WO2018198508A1 - Surface acoustic wave device, high frequency front-end circuit using surface acoustic wave device, and communication device using surface acoustic wave device - Google Patents

Surface acoustic wave device, high frequency front-end circuit using surface acoustic wave device, and communication device using surface acoustic wave device Download PDF

Info

Publication number
WO2018198508A1
WO2018198508A1 PCT/JP2018/006569 JP2018006569W WO2018198508A1 WO 2018198508 A1 WO2018198508 A1 WO 2018198508A1 JP 2018006569 W JP2018006569 W JP 2018006569W WO 2018198508 A1 WO2018198508 A1 WO 2018198508A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
chip
substrate
bump
elastic wave
Prior art date
Application number
PCT/JP2018/006569
Other languages
French (fr)
Japanese (ja)
Inventor
保昭 新
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018198508A1 publication Critical patent/WO2018198508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device, a high-frequency front-end circuit using the same, and a communication device.
  • Patent Document 1 discloses an acoustic wave duplexer in which a filter chip including a lithium tantalate substrate and a filter chip including a lithium niobate substrate are flip-chip mounted on the same wiring substrate. .
  • the lithium niobate substrate provided in one acoustic wave chip is inferior in bending strength to the lithium tantalate substrate provided in the other acoustic wave chip, and therefore is resistant to cracks caused by stress (crack Resistance) is very weak.
  • each bump can only relieve the same level of stress, so the elastic wave chip on the lithium niobate substrate side, which is relatively inferior in crack resistance, There is a risk of cracking occurring earlier than the acoustic wave chip on the lithium tantalate substrate side.
  • a crack occurs in one of the acoustic wave chips mounted on the package substrate, an abnormality occurs in a part of the acoustic wave device including the package substrate, so that the acoustic wave device fails.
  • the object of the present invention is to reduce the stress applied to the elastic wave chip on the lithium niobate substrate side, which is relatively inferior in crack resistance, through the bumps compared to the elastic wave chip on the lithium tantalate substrate side, which is relatively superior in crack resistance. It is to reduce the failure rate of the elastic wave device.
  • an acoustic wave device includes a package substrate, and a first acoustic wave chip that is mounted on the package substrate and includes a first substrate that is a lithium niobate substrate.
  • a second acoustic wave chip that is mounted on the package substrate and has a second substrate that is a lithium tantalate substrate; a first bump that electrically connects the first acoustic wave chip and the package substrate;
  • An elastic wave device including a second bump for electrically connecting a second elastic wave chip and a package substrate, wherein the first bump is joined to the first elastic wave chip, and the second bump is The elastic wave device is bonded to the second elastic wave chip, and the material of the first bump has a lower Young's modulus than the material of the second bump.
  • the first bump on the first acoustic wave chip side including the crack-resistant inferior lithium niobate substrate includes the lithium tantalate substrate superior in crack resistance on the second acoustic wave chip side.
  • the degree of freedom of deformation is higher than that of the second bump. Therefore, the first bump can relieve more stress than the second bump. Accordingly, since the stress applied to the first elastic wave chip that is inferior in crack resistance is more likely to be reduced than in the second elastic wave chip that is superior in crack resistance, an elastic wave device including a package substrate on which both elastic wave chips are mounted. The failure rate is also reduced.
  • the height of the first bump is preferably higher than the height of the second bump.
  • the distance between the first acoustic wave chip and the package substrate is likely to increase more than the distance between the second acoustic wave chip and the package substrate.
  • the greater the distance between the acoustic wave chip and the package substrate the smaller the influence that the acoustic wave chip receives from the expansion of the package substrate. Therefore, the stress applied to the first acoustic wave chip is more likely to be reduced than the stress applied to the second acoustic wave chip, and the failure rate of the acoustic wave device is further reduced.
  • the area of the joint surface between the first bump and the first acoustic wave chip is the second bump and the second The area is preferably larger than the area of the joint surface with the acoustic wave chip.
  • the stress applied to the first acoustic wave chip at the joint surface between the first bump and the first acoustic wave chip is the first stress at the joint surface between the second bump and the second acoustic wave chip. 2 is widely dispersed compared to the stress applied to the elastic wave chip 2. Therefore, the stress applied to the first acoustic wave chip is more likely to be reduced than that of the second acoustic wave chip, so that the acoustic wave device is further less likely to fail.
  • the material of the first bump includes solder.
  • Solder has a relatively low Young's modulus compared to other metals used as bump materials.
  • the melting point is relatively low, the bump including solder can be welded to the package substrate only by applying heat. That is, since it is not necessary to apply a mechanical load at the time of welding unlike a bump made of a metal other than solder, the bump height after being welded to the package substrate is likely to be higher than that of the bump. Accordingly, the height of the first bump is easily formed, and the stress applied to the first acoustic wave chip is more likely to be reduced compared to the stress applied to the second acoustic wave device. The failure rate is easier to reduce.
  • the material of the second bump may have a higher thermal conductivity than the material of the first bump. Since the lithium tantalate substrate is weaker to the thermal load than the lithium niobate substrate, when applied, a part of the lithium tantalate substrate is inferior in resistance to electric power (power resistance) that changes to the thermal load. Therefore, in the elastic wave device to which electric power is applied, when electric power or a thermal load is applied to both the first and second elastic wave chips, the second elastic wave chip is destroyed earlier than the first elastic wave chip. This may cause the acoustic wave device to break down.
  • the second bump can dissipate more heat than the first bump, the heat load applied to the second elastic wave chip, which is inferior in power resistance, can be increased with the advantage in power resistance. It is easier to reduce than the thermal load applied to the elastic wave chip 1. Accordingly, the failure rate of the acoustic wave device including the package substrate on which both acoustic wave chips are mounted is further reduced.
  • the material of the second bump includes gold.
  • Gold has a relatively high thermal conductivity as compared with other metals used as bump materials, and also has high corrosion resistance, which is resistance to corrosion due to oxidation. If the gold is included in the material of the second bump, not only the thermal load applied to the second acoustic wave chip is likely to decrease, but also the corrosion resistance of the joint between the second acoustic wave chip and the second bump is reduced. It can be secured. Therefore, the failure rate of the acoustic wave device including the package substrate on which the acoustic wave chip is mounted is further reduced.
  • the above-described elastic wave device may be a composite filter device including a transmission-side filter chip, and the transmission-side filter chip may be an elastic wave device that is a first elastic wave chip.
  • the lithium niobate substrate provided in the first acoustic wave chip is superior in power durability as compared with the lithium tantalate substrate provided in the second acoustic wave chip.
  • the required transmission-side filter chip having high power durability is the first acoustic wave chip including the lithium niobate substrate having relatively high power durability.
  • the above-described elastic wave device may be a composite filter device including a reception-side filter chip, and the reception-side filter chip may be an elastic wave device that is a second elastic wave chip.
  • the lithium tantalate substrate provided in the second acoustic wave chip is a substrate obtained at a lower cost than the lithium niobate substrate provided in the first acoustic wave chip. Therefore, the second acoustic wave chip is used as the reception filter chip that is not required to have much power durability compared to the transmission filter chip, so that the acoustic wave device according to the present invention can be obtained at lower cost. become.
  • a high-frequency front end circuit includes the elastic wave device described above and an amplifier circuit that amplifies a high-frequency signal.
  • a communication apparatus includes the above-described high-frequency front-end circuit and an RF signal processing circuit that processes a high-frequency signal.
  • the stress applied to the acoustic wave chip on the lithium niobate substrate side can be reduced more easily through the bump than the acoustic wave chip on the lithium tantalate substrate side, thereby reducing the failure rate of the acoustic wave device. it can.
  • a high-frequency front-end circuit using an elastic wave device and a communication device can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the acoustic wave device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the acoustic wave device according to Modification 1 of the first embodiment.
  • FIG. 3A is a diagram illustrating a structure of the acoustic wave device according to the second modification of the first embodiment, and is a plan view illustrating a main part of the acoustic wave device.
  • FIG. 3B is a diagram illustrating the structure of the acoustic wave device according to the second modification of the first embodiment, and is a schematic cross-sectional view taken along the line A1-A1 in FIG. 3A.
  • FIG. 3A is a diagram illustrating a structure of the acoustic wave device according to the second modification of the first embodiment, and is a schematic cross-sectional view taken along the line A1-A1 in FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view showing the structure of an acoustic wave device according to Modification 3 of the first embodiment.
  • FIG. 5 is a circuit diagram of a composite filter device (duplexer) that is an elastic wave device according to the second embodiment.
  • FIG. 6 is a plan view showing a main part of a composite filter device (multiplexer) which is an elastic wave device according to the third embodiment.
  • FIG. 7 is a circuit diagram of a composite filter device (multiplexer) which is an elastic wave device according to the third embodiment.
  • FIG. 8 is a cross-sectional view illustrating a structure of an acoustic wave chip included in a composite filter device (multiplexer) that is an acoustic wave device according to a modification of the third embodiment.
  • FIG. 9 is a circuit diagram of the high-frequency front-end circuit and the communication device according to the embodiment of the present invention.
  • FIG. 1 shows an example of a surface acoustic wave device having a CSP (Chip Size Package) structure including a plurality of surface acoustic wave chips, as an example of the surface acoustic wave device according to one aspect of the first embodiment of the present invention. This will be described with reference to FIG.
  • CSP Chip Size Package
  • FIG. 1 is a schematic cross-sectional view showing the structure of an acoustic wave device 20 according to the first embodiment of the present invention.
  • the elastic wave device 20 includes a package substrate 60, elastic wave chips 210 and 220, and bumps 41 and 42.
  • the elastic wave chip 210 is mounted on the package substrate 60 using the bump 41 and the elastic wave chip 220 is mounted on the package substrate 60 using the bump 42 and is electrically connected thereto.
  • the bump 41 is bonded to the elastic wave chip 210
  • the bump 42 is bonded to the elastic wave chip 220.
  • the package substrate 60 for example, a ceramic substrate, a resin substrate, a printed substrate, or the like is used.
  • the acoustic wave chip 210 is a lithium niobate substrate (hereinafter referred to as an LN substrate) and is a first substrate 211 of the present invention, and an IDT (Inter Digital Transducer) electrode 212 provided on the chip substrate 211.
  • the acoustic wave chip 220 includes a chip substrate 221 that is a lithium tantalate substrate (hereinafter referred to as an LT substrate) and is a second substrate of the present invention, and an IDT electrode 222 provided on the chip substrate 221. ing.
  • the acoustic wave chips 210 and 220 are sealed so as to provide the gaps 213 and 223 by a protective layer 80 formed using, for example, a resin material.
  • the material of the bump 41 has a lower Young's modulus than the material of the bump 42.
  • the material of the bump 41 when gold having a Young's modulus of 78 GPa is used as the material of the bump 41, silver having a Young's modulus of 82.7 may be used as the material of the bump.
  • the material of the bumps 41 and 42 is a combination of gold and copper, silver and copper, solder and copper, solder and silver, etc. It can be lower than the Young's modulus of the material.
  • the failure rate of the acoustic wave device 20 is lower than when the bumps 41 and 42 are made of the same material. The reason for this will be described below.
  • each substrate (chip substrates 211, 221 and package substrate 60) included in the acoustic wave device expands. Then, stress is generated between the acoustic wave chips 210 and 220 having the chip substrates 211 and 221 and the package substrate 60. The generated stress is applied to the acoustic wave chips 210 and 220 via the bumps 41 and 42 that connect the acoustic wave chips 210 and 220 and the package substrate 60.
  • the LN substrate constituting the chip substrate 211 is significantly inferior in resistance to cracks (crack resistance) caused by stress compared to the LT substrate constituting the chip substrate 221. Therefore, when stress is applied to both of the acoustic wave chips 210 and 220, the acoustic wave chip 210 including the chip substrate 211 is more likely to crack early.
  • a crack occurs in the acoustic wave chip 210 mounted on the package substrate 60, an abnormality occurs in a part of the acoustic wave device 20, and the acoustic wave device 20 fails. That is, if the crack resistance of the acoustic wave chip 210 including the LN substrate remains significantly inferior to that of the acoustic wave chip 220 including the LT substrate, the failure rate of the acoustic wave device 20 itself remains high.
  • the bump 41 when the material of the bump 41 has a Young's modulus lower than that of the material of the bump 42, the bump 41 has a higher degree of freedom of deformation than the bump 42, so that more stress can be relieved. That is, when a stress is generated between the elastic wave chips 210 and 220 and the package substrate 60, the stress applied to the elastic wave chip 210 via the bump 41 is greater than the stress applied to the elastic wave chip 220 via the bump 42. It tends to decrease. Therefore, since the stress applied to the crack-resistant inferior elastic wave chip 210 is likely to be less than the stress applied to the crack-resistant dominant acoustic wave chip 220, the failure rate of the acoustic wave device 20 including both acoustic wave chips is also reduced. .
  • bumps made of a material having a low Young's modulus for the elastic wave chip 210 provided with the LN substrate makes it possible to achieve both maintenance of electrical characteristics and control of TCF (Temperature Coefficients of Frequency: frequency temperature characteristics). Suitable for
  • TCF is the amount of frequency fluctuation caused by the expansion and contraction of the chip substrate due to temperature change.
  • a bump having a relatively low Young's modulus is used for mounting an elastic wave chip, the expansion and contraction of the chip substrate due to a temperature change before and after the current flows cannot be suppressed, and the TCF increases.
  • the frequency greatly varies with a temperature change, so that the loss increases.
  • the chip substrate on which the IDT electrode is provided may be covered with a silicon oxide film.
  • the LN substrate and the LT substrate used for the chip substrate have a negative temperature coefficient that decreases in frequency as the temperature rises, whereas the silicon oxide film has a positive temperature coefficient that increases in frequency as the temperature increases. If the chip substrate is covered with this silicon oxide film, an action to lower the frequency and an action to increase the frequency can occur at the same time. Therefore, even if the chip substrate expands and contracts, the frequency does not vary so much.
  • the TCF of the acoustic wave chip including the LT substrate can be controlled, but the electrical characteristics of the acoustic wave chip may be greatly deteriorated. Therefore, this control method cannot be used for an acoustic wave chip including an LT substrate.
  • the electrical characteristics of the LN substrate are less likely to deteriorate than the LT substrate. Therefore, even if a material having a low Young's modulus that may increase TCF is used for the bump on the acoustic wave chip side provided with the LN substrate, the electrical characteristics are not greatly deteriorated by forming the silicon oxide film. The TCF can be suppressed. Therefore, the low Young's modulus is not a problem in the bump on the acoustic wave chip side provided with the LN substrate.
  • LN substrates that are usually used in acoustic wave devices are often cut with a Y-axis rotation angle in the range of ⁇ 4 ° to 0 ° or + 115 ° to + 135 °.
  • a Y-axis rotation angle in the range of + 115 ° to + 135 ° is most susceptible to cracking. Therefore, when the LN substrate used for the chip substrate 211 is an LN substrate with a Y-axis rotation angle of + 115 ° to + 135 °, the effect of the present invention is remarkably obtained.
  • the effect of the present invention is remarkably obtained. Since the ceramic substrate has a higher Young's modulus than other package substrate materials such as a resin substrate, when the ceramic substrate is used as the package substrate 60, more stress is generated than when the resin substrate is used. , 220. In the acoustic wave device 20 using such a ceramic substrate as the package substrate 60, cracks are likely to occur as compared with an acoustic wave device using a resin substrate or the like, so that the configuration of the present invention functions more effectively.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the acoustic wave device 20 according to Modification 1 of the first embodiment.
  • the height of the bump 41 on the elastic wave chip 210 side including the LN substrate is preferably higher than the height of the bump 42 on the elastic wave chip 220 side including the LT substrate.
  • the distance between the acoustic wave chip 210 and the package substrate 60 tends to be larger than the distance between the acoustic wave chip 220 and the package substrate 60.
  • the greater the distance between the elastic wave chip and the package substrate the smaller the influence of the elastic wave chip on the expansion of the package substrate. Therefore, the stress applied to the first elastic wave chip is more likely to decrease than the second elastic wave chip. . Therefore, the failure rate of the acoustic wave device 20 including both acoustic wave chips is further reduced.
  • FIG. 3A and 3B are diagrams showing the structure of the acoustic wave device according to the second modification of the first embodiment.
  • FIG. 3A is a plan view showing a main part of the acoustic wave device
  • FIG. 3B is a schematic cross-sectional view taken along the line A1-A1 in FIG. 3A.
  • illustration of the protective layer 80 shown in FIG. 3B is omitted.
  • the area of the bonding surface between the bump 41 and the elastic wave chip 210 is equal to the bump 42 and the elastic wave chip 220. It is preferable that the area is larger than the area of the joint surface. At this time, as shown in FIG. 3B, the diameter of the bump 41 is larger than that of the bump 42.
  • the stress applied to the elastic wave chip 210 at the bonding surface between the bump 41 and the elastic wave chip 210 is more widely dispersed than the stress applied to the elastic wave chip 220 at the bonding surface between the bump 42 and the elastic wave chip 220. Is done. Therefore, since the stress applied to the elastic wave chip 210 is more likely to be reduced than that of the elastic wave chip 220, the failure rate of the elastic wave device 20 including the elastic wave chips 210 and 220 is further reduced.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the acoustic wave device 20 according to Modification 3 of the first embodiment.
  • the height of the bump 41 is higher than that of the bump 42.
  • the diameter of the bump 41 is larger than the diameter of the bump 42. That is, when the elastic wave device 20 is viewed in plan, the area of the bonding surface between the bump 41 and the elastic wave chip 210 is larger than the area of the bonding surface between the bump 42 and the elastic wave chip 220.
  • the magnitude of stress applied to the elastic wave chip 210 is likely to be smaller than that of the elastic wave chip 210 shown in the first and second modifications. Therefore, the failure rate of the acoustic wave device 20 is greatly reduced.
