WO2018198364A1 - 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア - Google Patents

分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア Download PDF

Info

Publication number
WO2018198364A1
WO2018198364A1 PCT/JP2017/017065 JP2017017065W WO2018198364A1 WO 2018198364 A1 WO2018198364 A1 WO 2018198364A1 JP 2017017065 W JP2017017065 W JP 2017017065W WO 2018198364 A1 WO2018198364 A1 WO 2018198364A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
wavelength
unit
excitation
Prior art date
Application number
PCT/JP2017/017065
Other languages
English (en)
French (fr)
Inventor
渡邉 康之
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019515063A priority Critical patent/JP6760494B2/ja
Priority to PCT/JP2017/017065 priority patent/WO2018198364A1/ja
Priority to CN201780090129.8A priority patent/CN110582692B/zh
Publication of WO2018198364A1 publication Critical patent/WO2018198364A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a spectrofluorometer, a spectroscopic measurement method, and control software for a spectrofluorometer.
  • the present invention relates to a spectrofluorometer, a spectroscopic measurement method, and control software for a spectrofluorometer that can be suitably used when performing measurement using excitation light having a plurality of different wavelengths.
  • Functional molecules such as organic EL light emitting devices, photocatalysts, and molecular sensors using photoreactions are designed to have a molecular structure that absorbs light of a specific wavelength and achieves the intended function.
  • the molecular structure is designed to have an electronic state that absorbs light of a specific wavelength and transitions to an excited state, emits fluorescence or phosphorescence of a specific wavelength, and returns to the ground state.
  • the ratio of the number of photons emitted from the sample to the number of photons emitted to the sample, which is a functional substance, is called external quantum efficiency.
  • the ratio of the number of photons emitted from the sample to the number of photons absorbed by the sample is called internal quantum efficiency. External quantum efficiency and internal quantum efficiency are used as one index for evaluating a functional substance.
  • External quantum efficiency and internal quantum efficiency are determined by irradiating excitation light of a specific wavelength using a spectrofluorometer and measuring the intensity of fluorescence or phosphorescence emitted from the sample.
  • the spectrofluorometer includes an excitation light source unit having a light source and a spectroscopic unit, an integrating sphere for collecting fluorescence and phosphorescence emitted from a sample, and a detection unit having a spectroscopic unit and a detector.
  • the intensity (intensity A) of the light (transmitted light) that has passed through the cuvette cell is irradiated by irradiating excitation light to the cuvette cell in which only the solvent for dissolving the actual sample (blank sample) is enclosed.
  • the cuvette cell in which the actual sample solution obtained by dissolving the actual sample in the solvent is irradiated with excitation light is measured.
  • the intensity (intensity C) of fluorescence or phosphorescence emitted from the actual sample solution is also measured.
  • the photon numbers A to C are obtained from the intensities A to C, respectively.
  • the external quantum efficiency is obtained from the ratio of the photon number C to the photon number A
  • the internal quantum efficiency is obtained from the ratio of the photon number C to the photon number AB obtained by subtracting the photon number B from the photon number A (for example, Patent Document 1). ).
  • spectrofluorometers operate in response to instructions from dedicated control software.
  • a screen for inputting measurement conditions is displayed.
  • measurement conditions such as the wavelength of excitation light, the measurement wavelength range of transmitted light, and the measurement wavelength range of fluorescence (or phosphorescence)
  • a cuvette in which a blank sample is sealed at a predetermined position of the spectrofluorometer Prompt the user to set the cell.
  • the control software irradiates the blank sample in the cuvette cell with the excitation light of the wavelength specified by the user from the excitation light source part of the spectrophotometer and detects it.
  • the intensity of the transmitted light that has passed through the blank sample is measured in the wavelength range input by the user.
  • the user is prompted to set the cuvette cell in which the actual sample solution is enclosed.
  • the control software irradiates the actual sample solution in the cuvette cell with the excitation light of the wavelength specified by the user, and transmits the transmitted light that has passed through the actual sample solution.
  • the intensity and the intensity of fluorescence or phosphorescence emitted from the actual sample solution are measured in the wavelength range input by the user.
  • a blank measurement and an actual measurement are respectively performed on the light of the first wavelength, and then the light of the second wavelength is performed.
  • a blank measurement and an actual measurement are performed for each.
  • the cuvette cell is washed, the actual sample solution is enclosed, the actual measurement is performed, the cuvette cell is washed again after the actual measurement is completed, and the blank sample is enclosed.
  • the process of performing the blank measurement at the second wavelength has to be repeated, and there is a problem that it takes time to clean the cuvette cell, enclose the blank sample or sample solution, and set the cuvette cell.
  • the problem to be solved by the present invention is a spectrofluorometer, a measurement method using a spectrofluorometer, and a spectrofluorometer capable of easily performing blank measurement and actual measurement of excitation light having a plurality of wavelengths To provide control software.
  • the spectrofluorometer which has been made to solve the above problems, a) a sample placement section where the sample is placed; b) a light source unit capable of emitting light of a plurality of wavelengths toward the sample placement unit; c) a detection unit that measures the intensity of light within a predetermined wavelength range among the light from the sample placement unit; and d) an excitation wavelength input unit that receives an input of a plurality of excitation wavelengths that are part or all of the plurality of wavelengths by a user; e) a measurement wavelength range determination unit that determines a transmission light measurement wavelength range and a light emission measurement wavelength range corresponding to each excitation wavelength according to a predetermined rule corresponding to the plurality of input excitation wavelengths; f) Upon receiving an instruction to perform blank measurement by the user, the light source unit sequentially emits light of the plurality of excitation wavelengths, and the light of each excitation wavelength is within the transmitted light measurement wavelength range that has passed through the sample placement unit.
  • the light source unit is a combination of a continuous light source such as a lamp that emits continuous light in a wavelength range including a plurality of excitation wavelengths and a spectroscope, each emitting light of one wavelength among the plurality of excitation wavelengths.
  • a continuous light source such as a lamp that emits continuous light in a wavelength range including a plurality of excitation wavelengths and a spectroscope, each emitting light of one wavelength among the plurality of excitation wavelengths.
  • Appropriate ones such as one having a plurality of monochromatic light sources, a combination of a discontinuous light source that emits discontinuous light including light having a plurality of excitation wavelengths, and a spectroscope may be used.
  • the detection unit that measures the intensity of light within the predetermined wavelength range measures the intensity of light within a specified wavelength range based on external control.
  • the user receives a plurality of excitation wavelength inputs.
  • the user can display a list of multiple excitation wavelengths and allow the user to select multiple excitation wavelengths from among them.
  • a table or the like associated with the excitation wavelength, the transmitted light measurement wavelength range, and the emission measurement wavelength range is prepared in advance, and a plurality of excitations associated with the name and type by allowing the user to input the name and type of the sample. It can be performed by various methods such as reading out the wavelength or the like.
  • the measurement wavelength range determination unit corresponds to the plurality of excitation wavelengths input to the user, and corresponds to each excitation wavelength according to a predetermined rule.
  • the predetermined rule here is, for example, a transmitted light measurement wavelength range in which a wavelength that is shorter than each excitation wavelength by a predetermined wavelength is a lower limit wavelength, and a wavelength that is longer than each excitation wavelength by a predetermined wavelength is an upper limit wavelength.
  • a range of a predetermined wavelength width having the upper limit wavelength of the transmitted light measurement wavelength range as the lower limit wavelength is determined as the measurement wavelength range of light emission, and the like.
  • the user may input the name and type of the sample, and read the measurement wavelength range of transmitted light and light emission associated with the name and type. Moreover, you may make it make a user input the upper limit wavelength and lower limit wavelength of the measurement wavelength range of light emission.
  • the blank measurement execution unit operates the light source unit and the detection unit, and sequentially emits light of a plurality of excitation wavelengths from the light source unit.
  • the intensity of light within the transmitted light measurement wavelength range that is emitted and passes through the sample placement portion (blank sample placed in) is measured for the light of each excitation wavelength.
  • the actual measurement execution unit operates the light source unit and the detection unit, Light of a plurality of excitation wavelengths is emitted in sequence, and for each excitation wavelength, the intensity of light within the transmitted light measurement wavelength range that has passed through the sample placement section (the actual sample placed in) and the light emission emitted from the sample placement section The intensity of light within the measurement wavelength range is measured.
  • spectrophotometer In the spectrophotometer according to the present invention, blank measurement is sequentially performed for a plurality of excitation wavelengths, and then actual measurement is sequentially performed for a plurality of excitation wavelengths. It is only necessary to replace them, and the measurement can be performed easily. In addition, since the analyst only has to input a plurality of excitation wavelengths before starting the measurement, the labor of the analyst is reduced as compared with the measurement using the conventional apparatus.
  • a second aspect of the present invention made to solve the above problems is a spectroscopic measurement method using a spectrofluorometer having a light source unit, a sample placement unit, and a detection unit, a) Accepts multiple excitation wavelengths input by the user, b) According to a predetermined rule corresponding to the plurality of excitation wavelengths, a transmitted light measurement wavelength range and an emission measurement wavelength range corresponding to each excitation wavelength are determined, c) A blank measurement is performed in which light of the plurality of excitation wavelengths is sequentially emitted from the light source unit, and the intensity of the light within the transmitted light measurement wavelength range that has passed through the sample placement unit is measured for the light of each excitation wavelength.
  • d) sequentially emit light of the plurality of excitation wavelengths from the light source unit, and emit light of each excitation wavelength from the sample arrangement unit and the intensity of light within the transmitted light measurement wavelength range that has passed through the sample arrangement unit.
  • the actual measurement for measuring the intensity of the light within the emission wavelength measurement range is performed.
  • a third aspect of the present invention made to solve the above-mentioned problem is control software for a spectrofluorometer having a light source section, a sample placement section, and a detection section, and the spectrofluorometer
  • a computer that is communicably connected to a) an excitation wavelength input unit that accepts multiple excitation wavelength inputs by the user; b) a measurement wavelength range determining unit that determines a transmitted light measurement wavelength range and a luminescence measurement wavelength range corresponding to each excitation wavelength according to a predetermined rule corresponding to the plurality of excitation wavelengths; c) In response to a blank measurement execution instruction from the user, the light source unit sequentially emits light of the plurality of excitation wavelengths, and the light of each excitation wavelength is within the transmitted light measurement wavelength range that has passed through the sample placement unit.
  • the spectroscopic measurement method By using the spectrofluorometer, the spectroscopic measurement method, or the spectrofluorometer control software according to the present invention, it is possible to easily perform blank measurement and actual measurement for excitation light having a plurality of wavelengths.
  • FIG. 1 shows a main configuration of the spectrofluorometer 1 of the present embodiment.
  • This spectrofluorometer is roughly composed of a measurement unit 10 and a control unit 20.
  • the measurement unit 10 includes a light source unit 11, a sample placement unit 12, and a detection unit 13.
  • the light source unit 11 includes a light source 111 and a spectroscope 112 that emit continuous light including light having a plurality of excitation wavelengths described later.
  • a sample (a blank sample and an actual sample) is placed on the sample placement unit 12.
  • the detection unit 13 includes a spectroscope 131 and a detector 132.
  • the spectrometers 112 and 131 of this embodiment are both diffraction gratings, and the detector 132 is a photodiode array detector.
  • the continuous light emitted from the light source 111 is monochromatized by the spectroscope 112 and applied to the sample 121.
  • the spectroscope 112 On the light that has passed through the sample 121 and the light that has been emitted from the sample 121, light in the wavelength range selected by the spectroscope 131 is incident on the detector 132 and its intensity is measured.
  • Output signals from the detector 132 are sequentially sent to the storage unit 21 and stored.
  • the sample placement unit 12 is provided in the center of the integrating sphere 100.
  • the integrating sphere 100 has a light entrance window 101 for entering light from the light source unit 11 and a first light exit window 102 for emitting light that has passed through the sample 121 placed on the sample placement unit 12. They are formed at positions facing each other across the sample placement portion 12 (the center of the integrating sphere 100) in the XY plane in the figure.
  • a second exit window 103 is formed at the pole of the integrating sphere (directly above the sample placement portion. One of the intersections of the integrating sphere 100 and the Z axis).
  • the fluorescence or phosphorescence emitted from the sample 121 is repeatedly reflected inside the integrating sphere and exits from the second exit window 103.
  • the transmitted light emitted from the first light emission window 102 and the fluorescence and phosphorescence emitted from the second emission window 103 are guided to the detection unit 13 by an optical system (not shown).
  • the control unit 20 is a functional block that is realized by executing the spectrophotometer control software 22 in addition to the storage unit 21, and includes a wavelength range determination unit 221, a blank measurement execution unit 222, an actual measurement execution unit 223, A spectrum creation unit 224, a quantum efficiency calculation unit 225, and an analysis result display unit 226 are provided.
  • the entity of the control unit 20 is a personal computer, to which an input unit 30 such as a keyboard and a mouse and a display unit 40 such as a liquid crystal display are connected.
  • the storage unit 21 information on measurement conditions (a plurality of excitation wavelengths ⁇ A , ⁇ B ,..., A first wavelength ⁇ 1 , a second wavelength ⁇ 2 , and a third wavelength ⁇ ) are obtained for a plurality of actual samples.
  • the compound database 211 associated with 3 is stored.
  • the storage unit 21 stores photon number calculation information (formula and correspondence table) for obtaining the number of photons from the detected light intensity of the detector 132.
  • the first wavelength ⁇ 1 stored in the compound database 211 is used to determine a measurement wavelength range (transmitted light measurement wavelength range) when measuring light (transmitted light) that has passed through the blank sample and the actual sample. This determines the transmitted light measurement wavelength range to the excitation wavelength ⁇ ⁇ 1 .
  • the second wavelength ⁇ 2 and the third wavelength ⁇ 3 are values used to determine a measurement wavelength range (luminescence measurement wavelength range) when measuring fluorescence or phosphorescence emitted from an actual sample.
  • the lower limit wavelength of the luminescence measurement wavelength range is determined to be the excitation wavelength + ⁇ 2 and the upper limit wavelength is ⁇ 3 .
  • FIG. 3 is a flowchart for explaining the procedure of the spectroscopic measurement method of this embodiment.
  • six types of samples which are similar compounds, are dissolved in the same solvent to prepare sample solutions, and the external quantum efficiency and the internal quantum efficiency at three excitation wavelengths ⁇ A to ⁇ C are obtained for each sample solution. Will be described as an example.
  • the user instructs the start of spectroscopic measurement by a predetermined operation such as activating the spectrophotometer control software 22, information on the measurement sample (actual sample) (sample name, type, measurement type, etc.) and Displays a screen for entering the number and prompts the user for input.
  • a predetermined operation such as activating the spectrophotometer control software 22
  • the wavelength range determination unit 221 includes a compound database in which information corresponding to the information on the actual samples input by the user is stored in the storage unit 21. A search is made as to whether or not it is in 211. If there is no information corresponding to the actual sample information input by the user in the compound database, the display unit 40 displays the excitation wavelengths ⁇ A to ⁇ C , the first wavelength ⁇ 1 , the second wavelength ⁇ 2 , and the third wavelength. A column for inputting the wavelength ⁇ 3 is displayed and the user inputs it (step S2).
  • the transmitted light measurement wavelength range ⁇ A - ⁇ 1 to ⁇ A + ⁇ 1 and the like and the emission measurement wavelength range ⁇ A + ⁇ 2 to ⁇ for each of the plurality of excitation wavelengths ⁇ A to ⁇ C 3 etc. are set (step S3).
  • the information corresponding to the information about the actual sample input by the user is in the compound database 211, a plurality of excitation wavelengths ⁇ A to ⁇ C and the first wavelength ⁇ 1 associated with the information about the actual sample.
  • the second wavelength ⁇ 2 and the third wavelength ⁇ 3 are read out, and the transmitted light measurement wavelength range ⁇ A - ⁇ 1 to ⁇ A + ⁇ 1 and the emission measurement wavelength range ⁇ A + ⁇ for each of the plurality of excitation wavelengths. 2 to ⁇ 3 and the like are obtained and displayed on the display unit 40.
  • the user checks each displayed wavelength and measurement wavelength range, and changes them as necessary.
  • the user encloses a blank sample (solvent only) in the cuvette cell, sets it in the sample placement unit 12 (step S4), and instructs execution of the blank measurement.
  • the blank measurement execution unit 222 generates continuous light from the light source 111 of the light source unit 11, takes out the light having the first excitation wavelength ⁇ A by the spectroscope 112, and irradiates the blank sample.
  • the spectroscope 131 of the detection unit 13 is rotated to separate the transmitted light from the blank sample in the transmitted light measurement wavelength range ⁇ A - ⁇ 1 to ⁇ A + ⁇ 1 and measure the intensity of light of each wavelength. .
  • the spectroscope 131 is rotated to separate the wavelengths of the fluorescence emitted from the blank sample in the emission measurement wavelength range ⁇ A + ⁇ 2 to ⁇ 3 and measure the intensity of light of each wavelength (step S5).
  • the light in the transmitted light measurement wavelength range and the light in the emission measurement wavelength range are measured by sequentially rotating the spectroscope 131, but the light wavelength-separated in these wavelength ranges is simultaneously sent to the detector 132. If they can be incident, these may be measured at once.
