WO2018196806A1 - 终端及其控制方法 - Google Patents

终端及其控制方法 Download PDF

Info

Publication number
WO2018196806A1
WO2018196806A1 PCT/CN2018/084615 CN2018084615W WO2018196806A1 WO 2018196806 A1 WO2018196806 A1 WO 2018196806A1 CN 2018084615 W CN2018084615 W CN 2018084615W WO 2018196806 A1 WO2018196806 A1 WO 2018196806A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
signal
terminal
antenna loop
preset
Prior art date
Application number
PCT/CN2018/084615
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/608,459 priority Critical patent/US11108906B2/en
Publication of WO2018196806A1 publication Critical patent/WO2018196806A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72463User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions to restrict the functionality of the device
    • H04M1/724631User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions to restrict the functionality of the device by limiting the access to the user interface, e.g. locking a touch-screen or a keypad

Definitions

  • the present disclosure relates to the field of terminals, and in particular, to a terminal and a control method thereof.
  • terminals such as mobile phones, IPADs, readers, and smart wearable devices
  • the operation control of terminals is mainly based on the direct touch resistance or capacitive screen control operation.
  • the user needs to directly perform the corresponding touch operation on the touch screen through a finger or a dedicated stylus, and the operation is single.
  • the terminal has developed in the extreme direction of miniaturization and interface enlargement.
  • miniaturized terminals such as smart bracelets, smart watches, etc.
  • the screen interface is too small or has no interface, which brings great inconvenience to the user's operation.
  • large-size mobile phones such as smartphones or PADs larger than 5 inches
  • the interface is too large and the user's hands are too small, so that the interface cannot be covered by one hand, and the user operation is also inconvenient.
  • the embodiments of the present disclosure provide a terminal and a control method thereof to provide a terminal control solution to solve various problems of touch screen-based touch operations in existing terminals.
  • a terminal control method includes: detecting a received signal on a target antenna loop in a terminal, and acquiring a signal parameter of the received signal; and determining a signal parameter of the received signal and a preset Whether the target signal parameters match, and triggering control of the function to be controlled of the terminal when the signal parameter of the received signal matches the preset target signal parameter.
  • the target antenna loop corresponds to the target sensing object in the terminal and the target object to be sensed outside the terminal, and the target sensing object and the target object to be sensed are preset according to the to-be-controlled function.
  • an interference signal is generated that acts on the target antenna loop, and the interference signal affects a signal parameter of the received signal.
  • a terminal comprising: a signal detecting module configured to detect a received signal on a target antenna loop in the terminal, and acquire a signal parameter of the received signal; and a control module configured to determine Whether the signal parameter of the received signal matches the preset target signal parameter, and triggers control of the function to be controlled of the terminal when the signal parameter of the received signal matches the preset target signal parameter.
  • the target antenna loop corresponds to the target sensing object in the terminal and the target object to be sensed outside the terminal, and the target sensing object and the target object to be sensed are preset according to the to-be-controlled function.
  • an interference signal is generated that acts on the target antenna loop, and the interference signal affects a signal parameter of the received signal.
  • a computer storage medium having stored thereon a computer program, the computer program being executed by a processor, causing the processor to execute a terminal control method according to the present disclosure.
  • FIG. 1 is a schematic flow chart of a terminal control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flow chart of a terminal control method according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal according to still another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a user's hand approaching a terminal according to an embodiment of the present disclosure
  • Figure 7 is a diagram showing the fluctuation of the reception level in the scene shown in Figure 6;
  • FIG. 8 illustrates a schematic diagram of a terminal being in a desktop according to an embodiment of the present disclosure
  • FIG. 9 illustrates a schematic diagram of an antenna portion of a terminal outside a desktop, in accordance with an embodiment of the present disclosure
  • Figure 10 is a diagram showing the fluctuation of the reception level in the scenes shown in Figures 8 and 9;
  • FIG. 11 is a schematic diagram showing fluctuations of reception levels corresponding to several different manners of a terminal on a desktop according to an embodiment of the present disclosure
  • FIG. 12 is a diagram showing fluctuations in reception levels when a motor of a terminal is used as an inductive object according to an embodiment of the present disclosure
  • FIG. 13 is a diagram showing fluctuations of a reception level when a fingerprint chip of a terminal is used as an inductive object according to an embodiment of the present disclosure
  • FIG. 14 shows a schematic diagram of a terminal swing according to an embodiment of the present disclosure
  • Figure 15 is a diagram showing the fluctuation of the reception level in the terminal swinging process shown in Figure 14;
  • 16 shows a schematic diagram of two terminals approaching each other in the same direction according to an embodiment of the present disclosure
  • 17 shows a schematic diagram of two terminals being close to each other back to back according to an embodiment of the present disclosure
  • FIG. 18 illustrates a schematic diagram of two terminals gradually approaching each other in the same direction according to an embodiment of the present disclosure.
  • the cooperation of the target sensing object in the terminal and the target object to be sensed outside the terminal may affect the received signal on the target antenna loop, and control the terminal according to the change of the received signal, which is
  • the control principle of the terminal based on the touch screen is completely different, and the control operation mode presented to the user is also different.
  • the size of the terminal screen can be no longer limited, which not only enriches the control mode of the terminal, but also improves the convenience of control, and does not require any modification or upgrade of the terminal hardware, thereby Greatly improve the satisfaction of the user experience.
  • the antenna loops in the terminal and corresponding devices are exemplified below.
  • Terminals such as mobile terminals and smart wearable devices will have cellular communication antennas, such as 2G, 3G, 4G and other communication antennas after the long-distance call and data transmission; due to the need for short-distance data transmission and audio transmission
  • GPS Global Positioning System
  • GLOBAL NAVIGATION SATELLITE SYSTEM GLONASS
  • Beidou Beidou
  • Galileo Galileo and other functional antennas
  • NFC low-frequency functional antenna due to short-range radio frequency identification and transmission needs, will have NFC low-frequency functional antenna.
  • These antennas have a signal transmitting circuit and a signal receiving circuit in the terminal, and have a coupling loop between the signal transmitting circuit and the signal receiving circuit.
  • the signal transmitted by the signal transmitting circuit can be coupled to the signal receiving circuit via the coupling loop to form a received signal of the signal receiving circuit.
  • the coupling of the transmitted signal may be coupled to the signal receiving loop before the transmitted signal reaches the corresponding antenna, or may be coupled to the signal receiving loop after the transmitted signal reaches the antenna.
  • different antennas have respective corresponding signal transmitting circuits and signal receiving circuits.
  • the signal transmitting circuit, the signal receiving circuit, and the corresponding coupling loop constitute an antenna loop in various embodiments of the present disclosure. In general, different antennas have different antenna loops and different antennas have different physical locations on the terminal. Therefore, the influence of each target sensing object on the terminal on each antenna loop is related to the power of the antenna loop itself and its physical position at the terminal.
  • some objects on the terminal such as an antenna and internal components in the terminal (including but not limited to: a motor, a speaker, a backlight module, a touch screen, a Universal Serial Bus (USB)
  • the module, the front camera, the rear camera, etc., and some objects outside the terminal are physically close to or in contact with each other, and an interference signal acting on the antenna loop is generated, thereby
  • the signal parameters of the received signal on the antenna loop are affected, and the signal parameters include, but are not limited to, noise parameters, level values, and the like.
  • the following is an example of some specific application scenarios.
  • each antenna on the terminal in the process of free space and external objects close to or in contact with the terminal (for example, human body or other object medium), due to the influence of the dielectric constant of the object approaching or contacting, during use Because it is close to or in contact with the object in the region of the near magnetic field of the antenna, it is affected by the antenna effect of the antenna, which greatly affects the radiation characteristics of the antenna, and refracts, reflects and blocks the radiation effect of the RF signal emitted by the antenna. Signals that are refracted, reflected, and blocked are returned to the antenna, thereby affecting the received signal on the signal receiving circuit of the antenna.
  • This part of the signal is an interference signal that affects the signal parameters of the received signal on the antenna loop, that is, the antenna has a certain inductance to the external object.
  • Different external objects, distances to external objects, and different motion states have different effects on different types of antennas and antenna parameters of the terminal. By measuring, changing, and analyzing the changes of these parameters, the changes of these parameters can be used to trigger the control of the corresponding functions of the terminal.
  • the terminal itself includes some components, such as a motor, a speaker, an LCD, a backlight, a touch screen, a USB module, a front camera, a rear camera, etc., and also includes some chips, such as a GPS chip, a WIFI chip, a fingerprint recognition chip, and the like. Due to the limitations of the board routing, the power lines, clock lines, control lines, and/or high speed transmitted data lines of these devices and chips are close to or adjacent to the terminal's main frequency line.
  • the communication frequency band of the terminal for example, including but not limited to: GSM (Global System for Mobile Communication) / WCDMA (Wideband Code Division Multiple Access)
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • the main and diversity of /CDMA (Code Division Multiple Access)/LTE (Long Term Evolution) generate interference and influence, resulting in a change in the level of the received signal on the corresponding antenna loop of the terminal.
  • the proximity or contact surface of the terminal is equivalent to a near-field planar antenna, so the device or chip works.
  • the noise generated at the time is continuously reflected by an object close to the antenna area of the terminal, and the original low-noise interference signal is further enhanced.
  • the electromagnetic signal reflected back by the hopping interference signal is coupled to the antenna loop region of the terminal to form a secondary mixing, which affects the antenna loop of the terminal, thereby
  • the level value of the received signal detected on the antenna loop of the terminal also changes regularly (e.g., periodically). This regular change can also be used to trigger the control of the corresponding function of the terminal.
  • each to-be-controlled function of the terminal may be associated with a corresponding sensing object and an object to be sensed, and a corresponding antenna loop is selected according to an antenna loop that the sensing object can affect.
  • a function to be controlled eg, an unlock function
  • a target sensing object eg, an LTE antenna
  • a target object to be sensed eg, a hand
  • a target antenna loop eg, an LTE antenna loop
  • the set target sensing object and the set target object to be sensed are in the process of approaching or contacting, generating an interference signal acting on the target antenna loop, thereby affecting the signal parameters of the received signal on the target antenna loop.
  • the target target sensing object and the target object to be sensed may be pre-adjacent or contacted, and the received signal on the target antenna loop is actually measured in the process to obtain a target signal parameter, which may be regarded as a reference parameter.
  • FIG. 1 is a schematic flow chart of a terminal control method according to an embodiment of the present disclosure.
  • the terminal control method may include steps S101 to S103.
  • a received signal on a target antenna loop in the terminal is detected, and a signal parameter of the received signal is acquired.
  • step S102 it is determined whether the signal parameter of the acquired received signal matches the preset target signal parameter. If yes, the process goes to S103; otherwise, the process goes to S101.
  • step S103 control of the function to be controlled of the terminal is triggered.
  • the cooperation between the target sensing object in the terminal and the target object to be sensed outside the terminal may affect the received signal on the target antenna loop, and control the terminal according to the change of the received signal, so that the terminal is not manipulated. Restricted by the size of the terminal screen, it enriches the control mode of the terminal and improves the satisfaction of the user experience.
  • the target sensing object when a target sensing object is set for a function to be controlled, the target sensing object may be an antenna on the target antenna loop and/or at least one interference source component within the terminal.
  • the antenna and the external target object to be sensed may affect the received signal on the target antenna loop during the approach or contact.
  • the target sensing object is at least one interference source component in the terminal, the interference source component generates a noise signal during operation, and the noise signal is reflected to the component of the target antenna loop under the action of the external target object to be sensed, It affects the received signal on the target antenna loop.
  • the target object to be sensed may include at least one of a human body part and an external object of the terminal.
  • the target object to be sensed may include at least one of a hand, a face, or may be any part of a human body.
  • the target object to be sensed may include at least one of a desktop (including a desktop of various materials or shapes), a wallet, a clothing pocket, and an electronic device.
  • the manner of cooperation between the sensing object in the terminal and the target object to be sensed outside the terminal may be gradually approaching or contacting, and the contact may further include full contact or partial contact.
  • the received signal on the detected target antenna loop is a signal coupled to the signal receiving circuit of the target antenna loop by a reference signal transmitted by the signal transmitting circuit of the target antenna loop, that is, the target antenna loop can be spontaneously Self-receiving realizes reception of a received signal and acquires a signal parameter of the received signal.
  • the signal parameter may theoretically be any parameter that can reflect the cooperation between the external object to be sensed and the sensing object on the terminal, for example, may be a noise parameter or a level value of the received signal. .
  • the received signal on the target antenna loop when the received signal on the target antenna loop is detected, the received signal on the target antenna loop may be separately scanned at one or more preset frequency points to obtain corresponding signal parameters.
  • the received signals on the target antenna loop may be respectively scanned M times at at least one preset frequency point, and the M levels of the received signals are respectively acquired at the at least one preset frequency point, where M is greater than or equal to 1 The integer.
  • M is greater than or equal to 1
  • the integer The number of preset frequency points and the number of scans at each preset frequency point can be set according to specific needs.
  • the preset target signal parameter when M is equal to 1, that is, the received signal on the target antenna loop is scanned once at the at least one preset frequency point, the preset target signal parameter may be included in the at least one pre- Setting a target signal level value on the frequency point, in this case, determining whether the signal parameter of the received signal matches the preset target signal parameter (ie, step S102) may include: at the at least one preset The level value of the received signal respectively obtained at the frequency point is compared with the corresponding target signal level value at the preset frequency point, and whether the two match are determined according to the comparison result. For example, whether the two are matched according to whether the difference between the two is within a preset range or according to the size relationship of the two or the like.
  • the preset target signal parameter may include at least two target signal level values at the at least one preset frequency point, in which case determining whether the signal parameter of the received signal matches the preset target signal parameter
  • the step may include: performing a level fluctuation variation map formed according to the level values of the at least two received signals and a target level fluctuation variation map formed according to the at least two target signal level values Comparison.