  • the material of the bump 42 is more preferably the material of the bump 41. It is better to have a higher thermal conductivity.
  • the LT substrate that constitutes the chip substrate 221 is weaker to the thermal load than the LN substrate that constitutes the chip substrate 211. Therefore, the resistance to electric power that partially changes to the thermal load when applied (power resistance) Also inferior. Therefore, in the elastic wave device to which electric power is applied, when electric power or a thermal load is applied to both of the elastic wave chips 210 and 220, the elastic wave chip 220 is broken earlier than the elastic wave chip 210, causing the elastic wave device 20 to fail. There is a fear. However, according to this configuration, since the bump 42 can dissipate more heat than the bump 41, the heat load applied to the inferior elastic wave chip 220 with power durability is the heat applied to the elastic wave chip 210 with superior power durability. It can be reduced from the load. Therefore, the failure rate of the acoustic wave device 20 including the package substrate 60 on which both acoustic wave chips are mounted is further reduced.
  • a combination of the materials of the bumps 41 and 42 is, for example, gold and Examples include silver, gold and copper, solder and copper, and solder and silver. Of these, the most preferable is the case where the material of the bump 41 is made of solder and the material of the bump 42 is made of gold.
  • the Young's modulus of the solder is about 30 to 50 GPa, although it varies depending on the composition, and the Young's modulus of gold is 79 GPa.
  • the Young's modulus of the bump 41 on the elastic wave chip 210 side is lower than the Young's modulus of the bump 42 on the elastic wave chip 220 side, the stress applied to the elastic wave chip 210 is changed to the stress applied to the elastic wave chip 220. Easy to decrease.
  • the thermal conductivity of the solder is approximately 45 to 65 W / m ⁇ K, although it varies depending on the composition, and the thermal conductivity of gold is approximately 315 W / m ⁇ K.
  • the thermal conductivity of the bumps 42 on the elastic wave chip 220 side is higher than the thermal conductivity of the bumps 41 on the elastic wave chip 210 side. It is easier to reduce than the heat load applied to the.
  • solder bumps can be welded to the package substrate only by applying heat. That is, since it is not necessary to apply a mechanical load at the time of welding unlike a bump made of a metal other than solder, the bump height after being welded to the package substrate is likely to be higher than that of the bump. Therefore, when the material of the bump 41 is solder, the height of the bump 41 is likely to be formed higher, and the influence of the elastic wave chip from the expansion of the package substrate 60 tends to be small. Therefore, the stress applied to the elastic wave chip 210 can be easily reduced, and the failure rate of the elastic wave device 20 can be further reduced.
  • gold has higher corrosion resistance than other metals such as solder. If the elastic wave chip 220 is mounted using the gold bump, the corrosion resistance of the joint between the elastic wave chip 220 and the bump 42 can be ensured. Then, the acoustic wave device including the package substrate 60 on which the acoustic wave chip 220 is mounted is further less likely to fail.
  • the bump 41 is made of solder and the bump 42 is made of gold.
  • the bump 41 is made of a material containing solder and other conductive material
  • the bump 42 is made of gold and other conductive material.
  • the above-mentioned effect can be sufficiently obtained even when it is made of a material containing.
  • the material of at least one of the bumps 41 and 42 is solder or gold, the effect of the present invention can be sufficiently obtained. That is, the material of the bump 41 may include solder, and the material of the bump 42 may be a material having a higher Young's modulus than the solder among materials other than gold.
  • the material of the bump 41 may be a material having a Young's modulus lower than that of the material other than the solder, and the material of the bump 42 may include gold.
  • the elastic wave device according to the present embodiment is an embodiment when the elastic wave device 20 according to the first embodiment is a composite filter device that functions as a duplexer having a transmission / reception separation function. Therefore, hereinafter, the acoustic wave device according to the present embodiment is referred to as a composite filter device.
  • FIG. 5 is a circuit diagram of the composite filter device 20 according to the second embodiment of the present invention.
  • the acoustic wave device 20 includes a transmission filter 21 and a reception filter 22.
  • One end of the transmission filter 21 is connected to the transmission input / output terminal 25, and the other end is connected to the antenna input / output terminal 29.
  • One end of the reception filter 22 is connected to the reception input / output terminal 26, and the other end is connected to the antenna input / output terminal 29.
  • the transmission filter 21 preferably has the acoustic wave chip 210 shown in the first embodiment as a transmission filter chip. That is, the transmission filter 21 may include a chip substrate 211 that is an LN substrate.
  • the transmission-side filter processes a transmission signal amplified by a power amplifier or the like. Therefore, it is required to be able to withstand a large amount of power as compared with a reception-side filter that processes a weak reception signal input from the outside of the communication apparatus. Therefore, if the acoustic wave chip 210 provided with the LN substrate having higher power resistance than the LT substrate is used as the transmission-side filter chip, the composite filter device 20 uses a transmission-side filter that secures sufficient power resistance. Can be provided.
  • the reception-side filter 22 may include the acoustic wave chip 220 shown in the first embodiment as a reception-side filter chip. That is, it is preferable that the reception-side filter 22 includes a chip substrate 221 that is an LT substrate.
  • the LT substrate can be obtained at a lower cost than the LN substrate. Therefore, the composite filter device 20 can be obtained at a lower cost by using the acoustic wave chip 220 including the LN substrate as the reception-side filter chip that does not require so high power durability as compared with the transmission-side filter.
  • the acoustic wave chip 210 having an LN substrate on the transmission side filter chip and the acoustic wave chip 220 having an LT substrate on the reception side filter chip are used.
  • the acoustic wave chip 220 and the reception side are used as the transmission side filter chip.
  • An elastic wave chip 210 may be used as the side filter chip. Also in this case, the effect of the present invention that the failure rate of the composite filter device 20 is reduced can be obtained.
  • the elastic wave device in the present embodiment is a composite filter device that functions as a multiplexer having a function of separating a plurality of electrical signals. Therefore, hereinafter, the acoustic wave device according to the present embodiment is referred to as a composite filter device.
  • FIG. 6 is a plan view of the main part of the composite filter device 30 according to the present embodiment viewed in plan.
  • the composite filter device 30 includes a package substrate 70, elastic wave chips 310, 320, 330, and 340, and bumps 51, 52, 53, and 54.
  • the elastic wave chip 310 is mounted on the package substrate 70 using the bumps 51
  • the elastic wave chip 320 is mounted on the package substrate 70 using the bumps 52, and is electrically connected.
  • the elastic wave chip 330 is mounted on the package substrate 60 using the bumps 53
  • the elastic wave chip 340 is mounted on the package substrate 60 using the bumps 54.
  • the bump 51 is bonded to the elastic wave chip 310
  • the bump 52 is bonded to the elastic wave chip 320
  • the bump 53 is bonded to the elastic wave chip 330
  • the bump 54 is bonded to the elastic wave chip 340.
  • the package substrate 70 for example, a ceramic substrate, a resin substrate, a printed substrate, or the like is used.
  • the acoustic wave chips 310, 320, 330, and 340 are all sealed with a protective layer formed using, for example, a resin material, but the illustration of the protective layer is omitted in this drawing.
  • the acoustic wave chip 310 is provided with a chip substrate 311 which is an LN substrate and is the first substrate of the present invention, like the acoustic wave chip 210 shown in the first embodiment.
  • the acoustic wave chip 320 includes a chip substrate 321 that is an LT substrate and is the second substrate of the present invention, like the acoustic wave chip 220 shown in the first embodiment.
  • Each of the chip substrates 311 and 321 is provided with an IDT electrode (not shown).
  • the acoustic wave chips 330 and 340 also include an acoustic wave chip including chip substrates 331 and 341 and IDT electrodes (not shown) formed on the chip substrates 331 and 341, respectively. It is.
  • the chip substrate 331 is an LN substrate such as the chip substrate 311
  • the chip substrate 341 is an LT substrate such as the chip substrate 321.
  • the material of the bumps 51 and 53 has a lower Young's modulus than the material of the bumps 52 and 54.
  • the bumps 51 and 53 on the acoustic wave chip 310 and 330 side including the inferior LN substrate with crack resistance are the bumps 52 and 54 on the acoustic wave chip 320 and 340 side including the LT substrate superior in crack resistance. More stress can be relieved. As a result, the stress applied to the elastic wave chips 310 and 330 is more likely to be smaller than the stress applied to the elastic wave chips 320 and 340, so that the bumps 51 to 54 are all made of a material having the same Young's modulus.
  • a composite filter device 30 with a low failure rate can be obtained.
  • the bump 51 and the bump 53 need not be made of the same material.
  • the bumps 51 and 53 on the acoustic wave chips 310 and 330 provided with the LN substrate are each single, and it is sufficient that the Young's modulus is lower than the bumps 52 and 54 on the acoustic wave chips 320 and 340 provided with the LT substrate.
  • the bumps 52 and 54 are copper bumps having a Young's modulus of 110 to 128 GPa
  • the bump 51 may be a gold bump having a Young's modulus of 78 GPa
  • the bump 53 may be a silver bump having a Young's modulus of 82.7 GPa.
  • the bumps 52 and 54 may not be made of the same material.
  • the bump 52 is a copper bump
  • the bump 54 is a silver bump
  • the bumps 51 and 53 are gold bumps, the effects of the present invention can be obtained.
  • the material of the bumps 52 and 54 has a higher thermal conductivity than the material of the bumps 51 and 53.
  • the bumps 52 and 54 on the elastic wave chip 320 and 340 side including the inferior LT substrate with power durability are the bumps 51 and 54 on the elastic wave chip 310 and 330 side including the LN substrate with superior power durability. More heat than 53 can be dissipated. Accordingly, the thermal load applied to the acoustic wave chips 520 and 540 having relatively low power durability is more easily reduced than the thermal load applied to the elastic wave chips 510 and 520 having relatively high power durability. The failure rate of the composite filter device 30 including the wave chip is also reduced.
  • the bumps 51 and 53 have a lower Young's modulus than the bumps 52 and 54.
  • the bumps 52 and 54 have higher thermal conductivity than the bumps 51 and 53.
  • the material of the bumps 51 and 53 is made of solder and the bumps 52 and 54 are made of gold. Comparing solder and gold, it is solder that has a low Young's modulus, while gold has a high thermal conductivity.
  • the bump made of solder has an advantage that the stress applied to the elastic wave chip can be more easily reduced because the bump is made of a high height. Has the advantage of high corrosion resistance. Therefore, when the bumps 51 to 54 are formed using these materials, the failure rate of the composite filter device 30 is further reduced.
  • the above effect can be sufficiently obtained when the bumps 51 and 53 are made of a material containing solder and other conductive material and the bumps 52 and 54 are made of a material containing gold and other conductive material. This is as described in the first embodiment.
  • the material of at least one of the bumps 51 and 53 includes solder, or when the material of at least one of the bumps 52 and 54 includes gold, the effect of the present invention is sufficiently obtained. It is done.
  • the areas of the joint surfaces of the bumps 51, 52, 53, 54 and the acoustic wave chips 310, 320, 330, 340 are all the same.
  • the bonding surface between the elastic wave chips 310 and 330 including the LN substrate and the bumps 51 and 53 is the bonding surface between the elastic wave chips 320 and 340 including the LT substrate and the bumps 52 and 54. If it is larger, the failure rate of the composite filter device 30 can be further reduced. Further, the failure rate of the composite filter device 30 is further reduced by making the height of the bumps 51 and 53 on the elastic wave chips 310 and 330 side higher than the height of the bumps 52 and 54 on the elastic wave chips 320 and 340 side. it can.
  • FIG. 7 is a circuit diagram of the composite filter device 30.
  • the composite filter device 30 includes transmission side filters 31 and 33 and reception side filters 32 and 34. One ends of the transmission side filters 31 and 33 are connected to the transmission side input / output terminals 35 and 37, and the other end is connected to the antenna input / output terminal 39. One ends of the reception side filters 32 and 34 are connected to the reception side input / output terminals 36 and 38, and the other end is connected to the antenna input / output terminal 39.
  • the transmission-side filter 31 and the reception-side filter 32 are filters that selectively pass high-frequency signals in the Band A communication band, for example.
  • the transmission side filter 33 and the reception side filter 34 are filters that selectively pass a high-frequency signal in the BandB communication band, for example.
  • the transmission side filter 31 corresponding to Band A may have the elastic wave chip 310 as a transmission side filter chip.
  • the transmission filter 33 corresponding to BandB may include the elastic wave chip 330 as a transmission filter chip. That is, it is preferable that the transmission-side filters 31 and 33 include chip substrates 311 and 331 that are LN substrates and bumps 51 and 53 having a relatively low Young's modulus.
  • a device 30 can be obtained.
  • the reception side filter 32 corresponding to Band A may have the elastic wave chip 320 as a reception side filter chip.
  • the reception-side filter 34 corresponding to BandB may include the elastic wave chip 340 as a reception-side filter chip. That is, it is preferable that the reception-side filters 32 and 34 include chip substrates 321 and 341 that are LT substrates and bumps 52 and 54 having relatively high Young's modulus.
  • the composite filter device 30 is obtained by using the elastic wave chip including the LN substrate for the reception filter chip that is not required to have much power durability. The cost can be reduced.
  • one of the acoustic wave chips 310 and 330 functioning as the transmission-side filter chip may be provided with an LT substrate.
  • at least one of the plurality of transmission-side filter chips includes an elastic wave chip having an LN substrate and is mounted by a bump having a relatively low Young's modulus. If so, the effects of the present invention can be obtained.
  • the multiplexer including the transmission side filter and the reception side filter is shown as the composite filter device.
  • the composite filter device according to the embodiment of the present invention is not limited to this. That is, even if the filters constituting the multiplexer are multiplexers that are all transmission-side filters, multiplexers that are all reception-side filters, or multiplexers that include filters that selectively pass electric signals that do not distinguish between transmission and reception Good.
  • it is a multiplexer having at least one transmission side filter. This is because the power durability of the acoustic wave chip including the LN substrate in the present invention is more effective when used as a filter chip constituting the transmission filter.
  • a composite filter device according to a modification of the present embodiment will be described by taking, as an example, a multiplexer having an acoustic wave chip including a chip substrate other than an LN substrate and an LT substrate.
  • the composite filter device 30 according to the modification of the third embodiment is the same as the composite filter device 30 according to the already described third embodiment, except for the differences regarding the acoustic wave chip. Therefore, only different points will be described below.
  • the chip substrate 331 included in the acoustic wave chip 330 is a laminate including a plurality of films including a piezoelectric thin film and a support substrate.
  • the structure of the chip substrate 331 and the relationship between the chip substrate 331 and the IDT electrode will be described below with reference to FIG.
  • FIG. 8 is a schematic cross-sectional view showing the structure of the acoustic wave chip 330.
  • the acoustic wave chip 330 includes a chip substrate 331 and an IDT electrode 332 formed on the chip substrate 331.
  • the chip substrate 331 includes a high sound speed support substrate 333, a low sound speed film 335 directly or indirectly stacked on the high sound speed support substrate 333, and a piezoelectric film 337 stacked on the low sound speed film 335.
  • An IDT electrode 332 is formed on the piezoelectric film 337.
  • the high sound velocity support substrate shown here refers to a support substrate in which the propagating bulk wave sound velocity is higher than the elastic wave propagating through the piezoelectric film 337.
  • the high sound velocity support substrate 333 is a substrate made of silicon.
  • the low sound velocity film refers to a film made of a material having a propagating bulk wave sound velocity slower than an elastic wave propagating through the piezoelectric film 337.
  • a material for example, silicon oxide, glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used.
  • the piezoelectric film 337 is made of, for example, a piezoelectric single crystal such as lithium tantalate or lithium niobate, or piezoelectric ceramics.
  • the material of the bump 53 to be bonded to the elastic wave chip 330 is not particularly limited. Like the elastic wave device 20 according to the first embodiment, various materials such as silver and copper can be used in addition to solder and gold. Can be used. That is, any material can be used as long as it is a material that can electrically connect the acoustic wave chip 530 and the package substrate 70.
  • the composite filter device 30 includes the elastic wave chip 310 including the LN substrate, the elastic wave chip 320 including the LT substrate, and the elastic wave chip 330 including the laminate as described above.
  • the present invention is not limited to the composite filter device 30 mixedly mounted on the same package substrate.
  • the acoustic wave chips 330 and 340 may include, as the chip substrates 331 and 341, substrates having piezoelectricity over the entire substrate, such as a quartz substrate and a sapphire substrate.
  • the chip substrate 341 included in the acoustic wave chip 340 a laminated body such as a piezoelectric thin film, a film having a sound velocity different from that of the piezoelectric thin film, and a supporting substrate can be used.
  • a substrate including any material can be used as the chip substrates 331 and 341 included in the acoustic wave chips 330 and 340.
  • the elastic wave device and the composite filter device according to the embodiment of the present invention are not limited to the CSP structure elastic wave device shown in the present embodiment.
  • a module-structured acoustic wave device including a plurality of WLP (Wafer Level Package) surface acoustic wave chips on the same module package substrate can also be an elastic wave device according to the present invention.
  • the number of mounted acoustic wave chips may be two or more, and is not limited to a specific number.
  • an elastic wave chip a chip using any elastic wave such as an elastic boundary wave or a bulk wave can be used.
  • a method for manufacturing an acoustic wave device includes a step of forming an acoustic wave chip, a step of mounting the acoustic wave chip on a package substrate, and a step of sealing the mounted acoustic wave chip.
  • the step of forming the acoustic wave chip includes a step of forming a thin film on a wafer that is a material of the chip substrate, and a step of forming a circuit pattern such as an IDT electrode using the thin film.
  • a thin film such as a silicon oxide film or an aluminum film, which is a material for a circuit pattern such as an IDT electrode, is formed using a sputtering method, a vapor deposition method, an electrolytic plating method, or the like.
