WO2018196622A1 - 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法 - Google Patents

一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法 Download PDF

Info

Publication number
WO2018196622A1
WO2018196622A1 PCT/CN2018/082784 CN2018082784W WO2018196622A1 WO 2018196622 A1 WO2018196622 A1 WO 2018196622A1 CN 2018082784 W CN2018082784 W CN 2018082784W WO 2018196622 A1 WO2018196622 A1 WO 2018196622A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
layer
steel
coiled tubing
welding
Prior art date
Application number
PCT/CN2018/082784
Other languages
English (en)
French (fr)
Inventor
蔡孝井
陈化顺
任成军
林旭
闫光
Original Assignee
杰森能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杰森能源技术有限公司 filed Critical 杰森能源技术有限公司
Publication of WO2018196622A1 publication Critical patent/WO2018196622A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal

Definitions

  • the invention relates to the technical field of oil and gas wells for land and sea, and particularly relates to a high-performance corrosion-resistant and economical composite steel coiled tubing and a manufacturing method thereof.
  • the coiled tubing differs from a conventional threaded tubing in that it is a single jointless tubing that is wound on a drum and can be continuously lowered or lifted up to several kilometers.
  • Coiled tubing technology is a relatively advanced technology in the world. Due to its low operating cost, simple time saving, safety and reliability, it is widely used in sand washing, well washing, logging, completion, drilling and other fields. .
  • the invention provides a high-performance corrosion-resistant and economical composite steel coiled tubing and a manufacturing method thereof for solving the above problems, and the composite steel coiled tubing of the invention has high strength, good plastic toughness, corrosion resistance and good economy.
  • the present invention is achieved by a high performance corrosion-resistant and economical composite steel coiled tubing comprising a base layer and a composite layer, the base layer and the composite layer being metallurgically bonded together; wherein the base layer is carbon steel or low
  • the alloy steel layer and the composite layer are corrosion resistant alloy layers.
  • the composite layer is disposed on the inner surface or the outer surface of the base layer to form a single-layer composite layer coiled tubing.
  • the composite layer is disposed on the inner surface and the outer surface of the base layer to form an inner and outer composite layer coiled tubing.
  • a further optimization scheme is that the components and mass percentages in the base layer are as follows:
  • the composite layer is an austenitic stainless steel layer
  • the components and mass percentages in the austenitic stainless steel layer are as follows: C ⁇ 0.03%, Mn 0.3%-1.8%, P ⁇ 0.035%, S ⁇ 0.03 %, Si 0.15%-0.65%, Cr 16.0%-18.0%, Mo 2.5%-3.0%, Ni 10.0%-14.0%, Fe balance.
  • the composite layer is a duplex stainless steel layer
  • the components and mass percentages in the duplex stainless steel layer are as follows: C ⁇ 0.03%, Mn 0.6%-9.0%, P ⁇ 0.030%, S ⁇ 0.02%, Si 0.15% - 0.85%, Cr 15.0% - 23.0%, Mo 0.5% - 3.5%, Ni 1.5% - 6.5%, N 0.14% - 0.30%, Fe balance.
  • the composite layer is a titanium alloy layer
  • the components and mass percentages in the titanium alloy layer are as follows: N ⁇ 0.03%, C ⁇ 0.08%, H ⁇ 0.015%, Fe ⁇ 0.3%, O ⁇ 0.18% , Mo 0.2%-0.4%, Ni 0.6%-0.9%, Ti balance.
  • a high-performance corrosion-resistant and economical composite steel coiled tubing manufacturing method comprises the following steps:
  • the manufacturing method of the base layer is as follows: steel is used as raw material, firstly smelted by electric furnace, followed by refining by ladle, and finally by vacuum degassing treatment to improve the purity of steel and reduce the content of harmful elements and impurities; electromagnetic stirring technology and crystallization by crystallizer Non-sinusoidal vibration technology, slab soft reduction technology for continuous casting into billets; by controlled rolling technology and cooling technology to obtain grain size ASTM Grade 11 or finer low carbon low alloy steel coil to be processed into a base layer;
  • the components and mass percentages in the low carbon low alloy steel coil are as follows:
  • the manufacturing method of the composite layer is as follows: due to different corrosive environments in the well, different composite layer materials are preferably processed into composite layers according to different corrosion conditions;
  • the composite layer material is austenitic stainless steel, which has good resistance to acid, alkali, salt and marine corrosive environment.
  • the components and mass percentage of austenitic stainless steel are as follows:
  • duplex stainless steel which has excellent corrosion resistance, especially strong resistance to stress corrosion and pitting resistance.
  • the components and mass percentages of duplex stainless steel are as follows:
  • the composite layer material is titanium alloy, which has strong resistance to acid etching, pitting corrosion and stress corrosion, and has excellent corrosion resistance in corrosive media such as alkali, chloride, sulfuric acid, etc.
  • the fraction and mass percentage are as follows: N ⁇ 0.03%, C ⁇ 0.08%, H ⁇ 0.015%, Fe ⁇ 0.3%, O ⁇ 0.18%, Mo 0.2% - 0.4%, Ni 0.6% - 0.9%, Ti balance;
  • the composite method of the base layer and the composite layer is as follows: the base layer and the two composite layers are to be composited to expose a fresh metallic luster and maintain a certain surface roughness, and the composite surfaces to be superposed are superposed, by inert gas protection or vacuum electrons.
  • the beam technology protects the two composite interfaces, and the composite plate is heated to 1200°C-1300°C for high-temperature rolling composite to achieve the close combination of the base layer and the metallurgical layer of the composite layer; the finishing and trimming process can obtain a width of 1.0m-1.5m.
  • a composite steel coil having a length of 61 m-900 m, a single-sided corrosion resistant layer having a thickness of 0.5 mm to 2 mm, and an overall thickness of 2 mm to 8 mm;
  • the above-mentioned composite steel coil is longitudinally slit to obtain a steel strip roll having a width of 70 mm-300 mm, the slit of the slitting cutter is not more than 0.5 mm/m, and the height of the slitting burr is not more than 1%.
  • the thickness of the material; the steel coil is formed by coiling and straight seam welding to form a composite steel coiled tubing. After the continuous coiling of the composite steel tubing is completed, the composite has a thickness of 0.5 mm-2 mm and an overall wall thickness of 2 mm-8 mm. Steel coiled tubing.
  • the welded composite steel tubing is preferably heat treated as follows: a, heated to 850 ° C - 980 ° C, air-cooled; b, heated to 1000 ° C - 1150 ° C, and rapidly water-cooled, Then heated to 120 ° C -280 ° C air cooling treatment; c, heated to 600 ° C -800 ° C, air cooling treatment.
  • the steel strip of 70 mm-300 mm can be passed through the strip butt welding method to lengthen the steel strip to achieve the total length of the composite steel required for the pipe making process.
  • Coiled tubing the specific method is as follows:
  • the composite layer is provided on the inner surface or the outer surface of the base layer, and the end of the composite steel coil to be butted is processed into a V-shaped groove, and the base layer is welded by plasma welding or argon arc welding. Then, the composite layer welding joint and the welded composite layer are repaired, and the welding of the front and back surfaces is protected by inert gas. After the welding is completed, the remaining height of the weld is removed by grinding and grinding; the composite layer is disposed on the inner and outer surfaces of the inner layer and the outer surface of the base layer.
  • the layer of coiled tubing is processed into an I-shaped groove at the end of the composite steel coil to be butted before welding.
  • the base and the composite layer are welded by plasma welding or argon arc welding. The welding of the front and back surfaces is protected by inert gas. After the welding is completed, Clean and polish to remove the weld height;
  • the butt weld of the steel strip is heat-treated.
  • the heat treatment is preferably carried out as follows: heating at 800 ° C - 950 ° C and air cooling treatment, heating at 1000 ° C - 1150 ° C and air cooling treatment or Heated at 500 ° C - 800 ° C and air cooled.
  • the steel strips are butted in sequence according to the above procedure until the total length required for the pipe making is reached.
  • the lengthened steel strip is crimped by a gradient forming method, and is directly welded by high frequency electric resistance welding or laser welding. After the welding is completed, a composite steel coiled tubing is formed through heat treatment, and the composite steel coiled tubing welding process is required.
  • the edge of the steel strip is designed to be V-shaped, inverted V-shaped or X-shaped and adjusted to weld the welding roll;
  • the edge of the steel strip of the layer composite coiled tubing is processed into an inverted V-shaped groove, the weld seam pressing roller is adjusted, and the inner burr extrusion amount is reduced, so that the inner burr metal deformation flow line angle is 5°-10° lower than the outer burr;
  • the edge of the steel strip of the outer layer composite coiled tubing is processed into a V-shaped groove, the weld seam pressing roller is adjusted, and the external burr extrusion amount is reduced, so that the outer burr metal deformation flow line angle is 5°-10° lower than the inner burr;
  • the edge of the steel strip of the inner and outer composite coiled tubing is processed into an X-shaped groove; finally, a composite steel c
  • the welded composite steel tubing is preferably heat treated as follows: a, heated to 850 ° C - 980 ° C, air-cooled; b, heated to 1000 ° C - 1150 ° C, and rapidly water-cooled, Then heated to 120 ° C -280 ° C air cooling treatment; c, heated to 600 ° C -800 ° C, air cooling treatment.
  • the invention Compared with the prior art, the invention has the following advantages: the invention designs a special base layer and a composite layer material, and adopts a special process to compound carbon steel or low alloy steel with a corrosion resistant alloy, and adopts a developed composite steel pipe making process. Reasonable welding and heat treatment to obtain a high-performance corrosion-resistant economical coiled tubing.
  • the invention solves the shortcomings of the existing low carbon low alloy steel coiled tubing, corrosion resistant alloy coiled tubing and composite coiled tubing.
