The other driver connection terminal VOM2 of the LED driver 50B1 is connected to the lowest voltage output terminal VMINOUT of the LED driver 50B3. The other driver connection terminal VOM3 of the LED driver 50B1 is short-circuited to an external terminal (not shown) (not shown) to which the power supply voltage Vcc is applied because another LED driver is not connected. The other driver connection terminals VOM1 to VOM3 of the LED drivers 50B2 and 50B3 are short-circuited to the VCC terminal because no other LED driver is connected.
 LEDドライバ50B1のフィードバック端子FB1は、共通接続ノードNcに接続されるが、LEDドライバ50B2,50B3のそれぞれのフィードバック端子FB1には、接続は行われない。また、LEDドライバ50B1の最低電圧出力端子VMINOUTには、接続は行われない。 (4) The feedback terminal FB1 of the LED driver 50B1 is connected to the common connection node Nc, but is not connected to the feedback terminals FB1 of the LED drivers 50B2 and 50B3. No connection is made to the lowest voltage output terminal VMINOUT of the LED driver 50B1.
 また、LEDドライバ50B1のPWM入力端子PWMINは、LEDドライバ50B2のPWM出力端子PWMOUTに接続される。LEDドライバ50B2のPWM入力端子PWMINは、LEDドライバ50B3のPWM出力端子PWMOUTに接続される。LEDドライバ50B3のPWM入力端子PWMINには、ローレベルの電圧が印加される。また、LEDドライバ50B1のPWM出力端子PWMOUTには、接続は行われない。 (4) The PWM input terminal PWMIN of the LED driver 50B1 is connected to the PWM output terminal PWMOUT of the LED driver 50B2. The PWM input terminal PWMIN of the LED driver 50B2 is connected to the PWM output terminal PWMOUT of the LED driver 50B3. A low-level voltage is applied to the PWM input terminal PWMIN of the LED driver 50B3. No connection is made to the PWM output terminal PWMOUT of the LED driver 50B1.
 図8に示すような構成であると、スレーブとしてのLEDドライバ50B2の最低電圧出力端子VMINOUTからは、LED組G2に係るLED端子電圧VLED1~VLEDnのうち最低の電圧が選択されて出力される。同様に、スレーブとしてのLEDドライバ50B3の最低電圧出力端子VMINOUTからは、LED組G3に係るLED端子電圧VLED1~VLEDnのうち最低の電圧が選択されて出力される。 With the configuration shown in FIG. 8, the lowest voltage among the LED terminal voltages VLED1 to VLEDn of the LED group G2 is selected and output from the lowest voltage output terminal VMINOUT of the LED driver 50B2 as a slave. Similarly, the lowest voltage output terminal VMINOUT of the LED driver 50B3 as a slave selects and outputs the lowest voltage among the LED terminal voltages VLED1 to VLEDn of the LED group G3.
 マスターとしてのLEDドライバ50B1においては、LEDドライバ50B2から他ドライバ接続端子VOM1に入力される最低電圧と、LEDドライバ50B3から他ドライバ接続端子VOM2に入力される最低電圧と、LED組G1に係るLED端子電圧VLED1~VLEDnとのうち最低の電圧が選択され、第2選択部142からコンパレータ143へ出力される。LEDドライバ50B1において、コンパレータ143は、上記選択された最低電圧と参照電圧VREFとの比較を行い、ソース電流供給部15は、コンパレータ143での比較結果に応じてフィードバック端子FB1から共通接続ノードNcに流し込むソース電流Isoのオンオフを切替える。 In the LED driver 50B1 as a master, the lowest voltage input from the LED driver 50B2 to the other driver connection terminal VOM1, the lowest voltage input from the LED driver 50B3 to the other driver connection terminal VOM2, and the LED terminal related to the LED group G1. The lowest voltage among the voltages VLED1 to VLEDn is selected, and is output from the second selector 142 to the comparator 143. In the LED driver 50B1, the comparator 143 compares the selected minimum voltage with the reference voltage VREF, and the source current supply unit 15 transmits the feedback signal from the feedback terminal FB1 to the common connection node Nc according to the comparison result of the comparator 143. The on / off of the source current Iso to be supplied is switched.
 なお、LEDドライバ50B3において、OR回路51の出力信号はPWM出力端子PWMOUTから出力され、LEDドライバ50B2のPWM入力端子PWMINに入力される。LEDドライバ50B2において、OR回路51の出力信号はPWM出力端子PWMOUTから出力され、LEDドライバ50B1のPWM入力端子PWMINに入力される。従って、LEDドライバ50B1におけるOR回路51の出力は、LEDドライバ50B1~50B3のパルス幅変調信号PWM1~PWMnの少なくとも1つがハイレベルの場合に、ハイレベルとなり、LEDドライバ50B1~50B3のパルス幅変調信号PWM1~PWMnの全てがローレベルの場合に、ローレベルとなる。 In the LED driver 50B3, the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT and is input to the PWM input terminal PWMIN of the LED driver 50B2. In the LED driver 50B2, the output signal of the OR circuit 51 is output from the PWM output terminal PWMOUT, and is input to the PWM input terminal PWMIN of the LED driver 50B1. Accordingly, the output of the OR circuit 51 in the LED driver 50B1 becomes a high level when at least one of the pulse width modulation signals PWM1 to PWMn of the LED drivers 50B1 to 50B3 is at a high level, and the pulse width modulation signals of the LED drivers 50B1 to 50B3 are output. When all of PWM1 to PWMn are at the low level, the level becomes the low level.
 これにより、パルス幅変調信号PWMiがハイレベルHのときに、LED組G1~G3のうち最大のLED順方向総電圧Vf_maxとなるLEDストリングに係るLED端子電圧VLED_minが参照電圧VREFとなるように制御され、出力電圧VoutはVREF+Vf_maxに制御される。このように、複数のLED組G1~G3を共通の構成であるLEDドライバ50B1~50B3を用いて駆動することができる。 Thereby, when the pulse width modulation signal PWMi is at the high level H, the LED terminal voltage VLED_min of the LED string having the maximum total LED forward voltage Vf_max of the LED sets G1 to G3 is controlled to the reference voltage VREF. The output voltage Vout is controlled to VREF + Vf_max. As described above, the plurality of LED groups G1 to G3 can be driven using the LED drivers 50B1 to 50B3 having a common configuration.