  • the circuit pattern is formed through an exposure technique using a resist.
  • the process of mounting the acoustic wave chip includes various methods such as a conductive paste bonding method for mounting using a conductive paste together with bumps, a pressure welding method for applying heat load and load load to the bumps, and an ultrasonic bonding method.
  • the flip chip mounting method can be used.
  • solder is applied to the bump forming portion at room temperature to form a bump made of solder, and then the bump is heated and cooled to perform mounting.
  • mounting is possible only by applying heat without applying a mechanical load. Therefore, the bumps are easily formed higher than when using other mounting methods. Therefore, by using the reflow bonding method for the bumps made of solder, the stress applied to the elastic wave chip mounted using the bumps can be further reduced, and the elastic wave device (composite filter device) having a further reduced failure rate. ).
  • either the acoustic wave chip including the LN substrate or the acoustic wave chip including the LT substrate may be mounted on the package substrate first.
  • a method for manufacturing a composite filter device having an acoustic wave chip including a substrate made of a laminate as shown in FIG. It is preferable to mount the wave chip last. That is, in the composite filter device 30 according to the modification of the third embodiment, after mounting the acoustic wave chips 310, 320, and 340 including the LN substrate or the LT substrate, the chip substrate 331 made of a stacked body. It is preferable to mount an acoustic wave chip 330 including
  • the LN substrate and the LT substrate included in the acoustic wave chips 310, 320, and 340 are inferior in crack resistance compared to the silicon substrate included in the acoustic wave chip 330 as a part of the chip substrate 311. Therefore, the acoustic wave chips 310, 320, and 340 are more likely to crack due to stress generated during mounting than the acoustic wave chip 330. That is, in the process of mounting the acoustic wave chip, there is a case where cracks are generated in any one of the acoustic wave chips 310, 320, and 330 inferior in crack resistance without being cracked in the elastic wave chip 330 superior in crack resistance. is there. At this time, if the acoustic wave chip 330 is first mounted, it is necessary to discard the composite filter device 30 as a defective product, including the acoustic wave chip 330 in which no crack is generated.
  • the elastic wave chip 330 includes a laminated body in which a plurality of films are stacked on a support substrate as the chip substrate 331. Compared with the manufacturing cost. When the relatively expensive elastic wave chip 330 is discarded as described above, the disposal loss increases. However, if the acoustic wave chips 310, 320, and 340 are mounted before the acoustic wave chip 330 is mounted, cracks due to stress at the time of mounting occur in the acoustic wave chips 310, 320, and 340, and the composite filter device 30 is Even when it is necessary to discard the elastic wave chip 330 before mounting, it is not necessary to discard it. That is, if such a manufacturing method is used, since the frequency of discarding relatively expensive elastic wave chips is reduced, the loss of disposal can be reduced.
  • the step of sealing the mounted acoustic wave chip is performed using a protective layer formed of a resin material or the like. At this time, a gap is formed between the acoustic wave chip and the package substrate so as to enable excitation of the IDT electrode provided on the acoustic wave chip and sealed.
  • High-frequency front-end circuit, communication device >> A high-frequency front-end circuit and a communication device according to an embodiment of the present invention will be described with reference to FIG. As an example, a high frequency front-end circuit including the composite filter device according to the second embodiment and the composite filter device according to the third embodiment, and a communication device including the high-frequency front end circuit will be described. .
  • FIG. 9 is a circuit diagram of the high frequency front end circuit 10 including the composite filter device 20 and the composite filter device 30, and the communication device 1 including the high frequency front end circuit 10.
  • the communication device 1 includes a high frequency front end circuit 10, an RF signal processing circuit (RFIC) 3, and a baseband processing circuit (BBIC) 4.
  • the high frequency front end circuit 10 is a circuit that transmits a high frequency signal transmitted and received by the antenna element 2.
  • the RF signal processing circuit 3 performs signal processing on the high frequency signals input and output from the baseband signal processing circuit 4 and the high frequency front end circuit 10.
  • the baseband signal processing circuit 4 performs signal processing so that the high-frequency signal can be used as, for example, an image signal or an audio signal.
  • the high-frequency front-end circuit 10 includes a composite filter device 20, a composite filter device 30, and amplifier circuits 11 to 16.
  • the high-frequency front end circuit 10 is connected to the antenna element 2 via the switch unit 19.
  • the amplifier circuits 11, 13, and 14 amplify the high frequency transmission signal output from the RF signal processing circuit 3, and the antenna element 2 through the composite filter device 20 or the composite filter device 30.
  • the amplifier circuits 11 to 16, 12, 15, and 16 amplify a high frequency signal that has passed through the antenna element 2 and the composite filter device 20 or the composite filter device 30 and output the amplified signal to the RF signal processing circuit 3.
  • a receiving amplifier circuit is a receiving amplifier circuit.
  • the composite filter device 20 is the composite filter device 20 according to the second embodiment, and includes a transmission side filter 21 and a reception side filter 22.
  • the transmission side input / output terminal 25 and the reception side input / output terminal 26 function as terminals for inputting / outputting high frequency signals to / from the amplifier circuits 11, 12.
  • the composite filter device 30 is the composite filter device 30 according to the third embodiment, and includes transmission side filters 31 and 33 and reception side filters 32 and 34.
  • the transmission-side filter 31 and the reception-side filter 32 are filters that selectively pass a high-frequency signal in the Band A communication band, for example.
  • the transmission side filter 33 and the reception side filter 34 are filters that selectively pass a high-frequency signal in the BandB communication band, for example.
  • the transmission-side input / output terminals 35 and 37 function as via points for the high-frequency transmission signals output from the amplifier circuits 13 and 14, and the reception-side input / output terminals 36 and 38 via the high-frequency signals input to the amplification circuits 15 and 16. Acts as a point.
  • the filters 21 and 22 in the composite filter device 20 are, for example, the BandC communication band having a frequency band different from the high-frequency signal of the BandA and B communication bands that the filters 31 to 34 selectively pass. It is a filter which selectively passes the high frequency signal.
  • the switch unit 19 switches the connection between the antenna side terminal 9 and the antenna input / output terminal 29 in the composite filter device 20 and the connection between the antenna side terminal 9 and the antenna input / output terminal 39 in the composite filter device 30.
  • the communication apparatus 1 can function as a multiband-compatible communication apparatus that can process high-frequency signals of a plurality of bands having different frequency bands as communication bands.
  • the configuration of the high-frequency front-end circuit and the configuration of the communication device according to the embodiment of the present invention are not limited to the configurations described above.
  • the high-frequency front end circuit 10 only needs to include at least one composite filter device according to the present invention represented by the composite filter devices 20 and 30 and at least one amplifier circuit.
  • the communication apparatus 1 should just be equipped with the high frequency front end circuit concerning this invention represented by the high frequency front end circuit 10, and RF signal processing circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

A surface acoustic wave device (20) relating to the present invention is provided with: a package substrate (60); a surface acoustic wave chip (210) that is provided with a chip substrate (211), i.e., a lithium niobate substrate; a surface acoustic wave chip (220) that is provided with a chip substrate (221), i.e., a lithium tantalate substrate; a bump (41) bonded to the surface acoustic wave chip (210); and a bump (42) bonded to the surface acoustic wave chip (220). The surface acoustic wave chip (210) is mounted on the package substrate (60) using the bump (41), and the surface acoustic wave chip (220) is mounted on the package substrate (60) using the bump (42). At this time, the material of the bump (41) has a Young's modulus that is lower than that of the material of the bump (42).

Description

弾性波装置、および、それを用いた高周波フロントエンド回路、通信装置Elastic wave device, and high-frequency front-end circuit and communication device using the same
 本発明は、弾性波装置、および、それを用いた高周波フロントエンド回路、通信装置に関する。 The present invention relates to an elastic wave device, a high-frequency front-end circuit using the same, and a communication device.
 特許文献1には、タンタル酸リチウム基板を備えたフィルタチップと、ニオブ酸リチウム基板を備えたフィルタチップとが、同一の配線基板にフリップチップ実装されている弾性波分波器が示されている。 Patent Document 1 discloses an acoustic wave duplexer in which a filter chip including a lithium tantalate substrate and a filter chip including a lithium niobate substrate are flip-chip mounted on the same wiring substrate. .
特開2011-199810号公報JP 2011-199810 A
 特許文献1に記載の弾性波分波器などの弾性波装置に、周囲の温度環境の変化などにより熱負荷がかかると、フィルタチップである弾性波チップ、および、配線基板であるパッケージ基板が膨張して応力が発生する。発生した応力は、弾性波チップとパッケージ基板とを接続するバンプを介して、各弾性波チップに加わる。 When a thermal load is applied to an acoustic wave device such as an acoustic wave duplexer described in Patent Document 1 due to a change in ambient temperature environment, the acoustic wave chip that is a filter chip and the package substrate that is a wiring board expand. As a result, stress is generated. The generated stress is applied to each acoustic wave chip via a bump connecting the acoustic wave chip and the package substrate.
 このとき、一方の弾性波チップが備える、ニオブ酸リチウム基板は、他方の弾性波チップが備える、タンタル酸リチウム基板に比べ、抗折強度等に劣るため、応力に起因するクラックへの耐性(クラック耐性)が非常に弱い。すると、例えば全てのバンプのヤング率が同程度である場合には、各バンプとも同程度の大きさの応力しか緩和できないため、相対的にクラック耐性に劣るニオブ酸リチウム基板側の弾性波チップはタンタル酸リチウム基板側の弾性波チップより早くクラックを生じる恐れがある。パッケージ基板に実装された弾性波チップのうち1つにクラックが生じた時点で、該パッケージ基板を備える弾性波装置の一部に異常が発生するため、弾性波装置は故障してしまう。 At this time, the lithium niobate substrate provided in one acoustic wave chip is inferior in bending strength to the lithium tantalate substrate provided in the other acoustic wave chip, and therefore is resistant to cracks caused by stress (crack Resistance) is very weak. Then, for example, when all the bumps have the same Young's modulus, each bump can only relieve the same level of stress, so the elastic wave chip on the lithium niobate substrate side, which is relatively inferior in crack resistance, There is a risk of cracking occurring earlier than the acoustic wave chip on the lithium tantalate substrate side. When a crack occurs in one of the acoustic wave chips mounted on the package substrate, an abnormality occurs in a part of the acoustic wave device including the package substrate, so that the acoustic wave device fails.
 そこで、本発明の目的は、相対的にクラック耐性に劣るニオブ酸リチウム基板側の弾性波チップに加わる応力を、相対的にクラック耐性に優るタンタル酸リチウム基板側の弾性波チップより、バンプを通じて減少させやすくし、弾性波装置の故障率を低減することにある。 Therefore, the object of the present invention is to reduce the stress applied to the elastic wave chip on the lithium niobate substrate side, which is relatively inferior in crack resistance, through the bumps compared to the elastic wave chip on the lithium tantalate substrate side, which is relatively superior in crack resistance. It is to reduce the failure rate of the elastic wave device.
 上記目的を達成するために、本発明の一態様にかかる弾性波装置は、パッケージ基板と、パッケージ基板に実装され、ニオブ酸リチウム基板である第1の基板を有する、第1の弾性波チップと、パッケージ基板に実装され、タンタル酸リチウム基板である第2の基板を有する、第2の弾性波チップと、第1の弾性波チップとパッケージ基板とを電気的に接続する第1のバンプと、第2の弾性波チップとパッケージ基板とを電気的に接続する第2のバンプとを備える弾性波装置であって、第1のバンプは第1の弾性波チップと接合され、第2のバンプは第2の弾性波チップと接合され、第1のバンプの材料は第2のバンプの材料より低いヤング率を有する、弾性波装置である。 To achieve the above object, an acoustic wave device according to an aspect of the present invention includes a package substrate, and a first acoustic wave chip that is mounted on the package substrate and includes a first substrate that is a lithium niobate substrate. A second acoustic wave chip that is mounted on the package substrate and has a second substrate that is a lithium tantalate substrate; a first bump that electrically connects the first acoustic wave chip and the package substrate; An elastic wave device including a second bump for electrically connecting a second elastic wave chip and a package substrate, wherein the first bump is joined to the first elastic wave chip, and the second bump is The elastic wave device is bonded to the second elastic wave chip, and the material of the first bump has a lower Young's modulus than the material of the second bump.
 本構成では、クラック耐性で劣位のニオブ酸リチウム基板を備える、第1の弾性波チップ側の第1のバンプが、クラック耐性で優位のタンタル酸リチウム基板を備える、第2の弾性波チップ側の第2のバンプより、変形自由度が高い。そのため、第1のバンプは、第2のバンプより多くの応力を緩和できる。従って、クラック耐性で劣位の第1の弾性波チップに加わる応力が、クラック耐性で優位の第2の弾性波チップより減少しやすいため、両弾性波チップが実装されたパッケージ基板を備える弾性波装置の故障率も低減する。 In this configuration, the first bump on the first acoustic wave chip side including the crack-resistant inferior lithium niobate substrate includes the lithium tantalate substrate superior in crack resistance on the second acoustic wave chip side. The degree of freedom of deformation is higher than that of the second bump. Therefore, the first bump can relieve more stress than the second bump. Accordingly, since the stress applied to the first elastic wave chip that is inferior in crack resistance is more likely to be reduced than in the second elastic wave chip that is superior in crack resistance, an elastic wave device including a package substrate on which both elastic wave chips are mounted. The failure rate is also reduced.
 また、第1のバンプの高さは、第2のバンプの高さより高いほうが好ましい。
 この構成によれば、第1の弾性波チップとパッケージ基板との距離が、第2の弾性波チップとパッケージ基板との距離より増えやすい。弾性波チップとパッケージ基板との距離が大きいほど、弾性波チップがパッケージ基板の膨張から受ける影響は小さくなる。従って、第1の弾性波チップに加わる応力が、第2の弾性波チップに加わる応力より減少しやすくなるため、弾性波装置の故障率がさらに低減する。
Further, the height of the first bump is preferably higher than the height of the second bump.
According to this configuration, the distance between the first acoustic wave chip and the package substrate is likely to increase more than the distance between the second acoustic wave chip and the package substrate. The greater the distance between the acoustic wave chip and the package substrate, the smaller the influence that the acoustic wave chip receives from the expansion of the package substrate. Therefore, the stress applied to the first acoustic wave chip is more likely to be reduced than the stress applied to the second acoustic wave chip, and the failure rate of the acoustic wave device is further reduced.
 加えて、弾性波装置を第1、第2の弾性波チップ側から平面視したとき、第1のバンプと第1の弾性波チップとの接合面の面積は、第2のバンプと第2の弾性波チップとの接合面の面積より大きいと好ましい。 In addition, when the acoustic wave device is viewed in plan from the first and second acoustic wave chips, the area of the joint surface between the first bump and the first acoustic wave chip is the second bump and the second The area is preferably larger than the area of the joint surface with the acoustic wave chip.
 この構成によれば、第1のバンプと第1の弾性波チップとの接合面において第1の弾性波チップに加わる応力は、第2のバンプと第2の弾性波チップとの接合面において第2の弾性波チップに加わる応力に比べて広く分散される。従って、第1の弾性波チップに加わる応力が、第2の弾性波チップより減少しやすいため、弾性波装置がさらに故障しづらくなる。 According to this configuration, the stress applied to the first acoustic wave chip at the joint surface between the first bump and the first acoustic wave chip is the first stress at the joint surface between the second bump and the second acoustic wave chip. 2 is widely dispersed compared to the stress applied to the elastic wave chip 2. Therefore, the stress applied to the first acoustic wave chip is more likely to be reduced than that of the second acoustic wave chip, so that the acoustic wave device is further less likely to fail.
 さらに、第1のバンプの材料ははんだを含むと好ましい。
 はんだは、バンプ材料となる他の金属に比べて、ヤング率が比較的低い。さらに、融点も比較的低いため、はんだを含むバンプは、熱のみを加えればパッケージ基板と溶接できる。すなわち、溶接時に、はんだ以外の金属からなるバンプのように機械的荷重を加える必要がないため、該バンプと比べて、パッケージ基板と溶接された後のバンプ高さが高く形成されやすい。従って、第1のバンプの高さがより高く形成されやすく、第1の弾性波チップに加わる応力が、第2の弾性波装置に加わる応力に比べてより減少しやすくなるため、弾性波装置の故障率がより低減しやすくなる。
Furthermore, it is preferable that the material of the first bump includes solder.
Solder has a relatively low Young's modulus compared to other metals used as bump materials. Furthermore, since the melting point is relatively low, the bump including solder can be welded to the package substrate only by applying heat. That is, since it is not necessary to apply a mechanical load at the time of welding unlike a bump made of a metal other than solder, the bump height after being welded to the package substrate is likely to be higher than that of the bump. Accordingly, the height of the first bump is easily formed, and the stress applied to the first acoustic wave chip is more likely to be reduced compared to the stress applied to the second acoustic wave device. The failure rate is easier to reduce.
 一方、第2のバンプの材料は、第1のバンプの材料より高い熱伝導率を有すると良い。
 タンタル酸リチウム基板は、ニオブ酸リチウム基板に比べて熱負荷に弱いため、印加されるとその一部が熱負荷へと変化する電力への耐性(耐電力性)にも劣る。そのため、電力が印加された弾性波装置において、第1、第2の弾性波チップ双方に電力、または、熱負荷が加わる場合、第2の弾性波チップは第1の弾性波チップより早く破壊されて、弾性波装置を故障させる恐れがある。しかしながら本構成によれば、第2のバンプは第1のバンプより多くの熱を放熱できるため、耐電力性で劣位の第2の弾性波チップに加わる熱負荷を、耐電力性で優位の第1の弾性波チップに加わる熱負荷より低減しやすい。従って、両弾性波チップが実装されたパッケージ基板を備える弾性波装置の故障率がさらに低減する。
On the other hand, the material of the second bump may have a higher thermal conductivity than the material of the first bump.