  • the composite steel coiled tubing of the invention has the characteristics of high strength, good plastic toughness, corrosion resistance, low cost and good economy:
  • the composite steel coiled tubing composite layer of the invention is a corrosion resistant alloy material, so that the oil pipe has excellent corrosion resistance, and effectively solves the problem of insufficient corrosion resistance of the common low carbon steel or low alloy steel coiled tubing.
  • the composite steel tubing of the composite steel pipe of the invention is manufactured by a special smelting, rolling and cooling process, the microstructure is fine and uniform (grain degree ASTM Grade 11 or finer) and the coiled tubing heat treatment process is adopted, so that the coiled tubing has high strength and high strength.
  • the characteristics of plasticity and high toughness can effectively improve the bending fatigue life of coiled tubing.
  • the base material of the composite steel coiled tubing of the invention is ordinary low carbon low alloy steel, and the cost is low (only 20%-40% of conventional stainless steel coiled tubing and titanium alloy coiled tubing), effectively overcoming the conventional corrosion resistant alloy. Coiled tubing is difficult to promote due to its high cost.
  • the composite steel coiled tubing of the invention comprises an inner composite coiled tubing, an outer layer composite coiled tubing and an inner and outer composite coiled tubing, and the composite layer material comprises austenitic stainless steel, duplex stainless steel, titanium alloy, etc., and can adapt to different corrosion. Working conditions, flexible application, wide range, easy to promote and apply.
  • the composite steel coil of the invention has high strength, good plasticity, toughness and corrosion resistance at the same time, and is an economical high performance, high bending fatigue life and high corrosion resistance coiled tubing.
  • FIG. 1 is a schematic view showing the inner layer composite structure of a high performance corrosion resistant and economical composite steel coiled tubing according to the present invention.
  • FIG. 2 is a schematic view showing the outer composite structure of a high performance corrosion resistant and economical composite steel coiled tubing according to the present invention.
  • FIG. 3 is a schematic view showing the internal and external composite structure of a high performance corrosion-resistant and economical composite steel coiled tubing according to the present invention.
  • FIG. 4 is a schematic view showing the structure of a single-side composite layer steel strip butt joint of a high-performance corrosion-resistant and economical composite steel coiled tubing according to the present invention.
  • Fig. 5 is a schematic view showing the structure of a base material of a high performance corrosion-resistant and economical composite steel coiled tubing according to the present invention.
  • Fig. 6 is a schematic view showing the tightly combined structure of a base layer and a composite layer of a high performance corrosion-resistant economical composite steel coiled tubing according to the present invention.
  • Fig. 7 is a schematic view showing the progressive forming of a high performance corrosion-resistant economical composite steel coiled tubing according to the present invention.
  • a high performance corrosion-resistant and economical composite steel coiled tubing includes a base layer 1 and a composite layer 2, and the base layer 1 and the composite layer 2 are metallurgically bonded together; wherein the base layer 1 is carbon steel. Or a low alloy steel layer, the composite layer 2 is a corrosion resistant alloy layer.
  • the composite layer 2 is disposed on the inner surface or the outer surface of the base layer 1 to form a single-layer composite layer coiled tubing.
  • the composite layer 2 is disposed on the inner surface and the outer surface of the base layer 1 to form an inner and outer composite layer coiled tubing.
  • the components and mass percentages in the base layer 1 are as follows:
  • the composite layer 2 is an austenitic stainless steel layer, and the components and mass percentages in the austenitic stainless steel layer are as follows: C ⁇ 0.03%, Mn 0.3% - 1.8%, P ⁇ 0.035%, S ⁇ 0.03%, Si 0.15 %-0.65%, Cr 16.0%-18.0%, Mo 2.5%-3.0%, Ni 10.0%-14.0%, Fe balance.
  • the composite layer 2 is a duplex stainless steel layer, and the components and mass percentages in the duplex stainless steel layer are as follows: C ⁇ 0.03%, Mn 0.6% - 9.0%, P ⁇ 0.030%, S ⁇ 0.02%, Si 0.15% - 0.85%, Cr 15.0% - 23.0%, Mo 0.5% - 3.5%, Ni 1.5% - 6.5%, N 0.14% - 0.30%, Fe balance.
  • the composite layer 2 is a titanium alloy layer, and the components and mass percentages in the titanium alloy layer are as follows:
  • a high-performance corrosion-resistant and economical composite steel coiled tubing manufacturing method comprises the following steps:
  • the manufacturing method of the base layer is as follows: scrap steel is used as raw material, firstly smelted by electric furnace, followed by refining by ladle, and finally by vacuum degassing treatment to improve the purity of steel and reduce the content of harmful elements and impurities; electromagnetic stirring technology and crystallization by crystallizer Non-sinusoidal vibration technology, slab soft reduction technology for continuous casting into billets; by controlled rolling technology and cooling technology to obtain grain size ASTM Grade 11 or finer low carbon low alloy steel coil to be processed into a base layer;
  • the components and mass percentages in the low carbon low alloy steel coil are as follows:
  • the manufacturing method of the composite layer is as follows: due to different corrosive environments in the well, different composite layer materials are preferably processed into composite layers according to different corrosion conditions;
  • the composite layer material is austenitic stainless steel, which has good resistance to acid, alkali, salt and marine corrosive environment.
  • the components and mass percentage of austenitic stainless steel are as follows:
  • duplex stainless steel which has excellent corrosion resistance, especially strong resistance to stress corrosion and pitting resistance.
  • the components and mass percentages of duplex stainless steel are as follows:
  • the composite layer material is titanium alloy, which has strong resistance to acid etching, pitting corrosion and stress corrosion, and has excellent corrosion resistance in corrosive media such as alkali, chloride, sulfuric acid, etc.
  • the fraction and mass percentage are as follows: N ⁇ 0.03%, C ⁇ 0.08%, H ⁇ 0.015%, Fe ⁇ 0.3%, O ⁇ 0.18%, Mo 0.2% - 0.4%, Ni 0.6% - 0.9%, Ti balance;
  • the composite method of the base layer and the composite layer is as follows: the base layer and the two composite layers are to be composited to expose a fresh metallic luster and maintain a certain surface roughness, and the composite surfaces to be superposed are superposed by inert gas protection or vacuum electrons.
  • the beam technology protects the two composite interfaces, and the composite plate is heated to 1200°C-1300°C for high-temperature rolling composite to achieve the close combination of the base layer and the metallurgical layer of the composite layer; the finishing and trimming process can obtain a width of 1.0m-1.5m.
  • a composite steel coil having a length of 61 m-900 m, a single-sided corrosion resistant layer having a thickness of 0.5 mm to 2 mm, and an overall thickness of 2 mm to 8 mm;
  • the above-mentioned composite steel coil is slit to obtain a steel coil with a width of 70mm-300mm.
  • the slitting has strict technical requirements, and the need to ensure that the rake bend is not more than 0.5mm/m, longitudinal
  • the height of the shear burr does not exceed 1% of the material thickness.
  • the steel coil is formed into a composite steel coiled tubing by crimping and straight seam welding, and the composite steel coiled tubing is subjected to heat treatment to form a composite steel coiled tubing having a single-sided corrosion resistant layer thickness of 0.5 mm to 2 mm and an overall wall thickness of 2 mm to 8 mm. .
  • the welded composite steel tubing is preferably heat treated as follows: a, heated to 850 ° C - 980 ° C, air-cooled; b, heated to 1000 ° C - 1150 ° C, and rapidly water-cooled, Then heated to 120 ° C -280 ° C air cooling treatment; c, heated to 600 ° C -800 ° C, air cooling treatment.
  • the steel strip can be lengthened by means of butt welding to obtain a composite steel coiled tubing having a total length required for the pipe making process, and the specific method is as follows:
  • the composite layer is provided on the inner surface or the outer surface of the base layer, and the single-side composite layer coiled tubing is as shown in Figs. 1 and 2, and the end of the composite steel coil to be butted is processed into a V-shaped groove before welding, wherein t1
  • the thickness of the base layer, t2 is the thickness of the composite layer, the V-groove angle ⁇ is 60°, the root gap C is 1 mm-2 mm, P is too large to melt and the composite layer, and the length of the blunt edge (P+t2) should not exceed 4mm.
  • Plasma welding or argon arc welding is used to weld the base layer first, then the composite layer weld and the welded composite layer are repaired.
  • the welding of the front and back surfaces is protected by inert gas. After the welding is completed, the weld height is removed by grinding and grinding; the composite layer is set at The inner and outer composite layer of the inner layer and the outer surface are continuous oil pipes. Before welding, the end of the composite steel coil to be butted is processed into an I-shaped groove, and the welding base layer and the composite layer are welded by plasma welding or argon arc welding, and the front and back surfaces are welded. All are protected by inert gas. After the welding is completed, the remaining height of the weld is removed by grinding and grinding;
  • the butt weld of the steel strip is heat-treated.
  • the heat treatment is preferably carried out as follows: heating at 800 ° C - 950 ° C and air cooling treatment, heating at 1000 ° C - 1150 ° C and air cooling treatment or Heated at 500 ° C - 800 ° C and air cooled.
  • the steel strips are butted in sequence according to the above procedure until the total length required for the pipe making is reached.
  • the lengthened steel strip is crimped by a gradient forming method, and is directly welded by high frequency electric resistance welding or laser welding. After the welding is completed, a composite steel coiled tubing is formed through heat treatment, and the composite steel coiled tubing welding process is required.
  • the edge of the steel strip is designed to be V-shaped, inverted V-shaped or X-shaped and adjusted to weld the welding roll;