  • the blank measurement execution unit 222 confirms whether the blank measurement is completed for all the excitation wavelengths ⁇ A to ⁇ C (step S6).
  • the spectroscope 112 of the light source unit 11 is operated to take out light of the next excitation wavelength ⁇ B and irradiate the blank sample. Further, the spectroscope 131 of the detection unit 13 is rotated so that the intensity of the transmitted light from the blank sample in the transmitted light measurement wavelength range ⁇ B - ⁇ 1 to ⁇ B + ⁇ 1 is changed to the emission measurement wavelength range ⁇ B + ⁇ 2.
  • the intensity of the fluorescence from the actual sample is measured with wavelength separation at ⁇ 3 (step S5).
  • the blank measurement execution unit 222 controls the light source unit 11 and the detection unit 13 to sequentially irradiate the blank sample with light having a plurality of excitation wavelengths ⁇ A to ⁇ C.
  • the passed light is wavelength-separated and the intensity of light of each wavelength is measured.
  • the user cleans the cuvette cell in which the blank sample has been enclosed, encloses the first actual sample (sample solution) in the cuvette cell, and sets it in the sample placement unit 12 (step S7).
  • the execution of actual measurement is instructed.
  • the actual measurement execution unit 223 generates continuous light from the light source 111 of the light source unit 11, takes out the light having the first excitation wavelength ⁇ A by the spectroscope 112, and irradiates the actual sample.
  • the spectroscope 131 of the detection unit 13 is rotated so that light in the transmitted light measurement wavelength range ⁇ A - ⁇ 1 to ⁇ A + ⁇ 1 out of the transmitted light from the actual sample is incident on the detector 132 and each wavelength is measured.
  • the spectroscope 131 is rotated to separate the wavelengths of the fluorescence emitted from the actual sample in the emission measurement wavelength range ⁇ A + ⁇ 2 to ⁇ 3 and measure the intensity of light of each wavelength (step S8).
  • the actual measurement execution unit 223 confirms whether the actual measurement is completed for all the excitation wavelengths (step S9). If an unmeasured excitation wavelength remains (NO in step S9), the spectroscope 112 of the light source unit 11 is operated to take out light of the next excitation wavelength ⁇ B and irradiate the actual sample. Further, the spectroscope 131 of the detection unit 13 is rotated, and the transmitted light from the actual sample is wavelength-separated in the transmitted light measurement wavelength range ⁇ A ⁇ 1 to ⁇ A + ⁇ 1 , and the intensity of light of each wavelength is measured. .
  • the fluorescence from the actual sample is wavelength-separated in the emission measurement wavelength range ⁇ B + ⁇ 2 to ⁇ 3 , and the intensity of light of each wavelength is measured (step S8).
  • the actual measurement execution unit 223 controls the light source unit 11 and the detection unit 13 to sequentially irradiate the actual sample with light having a plurality of excitation wavelengths ⁇ A to ⁇ C.
  • the transmitted light that has passed through and the fluorescence emitted from the actual sample are wavelength-separated and measured.
  • the actual measurement execution unit 223 confirms whether the actual measurement of all the actual samples is completed (step S10). If an unmeasured real sample remains, a message prompting the user to set the next real sample is displayed on the display unit 40. When the next actual sample is set, the actual measurement execution unit 223 sequentially irradiates light of all excitation wavelengths in the same procedure as described above, and measures the intensity of transmitted light and fluorescence from the actual sample. When the actual measurement is completed for all the samples (YES in step S10), the actual measurement execution unit 223 displays a message indicating that all the measurements are completed on the display unit 40.
  • FIG. 4 is an example of a spectrum obtained by blank measurement and actual measurement using three excitation wavelengths for one sample.
  • FIG. 4A shows a spectrum related to the excitation wavelength ⁇ A , specifically, a spectrum of transmitted light intensity (intensity of excitation light irradiated to an actual sample) in a blank measurement and a fluorescence intensity (sample and It is a spectrum of intensity obtained by subtracting the fluorescence intensity (intensity of fluorescence from the solvent) in the blank measurement from the intensity of fluorescence from the solvent).
  • FIG. 4A shows a spectrum related to the excitation wavelength ⁇ A , specifically, a spectrum of transmitted light intensity (intensity of excitation light irradiated to an actual sample) in a blank measurement and a fluorescence intensity (sample and It is a spectrum of intensity obtained by subtracting the fluorescence intensity (intensity of fluorescence from the solvent) in the blank measurement from the intensity of fluorescence from the solvent).
  • FIG. 4B shows a similar spectrum for the excitation wavelength ⁇ B
  • FIG. 4C shows the same spectrum for the excitation wavelength ⁇ C
  • FIG. 5 is a superposition display of spectra relating to the three excitation wavelengths ⁇ A , ⁇ B , and ⁇ C.
  • the spectrum display in FIGS. 4 (a) to 4 (c) and FIG. 5 can be appropriately switched according to an instruction from the user. 4 and 5 show the spectra corresponding to the external quantum efficiency. Instead of the spectrum of the intensity of the excitation light irradiated on the sample, the intensity of the excitation light absorbed by the sample (the transmitted light at the time of blank measurement). It is also possible to display a spectrum corresponding to the internal quantum efficiency, which is obtained by subtracting the intensity of transmitted light at the actual measurement from the intensity). These spectral data are created for all samples and stored in the storage unit 21.
  • the quantum efficiency calculation unit 225 obtains the external quantum efficiency and the internal quantum efficiency at each excitation wavelength for each sample (step S12). Specifically, based on the photon number calculation information stored in the storage unit 21 from the transmitted light intensity and fluorescence intensity in the blank measurement stored in the storage unit 21 and the transmitted light intensity and fluorescence intensity in the actual measurement, each excitation wavelength Photon number of transmitted light in blank measurement using ⁇ A , ⁇ B , and ⁇ C F EXA , F EXB , F EXC and number of photons of fluorescence F EMA , F EMB , F EMC , number of photons of transmitted light in actual measurement F EXA ', F EXB', 'photon number F EMA and of fluorescent' F EXC, F EMB ', F EMC' Request (see Fig.
  • the external quantum efficiency is obtained from (F EMA '-F EMA ) / F EXA and the internal quantum efficiency is obtained from (F EMA ' -F EMA ) / (F EXA- F EXA '). (See FIG. 7). External quantum efficiency and internal quantum efficiency are determined for all samples and all excitation wavelengths.
  • the analysis result display unit 226 uses the values of the external quantum efficiency and the internal quantum efficiency at a plurality of excitation wavelengths ⁇ A , ⁇ B , and ⁇ C and uses an approximate curve. Thus, the external quantum efficiency and the excitation wavelength dependence of the internal quantum efficiency are obtained and displayed on the display unit 40 (step S13).
  • FIG. 8 shows a display example. Further, the analysis result display unit 226 displays a list of quantum efficiencies of the respective samples (Step S13). In this list display, for example, as shown in FIG.
  • the two-dimensional region in which the horizontal axis is the wavelength and the sample is arranged in the vertical axis direction is divided into a plurality, and the quantum efficiency in the division is expressed by color shading. (In FIG. 9, it is indicated by hatching). Thereby, the user can confirm the quantum efficiency of a some sample easily.
  • this display format can be changed as appropriate, and in addition to color shading, it can also be displayed visually identifiable by coloring, hatching, or the like.
  • blank measurement is sequentially performed for a plurality of excitation wavelengths, and then actual measurement is sequentially performed for a plurality of excitation wavelengths. It is only necessary to replace the blank sample with a real sample after the measurement of the blank sample, and the measurement can be performed easily. Further, since the analyst only has to input a plurality of excitation wavelengths ⁇ A to ⁇ C and first wavelength ⁇ 1 to third wavelength ⁇ 3 (or input sample information) before starting measurement, the conventional apparatus Compared to measurement using the analyzer, the labor of the analyst is reduced.
  • the first wavelength ⁇ 1 and the second wavelength ⁇ 2 are input as relative wavelengths to the excitation wavelength, and the third wavelength ⁇ 3 is input as an absolute wavelength.
  • the second wavelength ⁇ 2 is an absolute wavelength. It can also be configured to input as However, in this case, it is necessary to prevent the second wavelength ⁇ 2 from entering the transmitted light measurement wavelength range ⁇ A ⁇ 1 to ⁇ A + ⁇ 1 or the like. Therefore, it is preferable that the user is prompted to input again when the second wavelength ⁇ 2 input by the user is located within the measurement wavelength range ⁇ A ⁇ 1 to ⁇ A + ⁇ 1 or the like.
  • the first wavelength ⁇ 1 to the third wavelength ⁇ 3 are set as initial values in the spectrofluorometer in advance, and the value is set by the user only when necessary. It can also be configured to change.
  • the sample solution (blank sample and actual sample) was sealed in the cuvette cell and measured.
  • the sample solution may be stored in another container and measured.
  • a gas sample or a solid sample can be stored in a sample container and measured in the same manner as described above.
  • a blank sample for example, a substrate
  • an actual sample for example, a substrate in which a functional substance is applied
  • a liquid sample not only a liquid sample but also a gas sample can be enclosed in a sample container for measurement. Further, the solid sample can be measured as it is (or accommodated in a sample container).
  • the intensity of fluorescence or phosphorescence from the blank sample (solvent) was measured in the blank measurement. However, the blank sample does not emit fluorescence or phosphorescence at any of a plurality of excitation wavelengths ⁇ A to ⁇ C. If it is known, only the intensity of transmitted light from the blank sample can be measured at the time of blank measurement, and the intensity value and the number of photons of fluorescence and phosphorescence from the blank sample can be set to zero.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

試料配置部12に向けて複数の波長の光を発することが可能な光源部11と、試料配置部12からの光のうち所定波長範囲内の光の強度を測定する検出部13と、複数の励起波長の入力を受け付ける励起波長入力部30と、前記複数の励起波長に対応して各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定する測定波長範囲決定部221と、ブランク測定の実行指示を受けて光源部11から前記複数の励起波長の光を順に発し試料配置部12を通過した透過光測定波長範囲内の光の強度を測定するブランク測定実行部222と、実測定の実行指示を受けて光源部11から複数の励起波長の光を順に発し試料配置部12を通過した透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた発光測定波長範囲内の光の強度を測定する実測定実行部223とを備える分光蛍光光度計1。

Description

分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア
 本発明は、分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェアに関する。特に、異なる複数の波長の励起光を用いた測定を行う際に好適に用いることができる、分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェアに関する。
 有機EL発光デバイス、光触媒、光反応を利用した分子センサーといった機能性物質は、特定の波長の光を吸収して目的の機能を達成するように分子構造が設計されている。具体的には、特定の波長の光を吸収して励起状態に遷移し、特定の波長の蛍光やりん光を放出して基底状態に戻る電子状態を有するように分子構造が設計される。機能性物質である試料に照射した光の光子数に対する、該試料から放出された光の光子数の比は外部量子効率と呼ばれる。また、試料が吸収した光の光子数に対する、該試料から放出された光の光子数の比は内部量子効率と呼ばれる。外部量子効率や内部量子効率は、機能性物質を評価する1つの指標として用いられる。
 外部量子効率や内部量子効率は、分光蛍光光度計を用いて特定の波長の励起光を照射し、試料から発せられる蛍光やりん光の強度を測定することにより求められる。分光蛍光光度計は、光源及び分光部を有する励起光源部と、試料から発せられる蛍光やりん光を収集するための積分球と、分光部及び検出器を有する検出部とを備えている。分光蛍光光度計を用いた測定により外部量子効率や内部量子効率を求める際には、はじめにブランク測定を行う。ブランク測定では、例えば実試料を溶解させる溶媒のみ(ブランク試料)を封入したキュベットセルに励起光を照射してキュベットセルを通過した光(透過光)の強度(強度A)を測定する。続いて、実試料を上記溶媒に溶解させた実試料溶液を封入したキュベットセルに励起光を照射してキュベットセルを通過した光(透過光)の強度(強度B)を測定する。また、実試料溶液から発せられた蛍光やりん光の強度(強度C)も測定する。測定後、強度A~Cからそれぞれ光子数A~Cを求める。光子数Aに対する光子数Cの比から外部量子効率が、光子数Aから光子数Bを差し引いた光子数A-Bに対する光子数Cの比から内部量子効率が、それぞれ求められる(例えば特許文献1)。
 分光蛍光光度計の多くは専用の制御ソフトウェアからの指示を受けて動作する。使用者が制御ソフトウェアを立ち上げ測定の開始を指示すると、測定条件を入力する画面が表示される。使用者が励起光の波長、透過光の測定波長範囲、及び蛍光(あるいはりん光)の測定波長範囲等の測定条件を入力すると、続いて分光蛍光光度計の所定位置にブランク試料を封入したキュベットセルをセットするよう、使用者に促す。使用者がキュベットセルをセットし、ブランク測定の開始を指示すると、制御ソフトウェアは分光光度計の励起光源部から使用者により指定された波長の励起光をキュベットセル内のブランク試料に照射し、検出部において該ブランク試料を通過した透過光の強度を使用者により入力された波長範囲で測定する。ブランク試料の測定を終えると、実試料溶液を封入したキュベットセルをセットするよう、使用者に促す。使用者がキュベットセルをセットし、測定の開始を指示すると、制御ソフトウェアは使用者により指定された波長の励起光をキュベットセル内の実試料溶液に照射し、実試料溶液を通過した透過光の強度及び該実試料溶液から発せられた蛍光やりん光の強度を、それぞれ使用者により入力された波長範囲で測定する。
特開2013-72727号公報
 近年、複数の機能を持たせた機能性物質の研究が進められている。つまり、異なる複数の波長の光に対して蛍光やりん光を発する物質の研究が進められている。こうした研究では、異なる複数の波長の励起光について上記のブランク測定及び実測定が行われる。また、単一機能の機能性物質についても、外部量子効率や内部量子効率が最も高くなる、最適な励起光波長を探索するために、複数の波長で上記のブランク測定及び実測定を行うことがある。
 分光蛍光光度計において用いられる多くのキュベットセルはガラス製やプラスチック製であり、光吸収特性に僅かながら個体差がある。そのため、ブランク測定と実測定で異なるキュベットセルを用いると、ブランク測定時と実測定時のキュベットセルによる光吸収量に差が生じて測定精度が低下する。従って、高い精度で測定を行うためにはブランク測定と実測定で同じキュベットセルを用いる必要がある。
 従来用いられている上述の制御ソフトウェアにより複数の波長の励起光についての測定を行う場合、1つ目の波長の光についてブランク測定と実測定をそれぞれ実行し、続いて2つ目の波長の光についてブランク測定と実測定をそれぞれ実行する。このとき、1つ目の波長におけるブランク測定の終了後にキュベットセルを洗浄し、実試料溶液を封入して実測定を行い、実測定の終了後に再びキュベットセルを洗浄し、ブランク試料を封入して2つ目の波長におけるブランク測定を行うといった処理を繰り返さなければならず、キュベットセルの洗浄及びブランク試料又は試料溶液の封入並びにキュベットセルのセットに手間がかかるという問題があった。また、多くの制御ソフトウェアでは各波長の励起光についての測定を個別に実行するため、1つの波長の励起光の測定毎に、励起光の波長、透過光の測定波長範囲、及び蛍光(あるいはりん光)の測定波長範囲を都度入力する必要があり、手間がかかるという問題があった。
 ここでは液体であるブランク試料及び実試料を測定する場合を例に挙げて説明したが、気体試料や固体試料を試料容器に封入して測定を行う場合にも上記同様の問題があった。また、例えば基板に光機能性物質を蒸着してなる固体試料の場合には、該固体試料を試料容器に封入することなく測定を行うことが可能であるが、そうした場合であっても、測定毎にブランク試料(基板のみ)と実試料(光機能性物質を蒸着した基板)を繰り返しセットしなければならず手間がかかっていた。
 本発明が解決しようとする課題は、複数の波長の励起光について簡便にブランク測定と実測定を行うことができる、分光蛍光光度計、分光蛍光光度計を用いた測定方法、及び分光蛍光光度計制御ソフトウェアを提供することである。
 上記課題を解決するために成された本発明の第1の態様に係る分光蛍光光度計は、
 a) 試料が配置される試料配置部と、
 b) 前記試料配置部に向けて、複数の波長の光を発することが可能な光源部と、
 c) 前記試料配置部からの光のうち、所定波長範囲内の光の強度を測定する検出部と、
 d) 使用者による、前記複数の波長のうちの一部又は全部である複数の励起波長の入力を受け付ける励起波長入力部と、
 e) 前記入力された複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定する測定波長範囲決定部と、
 f) 使用者によるブランク測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行するように、前記光源部及び前記検出部を制御するブランク測定実行部と、
 g) 使用者による実測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光測定波長範囲内の光の強度を測定する実測定を実行するように、前記光源部及び前記検出部を制御する実測定実行部と
 を備えることを特徴とする。
 前記光源部には、前記複数の励起波長を含む波長範囲の連続光を発するランプ等の連続光源と分光器を組み合わせたもの、それぞれが前記複数の励起波長のうちの1つの波長の光を発する単色光源を複数有するもの、前記複数の励起波長の光を含む不連続光を発する不連続光源と分光器を組み合わせたもの等、適宜のものを用いることもできる。
 前記所定の波長範囲内の光の強度を測定する検出部は、外部からの制御に基づき指定された波長範囲の光の強度を測定するものである。
 本発明に係る分光蛍光光度計を用いた測定の手順を説明する。
 まず、使用者による複数の励起波長の入力を受け付ける。これは、使用者に励起波長そのものを入力させるほか、複数の励起波長を一覧表示してその中から使用者に複数の励起波長を選択させる、あるいは測定対象の試料の名称や種類を、複数の励起波長や透過光測定波長範囲及び発光測定波長範囲に対応付けたテーブル等を予め用意しておき、使用者に試料の名称や種類を入力させて該名称や種類に対応付けられた複数の励起波長等を読み出すなど、様々な方法により行うことができる。
 続いて、測定波長範囲決定部が、使用者に入力された複数の励起波長に対応して、予め定められた規則により各励起波長に対応する、試料配置部(に使用者が配置するブランク試料及び実試料)を通過した光(透過光)と試料配置部(に使用者が配置する実試料)から発せられる蛍光やりん光(発光)の測定波長範囲を決定する。ここでいう予め定められた規則は、例えば各励起波長よりも予め決められた波長だけ短い波長を下限波長、各励起波長よりも予め決められた波長だけ長い波長を上限波長として透過光測定波長範囲を決定し、該透過光測定波長範囲の上限波長を下限波長とする所定の波長幅の範囲を発光の測定波長範囲に決定する、等とすることができる。上述のように、使用者に試料の名称や種類を入力させて該名称や種類に対応付けられた、透過光及び発光の測定波長範囲を読み出すようにしても良い。また、発光の測定波長範囲の上限波長や下限波長を使用者に入力させるようにしてもよい。
 次に、使用者が試料配置部にブランク試料をセットし、ブランク測定の実行を指示すると、ブランク測定実行部は光源部及び検出部を動作させ、該光源部から複数の励起波長の光を順に発し、各励起波長の光について、試料配置部(に配置されたブランク試料)を通過した透過光測定波長範囲内の光の強度を測定する。
 全ての励起波長のブランク測定を終えた後、使用者が試料配置部に実試料をセットし、実測定の実行を指示すると、実測定実行部は光源部及び検出部を動作させ、光源部から複数の励起波長の光を順に発し、各励起波長の光について、試料配置部(に配置された実試料)を通過した透過光測定波長範囲内の光の強度及び試料配置部から発せられた発光測定波長範囲内の光の強度を測定する。
 本発明に係る分光光度計では、複数の励起波長についてブランク測定を順に行い、次いで複数の励起波長について実測定を順に行うため、全ての励起波長に関するブランク試料の測定終了後にブランク試料を実試料に交換するのみでよく、簡便に測定を行うことができる。また、分析者は測定開始前に複数の励起波長を入力するのみでよいため、従来の装置を用いた測定に比べて分析者の手間が軽減される。
 また、上記課題を解決するために成された本発明の第2の態様は、光源部、試料配置部、及び検出部を有する分光蛍光光度計を用いた分光測定方法であって、
 a) 使用者による複数の励起波長の入力を受け付け、
 b) 前記複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定し、
 c) 前記光源部から前記複数の励起波長の光を順に発して、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行し、
 d) 前記光源部から前記複数の励起波長の光を順に発して、各励起波長の光について、前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光波長測定範囲内の光の強度を測定する実測定を実行する
 ことを特徴とする。
 さらに、上記課題を解決するために成された本発明の第3の態様は、光源部、試料配置部、及び検出部を有する分光蛍光光度計用の制御ソフトウェアであって、該分光蛍光光度計と通信可能に接続されたコンピュータを、
 a) 使用者による複数の励起波長の入力を受け付ける励起波長入力部と、
 b) 前記複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定する測定波長範囲決定部と、
 c) 使用者によるブランク測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行するように、前記光源部及び前記検出部を制御するブランク測定実行部と、
 d) 使用者による実測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光測定波長範囲内の光の強度を測定する実測定を実行するように、前記光源部及び前記検出部を制御する実測定実行部と
 として動作させることを特徴とする。
 本発明に係る分光蛍光光度計、分光測定方法、あるいは分光蛍光光度計制御ソフトウェアを用いることにより、複数の波長の励起光について簡便にブランク測定と実測定を行うことができる。
本発明に係る分光蛍光光度計の一実施例の概略構成図。 本実施例の分光蛍光光度計における測定系の配置を説明する図。 本発明に係る分光測定方法の一実施例のフローチャート。 本実施例の分光蛍光光度計及び分光測定方法により得られるスペクトルの一例。 複数の励起波長でのブランク測定及び実測定における光子数の表記の一覧。 複数の励起波長についての外部量子効率及び内部量子効率を求める計算式の一覧。 本実施例の分光蛍光光度計及び分光測定方法におけるスペクトルの一表示例。 本実施例の分光蛍光光度計及び分光測定方法における測定結果の一表示例。 本実施例の分光蛍光光度計及び分光測定方法における、複数の試料の測定結果の一表示例。
 本発明に係る分光蛍光光度計、分光測定方法、及び分光蛍光光度計制御ソフトウェアの一実施例について、以下、図面を参照して説明する。
 図1に本実施例の分光蛍光光度計1の要部構成を示す。この分光蛍光光度計は、大別して測定部10と制御部20から構成される。測定部10は、光源部11、試料配置部12、及び検出部13で構成されている。光源部11は、後述する複数の励起波長の光を含む連続光を発する光源111と分光器112を備えている。試料配置部12には試料(ブランク試料及び実試料)が載置される。検出部13は分光器131と検出器132を備えている。本実施例の分光器112、131はいずれも回折格子であり、検出器132はフォトダイオードアレイ検出器である。光源111から発せられた連続光は分光器112により単色化されて試料121に照射される。また、試料121を通過した光、及び試料121から発せられた光のうち、分光器131で選択された波長範囲の光が検出器132に入射し、その強度が測定される。検出器132からの出力信号は順次、記憶部21に送られ保存される。
 図2に示すように、試料配置部12は積分球100内の中央に設けられている。積分球100には光源部11からの光を入射するための光入射窓101と、試料配置部12に載置された試料121を通過した光を出射するための第1光出射窓102が、図中のX-Y平面内の試料配置部12(積分球100の中心)を挟んで対向する位置に形成されている。また、積分球の極点(試料配置部の直上。積分球100とZ軸の交点のうちの一方)には第2出射窓103が形成されている。試料121から発せれた蛍光やりん光は積分球内部で繰り返し反射され第2出射窓103から出射する。第1光出射窓102から出射した透過光、及び第2出射窓103から出射した蛍光やりん光は、図示しない光学系により検出部13に導かれる。
 制御部20は、記憶部21のほか、分光光度計用制御ソフトウェア22を実行することにより具現化される機能ブロックである、波長範囲決定部221、ブランク測定実行部222、実測定実行部223、スペクトル作成部224、量子効率算出部225、及び分析結果表示部226を備えている。制御部20の実体はパーソナルコンピュータであり、キーボードやマウスからなる入力部30と、液晶ディスプレイ等の表示部40が接続されている。記憶部21には、複数の実試料について、それぞれ試料名が測定条件に関する情報(複数の励起波長λA, λB, …、第1波長λ1、第2波長λ2、及び第3波長λ3)に対応付けられた化合物データベース211が保存されている。また、記憶部21には、検出器132における光の検出強度から光子数を求めるための光子数算出情報(数式や対応テーブル)が保存されている。
 化合物データベース211に保存されている第1波長λ1は、ブランク試料及び実試料を通過した光(透過光)を測定する際の測定波長範囲(透過光測定波長範囲)を決定するために用いられる値であり、これにより透過光測定波長範囲が励起波長±λ1に決定される。また、第2波長λ2及び第3波長λ3は、実試料から発せられる蛍光やりん光を測定する際の測定波長範囲(発光測定波長範囲)を決定するために用いられる値であり、これらにより発光測定波長範囲の下限波長が励起波長+λ2、上限波長がλ3に決定される。
 以下、本実施例の分光蛍光光度計1を用いた分光測定について説明する。図3は本実施例の分光測定方法の手順を説明するフローチャートである。ここでは、類似の化合物である6種類の試料を同一の溶媒に溶解させて試料溶液を作成し、それぞれについて、3種類の励起波長λA~λCにおける外部量子効率及び内部量子効率を求める場合を例に説明する。
 使用者が分光光度計用制御ソフトウェア22を起動する等の所定の動作により分光測定開始を指示すると、表示部40に測定試料(実試料)の情報(試料名、種類、又は測定種別など)及び数を入力する画面を表示し、使用者に入力を促す。
 使用者が実試料の情報及び数を入力すると(ステップS1)、波長範囲決定部221は、使用者に入力された実試料の情報に対応する情報が、記憶部21に保存されている化合物データベース211にあるか否かを検索する。使用者に入力された実試料の情報に対応する情報が化合物データベースにない場合には、表示部40に励起波長λA~λC、第1波長λ1、第2波長λ2、及び第3波長λ3をそれぞれ入力する欄を表示し使用者に入力させる(ステップS2)。使用者が入力を終えると、複数の励起波長λA~λCのそれぞれについて、透過光測定波長範囲λA1~λA1等と発光測定波長範囲λA2~λ3等が設定される(ステップS3)。一方、使用者に入力された実試料の情報に対応する情報が化合物データベース211にある場合には、その実試料の情報と対応付けられた複数の励起波長λA~λC、第1波長λ1、第2波長λ2、及び第3波長λ3を読み出し、複数の励起波長のそれぞれについて、透過光測定波長範囲λA1~λA1等と発光測定波長範囲λA2~λ3等をそれぞれ求め、表示部40に表示する。使用者は表示された各波長、及び測定波長範囲を確認し、必要な場合にはそれらを適宜に変更する。
 次に、使用者はブランク試料(溶媒のみ)をキュベットセルに封入し、試料配置部12にセットし(ステップS4)、ブランク測定の実行を指示する。ブランク測定実行部222は、この指示を受けて光源部11の光源111から連続光を発生させ分光器112により最初の励起波長λAの光を取り出してブランク試料に照射する。また、検出部13の分光器131を回転させ、透過光測定波長範囲λA1~λA1においてブランク試料からの透過光を波長分離し、各波長の光の強度を測定する。さらに、分光器131を回転させ、発光測定波長範囲λA2~λ3においてブランク試料から発せられた蛍光を波長分離し、各波長の光の強度を測定する(ステップS5)。本実施例では透過光測定波長範囲の光と発光測定波長範囲の光を、分光器131を順次回転させて測定しているが、これらの波長範囲で波長分離された光を同時に検出器132に入射させることが可能な場合にはこれらを一度に測定してもよい。
 最初の励起波長λAの光についてブランク測定を完了すると、ブランク測定実行部222は、全ての励起波長λA~λCについてブランク測定を完了しているかを確認する(ステップS6)。未測定の励起波長が残っている場合には(ステップS6でNO)、光源部11の分光器112を動作させて次の励起波長λBの光を取り出し、ブランク試料に照射する。また、検出部13の分光器131を回転させて、透過光測定波長範囲λB1~λB1でブランク試料からの透過光の強度を、発光測定波長範囲λB2~λ3で実試料からの蛍光の強度を、それぞれ波長分離して測定する(ステップS5)。このように、ブランク測定実行部222は、光源部11及び検出部13を制御して複数の励起波長λA~λCの光を順にブランク試料に照射し、各励起波長の光についてブランク試料を通過した光を波長分離し各波長の光の強度を測定する。全励起波長についてブランク測定を完了すると(ステップS6でYES)、ブランク測定を終了した旨を表示部40に表示し、使用者に実試料を試料配置部12にセットするように促す。
 次に、使用者はブランク試料を封入していたキュベットセルを洗浄し、最初の実試料(試料溶液)をキュベットセルに封入し、試料配置部12にセットする(ステップS7)。そして、実測定の実行を指示する。実測定実行部223は、この指示を受けて光源部11の光源111から連続光を発生させ分光器112により最初の励起波長λAの光を取り出して実試料に照射する。また、検出部13の分光器131を回転させて、実試料からの透過光のうち透過光測定波長範囲λA1~λA1の光を検出器132に入射させ、各波長の光の強度を測定する。さらに、分光器131を回転させ、発光測定波長範囲λA2~λ3で実試料から発せられた蛍光を波長分離し、各波長の光の強度を測定する(ステップS8)。
 最初の励起波長λ1の光について実測定を完了すると、実測定実行部223は、全ての励起波長について実測定を完了しているかを確認する(ステップS9)。未測定の励起波長が残っている場合には(ステップS9でNO)、光源部11の分光器112を動作させて次の励起波長λBの光を取り出し、実試料に照射する。また、検出部13の分光器131を回転させ、透過光測定波長範囲λA1~λA1において実試料からの透過光を波長分離し、各波長の光の強度を測定する。また、発光測定波長範囲λB2~λ3で実試料からの蛍光を波長分離し、各波長の光の強度を測定する(ステップS8)。このように、実測定実行部223は、光源部11及び検出部13を制御して複数の励起波長λA~λCの光を順に実試料に照射し、各励起波長の光について実試料を通過した透過光、及び実試料から発せられた蛍光を波長分離して測定する。
 全励起波長について実測定を完了すると(ステップS9でYES)、実測定実行部223は、全ての実試料の実測定が完了しているかを確認する(ステップS10)。未測定の実試料が残っている場合には、次の実試料をセットするよう使用者に促すメッセージを表示部40に表示する。次の実試料がセットされると、実測定実行部223は上記同様の手順で全ての励起波長の光を順に照射し、実試料からの透過光及び蛍光の強度を測定する。全試料について実測定を完了すると(ステップS10でYES)、実測定実行部223は全ての測定を完了した旨のメッセージを表示部40に表示する。
 全ての測定を終了すると、スペクトル作成部224は、記憶部21に保存された測定データを読み出し、実試料毎にスペクトルデータを作成しスペクトルを表示部40に表示する(ステップS11)。図4は1つの試料について3つの励起波長を用いたブランク測定及び実測定により得られたスペクトルの一例である。図4(a)は励起波長λAに関するスペクトルであり、具体的には、ブランク測定における透過光強度(実試料に照射された励起光の強度)のスペクトルと、実測定における蛍光強度(試料及び溶媒からの蛍光の強度)からブランク測定における蛍光強度(溶媒からの蛍光の強度)を差し引いた強度のスペクトルである。図4(b)は励起波長λB、図4(c)は励起波長λCに関する同様のスペクトルである。また、図5は3つの励起波長λA, λB, λCに関するスペクトルを重畳表示したものである。図4(a)~(c)と図5のスペクトルの表示は使用者からの指示に応じて適宜に切り替えることができる。また、図4及び図5は外部量子効率に対応するスペクトルであるが、試料に照射された励起光の強度のスペクトルに代えて、試料が吸収した励起光の強度(ブランク測定時の透過光の強度から実測定時の透過光の強度を差し引いたもの)を表示した、内部量子効率に対応するスペクトルを表示することもできる。これらのスペクトルデータは全ての試料について作成され記憶部21に保存される。
 全試料のスペクトルデータが作成されると、量子効率算出部225は、各試料について、各励起波長における外部量子効率、内部量子効率を求める(ステップS12)。具体的には、記憶部21に保存されたブランク測定における透過光強度及び蛍光強度、実測定における透過光強度及び蛍光強度から、記憶部21に保存された光子数算出情報に基づき、各励起波長λA, λB, λCを用いたブランク測定における透過光の光子数FEXA, FEXB, FEXC及び蛍光の光子数FEMA, FEMB, FEMC、実測定における透過光の光子数FEXA', FEXB', FEXC'及び蛍光の光子数FEMA', FEMB', FEMC'を求める(図6参照)。そして、例えば励起波長λAについて(FEMA'-FEMA)/FEXAから外部量子効率を、(FEMA'-FEMA)/(FEXA-FEXA')から内部量子効率を、それぞれ求める(図7参照)。外部量子効率及び内部量子効率は全ての試料、全ての励起波長について求められる。
 量子効率算出部225による処理が完了すると、分析結果表示部226は、複数の励起波長λA, λB, λCにおける外部量子効率及び内部量子効率の値を用い、近似曲線を用いる等の方法により外部量子効率及び内部量子効率の励起波長依存性を求め、表示部40に表示する(ステップS13)。図8はその表示例である。また、分析結果表示部226は、各試料の量子効率を一覧表示する(ステップS13)。この一覧表示は、例えば図9に示すように、横軸を波長として縦軸方向に試料を並べた二次元領域を複数に区分し、該区分における量子効率を色の濃淡で表現したものとすることができる(図9ではハッチングにより表示)。これにより、使用者が複数の試料の量子効率を容易に確認することができる。もちろん、この表示形式は適宜に変更することができ、色の濃淡の他、着色、ハッチング等により視覚的に識別可能に表示することもできる。
 以上、説明したように、本実施例の分光蛍光光度計及び分光測定方法では、複数の励起波長についてブランク測定を順に行い、次いで複数の励起波長について実測定を順に行うため、全ての励起波長に関するブランク試料の測定終了後にブランク試料を実試料に交換するのみでよく、簡便に測定を行うことができる。また、分析者は測定開始前に複数の励起波長λA~λCと第1波長λ1~第3波長λ3を入力する(あるいは試料の情報を入力する)のみでよいため、従来の装置を用いた測定に比べて分析者の手間が軽減される。
 上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
 上記実施例では第1波長λ1及び第2波長λ2を励起波長に対する相対波長として入力し、第3波長λ3を絶対波長として入力する場合を説明したが、第2波長λ2を絶対波長として入力するように構成することもできる。ただし、この場合には第2波長λ2が透過光測定波長範囲λA1~λA1等の中に入らないようにする必要がある。従って、使用者が入力した第2波長λ2が測定波長範囲λA1~λA1等の中に位置する場合に使用者に再入力を促すように構成することが好ましい。また、同一種類の試料のみを繰り返し測定する場合には、予め分光蛍光光度計に初期値として第1波長λ1~第3波長λ3をセットしておき、必要な場合にのみ使用者が値を変更するように構成することもできる。
 また、上記実施例では試料溶液(ブランク試料及び実試料)をキュベットセルに封入して測定したが、別の容器に収容して測定してもよい。また、気体試料や固体試料を試料容器に収容して上記同様に測定することもできる。さらに、固体試料の場合には、ブランク試料(例えば基板)及び実試料(例えば前記基板に機能性物質を塗布したもの)をそのまま試料配置部に置き測定を行うこともできる。
 さらに、液体試料に限らず気体試料を試料容器に封入して測定することもできる。さらに、固体試料をそのまま(あるいは試料容器に収容して)測定することもできる。
 上記実施例ではブランク測定においてブランク試料(溶媒)からの蛍光やりん光の強度を測定したが、ブランク試料が複数の励起波長λA~λCのいずれにおいても蛍光やりん光を発しないことが分かっている場合にはブランク測定時にはブランク試料からの透過光の強度のみを測定し、ブランク試料からの蛍光やりん光の強度値及び光子数を0とすることもできる。
1…分光蛍光光度計
10…測定部
 11…光源部
  111…光源
  112…分光器
 12…試料配置部
  121…試料
 13…検出部
  131…分光器
  132…検出器
20…制御部
 21…記憶部
  211…化合物データベース
 22…分光光度計用制御ソフトウェア
  221…波長範囲決定部
  222…ブランク測定実行部
  223…実測定実行部
  224…スペクトル作成部
  225…量子効率算出部
  226…分析結果表示部
30…入力部
40…表示部

Claims (9)

  1.  a) 試料が配置される試料配置部と、
     b) 前記試料配置部に向けて、複数の波長の光を発することが可能な光源部と、
     c) 前記試料配置部からの光のうち、所定波長範囲内の光の強度を測定する検出部と、
     d) 使用者による、前記複数の波長のうちの一部又は全部である複数の励起波長の入力を受け付ける励起波長入力部と、
     e) 前記入力された複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定する測定波長範囲決定部と、
     f) 使用者によるブランク測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行するように、前記光源部及び前記検出部を制御するブランク測定実行部と、
     g) 使用者による実測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光測定波長範囲内の光の強度を測定する実測定を実行するように、前記光源部及び前記検出部を制御する実測定実行部と
     を備えることを特徴とする分光蛍光光度計。
  2.  前記各励起波長よりも予め決められた波長だけ短い波長を下限波長、前記各励起波長よりも予め決められた波長だけ長い波長を上限波長として透過光測定波長範囲を決定し、該透過光測定波長範囲の上限波長を下限波長とする所定の波長幅の範囲を発光測定波長範囲に決定する
     ことを特徴とする請求項1に記載の分光蛍光光度計。
  3.  使用者に第1波長、第2波長、及び第3波長を入力させ、前記各励起波長よりも該第1波長だけ短い波長を下限波長、前記各励起波長よりも該第1波長だけ長い波長を上限波長として透過光測定波長範囲を決定し、前記各励起波長よりも前記第2波長だけ長い波長を下限波長、前記第3波長を上限波長として発光測定波長範囲を決定する
     ことを特徴とする請求項1に記載の分光蛍光光度計。
  4.  前記ブランク測定実行部が、さらに、前記試料配置部から発せられた前記発光測定波長範囲内の光の強度を測定する
     ことを特徴とする請求項1に記載の分光蛍光光度計。
  5.  さらに、
     h) 前記ブランク測定及び前記実測定により得られた透過光強度及び発光強度に基づき外部量子効率及び/又は内部量子効率を求める量子効率算出部
     を備えることを特徴とする請求項1に記載の分光蛍光光度計。
  6.  さらに、
     i) 前記複数の励起波長における外部量子効率及び/又は内部量子効率を、それらの値を視覚的に識別可能な形式で一方向に並べて表示する分析結果表示部
     を備えることを特徴とする請求項5に記載の分光蛍光光度計。
  7.  さらに、
     j) 前記ブランク測定及び前記実測定により得られた透過光強度及び発光強度に基づきスペクトルを作成し表示するスペクトル作成部
     を備えることを特徴とする請求項1に記載の分光蛍光光度計。
  8.  光源部、試料配置部、及び検出部を有する分光蛍光光度計を用いた分光測定方法であって、
     a) 使用者による複数の励起波長の入力を受け付け、
     b) 前記複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定し、
     c) 前記光源部から前記複数の励起波長の光を順に発して、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行し、
     d) 前記光源部から前記複数の励起波長の光を順に発して、各励起波長の光について、前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光波長測定範囲内の光の強度を測定する実測定を実行する
     ことを特徴とする分光測定方法。
  9.  光源部、試料配置部、及び検出部を有する分光蛍光光度計と通信可能に接続されたコンピュータを、
     a) 使用者による複数の励起波長の入力を受け付ける励起波長入力部と、
     b) 前記複数の励起波長に対応して、予め定められた規則により、各励起波長に対応する透過光測定波長範囲及び発光測定波長範囲を決定する測定波長範囲決定部と、
     c) 使用者によるブランク測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度を測定するブランク測定を実行するように、前記光源部及び前記検出部を制御するブランク測定実行部と、
     d) 使用者による実測定の実行指示を受けて、前記光源部から前記複数の励起波長の光を順に発し、各励起波長の光について前記試料配置部を通過した前記透過光測定波長範囲内の光の強度及び前記試料配置部から発せられた前記発光測定波長範囲内の光の強度を測定する実測定を実行するように、前記光源部及び前記検出部を制御する実測定実行部と
     として動作させることを特徴とする分光蛍光光度計用の制御ソフトウェア。
PCT/JP2017/017065 2017-04-28 2017-04-28 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア WO2018198364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019515063A JP6760494B2 (ja) 2017-04-28 2017-04-28 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア
PCT/JP2017/017065 WO2018198364A1 (ja) 2017-04-28 2017-04-28 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア
CN201780090129.8A CN110582692B (zh) 2017-04-28 2017-04-28 荧光分光光度计、分光测定方法以及荧光分光光度计用控制软件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017065 WO2018198364A1 (ja) 2017-04-28 2017-04-28 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア

Publications (1)

Publication Number Publication Date
WO2018198364A1 true WO2018198364A1 (ja) 2018-11-01

Family

ID=63918885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017065 WO2018198364A1 (ja) 2017-04-28 2017-04-28 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア

Country Status (3)

Country Link
JP (1) JP6760494B2 (ja)
CN (1) CN110582692B (ja)
WO (1) WO2018198364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038972A (ja) * 2019-09-02 2021-03-11 株式会社日立ハイテクサイエンス 量子効率分布の取得方法、量子効率分布の表示方法、量子効率分布の取得プログラム、量子効率分布の表示プログラム、分光蛍光光度計及び表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548625A (en) * 1978-10-03 1980-04-07 Hitachi Ltd Double luminous flux spectrophotometer
JP2003194709A (ja) * 2001-10-19 2003-07-09 Nippon Filcon Co Ltd 光分析用セルとこのセルを用いた光分析装置及び光分析方法
JP2005513497A (ja) * 2002-01-03 2005-05-12 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料担体上および/または試料担体中の蛍光性、ルミネセンス発光性および/または吸光性物質の同定のための方法および/または装置
JP2007526478A (ja) * 2004-03-01 2007-09-13 メソシステムズ テクノロジー インコーポレイテッド 生物学的アラーム
JP2011511942A (ja) * 2008-02-05 2011-04-14 ポカード・ディアグノスティクス・リミテッド 生体サンプル中のバクテリアの同定を行うシステム
JP2011179825A (ja) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp 自動分析装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287775B2 (ja) * 1996-02-29 2002-06-04 松下電器産業株式会社 蛍光体の量子効率測定方法および測定装置
JP2008286562A (ja) * 2007-05-16 2008-11-27 Shimadzu Corp 蛍光分光光度計
JP5161755B2 (ja) * 2008-12-25 2013-03-13 浜松ホトニクス株式会社 分光測定装置、分光測定方法、及び分光測定プログラム
JP6279399B2 (ja) * 2014-05-23 2018-02-14 浜松ホトニクス株式会社 光計測装置及び光計測方法
CN107003183B (zh) * 2014-12-02 2018-11-16 浜松光子学株式会社 分光测定装置及分光测定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548625A (en) * 1978-10-03 1980-04-07 Hitachi Ltd Double luminous flux spectrophotometer
JP2003194709A (ja) * 2001-10-19 2003-07-09 Nippon Filcon Co Ltd 光分析用セルとこのセルを用いた光分析装置及び光分析方法
JP2005513497A (ja) * 2002-01-03 2005-05-12 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料担体上および/または試料担体中の蛍光性、ルミネセンス発光性および/または吸光性物質の同定のための方法および/または装置
JP2007526478A (ja) * 2004-03-01 2007-09-13 メソシステムズ テクノロジー インコーポレイテッド 生物学的アラーム
JP2011511942A (ja) * 2008-02-05 2011-04-14 ポカード・ディアグノスティクス・リミテッド 生体サンプル中のバクテリアの同定を行うシステム
JP2011179825A (ja) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp 自動分析装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021038972A (ja) * 2019-09-02 2021-03-11 株式会社日立ハイテクサイエンス 量子効率分布の取得方法、量子効率分布の表示方法、量子効率分布の取得プログラム、量子効率分布の表示プログラム、分光蛍光光度計及び表示装置
JP7284457B2 (ja) 2019-09-02 2023-05-31 株式会社日立ハイテクサイエンス 量子効率分布の取得方法、量子効率分布の表示方法、量子効率分布の取得プログラム、量子効率分布の表示プログラム、分光蛍光光度計及び表示装置

Also Published As

Publication number Publication date
CN110582692A (zh) 2019-12-17
JPWO2018198364A1 (ja) 2019-11-07
CN110582692B (zh) 2021-08-20
JP6760494B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
KR101647857B1 (ko) 분광측정장치, 분광측정방법 및 분광측정 프로그램
JP6075788B2 (ja) 蛍光および吸収分析のシステムおよび方法
JP7038158B2 (ja) 蛍光検出のための方法およびシステム
EP2315004B1 (en) Spectrometer, spectrometry, and spectrometry program for use with an integrating sphere
US10571396B2 (en) Methods and systems for fluorescence detection
US7304733B2 (en) Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
Gilmore How to collect National Institute of Standards and Technology (NIST) traceable fluorescence excitation and emission spectra
Zwinkels et al. Spectral fluorescence measurements
JP2019095206A (ja) 試料分析システム、表示方法及び試料分析方法
KR100367240B1 (ko) 기판코팅의형광스펙트럼미분측정방법
WO2018198364A1 (ja) 分光蛍光光度計、分光測定方法、及び分光蛍光光度計用制御ソフトウェア
WO2014175363A1 (ja) 成分濃度計測装置と方法
JP2020159867A (ja) 分光測定装置、および、分光測定プログラム
US11971354B2 (en) Methods and systems for fluorescence detection using infrared dyes
Yang et al. Multi-wavelength excitation Raman spectrometers and microscopes for measurements of real-world samples
JPS58143254A (ja) 物質同定装置
JPH0961355A (ja) 光軸移動型蛍光光度測定装置及び測定方法
CN111094942B (zh) 样品分析方法、分析装置及计算机程序
Lee et al. Optical-Switch Raman Spectroscopy for High Throughput Screening
CN117881949A (zh) 分光光度计
Rosene Second Derivative Excitation Emission Resolution (SEC DEER) Spectroscopy
Danthez et al. A dedicated spectra database for multiline selection in ICP-AES
Bruno et al. Visible and Ultraviolet Molecular Spectroscopy
Geddes et al. Simple Calibration and Validation Standards for Fluorometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907139

Country of ref document: EP

Kind code of ref document: A1