Since the lithium tantalate substrate is weaker to the thermal load than the lithium niobate substrate, when applied, a part of the lithium tantalate substrate is inferior in resistance to electric power (power resistance) that changes to the thermal load. Therefore, in the elastic wave device to which electric power is applied, when electric power or a thermal load is applied to both the first and second elastic wave chips, the second elastic wave chip is destroyed earlier than the first elastic wave chip. This may cause the acoustic wave device to break down. However, according to this configuration, since the second bump can dissipate more heat than the first bump, the heat load applied to the second elastic wave chip, which is inferior in power resistance, can be increased with the advantage in power resistance. It is easier to reduce than the thermal load applied to the elastic wave chip 1. Accordingly, the failure rate of the acoustic wave device including the package substrate on which both acoustic wave chips are mounted is further reduced.
 さらに、第2のバンプの材料は金を含むと好ましい。
 金は、バンプ材料となる他の金属に比べて、熱伝導率が比較的高く、かつ、酸化による腐食などへの耐性である耐食性も高い。その金を第2のバンプの材料に含めば、第2の弾性波チップに加わる熱負荷が減少しやすいだけでなく、第2の弾性波チップと第2のバンプとの接合部の耐食性とが確保できる。従って、該弾性波チップが実装されたパッケージ基板を備える弾性波装置の故障率がさらに低減する。
Furthermore, it is preferable that the material of the second bump includes gold.
Gold has a relatively high thermal conductivity as compared with other metals used as bump materials, and also has high corrosion resistance, which is resistance to corrosion due to oxidation. If the gold is included in the material of the second bump, not only the thermal load applied to the second acoustic wave chip is likely to decrease, but also the corrosion resistance of the joint between the second acoustic wave chip and the second bump is reduced. It can be secured. Therefore, the failure rate of the acoustic wave device including the package substrate on which the acoustic wave chip is mounted is further reduced.
 上述の弾性波装置は、送信側フィルタチップを含む複合型フィルタ装置であり、送信側フィルタチップは第1の弾性波チップである弾性波装置であってもよい。 The above-described elastic wave device may be a composite filter device including a transmission-side filter chip, and the transmission-side filter chip may be an elastic wave device that is a first elastic wave chip.
 第1の弾性波チップが備えるニオブ酸リチウム基板は、第2の弾性波チップが備えるタンタル酸リチウム基板と比べて、耐電力性に優る。この構成によれば、求められる耐電力性が高い送信側フィルタチップが、相対的に耐電力性に優るニオブ酸リチウム基板を備える第1の弾性波チップとなる。このような弾性波装置とすることで、本発明にかかる弾性波装置が、送信側フィルタチップを備える複合型フィルタ装置として機能できるだけの耐電力性を確保できるようになる。 The lithium niobate substrate provided in the first acoustic wave chip is superior in power durability as compared with the lithium tantalate substrate provided in the second acoustic wave chip. According to this configuration, the required transmission-side filter chip having high power durability is the first acoustic wave chip including the lithium niobate substrate having relatively high power durability. By setting it as such an elastic wave apparatus, the elastic wave apparatus concerning this invention can ensure the electric power durability sufficient to function as a composite filter apparatus provided with a transmission side filter chip.
 加えて、上述の弾性波装置は、受信側フィルタチップを含む複合型フィルタ装置であり、受信側フィルタチップは第2の弾性波チップである弾性波装置であってもよい。 In addition, the above-described elastic wave device may be a composite filter device including a reception-side filter chip, and the reception-side filter chip may be an elastic wave device that is a second elastic wave chip.
 第2の弾性波チップが備えるタンタル酸リチウム基板は、第1の弾性波チップが備えるニオブ酸リチウム基板に比べて、低いコストで得られる基板である。従って、送信側フィルタチップに比べて耐電力性がそれほど求められない受信側フィルタチップを、第2の弾性波チップとすることで、本発明にかかる弾性波装置を、より低いコストで得られるようになる。 The lithium tantalate substrate provided in the second acoustic wave chip is a substrate obtained at a lower cost than the lithium niobate substrate provided in the first acoustic wave chip. Therefore, the second acoustic wave chip is used as the reception filter chip that is not required to have much power durability compared to the transmission filter chip, so that the acoustic wave device according to the present invention can be obtained at lower cost. become.
 本発明の一態様に係る高周波フロントエンド回路は、上記記載の弾性波装置と、高周波信号を増幅する増幅回路とを備える。 A high-frequency front end circuit according to an aspect of the present invention includes the elastic wave device described above and an amplifier circuit that amplifies a high-frequency signal.
 本発明の一態様に係る通信装置は、上記記載の高周波フロントエンド回路と、高周波信号を処理するRF信号処理回路と、を備える。 A communication apparatus according to an aspect of the present invention includes the above-described high-frequency front-end circuit and an RF signal processing circuit that processes a high-frequency signal.
 本発明によればニオブ酸リチウム基板側の弾性波チップへ加わる応力を、タンタル酸リチウム基板側の弾性波チップより、バンプを通じて減少させやすくすることにより、弾性波装置の故障率を低減することができる。また、弾性波装置を用いた高周波フロントエンド回路、および、通信装置を得られるようになる。 According to the present invention, the stress applied to the acoustic wave chip on the lithium niobate substrate side can be reduced more easily through the bump than the acoustic wave chip on the lithium tantalate substrate side, thereby reducing the failure rate of the acoustic wave device. it can. In addition, a high-frequency front-end circuit using an elastic wave device and a communication device can be obtained.
図1は、第1の実施形態にかかる弾性波装置の構造を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of the acoustic wave device according to the first embodiment. 図2は、第1の実施形態の変形例1にかかる弾性波装置の構造を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the structure of the acoustic wave device according to Modification 1 of the first embodiment. 図3Aは、第1の実施形態の変形例2にかかる弾性波装置の構造を示す図であり、弾性波装置の要部を示す平面図である。FIG. 3A is a diagram illustrating a structure of the acoustic wave device according to the second modification of the first embodiment, and is a plan view illustrating a main part of the acoustic wave device. 図3Bは、第1の実施形態の変形例2にかかる弾性波装置の構造を示す図であり、図3A中のA1-A1線の矢視に沿った模式的断面図である。FIG. 3B is a diagram illustrating the structure of the acoustic wave device according to the second modification of the first embodiment, and is a schematic cross-sectional view taken along the line A1-A1 in FIG. 3A. 図4は、第1の実施形態の変形例3にかかる弾性波装置の構造を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the structure of an acoustic wave device according to Modification 3 of the first embodiment. 図5は、第2の実施形態にかかる弾性波装置である複合型フィルタ装置(デュプレクサ)の回路図である。FIG. 5 is a circuit diagram of a composite filter device (duplexer) that is an elastic wave device according to the second embodiment. 図6は、第3の実施形態にかかる弾性波装置である複合型フィルタ装置(マルチプレクサ)の要部を示す平面図である。FIG. 6 is a plan view showing a main part of a composite filter device (multiplexer) which is an elastic wave device according to the third embodiment. 図7は、第3の実施形態にかかる弾性波装置である複合型フィルタ装置(マルチプレクサ)の回路図である。FIG. 7 is a circuit diagram of a composite filter device (multiplexer) which is an elastic wave device according to the third embodiment. 図8は、第3の実施形態の変形例にかかる弾性波装置である複合型フィルタ装置(マルチプレクサ)が備える、弾性波チップの構造を示す断面図である。FIG. 8 is a cross-sectional view illustrating a structure of an acoustic wave chip included in a composite filter device (multiplexer) that is an acoustic wave device according to a modification of the third embodiment. 図9は、本発明の実施形態にかかる高周波フロントエンド回路、および、通信装置の回路図である。FIG. 9 is a circuit diagram of the high-frequency front-end circuit and the communication device according to the embodiment of the present invention.
 《弾性波装置》
 〔第1の実施形態〕
 本発明の第1の実施形態の一態様に係る弾性波装置について、複数の弾性表面波チップを備えた、CSP(Chip Size Package:チップサイズパッケージ)構造の弾性表面波装置を例に、図1~図4を参照して説明する。
<Elastic wave device>
[First Embodiment]
FIG. 1 shows an example of a surface acoustic wave device having a CSP (Chip Size Package) structure including a plurality of surface acoustic wave chips, as an example of the surface acoustic wave device according to one aspect of the first embodiment of the present invention. This will be described with reference to FIG.
 (1.基本構造)
 図1は、本発明の第1の実施形態に係る弾性波装置20の構造を示す、模式的断面図である。弾性波装置20は、パッケージ基板60と、弾性波チップ210、220と、バンプ41、42とを備えている。弾性波チップ210はバンプ41を用いて、弾性波チップ220はバンプ42を用いて、それぞれパッケージ基板60に実装され、電気的に接続されている。このとき、バンプ41は弾性波チップ210と接合され、バンプ42は弾性波チップ220と接合されている。パッケージ基板60としては、例えば、セラミック基板や樹脂基板、プリント基板などが用いられる。弾性波チップ210は、ニオブ酸リチウム基板(以下、LN基板と称する。)であり本発明の第1の基板であるチップ基板211と、チップ基板211に設けられたIDT(Inter Digital Transducer)電極212とを備えている。また、弾性波チップ220は、タンタル酸リチウム基板(以下、LT基板と称する。)であり本発明の第2の基板であるチップ基板221と、チップ基板221に設けられたIDT電極222とを備えている。弾性波チップ210、220は、例えば樹脂材料などを用いて形成された保護層80により、空隙部213、223を設けるように封止されている。
(1. Basic structure)
FIG. 1 is a schematic cross-sectional view showing the structure of an acoustic wave device 20 according to the first embodiment of the present invention. The elastic wave device 20 includes a package substrate 60, elastic wave chips 210 and 220, and bumps 41 and 42. The elastic wave chip 210 is mounted on the package substrate 60 using the bump 41 and the elastic wave chip 220 is mounted on the package substrate 60 using the bump 42 and is electrically connected thereto. At this time, the bump 41 is bonded to the elastic wave chip 210, and the bump 42 is bonded to the elastic wave chip 220. As the package substrate 60, for example, a ceramic substrate, a resin substrate, a printed substrate, or the like is used. The acoustic wave chip 210 is a lithium niobate substrate (hereinafter referred to as an LN substrate) and is a first substrate 211 of the present invention, and an IDT (Inter Digital Transducer) electrode 212 provided on the chip substrate 211. And. The acoustic wave chip 220 includes a chip substrate 221 that is a lithium tantalate substrate (hereinafter referred to as an LT substrate) and is a second substrate of the present invention, and an IDT electrode 222 provided on the chip substrate 221. ing. The acoustic wave chips 210 and 220 are sealed so as to provide the gaps 213 and 223 by a protective layer 80 formed using, for example, a resin material.
 このとき、バンプ41の材料は、バンプ42の材料より低いヤング率を有する。例えば、バンプ41の材料としてヤング率78GPaの金を用いた場合、バンプ42の材料としては、ヤング率82.7の銀を用いてもよい。他の例としては、バンプ41、42の材料を、金と銅、銀と銅、はんだと銅、はんだと銀、などの組合せにすることで、バンプ41の材料のヤング率を、バンプ42の材料のヤング率より低くすることができる。 At this time, the material of the bump 41 has a lower Young's modulus than the material of the bump 42. For example, when gold having a Young's modulus of 78 GPa is used as the material of the bump 41, silver having a Young's modulus of 82.7 may be used as the material of the bump. As another example, the material of the bumps 41 and 42 is a combination of gold and copper, silver and copper, solder and copper, solder and silver, etc. It can be lower than the Young's modulus of the material.
 この構成によれば、バンプ41、42が同じ材料から構成される場合に比べて、弾性波装置20の故障率が低下する。この理由について、以下、説明する。 According to this configuration, the failure rate of the acoustic wave device 20 is lower than when the bumps 41 and 42 are made of the same material. The reason for this will be described below.
 弾性波装置20に、例えば、周囲の温度環境の変化などにより熱負荷がかかった場合、弾性波装置が備える各基板(チップ基板211、221、及び、パッケージ基板60)が膨張する。すると、チップ基板211、221を有する弾性波チップ210、220とパッケージ基板60との間に応力が生じる。生じた応力は、弾性波チップ210、220とパッケージ基板60とを接続するバンプ41、42を介して、弾性波チップ210、220に加わることとなる。 When a thermal load is applied to the acoustic wave device 20 due to, for example, a change in ambient temperature environment, each substrate ( chip substrates 211, 221 and package substrate 60) included in the acoustic wave device expands. Then, stress is generated between the acoustic wave chips 210 and 220 having the chip substrates 211 and 221 and the package substrate 60. The generated stress is applied to the acoustic wave chips 210 and 220 via the bumps 41 and 42 that connect the acoustic wave chips 210 and 220 and the package substrate 60.
 一方、チップ基板211を構成するLN基板は、チップ基板221を構成するLT基板に比べて、応力を起因とするクラックへの耐性(クラック耐性)に大幅に劣る。そのため、弾性波チップ210、220の双方に応力が加わる場合には、チップ基板211を備える弾性波チップ210のほうが、早々にクラックを生じやすい。パッケージ基板60に実装された弾性波チップ210にクラックが生じた時点で、弾性波装置20の一部に異常が生じることとなるため、弾性波装置20は故障してしまう。つまり、LN基板を備える弾性波チップ210のクラック耐性が、LT基板を備える弾性波チップ220に比べて大幅に劣ったままであると、弾性波装置20自体の故障率も高いままとなってしまう。 On the other hand, the LN substrate constituting the chip substrate 211 is significantly inferior in resistance to cracks (crack resistance) caused by stress compared to the LT substrate constituting the chip substrate 221. Therefore, when stress is applied to both of the acoustic wave chips 210 and 220, the acoustic wave chip 210 including the chip substrate 211 is more likely to crack early. When a crack occurs in the acoustic wave chip 210 mounted on the package substrate 60, an abnormality occurs in a part of the acoustic wave device 20, and the acoustic wave device 20 fails. That is, if the crack resistance of the acoustic wave chip 210 including the LN substrate remains significantly inferior to that of the acoustic wave chip 220 including the LT substrate, the failure rate of the acoustic wave device 20 itself remains high.
 ここで、バンプ41の材料が、バンプ42の材料より低いヤング率を有していた場合、バンプ41はバンプ42に比べて変形自由度が高くなるため、より多くの応力を緩和できる。すなわち、弾性波チップ210、220と、パッケージ基板60との間で応力が生じたとき、バンプ41を介して弾性波チップ210に加わる応力は、バンプ42を介して弾性波チップ220に加わる応力より減少しやすくなる。したがって、クラック耐性で劣位の弾性波チップ210に加わる応力が、クラック耐性で優位の弾性波チップ220に加わる応力より少なくなりやすいため、両弾性波チップを備える弾性波装置20の故障率も低減する。 Here, when the material of the bump 41 has a Young's modulus lower than that of the material of the bump 42, the bump 41 has a higher degree of freedom of deformation than the bump 42, so that more stress can be relieved. That is, when a stress is generated between the elastic wave chips 210 and 220 and the package substrate 60, the stress applied to the elastic wave chip 210 via the bump 41 is greater than the stress applied to the elastic wave chip 220 via the bump 42. It tends to decrease. Therefore, since the stress applied to the crack-resistant inferior elastic wave chip 210 is likely to be less than the stress applied to the crack-resistant dominant acoustic wave chip 220, the failure rate of the acoustic wave device 20 including both acoustic wave chips is also reduced. .
 また、LN基板を備えた弾性波チップ210にヤング率が低い材料のバンプを用いることは、電気特性の維持とTCF(Temperature Coefficients of Frequency:周波数温度特性)の制御とを両立できる点で、理に適う。 In addition, the use of bumps made of a material having a low Young's modulus for the elastic wave chip 210 provided with the LN substrate makes it possible to achieve both maintenance of electrical characteristics and control of TCF (Temperature Coefficients of Frequency: frequency temperature characteristics). Suitable for
 TCFとは、温度変化によるチップ基板の伸縮を起因とする、周波数の変動量のことである。一般的に、弾性波チップの実装にヤング率が比較的低いバンプを用いると、電流を流す前後での温度変化によるチップ基板の伸縮が抑制できず、TCFが増加する。このようにTCFが高い弾性波チップを有する弾性波装置においては、その周波数が温度変化に伴って大きく変動するため、損失が増大してしまう。 TCF is the amount of frequency fluctuation caused by the expansion and contraction of the chip substrate due to temperature change. In general, when a bump having a relatively low Young's modulus is used for mounting an elastic wave chip, the expansion and contraction of the chip substrate due to a temperature change before and after the current flows cannot be suppressed, and the TCF increases. In such an elastic wave device having an elastic wave chip with a high TCF, the frequency greatly varies with a temperature change, so that the loss increases.
 この損失増加の原因であるTCFを制御するには、例えば、IDT電極が設けられるチップ基板を酸化ケイ素膜で覆えばよい。チップ基板に用いられるLN基板やLT基板は、温度上昇に伴って周波数が低くなる負の温度係数を有する一方、酸化ケイ素膜は温度上昇に伴って周波数が高くなる正の温度係数を有する。この酸化ケイ素膜によりチップ基板を覆えば、周波数を低下させようとする作用と上昇させようとする作用とが同時に生じ得るため、チップ基板が伸縮しても、周波数がそれほど変動しなくなるのである。しかしながら、酸化ケイ素膜をLT基板上に成膜した場合、LT基板を備える弾性波チップのTCFは制御できる一方、該弾性波チップの電気特性は大きく劣化する恐れがある。そのため、LT基板を備える弾性波チップにはこの制御方法を用いることができない。 In order to control the TCF that causes the increase in loss, for example, the chip substrate on which the IDT electrode is provided may be covered with a silicon oxide film. The LN substrate and the LT substrate used for the chip substrate have a negative temperature coefficient that decreases in frequency as the temperature rises, whereas the silicon oxide film has a positive temperature coefficient that increases in frequency as the temperature increases. If the chip substrate is covered with this silicon oxide film, an action to lower the frequency and an action to increase the frequency can occur at the same time. Therefore, even if the chip substrate expands and contracts, the frequency does not vary so much. However, when the silicon oxide film is formed on the LT substrate, the TCF of the acoustic wave chip including the LT substrate can be controlled, but the electrical characteristics of the acoustic wave chip may be greatly deteriorated. Therefore, this control method cannot be used for an acoustic wave chip including an LT substrate.