  • the edge of the steel strip of the layer composite coiled tubing is processed into an inverted V-shaped groove, the weld seam pressing roller is adjusted, and the inner burr extrusion amount is reduced, so that the inner burr metal deformation flow line angle is 5°-10° lower than the outer burr;
  • the edge of the steel strip of the outer layer composite coiled tubing is processed into a V-shaped groove, the weld seam pressing roller is adjusted, and the external burr extrusion amount is reduced, so that the outer burr metal deformation flow line angle is 5°-10° lower than the inner burr;
  • the edge of the steel strip of the inner and outer composite coiled tubing is processed into an X-shaped groove; finally, a composite steel c
  • the welded composite steel tubing is preferably heat treated as follows: a, heated to 850 ° C - 980 ° C, air-cooled; b, heated to 1000 ° C - 1150 ° C, and rapidly water-cooled, Then heated to 120 ° C -280 ° C air cooling treatment; c, heated to 600 ° C -800 ° C, air cooling treatment.
  • the yield strength of the coiled tubing of the invention is 483Mpa-931Mpa, the tensile strength is 551Mpa-1034Mpa, the plastic elongation is ⁇ 23%, and the low temperature impact energy is above 72J at 0°C, and the comprehensive mechanical properties are good and the corrosion resistance is strong.
  • the invention relates to a method for manufacturing a high-performance corrosion-resistant and economical composite steel coiled tubing, which comprises an outer composite pipe of an inner base layer and an outer composite layer, which is sequentially smelted by an electric furnace (EF) according to the chemical composition requirements of the coiled tubing base material.
  • Ladle refining (LF) and vacuum degassing (VD) smelting precise control of molten steel chemical composition, reducing harmful non-metallic elements and inclusions, through crystallizer electromagnetic stirring technology, crystallizer non-sinusoidal vibration technology, light reduction technology Casting a blank, by controlling rolling and controlling the cooling technology, a low carbon low alloy steel coil having excellent structural properties and a grain size of ASTM Grade 12 is obtained.
  • the specific chemical composition is as follows: C 0.08%, Mn 0.75%, P 0.010%, S 0.002%, Si 0.30%, Cr 0.65%, Mo 0.12%, Ni 0.15%, Cu 0.22%, Nb+Ti+ V0.12, Fe balance.
  • the composite steel coil of the composite steel pipe in the present embodiment is austenitic stainless steel in the outer layer composite layer.
  • the chemical composition of the composite layer steel coil is: C 0.01%, Mn 0.45%, P 0.015%, S 0.010%, Si 0.25%, Cr 17.5%, Mo 2.6%, Ni 11.5%, Fe balance.
  • the processing base layer and the composite layer are to be compounded to expose the fresh metallic luster, and the composite surfaces are relatively superimposed.
  • the composite interface is protected by vacuum electron beam technology, and the steel plate is heated to 1280 ° C for high temperature rolling compounding, finishing and cutting.
  • a composite steel coil having a width of 1.4 m, a length of 450 m, a corrosion resistant layer thickness of 0.8 mm, and an overall thickness of 4.45 mm was obtained, and the steel coil was longitudinally cut into strips having a width of 120 mm to 180 mm.
  • the end of the steel strip was chamfered to 45°, and the V-shaped groove was machined, the root gap C was 1 mm, and the blunt edge length was 2.3 mm.
  • the welding process is protected by argon gas.
  • the welding base of low carbon low alloy steel wire is filled by TIG. After welding the composite layer weld, the TIG filled stainless steel wire is used for welding. After the welding is completed, the special weld tools are used to remove the welds on both sides. high.
  • the heating at 850 ° C and air cooling treatment stabilize the structure of the composite layer, reduce the hardness of the base weld and refine the grains.
  • the edge of the steel strip is processed into a V-shaped groove, which is formed by gradual forming of the forming unit.
  • the high-frequency induction welding is used under the condition of nitrogen protection, and the welding squeeze roller is adjusted so that the outer burr flow line angle is 65° and the inner burr flow angle is 73. °.
  • the final coiled tubing has a yield strength of 495 MPa, a tensile strength of 578 MPa, a plastic elongation of 32%, and a low temperature impact energy of 108.5 J at 0 °C.
  • the invention relates to a method for manufacturing a high-performance corrosion-resistant and economical composite steel coiled tubing, which comprises an inner and outer composite pipe of a base layer and an inner and outer composite layer, which are sequentially smelted by an electric furnace (EF) according to the chemical composition requirements of the coiled tubing base material.
  • Refining (LF) and vacuum degassing (VD) smelting precise control of molten steel chemical composition, reducing harmful non-metallic elements and inclusions, continuous casting by crystallizer electromagnetic stirring technology, crystallizer non-sinusoidal vibration technology, soft reduction technology
  • the blank is obtained by controlling the rolling and controlling the cooling technology to obtain a low carbon low alloy steel coil having good structural properties and a grain size of ASTM Grade 13.
  • the specific chemical composition is as follows: C 0.12%, Mn 0.87%, P 0.012%, S 0.002%, Si 0.33%, Cr 0.75%, Mo 0.11%, Ni 0.13%, Cu 0.28%, Nb+Ti+ V0.16, Fe balance.
  • the composite steel coiled tubing of this embodiment is an inner and outer composite duplex stainless steel.
  • the chemical composition of the composite layer steel coil is: C 0.021 %, Mn 0.69%, P 0.025%, S 0.010%, Si 0.30%, Cr 22.5%, Mo 3.0%, Ni 6.0%, N 0.16%, Fe balance.
  • the processing base layer and the two composite layers are to be composited to expose the fresh metallic luster, and the composite surfaces are superimposed, and the two composite interfaces are protected by vacuum electron beam technology, and the steel plate is heated to 1260 ° C for high temperature rolling compounding and finishing.
  • the trimming process is carried out to obtain a composite steel coil having a width of 1.2 m, a length of 510 m, a corrosion resistant layer thickness of 0.95 mm, and an overall thickness of 5.18 mm, and the steel coil is longitudinally cut into strips having a width of 120 mm to 180 mm.
  • the end of the steel strip was beveled to 45° to machine the I-shaped groove.
  • the welding process is protected by argon gas, and the stainless steel welding wire is filled by plasma welding to complete the welding.
  • the stainless steel tool is used to remove the remaining weld height on both sides. It was heated at 1050 ° C and air-cooled.
  • the edge of the steel strip is processed into an X-shaped groove, which is gradually formed by a forming unit, and is laser welded to control the amount of burr metal extrusion inside and outside.
  • the whole tube is heat treated, heated to 1120 ° C for rapid water cooling, and then heated to 260 ° C for air cooling treatment.
  • the final coiled tubing has a yield strength of 907 MPa, a tensile strength of 948 MPa, a plastic elongation of 25%, and a low temperature impact energy of 81 J at 0 °C.
  • the invention relates to a method for manufacturing a high-performance corrosion-resistant and economical composite steel coiled tubing, wherein the coiled tubing comprises an inner layer composite pipe of an outer base layer and an inner composite layer, and is sequentially smelted by an electric furnace (EF) according to the chemical composition requirements of the coiled tubing base material.
  • Ladle refining (LF) and vacuum degassing (VD) smelting precise control of molten steel chemical composition, reducing harmful non-metallic elements and inclusions, through crystallizer electromagnetic stirring technology, crystallizer non-sinusoidal vibration technology, light reduction technology Casting a blank, through controlled rolling and controlled cooling technology, a low carbon low alloy steel coil with excellent microstructure and grain size ASTM Grade 12 is obtained.
  • the specific chemical composition is as follows: C 0.09%, Mn 1.1%, P 0.015%, S 0.003%, Si 0.35%, Cr 0.76%, Mo 0.15%, Ni 0.18%, Cu 0.26%, Nb+Ti+ V0.11, Fe balance.
  • the working medium According to the working medium, the working medium and the stress corrosion conditions of alkali, chloride, acid and the like are injected into the coiled tubing.
  • the coiled tubing of the composite steel in the embodiment is an inner layer composite titanium alloy.
  • the chemical composition of the coil of the composite layer is : N 0.01%, C 0.03%, H 0.003%, Fe 0.16%, O ⁇ 0.009%, Mo 0.25%, Ni 0.79%, and Ti balance.
  • the processing base layer and the composite layer are to be compounded to expose the fresh metallic luster, and the composite surfaces are relatively superimposed.
  • the composite interface is protected by vacuum electron beam technology, and the steel plate is heated to 1250 ° C for high temperature rolling compounding, finishing and cutting.
  • a composite steel coil having a width of 1.2 m, a length of 570 m, a thickness of 0.7 mm of the corrosion resistant layer, and an overall thickness of 4.45 mm was obtained, and the steel coil was longitudinally cut into strips having a width of 120 mm to 180 mm.
  • the end of the steel strip was chamfered to 45°, and the V-shaped groove was machined, the root gap C was 1.5 mm, and the blunt edge length was 2.3 mm.
  • the welding process is protected by argon gas.
  • the base layer is welded by plasma fill wire welding, the composite layer weld is repaired, and the composite layer is welded by MIG.
  • the special weld tool is used to remove the weld height of both sides. It was heated at 680 ° C and air-cooled.
  • the edge of the steel strip is processed into an inverted V-shaped groove, which is formed by gradual forming of the forming unit.
  • the high-frequency induction welding is used under the condition of nitrogen protection, and the welding squeezing roller is adjusted to make the outer burr flow line angle at 78° and the internal burr flow angle. 69°.
  • the whole tube is heat treated and inductively heated to 760 ° C for air cooling.
  • the final coiled tubing has a yield strength of 643 MPa, a tensile strength of 712 MPa, a plastic elongation of 28%, and a low temperature impact energy of 96 J at 0 °C.
  • the working principle of a high-performance corrosion-resistant and economical composite steel coiled tubing and a manufacturing method thereof are as follows:
  • the composite steel coiled tubing of the present invention is made of a special composite steel.
  • the coiled tubing base layer is carbon steel or low alloy steel which guarantees the mechanical properties of the coiled tubing.
  • the composite layer of the coiled tubing is a corrosion resistant alloy resistant to tubing corrosion and can be disposed on the outer surface, the inner surface or the inner and outer surfaces of the base layer. .
  • the composite steel coiled tubing of the invention is different from the existing composite coiled tubing (the various functional layers are independent of each other, only a simple physical layer composite, even with an annulus in the middle, and some composite layers of insulation layers, cables, etc. to achieve some special functions. ), which developed a new type of coiled tubing material that passes carbon steel or low-alloy steel and corrosion-resistant alloy through a special steel manufacturing process, so that two materials with different properties and different compositions can be firmly combined at the metallurgical level. A new material to achieve the perfect combination of performance.
  • the base material In the operation of coiled tubing, it will bear the combined effects of various complex loads such as stretching, compression, bending, torsion, internal and external pressure, etc. It is necessary to make the base material have better comprehensive mechanical properties (high strength, high plasticity, high toughness). To solve this problem, the design of the base material is carried out:
  • the chemical composition of the coiled tubing base layer is as follows: C 0.06%-0.23%, Mn 0.5%-2.1%, P ⁇ 0.02%, S ⁇ 0.005%, Si 0.15%-0.5%, Cr 0.35%-1.6% Mo 0.02%-0.3%, Ni 0.05%-0.97%, Cu 0.1%-0.5%, Nb+Ti+V ⁇ 0.2, Fe balance. It has a uniform metallographic structure and ultrafine crystal grains which are important features of the base material of the present invention, and the grain size should be ASTM Grade 11 or finer (Fig. 5).
  • the above-mentioned base material is made of scrap steel, making full use of steel resources, smelting by electric furnace (EF), followed by ladle refining (LF), and finally by vacuum degassing (VD) treatment to improve steel purity and reduce harmful elements and impurities;
  • EF electric furnace
  • LF ladle refining
  • VD vacuum degassing
  • M-EMS electromagnetic stirring technology of the crystallizer
  • the non-sinusoidal vibration technology of the crystallizer, and the soft reduction technology of the slab the non-metallic inclusions and segregation are effectively controlled to obtain a good quality of the slab;
  • the rolling technology The billet heating temperature, rolling temperature, deformation and other parameters are reasonably controlled, the grains are refined and the mechanical properties of the steel are improved by precipitation strengthening and dislocation strengthening.
  • the phase transformation process is adjusted to control the material organization state and group.
  • the fractional ratio and the precipitation of the compound in the case of reducing the content of the alloying elements, improve the strength of the material to ensure the mechanical
  • the coiled tubing of the invention operates underground, and is subjected to various corrosive media, which seriously affects the service life of the tubing.
  • design the composite layer material :
  • the coiled tubing of the composite steel can be designed according to the specific corrosion conditions, and the following three composite layers are preferred. Materials to suit different corrosive conditions.
  • the composite layer material is austenitic stainless steel, which has good resistance to acid, alkali, salt and marine corrosive environment. It has good resistance to high temperature corrosion and pitting corrosion by rational design of alloying elements. performance. According to the mass percentage, the chemical composition of the composite layer is as follows: C ⁇ 0.03%, Mn 0.3% - 1.8%, P ⁇ 0.035%, S ⁇ 0.03%, Si 0.15% - 0.65%, Cr 16.0% - 18.0%, Mo 2.5% -3.0%, Ni 10.0% - 14.0%, Fe balance.
  • the composite layer material is duplex stainless steel, which has excellent corrosion resistance, especially has strong resistance to stress corrosion and pitting corrosion, and has low nickel content and relatively low cost.
  • the chemical composition of the composite layer is as follows: C ⁇ 0.03%, Mn 0.6% - 9.0%, P ⁇ 0.030%, S ⁇ 0.02%, Si 0.15% - 0.85%, Cr 15.0% - 23.0%, Mo 0.5% -3.5%, Ni 1.5% - 6.5%, N0.14% - 0.30%, Fe balance.
  • the composite layer material is titanium alloy, which has strong resistance to acid etching, pitting corrosion and stress corrosion, and has excellent corrosion resistance in corrosive media such as alkali, chloride and sulfuric acid.
  • the chemical composition of the composite layer is as follows: N ⁇ 0.03%, C ⁇ 0.08%, H ⁇ 0.015%, Fe ⁇ 0.3%, O ⁇ 0.18%, Mo 0.2% - 0.4%, Ni 0.6% - 0.9% , Ti balance.
  • the composite steel coil for the coiled tubing of the present invention is prepared by the following technical scheme: the surface to be compounded of the carbon steel plate and the corrosion resistant alloy steel plate is cleaned by mechanical processing, grinding or other means to expose the fresh metallic luster and Maintaining a certain surface roughness, the composite surfaces to be superposed are superposed, and then the composite plate is heated to 1200 ° C - 1300 ° C for high-temperature rolling, and the composite interface is protected by inert gas protection or vacuum electron beam technology.
  • the rolling composite technology Preventing the oxidation of the composite interface during high temperature rolling to affect the bonding properties of the composite interface.
  • the close combination of the metallurgical layer of the base layer and the composite layer is realized.
  • the width is 1.0m-1.5m
  • the length is 61m-900m
  • the thickness of the single-sided corrosion-resistant layer is 0.5mm-2mm.
  • the above-mentioned composite steel coil is slit to obtain a steel coil having a width of 70 mm to 300 mm.
  • the slitting has strict technical requirements, and it is necessary to ensure that the file bending is not more than 0.5 mm/m, and the slitting burr height is not more than 1% of the material thickness.
  • the strip is lengthened by means of butt welding.
  • the butt joint of the composite steel strip is different from the welding of a single carbon steel or stainless steel, and attention should be paid to the diffusion between different material components and the melting and dilution of the composite layer on the substrate.
  • the design of welding methods, welding consumables and weld bevels is particularly important.
  • the end of the steel strip to be butted is processed into an oblique angle, and the groove is reasonably designed.
  • the structure of the composite steel is different in the form of the groove of the butt welding of the steel strip.
  • the groove is V-shaped (Fig. 4), where t1 is the thickness of the base layer, t2 is the thickness of the composite layer, and the angle of the V-shaped groove is 60°.
  • C is 1mm-2mm
  • P is too large to melt and to the composite layer
  • the length of the blunt edge (P+t2) should not exceed 4mm.
  • the base layer is first welded by plasma welding or argon arc welding (TIG/MIG), and then the composite layer weld and the welded composite layer are repaired. The front and back welding are all protected by inert gas, and the base layer and the composite layer are respectively selected with corresponding welding materials, or unified.
  • the corresponding high-alloy welding consumables are selected, but it should be noted that the corrosion-resistant alloy composite layer cannot be welded by ordinary low-carbon steel or low-alloy steel welding consumables.
  • the weld height is cleaned and polished to remove the weld height.
  • the special corrosion tool is required to polish the corrosion resistant alloy composite layer. It is forbidden to mix carbon steel and corrosion resistant alloy tools.
  • the groove is I-shaped, and the front and back welding are protected by inert gas.
  • Plasma welding or argon arc welding (TIG/MIG) is used for welding. After welding, special grinding tools are used. Clean and polish to remove the weld height.
  • a special steel strip weld heat treatment process is designed, which is heated at 800 ° C - 950 ° C and air cooled, heated at 1000 ° C - 1150 ° C and air cooled or heated at 500 ° C - 800 ° C and air cooled.
  • the steel strips are butted in series until the total length required for the pipe making is reached.
  • the composite steel coiled tubing of the invention is formed by continuous crimping and straight seam welding to form a coiled tubing.
  • the chemical composition and the microstructure of the composite layer and the base layer are different, and the cold deformation ability is also different, in order to improve the deformation uniformity and reduce the deformation stress.
  • the composite steel coiled tubing is formed by a gradual transformation (Fig. 7). After the steel strip is gradually formed, it is welded by high-frequency resistance welding or laser welding. In order to prevent oxidation of the composite layer, the welding process needs to be protected by inert gas.
  • the composite layer structure as shown in Figure 1-3 (inner composite Layer, outer composite layer, inner and outer composite layer), design corresponding steel strip edge groove (V-shaped, inverted V-shaped or X-shaped) and adjust the welding seam extrusion roller to ensure the welding seam extrusion and continuous welding Tubing composite layer thickness:
  • the edge of the steel strip is processed into an inverted V-shaped groove, the weld seam pressing roller is adjusted, and the inner burr extrusion amount is reduced, so that the inner burr metal deformation flow line angle is lower than the outer burr 5°-10°;
  • the edge of the steel strip is processed into a V-shaped groove, the weld seam pressing roller is adjusted, and the external burr extrusion amount is reduced, so that the outer burr metal deformation flow line angle is lower than the inner burr 5°-10°;
  • the edge of the steel strip is processed into an X-shaped groove, the weld
  • the composite steel coiled tubing of the present invention has an inner layer, an outer layer or an inner and outer layer of a corrosion resistant alloy material, and has excellent corrosion resistance, meets the corrosive environment requirements of different well conditions, and the base layer is low in carbon and low in carbon.
  • Alloy steel material has good mechanical properties.
  • the yield strength of coiled tubing is 483Mpa-931Mpa, the tensile strength is 551Mpa-1034Mpa, the plastic elongation is ⁇ 23%, and the low temperature impact energy is above 72J at 0°C.
  • the comprehensive mechanical properties are good. Strong corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法,复合钢材连续油管包括冶金结合在一起的基层(1)和复合层(2);基层(1)为碳钢或低合金钢层,复合层(2)为耐蚀合金,如不锈钢或钛合金;复合层(2)设置在基层(1)的内表面或外表面。其制造方法包括基层(1)和复合层(2)的加工,采用高温轧制实现基层(1)和复合层(2)冶金层面的紧密结合,采用直缝焊接形成复合钢材连续油管。所制造的复合钢材连续油管强度高、塑韧性好、耐腐蚀且经济性好。

Description

一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法 技术领域
本发明涉及陆地及海洋油气井用管技术领域,特别涉及一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法。
背景技术
连续油管不同于常规螺纹连接的油管,其是一种缠绕在滚筒上,可连续下井或起出的单根长达数千米的无接头油管。连续油管技术是当前国际上较为先进的技术,由于其作业成本低、简单省时、安全可靠等优越性能,而被广泛应用于冲砂、洗井、测井、完井、钻井等多个领域。
随着油气田的持续开发,超深、高温、高压、高含水率、高腐蚀性油井日益增多,连续油管的作业工况日益恶化,油气层的开采难度增大、产能降低。现有的连续油管,已不能完全满足连续油管经济、高效、安全、可靠的作业需求。常规的低等级连续油管(CT70、CT80、CT90)因材料限制,在井下,受到点蚀、应力腐蚀、CO2、Cl-、SSC、HIC等各种腐蚀作用,现场断裂事故频发;CT100及以上等级高强度连续油管,虽具有较好的抗疲劳性能,却随着强度等级的提高耐腐蚀性严重降低,其硬度均超出了美国腐蚀协会NACE MR0175标准的防硫化氢要求(硬度不得超出22HRC),抗腐蚀性较差,尤其不能应用于含硫化氢环境;其它不锈钢连续油管、钛合金连续油管虽具有基本的耐腐蚀性能,但是制造成本较高(一般为碳钢连续油管的3-8倍),而难以大范围推广应用。近几年新研究的复合材料连续油管,为编织纤维材料,同样制作成本巨大,且其不能承受压力载荷,性能也不能完全满足连续油管的现场作业需求。
发明内容
本发明为解决上述问题提供一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法,本发明复合钢材连续油管强度高、塑韧性好、耐腐蚀且经济性好。
为实现上述目的,本发明是这样实现的:一种高性能耐腐蚀经济型复合钢材连续油管,它包括基层和复合层,所述基层和复合层冶金结合在一起;其中 基层为碳钢或低合金钢层,复合层为耐蚀合金层。
进一步优化方案为,所述复合层设置在基层的内表面或外表面形成单层复合层连续油管。
进一步优化方案为,所述复合层设置在基层的内表面和外表面形成内外复合层连续油管。
进一步优化方案为,所述基层中各组分及质量百分比如下:
C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量。
进一步优化方案为,所述复合层为奥氏体不锈钢层,奥氏体不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量。
进一步优化方案为,所述复合层为双相不锈钢层,双相不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N 0.14%-0.30%、Fe余量。
进一步优化方案为,所述复合层为钛合金层,钛合金层中各组分及质量百分比如下:N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni 0.6%-0.9%、Ti余量。
一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,包括如下的步骤:
(1)基层的制造方法如下:以钢为原料,首先通过电炉冶炼,后续经过钢包精炼,最后通过真空脱气处理以提高钢铁纯度并降低有害元素及杂质含量;通过结晶器电磁搅拌技术、结晶器非正弦振动技术、铸坯轻压下技术进行连铸成坯;通过控制轧制技术和冷却技术获得晶粒度ASTM Grade11或更细的的低碳低合金钢卷来加工成基层;所述低碳低合金钢卷中各组分及质量百分比如下:
C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量;
(2)复合层的制造方法如下:由于井下腐蚀环境的不同,根据不同的腐蚀条件优选以下不同的复合层材料加工成复合层;
A、复合层材料为奥氏体不锈钢,其对酸、碱、盐及海洋性腐蚀环境均具有良好的抵抗力,奥氏体不锈钢中各组分及质量百分比如下:
C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量;
B、复合层材料为双相不锈钢,其具有优良的耐腐蚀性尤其是具备极强的耐应力腐蚀、耐点蚀能力,双相不锈钢中各组分及质量百分比如下:
C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N 0.14%-0.30%、Fe余量;
C、复合层材料为钛合金,其对酸蚀、点蚀、应力腐蚀具有较强的抵抗力,在碱、氯化物、硫酸等腐蚀性介质中具有优良的耐腐蚀能力,钛合金中各组分及质量百分比如下:N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni 0.6%-0.9%、Ti余量;
(3)基层和复合层的复合方法如下:加工基层与两复合层待复合面,使其露出新鲜金属光泽并保持一定的表面粗糙度,将待复合面相对叠加,通过惰性气体保护或真空电子束技术对两复合界面进行保护,将待复合板加热到1200℃-1300℃进行高温轧制复合实现基层与复合层冶金层面的紧密结合;精整、切边处理获得宽度为1.0m-1.5m、长度为61m-900m、单侧耐蚀层厚度为0.5mm-2mm、整体厚度为2mm-8mm的复合钢卷;
(4)根据待制连续油管的外径要求,将上述复合钢卷纵剪获得宽度70mm-300mm的钢带卷,纵剪的镰刀弯不大于0.5mm/m、纵剪毛刺高度不超过1%材料厚度;钢带卷通过卷曲并经过直缝焊接形成复合钢材连续油管,所述复合钢材连续油管焊接完成后经过热处理形成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。根据复合层耐蚀合金的不同,优选如下方式对焊接成的复合钢材连续油管进行热处理:a、加热到850℃-980℃,空冷处理;b、加热到1000℃-1150℃,并迅速水冷,然后加热到120℃-280℃空冷处理;c、加热到600℃-800℃,空冷处理。
进一步优化方案为,所述步骤(4)中根据连续油管长度的要求,可以将70mm-300mm的钢带卷通过钢带对焊的方式将钢带接长以达到制管要求总长度的复合钢材连续油管,具体方法如下:
a、复合层设置在基层的内表面或外表面的单侧复合层连续油管,焊接前将 待对接的复合钢卷带端部加工成V型坡口,采用等离子焊接或氩弧焊先焊接基层,然后修磨复合层焊口、焊接复合层,正反面焊接均需采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;复合层设置在基层的内表面和外表面的内外复合层连续油管,焊接前将待对接的复合钢卷带端部加工成I型坡口,采用等离子焊接或氩弧焊进行焊接基层和复合层,正反面焊接均采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;
b、焊接完成后将钢带对接焊缝进行热处理,根据复合层耐蚀合金的不同,优选如下方式进行热处理:进行800℃-950℃加热并空冷处理、1000℃-1150℃加热并空冷处理或500℃-800℃加热并空冷处理。按照上述流程依次进行钢带对接,直至达到制管要求总长度。
c、接长的钢带通过渐变成型的方式卷曲成型,并经高频电阻焊或激光焊进行直焊缝焊接,焊接完成后经过热处理形成复合钢材连续油管,所述复合钢材连续油管焊接过程需采用惰性气体保护,同时为保证焊缝挤压量及焊接后连续油管复合层厚度将钢带边缘坡口设计为V型、倒V型或X型并配合调整焊缝挤压辊;所述内层复合连续油管的钢带边缘加工成倒V型坡口,调节焊缝挤压辊、减小内毛刺挤压量,使内毛刺金属形变流线角较外毛刺低5°-10°;所述外层复合连续油管的钢带边缘加工成V型坡口,调节焊缝挤压辊、减小外毛刺挤压量,使外毛刺金属形变流线角较内毛刺低5°-10°;所述内外层复合连续油管的钢带边缘加工成X型坡口;最终,焊接成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。根据复合层耐蚀合金的不同,优选如下方式对焊接成的复合钢材连续油管进行热处理:a、加热到850℃-980℃,空冷处理;b、加热到1000℃-1150℃,并迅速水冷,然后加热到120℃-280℃空冷处理;c、加热到600℃-800℃,空冷处理。
较之现有技术而言,本发明具有以下优点:本发明设计专门的基层、复合层材料,采用特殊工艺将碳钢或低合金钢与耐蚀合金进行复合,通过开发的复合钢材制管工艺,合理的进行焊接、热处理获得一种高性能耐腐蚀经济型连续油管。解决了现有低碳低合金钢连续油管、耐蚀合金连续油管、复合材料连续油管的不足。
本发明的复合钢材连续油管具有强度高、塑韧性好、耐腐蚀、成本低、经济性好的特点:
(1)本发明复合钢材连续油管复合层为耐蚀合金材料,使油管具有优良的耐腐蚀性能,有效解决了普通低碳钢或低合金钢连续油管耐蚀性能不足的问题。
(2)本发明复合钢材连续油管基层通过特殊的冶炼、轧制、冷却工艺制造,组织细小均匀(晶粒度ASTM Grade11或更细)并配合连续油管热处理工艺,使连续油管具有高强度、高塑性、高韧性的特点,有效提高连续油管弯曲疲劳寿命。
(3)本发明复合钢材连续油管的基层材料为普通低碳低合金钢,成本较低(仅为常规不锈钢连续油管、钛合金连续油管的20%-40%),有效克服了常规耐蚀合金连续油管因成本过高而难以推广应用的缺点。
(4)本发明复合钢材连续油管包括内层复合连续油管、外层复合连续油管及内外复合连续油管,复合层材料种类包括奥氏体不锈钢、双相不锈钢、钛合金等,可适应不同的腐蚀工况,应用灵活、范围广,便于推广应用。
(5)本发明复合钢材连续油管同时具备较高的强度、较好的塑性、韧性、耐腐蚀性能,为一种经济性好的高性能、高弯曲疲劳寿命、高耐腐蚀性连续油管。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1是本发明一种高性能耐腐蚀经济型复合钢材连续油管的内层复合结构示意图。
图2是本发明一种高性能耐腐蚀经济型复合钢材连续油管的外层复合结构示意图。
图3是本发明一种高性能耐腐蚀经济型复合钢材连续油管的内外复合结构示意图。
图4是本发明一种高性能耐腐蚀经济型复合钢材连续油管的单侧复合层钢带对接坡口结构示意图。
图5是本发明一种高性能耐腐蚀经济型复合钢材连续油管的基层材料组织示意图。
图6是本发明一种高性能耐腐蚀经济型复合钢材连续油管的基层与复合层的紧密结合组织示意图。
图7是本发明一种高性能耐腐蚀经济型复合钢材连续油管渐变成型示意图。
图中符号说明:1、基层;2、复合层。
具体实施方式
具体实施例如下:
请参照图1-3所示,一种高性能耐腐蚀经济型复合钢材连续油管,它包括基层1和复合层2,所述基层1和复合层2冶金结合在一起;其中基层1为碳钢或低合金钢层,复合层2为耐蚀合金层。所述复合层2设置在基层1的内表面或外表面形成单层复合层连续油管。所述复合层2设置在基层1的内表面和外表面形成内外复合层连续油管。
所述基层1中各组分及质量百分比如下:
C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量。
所述复合层2为奥氏体不锈钢层,奥氏体不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量。
所述复合层2为双相不锈钢层,双相不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N 0.14%-0.30%、Fe余量。
所述复合层2为钛合金层,钛合金层中各组分及质量百分比如下:
N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni 0.6%-0.9%、Ti余量。
一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,包括如下的步骤:
(1)基层的制造方法如下:以废钢为原料,首先通过电炉冶炼,后续经过钢包精炼,最后通过真空脱气处理以提高钢铁纯度并降低有害元素及杂质含量;通过结晶器电磁搅拌技术、结晶器非正弦振动技术、铸坯轻压下技术进行连铸成坯;通过控制轧制技术和冷却技术获得晶粒度ASTM Grade11或更细的的低碳低合金钢卷来加工成基层;所述低碳低合金钢卷中各组分及质量百分比如下:
C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、 Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量;
(2)复合层的制造方法如下:由于井下腐蚀环境的不同,根据不同的腐蚀条件优选以下不同的复合层材料加工成复合层;
A、复合层材料为奥氏体不锈钢,其对酸、碱、盐及海洋性腐蚀环境均具有良好的抵抗力,奥氏体不锈钢中各组分及质量百分比如下:
C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量;
B、复合层材料为双相不锈钢,其具有优良的耐腐蚀性尤其是具备极强的耐应力腐蚀、耐点蚀能力,双相不锈钢中各组分及质量百分比如下:
C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N 0.14%-0.30%、Fe余量;
C、复合层材料为钛合金,其对酸蚀、点蚀、应力腐蚀具有较强的抵抗力,在碱、氯化物、硫酸等腐蚀性介质中具有优良的耐腐蚀能力,钛合金中各组分及质量百分比如下:N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni 0.6%-0.9%、Ti余量;
(3)基层和复合层的复合方法如下:加工基层与两复合层待复合面,使其露出新鲜金属光泽并保持一定的表面粗糙度,将待复合面相对叠加,通过惰性气体保护或真空电子束技术对两复合界面进行保护,将待复合板加热到1200℃-1300℃进行高温轧制复合实现基层与复合层冶金层面的紧密结合;精整、切边处理获得宽度为1.0m-1.5m、长度为61m-900m、单侧耐蚀层厚度为0.5mm-2mm、整体厚度为2mm-8mm的复合钢卷;
(4)根据待制连续油管的外径要求,将上述复合钢卷纵剪获得宽度70mm-300mm的钢带卷,纵剪具有严格的技术要求,需保证镰刀弯不大于0.5mm/m、纵剪毛刺高度不超过1%材料厚度。钢带卷通过卷曲并经过直缝焊接形成复合钢材连续油管,所述复合钢材连续油管焊接完成后经过热处理形成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。根据复合层耐蚀合金的不同,优选如下方式对焊接成的复合钢材连续油管进行热处理:a、加热到850℃-980℃,空冷处理;b、加热到1000℃-1150℃,并迅速水冷,然后加热到120℃-280℃空冷处理;c、加热到600℃-800℃,空冷处理。
本发明所述步骤(4)中根据连续油管长度的要求可以通过钢带对焊的方式将钢带接长以达到制管要求总长度的复合钢材连续油管,具体方法如下:
a、复合层设置在基层的内表面或外表面的单侧复合层连续油管,如图1、2所示,焊接前将待对接的复合钢卷带端部加工成V型坡口,其中t1为基层厚度、t2为复合层厚度,V型坡口角度α为60°,根部间隙C为1mm-2mm,P要大到不熔及到复合层,钝边长度(P+t2)不应超过4mm。采用等离子焊接或氩弧焊先焊接基层,然后修磨复合层焊口、焊接复合层,正反面焊接均需采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;复合层设置在基层的内表面和外表面的内外复合层连续油管,焊接前将待对接的复合钢卷带端部加工成I型坡口,采用等离子焊接或氩弧焊进行焊接基层和复合层,正反面焊接均采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;
b、焊接完成后将钢带对接焊缝进行热处理,根据复合层耐蚀合金的不同,优选如下方式进行热处理:进行800℃-950℃加热并空冷处理、1000℃-1150℃加热并空冷处理或500℃-800℃加热并空冷处理。按照上述流程依次进行钢带对接,直至达到制管要求总长度。
c、接长的钢带通过渐变成型的方式卷曲成型,并经高频电阻焊或激光焊进行直焊缝焊接,焊接完成后经过热处理形成复合钢材连续油管,所述复合钢材连续油管焊接过程需采用惰性气体保护,同时为保证焊缝挤压量及焊接后连续油管复合层厚度将钢带边缘坡口设计为V型、倒V型或X型并配合调整焊缝挤压辊;所述内层复合连续油管的钢带边缘加工成倒V型坡口,调节焊缝挤压辊、减小内毛刺挤压量,使内毛刺金属形变流线角较外毛刺低5°-10°;所述外层复合连续油管的钢带边缘加工成V型坡口,调节焊缝挤压辊、减小外毛刺挤压量,使外毛刺金属形变流线角较内毛刺低5°-10°;所述内外层复合连续油管的钢带边缘加工成X型坡口;最终,焊接成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。根据复合层耐蚀合金的不同,优选如下方式对焊接成的复合钢材连续油管进行热处理:a、加热到850℃-980℃,空冷处理;b、加热到1000℃-1150℃,并迅速水冷,然后加热到120℃-280℃空冷处理;c、加热到600℃-800℃,空冷处理。
本发明连续油管屈服强度在483Mpa-931Mpa、抗拉强度在551Mpa-1034Mpa、塑性延伸率≥23%,0℃下低温冲击功在72J以上,综合力学性能好,耐腐蚀性 强。
本发明一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法的具体实施方式如下:
实施例1:
一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,所述连续油管包括内基层和外复合层的外层复合管,按照连续油管基层材料化学成分要求,依次通过电炉(EF)冶炼、钢包精炼(LF)和真空脱气(VD)的方式冶炼,精确控制钢水化学成分,减少有害非金属元素及夹杂,通过结晶器电磁搅拌技术、结晶器非正弦振动技术、轻压下技术进行连铸成坯,通过控制轧制及控制冷却技术,获得具有优异的组织性能,晶粒度ASTM Grade12的低碳低合金钢卷。按照质量百分比,其具体化学成分如下:C 0.08%、Mn 0.75%、P 0.010%、S 0.002%、Si 0.30%、Cr 0.65%、Mo 0.12%、Ni 0.15%、Cu 0.22%、Nb+Ti+V0.12、Fe余量。
根据井内高温腐蚀环境及抗酸腐蚀、耐点蚀需求,本实施例所述复合钢材连续油管在外层复合层为奥氏体不锈钢,按照质量百分比,复合层钢卷化学成分为:C 0.01%、Mn 0.45%、P 0.015%、S 0.010%、Si 0.25%、Cr 17.5%、Mo 2.6%、Ni 11.5%、Fe余量。
加工基层与复合层待复合面,使其露出新鲜金属光泽,将待复合面相对叠加,通过真空电子束技术,对复合界面进行保护,将钢板加热到1280℃高温轧制复合,精整、切边处理,获得宽度1.4m、长度450m、耐蚀层厚度0.8mm、整体厚度4.45mm的复合钢卷,将钢卷纵剪成宽度在120mm-180mm的钢带分条。将钢带端部斜切成45°,加工V型坡口,根部间隙C为1mm,钝边长度2.3mm。焊接过程均采用氩气保护,通过TIG填充低碳低合金钢焊丝焊接基层,修磨复合层焊口后通过TIG填充不锈钢焊丝进行焊接,焊接完成后,采用专用工具分别打磨去除两侧焊缝余高。进行850℃加热并空冷处理,稳定复合层组织,降低基层焊缝硬度、细化晶粒。钢带边缘加工成V型坡口,通过成型机组渐变成型,在氮气保护状态下采用高频感应焊接,调整焊缝挤压辊,使得外毛刺流线角在65°、内毛刺流线角73°。焊接完成后整管热处理,感应加热到900℃后空冷。最终连续油管的屈服强度为495Mpa、抗拉强度为578Mpa、塑性延伸率为32%,0℃下低温冲击功为108.5J。
实施例2:
一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,所述连续油管包括基层和内外复合层的内外层复合管,按照连续油管基层材料化学成分要求,依次通过电炉(EF)冶炼、钢包精炼(LF)和真空脱气(VD)的方式冶炼,精确控制钢水化学成分,减少有害非金属元素及夹杂,通过结晶器电磁搅拌技术、结晶器非正弦振动技术、轻压下技术进行连铸成坯,通过控制轧制及控制冷却技术,获得组织性能良好,晶粒度ASTM Grade13的低碳低合金钢卷。按照质量百分比,其具体化学成分如下:C 0.12%、Mn 0.87%、P 0.012%、S 0.002%、Si 0.33%、Cr 0.75%、Mo 0.11%、Ni 0.13%、Cu 0.28%、Nb+Ti+V0.16、Fe余量。
根据高应力腐蚀、高氯离子腐蚀,高井深及内外压作业工况,本实施例所述复合钢材连续油管为内外层复合双相不锈钢,按照质量百分比,复合层钢卷化学成分为:C 0.021%、Mn 0.69%、P 0.025%、S 0.010%、Si 0.30%、Cr 22.5%、Mo 3.0%、Ni 6.0%、N0.16%、Fe余量。
加工基层与两复合层待复合面,使其露出新鲜金属光泽,将待复合面相对叠加,通过真空电子束技术,对两复合界面进行保护,将钢板加热到1260℃高温轧制复合,精整、切边处理,获得宽度1.2m、长度510m、耐蚀层厚度0.95mm、整体厚度5.18mm的复合钢卷,将钢卷纵剪成宽度在120mm-180mm的钢带分条。将钢带端部斜切成45°,加工I型坡口。焊接过程采用氩气保护,通过等离子焊填充不锈钢焊丝完成焊接。焊接完成后,采用不锈钢工具打磨去除两侧焊缝余高。进行1050℃加热并空冷处理。钢带边缘加工成X型坡口,通过成型机组渐变成型,采用激光焊焊接,控制内外毛刺金属挤出量。焊接完成后整管热处理,感应加热到1120℃迅速水冷,然后加热到260℃空冷处理。最终连续油管的屈服强度为907Mpa、抗拉强度为948Mpa、塑性延伸率为25%,0℃下低温冲击功为81J。
具体实施例3:
一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,所述连续油管包括外基层和内复合层的内层复合管,按照连续油管基层材料化学成分要求,依次通过电炉(EF)冶炼、钢包精炼(LF)和真空脱气(VD)的方式冶炼,精确控制钢水化学成分,减少有害非金属元素及夹杂,通过结晶器电磁搅拌技术、结晶器非正弦振动技术、轻压下技术进行连铸成坯,通过控制轧制及控制冷却技术,获得组织性能优异,晶粒度ASTM Grade12的低碳低合金钢卷。按照质量 百分比,其具体化学成分如下:C 0.09%、Mn 1.1%、P 0.015%、S 0.003%、Si 0.35%、Cr 0.76%、Mo 0.15%、Ni 0.18%、Cu 0.26%、Nb+Ti+V0.11、Fe余量。
根据工作过程中,连续油管内注入碱、氯化物、酸等作业介质及应力腐蚀条件,本实施例所述复合钢材连续油管为内层复合钛合金,按照质量百分比,复合层钢卷化学成分为:N 0.01%、C 0.03%、H 0.003%、Fe 0.16%、O≤0.009%、Mo 0.25%、Ni 0.79%、Ti余量。
加工基层与复合层待复合面,使其露出新鲜金属光泽,将待复合面相对叠加,通过真空电子束技术,对复合界面进行保护,将钢板加热到1250℃高温轧制复合,精整、切边处理,获得宽度1.2m、长度570m、耐蚀层厚度0.7mm、整体厚度4.45mm的复合钢卷,将钢卷纵剪成宽度在120mm-180mm钢带分条。将钢带端部斜切成45°,加工V型坡口,根部间隙C为1.5mm,钝边长度2.3mm。焊接过程采用氩气保护,通过等离子填丝焊完成基层焊接,修磨复合层焊口,采用MIG完成复合层焊接,焊接完成后,采用专用工具打磨去除两侧焊缝余高。进行680℃加热并空冷处理。钢带边缘加工成倒V型坡口,通过成型机组渐变成型,在氮气保护状态下采用高频感应焊接,调整焊缝挤压辊,使得外毛刺流线角在78°、内毛刺流线角69°。焊接完成后整管热处理,感应加热到760℃空冷。最终连续油管的屈服强度为643Mpa、抗拉强度为712Mpa、塑性延伸率为28%,0℃下低温冲击功为96J。
本发明一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法的工作原理如下:本发明所述复合钢材连续油管的由专门的复合钢材制造。如图1所示,连续油管基层为保障连续油管力学性能的碳钢或低合金钢,连续油管的复合层为抵抗油管腐蚀的耐蚀合金,可设置在基层的外表面、内表面或内外表面。本发明复合钢材连续油管区别于现有复合连续油管(各种功能层相互独立,仅是简单的物理层面的复合,甚至中间带有环空,部分复合有保温层、电缆等以实现一些专用功能),其开发出一种新型连续油管材料,将碳钢或低合金钢与耐蚀合金通过特殊的钢铁制造工艺,使两种不同性能、不同成分的材料达到冶金层面的牢固结合,而成为一种新材料,从而实现双方性能的完美结合。
连续油管作业中会承受拉伸、压缩、弯曲、扭转、内外压等各种复杂载荷的综合作用,需使基层材料具有较好的综合力学性能(高强度、高塑性、高韧性)。为解决此问题,进行基层材料的设计:
按照质量百分比,所述连续油管基层化学成分如下:C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2、Fe余量。其具有均一的金相组织、超细的晶粒是本发明所述基层材料的重要特征,晶粒度应为ASTM Grade11或更细(如图5)。
上述基层材料以废钢为原料,充分利用钢铁资源,通过电炉(EF)冶炼,后续经过钢包精炼(LF),最后通过真空脱气(VD)处理,以提高钢铁纯度,降低有害元素及杂质含量;通过结晶器电磁搅拌技术(M-EMS)、结晶器非正弦振动技术、铸坯轻压下技术,对非金属夹杂、偏析进行有效控制,获得良好的铸坯质量;通过控制轧制技术,对钢坯加热温度、轧制温度、变形量等参数进行合理控制,细化晶粒并通过沉淀强化、位错强化,提高钢材力学性能;通过控制冷却技术,调整相变过程,控制材料组织状态、组分比、化合物的析出,在降低合金元素含量的情况下,提高材料强度保证力学性能,节约成本。
本发明连续油管在井下作业,会受到各种腐蚀介质的作用,严重影响油管使用寿命。为解决此问题,进行复合层材料的设计:
由于井下腐蚀环境的不同,连续油管作业介质的不同,连续油管所承受的腐蚀条件复杂多变,所述复合钢材连续油管可根据具体的腐蚀条件设计专门的复合层,作为优选以下三种复合层材料,以适应不同腐蚀工况。
(1)复合层材料为奥氏体不锈钢,其对酸、碱、盐及海洋性腐蚀环境均具有良好的抵抗力,通过合理设计合金元素成分使其具有较好的耐高温腐蚀、耐点蚀性能。按照质量百分比,该复合层化学成分如下:C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量。
(2)复合层材料为双相不锈钢,其具有优良的耐腐蚀性尤其是具备极强的耐应力腐蚀、耐点蚀能力,而且镍元素含量低、成本相对较低。按照质量百分比,该复合层化学成分如下:C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N0.14%-0.30%、Fe余量。
(3)复合层材料为钛合金,其对酸蚀、点蚀、应力腐蚀具有较强的抵抗力,在碱、氯化物、硫酸等腐蚀性介质中具有优良的耐腐蚀能力。按照质量百分比, 该复合层化学成分如下:N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni0.6%-0.9%、Ti余量。
实现基层与复合层的紧密结合,保证复合界面的结合性能是复合钢材制备的关键技术;如图6所示上部基层和下部复合层的结合组织结构。为解决上述此问题,本发明连续油管用复合钢卷,采用如下技术方案制备:通过机械加工、打磨或其他方式清洁碳钢钢板及耐蚀合金钢板的待复合面,使其露出新鲜金属光泽并保持一定的表面粗糙度,将待复合面相对叠合,然后将待复合板加热到1200℃-1300℃进行高温轧制,轧制需采用惰性气体保护或真空电子束技术对复合界面进行保护,防止高温轧制过程中复合界面氧化影响复合界面的结合性能。通过轧制复合技术,实现基层与复合层冶金层面的紧密结合,通过精整、去边处理,最终获得宽度1.0m-1.5m、长度61m-900m、单侧耐蚀层厚度0.5mm-2mm、整体厚度2mm-8mm的复合钢卷。
根据待制连续油管的外径要求,将上述复合钢卷纵剪获得宽度70mm-300mm的钢带卷。纵剪具有严格的技术要求,需保证镰刀弯不大于0.5mm/m、纵剪毛刺高度不超过1%材料厚度。
根据连续油管长度要求(一般长达数千米),通过钢带对焊的方式将钢带接长。复合钢带的对接不同于单一的碳钢或不锈钢的焊接,需注意不同的材料成分间的扩散、基材对复合层的融化稀释等问题。为解决此问题,焊接方式、焊材、焊缝坡口的设计尤为重要。
焊接前,将待对接的钢带端部加工成斜角,合理设计坡口,复合钢材的结构不同其钢带对焊的坡口形式不同。
对于单侧复合层连续油管(如图1和2),坡口为V型(如图4),其中t1为基层厚度、t2为复合层厚度,V型坡口角度α为60°,根部间隙C为1mm-2mm,P要大到不熔及到复合层,钝边长度(P+t2)不应超过4mm。通过等离子焊接或氩弧焊(TIG/MIG)先焊接基层,然后修磨复合层焊口、焊接复合层,正反面焊接均需采用惰性气体保护,基层与复合层分别选用相应焊材,或统一根据复合层选择相应的高合金焊材,但需注意耐蚀合金复合层不能采用普通低碳钢或低合金钢焊材进行焊接。焊接完成后,清理、打磨去除焊缝余高,打磨耐蚀合金复合层需采用专用打磨工具,严禁碳钢与耐蚀合金工具混用。
对于内外复合层连续油管(如图3)其坡口为I型,正反面焊接均采用惰性 气体保护,采用等离子焊接或氩弧焊(TIG/MIG)进行焊接,焊接完成后,采用专用打磨工具清理、打磨去除焊缝余高。
根据复合层耐蚀合金,设计专门的钢带焊缝热处理工艺,进行800℃-950℃加热并空冷处理、1000℃-1150℃加热并空冷处理或500℃-800℃加热并空冷处理。按照上述流程,依次进行钢带对接,直至达到制管要求总长度。
本发明复合钢材连续油管钢带通过连续卷曲并经过直缝焊接形成连续油管,复合层与基层的化学成分、组织状态不同,其冷变形能力也不同,为提高形变均匀性、减小变形应力,所述复合钢材连续油管采用渐变式成型(如图7)。钢带经过渐变成型后,通过高频电阻焊或激光焊进行直焊缝焊接,为防止复合层氧化,焊接过程需采用惰性气体保护,根据复合层结构,如图1-3所示(内复合层、外复合层、内外复合层),设计相应的钢带边缘坡口(V型、倒V型或X型)并配合调整焊缝挤压辊,以保证焊缝挤压量及焊接后连续油管复合层厚度:对于内层复合连续油管,钢带边缘加工成倒V型坡口,调节焊缝挤压辊、减小内毛刺挤压量,使内毛刺金属形变流线角较外毛刺低5°-10°;对于外层复合连续油管,钢带边缘加工成V型坡口,调节焊缝挤压辊、减小外毛刺挤压量,使外毛刺金属形变流线角较内毛刺低5°-10°;对于内外层复合连续油管,钢带边缘加工成X型坡口,调节焊缝挤压辊缩减整体挤压量,或采用激光焊接的方式,控制毛刺挤出高度。最终,焊接成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。
综合以上所有工序,所述本发明复合钢材连续油管,其内层、外层或内外层是耐蚀合金材料,具备优良的耐腐蚀性能,满足不同井况的腐蚀环境需求,基层为低碳低合金钢材料,具有较好的力学性能,连续油管屈服强度在483Mpa-931Mpa、抗拉强度在551Mpa-1034Mpa、塑性延伸率≥23%,0℃下低温冲击功在72J以上,综合力学性能好,耐腐蚀性强。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高性能耐腐蚀经济型复合钢材连续油管,其特征在于:它包括基层(1)和复合层(2),所述基层(1)和复合层(2)冶金结合在一起;其中基层(1)为碳钢或低合金钢层,复合层(2)为耐蚀合金层。
  2. 根据权利要求1所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述复合层(2)设置在基层(1)的内表面或外表面形成单层复合层连续油管。
  3. 根据权利要求1所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述复合层(2)设置在基层(1)的内表面和外表面形成内外复合层连续油管。
  4. 根据权利要求2或3所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述基层(1)中各组分及质量百分比如下:
    C0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr 0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量。
  5. 根据权利要求4所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述复合层(2)为奥氏体不锈钢层,奥氏体不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量。
  6. 根据权利要求4所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述复合层(2)为双相不锈钢层,双相不锈钢层中各组分及质量百分比如下:C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N0.14%-0.30%、Fe余量。
  7. 根据权利要求4所述的高性能耐腐蚀经济型复合钢材连续油管,其特征在于:所述复合层(2)为钛合金层,钛合金层中各组分及质量百分比如下:
    N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni0.6%-0.9%、Ti余量。
  8. 一种高性能耐腐蚀经济型复合钢材连续油管的制造方法,其特征在于:包括如下的步骤:
    (1)基层的制造方法如下:以钢为原料,首先通过电炉冶炼,后续经过钢包精炼,最后通过真空脱气处理以提高钢铁纯度并降低有害元素及杂质含量;通 过结晶器电磁搅拌技术、结晶器非正弦振动技术、铸坯轻压下技术进行连铸成坯;通过控制轧制技术和冷却技术获得晶粒度ASTM Grade11或更细的的低碳低合金钢卷来加工成基层;所述低碳低合金钢卷中各组分及质量百分比如下:
    C 0.06%-0.23%、Mn 0.5%-2.1%、P≤0.02%、S≤0.005%、Si 0.15%-0.5%、Cr0.35%-1.6%、Mo 0.02%-0.3%、Ni 0.05%-0.97%、Cu 0.1%-0.5%、Nb+Ti+V≤0.2%、Fe余量;
    (2)复合层的制造方法如下:由于井下腐蚀环境的不同,根据不同的腐蚀条件优选以下不同的复合层材料加工成复合层;
    A、复合层材料为奥氏体不锈钢,其对酸、碱、盐及海洋性腐蚀环境均具有良好的抵抗力,奥氏体不锈钢中各组分及质量百分比如下:
    C≤0.03%、Mn 0.3%-1.8%、P≤0.035%、S≤0.03%、Si 0.15%-0.65%、Cr 16.0%-18.0%、Mo 2.5%-3.0%、Ni 10.0%-14.0%、Fe余量;
    B、复合层材料为双相不锈钢,其具有优良的耐腐蚀性尤其是具备极强的耐应力腐蚀、耐点蚀能力,双相不锈钢中各组分及质量百分比如下:
    C≤0.03%、Mn 0.6%-9.0%、P≤0.030%、S≤0.02%、Si 0.15%-0.85%、Cr 15.0%-23.0%、Mo 0.5%-3.5%、Ni 1.5%-6.5%、N0.14%-0.30%、Fe余量;
    C、复合层材料为钛合金,其对酸蚀、点蚀、应力腐蚀具有较强的抵抗力,在碱、氯化物、硫酸等腐蚀性介质中具有优良的耐腐蚀能力,钛合金中各组分及质量百分比如下:N≤0.03%、C≤0.08%、H≤0.015%、Fe≤0.3%、O≤0.18%、Mo 0.2%-0.4%、Ni0.6%-0.9%、Ti余量;
    (3)基层和复合层的复合方法如下:加工基层与两复合层待复合面,使其露出新鲜金属光泽并保持一定的表面粗糙度,将待复合面相对叠加,通过惰性气体保护或真空电子束技术对两复合界面进行保护,将待复合板加热到1200℃-1300℃进行高温轧制复合实现基层与复合层冶金层面的紧密结合;精整、切边处理获得宽度为1.0m-1.5m、长度为61m-900m、单侧耐蚀层厚度为0.5mm-2mm、整体厚度为2mm-8mm的复合钢卷;
    (4)根据待制连续油管的外径要求,将上述复合钢卷纵剪获得宽度70mm-300mm的钢带卷,钢带卷通过卷曲并经过直缝焊接形成复合钢材连续油管,所述复合钢材连续油管焊接完成后经过热处理形成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。
  9. 根据权利要求8所述的高性能耐腐蚀经济型复合钢材连续油管的制造方法,其特征在于:所述步骤(4)中根据连续油管长度的要求,可以将70mm-300mm的钢带卷通过钢带对焊的方式将钢带接长以达到制管要求总长度的复合钢材连续油管,具体方法如下:
    a、复合层设置在基层的内表面或外表面的单侧复合层连续油管,焊接前将待对接的复合钢卷带端部加工成V型坡口,采用等离子焊接或氩弧焊先焊接基层,然后修磨复合层焊口、焊接复合层,正反面焊接均需采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;复合层设置在基层的内表面和外表面的内外复合层连续油管,焊接前将待对接的复合钢卷带端部加工成I型坡口,采用等离子焊接或氩弧焊进行焊接基层和复合层,正反面焊接均采用惰性气体保护,焊接完成后,清理、打磨去除焊缝余高;
    b、焊接完成后将钢带对接焊缝进行热处理,根据复合层耐蚀合金的不同,优选如下方式进行热处理:进行800℃-950℃加热并空冷处理、1000℃-1150℃加热并空冷处理或500℃-800℃加热并空冷处理;按照上述流程依次进行钢带对接直至达到制管要求总长度;
    c、接长的钢带通过渐变成型的方式卷曲成型,并经高频电阻焊或激光焊进行直焊缝焊接,焊接完成后经过热处理形成复合钢材连续油管,所述复合钢材连续油管焊接过程需采用惰性气体保护,同时为保证焊缝挤压量及焊接后连续油管复合层厚度将钢带边缘坡口设计为V型、倒V型或X型并配合调整焊缝挤压辊;所述内层复合连续油管的钢带边缘加工成倒V型坡口,并使内毛刺金属形变流线角较外毛刺低5°-10°;所述外层复合连续油管的钢带边缘加工成V型坡口,并使外毛刺金属形变流线角较内毛刺低5°-10°;所述内外层复合连续油管的钢带边缘加工成X型坡口;最终,焊接成单侧耐蚀层厚度0.5mm-2mm、整体壁厚2mm-8mm的复合钢材连续油管。
  10. 根据权利要求8或9所述的高性能耐腐蚀经济型复合钢材连续油管的制造方法,其特征在于:根据复合层耐蚀合金的不同,优选如下方式对焊接成的复合钢材连续油管进行热处理:a、加热到850℃-980℃,空冷处理;b、加热到1000℃-1150℃,并迅速水冷,然后加热到120℃-280℃空冷处理;c、加热到600℃-800℃,空冷处理。
PCT/CN2018/082784 2017-04-28 2018-04-12 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法 WO2018196622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710292850.7A CN107143702A (zh) 2017-04-28 2017-04-28 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN201710292850.7 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196622A1 true WO2018196622A1 (zh) 2018-11-01

Family

ID=59774090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082784 WO2018196622A1 (zh) 2017-04-28 2018-04-12 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法

Country Status (2)

Country Link
CN (1) CN107143702A (zh)
WO (1) WO2018196622A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN109694986B (zh) * 2017-10-20 2020-09-29 鞍钢股份有限公司 一种桥梁用不锈钢复合钢板及其生产方法
CN110548777B (zh) * 2018-05-31 2021-03-19 宝武特种冶金有限公司 一种双金属复合无缝钢管的冷轧制管方法
CN108942097A (zh) * 2018-07-16 2018-12-07 杰森能源技术有限公司 一种高频感应焊高合金耐腐蚀连续油管及其制备方法
CN111230406A (zh) * 2018-11-28 2020-06-05 无锡市新峰管业有限公司 一种海洋环境下双相不锈钢管及其加工方法
CN109532144B (zh) * 2018-11-29 2021-01-12 宝山钢铁股份有限公司 一种超级双相不锈钢复合钢板及其制造方法
CN110835715B (zh) * 2019-10-28 2021-04-02 鞍钢股份有限公司 一种大厚度加氢反应器壳体用复合钢板及其制造方法
CN110983185A (zh) * 2019-12-23 2020-04-10 天津威尔朗科技有限公司 一种高硬度、高耐磨复合钢管
CN112077533B (zh) * 2020-08-13 2021-11-09 东莞市金瑞五金股份有限公司 一种铜铁复合连接管及其制备方法和应用
CN112065297A (zh) * 2020-09-07 2020-12-11 席赫 一种井下用连续油管
CN112553525B (zh) * 2020-11-17 2021-12-21 天津重型装备工程研究有限公司 一种中碳低合金高强钢及其制备方法
CN112975293A (zh) * 2021-03-02 2021-06-18 中国石油天然气集团有限公司 一种双金属复合连续油管及其制备方法与应用
CN113684417A (zh) * 2021-07-19 2021-11-23 中国科学院金属研究所 一种经济型690MPa级低合金耐蚀耐火钢
CN116479319A (zh) * 2022-01-13 2023-07-25 宝山钢铁股份有限公司 一种耐臭氧腐蚀高强度管道及其制造方法
CN114523271B (zh) * 2022-04-13 2023-01-24 陕西铁路工程职业技术学院 纯钛或钛合金连续管材的生产制备方法
CN115537674A (zh) * 2022-09-02 2022-12-30 杰森能源技术有限公司 一种在线生产连续调质处理高性能连续油管及其制造方法
CN115539760A (zh) * 2022-10-18 2022-12-30 山东尚核电力科技有限公司 一种适用于海洋环境的耐腐蚀钢管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899581A (zh) * 2012-10-29 2013-01-30 莱芜钢铁集团有限公司 一种ct80级连续油管用钢材料及其制造方法
CN102962563A (zh) * 2012-11-27 2013-03-13 浙江金洲管道工业有限公司 一种压力容器用薄璧复合钢管的焊接工艺
WO2014169365A2 (en) * 2013-08-23 2014-10-23 Vallourec Tubos Do Brasil S.A. Multilayer pipe
CN104455761A (zh) * 2014-11-21 2015-03-25 宝鸡石油钢管有限责任公司 一种镍基合金与碳钢冶金结合的复合焊管及其制造方法
CN105921545A (zh) * 2016-05-27 2016-09-07 宝鸡石油钢管有限责任公司 一种纯钛或钛合金/碳钢层状复合焊管的制造方法
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117201A (en) * 1976-07-23 1978-09-26 Fansteel Inc. Corrosion and erosion resistant lined equipment
US6276400B1 (en) * 1999-06-08 2001-08-21 Itt Manufacturing Enterprises, Inc. Corrosion resistant powder coated metal tube and process for making the same
CN101353765A (zh) * 2007-07-23 2009-01-28 宝山钢铁股份有限公司 一种ct80级连续油管用钢及其制造方法和应用
CN101168823B (zh) * 2007-11-30 2010-07-07 武汉钢铁(集团)公司 一种高塑性连续油管用钢及其制造方法
CN101634001B (zh) * 2008-07-24 2011-07-20 宝山钢铁股份有限公司 一种ct90级连续油管用钢及其制造方法
CN202868096U (zh) * 2012-09-24 2013-04-10 天津市正德宏远不锈钢制造有限公司 一种新型输送复合钢管
CN202884274U (zh) * 2012-09-24 2013-04-17 天津市正德宏远不锈钢制造有限公司 一种抗腐蚀的不锈钢复合钢管
CN104563897A (zh) * 2013-10-27 2015-04-29 中国石油化工集团公司 一种智能复合材料连续管
CN105177453B (zh) * 2015-09-25 2017-07-21 宝鸡石油钢管有限责任公司 一种高强度高性能连续管及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899581A (zh) * 2012-10-29 2013-01-30 莱芜钢铁集团有限公司 一种ct80级连续油管用钢材料及其制造方法
CN102962563A (zh) * 2012-11-27 2013-03-13 浙江金洲管道工业有限公司 一种压力容器用薄璧复合钢管的焊接工艺
WO2014169365A2 (en) * 2013-08-23 2014-10-23 Vallourec Tubos Do Brasil S.A. Multilayer pipe
CN104455761A (zh) * 2014-11-21 2015-03-25 宝鸡石油钢管有限责任公司 一种镍基合金与碳钢冶金结合的复合焊管及其制造方法
CN105921545A (zh) * 2016-05-27 2016-09-07 宝鸡石油钢管有限责任公司 一种纯钛或钛合金/碳钢层状复合焊管的制造方法
CN107143702A (zh) * 2017-04-28 2017-09-08 杰森能源技术有限公司 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法

Also Published As

Publication number Publication date
CN107143702A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
WO2018196622A1 (zh) 一种高性能耐腐蚀经济型复合钢材连续油管及其制造方法
CN101343715B (zh) 高强高韧x70厚壁无缝管线钢及制造方法
CN104441822A (zh) 一种不锈钢与碳钢复合钢板及其生产方法
CN104089109B (zh) 一种625MPa级UOE焊管及其制造方法
JP5434145B2 (ja) 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法
CN104988414A (zh) 一种强韧性能的碳钢与不锈钢复合钢板及生产方法
CN107984112B (zh) 一种具有良好低温韧性的高强度埋弧焊丝
JP6211170B2 (ja) 耐亜鉛誘導亀裂鋼板およびその製造方法
CN104525611A (zh) 一种镍铬合金与碳钢复合板及其生产方法
CN102666899A (zh) 高压缩强度和高韧性优异的管线管用焊接钢管及其制造方法
JP5884201B2 (ja) 引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板
CN104760351A (zh) 一种碳钢与奥氏体不锈钢复合钢板及其生产方法
JP2008156754A (ja) 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
CN105177453B (zh) 一种高强度高性能连续管及其制造方法
CN109693072B (zh) 一种825/x70/825双面复合板及其生产方法
JP2005290554A (ja) 被削性と靭性および溶接性に優れた鋼板およびその製造方法
CN102851589A (zh) 低屈强比可超大热输入焊接低温结构用钢及其制造方法
CN110576273A (zh) 用于lng超低温不锈钢焊接的金属材料、工艺及制品
WO2014115549A1 (ja) 高強度ラインパイプ用熱延鋼板
JP4171169B2 (ja) 耐低温割れ性に優れたシーム溶接部を有する超高強度鋼管とその製造方法
CN107081508A (zh) 厚度在15‑20mm的高性能超快冷X70钢的双丝埋弧焊接方法
CN113088832A (zh) 一种铁镍基耐蚀合金连续管及其制造方法
CN110331333A (zh) X80管线用大直径无缝钢管的管坯及其生产方法
CN105200328A (zh) 一种抗h2s和co2腐蚀的直缝焊接石油套管及其制造方法
WO2017107778A1 (zh) 一种大线能量焊接热影响区韧性优异的厚钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790695

Country of ref document: EP

Kind code of ref document: A1