 なお、LEDドライバ50Bは、複数のLED組を駆動するのに用いることには限らず、一つのみのLED組を駆動するのに使用してもよい。この場合、一つのLEDドライバ50Bのみを使用し、LEDドライバ50Bにおいて全ての他ドライバ接続端子VOM1~VOM3は、VCC端子にショートさせ、PWM入力端子PWMINには、ローレベルの電圧を印加させる。 The LED driver 50B is not limited to being used to drive a plurality of LED sets, but may be used to drive only one LED set. In this case, only one LED driver 50B is used, and in the LED driver 50B, all other driver connection terminals VOM1 to VOM3 are short-circuited to the VCC terminal, and a low-level voltage is applied to the PWM input terminal PWMIN.
 図9は、半導体集積回路装置(パッケージ品)としてのLEDドライバ50Bにおけるピン配置の一例を示す平面図である。各ピンは半導体集積回路装置(パッケージ品)の底面に形成される。ここでは、一例として、LEDストリングは16個(すなわちLEDストリング4_1~4_16)を接続可能な構成としている。 FIG. 9 is a plan view showing an example of a pin arrangement in an LED driver 50B as a semiconductor integrated circuit device (package product). Each pin is formed on the bottom surface of the semiconductor integrated circuit device (package product). Here, as an example, the configuration is such that 16 LED strings (ie, LED strings 4_1 to 4_16) can be connected.
 平面視で矩形状のLEDドライバ50Bにおける横方向に延びる第1辺501には、順に、ピンEXTCLK、ピンVSYNC、非接続ピン、ピンLED1~LED4、非接続ピン、ピンLGND、非接続ピン、ピンLED5,LED6が横方向に並んで配置される。 The first side 501 extending in the horizontal direction of the rectangular LED driver 50B in plan view includes, in order, a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, and a pin. The LEDs 5 and 6 are arranged side by side in the horizontal direction.
 ピンEXTCLKは、クロック信号入力用のピンである。ピンVSYNCは、同期信号入力用のピンである。ピンLED1~LED6は、LEDストリングのカソード接続用のピンである。ピンLGNDは、定電流回路のグランド用のピンである。非接続ピンは、接続が行われないピンである。 The pin EXTCLK is a pin for inputting a clock signal. The pin VSYNC is a pin for inputting a synchronization signal. The pins LED1 to LED6 are pins for connecting the cathode of the LED string. The pin LGND is a ground pin of the constant current circuit. Non-connection pins are pins that are not connected.
 第1辺501の一方端から縦方向に延びる第2辺502には、順に、ピンLED7,LED8、非接続ピン、ピンLGND、ピンSDO、ピンPWMOUT、ピンTEST、ピンPWMIN、ピンLGND、非接続ピン、ピンLED9,LED10が縦方向に並んで配置される。ピンLED7は、ピンLED6とで第1辺501と第2辺502との交点を挟むように配置される。 On the second side 502 extending vertically from one end of the first side 501, the pins LED7, LED8, the non-connection pin, the pin LGND, the pin SDO, the pin PWMOUT, the pin TEST, the pin PWMIN, the pin LGND, and the non-connection Pins, pins LED9 and LED10 are arranged side by side in the vertical direction. The pin LED 7 is arranged so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6.
 ピンLED7~LED10は、LEDストリングのカソード接続用のピンである。ピンSDOは、データ出力用のピンである。ピンPWMOUTは、PWM出力端子である。ピンPWMINは、PWM入力端子である。ピンTESTは、テストモード用のピンである。 Pins LED7 to LED10 are pins for connecting the cathode of the LED string. The pin SDO is a data output pin. The pin PWMOUT is a PWM output terminal. Pin PWMIN is a PWM input terminal. The pin TEST is a pin for a test mode.
 第3辺503は、第2辺502における第1辺501側ではない端部から横方向に延びる。すなわち、第3辺503は、第1辺501と縦方向に対向する。第3辺503には、順に、ピンLED11,LED12、非接続ピン、ピンLGND、非接続ピン、ピンLED13~LED16、非接続ピン、ピンFB1、ピンVOM3が横方向に並んで配置される。ピンLED11は、ピンLED10とで第2辺502と第3辺503との交点を挟むように配置される。 The third side 503 extends laterally from an end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is vertically opposed to the first side 501. On the third side 503, the pins LED11, LED12, non-connection pin, pin LGND, non-connection pin, pins LED13 to LED16, non-connection pin, pin FB1, and pin VOM3 are arranged in order in the horizontal direction. The pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10.
 ピンLED11~LED16は、LEDストリングのカソード接続用のピンである。ピンFB1は、フィードバック端子用のピンであり、図7のフィードバック端子FB1に相当する。ピンVOM3は、他のLEDドライバのピンVMINOUTを接続するためのピンであり、図7の他ドライバ接続端子VOM3に相当する。 The -pin LEDs 11 to 16 are pins for connecting the cathode of the LED string. The pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG. The pin VOM3 is a pin for connecting the pin VMINOUT of another LED driver, and corresponds to the other driver connection terminal VOM3 in FIG.
 第4辺504は、第3辺503における第2辺502側ではない端部から縦方向に延びる。すなわち、第4辺504は、第2辺502と横方向に対向する。第4辺504には、順に、ピンVOM2、ピンVOM1、ピンVMINOUT、ピンISET、ピンVREG、ピンVCC、ピンEN、ピンGND、ピンFAIL、ピンSCS、ピンSDI、ピンSCLKが縦方向に並んで配置される。ピンVOM2は、ピンVOM3とで第3辺503と第4辺504との交点を挟むように配置される。ピンSCLKは、ピンEXTCLKとで第1辺501と第4辺504との交点を挟むように配置される。 The fourth side 504 extends in the vertical direction from the end of the third side 503 which is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction. On the fourth side 504, a pin VOM2, a pin VOM1, a pin VMINOUT, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are arranged in order in the vertical direction. Be placed. The pin VOM2 is arranged so as to sandwich the intersection of the third side 503 and the fourth side 504 with the pin VOM3. The pin SCLK is arranged so as to sandwich the intersection of the first side 501 and the fourth side 504 with the pin EXTCLK.