 ところがLN基板は、LT基板に比べてそもそも電気特性が劣化しにくい。そのため、LN基板を備えた弾性波チップ側のバンプに、TCFを増加させる恐れがあるヤング率の低い材料を用いても、酸化ケイ素膜を成膜することで、電気特性を大きく劣化させることなくそのTCFを抑制できる。従って、LN基板を備えた弾性波チップ側のバンプにおいては、そのヤング率の低さは問題とならないのである。 However, the electrical characteristics of the LN substrate are less likely to deteriorate than the LT substrate. Therefore, even if a material having a low Young's modulus that may increase TCF is used for the bump on the acoustic wave chip side provided with the LN substrate, the electrical characteristics are not greatly deteriorated by forming the silicon oxide film. The TCF can be suppressed. Therefore, the low Young's modulus is not a problem in the bump on the acoustic wave chip side provided with the LN substrate.
 なお、通常、弾性波装置に用いられるLN基板としては、Y軸回転角を-4°~0°、または、+115°~+135°の範囲としてカットしたLN基板が多い。この中でも、発明者らの実験によれば、Y軸回転角を+115°~+135°の範囲としてカットしたLN基板が、最もクラックを生じやすいことが分かっている。そのため、チップ基板211に用いるLN基板が、Y軸回転角を+115°~+135°としたLN基板であった場合には、本発明の効果が顕著に得られる。 It should be noted that LN substrates that are usually used in acoustic wave devices are often cut with a Y-axis rotation angle in the range of −4 ° to 0 ° or + 115 ° to + 135 °. Among these, according to experiments by the inventors, it has been found that an LN substrate cut with a Y-axis rotation angle in the range of + 115 ° to + 135 ° is most susceptible to cracking. Therefore, when the LN substrate used for the chip substrate 211 is an LN substrate with a Y-axis rotation angle of + 115 ° to + 135 °, the effect of the present invention is remarkably obtained.
 さらにパッケージ基板60としてセラミック基板を用いる場合にも、本発明の効果は顕著に得られる。セラミック基板は、樹脂基板など他のパッケージ基板材料に比べてヤング率が高いため、パッケージ基板60としてセラミック基板を用いた場合には、樹脂基板などを用いた場合より多くの応力が弾性波チップ210、220に加わる。そのようなセラミック基板をパッケージ基板60として用いた弾性波装置20では、樹脂基板などを用いた弾性波装置に比べてクラックが生じやすいため、本発明の構成がより有用に機能する。 Further, when the ceramic substrate is used as the package substrate 60, the effect of the present invention is remarkably obtained. Since the ceramic substrate has a higher Young's modulus than other package substrate materials such as a resin substrate, when the ceramic substrate is used as the package substrate 60, more stress is generated than when the resin substrate is used. , 220. In the acoustic wave device 20 using such a ceramic substrate as the package substrate 60, cracks are likely to occur as compared with an acoustic wave device using a resin substrate or the like, so that the configuration of the present invention functions more effectively.
 (2.変形例)
 以下、本実施形態の変形例にかかる弾性波装置を、それぞれ解説する。なお、以下では、各変形例において上記実施形態と同じ構造を備える箇所については説明を省略し、異なる構造を備える箇所についてのみ記述する。
(2. Modification)
Hereinafter, the elastic wave device concerning the modification of this embodiment is each demonstrated. In addition, below, description is abbreviate | omitted about the location provided with the same structure as the said embodiment in each modification, and only the location provided with a different structure is described.
 図2は、第1の実施形態の変形例1にかかる弾性波装置20の構造を示す、模式的断面図である。本変形例に示すように、LN基板を備える弾性波チップ210側のバンプ41の高さが、LT基板を備える弾性波チップ220側のバンプ42の高さより、高いと好ましい。 FIG. 2 is a schematic cross-sectional view showing the structure of the acoustic wave device 20 according to Modification 1 of the first embodiment. As shown in this modification, the height of the bump 41 on the elastic wave chip 210 side including the LN substrate is preferably higher than the height of the bump 42 on the elastic wave chip 220 side including the LT substrate.
 この構成によれば、弾性波チップ210とパッケージ基板60との距離が、弾性波チップ220とパッケージ基板60との距離より大きくなりやすい。弾性波チップとパッケージ基板との距離が大きいほど、弾性波チップがパッケージ基板の膨張から受ける影響は小さくなるため、第1の弾性波チップに加わる応力が、第2の弾性波チップより減少しやすい。従って、両弾性波チップを備える弾性波装置20の故障率がさらに低減する。 According to this configuration, the distance between the acoustic wave chip 210 and the package substrate 60 tends to be larger than the distance between the acoustic wave chip 220 and the package substrate 60. The greater the distance between the elastic wave chip and the package substrate, the smaller the influence of the elastic wave chip on the expansion of the package substrate. Therefore, the stress applied to the first elastic wave chip is more likely to decrease than the second elastic wave chip. . Therefore, the failure rate of the acoustic wave device 20 including both acoustic wave chips is further reduced.
 図3Aおよび図3Bは、第1の実施形態の変形例2にかかる弾性波装置の構造を示す図である。図3Aは弾性波装置の要部を示す平面図であり、図3Bは、図3A中のA1-A1線の矢視に沿った模式的断面図である。なお、図3Aにおいては、図3Bに示す保護層80の図示を省略している。 3A and 3B are diagrams showing the structure of the acoustic wave device according to the second modification of the first embodiment. FIG. 3A is a plan view showing a main part of the acoustic wave device, and FIG. 3B is a schematic cross-sectional view taken along the line A1-A1 in FIG. 3A. In FIG. 3A, illustration of the protective layer 80 shown in FIG. 3B is omitted.
 図3Aに示すように、弾性波装置20を、弾性波チップ210、220側から平面視したとき、バンプ41と弾性波チップ210との接合面の面積が、バンプ42と弾性波チップ220との接合面の面積より大きいほうが好ましい。このとき、図3Bに示すように、バンプ41はバンプ42より、その径が太くなっている。 As shown in FIG. 3A, when the elastic wave device 20 is viewed in plan from the elastic wave chips 210 and 220 side, the area of the bonding surface between the bump 41 and the elastic wave chip 210 is equal to the bump 42 and the elastic wave chip 220. It is preferable that the area is larger than the area of the joint surface. At this time, as shown in FIG. 3B, the diameter of the bump 41 is larger than that of the bump 42.
 この構成によれば、バンプ41と弾性波チップ210との接合面において弾性波チップ210に加わる応力は、バンプ42と弾性波チップ220との接合面において弾性波チップ220に加わる応力より、広く分散される。従って、弾性波チップ210に加わる応力が、弾性波チップ220より減少しやすいため、弾性波チップ210、220を備える弾性波装置20の故障率がさらに低減する。 According to this configuration, the stress applied to the elastic wave chip 210 at the bonding surface between the bump 41 and the elastic wave chip 210 is more widely dispersed than the stress applied to the elastic wave chip 220 at the bonding surface between the bump 42 and the elastic wave chip 220. Is done. Therefore, since the stress applied to the elastic wave chip 210 is more likely to be reduced than that of the elastic wave chip 220, the failure rate of the elastic wave device 20 including the elastic wave chips 210 and 220 is further reduced.
 図4は、第1の実施形態の変形例3にかかる弾性波装置20の構造を示す、模式的断面図である。本変形例においては、バンプ41の高さがバンプ42より高い。同時に、バンプ41の径がバンプ42の径より太くなっている。すなわち、弾性波装置20を平面視したとき、バンプ41と弾性波チップ210との接合面の面積も、バンプ42と弾性波チップ220との接合面の面積より、大きくなっている。 FIG. 4 is a schematic cross-sectional view showing the structure of the acoustic wave device 20 according to Modification 3 of the first embodiment. In the present modification, the height of the bump 41 is higher than that of the bump 42. At the same time, the diameter of the bump 41 is larger than the diameter of the bump 42. That is, when the elastic wave device 20 is viewed in plan, the area of the bonding surface between the bump 41 and the elastic wave chip 210 is larger than the area of the bonding surface between the bump 42 and the elastic wave chip 220.
 この構成によれば、弾性波チップ210に加わる応力の大きさが、変形例1や変形例2に示す弾性波チップ210に比べてさらに小さくなりやすい。そのため、弾性波装置20の故障率が大幅に低減する。 According to this configuration, the magnitude of stress applied to the elastic wave chip 210 is likely to be smaller than that of the elastic wave chip 210 shown in the first and second modifications. Therefore, the failure rate of the acoustic wave device 20 is greatly reduced.
 なお、図1~図4に示したような本実施形態にかかる弾性波装置、及び、本実施形態の変形例にかかる弾性波装置において、より好ましくは、バンプ42の材料が、バンプ41の材料より高い熱伝導率を有すると良い。 In the elastic wave device according to the present embodiment as shown in FIGS. 1 to 4 and the elastic wave device according to the modification of the present embodiment, the material of the bump 42 is more preferably the material of the bump 41. It is better to have a higher thermal conductivity.
 チップ基板221を構成するLT基板は、チップ基板211を構成するLN基板に比べて、熱負荷に弱いため、印加されると一部が熱負荷へと変化する電力への耐性(耐電力性)にも劣る。そのため、電力が印加された弾性波装置において、弾性波チップ210、220双方に電力、または、熱負荷が加わる場合、弾性波チップ220は弾性波チップ210より早く破壊され、弾性波装置20を故障させる恐れがある。しかしながら本構成によれば、バンプ42はバンプ41より多くの熱を放熱できるため、耐電力性で劣位の弾性波チップ220に加わる熱負荷を、耐電力性で優位の弾性波チップ210に加わる熱負荷より低減できる。従って、両弾性波チップが実装されたパッケージ基板60を備える弾性波装置20の故障率がさらに低減する。 The LT substrate that constitutes the chip substrate 221 is weaker to the thermal load than the LN substrate that constitutes the chip substrate 211. Therefore, the resistance to electric power that partially changes to the thermal load when applied (power resistance) Also inferior. Therefore, in the elastic wave device to which electric power is applied, when electric power or a thermal load is applied to both of the elastic wave chips 210 and 220, the elastic wave chip 220 is broken earlier than the elastic wave chip 210, causing the elastic wave device 20 to fail. There is a fear. However, according to this configuration, since the bump 42 can dissipate more heat than the bump 41, the heat load applied to the inferior elastic wave chip 220 with power durability is the heat applied to the elastic wave chip 210 with superior power durability. It can be reduced from the load. Therefore, the failure rate of the acoustic wave device 20 including the package substrate 60 on which both acoustic wave chips are mounted is further reduced.
 バンプ41の材料がバンプ42の材料よりヤング率が低く、かつ、バンプ42の材料がバンプ41の材料より熱伝導率が高い場合の、バンプ41、42の材料の組合せとしては、例えば、金と銀、金と銅、はんだと銅、はんだと銀などの組合せが挙げられる。中でも最も好ましいのは、バンプ41の材料がはんだからなり、バンプ42の材料が金からなる場合である。 When the material of the bump 41 has a lower Young's modulus than the material of the bump 42 and the material of the bump 42 has a higher thermal conductivity than the material of the bump 41, a combination of the materials of the bumps 41 and 42 is, for example, gold and Examples include silver, gold and copper, solder and copper, and solder and silver. Of these, the most preferable is the case where the material of the bump 41 is made of solder and the material of the bump 42 is made of gold.
 まず、両材料のヤング率を比べる。はんだのヤング率は、組成態様により差異があるものの、約30~50GPaであり、金のヤング率は、79GPaである。このように、弾性波チップ210側のバンプ41のヤング率が、弾性波チップ220側のバンプ42のヤング率より低くなっているため、弾性波チップ210に加わる応力を弾性波チップ220に加わる応力より減少させやすい。 First, compare the Young's modulus of both materials. The Young's modulus of the solder is about 30 to 50 GPa, although it varies depending on the composition, and the Young's modulus of gold is 79 GPa. Thus, since the Young's modulus of the bump 41 on the elastic wave chip 210 side is lower than the Young's modulus of the bump 42 on the elastic wave chip 220 side, the stress applied to the elastic wave chip 210 is changed to the stress applied to the elastic wave chip 220. Easy to decrease.
 次に、両材料の熱伝導率を比べる。はんだの熱伝導率は、組成態様により差異があるものの、約45~65W/m・Kであり、金の熱伝導率は約315W/m・Kである。このように、弾性波チップ220側のバンプ42の熱伝導率が、弾性波チップ210側のバンプ41の熱伝導率より高くなっているため、弾性波チップ220に加わる熱負荷を弾性波チップ210に加わる熱負荷より減少させやすい。 Next, compare the thermal conductivity of both materials. The thermal conductivity of the solder is approximately 45 to 65 W / m · K, although it varies depending on the composition, and the thermal conductivity of gold is approximately 315 W / m · K. As described above, the thermal conductivity of the bumps 42 on the elastic wave chip 220 side is higher than the thermal conductivity of the bumps 41 on the elastic wave chip 210 side. It is easier to reduce than the heat load applied to the.
 さらに、はんだは金などの他の金属と比べて融点が比較的低いため、はんだバンプは熱のみを加えればパッケージ基板と溶接できる。すなわち、溶接時に、はんだ以外の金属からなるバンプのように機械的荷重を加える必要がないため、該バンプと比べて、パッケージ基板と溶接された後のバンプ高さが高く形成されやすい。従って、バンプ41の材料がはんだである場合には、バンプ41の高さがより高く形成されやすく、弾性波チップがパッケージ基板60の膨張から受ける影響は小さくなりやすい。そのため、弾性波チップ210に加わる応力を減少させやすくなり、弾性波装置20の故障率をより低減させやすくなる。 Furthermore, since solder has a relatively low melting point compared to other metals such as gold, solder bumps can be welded to the package substrate only by applying heat. That is, since it is not necessary to apply a mechanical load at the time of welding unlike a bump made of a metal other than solder, the bump height after being welded to the package substrate is likely to be higher than that of the bump. Therefore, when the material of the bump 41 is solder, the height of the bump 41 is likely to be formed higher, and the influence of the elastic wave chip from the expansion of the package substrate 60 tends to be small. Therefore, the stress applied to the elastic wave chip 210 can be easily reduced, and the failure rate of the elastic wave device 20 can be further reduced.
 また、金は、はんだなどの他の金属と比べて耐食性が高い。その金からなるバンプを用いて弾性波チップ220を実装すれば、弾性波チップ220とバンプ42との接合部の耐食性が確保できる。すると、弾性波チップ220が実装されたパッケージ基板60を備える弾性波装置がさらに故障しにくくなる。 Also, gold has higher corrosion resistance than other metals such as solder. If the elastic wave chip 220 is mounted using the gold bump, the corrosion resistance of the joint between the elastic wave chip 220 and the bump 42 can be ensured. Then, the acoustic wave device including the package substrate 60 on which the acoustic wave chip 220 is mounted is further less likely to fail.
 なお、上記ではバンプ41がはんだからなり、バンプ42が金からなる場合を示したが、バンプ41がはんだとその他の導電性材料とを含む材料からなり、バンプ42が金とその他の導電性材料とを含む材料からなる場合にも、上記効果は充分に得られる。また、バンプ41、42のうち少なくとも一方のバンプの材料が、はんだ、または、金である場合にも、本発明の効果は充分に得られる。すなわち、バンプ41の材料がはんだを含み、かつ、バンプ42の材料が、金以外の材料のうち、はんだより高いヤング率を有する材料であっても構わない。加えて、バンプ41の材料が、はんだ以外の材料のうち、金より低いヤング率を有する材料であり、かつ、バンプ42の材料が金を含んでいてもよい。 In the above description, the bump 41 is made of solder and the bump 42 is made of gold. However, the bump 41 is made of a material containing solder and other conductive material, and the bump 42 is made of gold and other conductive material. The above-mentioned effect can be sufficiently obtained even when it is made of a material containing. In addition, even when the material of at least one of the bumps 41 and 42 is solder or gold, the effect of the present invention can be sufficiently obtained. That is, the material of the bump 41 may include solder, and the material of the bump 42 may be a material having a higher Young's modulus than the solder among materials other than gold. In addition, the material of the bump 41 may be a material having a Young's modulus lower than that of the material other than the solder, and the material of the bump 42 may include gold.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態にかかる弾性波装置について、2つの弾性表面波チップを備えた弾性表面波装置を用いて構成された複合型フィルタ装置を例に、図5を参照して説明する。本実施形態における弾性波装置は、第1の実施形態にかかる弾性波装置20が、送受信の分離機能を有するデュプレクサとして機能する複合型フィルタ装置である場合の実施形態である。そのため、以下では本実施形態にかかる弾性波装置を、複合型フィルタ装置と記載することとする。
[Second Embodiment]
Next, for a surface acoustic wave device according to a second embodiment of the present invention, referring to FIG. 5 as an example of a composite filter device configured using a surface acoustic wave device including two surface acoustic wave chips. I will explain. The elastic wave device according to the present embodiment is an embodiment when the elastic wave device 20 according to the first embodiment is a composite filter device that functions as a duplexer having a transmission / reception separation function. Therefore, hereinafter, the acoustic wave device according to the present embodiment is referred to as a composite filter device.