  • Single or multiple level values can be selected for comparison according to specific needs, or compared by level fluctuation map.
  • level fluctuation map When comparing with a plurality of level values or comparing with a level fluctuation map, the movement trend or the track state between the sensing object in the terminal and the external object to be sensed may be reflected to some extent.
  • the terminal control method may further include: acquiring an interference signal inside and outside the terminal; and acquiring each interference signal, when the terminal is powered on, or when the terminal detects a relatively large change in the position of the terminal. Harmonic frequency, and determine whether the harmonic frequency of each interference signal is within the working frequency range of the terminal. If the harmonic frequency is within the working frequency range of the terminal, the frequency point corresponding to the harmonic frequency in the working frequency range is marked. To interfere with the frequency, to avoid scanning at these interference frequencies. In this way, when the preset frequency point is selected subsequently, the preset frequency point can be selected from each frequency point in the working frequency band range that is not marked as the interference frequency point.
  • first perform external interference scanning and perform a full-band scanning on the ambient noise of the terminal to determine which frequency bands have strong interference and which frequency bands do not interfere.
  • the terminal enters the receiving level self-test mode, and performs a fast self-test on the full-band full channel. This operation can be performed after the terminal is restarted, or it can be executed after the terminal moves to a certain area and finds that the latitude and longitude changes are large. This action can be automatically started and executed in the background.
  • 2100MHz or 850MHz is a public network channel, and some channels (for example, intermediate channels) have large interferences, and these interferences cause large interference and fluctuations in subsequent detection of received signals and noise, Conducive to the detection of the level stability of the received signal. Therefore, these tested unstable or irregularly adjusted frequency bands and frequency points of the received signal hopping can be recorded. In the subsequent inductive scan self-test, these bands are automatically avoided and the interference frequency is skipped to obtain a stable detection condition.
  • interference in addition to marking interference frequency avoidance, interference can also be eliminated by hardware.
  • the antenna switch is controlled to switch the RF path to other non-interfering frequency bands, and transmit and receive communication and inductive detection are performed on the non-interfering frequency band.
  • a bandpass filter bank is connected after each RF switch to further limit and filter the broadband noise of the outside world, so that the external signal of the antenna entering the terminal is not an interference signal.
  • the detection can be made more stable and reliable, and the control operation based on this is more accurate, which can further improve the satisfaction of the user experience.
  • FIG. 2 is a schematic flow chart of a terminal control method according to another embodiment of the present disclosure.
  • the present invention provides an example of a complete process of terminal control on the basis of the foregoing embodiment, taking the terminal as a mobile phone as an example, to better understand the present disclosure.
  • a terminal control method may include steps S201 to S212.
  • control mode according to the present disclosure is turned on, which includes turning on the adaptive sensing control recognition mode of the relevant component and the antenna, and correlating related mobile phone operations, functions, wireless settings, communication, and the like.
  • the user when the user first uses the system, the user can set the position of the antenna that needs to be touched or approached by the human body or the object waiting for the sensing object, and the mobile phone component (which may be an antenna or an interference source component) that needs to be sensed.
  • the mobile phone component which may be an antenna or an interference source component
  • the user can set the mobile phone function, the antenna area (ie, the antenna loop), the type of the human body or other contact objects, the sensing component or the antenna to be detected, etc., which need to be performed in the off-screen state or the bright-screen state.
  • parameters related to inductive recognition for example, level values and associated level value thresholds
  • Sensitivity is used to achieve precision control. For example, a range of differences between detected parameters (eg, level values) and preset target parameters (eg, level thresholds) can be set to set the accuracy of the control.
  • the functions that can be set by the user through the interactive interface need to be controlled by the control manner provided by the present disclosure, including but not limited to: unlocking, locking, answering, mute, vibration mode, flight mode, Bluetooth interconnection, WIFI mutual Connect, GPS positioning is on, etc.
  • the above-mentioned functions to be controlled may be set in one-to-one correspondence with the target antenna loop, the target sensing object, and an external target object to be sensed (for example, a human body or other contact objects).
  • the LTE main antenna in the lower left corner for example, the LTE main antenna in the lower left corner, the CDMA main antenna in the lower right corner, the diversity antenna in the upper left corner, the GPS antenna in the upper right corner, the WIFI on the right side, and Bluetooth.
  • Antenna central NFC antenna, etc.
  • the object to be contacted may include, but is not limited to, a desktop, a human hand, a wallet, a pocket, an electronic device (eg, another mobile phone, a wearable smart device, a Bluetooth headset, etc.).
  • the sensing object may include a motor in the mobile phone, an LCD, a front camera, a rear camera, a speaker, a fingerprint chip, a GPS chip, a WIFI chip, a radio frequency cellular chip, etc., or may be an antenna loop. Antenna.
  • the mobile phone invokes the receiving noise parameter and the received signal level reference value model in the working and off modes of each antenna and component in the shielding environment to perform self-calibration.
  • the mobile phone turns on the frequency band and the signal scanning mode, detects external radio communication signals or other interference signals, and simultaneously acquires internal or external interference signals of the mobile phone, and calculates multiple harmonic frequencies of each interference signal according to the operating frequency of each interference signal. And the harmonic frequency falling within the acquisition working frequency band is marked as the interference frequency point.
  • the antenna switch and the band pass filter group of the mobile phone can be switched to the anti-interference frequency band by, for example, the interference shielding module of the mobile phone, and full channel scan detection is performed on the selected frequency band, for the affected channel. Frequency hopping processing.
  • the interference shielding module can shield the external interference through two parts. The first part is the hardware part. When detecting interference, the antenna switch controls the RF path to switch to other non-interfering frequency bands, and performs transmission and reception communication and sensing detection on the non-interference frequency band.
  • a bandpass filter bank is connected after each RF switch to further limit and filter the broadband noise of the outside world, so that the external signal entering the cell phone antenna is not an interference signal.
  • the software shielding part filters out the known external interference channel or frequency point after scanning on the full channel or the local channel, and also filters out the multiple harmonic frequencies of the test channel, so that in the inductive scanning, Only scan for clean frequencies or channels.
  • a corresponding level value, a frequency band, a channel, a bandwidth, a mixing mode, a trip level or a change value of the reception level, and the like are set, that is, a preset frequency point is selected and an acquisition parameter is set.
  • step S207 after the object to be sensed contacts or approaches the sensing object, the change value of the receiving level when the corresponding component is turned on and off is collected.
  • the most sensitive components can be selected for level change values. Corresponding to the frequency and location of the antenna to detect whether the acquisition is successful. If the acquisition is successful and identifiable, the induction working mode can be entered. If the acquisition fails, the re-acquisition can be prompted.
  • the collected parameters are corrected on the original parameter model, converted into corresponding position and component received value target parameters, and stored in the memory of the mobile phone.
  • the level value of the received signal can be collected, and the collected level value is saved as a target level value for subsequent matching.
  • the inductive control mode can be enabled, that is, the corresponding function to be controlled can be performed by the sensing operation.
  • step S210 when the user or the object approaches or contacts the mobile phone, the level value of the received signal on the corresponding target antenna loop of the mobile phone is detected.
  • step S211 comparing the collected level value with the stored target level value, if the two are consistent or within a specified threshold range, the comparison result is transmitted to the baseband module of the mobile phone, if the two are inconsistent or out of range, Then do not respond or give a hint.
  • step S212 according to the processing result of the baseband module, the control of the corresponding mobile phone function is realized, that is, the related function of the setting is called.
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • a terminal may include a setting module 31, a signal detecting module 32, and a control module 33.
  • the setting module 31 is configured to set a function to be controlled (for example, a lock screen function) of the terminal, a target sensing object (for example, an LTE antenna) that triggers control of the function to be controlled, and a corresponding target object to be sensed (for example, a hand or An electronic device), and a target antenna loop (eg, an LTE antenna loop) corresponding to the target sensing object and the target object to be sensed on the terminal.
  • the set target sensing object and the set target object to be sensed are in the process of approaching or contacting, generating an interference signal acting on the target antenna loop, thereby affecting the signal parameters of the received signal on the target antenna loop.
  • the target target sensing object and the target object to be sensed may be pre-adjacent or contacted, and the received signal on the target antenna loop is actually measured in the process to obtain a target signal parameter, which may be regarded as a reference parameter.
  • the signal detection module 32 is configured to detect a received signal on a target antenna loop within the terminal and obtain a signal parameter of the received signal.
  • the control module 33 is configured to determine whether the signal parameter of the received signal matches the preset target signal parameter, and trigger control of the to-be-controlled function of the terminal when the signal parameter of the received signal matches the preset target signal parameter.
  • the setting module 31 can set the target sensing object as an antenna on the target antenna loop and/or at least one interference source component in the terminal.
  • the target object to be sensed may include at least one of a body part and an external object of the terminal.
  • the target object to be sensed may include at least one of a hand, a face, or may be any part of a human body.
  • the target object to be sensed may include at least one of a desktop (including a desktop of various materials or shapes), a wallet, a clothing pocket, and an electronic device.
  • the target antenna loop can be a communication antenna loop (including but not limited to: WCDMA/CDMA/GSM/LTE antenna loop) or a functional antenna loop (including but not limited to: GPS/WIFI/Bluetooth antenna loop).
  • a communication antenna loop including but not limited to: WCDMA/CDMA/GSM/LTE antenna loop
  • a functional antenna loop including but not limited to: GPS/WIFI/Bluetooth antenna loop
  • the interference source component may include, but is not limited to, at least one of a camera, a speaker, a motor, a backlight module, a touch screen, a USB module, a GPS chip, a WIFI chip, a fingerprint recognition chip, and a Bluetooth chip.
  • One or more interference source components can be selected.
  • the detected signal on the detected target antenna loop is a signal that is coupled to the signal receiving circuit of the target antenna loop by a reference signal transmitted by the signal transmitting circuit of the target antenna loop, that is, the target antenna loop can be realized by receiving the self-receiving
  • the signal is received and the signal parameters of the received signal are obtained.
  • the signal parameter may theoretically be any parameter that can reflect the cooperation between the external object to be sensed and the sensing object on the terminal, for example, may be a noise parameter or a level value of the received signal.
  • the signal detecting module 32 may be configured to perform M scans on the received signals on the target antenna loop respectively on the at least one preset frequency point, and acquire M levels of the received signals respectively on the at least one preset frequency point.
  • M is an integer greater than or equal to 1.
  • the signal detecting module 32 performs M scans on the received signal on the target antenna loop at a preset frequency point, and acquires M level values of the received signal at the preset frequency point.
  • the signal detecting module 32 separately scans the received signals on the target antenna loop for M times at the at least two preset frequency points, and acquires M signals of the received signals respectively at the at least two preset frequency points. Flat value.
  • the signal detection module 32 can set the number of preset frequency points and the number of times of scanning at each preset frequency point according to specific needs.
  • the control module 33 is configured to set a level value of the received signal respectively obtained at the at least one preset frequency point and a target signal level value corresponding to the preset frequency point Compare and determine if the two match based on the comparison. For example, whether the two are matched according to whether the difference between the two is within a preset range or according to the size relationship of the two or the like.
  • the preset target The signal parameter may include at least two target signal level values at the at least one predetermined frequency point, in which case the control module 33 is configured to fluctuate levels according to level values of the at least two received signals
  • the variation map is compared with a target level fluctuation variation map constructed based on the at least two target signal level values.
  • the control module 33 can select a single or multiple level values for comparison according to specific needs, or compare them by a level fluctuation map.
  • a level fluctuation map When comparing with a plurality of level values or comparing with a level fluctuation map, the movement trend or the track state between the sensing object in the terminal and the external object to be sensed may be reflected to some extent.
  • FIG. 4 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal may further include an interference processing module 34.
  • the interference processing module 34 acquires the terminal. Internal and external interference signals and harmonic frequencies of each interference signal, and determine whether the harmonic frequency of each interference signal is within the working frequency range of the terminal. If the harmonic frequency is within the working frequency range of the terminal, the working frequency band The frequency points corresponding to the harmonic frequency in the range are marked as interference frequency points to avoid scanning at these interference frequency points. In this way, when the preset frequency point is selected subsequently, the preset frequency point can be selected from each frequency point in the working frequency band range that is not marked as the interference frequency point.
  • the interference processing module 34 can eliminate the interference signal by the manner described in the foregoing embodiments, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a terminal according to still another embodiment of the present disclosure.
  • This embodiment further exemplifies the structure of the terminal by taking the terminal as a mobile phone as an example on the basis of the foregoing embodiment.
  • the mobile phone may include: a user setting module 51 (corresponding to the setting module 31 in the foregoing embodiment), an external interference scanning module 52, an interference shielding module 53 (the external interference scanning module 52, and interference shielding).
  • the module 53 corresponds to the interference processing module 34), the receiving level self-test module 54, and the component noise collecting module 55 (the receiving level self-test module 54 and the component noise collecting module 55 correspond to the signal detecting module in the foregoing embodiment).
  • the noise contrast recognition module 56 the adaptive sensing control module 57 (the noise contrast recognition module 56 and the adaptive sensing control module 57 correspond to the control module 33 in the foregoing embodiment), the baseband chip module 58, the radio frequency chip module 59, and move
  • the device storage module 510 the component module 511 (ie, the interference source component that can be set as the sensing object), the antenna module 512 (including but not limited to the communication antenna and the functional antenna), and the sensing operation instruction module 513.
  • the user setting module 51 is configured to provide a setting interaction interface, and the user can set the mobile phone function, the antenna area (ie, the antenna loop), the type of the human body or other contact objects, and the sensing that needs to be detected, which need to be executed in the off-screen state or the bright-screen state.