 ピンVOM2,VOM1は、他のLEDドライバのピンVMINOUTを接続するためのピンであり、図7の他ドライバ接続端子VOM2,VOM1に相当する。ピンVMINOUTは、16個のLEDストリングのうち最低のLED端子電圧を出力するためのピンであり、図7の最低電圧出力端子VMINOUTに相当する。ピンISETは、LED電流を設定する抵抗を接続するためのピンである。ピンVREGは、内部電圧を出力するためのピンである。ピンVCCは、VCC端子である。ピンENは、スタンバイモードまたは動作モードを設定するためのピンである。ピンGNDは、グランド接続用のピンである。ピンFAILは、異常検出出力用のピンである。ピンSCSは、チップ選択設定用のピンである。ピンSDIは、データ入力用のピンである。ピンSCLKは、クロック入力用のピンである。 The pins VOM2 and VOM1 are pins for connecting the pin VMINOUT of another LED driver, and correspond to the other driver connection terminals VOM2 and VOM1 in FIG. The pin VMINOUT is a pin for outputting the lowest LED terminal voltage of the 16 LED strings, and corresponds to the lowest voltage output terminal VMINOUT in FIG. The pin ISET is a pin for connecting a resistor for setting the LED current. The pin VREG is a pin for outputting an internal voltage. Pin VCC is a VCC terminal. Pin EN is a pin for setting a standby mode or an operation mode. The pin GND is a pin for ground connection. The pin FAIL is a pin for abnormality detection output. The pin SCS is a chip selection setting pin. The pin SDI is a data input pin. The pin SCLK is a clock input pin.
 なお、先述した図7の構成において、例えば、第2選択部142の出力端をコンパレータ143の代わりにオペアンプの入力端に接続する構成でもよい。当該オペアンプは、第1、第2実施形態で述べたものを用いることができる。 7, the output terminal of the second selector 142 may be connected to the input terminal of the operational amplifier instead of the comparator 143, for example. As the operational amplifier, those described in the first and second embodiments can be used.
(第4実施形態)
 図10は、第4実施形態に係るLED駆動回路装置を示す回路図である。本実施形態に係るLED駆動回路装置は、図8に示すLED駆動回路装置と比べて配線を簡略化できるという利点を有している。
(Fourth embodiment)
FIG. 10 is a circuit diagram showing an LED drive circuit device according to the fourth embodiment. The LED drive circuit device according to the present embodiment has an advantage that the wiring can be simplified as compared with the LED drive circuit device shown in FIG.
 本実施形態に係るLED駆動回路装置は、スイッチングレギュレータ(図10において不図示)を備え、LEDドライバ5B及びLEDストリング4_1~4nを複数組備える。スイッチングレギュレータは例えば先述した図1のスイッチングレギュレータと同様の構成にすればよい。ここでは、LEDストリング4_1~4nからなる組であるLED組を3つ駆動させる例、すなわち3つのLED組G1~G3を駆動させる例について説明する。LED組G1~G3における各LEDストリングのアノードは、出力電圧Voutが発生するラインに接続される。 The LED drive circuit device according to the present embodiment includes a switching regulator (not shown in FIG. 10), and includes a plurality of sets of LED drivers 5B and LED strings 4_1 to 4n. The switching regulator may have, for example, the same configuration as the above-described switching regulator of FIG. Here, an example in which three LED sets, which are sets composed of the LED strings 4_1 to 4n, are driven, that is, an example in which three LED sets G1 to G3 are driven will be described. The anode of each LED string in the LED sets G1 to G3 is connected to a line where the output voltage Vout is generated.
 図10に示すように、LED組G1~G3を駆動させるために、LEDドライバ5B1~5B3を用いる。LEDドライバ5B1~5B3のそれぞれの構成は、先述した図5のLEDドライバ5Bと同様であり、すなわち、LEDドライバ5B1~5B3は、同一のものである。LED組G1~G3のそれぞれにおけるLEDストリングのカソードは、それぞれLEDドライバ5B1~5B3のLED接続端子LED1~LEDnに接続される。 LEDAs shown in FIG. 10, the LED drivers 5B1 to 5B3 are used to drive the LED sets G1 to G3. The configuration of each of the LED drivers 5B1 to 5B3 is the same as that of the LED driver 5B of FIG. 5 described above, that is, the LED drivers 5B1 to 5B3 are the same. The cathodes of the LED strings in each of the LED sets G1 to G3 are connected to the LED connection terminals LED1 to LEDn of the LED drivers 5B1 to 5B3, respectively.
 そして、図10に示すように、LEDドライバ5B1~5B3それぞれのフィードバック端子FB1は共通接続ノードNcに接続される。 Then, as shown in FIG. 10, the feedback terminals FB1 of the LED drivers 5B1 to 5B3 are connected to the common connection node Nc.
 以下、LED組G1を構成するLEDストリング4_1~4nのLED順方向総電圧Vf1~Vfnが全て3.2[V]であり、LED組G2を構成するLEDストリング4_1~4nのLED順方向総電圧Vf1~Vfnが全て3.1[V]であり、LED組G3を構成するLEDストリング4_1~4nのLED順方向総電圧Vf1~Vfnが全て3.0[V]であり、LEDドライバ5B1~5B3で用いられる参照電圧VREFが全て1.0[V]である場合を例に挙げて、本実施形態に係るLED駆動回路装置の概略動作を説明する。 Hereinafter, all the LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4n forming the LED set G1 are 3.2 [V], and the total LED forward direction voltages of the LED strings 4_1 to 4n forming the LED set G2 are set. Vf1 to Vfn are all 3.1 [V], LED forward total voltages Vf1 to Vfn of the LED strings 4_1 to 4n constituting the LED group G3 are all 3.0 [V], and the LED drivers 5B1 to 5B3 The general operation of the LED drive circuit device according to the present embodiment will be described by taking as an example a case where the reference voltages VREF used in the above are all 1.0 [V].
 例えば出力電圧Voutが5.0[V]である状態でLED組G1~G3が消灯状態から点灯状態に切り替わると、LEDドライバ5B1~5B3の各フィードバック端子FB1から共通接続ノードNcへソース電流Isoが流れだす。これにより、出力電圧Voutが低下し始める。 For example, when the LED sets G1 to G3 are switched from the unlit state to the lit state while the output voltage Vout is 5.0 [V], the source current Iso from the feedback terminals FB1 of the LED drivers 5B1 to 5B3 to the common connection node Nc. Start flowing. As a result, the output voltage Vout starts to decrease.