 図5は、本発明の第2の実施形態にかかる複合型フィルタ装置20の回路図である。弾性波装置20は、送信側フィルタ21と、受信側フィルタ22とを備える。送信側フィルタ21の一方端は、送信側入出力端子25に接続され、他方端はアンテナ入出力端子29に接続されている。受信側フィルタ22の一方端は受信側入出力端子26に接続され、他方端はアンテナ入出力端子29に接続されている。 FIG. 5 is a circuit diagram of the composite filter device 20 according to the second embodiment of the present invention. The acoustic wave device 20 includes a transmission filter 21 and a reception filter 22. One end of the transmission filter 21 is connected to the transmission input / output terminal 25, and the other end is connected to the antenna input / output terminal 29. One end of the reception filter 22 is connected to the reception input / output terminal 26, and the other end is connected to the antenna input / output terminal 29.
 同図に示すように、送信側フィルタ21は、第1の実施形態で示された弾性波チップ210を、送信側フィルタチップとして有することが好ましい。すなわち、送信側フィルタ21は、LN基板であるチップ基板211を備えるとよい。 As shown in the figure, the transmission filter 21 preferably has the acoustic wave chip 210 shown in the first embodiment as a transmission filter chip. That is, the transmission filter 21 may include a chip substrate 211 that is an LN substrate.
 フィルタ機能を有する通信装置等において、送信側フィルタは、パワーアンプなどで増幅された送信信号を処理するものである。そのため、通信装置外部から入力される微弱な受信信号を処理する受信側フィルタに比べて、大きな電力量に耐えうることが求められる。そこで、LT基板に比べて耐電力性の高いLN基板を備えた弾性波チップ210を、送信側フィルタチップとして用いれば、複合型フィルタ装置20は、充分な耐電力性を確保した送信側フィルタを備えることができる。 In a communication device or the like having a filter function, the transmission-side filter processes a transmission signal amplified by a power amplifier or the like. Therefore, it is required to be able to withstand a large amount of power as compared with a reception-side filter that processes a weak reception signal input from the outside of the communication apparatus. Therefore, if the acoustic wave chip 210 provided with the LN substrate having higher power resistance than the LT substrate is used as the transmission-side filter chip, the composite filter device 20 uses a transmission-side filter that secures sufficient power resistance. Can be provided.
 加えて、複合型フィルタ装置20において、受信側フィルタ22は、第1の実施形態で示された弾性波チップ220を、受信側フィルタチップとして有するとよい。すなわち、受信側フィルタ22は、LT基板であるチップ基板221を備えることが好ましい。 In addition, in the composite filter device 20, the reception-side filter 22 may include the acoustic wave chip 220 shown in the first embodiment as a reception-side filter chip. That is, it is preferable that the reception-side filter 22 includes a chip substrate 221 that is an LT substrate.
 LT基板は、LN基板に比べて低いコストで得ることが可能である。そこで、送信側フィルタに比べてそれほど高い耐電力性が求められない受信側フィルタチップとして、LN基板を備える弾性波チップ220を用いれば、より低いコストで複合型フィルタ装置20を得ることができる。 The LT substrate can be obtained at a lower cost than the LN substrate. Therefore, the composite filter device 20 can be obtained at a lower cost by using the acoustic wave chip 220 including the LN substrate as the reception-side filter chip that does not require so high power durability as compared with the transmission-side filter.
 本実施形態では、送信側フィルタチップにLN基板を備えた弾性波チップ210、受信側フィルタチップにLT基板を備えた弾性波チップ220を用いたが、送信側フィルタチップに弾性波チップ220、受信側フィルタチップに弾性波チップ210を用いてもよい。この場合にも、複合型フィルタ装置20の故障率の低減という、本発明の効果を得ることができる。 In the present embodiment, the acoustic wave chip 210 having an LN substrate on the transmission side filter chip and the acoustic wave chip 220 having an LT substrate on the reception side filter chip are used. However, the acoustic wave chip 220 and the reception side are used as the transmission side filter chip. An elastic wave chip 210 may be used as the side filter chip. Also in this case, the effect of the present invention that the failure rate of the composite filter device 20 is reduced can be obtained.
 〔第3の実施形態〕
 本発明の第3の実施形態に係る弾性波装置について、3つ以上の弾性表面波チップを備えた弾性表面波装置を用いて構成された複合型フィルタ装置を例に、図6、7を参照して説明する。本実施形態における弾性波装置は、複数の電気信号の分離機能を有したマルチプレクサとして機能する複合型フィルタ装置である。そのため、以下では本実施形態にかかる弾性波装置を複合型フィルタ装置と記載することとする。
[Third Embodiment]
With reference to FIGS. 6 and 7, an example of a composite filter device configured by using a surface acoustic wave device including three or more surface acoustic wave chips for a surface acoustic wave device according to a third embodiment of the present invention will be described. To explain. The elastic wave device in the present embodiment is a composite filter device that functions as a multiplexer having a function of separating a plurality of electrical signals. Therefore, hereinafter, the acoustic wave device according to the present embodiment is referred to as a composite filter device.
 (1.基本構造)
 図6は、本実施形態にかかる複合型フィルタ装置30の要部を平面視した、平面図である。複合型フィルタ装置30は、パッケージ基板70と、弾性波チップ310、320、330、340と、バンプ51、52、53、54とを備えている。弾性波チップ310はバンプ51を用いて、弾性波チップ320はバンプ52を用いて、それぞれパッケージ基板70に実装され、電気的に接続されている。また、弾性波チップ330はバンプ53を用いて、弾性波チップ340はバンプ54を用いて、それぞれパッケージ基板60に実装され、電気的に接続されている。すなわち、バンプ51は弾性波チップ310と、バンプ52は弾性波チップ320と、バンプ53は弾性波チップ330と、バンプ54は弾性波チップ340と接合されている。パッケージ基板70としては、例えば、セラミック基板や樹脂基板、プリント基板などが用いられる。なお、弾性波チップ310、320、330、340は全て、例えば樹脂材料などを用いて形成された保護層により封止されるが、本図においてはその保護層の図示を省略する。
(1. Basic structure)
FIG. 6 is a plan view of the main part of the composite filter device 30 according to the present embodiment viewed in plan. The composite filter device 30 includes a package substrate 70, elastic wave chips 310, 320, 330, and 340, and bumps 51, 52, 53, and 54. The elastic wave chip 310 is mounted on the package substrate 70 using the bumps 51, and the elastic wave chip 320 is mounted on the package substrate 70 using the bumps 52, and is electrically connected. The elastic wave chip 330 is mounted on the package substrate 60 using the bumps 53, and the elastic wave chip 340 is mounted on the package substrate 60 using the bumps 54. That is, the bump 51 is bonded to the elastic wave chip 310, the bump 52 is bonded to the elastic wave chip 320, the bump 53 is bonded to the elastic wave chip 330, and the bump 54 is bonded to the elastic wave chip 340. As the package substrate 70, for example, a ceramic substrate, a resin substrate, a printed substrate, or the like is used. The acoustic wave chips 310, 320, 330, and 340 are all sealed with a protective layer formed using, for example, a resin material, but the illustration of the protective layer is omitted in this drawing.
 弾性波チップ310は、第1の実施形態で示した弾性波チップ210と同様、LN基板であり本発明の第1の基板であるチップ基板311を備える。また、弾性波チップ320は、第1の実施形態で示した弾性波チップ220と同様、LT基板であり本発明の第2の基板であるチップ基板321を備える。チップ基板311、321には、それぞれIDT電極(不図示)が設けられている。 The acoustic wave chip 310 is provided with a chip substrate 311 which is an LN substrate and is the first substrate of the present invention, like the acoustic wave chip 210 shown in the first embodiment. The acoustic wave chip 320 includes a chip substrate 321 that is an LT substrate and is the second substrate of the present invention, like the acoustic wave chip 220 shown in the first embodiment. Each of the chip substrates 311 and 321 is provided with an IDT electrode (not shown).
 これらの弾性波チップ310、320と同じく、弾性波チップ330、340も、チップ基板331、341と、チップ基板331、341上にそれぞれ形成されたIDT電極(不図示)とを備えた弾性波チップである。チップ基板331は、チップ基板311のようなLN基板であり、チップ基板341はチップ基板321のようなLT基板である。 Like these acoustic wave chips 310 and 320, the acoustic wave chips 330 and 340 also include an acoustic wave chip including chip substrates 331 and 341 and IDT electrodes (not shown) formed on the chip substrates 331 and 341, respectively. It is. The chip substrate 331 is an LN substrate such as the chip substrate 311, and the chip substrate 341 is an LT substrate such as the chip substrate 321.
 このとき、バンプ51、53の材料は、バンプ52、54の材料より、低いヤング率を有する。この構成によれば、クラック耐性で劣位のLN基板を備える弾性波チップ310、330側のバンプ51、53が、クラック耐性で優位のLT基板を備える弾性波チップ320、340側のバンプ52、54より、多くの応力を緩和できる。その結果、弾性波チップ310、330に加わる応力が、弾性波チップ320、340に加わる応力より減少しやすくなるため、バンプ51~54が全て同じヤング率を有する材料から構成される場合に比べて、故障率の低い複合型フィルタ装置30を得られる。 At this time, the material of the bumps 51 and 53 has a lower Young's modulus than the material of the bumps 52 and 54. According to this configuration, the bumps 51 and 53 on the acoustic wave chip 310 and 330 side including the inferior LN substrate with crack resistance are the bumps 52 and 54 on the acoustic wave chip 320 and 340 side including the LT substrate superior in crack resistance. More stress can be relieved. As a result, the stress applied to the elastic wave chips 310 and 330 is more likely to be smaller than the stress applied to the elastic wave chips 320 and 340, so that the bumps 51 to 54 are all made of a material having the same Young's modulus. A composite filter device 30 with a low failure rate can be obtained.
 なお、バンプ51とバンプ53とは同じ材料から構成される必要はない。LN基板を備える弾性波チップ310、330側のバンプ51、53はそれぞれ単体で、LT基板を備える弾性波チップ320、340側のバンプ52、54よりヤング率が低ければよい。例えば、バンプ52、54がヤング率110~128GPaの銅バンプであった場合、バンプ51がヤング率78GPaの金バンプ、バンプ53がヤング率82.7GPaの銀バンプであってもよい。同様にバンプ52とバンプ54とが同じ材料から構成されなくともかまわない。例えば、バンプ52が銅バンプ、バンプ54が銀バンプであり、バンプ51、53が金バンプといった構成であっても、本発明の効果は得られる。 Note that the bump 51 and the bump 53 need not be made of the same material. The bumps 51 and 53 on the acoustic wave chips 310 and 330 provided with the LN substrate are each single, and it is sufficient that the Young's modulus is lower than the bumps 52 and 54 on the acoustic wave chips 320 and 340 provided with the LT substrate. For example, when the bumps 52 and 54 are copper bumps having a Young's modulus of 110 to 128 GPa, the bump 51 may be a gold bump having a Young's modulus of 78 GPa, and the bump 53 may be a silver bump having a Young's modulus of 82.7 GPa. Similarly, the bumps 52 and 54 may not be made of the same material. For example, even if the bump 52 is a copper bump, the bump 54 is a silver bump, and the bumps 51 and 53 are gold bumps, the effects of the present invention can be obtained.
 加えて、バンプ52、54の材料は、バンプ51、53の材料より、高い熱伝導率を有すると好ましい。この構成によれば耐電力性で劣位のLT基板を備える弾性波チップ320、340側のバンプ52、54が、耐電力性で優位のLN基板を備える弾性波チップ310、330側のバンプ51、53より多くの熱を放熱できる。従って、相対的に耐電力性に劣る弾性波チップ520、540に加わる熱負荷が、相対的に耐電力性に優る弾性波チップ510、520に加わる熱負荷より低減されやすくなるため、これらの弾性波チップを備える複合型フィルタ装置30の故障率も低減する。 In addition, it is preferable that the material of the bumps 52 and 54 has a higher thermal conductivity than the material of the bumps 51 and 53. According to this structure, the bumps 52 and 54 on the elastic wave chip 320 and 340 side including the inferior LT substrate with power durability are the bumps 51 and 54 on the elastic wave chip 310 and 330 side including the LN substrate with superior power durability. More heat than 53 can be dissipated. Accordingly, the thermal load applied to the acoustic wave chips 520 and 540 having relatively low power durability is more easily reduced than the thermal load applied to the elastic wave chips 510 and 520 having relatively high power durability. The failure rate of the composite filter device 30 including the wave chip is also reduced.
 バンプ51、53とバンプ52、54とに、金と銀、金と銅、はんだと銅、はんだと銀などの材料の組合せを用いれば、バンプ51、53はバンプ52、54よりヤング率が低く、かつ、バンプ52、54はバンプ51、53より熱伝導率が高くなる。しかしながら、最も好ましいのは、バンプ51、53の材料がはんだからなり、バンプ52、54が金からなる場合である。はんだと金とを比べると、ヤング率が低いのははんだである一方、熱伝導率が高いのは金である。さらに、第1の実施形態に記載のとおり、はんだからなるバンプには、その高さが高く形成されやすいために弾性波チップに加わる応力をより低減しやすいという利点があり、金からなるバンプには、耐食性が高いという利点がある。従って、これらの材料を用いてバンプ51~54を形成すると、複合型フィルタ装置30の故障率がさらに低減する。 If a combination of materials such as gold and silver, gold and copper, solder and copper, solder and silver is used for the bumps 51 and 53 and the bumps 52 and 54, the bumps 51 and 53 have a lower Young's modulus than the bumps 52 and 54. In addition, the bumps 52 and 54 have higher thermal conductivity than the bumps 51 and 53. However, it is most preferable that the material of the bumps 51 and 53 is made of solder and the bumps 52 and 54 are made of gold. Comparing solder and gold, it is solder that has a low Young's modulus, while gold has a high thermal conductivity. Furthermore, as described in the first embodiment, the bump made of solder has an advantage that the stress applied to the elastic wave chip can be more easily reduced because the bump is made of a high height. Has the advantage of high corrosion resistance. Therefore, when the bumps 51 to 54 are formed using these materials, the failure rate of the composite filter device 30 is further reduced.
 なお、バンプ51、53がはんだとその他の導電性材料とを含む材料からなり、バンプ52、54が金とその他の導電性材料とを含む材料からなる場合にも、上記効果は充分に得られることは、第1の実施形態に記載の通りである。また、バンプ51、53のうち少なくとも一方のバンプの材料がはんだを含む場合、または、バンプ52、54のうち少なくとも一方のバンプの材料が金を含む場合にも、本発明の効果は充分に得られる。 It should be noted that the above effect can be sufficiently obtained when the bumps 51 and 53 are made of a material containing solder and other conductive material and the bumps 52 and 54 are made of a material containing gold and other conductive material. This is as described in the first embodiment. In addition, when the material of at least one of the bumps 51 and 53 includes solder, or when the material of at least one of the bumps 52 and 54 includes gold, the effect of the present invention is sufficiently obtained. It is done.
 なお、本図においてはバンプ51、52、53、54と弾性波チップ310、320、330、340との接合面の面積は全て同じとなっている。しかし、第1の実施形態と同様、LN基板を備える弾性波チップ310、330とバンプ51、53との接合面が、LT基板を備える弾性波チップ320、340とバンプ52、54との接合面より大きければ、複合型フィルタ装置30の故障率をさらに低減できる。また、弾性波チップ310、330側のバンプ51、53の高さを、弾性波チップ320、340側のバンプ52、54の高さより高くすることにより、複合型フィルタ装置30の故障率をさらに低減できる。 In this figure, the areas of the joint surfaces of the bumps 51, 52, 53, 54 and the acoustic wave chips 310, 320, 330, 340 are all the same. However, as in the first embodiment, the bonding surface between the elastic wave chips 310 and 330 including the LN substrate and the bumps 51 and 53 is the bonding surface between the elastic wave chips 320 and 340 including the LT substrate and the bumps 52 and 54. If it is larger, the failure rate of the composite filter device 30 can be further reduced. Further, the failure rate of the composite filter device 30 is further reduced by making the height of the bumps 51 and 53 on the elastic wave chips 310 and 330 side higher than the height of the bumps 52 and 54 on the elastic wave chips 320 and 340 side. it can.
 図7は、複合型フィルタ装置30の回路図である。複合型フィルタ装置30は、送信側フィルタ31、33と、受信側フィルタ32、34とを備える。送信側フィルタ31、33の一方端は、送信側入出力端子35、37に接続され、他方端はアンテナ入出力端子39に接続されている。受信側フィルタ32、34の一方端は受信側入出力端子36、38に接続され、他方端はアンテナ入出力端子39に接続されている。 FIG. 7 is a circuit diagram of the composite filter device 30. The composite filter device 30 includes transmission side filters 31 and 33 and reception side filters 32 and 34. One ends of the transmission side filters 31 and 33 are connected to the transmission side input / output terminals 35 and 37, and the other end is connected to the antenna input / output terminal 39. One ends of the reception side filters 32 and 34 are connected to the reception side input / output terminals 36 and 38, and the other end is connected to the antenna input / output terminal 39.
 送信側フィルタ31、及び、受信側フィルタ32は、例えば、BandAの通信帯域の高周波信号を選択的に通過させるフィルタである。また、送信側フィルタ33、及び、受信側フィルタ34は、例えば、BandBの通信帯域の高周波信号を選択的に通過させるフィルタである。 The transmission-side filter 31 and the reception-side filter 32 are filters that selectively pass high-frequency signals in the Band A communication band, for example. Moreover, the transmission side filter 33 and the reception side filter 34 are filters that selectively pass a high-frequency signal in the BandB communication band, for example.