  • Components, antennas, etc. in addition, parameters related to inductive recognition (for example, level values and associated level value thresholds) and sensitivity can be set.
  • Sensitivity is used to achieve precision control. For example, a range of differences between detected parameters (eg, level values) and preset target parameters (eg, level thresholds) can be set to set the accuracy of the control.
  • the settings that can be made by the user through the interface provided by the user setting module 51 are as described in the foregoing embodiments, and are not described herein again.
  • the external interference scanning module 52 and the interference shielding module 53 are adjacent to each other, and can eliminate the influence of noise interference of the outside world and the mobile phone itself by referring to the operations described in steps S204 and S205 of FIG. 2, and shield external interference signals and interference frequencies. And its harmonics, so that the scanning operation of the received signal on the target antenna loop is performed on the non-interfering frequency and channel, and the specific operation mode of the external interference scanning module 52 and the interference shielding module 53 is no longer Narration.
  • the receiving level self-test module 54 is connected to the radio frequency chip module 59 and the component noise collecting module 55, and is used for scanning the receiving frequency of the modulated and unmodulated signals on the target antenna loop, and is also used for collecting proximity or contact with the human body or The level signal of the received signal on the target antenna loop after other objects changes. After controlling the receiver in the RF chip module 59 to scan, so that the mobile phone switches to a certain standard, frequency band, bandwidth, start and stop frequency points or channels, the receiving level self-test module 54 performs a self-receiving loop sweep. operating.
  • the receive level self test module 54 first sets a basic signal strength level (eg, -90 dB).
  • the base level scanned by the receive level self-test module 54 is different for different formats (eg, WCDMA/CDMA/GSM/LTE) or other wireless transmission methods (eg, WIFI/BT/GPS).
  • the basic level can be turned up or down, and the adjustment range is, for example, between -50 dB and -110 dB.
  • the fundamental level can be adjusted to a lower range, for example, between -110dB and -150dB.
  • the level of the received signal may be the primary set antenna level or the diversity antenna level.
  • the frequency sweep signal can be a carrier signal or a non-carrier signal.
  • the scanning speed can be adjusted by scanning the stepping and scanning frequency points.
  • the scanning frequency and the number of samples collected can be automatically selected or averaged according to the changes of the collected values to prevent unstable factors or abnormal external interference factors. If the level values of the received signals of the same frequency point are the same, the acquisition is stable, and the third scan is not required. If the difference between the key acquisition points in the two scans is large, more scans are performed until the regular signal value is obtained.
  • the receiving level self-test module 54 fills the front end of the mobile phone with a basic level signal through the transmitting signal circuit block of the target antenna loop, and the mobile phone passes the band pass filtering, LNA amplification, and then passes through the variable frequency local oscillator to obtain a corresponding frequency.
  • the intermediate frequency signal of the frequency band after the intermediate frequency signal is subjected to the post-stage filtering and the AD conversion, enters the variable gain amplifier to reach the level collecting and reporting module of the received signal.
  • the receiving level self-test module 54 can obtain different intermediate frequency signals by continuously adjusting the local oscillator frequency, and then collect the receiving level values of the respective frequency points.
  • the antenna on the antenna loop can be used as the sensing object.
  • the reception level self-test module 54 detects a level change value of a received signal of a corresponding area of the mobile phone antenna before and after the contact or proximity.
  • the receiving level self-test module 54 performs a full channel or partial channel scan on a certain frequency band before and after sensing, and recognizes a change pattern of the reception level fluctuation or a threshold change of the level.
  • the waveform conforms to the identification feature, or when the reception level of one or several frequency points changes to a certain threshold range, the corresponding sensing operation can be triggered.
  • the component noise acquisition module 55 is coupled to the receive level self test module 54, the noise contrast recognition module 56, and the mobile device memory module 510, and is configured to receive a change in the level value detected by the level self test module 54.
  • the component noise acquisition module 55 converts the change in level value to the noise parameter value of the corresponding component and frequency point, and stores the noise parameter value in the mobile device storage module 510.
  • the component noise acquisition module 55 can be omitted.
  • the level self-test module 54 scans the received signal in the corresponding frequency band. Comparing the scan value after the contact with the scan value before the contact, identifying the change pattern of the reception level fluctuation before and after the contact, or the level threshold change, when the waveform conforms to the recognition feature after the component is activated, or when one or more When the receiving level of the frequency point changes to a certain threshold range, the corresponding sensing operation can be triggered.
  • the noise contrast identification module 56 is coupled to the component noise acquisition module 55 and the adaptive sensing control module 57 and is configured to collect acquired signal parameters (eg, level values or noise parameters) and model storage parameters (ie, corresponding target signals) The parameter is compared. If the two are consistent or within a specified threshold range, the comparison result is transmitted to the adaptive sensing control module 57. If it is inconsistent or out of range, no response or prompt is given.
  • acquired signal parameters eg, level values or noise parameters
  • model storage parameters ie, corresponding target signals
  • the noise contrast recognition module 56 first needs to subtract the noise of no object or human body from the collected result, leaving only the increment of the object or the human body after approaching. Change the difference, and then compare and discriminate the incremental change difference.
  • the detected received value and the parameter model value stored in the mobile phone may have a certain difference. Therefore, when the parameter is compared, a certain threshold fluctuation range may be adopted, as long as it is within the threshold range. The detection data is valid, and the corresponding instruction operation will be started.
  • the adaptive sensing control module 57 is coupled to the user setting module 51, the baseband chip module 58, and other inductive acquisition and identification modules, and is used to sense the detected adaptive control.
  • the adaptive sensing control module 57 is also used for inductive control of different operational commands.
  • the adaptive sensing control module 57 is configured to perform coordinated control of each module of the inductive control and send the control command to the baseband chip module 58.
  • the baseband chip module 58 is connected to the adaptive sensing control module 57 and the user setting module 51, and is configured to receive an instruction of the user setting module 51, and control each module of the mobile phone to perform a corresponding operation according to the control instruction of the sensing control module 57.
  • the baseband chip module 58 is also used to detect the start and stop of various components and to receive inductive control during acquisition to control the operation of the various components.
  • the radio frequency chip module 59 is connected to the receiving level self-test module and the antenna module 512, and is used for scanning and detecting external interference signals.
  • the mobile device storage module 510 is coupled to the receive level self test module 54 and the component noise capture module 55 and is used to store parameters and models of antenna and component noise before and after the user or other object contacts or approaches the handset antenna or other location. data.
  • the component module 511 is connected to the component noise collection module 55 and is an interference source component that can be set as an inductive object.
  • the component module 511 may include a motor in the mobile phone, an LCD, a front camera, a rear camera, a speaker, a fingerprint chip, a USB module, a GPS chip, a WIFI chip, a radio frequency cellular chip, and an antenna. These devices and chips are susceptible to external touch during operation, resulting in regular changes in the reception level on a particular antenna loop within the handset.
  • the antenna module 512 is connected to the radio frequency chip module 59, and is used for receiving and transmitting signals of the mobile communication device and collecting external electromagnetic interference signals.
  • the antenna module 512 can also be used as an inductive medium for generating a human body or an object affected by noise.
  • the sensing operation instruction module 513 is connected to the baseband chip module 58 and is used for sensing control of each function module of the mobile phone, for example, starting an application, turning on or off the wireless function module (for example, Bluetooth, WIFI, GPS, etc.), wireless function Connect or disconnect, the phone settings enter a specific setting mode (for example, answer mode, flight mode, silent mode).
  • the sensing operation command module 513 can also control a certain function of the mobile phone, for example, unlocking the mobile phone, turning off the screen, lighting the screen, and the like.
  • FIG. 6 is a schematic diagram showing a user's hand approaching a terminal according to an embodiment of the present disclosure
  • FIG. 7 is a diagram showing fluctuations of a reception level in the scene shown in FIG. 6.
  • the mobile phone's communication antenna or wireless antenna eg, GSM, WCDMA, LTE, WIFI, BT, and GPS antennas
  • the hand is close to the phone's different antenna or hand held and
  • the palm covers different antennas, due to the conductor action of the human body, a ground loop is formed on the ground, and feedback is generated on the radiation signal of the antenna.
  • the value of the reception level collected by the handset itself i.e., the level of the received signal on the target antenna loop
  • 71 is the reception level value on the antenna receiving loop when the hand approaches the mobile phone
  • 72 is the level reference value
  • 73 is the reception level value on the receiving loop in the low noise non-contact.
  • Table 1 shows the received sensing values in different sensing scenarios:
  • Hand touching or touching the corresponding area of the handset can produce a change in the receiving parameters and can detect if a hand is approaching or touching the handset by comparing the change in the parameter to a pre-stored or standard parametric model.
  • different change amplitude thresholds different approach directions and distances can be further identified, and then mapped to the sensing command operation to control the corresponding functions of the mobile phone.
  • FIG. 8 shows a schematic diagram of a terminal in a desktop according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of an antenna portion of the terminal outside the desktop according to an embodiment of the present disclosure
  • FIG. 10 shows FIG. 8 and FIG. Schematic diagram of the fluctuation of the reception level in the scene shown in 9.
  • the antenna of the mobile phone When the mobile phone is placed on a desktop or an object, the antenna of the mobile phone is completely placed on the platform, and the receiving noise of the mobile phone is in two states relative to a certain area of the mobile phone.
  • the handset 81 is completely within the desktop 82. As shown in FIG. 9, a portion of the handset 81 is within the desktop 82. As shown in FIG. 10, 1001 is a schematic diagram of a change in reception level when the antenna is located in the desktop 82, and 1002 is a schematic diagram of a change in reception level when the antenna is located outside the desktop 82.
  • FIG. 11 is a diagram showing fluctuations of reception levels corresponding to several different ways of a terminal on a desktop according to an embodiment of the present disclosure.
  • 1101 is a schematic diagram of receiving level changes when the antenna is placed outside the desktop
  • 1102 is a schematic diagram of receiving level changes when the back of the mobile phone is placed on the desktop
  • 1103 is a reference value of the target receiving level
  • 1104 is a mobile phone. Schematic diagram of the change in reception level when placed face up on the desktop.
  • FIG. 12 is a diagram showing fluctuations in reception levels when a motor of a terminal is used as an inductive object according to an embodiment of the present disclosure.
  • the sensing control module 57 detects received waveforms of varying variations in form and amplitude.
  • 1201 is a schematic diagram of the receiving level change when the mobile phone is placed on the desktop
  • 1202 is a schematic diagram of the receiving level change when the mobile phone antenna is suspended and placed on the desktop.
  • the 1203 is a hand-held mobile phone and the mobile phone antenna Schematic diagram of the target receiving level reference value when floating
  • 1204 is a schematic diagram of the receiving level change when the lower part of the hand is shaken and the motor vibrates.
  • Each mode can be associated with a certain function of the mobile phone, for example, the mode indicated by 1201 is set to automatically answer, the mode indicated by 1202 is set to reject, the mode indicated by 1203 is set to be mute, and The mode indicated by 1204 is set to enter the flight mode. Therefore, when the user places the mobile phone in different positions, or holds the mobile phone with different hand holding methods, the mobile phone can be automatically triggered to enter the corresponding function and mode, thereby realizing intelligent automatic sensing control.
  • FIG. 13 is a diagram showing fluctuations in reception levels when a fingerprint chip of a terminal is used as an inductive object according to an embodiment of the present disclosure.
  • the basic principle is substantially the same as the example described in connection with FIG. 12, and details are not described herein again.
  • FIG. 14 is a schematic diagram showing the swing of the terminal according to an embodiment of the present disclosure
  • FIG. 15 is a diagram showing the fluctuation of the reception level in the swing of the terminal shown in FIG.
  • the mobile phone can be in a bright screen or a screen-off state, and the mobile phone LCD clock has an influence on the received signal with noise interference, and the optical drive chip also has a noise interference effect on the received signal.
  • This kind of noise interference has a radiation effect, which is reflected when someone approaches or touches, and then crosstalks the interference signal to the receiving loop of the mobile phone.
  • the sensing control module 57 (See Figure 5) It will detect the change threshold of the main set or diversity of a certain low frequency channel or frequency (such as 877.6MHz) at the reference level, which can be compared with the pre-stored reference threshold.
  • the current placement or hand-holding method enables gesture recognition.
  • Table 2 shows the received sensing values in different sensing scenarios:
  • the user can also hold the top or bottom of the mobile phone in different hand-holding modes and perform the swing operation (as shown in FIG. 14) to obtain a pulse curve whose duty value is periodically decremented (as shown in FIG. 15).
  • the receiving fluctuation signal with a small amplitude change as shown in FIG. 15 is obtained, and the corresponding waveform parameter is compared with the predefined waveform parameter to trigger the corresponding Inductive function instruction.
  • FIG. 16 shows a schematic diagram of two terminals approaching each other in the same direction according to an embodiment of the present disclosure
  • FIG. 17 shows a schematic diagram of two terminals being close to each other back to back according to an embodiment of the present disclosure
  • FIG. 18 illustrates an implementation according to the present disclosure.
  • B1, B2, and B3 correspond to three different positions, respectively. After the terminal A is fixed at a certain position, the terminal B is respectively located at the B1 position placed close to the terminal A, the B2 position shifted by 0.5 CM, and the B3 position shifted by 1 CM.
  • Table 3 shows the received sensing values in different sensing scenarios:
  • the present disclosure provides a method of inductively controlling a terminal or a wearable device that can be suspended or contacted.
  • a method of inductively controlling a terminal or a wearable device that can be suspended or contacted.
  • the operation of identifying the user is determined, and various human-machine, machine-object, and machine-machine sensing are collected in advance.
  • the models are compared to achieve various sensing command manipulations.
  • modules or steps of the above-described embodiments of the present disclosure may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed across multiple computing devices.
  • modules or steps may be implemented by program code executable by a computing device, such that the program code may be stored in a computer storage medium (ROM/RAM, disk, optical disk) for execution by a computing device, and in some cases
  • ROM/RAM, disk, optical disk for execution by a computing device
  • the steps shown or described may be performed in a different order than that herein, or the modules or steps may be separately fabricated into individual integrated circuit modules, or multiple of the modules or steps may be fabricated into a single integrated circuit. Module to achieve. Therefore, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)

Abstract

本公开实施例公开了一种终端及其控制方法,终端内的目标感应对象与终端外的目标待感应对象的配合可以影响目标天线回路上的接收信号,并且根据该接收信号的变化来实现对终端的控制。所述方法包括:对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数;以及判断所述接收信号的信号参数与预设的目标信号参数是否匹配,并且在所述接收信号的信号参数与所述预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制。

Description

终端及其控制方法 技术领域
本公开涉及终端领域,尤其涉及一种终端及其控制方法。
背景技术
随着手机、IPAD、阅读器及智能穿戴设备等终端的普及,人们对终端操作的便利性、终端交互性、趣味性、智能性等提出了新的需求,从而需要更快捷的新型感应操作控制方式。而目前对手机、智能手表IPAD等终端的操作控制主要还是基于直接触摸电阻或电容屏的控制操作。用户需要通过手指或专用触控笔直接在触控屏上进行相应触控操作,操作的趣味性单一。此外,终端向微型化和界面大型化两个极端方向发展。对于微型化的终端(比如智能手环、智能手表等),存在屏幕界面太小或无界面的情况,给用户的操作带来很大的不便。对于大尺寸手机(比如大于5寸以上的智能手机或者PAD等),也会存在界面太大而用户的手太小,使得界面无法单手覆盖的问题,用户操作也存在很大的不便。
发明内容
本公开实施例提供了一种终端及其控制方法,以提供一种终端控制方案来解决现有终端中的基于触控屏的触控操作的各种问题。
根据本公开实施例,提供一种终端控制方法,包括:对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数;以及判断所述接收信号的信号参数与预设的目标信号参数是否匹配,并且在所述接收信号的信号参数与所述预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制。所述目标天线回路与终端内的目标感应对象以及终端外的目标待感应对象相对应,并且根据所述待控制功能预先设定所述目标感应对象与所述目标待感应对象。在所述目标感应对象与所述目标待感应对象靠近或接触过程中,产生作用于所述目标天线回路的干扰信号,所述干扰信号对所述接收信号的信号 参数产生影响。
根据本公开实施例,还提供一种终端,包括:信号检测模块,设置为对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数;以及控制模块,设置为判断所述接收信号的信号参数与预设的目标信号参数是否匹配,并且在所述接收信号的信号参数与所述预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制。所述目标天线回路与终端内的目标感应对象以及终端外的目标待感应对象相对应,并且根据所述待控制功能预先设定所述目标感应对象与所述目标待感应对象。在所述目标感应对象与所述目标待感应对象靠近或接触过程中,产生作用于所述目标天线回路的干扰信号,所述干扰信号对所述接收信号的信号参数产生影响。
根据本公开实施例,还提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行根据本公开的终端控制方法。
附图说明
图1为根据本公开实施例的终端控制方法流程示意图;
图2为根据本公开另一实施例的终端控制方法流程示意图;
图3为根据本公开实施例的终端结构示意图;
图4为根据本公开另一实施例的终端结构示意图;
图5为根据本公开又一实施例的终端结构示意图;
图6为示出了用户的手靠近根据本公开实施例的终端的示意图;
图7示出了在图6所示场景中的接收电平的波动示意图;
图8示出了根据本公开实施例的终端处于桌面内的示意图;
图9示出了根据本公开实施例的终端的天线部分处于桌面外的示意图;
图10示出了在图8和图9所示场景中的接收电平的波动示意图;
图11示出了根据本公开实施例的终端在桌面上的几种不同方式所对应的接收电平的波动示意图;
图12示出了根据本公开实施例的终端的马达作为感应对象时的 接收电平的波动示意图;
图13示出了根据本公开实施例的终端的指纹芯片作为感应对象时的接收电平的波动示意图;
图14示出了根据本公开实施例的终端摆动示意图;
图15示出了在图14所示的终端摆动过程中的接收电平的波动示意图;
图16示出了根据本公开实施例的两个终端彼此同向靠近的示意图;
图17示出了根据本公开实施例的两个终端彼此背对背靠近的示意图;以及
图18示出了根据本公开实施例的两个终端彼此同向逐渐靠近的示意图。
具体实施方式
下面通过结合了附图的具体实施方式来对本公开的各实施例作进一步详细说明。
根据本公开的各实施例,终端内的目标感应对象与终端外部的目标待感应对象的配合可以影响目标天线回路上的接收信号,并且根据该接收信号的变化来实现对终端的控制,这与相关技术中终端基于触控屏进行控制的控制原理完全不同,并且呈现给用户的控制操作方式也是不同的。根据本公开的各实施例,可以不再受到终端屏尺寸的限制,既丰富了终端的控制方式,又能提升控制的便利性,此外还不需要对终端硬件进行任何改动或升级,从而在较大程度上提升用户体验的满意度。
为了便于理解本公开,下面先对终端内的天线回路以及相应的器件进行示例说明。
移动终端及智能穿戴设备等终端,由于远距离通话及数据传输的需要,会拥有蜂窝通讯天线,例如2G,3G,4G设置以后的5G等通讯天线;由于中短距离数据传输及音频传输的需要,会有蓝牙,WIFI等2.4G/5G的ISM(Industrial Scientific Medical)频段功能天 线;由于卫星定位的需要,会拥有全球定位系统(Global Positioning System,GPS)、全球导航卫星系统(GLOBAL NAVIGATION SATELLITE SYSTEM,GLONASS)、北斗、伽利略等功能天线;由于短距离射频识别及传输的需要,会拥有NFC低频功能天线。这些天线在终端内都有信号发射电路和信号接收电路,并且在信号发射电路和信号接收电路之间具有耦合回路。通过信号发射电路发射的信号可以通过耦合回路耦合到信号接收电路上形成信号接收电路的接收信号。另外,对于发射信号的耦合,可以是在该发射信号到达对应的天线之前耦合至信号接收回路,也可以是发射信号到达天线后耦合至信号接收回路。通常,不同的天线具有各自对应的信号发射电路和信号接收电路。信号发射电路、信号接收电路以及对应的耦合回路构成本公开各实施例中的天线回路。在一般情况下,不同的天线具有不同的天线回路,并且不同的天线在终端上所处的物理位置的不同。因此,终端上的各目标感应对象对各个天线回路的影响与天线回路自身功率以及其在终端上所处的物理位置相关。
在本公开的实施例中,终端上的一些对象,例如,天线以及终端内的内部部件(包括但不限于:马达、扬声器、背光模组、触摸屏、通用串行总线(Universal Serial Bus,USB)模块、前置摄像头、后置摄像头等)与终端外部的一些对象(包括但不限于:人体部位或外部物体)在物理上靠近或接触过程中,会产生作用于天线回路的干扰信号,从而对天线回路上的接收信号的信号参数产生影响,信号参数包括但不限于:噪声参数、电平值等。下面分别以一些具体应用场景进行示例说明。
对于终端上的各天线,这些天线在自由空间和靠近或接触终端的外部对象(例如,人体或其他物体介质)的过程中,由于所靠近或接触的对象的介电常数的影响,在使用过程中,由于被靠近或接触对象在天线近磁场的区域内,受自身天线效应的作用,会大大影响到天线辐射特性,对天线发射的射频信号的辐射效应产生折射、反射和阻挡。通过折射、反射和阻挡的信号会返回至该天线,从而对该天线的信号接收电路上的接收信号产生影响。这部分信号是影响天线回路上 的接收信号的信号参数的干扰信号,即,天线对外部对象会有一定的感应。而不同的外部对象、到外部对象的距离、不同的运动状态,对于终端不同种类的天线和天线参数所产生的影响都会不同。通过采集、统和计分析这些参数的变化,可利用这些参数的变化来实现触发对终端相应功能的控制。
终端本身包括一些部件,比如马达、扬声器、LCD、背光、触摸屏、USB模块、前置摄像头、后置摄像头等,同时还包括一些芯片,如GPS芯片、WIFI芯片、指纹识别芯片等。由于单板走线的限制,这些器件和芯片的供电线、时钟线、控制线和/或高速传输的数据线会和终端的主频线路靠近或相邻。因此在这些器件和芯片工作时,由于供电时钟或者数据的传输等因素,会对终端的通信频段(例如,包括但不限于:GSM(Global System for Mobile Communication)/WCDMA(Wideband Code Division Multiple Access)/CDMA(Code Division Multiple Access)/LTE(Long Term Evolution))的主、分集产生干扰和影响,从而导致终端的相应天线回路上的接收信号的电平产生变化。当有外界物体靠近或者接触终端的对应部位时,由于外界物体本身有一定的介电常数(或者一定的导电率),终端的靠近或接触面相当于一个近场平板天线,因此器件或芯片工作时产生的噪声经由靠近终端天线区域的物体不断地反射,将原有的低噪干扰信号进一步加强。随着器件和芯片的工作周期出现规律性的跳变,跳变的干扰信号反射回的电磁信号又被耦合到终端的天线回路区域,形成二次混频,对终端的天线回路造成影响,从而使得在终端的天线回路上检测到的接收信号的电平值也出现规律性(例如周期性)变化。这种规律性的变化也可以用于实现触发对终端相应功能的控制。
根据本公开实施例,通过侦测在物体(也即待感应对象)接近或接触终端的过程中,终端上相应的感应对象所引起的终端内相应的天线回路上的接收信号的规律性变化,来实现对终端的接近感应式控制或接触感应式控制。
根据本公开实施例,终端上可具有多个天线回路,并且终端上可以有多个感应对象(例如,终端的各天线或终端内部对天线回路产 生干扰信号的部件)。此外,可以根据具体应用将终端外部的待感应对象设置为不同的对象。终端上的感应对象与终端外部的待感应对象配合时可以影响不同的天线回路,并且通过不同的配合方式(例如靠近、接触以及具体的靠近方式、接触方式等)对天线回路上的接收信号产生影响的程度也会不同。因此,根据本公开实施例,可以将终端的各待控制功能与相应的感应对象以及待感应对象关联,并且根据感应对象所能影响的天线回路来选择相应的天线回路。
根据本公开实施例,可以先设定终端的待控制功能(例如,解锁功能)以及触发对该待控制功能的控制的目标感应对象(例如,LTE天线)与目标待感应对象(例如,手),以及与该目标感应对象和目标待感应对象对应的终端上的目标天线回路(例如,LTE天线回路)。设定的目标感应对象与设定的目标待感应对象在靠近或接触过程中,产生作用于目标天线回路的干扰信号,从而对目标天线回路上的接收信号的信号参数产生影响。可以通过设置好的目标感应对象和目标待感应对象预先进行靠近或接触,并在该过程中对目标天线回路上的接收信号进行实测来得到目标信号参数,其可以看成是基准参数。
图1为根据本公开实施例的终端控制方法流程示意图。
如图1所示,根据本公开实施例的终端控制方法可以包括步骤S101至S103。
在步骤S101处,对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数。
在步骤S102处,判断获取的接收信号的信号参数与预设的目标信号参数是否匹配,如匹配,则转至S103;否则,转至S101。
在步骤S103处,触发对终端的待控制功能的控制。
通过上述过程,终端内的目标感应对象与终端外的目标待感应对象的配合可以影响目标天线回路上的接收信号,并且根据该接收信号的变化来实现对终端的控制,从而对终端的操控不再受到终端屏尺寸的限制,丰富了终端的控制方式,并提升了用户体验的满意度。
根据本公开实施例,在为待控制功能设置目标感应对象时,目标感应对象可以为目标天线回路上的天线和/或终端内的至少一个干 扰源部件。
当目标感应对象为目标天线回路上的天线时,该天线与外部的目标待感应对象(例如,用户的手其他物体)在靠近或接触过程中就会对目标天线回路上的接收信号产生影响。当目标感应对象为终端内的至少一个干扰源部件时,干扰源部件在工作时会产生噪声信号,且该噪声信号在外部的目标待感应对象的作用下被反射至目标天线回路的部件,以对该目标天线回路上的接收信号产生影响。
根据本公开实施例,目标待感应对象可以包括人体部位和终端的外部物体中的至少一个。
例如,目标待感应对象可以包括手、脸部中的至少一个,或者可以是人体的任意部位。此外,目标待感应对象可以包括桌面(包括各种材质或形状的桌面)、钱包、衣物口袋、电子设备中的至少一个。
根据本公开实施例,终端内的感应对象和终端外的目标待感应对象之间的配合方式可以是逐步靠近或者接触,此外接触还可以包括完全接触或部分接触。
根据本公开实施例,所检测的目标天线回路上的接收信号为通过将目标天线回路的信号发射电路发射的基准信号耦合至目标天线回路的信号接收电路的信号,即,目标天线回路可以通过自发自收来实现对于接收信号的接收,并获取接收信号的信号参数。根据本公开实施例,信号参数理论上可以是能反应外部的待感应对象和终端上的感应对象之间的配合情况的任何参数,例如,可以是噪声参数,也可以是接收信号的电平值。
根据本公开实施例,对目标天线回路上的接收信号进行检测时,可以在一个或多个预设频点上分别对目标天线回路上的接收信号进行扫描,从而获取相应的信号参数。
可以在至少一个预设频点上分别对目标天线回路上的接收信号进行M次扫描,并在所述至少一个预设频点上分别获取接收信号的M个电平值,M为大于等于1的整数。可以根据具体需求来设定预设频点个数以及在各预设频点上扫描的次数。
根据本公开实施例,当M等于1时,即,在所述至少一个预设 频点上对目标天线回路上的接收信号进行一次扫描,预设的目标信号参数可以包括在所述至少一个预设频点上的目标信号电平值,在此情况下,判断接收信号的信号参数与预设的目标信号参数是否匹配的步骤(即,步骤S102)可以包括:将在所述至少一个预设频点上分别获取到的接收信号的电平值与该预设频点上对应的目标信号电平值进行比较,并根据比较结果确定二者是否匹配。例如,可以根据二者之差是否在预设范围内,或者根据二者的大小关系等来确定二者是否匹配。
根据本公开实施例,当M大于1时,即,在所述至少一个预设频点上对目标天线回路上的接收信号进行至少两次扫描,并且获取到至少两个接收信号的电平值时,预设的目标信号参数可以包括在所述至少一个预设频点上的至少两个目标信号电平值,在此情况下,判断接收信号的信号参数与预设的目标信号参数是否匹配的步骤(即,步骤S102)可以包括:将根据至少两个接收信号的电平值构成的电平波动变化图与根据所述至少两个目标信号电平值构成的目标电平波动变化图进行比较。
可以根据具体需求选用单个或多个电平值进行比较,或者通过电平波动变化图进行比较。采用多个电平值进行比较或采用电平波动变化图进行比较时,还可以在一定程度上反映出终端内的感应对象与外部待感应对象之间的移动趋势或轨迹状态等。
根据本公开实施例,在目标天线回路上对接收信号进行扫描时,为了避免其他干扰信号的干扰导致检测结果不准确的问题,在对终端内的目标天线回路上的接收信号进行检测之前(例如,可以是在终端开机时,或者在终端检测到自身位置有比较大的变化时),根据本公开实施例的终端控制方法还可以包括:获取终端内部和外部的干扰信号;获取各干扰信号的谐波频率,并判断各干扰信号的谐波频率是否在终端的工作频段范围内,如果谐波频率在终端的工作频段范围内,则将该工作频段范围内与该谐波频率对应频点标记为干扰频点,以避免在这些干扰频点上进行扫描。这样,在后续选择预设频点时,可以从工作频段范围未被标记为干扰频点的各频点中选择预设频点。
例如,首先进行外界干扰扫描,对终端所处的环境噪声做一个全频段扫描,判断哪些频段干扰比较强烈,哪些频段没有干扰。通过控制,使终端进入接收电平自测模式,对全频段全信道做快速自检。这个操作可以在终端重启后执行,也可以在终端移动到了某一个地区后发现经、纬度变化较大后执行。该操作可以在后台自动启动并执行。例如,当前环境中2100MHz或者850MHz是公网信道,在其中的某些信道(例如,中间信道)存在较大干扰,而这些干扰会对后续接收信号和噪声的检测造成较大干扰和波动,不利于接收信号的电平稳定性的检测。因此,可将这些测试到的不稳定或有不规则调整接收信号跳变的频段及频点记录下来。在后续的感应扫描自测中,自动避开这些频段,并跳过干扰频点,以得到一个稳定的检测条件。
根据本公开实施例,除了标记干扰频点避以外,还可以通过硬件排除干扰。例如,当检测到有干扰时,控制天线开关将射频通路切换至其它非干扰频段,并在非干扰频段上进行收发通讯和感应检测。此外,在每个射频开关后连接带通滤波器组,以对外界的宽频噪声进一步限制和滤波,使得进入终端的天线的外界信号不是干扰信号。
通过排除干扰信号,可以使得检测更加稳定可靠,并且使得以此为依据的控制操作更为精确,可进一步提升用户体验的满意度。
图2为根据本公开另一实施例的终端控制方法流程示意图。
本实施在前述实施例的基础上,以终端为手机为例,提供了终端控制的完整过程的示例,以更好的理解本公开。
参见图2,根据本公开另一实施例的终端控制方法可以包括步骤S201至S212。
在步骤S201处,开启根据本公开的控制模式,其包括开启相关部件和天线的自适应感应控制识别模式,并关联相关的手机操作、功能、无线设置及通讯等。
在步骤S202处,用户在首次使用本系统时,可以根据需求,设置需要由人体或物体等待感应对象接触或靠近的天线位置,以及需要感应的手机部件(可以是天线或干扰源部件)。
在该步骤中,用户可以设置需要在灭屏状态或亮屏状态下执行 的手机功能、天线区域(即,天线回路)、人体或其他接触物体的种类、需要检测的感应部件或天线等,此外,还可以设置与感应识别相关的参数(例如,电平值以及相关的电平值阈值)和敏感度等。敏感度用于实现精度控制,例如,可以设置检测到的参数(例如,电平值)与预设的目标参数(例如,电平阈值)之差的范围,从而对控制的精度进行设置。
例如,可以通过交互界面由用户设置哪些功能需要通过本公开提供的控制方式进行控制,其包括但不限于:解锁、加锁、来电接听、静音、震动模式、飞行模式、蓝牙互连、WIFI互连、GPS定位开启等。此外,可以将上述这些待控制功能与目标天线回路、目标感应对象以及外部的目标待感应对象(例如,人体或其他接触物体)一一对应地进行设置。
可以通过设置与感应功能对应的手机天线的位置来选择选使用哪些天线回路,例如,左下角LTE主天线、右下角CDMA主天线、左上角分集天线、右上角GPS天线、右侧边WIFI和蓝牙天线、中部NFC天线等。
待接触物体(即,待感应对象)可以包括但不限于:桌面、人手、钱包、口袋、电子设备(例如,另一手机、可穿戴智能设备、蓝牙耳机等)。
感应对象(即,手机上的感应部件)可以包括手机内的马达、LCD、前置摄像头、后置摄像头、扬声器、指纹芯片、GPS芯片、WIFI芯片、射频蜂窝芯片等,也可以是天线回路上的天线。
在步骤S203处,手机调用屏蔽环境下各天线及部件工作和关闭模式下的接收噪声参数和接收信号电平参考值模型,进行自校准。
在S204处,手机开启频段和信号扫描模式,侦测外界无线电通讯信号或其他干扰信号,同时获取手机内部或外部的干扰信号,根据各干扰信号的工作频率计算各干扰信号的多次谐波频率,并将落入采集工作频段内的谐波频率标记为干扰频点。
在射频信号的工作过程中,会存在两次或多次谐波、交调信号等,还会存在传导杂散和辐射杂散信号,对于接收信号,在发送和接 收之间会存在混频干扰。因此,在实际感应控制中,需要排除外界和手机本身的噪声干扰产生的影响。
在步骤S205处,可以通过,例如,手机的干扰屏蔽模块将手机的天线开关和带通滤波组切换到抗干扰频段,同时在选定频段上实现全信道扫描侦测,对于有影响的信道进行跳频处理。干扰屏蔽模块可通过两部分来完成外界干扰的屏蔽。首先是硬件部分,当检测到有干扰时,控制天线开关将射频通路切换其它非干扰频段,并在非干扰频段上进行收发通讯和感应检测。此外,在每个射频开关后连接带通滤波器组,以对外界的宽频噪声进一步限制和滤波,使得进入手机天线的外界信号不是干扰信号。其次是软件屏蔽部分,经过在全信道或局部信道进行扫描,将已知的外界干扰信道或频点过滤掉,同时将测试信道的多次谐波频点也过滤掉,使得在感应扫描中,只扫描干净频点或信道。
在步骤S206处,设置对应的电平值、频段、信道、带宽、混频模式、接收电平的跳变点或变化值等,即,选择预设频点并设置采集参数。
在步骤S207处,对待感应对象接触或靠近感应对象后,对应部件打开和关闭时的接收电平的变化值进行采集。
可以选择最敏感的部件来进行电平变化值的采集。对应与天线频点及部位来检测采集是否成功,如果采集成功且可识别,则可进入感应工作模式,如果采集失败,则可提示重新采集。
在步骤S208处,采集的参数在原始参数模型上进行修正,将其转化为对应位置和部件的接收值目标参数,并存储在手机的存储器中。可以采集接收信号的电平值,并将采集的电平值作为目标电平值进行保存,以供后续匹配。
在步骤S209处,采集完成后,可以启用感应控制模式,即,可以通过感应操作来执行对应的待控制功能。
在步骤S210处,当用户或物体靠近或接触手机后,对手机的相应目标天线回路上的接收信号的电平值进行检测。
在步骤S211处,比较采集到的电平值与存储的目标电平值,如 果两者一致或者在规定阈值范围内,则将对比结果传输给手机的基带模块,如果两者不一致或者超出范围,则不进行响应或给出提示。
在步骤S212处,根据基带模块的处理结果,实现对应的手机功能的控制,即,调用设置的相关功能。
图3为根据本公开实施例的终端结构示意图。
如图3所示,根据本公开实施例的终端可以包括设置模块31、信号检测模块32和控制模块33。
设置模块31用于设定终端的待控制功能(例如,锁屏功能),触发对该待控制功能的控制的目标感应对象(例如,LTE天线)和相应的目标待感应对象(例如,手或电子设备),以及目标感应对象和目标待感应对象在终端上对应的目标天线回路(例如,LTE天线回路)。设定的目标感应对象与设定的目标待感应对象在靠近或接触过程中,产生作用于目标天线回路的干扰信号,从而对目标天线回路上的接收信号的信号参数产生影响。可以通过设置好的目标感应对象和目标待感应对象预先进行靠近或接触,并在该过程中对目标天线回路上的接收信号进行实测来得到目标信号参数,其可以看成是基准参数。
信号检测模块32设置为对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数。
控制模块33设置为判断接收信号的信号参数与预设的目标信号参数是否匹配,并且在接收信号的信号参数与预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制。
在为待控制功能设置目标感应对象时,设置模块31可以将目标感应对象设置为目标天线回路上的天线和/或终端内的至少一个干扰源部件。
目标待感应对象可以包括人体部位和终端的外部物体中的至少一个。
例如,目标待感应对象可以包括手、脸部中的至少一个,或者可以是人体的任意部位。此外,目标待感应对象可以包括桌面(包括各种材质或形状的桌面)、钱包、衣物口袋、电子设备中的至少一个。
目标天线回路可以为通讯天线回路(包括但不限于: WCDMA/CDMA/GSM/LTE天线回路)或功能天线回路(包括但不限于:GPS/WIFI/蓝牙天线回路)。
干扰源部件可以包括但不限于:摄像头、扬声器、马达、背光模组、触摸屏、USB模块、GPS芯片、WIFI芯片、指纹识别芯片、蓝牙芯片中的至少一个。可以选择一个或多个干扰源部件。
所检测的目标天线回路上的接收信号为通过将目标天线回路的信号发射电路发射的基准信号耦合至目标天线回路的信号接收电路的信号,即,目标天线回路可以通过自发自收来实现对于接收信号的接收,并获取接收信号的信号参数。信号参数理论上可以是能反应外部的待感应对象和终端上的感应对象之间的配合情况的任何参数,例如,可以是噪声参数,也可以是接收信号的电平值。
信号检测模块32可以设置为在至少一个预设频点上分别对目标天线回路上的接收信号进行M次扫描,并在所述至少一个预设频点上分别获取接收信号的M个电平值,M为大于等于1的整数。
例如,信号检测模块32在一个预设频点上对目标天线回路上的接收信号进行M次扫描,并在该预设频点上获取接收信号的M个电平值。又例如,信号检测模块32在至少两个预设频点上分别对目标天线回路上的接收信号进行M次扫描,并在所述至少两个预设频点上分别获取接收信号的M个电平值。
信号检测模块32可以根据具体需求来设定预设频点个数以及在各预设频点上扫描的次数。
当M等于1时,即,在所述至少一个预设频点上对目标天线回路上的接收信号进行一次扫描,预设的目标信号参数可以包括在所述至少一个预设频点上的目标信号电平值,在此情况下,控制模块33设置为将在所述至少一个预设频点上分别获取到的接收信号的电平值与该预设频点上对应的目标信号电平值进行比较,并根据比较结果确定二者是否匹配。例如,可以根据二者之差是否在预设范围内,或者根据二者的大小关系等来确定二者是否匹配。
当M大于1时,即,在所述至少一个预设频点上对目标天线回路上的接收信号进行至少两次扫描,并且获取到至少两个接收信号的 电平值时,预设的目标信号参数可以包括在所述至少一个预设频点上的至少两个目标信号电平值,在此情况下,控制模块33设置为将根据至少两个接收信号的电平值构成的电平波动变化图与根据所述至少两个目标信号电平值构成的目标电平波动变化图进行比较。
控制模块33可以根据具体需求选用单个或多个电平值进行比较,或者通过电平波动变化图进行比较。采用多个电平值进行比较或采用电平波动变化图进行比较时,还可以在一定程度上反映出终端内的感应对象与外部待感应对象之间的移动趋势或轨迹状态等。
图4为根据本公开另一实施例的终端结构示意图。
参见图4,根据本实施例的终端还可可以包括干扰处理模块34。在信号检测模块32对终端内的目标天线回路上的接收信号进行检测之前(例如,可以是在终端开机时,或者在终端检测到自身位置有比较大的变化时),干扰处理模块34获取终端内部和外部的干扰信号和各干扰信号的谐波频率,并判断各干扰信号的谐波频率是否在终端的工作频段范围内,如果谐波频率在终端的工作频段范围内,则将该工作频段范围内与该谐波频率对应频点标记为干扰频点,以避免在这些干扰频点上进行扫描。这样,在后续选择预设频点时,可以从工作频段范围未被标记为干扰频点的各频点中选择预设频点。
干扰处理模块34可以通过前述实施例中描述的方式来排除干扰信号,在此不再赘述。
图5为根据本公开又一实施例的终端结构示意图。
本实施例在前述实施例的基础上,仍以终端为手机为例,对终端的结构进行进一步示例说明。
如图5所示,根据本实施例的手机可以包括:用户设置模块51(对应前述实施例中的设置模块31)、外界干扰扫描模块52、干扰屏蔽模块53(外界干扰扫描模块52和干扰屏蔽模块53对应前述实施例中的干扰处理模块34)、接收电平自测模块54、部件噪声采集模块55(接收电平自测模块54和部件噪声采集模块55对应前述实施例中的信号检测模块32)、噪声对比识别模块56、自适应感应控制模块57(噪声对比识别模块56和自适应感应控制模块57对应前 述实施例中的控制模块33)、基带芯片模块58、射频芯片模块59,移动设备存储模块510、部件模块511(即,可以设置为感应对象的干扰源部件)、天线模块512(包括但不限于通讯天线和功能天线)以及感应操作指令模块513。