 出力電圧Voutが4.2[V]まで低下すると、LEDドライバ5B1ではLED端子電圧LED_minが参照電圧VREF以下になるので、LEDドライバ5B1のフィードバック端子FB1からソース電流Isoが出力されなくなる。なお、LEDドライバ5B2及び5B3では依然としてLED端子電圧LED_minが参照電圧VREFより高いので、LEDドライバ5B2及び5B3の各フィードバック端子FB1からソース電流Isoが出力される。 (4) When the output voltage Vout drops to 4.2 [V], the LED terminal voltage LED_min becomes equal to or lower than the reference voltage VREF in the LED driver 5B1, so that the source current Iso is not output from the feedback terminal FB1 of the LED driver 5B1. Since the LED terminal voltage LED_min is still higher than the reference voltage VREF in the LED drivers 5B2 and 5B3, the source current Iso is output from each feedback terminal FB1 of the LED drivers 5B2 and 5B3.
 出力電圧Voutがさらに低下して4.1[V]にまで達すると、LEDドライバ5B1のみならずLEDドライバ5B2でもLED端子電圧LED_minが参照電圧VREF以下になるので、LEDドライバ5B1及び5B2の各フィードバック端子FB1からソース電流Isoが出力されなくなる。なお、LEDドライバ5B3では依然としてLED端子電圧LED_minが参照電圧VREFより高いので、LEDドライバ5B3のフィードバック端子FB1からソース電流Isoが出力される。 When the output voltage Vout further decreases and reaches 4.1 [V], the LED terminal voltage LED_min becomes equal to or lower than the reference voltage VREF not only in the LED driver 5B1 but also in the LED driver 5B2, so that each feedback of the LED drivers 5B1 and 5B2 is performed. The source current Iso is no longer output from the terminal FB1. Since the LED terminal voltage LED_min is still higher than the reference voltage VREF in the LED driver 5B3, the source current Iso is output from the feedback terminal FB1 of the LED driver 5B3.
 出力電圧Voutがさらに低下して4.0[V]にまで達すると、LEDドライバ5B1及び5BのみならずLEDドライバ5B3でもLED端子電圧LED_minが参照電圧VREF以下になるので、LEDドライバ5B1~5B3の各フィードバック端子FB1からソース電流Isoが出力されなくなる。この状態において、LEDドライバ5B1のLED接続端子LED1~LEDnに印加される各カソード電圧は0.8[V](=4.0[V]-3.2[V])になり、LEDドライバ5B2のLED接続端子LED1~LEDnに印加される各カソード電圧は0.9[V](=4.0[V]-3.1[V])になり、LEDドライバ5B3のLED接続端子LED1~LEDnに印加される各カソード電圧は1.0[V](=4.0[V]-3.0[V])になる。したがって、LED定電流源Cs1~Csnの最小駆動電圧(LED定電流源が駆動するために最低限必要な電圧)が0.8[V]以下であれば、LED組G1~G3は問題なく点灯する。 When the output voltage Vout further decreases and reaches 4.0 [V], the LED terminal voltage LED_min becomes equal to or lower than the reference voltage VREF not only in the LED drivers 5B1 and 5B but also in the LED driver 5B3, so that the LED drivers 5B1 to 5B3 The source current Iso is no longer output from each feedback terminal FB1. In this state, the respective cathode voltages applied to the LED connection terminals LED1 to LEDn of the LED driver 5B1 become 0.8 [V] (= 4.0 [V] -3.2 [V]), and the LED driver 5B2 The respective cathode voltages applied to the LED connection terminals LED1 to LEDn are 0.9 [V] (= 4.0 [V] -3.1 [V]), and the LED connection terminals LED1 to LEDn of the LED driver 5B3. Becomes 1.0 [V] (= 4.0 [V] -3.0 [V]). Therefore, if the minimum drive voltage of the LED constant current sources Cs1 to Csn (the minimum voltage required for driving the LED constant current sources) is 0.8 [V] or less, the LED sets G1 to G3 light without any problem. I do.
 実際には各LEDストリングの各LED順方向総電圧にばらつきがあるので、各LEDストリングの各LED順方向総電圧のばらつきと各LED定電流源の最小駆動電圧とを考慮して、全てのLEDストリングが問題なく点灯するように各LEDドライバの参照電圧VREFを設定すればよい。 Actually, since the total forward voltage of each LED of each LED string varies, all LEDs are considered in consideration of the variation of the total forward voltage of each LED of each LED string and the minimum drive voltage of each LED constant current source. What is necessary is just to set the reference voltage VREF of each LED driver so that a string may be lighted without any problem.
 図11は、第4実施形態に係るLEDドライバ5B1~5B3におけるピン配置の一例を示す平面図である。各ピンは半導体集積回路装置(パッケージ品)の底面に形成される。ここでは、一例として、LEDストリングは16個(すなわちLEDストリング4_1~4_16)を接続可能な構成としている。平面視で矩形状のLEDドライバ5Bにおける横方向に延びる第1辺501には、順に、ピンEXTCLK、ピンVSYNC、非接続ピン、ピンLED1~LED4、非接続ピン、ピンLGND、非接続ピン、ピンLED5,LED6が横方向に並んで配置される。ピンEXTCLKは、クロック信号入力用のピンである。ピンVSYNCは、同期信号入力用のピンである。ピンLED1~LED6は、LEDストリングのカソード接続用のピンである。ピンLGNDは、定電流回路のグランド用のピンである。非接続ピンは、接続が行われないピンである。第1辺501の一方端から縦方向に延びる第2辺502には、順に、ピンLED7,LED8、非接続ピン、ピンLGND、ピンSDO、ピンTEST1、ピンTEST2、非接続ピン、ピンLGND、非接続ピン、ピンLED9,LED10が縦方向に並んで配置される。ピンLED7は、ピンLED6とで第1辺501と第2辺502との交点を挟むように配置される。ピンLED7~LED10は、LEDストリングのカソード接続用のピンである。ピンSDOは、データ出力用のピンである。ピンTEST1~TEST2は、テストモード用のピンである。第3辺503は、第2辺502における第1辺501側ではない端部から横方向に延びる。すなわち、第3辺503は、第1辺501と縦方向に対向する。第3辺503には、順に、ピンLED11,LED12、非接続ピン、ピンLGND、非接続ピン、ピンLED13~LED16、非接続ピン、ピンFB1、非接続ピンが横方向に並んで配置される。ピンLED11は、ピンLED10とで第2辺502と第3辺503との交点を挟むように配置される。ピンLED11~LED16は、LEDストリングのカソード接続用のピンである。ピンFB1は、フィードバック端子用のピンであり、図10のフィードバック端子FB1に相当する。第4辺504は、第3辺503における第2辺502側ではない端部から縦方向に延びる。すなわち、第4辺504は、第2辺502と横方向に対向する。第4辺504には、順に、非接続ピン、非接続ピン、非接続ピン、ピンISET、ピンVREG、ピンVCC、ピンEN、ピンGND、ピンFAIL、ピンSCS、ピンSDI、ピンSCLKが縦方向に並んで配置される。ピンSCLKは、ピンEXTCLKとで第1辺501と第4辺504との交点を挟むように配置される。ピンISETは、LED電流を設定する抵抗を接続するためのピンである。ピンVREGは、内部電圧を出力するためのピンである。ピンVCCは、VCC端子である。ピンENは、スタンバイモードまたは動作モードを設定するためのピンである。ピンGNDは、グランド接続用のピンである。ピンFAILは、異常検出出力用のピンである。ピンSCSは、チップ選択設定用のピンである。ピンSDIは、データ入力用のピンである。ピンSCLKは、クロック入力用のピンである。 FIG. 11 is a plan view showing an example of a pin arrangement in the LED drivers 5B1 to 5B3 according to the fourth embodiment. Each pin is formed on the bottom surface of the semiconductor integrated circuit device (package product). Here, as an example, the configuration is such that 16 LED strings (ie, LED strings 4_1 to 4_16) can be connected. A first side 501 extending in the horizontal direction of the LED driver 5B having a rectangular shape in a plan view includes, in order, a pin EXTCLK, a pin VSYNC, a non-connection pin, pins LED1 to LED4, a non-connection pin, a pin LGND, a non-connection pin, and a pin. The LEDs 5 and 6 are arranged side by side in the horizontal direction. The pin EXTCLK is a clock signal input pin. The pin VSYNC is a pin for inputting a synchronization signal. The pins LED1 to LED6 are pins for connecting the cathode of the LED string. The pin LGND is a ground pin of the constant current circuit. Non-connection pins are pins that are not connected. A second side 502 extending in the vertical direction from one end of the first side 501 has pins LED7, LED8, a non-connection pin, a pin LGND, a pin SDO, a pin TEST1, a pin TEST2, a non-connection pin, a pin LGND, and a non-pin. The connection pins, the pins LED9 and LED10 are arranged side by side in the vertical direction. The pin LED 7 is arranged so as to sandwich the intersection of the first side 501 and the second side 502 with the pin LED 6. The pins LED7 to LED10 are pins for connecting the cathode of the LED string. The pin SDO is a data output pin. The pins TEST1 and TEST2 are pins for a test mode. The third side 503 extends laterally from an end of the second side 502 that is not on the first side 501 side. That is, the third side 503 is vertically opposed to the first side 501. On the third side 503, the pins LED11, LED12, non-connection pin, pin LGND, non-connection pin, pins LED13 to LED16, non-connection pin, pin FB1, and non-connection pin are arranged in order in the horizontal direction. The pin LED 11 is arranged so as to sandwich the intersection of the second side 502 and the third side 503 with the pin LED 10. The pins LED11 to LED16 are pins for connecting the cathode of the LED string. The pin FB1 is a pin for a feedback terminal, and corresponds to the feedback terminal FB1 in FIG. The fourth side 504 extends in the vertical direction from an end of the third side 503 which is not on the second side 502 side. That is, the fourth side 504 faces the second side 502 in the lateral direction. On the fourth side 504, a non-connection pin, a non-connection pin, a non-connection pin, a pin ISET, a pin VREG, a pin VCC, a pin EN, a pin GND, a pin FAIL, a pin SCS, a pin SDI, and a pin SCLK are sequentially arranged in the vertical direction. Are arranged side by side. The pin SCLK is arranged so as to sandwich the intersection of the first side 501 and the fourth side 504 with the pin EXTCLK. The pin ISET is a pin for connecting a resistor for setting the LED current. The pin VREG is a pin for outputting an internal voltage. Pin VCC is a VCC terminal. Pin EN is a pin for setting a standby mode or an operation mode. The pin GND is a pin for ground connection. The pin FAIL is a pin for abnormality detection output. The pin SCS is a chip selection setting pin. The pin SDI is a data input pin. The pin SCLK is a clock input pin.
 図10に示すLED駆動回路装置は例えばマイクロコンピュータ(不図示)によって調光制御される。マイクロコンピュータは、例えば図12に示す調光データDATAをLEDドライバ5B1のピンSDIに送信する。LEDドライバ5B1は、ピンSDIで受け取った調光データDATAをピンSDOから出力する。 The dimming control of the LED drive circuit device shown in FIG. 10 is performed by, for example, a microcomputer (not shown). The microcomputer transmits, for example, the dimming data DATA shown in FIG. 12 to the pin SDI of the LED driver 5B1. The LED driver 5B1 outputs the dimming data DATA received at the pin SDI from the pin SDO.
 LEDドライバ5B1のピンSDOとLEDドライバ5B2のピンSDIとは配線によって接続されている。したがって、LEDドライバ5B1は、調光データDATAをLEDドライバ5B2のピンSDIに送信する。LEDドライバ5B2は、ピンSDIで受け取った調光データDATAをピンSDOから出力する。 (4) The pin SDO of the LED driver 5B1 and the pin SDI of the LED driver 5B2 are connected by wiring. Therefore, the LED driver 5B1 transmits the dimming data DATA to the pin SDI of the LED driver 5B2. The LED driver 5B2 outputs the dimming data DATA received at the pin SDI from a pin SDO.
 LEDドライバ5B2のピンSDOとLEDドライバ5B3のピンSDIとは配線によって接続されている。したがって、LEDドライバ5B2は、調光データDATAをLEDドライバ5B3のピンSDIに送信する。なお、参照電圧VREFの設定データも調光データDATAと同様にピンSDI及びピンSDOを経由して伝送される。本実施形態とは異なり、本実施形態における非接続ピンの少なくとも一つを参照電圧VREFの設定用ピンに代え、参照電圧VREFの設定用ピンに接続される受動素子の回路定数に応じて参照電圧VREFの値が設定されてもよい。 (4) The pin SDO of the LED driver 5B2 and the pin SDI of the LED driver 5B3 are connected by wiring. Therefore, the LED driver 5B2 transmits the dimming data DATA to the pin SDI of the LED driver 5B3. The setting data of the reference voltage VREF is also transmitted via the pins SDI and SDO in the same manner as the dimming data DATA. Unlike the present embodiment, at least one of the non-connection pins in the present embodiment is replaced with a reference voltage VREF setting pin, and the reference voltage is set according to the circuit constant of a passive element connected to the reference voltage VREF setting pin. The value of VREF may be set.
 マイクロコンピュータは、図12に示すパルス信号P1をLEDドライバ5B1のピンVSYNCに送信し、図12に示すパルス信号P2をLEDドライバ5B2のピンVSYNCに送信し、図12に示すパルス信号P3をLEDドライバ5B3のピンVSYNCに送信する。LEDドライバ5B1~5B3それぞれのPWM調光部11は、LEDドライバ5B1~5B3それぞれのピンVSYNCで受け取ったパルス信号のハイレベル期間の調光データを認識して、認識した調光データに基づきパルス幅変調信号PWM1~PWMnを生成する。 The microcomputer sends the pulse signal P1 shown in FIG. 12 to the pin VSYNC of the LED driver 5B1, sends the pulse signal P2 shown in FIG. 12 to the pin VSYNC of the LED driver 5B2, and sends the pulse signal P3 shown in FIG. Send to pin 5SYNC of 5B3. The PWM dimming unit 11 of each of the LED drivers 5B1 to 5B3 recognizes the dimming data in the high level period of the pulse signal received at the pin VSYNC of each of the LED drivers 5B1 to 5B3, and determines the pulse width based on the recognized dimming data. Modulation signals PWM1 to PWMn are generated.
 なお、本実施形態では、図5に示すLEDドライバ5Bを用いたが、LEDドライバ5Bの代わりに図1に示すLEDドライバ5又は図3に示すLEDドライバ5Aを用いてもよい。また、本実施形態では、LEDドライバの個数を3つにしているが、LEDドライバの個数は3以外の複数であってもよい。また、本実施形態では、LEDドライバそれぞれに複数のLEDストリングを接続しているが、1つのLEDドライバに接続されるLEDストリングは1つであってもよい。 In the present embodiment, the LED driver 5B shown in FIG. 5 is used, but the LED driver 5 shown in FIG. 1 or the LED driver 5A shown in FIG. 3 may be used instead of the LED driver 5B. Further, in the present embodiment, the number of LED drivers is three, but the number of LED drivers may be a plurality other than three. Further, in the present embodiment, a plurality of LED strings are connected to each LED driver, but one LED string may be connected to one LED driver.
 上記の各実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。 Each of the embodiments described above is an example in all respects, and should not be considered to be restrictive. The technical scope of the present invention is defined not by the description of the embodiments but by the claims. It is to be understood that all changes that fall within the meaning and scope equivalent to the appended claims are included.
 例えば、上記の各実施形態では、電源装置としてスイッチングレギュレータを用いたが、スイッチングレギュレータの代わりにリニアレギュレータを用いてもよい。 For example, in each of the above embodiments, the switching regulator is used as the power supply device, but a linear regulator may be used instead of the switching regulator.
 本発明は、比較的簡便な回路により発光素子の駆動に用いる電源装置の出力電圧を所定の大きさに制御できるので電源効率の向上が図れる。このため産業上の利用可能性は極めて高い。 According to the present invention, the output voltage of the power supply device used for driving the light emitting element can be controlled to a predetermined value by a relatively simple circuit, so that the power supply efficiency can be improved. Therefore, industrial applicability is extremely high.
  1,1A  LED駆動回路装置
  2  スイッチング制御回路
  3  出力回路
  4_1~4_n  LEDストリング
  5,5A  LEDドライバ(定電流ドライバ)
  6  エラーアンプ
  7  発振器
  8  スロープ信号生成回路
  9  PWMコンパレータ
  10  PWM制御回路
  11  PWM調光部
  12  オペアンプ 
  13  オペアンプ(トランスコンダクタンスアンプ)
  C1,C2  キャパシタ
  COMP  位相補償用端子
  Cs1~Csn  LED定電流源
  ILED1~ILEDn  LED電流
  Isi  シンク電流
  Iso  ソース電流
  L1  インダクタ
  LED1~LEDn  LED接続端子
  OPFB,TCFB  電流出力端子
  PWM1~PWMn  PWM調光信号
  R1~R3  分圧抵抗
  R4  抵抗
  S1  スイッチング素子
  S2  同期整流素子
  TCFB  電流出力端子
  Tr1  トランジスタ
  Vf1~Vfn  LED順方向総電圧
  VLED1~VLEDn  LED端子電圧
  VREF  参照電圧
  Vt1  第1基準電圧
  Vsl  スロープ電圧
  Vst  安定出力電圧
  1B  LED駆動回路装置
  5B,50B,50B1~50B3  LEDドライバ
  51  OR回路
  14  選択コンパレータ
  15  ソース電流供給部
  15A  スイッチ
  15B  定電流回路
  15C  カレントミラー回路
  FB1  フィードバック端子
  141  第1選択部
  142  第2選択部
  143  コンパレータ
  VOM1~VOM3  他ドライバ接続端子
  VMINOUT  最低電圧出力端子
  PWMIN  PWM入力端子
  PWMOUT  PWM出力端子
  G1~G3  LED組
1, 1A LED drive circuit device 2 Switching control circuit 3 Output circuit 4_1 to 4_n LED string 5, 5A LED driver (constant current driver)
Reference Signs List 6 error amplifier 7 oscillator 8 slope signal generation circuit 9 PWM comparator 10 PWM control circuit 11 PWM dimming unit 12 operational amplifier
13 Operational amplifier (transconductance amplifier)
C1, C2 Capacitor COMP Phase compensation terminal Cs1 to Csn LED constant current source ILED1 to ILEDn LED current Isi Sink current Iso Source current L1 Inductor LED1 to LEDn LED connection terminal OPFB, TCFB Current output terminal PWM1 to PWMn PWM dimming signal R1 to R3 Voltage dividing resistor R4 Resistance S1 Switching element S2 Synchronous rectification element TCFB Current output terminal Tr1 Transistor Vf1 to Vfn LED forward total voltage VLED1 to VLEDn LED terminal voltage VREF Reference voltage Vt1 First reference voltage Vsl Slope voltage Vst Stable output voltage 1B LED Drive circuit device 5B, 50B, 50B1 to 50B3 LED driver 51 OR circuit 14 Selection comparator 15 Source current supply Supply unit 15A Switch 15B Constant current circuit 15C Current mirror circuit FB1 Feedback terminal 141 First selection unit 142 Second selection unit 143 Comparator VOM1 to VOM3 Other driver connection terminal VMINOUT Minimum voltage output terminal PWMIN PWM input terminal PWMOUT PWM output terminal G1 to G3 LED group

Claims (12)

  1.  電源装置を備え、LEDドライバ及び少なくとも一つのLEDストリングを複数組備えるLED駆動回路装置であって、
     前記電源装置は、
      前記電源装置の出力電圧を分圧した帰還電圧を生成する帰還電圧生成回路と、
      前記帰還電圧に応じて前記出力電圧を変動させる出力電圧調整部と、を備え、
     前記少なくとも一つのLEDストリングそれぞれは、
      前記出力電圧を駆動電圧源として、複数のLEDが直列に接続され、
     前記LEDドライバそれぞれは、
      前記少なくとも一つのLEDストリングに各別にLED接続端子を介して接続可能な複数のLED定電流源と、
      前記少なくとも一つのLEDストリングの内、LED順方向総電圧がもっとも大きいLEDストリングの前記LED接続端子を以降検出用LED接続端子として選択する選択部と、
      前記検出用LED接続端子の電圧と第1参照電圧とを比較する比較部と、
      前記比較部の出力に基づく電流を出力する帰還端子と、を備え、
     前記帰還電圧生成回路は前記電源装置の出力端子に接続される第1分圧抵抗と接地電位に接続され前記第1分圧回路と直列に接続される第2分圧抵抗で構成され、
     前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードに前記複数組の前記帰還端子が接続される、LED駆動回路装置。
    An LED drive circuit device including a power supply device, a plurality of sets of an LED driver and at least one LED string,
    The power supply,
    A feedback voltage generation circuit that generates a feedback voltage obtained by dividing the output voltage of the power supply device;
    An output voltage adjustment unit that varies the output voltage according to the feedback voltage,
    Each of the at least one LED string is
    A plurality of LEDs are connected in series using the output voltage as a driving voltage source,
    Each of the LED drivers,
    A plurality of LED constant current sources that can be individually connected to the at least one LED string via LED connection terminals;
    A selection unit that selects, as the detection LED connection terminal, the LED connection terminal of the LED string having the largest LED forward total voltage among the at least one LED string;
    A comparing unit that compares the voltage of the detection LED connection terminal with a first reference voltage;
    A feedback terminal that outputs a current based on the output of the comparison unit,
    The feedback voltage generation circuit includes a first voltage dividing resistor connected to an output terminal of the power supply device and a second voltage dividing resistor connected to a ground potential and connected in series with the first voltage dividing circuit,
    The LED drive circuit device, wherein the plurality of sets of the feedback terminals are connected to a common connection node between the first voltage dividing resistor and the second voltage dividing resistor.
  2.  前記LEDドライバそれぞれは、前記選択部と前記比較部とを有するオペアンプを有し、前記帰還端子に前記オペアンプの出力が結合される、請求項1に記載のLED駆動回路装置。 2. The LED drive circuit device according to claim 1, wherein each of the LED drivers has an operational amplifier having the selection unit and the comparison unit, and an output of the operational amplifier is coupled to the feedback terminal.
  3.  前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記帰還端子が、前記共通接続ノードから前記帰還端子に引き込まれるシンク電流を出力する、請求項2に記載のLED駆動回路装置。 The LED drive circuit according to claim 2, wherein the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal when a voltage of the detection LED connection terminal is lower than the first reference voltage. apparatus.
  4.  前記共通接続ノードと前記複数組の前記帰還端子それぞれとの間に前記複数組の第3分圧抵抗それぞれが接続される、請求項3に記載のLED駆動回路装置。 4. The LED drive circuit device according to claim 3, wherein each of the plurality of sets of third voltage dividing resistors is connected between the common connection node and each of the plurality of sets of the feedback terminals. 5.
  5.  前記オペアンプは、トランスコンダクタンスアンプである、請求項2に記載のLED駆動回路装置。 The LED drive circuit device according to claim 2, wherein the operational amplifier is a transconductance amplifier.
  6.  前記検出用LED接続端子の電圧が前記第1参照電圧よりも低いとき、前記帰還端子が、前記共通接続ノードから前記帰還端子に引き込まれるシンク電流を出力する、請求項5に記載のLED駆動回路装置。 The LED drive circuit according to claim 5, wherein the feedback terminal outputs a sink current drawn from the common connection node to the feedback terminal when a voltage of the detection LED connection terminal is lower than the first reference voltage. apparatus.
  7.  前記検出用LED接続端子の電圧が前記第1参照電圧よりも高いとき、前記帰還端子が、前記帰還端子から前記共通接続ノードに流れだすソース電流を出力する、請求項5に記載のLED駆動回路装置。 The LED drive circuit according to claim 5, wherein when the voltage of the detection LED connection terminal is higher than the first reference voltage, the feedback terminal outputs a source current flowing from the feedback terminal to the common connection node. apparatus.
  8.  前記LEDドライバそれぞれは、前記比較部であるコンパレータの出力に応じて、前記第1分圧抵抗と前記第2分圧抵抗との共通接続ノードへ流し込むソース電流のオンオフを切替えるソース電流供給部を有する、請求項1に記載のLED駆動回路装置。 Each of the LED drivers has a source current supply unit that switches on and off a source current flowing to a common connection node between the first voltage dividing resistor and the second voltage dividing resistor according to an output of a comparator serving as the comparing unit. The LED drive circuit device according to claim 1.
  9.  前記ソース電流供給部は、前記コンパレータの出力に応じてオンオフされるスイッチと、前記スイッチに接続される定電流回路と、カレントミラー回路と、を有し、
     前記スイッチは、前記カレントミラー回路における一方のトランジスタの両端間に接続される、請求項8に記載のLED駆動回路装置。
    The source current supply unit includes a switch that is turned on and off according to an output of the comparator, a constant current circuit connected to the switch, and a current mirror circuit,
    The LED drive circuit device according to claim 8, wherein the switch is connected between both ends of one transistor in the current mirror circuit.
  10.  前記LED定電流源は、第1パルス幅変調信号によって間歇的に電流を生成する、請求項1~9のいずれか一項に記載のLED駆動回路装置。 10. The LED drive circuit device according to claim 1, wherein the LED constant current source generates a current intermittently according to a first pulse width modulation signal.
  11.  前記電源装置は、
     インダクタに間歇的に電流を流すスイッチング素子と、
     前記インダクタに流れるインダクタ電流を平滑して、前記出力端子に前記出力電圧を出力する平滑部と、
     スロープ信号生成回路と、誤差増幅器と、PWMコンパレータと、をさらに備え、
     前記スロープ信号生成回路は三角波状またはのこぎり波状のスロープ信号を生成し、前記誤差増幅器は前記帰還電圧と第2参照電圧とを比較して両者差分の電圧を誤差電圧として出力し、前記PWMコンパレータは、前記誤差電圧と前記スロープ信号とを比較し、そのパルス比較結果に応じたパルス幅を有する第2パルス幅変調信号を出力し、前記第2パルス幅変調信号によって、前記スイッチング素子がオンまたはオフに制御される、請求項1~10のいずれか一項に記載のLED駆動回路装置。
    The power supply,
    A switching element that allows current to flow intermittently through the inductor,
    A smoothing unit that smoothes an inductor current flowing through the inductor, and outputs the output voltage to the output terminal;
    A slope signal generation circuit, an error amplifier, and a PWM comparator;
    The slope signal generation circuit generates a triangular or sawtooth waveform slope signal, the error amplifier compares the feedback voltage and a second reference voltage, and outputs a difference voltage between the two as an error voltage, and the PWM comparator Comparing the error voltage with the slope signal, outputting a second pulse width modulation signal having a pulse width according to the pulse comparison result, and turning on or off the switching element according to the second pulse width modulation signal. The LED drive circuit device according to any one of claims 1 to 10, which is controlled to:
  12.  請求項1~11のいずれか一項に記載のLED駆動回路装置を備える、電子機器。 An electronic device comprising the LED drive circuit device according to any one of claims 1 to 11.
PCT/JP2019/035641 2018-10-02 2019-09-11 Led driving circuit device and electronic instrument WO2020071067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-187638 2018-10-02
JP2018187638 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071067A1 true WO2020071067A1 (en) 2020-04-09

Family

ID=70054955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035641 WO2020071067A1 (en) 2018-10-02 2019-09-11 Led driving circuit device and electronic instrument

Country Status (1)

Country Link
WO (1) WO2020071067A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249860A1 (en) * 2021-05-26 2022-12-01 ローム株式会社 Led drive device, led light source device, and onboard display device
WO2023216602A1 (en) * 2022-05-09 2023-11-16 惠科股份有限公司 Control circuit, control method and display apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028860B1 (en) * 2009-11-19 2011-04-12 주식회사 그린씨앤씨텍 Parallel light emitting diode driving circuit
JP2013109921A (en) * 2011-11-18 2013-06-06 Rohm Co Ltd Drive circuit for light-emitting element, and light-emitting device and electronic equipment using the same
JP2013251131A (en) * 2012-05-31 2013-12-12 Panasonic Corp Led drive device, illuminating device and vehicle illuminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028860B1 (en) * 2009-11-19 2011-04-12 주식회사 그린씨앤씨텍 Parallel light emitting diode driving circuit
JP2013109921A (en) * 2011-11-18 2013-06-06 Rohm Co Ltd Drive circuit for light-emitting element, and light-emitting device and electronic equipment using the same
JP2013251131A (en) * 2012-05-31 2013-12-12 Panasonic Corp Led drive device, illuminating device and vehicle illuminating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249860A1 (en) * 2021-05-26 2022-12-01 ローム株式会社 Led drive device, led light source device, and onboard display device
WO2023216602A1 (en) * 2022-05-09 2023-11-16 惠科股份有限公司 Control circuit, control method and display apparatus

Similar Documents

Publication Publication Date Title
KR101775159B1 (en) Control circuit and control method of switching power supply and light emitting apparatus and electronic device using the same
US7224128B2 (en) Device for driving light emitting diode strings
US9699844B2 (en) Multichannel constant current LED driving circuit, driving method and LED driving power
KR101883001B1 (en) Driving circuit of light emitting element, light emitting device using the same, and electronic device
JP5523917B2 (en) Switching power supply control circuit, control method, and light emitting device and electronic apparatus using them
KR100771780B1 (en) Led driving apparatus having fuction of over-voltage protection and duty control
JP5735825B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic equipment using the same
US8456097B2 (en) Modified dimming LED driver
KR101508418B1 (en) Predictive control of power converter for led driver
KR100867551B1 (en) Led array driving apparatus
EP2630843B1 (en) Led circuit arrangement
JP4975856B2 (en) Integrated circuit for lighting device and lighting device
CN102598315B (en) Circuit and method for driving led string for backlight, and backlight and display device using the circuit
US20110157246A1 (en) Backlight unit, method for driving the same, and liquid crystal display device using the same
KR101712210B1 (en) PWM controlling circuit and LED driver circuit having the same in
CN102770974A (en) Driving circuit for light emitting element, light emitting device using same, and display apparatus
US8884545B2 (en) LED driving system and driving method thereof
CN111613185B (en) Light emitting element driving device, light emitting element driving system, and light emitting system
US8604699B2 (en) Self-power for device driver
WO2018198594A1 (en) Led driver, and led drive circuit device and electronic equipment that use said led driver
WO2020071067A1 (en) Led driving circuit device and electronic instrument
JP5960982B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
JP2017005827A (en) Switching converter and its control circuit, lighting device using the same, and electronic apparatus
JP6247455B2 (en) LIGHT EMITTING ELEMENT DRIVE CIRCUIT, AND LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US9030116B2 (en) Load driving apparatus and driving method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19869435

Country of ref document: EP

Kind code of ref document: A1