 このときBandAに対応する送信側フィルタ31は、上記弾性波チップ310を、送信側フィルタチップとして有するとよい。また、BandBに対応する送信側フィルタ33は、上記弾性波チップ330を、送信側フィルタチップとして有するとよい。すなわち、送信側フィルタ31、33は、LN基板であるチップ基板311、331と、相対的にヤング率の低いバンプ51、53とを備えていることが好ましい。 At this time, the transmission side filter 31 corresponding to Band A may have the elastic wave chip 310 as a transmission side filter chip. Further, the transmission filter 33 corresponding to BandB may include the elastic wave chip 330 as a transmission filter chip. That is, it is preferable that the transmission- side filters 31 and 33 include chip substrates 311 and 331 that are LN substrates and bumps 51 and 53 having a relatively low Young's modulus.
 受信側フィルタチップより大きな耐電力性が求められる送信側フィルタチップが、相対的に耐電力性に優るLN基板を備えることにより、求められる耐電力性を確保した送信側フィルタを備えた複合型フィルタ装置30を得ることができる。 A composite filter including a transmission-side filter that secures required power durability by providing a transmission-side filter chip that is required to have higher power resistance than a reception-side filter chip and having an LN substrate that is relatively superior in power resistance. A device 30 can be obtained.
 一方、BandAに対応する受信側フィルタ32は、上記弾性波チップ320を、受信側フィルタチップとして有するとよい。また、BandBに対応する受信側フィルタ34は、上記弾性波チップ340を、受信側フィルタチップとして有するとよい。すなわち、受信側フィルタ32、34は、LT基板であるチップ基板321、341と、相対的にヤング率の高いバンプ52、54とを備えていることが好ましい。 On the other hand, the reception side filter 32 corresponding to Band A may have the elastic wave chip 320 as a reception side filter chip. Further, the reception-side filter 34 corresponding to BandB may include the elastic wave chip 340 as a reception-side filter chip. That is, it is preferable that the reception- side filters 32 and 34 include chip substrates 321 and 341 that are LT substrates and bumps 52 and 54 having relatively high Young's modulus.
 このように、受信側フィルタチップを備える複合型フィルタ装置においては、耐電力性がそれほど求められない受信側フィルタチップにLN基板を備える弾性波チップを用いることで、複合型フィルタ装置30を得るためのコストを低減することができる。 As described above, in the composite filter device including the reception filter chip, the composite filter device 30 is obtained by using the elastic wave chip including the LN substrate for the reception filter chip that is not required to have much power durability. The cost can be reduced.
 なお、送信側フィルタチップとして機能する弾性波チップ310、330のうち、片方の弾性波チップがLT基板を備えていてもかまわない。複数の送信側フィルタチップを備える複合型フィルタ装置においては、複数の送信側フィルタチップのうち少なくとも1つが、LN基板を有する弾性波チップを備え、かつ、相対的にヤング率の低いバンプにより実装されていれば、本発明の効果を得ることができる。 It should be noted that one of the acoustic wave chips 310 and 330 functioning as the transmission-side filter chip may be provided with an LT substrate. In a composite filter device including a plurality of transmission-side filter chips, at least one of the plurality of transmission-side filter chips includes an elastic wave chip having an LN substrate and is mounted by a bump having a relatively low Young's modulus. If so, the effects of the present invention can be obtained.
 また、本実施形態においては、送信側フィルタと受信側フィルタとをそれぞれ備えるマルチプレクサを複合型フィルタ装置として示したが、本発明の実施形態にかかる複合型フィルタ装置はこれに限られない。すなわち、マルチプレクサを構成するフィルタが全て送信側フィルタであるマルチプレクサや、全て受信側フィルタであるマルチプレクサ、または、送受信の区別がない単なる電気信号を選択的に通過させるフィルタが含まれるマルチプレクサであってもよい。しかし、より好ましくは、送信側フィルタを少なくとも1以上有するマルチプレクサであるとよい。なぜならば、本発明におけるLN基板を備える弾性波チップが有する耐電力性は、送信側フィルタを構成するフィルタチップとして利用される場合に、より効果を奏するためである。 In the present embodiment, the multiplexer including the transmission side filter and the reception side filter is shown as the composite filter device. However, the composite filter device according to the embodiment of the present invention is not limited to this. That is, even if the filters constituting the multiplexer are multiplexers that are all transmission-side filters, multiplexers that are all reception-side filters, or multiplexers that include filters that selectively pass electric signals that do not distinguish between transmission and reception Good. However, more preferably, it is a multiplexer having at least one transmission side filter. This is because the power durability of the acoustic wave chip including the LN substrate in the present invention is more effective when used as a filter chip constituting the transmission filter.
 (2.変形例)
 本実施形態の変形例にかかる複合型フィルタ装置について、LN基板、LT基板以外のチップ基板を備える弾性波チップを有するマルチプレクサを例として、説明する。なお、第3の実施形態の変形例にかかる複合型フィルタ装置30は、上記弾性波チップに関する差異以外の点については、既に説明した第3の実施形態にかかる複合型フィルタ装置30と同様であるため、以下では異なる点についてのみ記載する。
(2. Modification)
A composite filter device according to a modification of the present embodiment will be described by taking, as an example, a multiplexer having an acoustic wave chip including a chip substrate other than an LN substrate and an LT substrate. The composite filter device 30 according to the modification of the third embodiment is the same as the composite filter device 30 according to the already described third embodiment, except for the differences regarding the acoustic wave chip. Therefore, only different points will be described below.
 本変形例にかかる複合型フィルタ装置30において、弾性波チップ330が備えるチップ基板331は、圧電薄膜を含む複数の膜と支持基板とを備えた、積層体となっている。このチップ基板331の構造、及び、チップ基板331とIDT電極との関係について、図8を用いて以下説明する。 In the composite filter device 30 according to this modification, the chip substrate 331 included in the acoustic wave chip 330 is a laminate including a plurality of films including a piezoelectric thin film and a support substrate. The structure of the chip substrate 331 and the relationship between the chip substrate 331 and the IDT electrode will be described below with reference to FIG.
 図8は、弾性波チップ330の構造を示す模式的断面図である。弾性波チップ330は、チップ基板331と、チップ基板331上に形成されたIDT電極332とを備えている。チップ基板331は、高音速支持基板333と、高音速支持基板333に直接、または、間接に積層された低音速膜335と、低音速膜335上に積層された圧電膜337とを備える。また、圧電膜337上にはIDT電極332が形成されている。ここに示す高音速支持基板とは、圧電膜337を伝搬する弾性波よりも、伝播するバルク波音速が高速となる支持基板を指す。チップ基板331においては、高音速支持基板333は、シリコンからなる基板である。また、低音速膜とは、圧電膜337を伝搬する弾性波よりも、伝搬するバルク波音速が低速である材料からなる膜を指す。このような材料としては例えば、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素を加えた化合物などを用いることができる。加えて、圧電膜337は、例えば、タンタル酸リチウムやニオブ酸リチウムなどの圧電単結晶、または、圧電セラミックスからなる。 FIG. 8 is a schematic cross-sectional view showing the structure of the acoustic wave chip 330. The acoustic wave chip 330 includes a chip substrate 331 and an IDT electrode 332 formed on the chip substrate 331. The chip substrate 331 includes a high sound speed support substrate 333, a low sound speed film 335 directly or indirectly stacked on the high sound speed support substrate 333, and a piezoelectric film 337 stacked on the low sound speed film 335. An IDT electrode 332 is formed on the piezoelectric film 337. The high sound velocity support substrate shown here refers to a support substrate in which the propagating bulk wave sound velocity is higher than the elastic wave propagating through the piezoelectric film 337. In the chip substrate 331, the high sound velocity support substrate 333 is a substrate made of silicon. Further, the low sound velocity film refers to a film made of a material having a propagating bulk wave sound velocity slower than an elastic wave propagating through the piezoelectric film 337. As such a material, for example, silicon oxide, glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used. In addition, the piezoelectric film 337 is made of, for example, a piezoelectric single crystal such as lithium tantalate or lithium niobate, or piezoelectric ceramics.
 弾性波チップ330に接合されるバンプ53については、その材料は特に限定されず、第1の実施形態にかかる弾性波装置20と同様、はんだや金以外にも、銀や銅など種々の材料を用いることができる。すなわち、弾性波チップ530とパッケージ基板70とを電気的に接続可能な材料である限り、任意の材料を用いることができる。 The material of the bump 53 to be bonded to the elastic wave chip 330 is not particularly limited. Like the elastic wave device 20 according to the first embodiment, various materials such as silver and copper can be used in addition to solder and gold. Can be used. That is, any material can be used as long as it is a material that can electrically connect the acoustic wave chip 530 and the package substrate 70.
 なお、本変形例にかかる複合型フィルタ装置30は、上述したような、LN基板を備えた弾性波チップ310、LT基板を備えた弾性波チップ320、及び、積層体を備えた弾性波チップ330が同一のパッケージ基板に混載された複合型フィルタ装置30に限られない。例えば、弾性波チップ330、340が水晶基板、サファイア基板など基板全体に圧電性を有する基板をチップ基板331、341として有していてもよい。あるいは、弾性波チップ340が備えるチップ基板341として、圧電薄膜を備え、当該圧電薄膜と音速の異なる膜、および支持基板などの積層体を用いることもできる。このように、弾性波チップ330、340が備えるチップ基板331、341は少なくとも一部に圧電性を有する基板である限り、任意の材料を含んで構成された基板を用いることができる。 Note that the composite filter device 30 according to the present modification includes the elastic wave chip 310 including the LN substrate, the elastic wave chip 320 including the LT substrate, and the elastic wave chip 330 including the laminate as described above. However, the present invention is not limited to the composite filter device 30 mixedly mounted on the same package substrate. For example, the acoustic wave chips 330 and 340 may include, as the chip substrates 331 and 341, substrates having piezoelectricity over the entire substrate, such as a quartz substrate and a sapphire substrate. Alternatively, as the chip substrate 341 included in the acoustic wave chip 340, a laminated body such as a piezoelectric thin film, a film having a sound velocity different from that of the piezoelectric thin film, and a supporting substrate can be used. As described above, as long as the chip substrates 331 and 341 included in the acoustic wave chips 330 and 340 are substrates having piezoelectricity at least in part, a substrate including any material can be used.
 なお、本発明の実施形態にかかる弾性波装置、および、複合型フィルタ装置は、本実施形態に示すCSP構造の弾性波装置に限られない。例えば、複数のWLP(Wafer Level Package:ウェハレベルパッケージ)構造の弾性表面波チップを同一のモジュール用パッケージ基板上に備えた、モジュール構造の弾性波装置なども、本発明にかかる弾性波装置となりうる。また、実装される弾性波チップの数は2つ以上であればよく、特定の数に限定されない。さらに、弾性波チップとしても、弾性境界波やバルク波など任意の弾性波を利用するチップを用いることができる。 The elastic wave device and the composite filter device according to the embodiment of the present invention are not limited to the CSP structure elastic wave device shown in the present embodiment. For example, a module-structured acoustic wave device including a plurality of WLP (Wafer Level Package) surface acoustic wave chips on the same module package substrate can also be an elastic wave device according to the present invention. . Further, the number of mounted acoustic wave chips may be two or more, and is not limited to a specific number. Furthermore, as an elastic wave chip, a chip using any elastic wave such as an elastic boundary wave or a bulk wave can be used.
 〔製造方法〕
  以下、本発明の実施形態にかかる弾性波装置、または、複合型フィルタ装置の製造方法について説明する。
〔Production method〕
Hereinafter, a method of manufacturing an acoustic wave device or a composite filter device according to an embodiment of the present invention will be described.
 弾性波装置(複合型フィルタ装置)の製造方法は、弾性波チップを形成する工程と、パッケージ基板に弾性波チップを実装する工程と、実装した弾性波チップを封止する工程とを含む。 A method for manufacturing an acoustic wave device (composite filter device) includes a step of forming an acoustic wave chip, a step of mounting the acoustic wave chip on a package substrate, and a step of sealing the mounted acoustic wave chip.
 弾性波チップを形成する工程は、チップ基板の素材であるウエハに薄膜を形成する工程と、薄膜を用いてIDT電極などの回路パターンを形成する工程とを備える。薄膜を形成する工程は、スパッタ法や蒸着法、電解メッキ法などを用いて、IDT電極などの回路パターンの素材となる酸化ケイ素膜やアルミニウム膜などの薄膜を形成する。回路パターンを形成する工程は、レジストを用いた露光技術などを通じて回路パターンを形成する。これらの工程により、チップ基板とIDT電極とを備える弾性波チップを形成することができる。 The step of forming the acoustic wave chip includes a step of forming a thin film on a wafer that is a material of the chip substrate, and a step of forming a circuit pattern such as an IDT electrode using the thin film. In the step of forming a thin film, a thin film such as a silicon oxide film or an aluminum film, which is a material for a circuit pattern such as an IDT electrode, is formed using a sputtering method, a vapor deposition method, an electrolytic plating method, or the like. In the step of forming the circuit pattern, the circuit pattern is formed through an exposure technique using a resist. By these steps, an acoustic wave chip including a chip substrate and an IDT electrode can be formed.
 弾性波チップを実装する工程は、例えば、バンプと共に導電性ペーストを用いて実装する導電性ペースト接着工法や、バンプに熱負荷と荷重負荷とを加えて実装する圧接工法、超音波接合工法など種々のフリップチップ実装工法を用いて行える。このとき、実装に用いるバンプがはんだからなるバンプであった場合は、フリップチップ実装工法の中でも、リフロー接合工法を用いることが好ましい。該工法においては、バンプ形成箇所に常温ではんだを塗布することにより、はんだからなるバンプを形成した後、該バンプを加熱・冷却することで、実装を行う。すなわち、機械的荷重を加えずとも、熱のみを加えれば実装が可能となるため、他の実装工法を用いる場合に比べて、バンプの高さがより高く形成されやすい。従って、はんだからなるバンプにリフロー接合工法を用いることで、該バンプを用いて実装される弾性波チップに加わる応力がさらに減少しやすくなり、故障率がより低減した弾性波装置(複合型フィルタ装置)を得やすくなる。 The process of mounting the acoustic wave chip includes various methods such as a conductive paste bonding method for mounting using a conductive paste together with bumps, a pressure welding method for applying heat load and load load to the bumps, and an ultrasonic bonding method. The flip chip mounting method can be used. At this time, when the bump used for mounting is a bump made of solder, it is preferable to use the reflow bonding method among the flip chip mounting methods. In this construction method, solder is applied to the bump forming portion at room temperature to form a bump made of solder, and then the bump is heated and cooled to perform mounting. In other words, mounting is possible only by applying heat without applying a mechanical load. Therefore, the bumps are easily formed higher than when using other mounting methods. Therefore, by using the reflow bonding method for the bumps made of solder, the stress applied to the elastic wave chip mounted using the bumps can be further reduced, and the elastic wave device (composite filter device) having a further reduced failure rate. ).
 本工程において、LN基板を備える弾性波チップ、および、LT基板を備える弾性波チップは、どちらを先にパッケージ基板に実装してもよい。しかし、これら2種類の弾性波チップに加えて、図8に示すような積層体からなる基板を備える弾性波チップを有した複合型フィルタ装置の製造方法においては、積層体からなる基板を備える弾性波チップを最後に実装することが好ましい。すなわち、第3の実施形態の変形例にかかる複合型フィルタ装置30においては、LN基板、または、LT基板を備える弾性波チップ310、320、340を実装した後で、積層体からなるチップ基板331を備える弾性波チップ330を実装するのがよい。 In this step, either the acoustic wave chip including the LN substrate or the acoustic wave chip including the LT substrate may be mounted on the package substrate first. However, in addition to these two types of acoustic wave chips, in a method for manufacturing a composite filter device having an acoustic wave chip including a substrate made of a laminate as shown in FIG. It is preferable to mount the wave chip last. That is, in the composite filter device 30 according to the modification of the third embodiment, after mounting the acoustic wave chips 310, 320, and 340 including the LN substrate or the LT substrate, the chip substrate 331 made of a stacked body. It is preferable to mount an acoustic wave chip 330 including
 弾性波チップ310、320、340が備えるLN基板およびLT基板は、弾性波チップ330がチップ基板311の一部として備えるシリコン基板に比べてクラック耐性に劣る。そのため、弾性波チップ310、320、340は、弾性波チップ330に比べて、実装時に発生する応力を起因として、クラックを生じやすい。すなわち、弾性波チップを実装する工程において、クラック耐性で優位の弾性波チップ330にはクラックが生じずに、クラック耐性で劣位の弾性波チップ310、320、330のいずれかにクラックが生じる場合がある。このとき、弾性波チップ330を最初に実装してしまっていると、クラックが生じていない弾性波チップ330もろとも、複合型フィルタ装置30を不良品として廃棄する必要がでてくる。 The LN substrate and the LT substrate included in the acoustic wave chips 310, 320, and 340 are inferior in crack resistance compared to the silicon substrate included in the acoustic wave chip 330 as a part of the chip substrate 311. Therefore, the acoustic wave chips 310, 320, and 340 are more likely to crack due to stress generated during mounting than the acoustic wave chip 330. That is, in the process of mounting the acoustic wave chip, there is a case where cracks are generated in any one of the acoustic wave chips 310, 320, and 330 inferior in crack resistance without being cracked in the elastic wave chip 330 superior in crack resistance. is there. At this time, if the acoustic wave chip 330 is first mounted, it is necessary to discard the composite filter device 30 as a defective product, including the acoustic wave chip 330 in which no crack is generated.