用户设置模块51用于提供设置交互界面,用户可以设置需要在灭屏状态或亮屏状态下执行的手机功能、天线区域(即,天线回路)、人体或其他接触物体的种类、需要检测的感应部件或天线等,此外,还可以设置与感应识别相关的参数(例如,电平值以及相关的电平值阈值)和敏感度等。敏感度用于实现精度控制,例如,可以设置检测到的参数(例如,电平值)与预设的目标参数(例如,电平阈值)之差的范围,从而对控制的精度进行设置。
用户通过用户设置模块51提供的交互界面可以进行的设置如前述实施例所述,在此不再赘述。
外界干扰扫描模块52和干扰屏蔽模块来53彼此相邻,并且可以通过参考图2的步骤S204和步骤S205所描述的操作来排除外界和手机本身的噪声干扰的影响,屏蔽外界干扰信号、干扰频率及其谐波,使得当前在目标天线回路上对接收信号的扫描操作是在非干扰的频点和信道上进行的,外界干扰扫描模块52和干扰屏蔽模块来53的具体操作方式在此不再赘述。
接收电平自测模块54与射频芯片模块59和部件噪声采集模块55相连,并且用于对目标天线回路上的调制和非调制信号的接收频点扫描,同时还用于采集接近或接触人体或其他物体后目标天线回路上接收信号的电平信号变化。通过控制射频芯片模块59中接收机进行扫描,以使手机切换到某一个制式、频段、带宽、起始和终止频点或信道后,接收电平自测模块54进行自发自收的回路扫频操作。接收电平自测模块54首先设置基本的信号强度电平(例如,-90dB)。对于不同的制式(例如,WCDMA/CDMA/GSM/LTE)或其他无线传输方式(例如,WIFI/BT/GPS),接收电平自测模块54扫描的基本电平是不一样的。当检测不出接收信号或当前底噪太大时,可以将基本电平调高或调低,调节范围例如在-50dB到-110dB之间。对于GPS信道,基 本电平可以被调整到更低范围,例如,-110dB到-150dB之间。接收信号的电平可以为主集天线电平,也可以为分集天线电平。扫频信号可以是载波信号,也可以是非载波信号。扫描速度可以通过扫描步进和扫描频点数来调整。
在扫描过程中,扫描频点以及采集样本数量可以根据采集到的值的变化来自动选取或做平均处理,以防止不稳定因素或异常外界干扰因素。如果两次采集同一个频点的接收信号的电平值一致,说明采集稳定,不需要进行第三次扫描。如果两次扫描中关键采集点差值较大,则进行更多次数扫描,直到得到规则信号值。
接收电平自测模块54通过目标天线回路的发射信号电路块给手机的前端灌入基本电平信号,手机将该信号经过带通滤波、LNA放大后经过可变频率本振器混频得到对应频段的中频信号,中频信号经过后级滤波及AD转换后进入可变增益放大器达到接收信号的电平采集上报模块。接收电平自测模块54可通过不断调节本振频率,得到不同的中频信号,再采集各频点的接收电平值。
当手机在对应模式下待机或工作并且手机内的干扰源部件处于睡眠模式下时,可采用天线回路上的天线作为感应对象。当手机接触人手、人体、桌面,或靠近其他平台或装置时,接收电平自测模块54检测在接触或靠近之前和之后的手机天线对应区域的接收信号的电平变化值。接收电平自测模块54对感应前后的某一频段进行全信道或局部信道扫描,识别出接收电平波动变化图,或电平阈值变化。当波形合乎识别特征时,或者当某一个或几个频点的接收电平变化到某一个阈值范围时,即可触发对应的感应操作。
部件噪声采集模块55与接收电平自测模块54、噪声对比识别模块56和移动设备存储模块510相连,并且用于接收电平自测模块54检测到的电平值的变化。部件噪声采集模块55将电平值的变化转换为对应部件及频点的噪声参数值,并将噪声参数值存储到移动设备存储模块中510。部件噪声采集模块55可以省略。
当手机在对应模式下待机或工作并且手机部件处于工作状态时,例如,刚好有来电,手机扬声器振铃或马达震动,此时将手机放置到 对应平台或人手接近,部件噪声采集模块55启用接收电平自测模块54,以扫描对应频段下的接收信号。将接触后的扫描值和接触前的扫描值相比较,识别出接触前后的接收电平波动变化图,或电平阈值变化,当波形合乎部件启动后的识别特征时,或者当某一个或几个频点的接收电平变化到某一个阈值范围时,即可触发对应的感应操作。
噪声对比识别模块56与部件噪声采集模块55和自适应感应控制模块57相连,并且用于将采集到的信号参数(例如,电平值或噪声参数)与模型存储参数(即,对应的目标信号参数)进行对比,如果两者一致或者在规定阈值范围内,则将对比结果传输给自适应感应控制模块57,如果不一致或者超出范围,则不进行响应或给出提示。
由于手机硬件本身及部件本身会有一定的底噪,所以噪声对比识别模块56首先需要将没有物体或人体接近的噪声从采集到的结果中减去,只剩下物体或人体接近后的增量变化差值,然后就此增量变化差值进行对比识别判断。
另外,由于检测过程中会存在误差,所以检测得到的接收值和手机中存储的参数模型值会有一定的差异,因此在参数对比时,可以采取一定阈值的波动范围,只要在此阈值范围内的检测数据,都是有效,从而会启动对应的指令操作。
自适应感应控制模块57与用户设置模块51、基带芯片模块58及其他感应采集和识别模块相连,并且用于感应检测到的自适应控制。自适应感应控制模块57还用于不同操作指令的感应控制。自适应感应控制模块57用于完成感应控制的各模块的协调控制,并将控制指令发送给基带芯片模块58。
基带芯片模块58和自适应感应控制模块57及用户设置模块51相连,并且用于接收用户设置模块51的指令,并根据感应控制模块57的控制指令来控制手机各模块完成对应操作。基带芯片模块58还用于检测各部件的启动和停止以及采集过程中接收感应控制,以控制各部件工作。
射频芯片模块59与接收电平自测模块及天线模块512相连,并且用于外界干扰信号的扫描及侦测。射频芯片模块59和天线模块512 及射频前端电路一起,形成封闭的天线回路,以实现接收信号电平的检测。
移动设备存储模块510与接收电平自测模块54和部件噪声采集模块55相连,并且用于存储用户或其他物体接触或接近手机天线或其他部位之前和之后的天线及部件噪声的变化参数及模型数据。
部件模块511与部件噪声采集模块55相连,并且是可以设置为感应对象的干扰源部件。部件模块511可以包括手机内的马达、LCD、前置摄像头、后置摄像头、扬声器、指纹芯片、USB模块、GPS芯片、WIFI芯片、射频蜂窝芯片及天线等。这些器件和芯片在工作过程中,容易受到外界触控的影响,从而导致手机内的特定天线回路上的接收电平产生规律性变化。
天线模块512与射频芯片模块59相连,并且用于移动通讯设备的信号的接收和发射和外界电磁干扰信号的采集,此外,天线模块512还可用作产生噪声影响的人体或物体的感应媒介。
感应操作指令模块513与基带芯片模块58相连,并且用于手机各功能模块的感应控制,例如,启动某一应用程序,开启或关闭无线功能模块(例如,蓝牙、WIFI、GPS等)、无线功能的连接或断开、手机设置进入特定设置模式(例如,接听模式、飞行模式、静音模式)等。此外,感应操作指令模块513也可以控制手机的某一功能,例如,手机解锁、关闭屏幕、点亮屏幕等。
基于图5所示的本公开实施例的终端,对一些应用场景下的检测结果进行了测试。
图6为示出了用户的手靠近根据本公开实施例的终端的示意图,图7示出了在图6所示场景中的接收电平的波动示意图。
当所有的手机部件都处于休眠状态,而手机的通讯天线或无线天线(例如,GSM、WCDMA、LTE、WIFI、BT和GPS天线)处于待机状态,当手靠近手机不同的天线或者手握并以掌心覆盖不同的天线时,由于人体的导体作用,对地形成了接地环路,对天线的辐射信号产生反馈。手机自身采集到的接收电平值(即,目标天线回路上的接收信号的电平值)在手靠近或接触之前和之后会发生很大的变化。在图7 中,71为手接近手机时天线接收回路上的接收电平值,72为电平参考值,73为低噪非接触时接收回路上的接收电平值。
表1示出了在不同的感应场景下的接收感应值:
表1
Figure PCTCN2018084615-appb-000001
手接近或接触手机的对应区域可以产生接收参数的变化,并且通过将参数的变化与预存或标准参数模型相比较可检测到是否有手接近或接触手机。通过不同变化幅度阈值的判断,可进一步识别出不同的接近方向和距离,进而映射至感应指令操作,以控制手机的相应功能。
当然,此实例不光局限于手,人体其他部位也同样适用。
图8示出了根据本公开实施例的终端处于桌面内的示意图,图9示出了根据本公开实施例的终端的天线部分处于桌面外的示意图,并且图10示出了在图8和图9所示场景中的接收电平的波动示意图。
当手机放置在桌面或某一个物体上时,手机天线完全放置在平台上,相对于手机某一区域悬空放置,手机的接收噪声会处于两种状态。
如图8所示,手机81完全处于桌面82内。如图9所示,手机81的一部分处于桌面82内。如图10所示,1001为天线位于桌面82内时的接收电平变化示意图,1002为天线位于桌面82外时的接收电平变化示意图。
图11示出了根据本公开实施例的终端在桌面上的几种不同方式所对应的接收电平的波动示意图。
当手机81放置在桌面82上时,天线朝向空中和LCD朝向空中这两种放置方式也会得到两种不图的接收电平及噪声干扰值。如图11所示,1101为天线位于桌面外放置时的接收电平变化示意图,1102为手机背面向上放置于桌面时的接收电平变化示意图,1103为目标接收电平参考值示意图,1104为手机正面朝上放置于桌面时的接收电平变化示意图。
因此,对于手机的不同放置方式以及不同的朝向,可检测到不同的接收参数值,即,可以通过手机的不同放置方式实现感应控制指令的激活和关闭。
图12示出了根据本公开实施例的终端的马达作为感应对象时的接收电平的波动示意图。
当来电或者闹铃时,手机的内置马达会周期性地震动。这个时候,用户不用激活电源键,也不用点亮手机屏幕或做其他触控操作,只需要将手机放置在不同的位置,或者用手接近手机上方,或者采用不同手握的方式,或者放置在不同的平台上,感应控制模块57(参见图5)就会检测到不同形式和幅值的周期性变化的接收波形。
如图12所示,1201为手机放置在桌面上马达震动时的接收电平变化示意图,1202为手机天线悬空放置在桌面上马达震动时的接收电平变化示意图,1203为手握手机并且手机天线悬空时的目标接收电平参考值示意图,1204为手握手机下部并且马达振动时的接收电平变化示意图。
通过不同脉冲波形和幅度的检测,可检测出不同的接近或放置方式。可以将每个方式和手机的某一个功能相关联,例如,将1201所表示的方式设置为自动接听,将1202所表示的方式设置为拒接,将1203所表示的方式设置为静音,并且将1204所表示的方式设置为进入飞行模式。因此,当用户将手机放置在不同位置,或者使用不同的手握方式握住手机时,可以自动触发手机进入对应的功能和模式中,从而实现智能自动感应控制。
图13示出了根据本公开实施例的终端的指纹芯片作为感应对象时的接收电平的波动示意图。其基本原理与结合图12所描述的示例 实质上相同,在此不再赘述。
图14示出了根据本公开实施例的终端摆动示意图,图15示出了在图14所示的终端摆动过程中的接收电平的波动示意图。
手机可以处于亮屏或灭屏状态,手机LCD主频时钟对接收信号有噪声干扰的影响,并且光驱动芯片对接收信号也有噪声干扰的影响。这种噪声干扰有辐射效应,当有人手靠近或接触时会产生反射,进而将干扰信号串扰到手机的接收回路。
这个时候,用户不用点击手机的任何按钮或按键,只需要将手机放置在不同的位置,或者用手接近手机上方,或者采用不同手握的方式,或者放置在不同的平台上,感应控制模块57(参见图5)就会检测到某一个低频的某一个信道或频点(例如877.6MHz)的主集或分集在参考电平下的变化阈值,通过和预存的参考阈值相比较,可以得出当前的放置方式或手握方式,进而实现手势识别。表2示出了在不同的感应场景下的接收感应值:
表2
Figure PCTCN2018084615-appb-000002
这个时候,用户还可以在不同的手握方式下握住手机顶部或底部并进行摆动操作(如图14所示),即可得到其赋值周期性递减的脉冲曲线(如图15所示),以便于用户的自定义设置。如图14所示,当用户手握手机底部使手机反复摆动时,就会得到如图15所示的幅值渐变小的接收波动信号,以此和预定义的波形参数相对照,可触发对应的感应功能指令。
当两个手机需要互联通讯时,例如,建立蓝牙连接、WIFI直连、热点共享、NFC手机支付等,只需要将两个手机相互靠近,通过两个手机本身内部的干扰源部件或天线的互扰来影响接收信号的变化,可 判断出当前两个彼此靠近的手机的方向、距离和运动趋势,进而和对应的感应控制指令相链接,以实现两个终端之间的感应功能控制。
图16示出了根据本公开实施例的两个终端彼此同向靠近的示意图,图17示出了根据本公开实施例的两个终端彼此背对背靠近的示意图,图18示出了根据本公开实施例的两个终端彼此同向逐渐靠近的示意图。在图18中,B1、B2、B3分别对应于三个不同的位置。终端A固定在某一个位置后,终端B分别处于贴近终端A放置的B1位置、移动了0.5CM的B2位置以及移动了1CM的B3位置。表3示出了在不同的感应场景下的接收感应值:
表3
Figure PCTCN2018084615-appb-000003
本公开提供了一种可以悬浮或接触地感应控制终端或穿戴设备的方法。通过检测终端的部件和外部的接触物体之间的相互耦合对终端的天线回路产生的影响,来判断识别用户的操作,并和预先采集的各种人-机、机-物、机-机感应模型相比较,以实现各种感应指令操控。
显然,本领域的技术人员应该明白,上述本公开实施例的各模块或各步骤可以用通用的计算装置来实现,这些模块或步骤可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。这些模块或步骤可以用计算装置可执行的程序代码来实现,从而,可以将程序代码存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所 示出或描述的步骤,或者将这些模块或步骤分别制作成各个集成电路模块,或者将这些模块或步骤中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (14)

  1. 一种终端控制方法,包括:
    对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数;以及
    判断所述接收信号的信号参数与预设的目标信号参数是否匹配,并且在所述接收信号的信号参数与所述预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制,
    其中,所述目标天线回路与终端内的目标感应对象以及终端外的目标待感应对象相对应,并且根据所述待控制功能预先设定所述目标感应对象与所述目标待感应对象,并且
    在所述目标感应对象与所述目标待感应对象靠近或接触过程中,产生作用于所述目标天线回路的干扰信号,所述干扰信号对所述接收信号的信号参数产生影响。
  2. 如权利要求1所述的终端控制方法,其中,
    所述目标感应对象为所述目标天线回路上的天线和所述终端内的至少一个干扰源部件中的至少之一,
    所述干扰源部件工作时,在所述目标待感应对象的作用下产生反射至所述目标天线回路的部件的噪声信号。
  3. 如权利要求1所述的终端控制方法,其中,所述目标待感应对象包括人体部位和所述终端的外部物体中的至少一个。
  4. 如权利要求3所述的终端控制方法,其中,当所述目标待感应对象包括人体部位时,所述人体部位包括手、脸部中的至少一个,
    当所述目标待感应对象包括所述终端的外部物体时,所述终端的外部物体包括桌面、钱包、衣物口袋、电子设备中的至少一个。
  5. 如权利要求1-4中任一项所述的终端控制方法,其中,所述 接收信号为通过将所述目标天线回路的信号发射电路发射的基准信号耦合至所述目标天线回路的信号接收电路的信号,并且所述信号参数包括信号的电平值,
    对终端内的目标天线回路上的接收信号进行检测的步骤包括:
    在至少一个预设频点上分别对所述目标天线回路上的接收信号进行M次扫描,并在所述至少一个预设频点上分别获取接收信号的M个电平值,M为大于等于1的整数。
  6. 如权利要求5所述的终端控制方法,其中,
    当M等于1时,所述预设的目标信号参数包括在所述至少一个预设频点上的目标信号电平值,并且判断所述接收信号的信号参数与预设的目标信号参数是否匹配的步骤包括:
    将在所述至少一个预设频点上分别获取到的接收信号的电平值与该预设频点上对应的目标信号电平值进行比较,
    当M大于1时,所述预设的目标信号参数包括在所述至少一个预设频点上的至少两个目标信号电平值,并且判断所述接收信号的信号参数与预设的目标信号参数是否匹配的步骤包括:
    将根据至少两个接收信号的电平值构成的电平波动变化图与根据所述至少两个目标信号电平值构成的目标电平波动变化图进行比较。
  7. 如权利要求5所述的终端控制方法,其在,在对终端内的目标天线回路上的接收信号进行检测的步骤之前,所述方法还包括:
    获取所述终端内部和外部的干扰信号;以及
    获取各干扰信号的谐波频率,并判断所述谐波频率是否在所述终端的工作频段范围内,如果所述谐波频率在所述终端的工作频段范围内,则将所述工作频段范围内与该谐波频率对应的频点标记为干扰频点,
    其中,所述至少一个预设频点为从所述工作频段范围内未被标记为干扰频点的各频点中选择的频点。
  8. 一种终端,包括:
    信号检测模块,设置为对终端内的目标天线回路上的接收信号进行检测,并获取接收信号的信号参数;以及
    控制模块,设置为判断所述接收信号的信号参数与预设的目标信号参数是否匹配,并且在所述接收信号的信号参数与所述预设的目标信号参数匹配时,触发对所述终端的待控制功能的控制,
    其中,所述目标天线回路与终端内的目标感应对象以及终端外的目标待感应对象相对应,并且根据所述待控制功能预先设定所述目标感应对象与所述目标待感应对象,并且
    在所述目标感应对象与所述目标待感应对象靠近或接触过程中,产生作用于所述目标天线回路的干扰信号,所述干扰信号对所述接收信号的信号参数产生影响。
  9. 如权利要求8所述的终端,其中,
    所述目标感应对象为所述目标天线回路上的天线和所述终端内的至少一个干扰源部件中的至少之一,
    所述干扰源部件工作时,在所述目标待感应对象的作用下产生反射至所述目标天线回路的部件的噪声信号。
  10. 如权利要求8所述的终端,其中,所述目标待感应对象包括人体部位和所述终端的外部物体中的至少一个。
  11. 如权利要求9所述的终端,其中,所述目标天线回路为所述终端的通讯天线回路或功能天线回路,并且
    所述干扰源部件包括摄像头、扬声器、马达、背光模组、触摸屏、USB模块、GPS芯片、WIFI芯片、指纹识别芯片、蓝牙芯片中的至少一个。
  12. 如权利要求8-11中任一项所述的终端,其中,所述接收信 号为通过将所述目标天线回路的信号发射电路发射的基准信号耦合至所述目标天线回路的信号接收电路的信号,并且所述信号参数包括信号的电平值,
    所述信号检测模块设置为在至少一个预设频点上分别对所述目标天线回路上的接收信号进行M次扫描,并在所述至少一个预设频点上分别获取接收信号的M个电平值,M为大于等于1的整数。
  13. 如权利要求12所述的终端,其中,
    当M等于1时,所述预设的目标信号参数包括在所述至少一个预设频点上的目标信号电平值,并且所述控制模块设置为将在所述至少一个预设频点上分别获取到的接收信号的电平值与该预设频点上对应的目标信号电平值进行比较;
    当M大于1时,所述预设的目标信号参数包括在所述至少一个预设频点上的至少两个目标信号电平值,并且所述控制模块设置为将根据至少两个接收信号的电平值构成的电平波动变化图与根据所述至少两个目标信号电平值构成的目标电平波动变化图进行比较。
  14. 一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行根据权利要求1至7中任一项所述的终端控制方法。
PCT/CN2018/084615 2017-04-26 2018-04-26 终端及其控制方法 WO2018196806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/608,459 US11108906B2 (en) 2017-04-26 2018-04-26 Terminal control method and terminal based on antenna and noise interference feedback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710283851.5 2017-04-26
CN201710283851.5A CN108810235B (zh) 2017-04-26 2017-04-26 终端及其控制方法

Publications (1)

Publication Number Publication Date
WO2018196806A1 true WO2018196806A1 (zh) 2018-11-01

Family

ID=63918041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084615 WO2018196806A1 (zh) 2017-04-26 2018-04-26 终端及其控制方法

Country Status (3)

Country Link
US (1) US11108906B2 (zh)
CN (1) CN108810235B (zh)
WO (1) WO2018196806A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274833B (zh) * 2018-11-19 2021-04-06 Oppo广东移动通信有限公司 电磁干扰的调整方法及相关产品
FR3097998B1 (fr) * 2019-06-27 2021-10-29 Continental Automotive Procédé et moyens de commande à distance, par un terminal de communication mobile, d’une fonction sécurisée de véhicule automobile
CN112649666B (zh) * 2019-10-10 2024-02-06 北京比特大陆科技有限公司 芯片的扫频装置、方法和电子设备
CN111338501A (zh) * 2020-02-10 2020-06-26 北京小米移动软件有限公司 压感振动处理方法和装置、移动终端及电子设备
CN111244633B (zh) * 2020-03-23 2021-07-06 维沃移动通信有限公司 天线装置及电子设备
CN114640407A (zh) * 2022-03-22 2022-06-17 深圳市广和通无线股份有限公司 一种天线连接检测方法及相关装置
CN115529110A (zh) * 2022-09-30 2022-12-27 潍柴动力股份有限公司 数据处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006367A (zh) * 2010-12-02 2011-04-06 惠州Tcl移动通信有限公司 一种手机响铃的控制方法及采用该方法的手机
US20120252378A1 (en) * 2011-03-31 2012-10-04 Kabushiki Kaisha Toshiba Electronic device, electronic device controlling method and computer program product thereof
CN103368552A (zh) * 2012-04-11 2013-10-23 鸿富锦精密工业(深圳)有限公司 具有触摸按键的电子设备
CN103728906A (zh) * 2014-01-13 2014-04-16 江苏惠通集团有限责任公司 智能家居控制装置及控制方法
CN105165110A (zh) * 2013-02-28 2015-12-16 脸谱公司 使用无线电系统感测近端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066838A1 (ja) * 2010-11-18 2012-05-24 株式会社村田製作所 アンテナ装置
US9444130B2 (en) * 2013-04-10 2016-09-13 Apple Inc. Antenna system with return path tuning and loop element
US9379427B2 (en) * 2013-04-26 2016-06-28 Apple Inc. Methods for manufacturing an antenna tuning element in an electronic device
CN204203931U (zh) * 2014-11-18 2015-03-11 华中科技大学 一种基于射频识别的电子设备
CN106325473A (zh) * 2015-06-25 2017-01-11 中兴通讯股份有限公司 一种终端及其控制方法
CN105933051B (zh) * 2016-04-06 2019-03-22 Oppo广东移动通信有限公司 天线系统及其性能检测方法与装置、移动终端
CN106130589A (zh) * 2016-06-28 2016-11-16 联想(北京)有限公司 一种控制方法及电子设备
US10498011B2 (en) * 2016-09-02 2019-12-03 Apple Inc. Electronic devices having closed-loop antenna adjustment capabilities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006367A (zh) * 2010-12-02 2011-04-06 惠州Tcl移动通信有限公司 一种手机响铃的控制方法及采用该方法的手机
US20120252378A1 (en) * 2011-03-31 2012-10-04 Kabushiki Kaisha Toshiba Electronic device, electronic device controlling method and computer program product thereof
CN103368552A (zh) * 2012-04-11 2013-10-23 鸿富锦精密工业(深圳)有限公司 具有触摸按键的电子设备
CN105165110A (zh) * 2013-02-28 2015-12-16 脸谱公司 使用无线电系统感测近端
CN103728906A (zh) * 2014-01-13 2014-04-16 江苏惠通集团有限责任公司 智能家居控制装置及控制方法

Also Published As

Publication number Publication date
CN108810235A (zh) 2018-11-13
US20210112155A1 (en) 2021-04-15
CN108810235B (zh) 2022-05-10
US11108906B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018196806A1 (zh) 终端及其控制方法
US10506522B2 (en) Determination of device body location
CN107835033A (zh) 天线调谐开关的控制方法、装置、终端设备及存储介质
AU2017202529B2 (en) Determination of device body location
CN113766672B (zh) 一种连接建立方法及设备
CN106225806B (zh) 校准磁传感器的方法、装置及移动终端
CN112015502A (zh) 一种显示的处理方法及装置
WO2018120240A1 (zh) 一种调整电磁波辐射参数的装置、方法以及存储介质
CN109029252B (zh) 物体检测方法、装置、存储介质及电子设备
US20220113395A1 (en) Method for providing service related to electronic device by forming zone, and device therefor
US10182139B2 (en) Method and apparatus for controlling smart mobile device
WO2017067279A1 (zh) 一种实现对移动智能设备进行控制的方法及装置
CN113242349B (zh) 一种数据传输方法、电子设备及存储介质
US10716073B2 (en) Determination of device placement using pose angle
EP3748938B1 (en) State detection apparatus and method
CN106293006B (zh) 运行磁传感器校准算法库的方法、装置及移动终端
EP4228297A1 (en) Electronic device and operation method therefor
CN105120512B (zh) 一种信号接收的方法和装置
CN115250428A (zh) 一种定位方法和装置
TW202145645A (zh) 多天線模組的控制方法
CN113573239A (zh) 一种虚拟卡切换方法、电子设备及可穿戴设备
KR20180041663A (ko) 근접 검출기
CN113745851B (zh) 多天线模块的控制方法
CN110869939A (zh) 一种指纹采集方法和电子设备
SE1430101A1 (sv) Method and system for acquiring knowledge of proximity of an electronic device by another device for establishing communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791659

Country of ref document: EP

Kind code of ref document: A1