 一方、弾性波チップ330は、支持基板に複数の膜を積層した積層体をチップ基板331として備えるため、LN基板やLT基板など単体の基板をチップ基板として備える弾性波チップ310、320、340に比べて、製造コストが高い。このように相対的に高価な弾性波チップ330を廃棄するとなると、廃棄ロスが大きくなる。しかし、弾性波チップ330を実装する前に弾性波チップ310、320、340を実装してしまえば、弾性波チップ310、320、340に実装時の応力によるクラックが生じて複合型フィルタ装置30を廃棄する必要が出た場合にも、実装前の弾性波チップ330は廃棄せずに済む。すなわち、このような製造方法を用いれば、相対的に高価な弾性波チップを廃棄する頻度が減少されるため、廃棄ロスを低減できるのである。 On the other hand, the elastic wave chip 330 includes a laminated body in which a plurality of films are stacked on a support substrate as the chip substrate 331. Compared with the manufacturing cost. When the relatively expensive elastic wave chip 330 is discarded as described above, the disposal loss increases. However, if the acoustic wave chips 310, 320, and 340 are mounted before the acoustic wave chip 330 is mounted, cracks due to stress at the time of mounting occur in the acoustic wave chips 310, 320, and 340, and the composite filter device 30 is Even when it is necessary to discard the elastic wave chip 330 before mounting, it is not necessary to discard it. That is, if such a manufacturing method is used, since the frequency of discarding relatively expensive elastic wave chips is reduced, the loss of disposal can be reduced.
 実装した弾性波チップを封止する工程は、樹脂材料などで形成された保護層を用いて封止する。このとき、弾性波チップとパッケージ基板との間に、弾性波チップに設けられたIDT電極の励振を可能とするための空隙部を設けて、封止するようにする。 The step of sealing the mounted acoustic wave chip is performed using a protective layer formed of a resin material or the like. At this time, a gap is formed between the acoustic wave chip and the package substrate so as to enable excitation of the IDT electrode provided on the acoustic wave chip and sealed.
 《高周波フロントエンド回路、通信装置》
 本発明の実施形態にかかる高周波フロントエンド回路、および、通信装置について、図9を参照して説明する。例として、第2の実施形態にかかる複合型フィルタ装置と第3の実施形態にかかる複合型フィルタ装置とを備える高周波フロントエンド回路、および、該高周波フロントエンド回路を備える通信装置を挙げて説明する。
<< High-frequency front-end circuit, communication device >>
A high-frequency front-end circuit and a communication device according to an embodiment of the present invention will be described with reference to FIG. As an example, a high frequency front-end circuit including the composite filter device according to the second embodiment and the composite filter device according to the third embodiment, and a communication device including the high-frequency front end circuit will be described. .
 図9は、複合型フィルタ装置20と複合型フィルタ装置30を備える高周波フロントエンド回路10、および、高周波フロントエンド回路10を備えた通信装置1の回路図である。同図に示すように、通信装置1は、高周波フロントエンド回路10と、RF信号処理回路(RFIC)3と、ベースバンド処理回路(BBIC)4とを備えている。高周波フロントエンド回路10はアンテナ素子2で送受信される高周波信号を伝送する回路である。このとき、RF信号処理回路3は、ベースバンド信号処理回路4、および、高周波フロントエンド回路10から入出力される高周波信号を信号処理する。ベースバンド信号処理回路4は高周波信号を、例えば画像信号や音声信号として利用できるよう、信号処理をおこなう。 FIG. 9 is a circuit diagram of the high frequency front end circuit 10 including the composite filter device 20 and the composite filter device 30, and the communication device 1 including the high frequency front end circuit 10. As shown in FIG. 1, the communication device 1 includes a high frequency front end circuit 10, an RF signal processing circuit (RFIC) 3, and a baseband processing circuit (BBIC) 4. The high frequency front end circuit 10 is a circuit that transmits a high frequency signal transmitted and received by the antenna element 2. At this time, the RF signal processing circuit 3 performs signal processing on the high frequency signals input and output from the baseband signal processing circuit 4 and the high frequency front end circuit 10. The baseband signal processing circuit 4 performs signal processing so that the high-frequency signal can be used as, for example, an image signal or an audio signal.
 高周波フロントエンド回路10は、複合型フィルタ装置20と、複合型フィルタ装置30と、増幅回路11~16とを備える。高周波フロントエンド回路10は、スイッチ部19を介して、アンテナ素子2と接続される。増幅回路11~16のうち、増幅回路11、13、14はRF信号処理回路3から出力された高周波送信信号を増幅し、複合型フィルタ装置20または複合型フィルタ装置30を経由してアンテナ素子2に出力する、送信増幅回路である。一方、増幅回路11~16のうち、12、15、16は、アンテナ素子2と、複合型フィルタ装置20または複合型フィルタ装置30とを経由した高周波信号を増幅し、RF信号処理回路3へ出力する受信増幅回路である。 The high-frequency front-end circuit 10 includes a composite filter device 20, a composite filter device 30, and amplifier circuits 11 to 16. The high-frequency front end circuit 10 is connected to the antenna element 2 via the switch unit 19. Among the amplifier circuits 11 to 16, the amplifier circuits 11, 13, and 14 amplify the high frequency transmission signal output from the RF signal processing circuit 3, and the antenna element 2 through the composite filter device 20 or the composite filter device 30. Is a transmission amplifier circuit that outputs to On the other hand, among the amplifier circuits 11 to 16, 12, 15, and 16 amplify a high frequency signal that has passed through the antenna element 2 and the composite filter device 20 or the composite filter device 30 and output the amplified signal to the RF signal processing circuit 3. A receiving amplifier circuit.
 複合型フィルタ装置20は、第2の実施形態にかかる複合型フィルタ装置20であり、送信側フィルタ21と受信側フィルタ22とを備える。送信側入出力端子25、受信側入出力端子26は増幅回路11、12へ高周波信号を入出力するための端子として機能する。 The composite filter device 20 is the composite filter device 20 according to the second embodiment, and includes a transmission side filter 21 and a reception side filter 22. The transmission side input / output terminal 25 and the reception side input / output terminal 26 function as terminals for inputting / outputting high frequency signals to / from the amplifier circuits 11, 12.
 複合型フィルタ装置30は、第3の実施形態にかかる複合型フィルタ装置30であり、送信側フィルタ31、33と受信側フィルタ32、34とを備える。送信側フィルタ31、及び、受信側フィルタ32は、例えば、BandAの通信帯域の高周波信号を選択的に通過させるフィルタである。また、送信側フィルタ33、及び、受信側フィルタ34は、例えば、BandBの通信帯域の高周波信号を選択的に通過させるフィルタである。送信側入出力端子35、37は増幅回路13、14から出力された高周波送信信号の経由点として機能し、受信側入出力端子36、38は増幅回路15、16へ入力される高周波信号の経由点として機能する。 The composite filter device 30 is the composite filter device 30 according to the third embodiment, and includes transmission side filters 31 and 33 and reception side filters 32 and 34. The transmission-side filter 31 and the reception-side filter 32 are filters that selectively pass a high-frequency signal in the Band A communication band, for example. Moreover, the transmission side filter 33 and the reception side filter 34 are filters that selectively pass a high-frequency signal in the BandB communication band, for example. The transmission-side input / output terminals 35 and 37 function as via points for the high-frequency transmission signals output from the amplifier circuits 13 and 14, and the reception-side input / output terminals 36 and 38 via the high-frequency signals input to the amplification circuits 15 and 16. Acts as a point.
 このとき複合型フィルタ装置20におけるフィルタ21、22は、例えば、フィルタ31~34が選択的に通過させるBandA、Bの通信帯域の高周波信号とは異なる周波数帯域を通信帯域とする、BandCの通信帯域の高周波信号を選択的に通過させるフィルタである。 At this time, the filters 21 and 22 in the composite filter device 20 are, for example, the BandC communication band having a frequency band different from the high-frequency signal of the BandA and B communication bands that the filters 31 to 34 selectively pass. It is a filter which selectively passes the high frequency signal.
 スイッチ部19は、アンテナ側端子9と複合型フィルタ装置20におけるアンテナ入出力端子29の接続、および、アンテナ側端子9と複合型フィルタ装置30におけるアンテナ入出力端子39との接続を切り替える。これにより、通信装置1は、異なる周波数帯域を通信帯域とする複数のバンドの高周波信号を処理できる、マルチバンド対応の通信装置として機能できる。 The switch unit 19 switches the connection between the antenna side terminal 9 and the antenna input / output terminal 29 in the composite filter device 20 and the connection between the antenna side terminal 9 and the antenna input / output terminal 39 in the composite filter device 30. Thereby, the communication apparatus 1 can function as a multiband-compatible communication apparatus that can process high-frequency signals of a plurality of bands having different frequency bands as communication bands.
 なお、本発明の実施形態にかかる高周波フロントエンド回路の構成、および、通信装置の構成は上記で示した構成に限定されない。高周波フロントエンド回路10は、複合型フィルタ装置20、30に代表される、本発明にかかる複合型フィルタ装置を少なくとも1つ、かつ、増幅回路を少なくとも1つ備えていればよい。また、通信装置1は、高周波フロントエンド回路10に代表される、本発明にかかる高周波フロントエンド回路と、RF信号処理回路とを備えていればよい。 Note that the configuration of the high-frequency front-end circuit and the configuration of the communication device according to the embodiment of the present invention are not limited to the configurations described above. The high-frequency front end circuit 10 only needs to include at least one composite filter device according to the present invention represented by the composite filter devices 20 and 30 and at least one amplifier circuit. Moreover, the communication apparatus 1 should just be equipped with the high frequency front end circuit concerning this invention represented by the high frequency front end circuit 10, and RF signal processing circuit.
20 弾性波装置、41,42 バンプ、60 パッケージ基板、210,220 弾性波チップ、211,221 チップ基板。 20 elastic wave device, 41, 42 bump, 60 package substrate, 210, 220 elastic wave chip, 211, 221 chip substrate.

Claims (10)

  1.  パッケージ基板と、
     前記パッケージ基板に実装され、ニオブ酸リチウム基板である第1の基板を有する、第1の弾性波チップと、
     前記パッケージ基板に実装され、タンタル酸リチウム基板である第2の基板を有する、第2の弾性波チップと、
     前記第1の弾性波チップと前記パッケージ基板とを電気的に接続する第1のバンプと、
     前記第2の弾性波チップと前記パッケージ基板とを電気的に接続する第2のバンプと、を備える弾性波装置であって、
     前記第1のバンプは前記第1の弾性波チップと接合され、前記第2のバンプは前記第2の弾性波チップと接合され、
     前記第1のバンプの材料は、前記第2のバンプの材料より低いヤング率を有する、
     弾性波装置。
    A package substrate;
    A first acoustic wave chip mounted on the package substrate and having a first substrate that is a lithium niobate substrate;
    A second acoustic wave chip mounted on the package substrate and having a second substrate that is a lithium tantalate substrate;
    A first bump for electrically connecting the first acoustic wave chip and the package substrate;
    An elastic wave device comprising: a second bump for electrically connecting the second elastic wave chip and the package substrate;
    The first bump is joined to the first acoustic wave chip, the second bump is joined to the second acoustic wave chip,
    The material of the first bump has a lower Young's modulus than the material of the second bump.
    Elastic wave device.
  2.  前記第1のバンプの高さは、前記第2のバンプの高さより高い、請求項1に記載の弾性波装置。 2. The elastic wave device according to claim 1, wherein a height of the first bump is higher than a height of the second bump.
  3.  前記弾性波装置を前記第1、第2の弾性波チップ側から平面視したとき、前記第1のバンプと前記第1の弾性波チップとの接合面の面積は、前記第2のバンプと前記第2の弾性波チップとの接合面の面積より大きい、請求項1または2に記載の弾性波装置。 When the acoustic wave device is viewed in plan from the first and second acoustic wave chips, the area of the joint surface between the first bump and the first acoustic wave chip is as follows. The elastic wave device according to claim 1, wherein the elastic wave device is larger than an area of a joint surface with the second elastic wave chip.
  4.  前記第1のバンプの材料ははんだを含む、請求項1~3のいずれかに記載の弾性波装置。 4. The acoustic wave device according to claim 1, wherein the material of the first bump includes solder.
  5.  前記第2のバンプの材料は、前記第1のバンプの材料より高い熱伝導率を有する、請求項1~4のいずれかに記載の弾性波装置。 5. The elastic wave device according to claim 1, wherein the material of the second bump has a higher thermal conductivity than the material of the first bump.
  6.  前記第2のバンプの材料は金を含む、請求項1~5のいずれかに記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 5, wherein a material of the second bump includes gold.
  7.  前記弾性波装置は、送信側フィルタチップを含む複合型フィルタ装置であり、
     前記送信側フィルタチップは、前記第1の弾性波チップである、請求項1~6のいずれかに記載の弾性波装置。
    The acoustic wave device is a composite filter device including a transmission filter chip,
    The acoustic wave device according to any one of claims 1 to 6, wherein the transmission-side filter chip is the first acoustic wave chip.
  8.  前記弾性波装置は、受信側フィルタチップを含む複合型フィルタ装置であり、
     前記受信側フィルタチップは、前記第2の弾性波チップである、請求項1~7のいずれかに記載の弾性波装置。
    The acoustic wave device is a composite filter device including a reception side filter chip,
    The acoustic wave device according to any one of claims 1 to 7, wherein the reception-side filter chip is the second acoustic wave chip.
  9.  請求項1~8のいずれかに記載の弾性波装置と、
     高周波信号を増幅する増幅回路と、を備える、高周波フロントエンド回路。
    The elastic wave device according to any one of claims 1 to 8,
    A high-frequency front-end circuit comprising: an amplifier circuit that amplifies a high-frequency signal.
  10.  請求項9に記載の高周波フロントエンド回路と、
     高周波信号を処理するRF信号処理回路と、を備える、通信装置。
    A high-frequency front-end circuit according to claim 9,
    An RF signal processing circuit that processes a high-frequency signal.
PCT/JP2018/006569 2017-04-27 2018-02-22 Surface acoustic wave device, high frequency front-end circuit using surface acoustic wave device, and communication device using surface acoustic wave device WO2018198508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-088569 2017-04-27
JP2017088569 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198508A1 true WO2018198508A1 (en) 2018-11-01

Family

ID=63920201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006569 WO2018198508A1 (en) 2017-04-27 2018-02-22 Surface acoustic wave device, high frequency front-end circuit using surface acoustic wave device, and communication device using surface acoustic wave device

Country Status (1)

Country Link
WO (1) WO2018198508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009976A1 (en) * 2020-07-09 2022-01-13 株式会社村田製作所 High frequency module and communication device
WO2023054703A1 (en) * 2021-09-30 2023-04-06 株式会社村田製作所 Elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295069A (en) * 1999-04-01 2000-10-20 Murata Mfg Co Ltd Electronic component
JP2004007372A (en) * 2002-04-09 2004-01-08 Murata Mfg Co Ltd Manufacturing method of surface acoustic wave device, surface acoustic wave device employing the method, and communication apparatus
JP2013031030A (en) * 2011-07-29 2013-02-07 Murata Mfg Co Ltd Circuit module and composite circuit module
JP2016208056A (en) * 2010-12-20 2016-12-08 ローム株式会社 Light-emitting element unit and light-emitting element package
WO2016208677A1 (en) * 2015-06-24 2016-12-29 株式会社村田製作所 Elastic wave filter, multiplexer, duplexer, high-frequency front-end circuit, and communication device
WO2017033575A1 (en) * 2015-08-25 2017-03-02 株式会社村田製作所 Elastic wave device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295069A (en) * 1999-04-01 2000-10-20 Murata Mfg Co Ltd Electronic component
JP2004007372A (en) * 2002-04-09 2004-01-08 Murata Mfg Co Ltd Manufacturing method of surface acoustic wave device, surface acoustic wave device employing the method, and communication apparatus
JP2016208056A (en) * 2010-12-20 2016-12-08 ローム株式会社 Light-emitting element unit and light-emitting element package
JP2013031030A (en) * 2011-07-29 2013-02-07 Murata Mfg Co Ltd Circuit module and composite circuit module
WO2016208677A1 (en) * 2015-06-24 2016-12-29 株式会社村田製作所 Elastic wave filter, multiplexer, duplexer, high-frequency front-end circuit, and communication device
WO2017033575A1 (en) * 2015-08-25 2017-03-02 株式会社村田製作所 Elastic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009976A1 (en) * 2020-07-09 2022-01-13 株式会社村田製作所 High frequency module and communication device
WO2023054703A1 (en) * 2021-09-30 2023-04-06 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
US10250222B2 (en) Electronic device
JP6315716B2 (en) Elastic wave device
JP6454299B2 (en) Elastic wave device
KR100654054B1 (en) Piezoelectric component and method for manufacturing the same
US11444596B2 (en) Acoustic wave device
US10665566B2 (en) Surface acoustic wave resonator having ring-shaped metal sealing configuration
US10855248B2 (en) Electronic component and method of manufacturing the same
JP2012151698A (en) Elastic wave device
JP7370146B2 (en) Acoustic wave devices, filters and multiplexers
US20190181828A1 (en) Electronic component module
JP2006014096A (en) Surface acoustic wave device
JP2015032634A (en) Electronic device
WO2019124127A1 (en) Acoustic wave device, high-frequency front-end circuit, and communication device
CN111355468A (en) Elastic wave device and electronic component module
WO2018198508A1 (en) Surface acoustic wave device, high frequency front-end circuit using surface acoustic wave device, and communication device using surface acoustic wave device
US10637434B2 (en) Elastic wave device, high-frequency front end circuit and communication device
US20180151794A1 (en) Electronic component and method of fabricating the same
JP7347955B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP6556081B2 (en) Surface acoustic wave device
US10580750B2 (en) Electronic component
US20210297058A1 (en) Acoustic wave element and acoustic wave device
WO2004109796A1 (en) Electronic component device
JP2004129193A (en) Elastic surface wave apparatus
JP4234088B2 (en) Electronic component and manufacturing method thereof
US10566948B2 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP