WO2018196513A1 - 电子设备及由电子设备执行的方法 - Google Patents

电子设备及由电子设备执行的方法 Download PDF

Info

Publication number
WO2018196513A1
WO2018196513A1 PCT/CN2018/079808 CN2018079808W WO2018196513A1 WO 2018196513 A1 WO2018196513 A1 WO 2018196513A1 CN 2018079808 W CN2018079808 W CN 2018079808W WO 2018196513 A1 WO2018196513 A1 WO 2018196513A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
group
electronic device
remote
information
Prior art date
Application number
PCT/CN2018/079808
Other languages
English (en)
French (fr)
Inventor
许晓东
张诗晴
孙梦颖
郭欣
张轶
肖韵秋
Original Assignee
索尼公司
许晓东
张诗晴
孙梦颖
郭欣
张轶
肖韵秋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 许晓东, 张诗晴, 孙梦颖, 郭欣, 张轶, 肖韵秋 filed Critical 索尼公司
Priority to KR1020197011132A priority Critical patent/KR20190140896A/ko
Priority to JP2019516993A priority patent/JP2020518140A/ja
Priority to CN202310350787.3A priority patent/CN116405170A/zh
Priority to US16/319,488 priority patent/US20210289401A1/en
Priority to EP18790060.0A priority patent/EP3618497B1/en
Priority to CN201880002103.8A priority patent/CN109155950A/zh
Publication of WO2018196513A1 publication Critical patent/WO2018196513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular, to electronic devices and methods for execution by the electronic devices. More particularly, embodiments of the present invention relate to a relay device and a remote device in a wireless communication system, and a method performed by a relay device in a wireless communication system and a method performed by a remote device in a wireless communication system.
  • a remote UE may be a relay UE and a network side device (for example, a base station, including but not limited to an eNB (evolution) Type B)) communicates.
  • a network side device for example, a base station, including but not limited to an eNB (evolution) Type B
  • the remote user communicates with the relay user through a sidelink or a non-3GPP (3rd Generation Partnership Project) link such as Bluetooth, Wifi (Wireless Fidelity), and the like.
  • the relay user and the network side device can communicate through the traditional cellular link.
  • the remote user when the link quality between the secondary path between the remote user and the relay user or the cellular link between the relay user and the network side device drops to a certain extent, the remote user will execute. Following the handover process, that is, the relay user no longer performs the relay service for the remote user, the relay user may also need to become the remote user, and perform communication with the network side device through other relay users.
  • the remote user or the relay user needs to perform the handover process separately, including sending a connection establishment request to the target handover device and receiving a connection establishment response, thereby causing a large signaling overhead.
  • the same target switching device may receive multiple connection establishment requests from different devices in a short period of time, resulting in signaling collisions.
  • an electronic device comprising processing circuitry configured to generate a group-based relay handover command based on a triggering event, the group-based relay handover command comprising one or more handover groups The device member list and the target relay device information for each switch group.
  • an electronic device including a transceiver circuit configured to receive a group-based relay switching command, the group-based relay switching command including a switching group of the electronic device Information about the device member list and the target relay device.
  • an electronic device including a transceiver circuit configured to receive connection establishment request information from a source relay device or a remote device, the connection establishment request information including the source relay device Or the information of the device in the member device list of the switching group where the remote device is located, where the device in the member device list is expected to switch to the electronic device.
  • a wireless communication method comprising: generating a group-based relay handover command based on a triggering event, the group-based relay handover command including each of one or more handover groups Switches the device member list of the group and the information of the target relay device.
  • a wireless communication method performed by an electronic device, comprising: receiving a group-based relay switching command, the group-based relay switching command including a switching group in which the electronic device is located Information about the device member list and the target relay device.
  • a wireless communication method performed by an electronic device, comprising: receiving connection establishment request information from a source relay device or a remote device, the connection establishment request information including the source relay The information of the device in the member device list of the switching group where the device or the remote device is located, wherein the device in the member device list is expected to switch to the electronic device.
  • the electronic device is enabled to generate a group-based relay switching command including information of a device member list of each switching group and a target relay device.
  • the device is divided into units of the switching group, and the devices in the same switching group can perform the relay switching execution process as a whole, thereby reducing signaling overhead and reducing the probability of signaling collision.
  • FIG. 1 is a schematic diagram showing an application scenario of the present disclosure
  • FIG. 2 is a block diagram showing a structure of an electronic device according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram showing a structure of an electronic device according to another embodiment of the present disclosure.
  • FIG. 5 is a signaling flowchart illustrating splitting a handover group according to an embodiment of the present disclosure
  • FIG. 6 is a signaling flowchart illustrating splitting a handover group, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a signaling flowchart illustrating splitting a handover group according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flowchart illustrating splitting a handover group according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flowchart illustrating splitting a handover group according to an embodiment of the present disclosure.
  • FIG. 10 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • FIG. 11 is a signaling flow diagram illustrating determining a target relay device, in accordance with an embodiment of the present disclosure
  • FIG. 12 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • FIG. 13 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • FIG. 14 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • FIG. 15 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • FIG. 16 is a signaling flowchart illustrating determining a target relay device according to an embodiment of the present disclosure
  • 17 is a signaling flow diagram illustrating configuring a measurement configuration for a remote device, in accordance with an embodiment of the present disclosure
  • FIG. 18 is a signaling flow diagram showing configuring a measurement configuration for a remote device, in accordance with an embodiment of the present disclosure
  • 19 is a signaling flowchart illustrating generation of a group-based relay handover command by a target relay device, in accordance with an embodiment of the present disclosure
  • FIG. 20 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure
  • 21 is a signaling flowchart illustrating performing a handover execution procedure, according to an embodiment of the present disclosure
  • FIG. 22 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure
  • FIG. 23 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure
  • 24 is a signaling flow diagram showing group-based relay handover in accordance with another embodiment of the present disclosure.
  • FIG. 25 is a block diagram showing a structure of an electronic device according to still another embodiment of the present disclosure.
  • FIG. 26 is a block diagram showing a structure of an electronic device according to still another embodiment of the present disclosure.
  • FIG. 27 is a block diagram showing a structure of an electronic device according to still another embodiment of the present disclosure.
  • 29 is a flowchart illustrating a method performed by an electronic device, in accordance with an embodiment of the present disclosure.
  • FIG. 30 is a flowchart illustrating a method performed by an electronic device in accordance with another embodiment of the present disclosure.
  • FIG. 31 is a flowchart showing a method performed by an electronic device in accordance with still another embodiment of the present disclosure.
  • FIG. 32 is a block diagram showing a first example of a schematic configuration of an evolved Node B (eNB);
  • eNB evolved Node B
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smartphone
  • 35 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • FIG. 1 is an application scenario diagram of the present disclosure.
  • UEs User Equipments
  • UE1 and UE2 can function as relay devices
  • UE3-UE7 can function as a remote device
  • UE3 and UE4 perform communication with the eNB through UE1
  • UE5-UE7 performs communication with the eNB through UE2.
  • the UE3-UE7 shown here is all within the coverage of the eNB, but even if one or more user equipments in the UE3-UE7 are located outside the coverage of the eNB, it may be performed by UE1 or UE2. Communication between eNBs.
  • the UE1-UE7 is shown by the mobile terminal in FIG. 1, the UE1-UE7 is not limited to the mobile terminal, and may be implemented as an in-vehicle device and an MTC (Machine Type Commubication) device or the like.
  • UE3-UE7 as a remote device can be implemented as a wearable device.
  • the remote user when the link quality between the secondary path between the remote user and the relay user or the cellular link between the relay user and the network side device drops to a certain level, the remote user performs the relay.
  • the handover process, and the relay user may also need to perform communication with the network side device through other relay users.
  • UE3 may need to handover to other relay devices to perform communication with the eNB; the chain of cellular links between the eNB and UE1
  • UE3 and UE4 may need to switch to other relay devices to perform communication with the eNB, and UE1 may need to perform communication with the eNB as a remote device through other relay devices.
  • the relay user may receive signaling from a higher layer indicating that one or more remote users of the service need to perform a relay handover procedure or the relay user needs to become a remote user.
  • the relay user may also receive signaling from the upper layer, and the high layer signaling indicates that the remote user served by one or more other relay users needs to be handed over to the present relay user.
  • the present disclosure proposes a group-based relay handover scheme for a scenario in which a relay user stops providing services to a remote user, so as to reduce signaling overhead and reduce the probability of signaling collision.
  • FIG. 2 is a block diagram showing a structure of an electronic device 200 according to an embodiment of the present disclosure.
  • electronic device 200 can include processing circuitry 210. It should be noted that the electronic device 200 may include one processing circuit 210 or multiple processing circuits 210. Further, processing circuitry 210 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the processing circuit 210 may generate a group-based relay switching command based on a triggering event, the group-based relay switching command including a device member list and a target in each of the one or more switching groups Following the information of the device.
  • the processing circuit 210 may generate a group-based relay switching command including information related to each of the one or more switching groups, including a device member list of the switching group and the switching group.
  • the information of the target relay device may include, for example, identification information of all devices in the switching group
  • the information of the target relay device may include, for example, identification information of the target relay device.
  • all member devices in the device member list of each switching group are expected to switch to the target relay device of the switching group. Therefore, in the embodiment of the present disclosure, the device is divided in units of the switching group, and the devices in the same switching group can perform the relay switching execution process as a whole, thereby reducing signaling overhead and reducing signaling. The probability of a collision.
  • FIG. 3 is a block diagram showing the structure of an electronic device 200 according to another embodiment of the present disclosure. As shown in FIG. 3, the electronic device 200 may further include a transceiver circuit 220 for transmitting and receiving information.
  • a transceiver circuit 220 for transmitting and receiving information.
  • the electronic device 200 may function as a source relay device in a wireless communication system, that is, a remote device in a device member list of a switching group in a group-based relay switching command is executed by the electronic device 200 Communication between network side devices.
  • the device member list may also include the electronic device 200 itself.
  • the transceiver circuit 220 can send the group-based relay handover command to the remote device in the device member list of each handover group.
  • the electronic device 200 may also function as a target relay device in the wireless communication system, that is, devices in the device member list of the switching group in the group-based relay switching command are expected to switch to the electronic device 200.
  • the target relay devices of the switching groups in the group-based relay switching commands are all electronic devices 200.
  • the transceiver circuit 220 can transmit the group-based relay handover command to the source relay device serving the remote device in the device member list of each handover group.
  • step S401 the group-based relay switching process is triggered, that is, one or more triggering entities detect a triggering event.
  • the source relay UE In the case where the group-based relay handover command is generated by the source relay UE, the source relay UE generates a group-based relay handover command in step S402, and the source relay UE to the group-based UE in step S403
  • the remote UE included in the device member list in the relay handover command sends the group-based relay handover command.
  • step S402 the group-based relay handover command is generated by the target relay UE
  • step S403 the target relay UE is based on The source relay UE served by the remote UE in the device member list in the group relay command sends the group-based relay handover command, and the source relay UE forwards the command to the corresponding remote UE.
  • step S404 a switching execution step is performed.
  • the electronic device 200 according to an embodiment of the present disclosure will be described in detail below.
  • the processing circuit 210 may generate a group-based relay switching command based on a triggering event.
  • the triggering event includes an event that triggers a group-based relay switching procedure detected by one or more triggering entities. That is, when one or more triggering entities detect a triggering event, a group-based relay switching procedure is triggered.
  • the triggering entity that detects the triggering event may be a remote device, a source relay device, and a target relay device.
  • Trigger entity is a remote UE>
  • the triggering entity when the electronic device 200 represents the source relay device, the triggering entity may be a remote device served by the electronic device 200, that is, the remote device as the triggering entity performs between the electronic device 200 and the network side device Communication.
  • the triggering event may include that the link quality between the remote device and the electronic device 200 is less than a first threshold.
  • one or more of SIR Signal to Interference Ratio
  • SINR Signal to Interference plus Noise Ratio
  • SNR Signal Noise Ratio
  • the remote device may periodically or evently measure the link quality between it and the electronic device 200 and compare the relationship with the first threshold.
  • the first threshold here represents a threshold for the quality of the link that the relay device can provide the relay service for the remote device. That is, when the link quality between the remote device and the electronic device 200 is less than the threshold, the electronic device 200 is no longer suitable to provide a relay service for the remote device.
  • the triggering event may further include that a link quality between the remote device and the electronic device 200 is less than a first threshold and a link quality between the remote device and the other relay device is greater than a first threshold. That is to say, the remote device can also measure the link quality between it and other relay devices periodically or eventally. When the electronic device 200 is no longer suitable for providing relay services for the remote device, and other relay devices are suitable for providing relay services for the remote device, the remote device triggers a group-based relay handover procedure.
  • Trigger entity is source relay UE>
  • the triggering entity when the electronic device 200 represents a source relay device, the triggering entity may be the electronic device 200.
  • the triggering event may include that the link quality between the electronic device 200 and the network side device is less than a second threshold.
  • the relay device may periodically or evently measure the link quality between it and the network side device, and compare the relationship with the second threshold.
  • the second threshold here represents a threshold for the relay device to provide the link quality of the relay service. That is to say, when the link quality between the relay device and the network side device is less than the threshold, the relay device is no longer suitable for providing the relay service.
  • the electronic device 200 can trigger a group-based relay handover procedure to switch the remote device it serves to other relay devices.
  • the triggering event may further include that a link quality between the electronic device 200 and the network side device is less than a third threshold, wherein the third threshold is less than the second threshold.
  • the relay device may periodically or evently measure the link quality between it and the network side device, and compare the relationship with the third threshold.
  • the third threshold here represents a threshold of link quality that the relay device can normally communicate with the network side device. That is, when the link quality between the relay device and the network side device is less than the threshold, the relay device is no longer suitable for providing the relay service, and the relay device also needs to become the remote device to pass the other relay device. Perform communication with network side devices.
  • the electronic device 200 may trigger a group-based relay switching procedure to switch the remote device it serves to the other relay device and the electronic device 200 to the remote device of the other relay device.
  • the triggering event may further include that the electronic device 200 receives high layer signaling indicating that one or more remote devices served by the electronic device 200 need to perform relay switching and/or represent the electronic device 200 requires a relay service.
  • the electronic device 200 may receive signaling from a higher layer, for example, an eNB or the like as a network side device notifying the electronic device 200 that one or more remote devices whose services are required to perform relay switching. At this time, the electronic device 200 may trigger a group-based relay handover procedure to switch the remote device indicated in the higher layer signaling to the other relay device.
  • the high layer signaling also indicates that the electronic device 200 needs the relay service, that is, becomes the remote device
  • the electronic device 200 can trigger the group-based relay switching process, so that the electronic device 200 performs the network side device through the other relay device. Communication.
  • the source relay device when the source relay device detects a trigger event indicating that it needs to stop the relay service for one or more remote devices, the source relay device can generate a group-based relay handover command.
  • Trigger entity is the target relay UE>
  • the triggering entity when the electronic device 200 represents a target relay device, the triggering entity may be the electronic device 200.
  • the triggering event may include the electronic device 200 receiving high layer signaling indicating that one or more remote devices need to be switched to the electronic device 200.
  • the electronic device 200 may receive signaling from a higher layer, for example, an eNB or the like as a network side device to notify the electronic device 200 that it is required to be originally used by other relay devices.
  • a higher layer for example, an eNB or the like
  • One or more remote devices of the service switch to the electronic device 200.
  • the electronic device 200 may trigger a group-based relay switching procedure to switch these remote devices to the electronic device 200.
  • the target relay device when the target relay device detects a trigger event indicating that one or more remote devices need to be handed over to the target relay device, the target relay device may generate a group-based relay switching command.
  • the triggering entity that detects the triggering event may be a remote device, a source relay device, and a target relay device.
  • the source relay device may generate a group-based relay switching command;
  • the target relay device may generate a group-based relay switching. command.
  • the group-based relay switching command can be generated by the source relay device and the target relay device.
  • the generation and transmission of commands will be described separately based on these two cases.
  • the group-based relay switching command includes information of a device member list and a target relay device of each of the one or more switching groups. Therefore, before generating the group-based relay switching command, it is necessary to determine the device member list of the switching group and the target relay device of the switching group.
  • the transceiver circuit 220 of the electronic device 200 may transmit the group-based relay switching command to a remote device in a device member list of each switching group.
  • the transceiver circuit 220 of the electronic device 200 can broadcast a group-based relay switching command.
  • the switching group when the electronic device 200 functions as a source relay device, the switching group may be divided by the electronic device 200, the target relay device of each switching group is determined, and a group-based relay switching command is generated, or The switching group is divided by the network side device (e.g., eNB) in communication with the electronic device 200 and the target relay device of each switching group is determined, and then the group-based relay switching command is generated by the electronic device 200.
  • the network side device e.g., eNB
  • the transceiver circuit 220 may receive information of a desired relay device from one or more remote devices served by the electronic device 200. According to an embodiment of the present disclosure, it is desirable that the information of the relay device may include identification information of the desired relay device. Furthermore, a desired relay device of a remote device may include one or more relay devices.
  • the one or more remote devices may be remote devices that detect a triggering event, and the desired relay device represents a relay device to which the remote device desires to switch. That is, when one or more remote devices detect a triggering event, each of the one or more remote devices can report to the relay device that provides the service, that is, the electronic device 200. Information about the relay device is expected.
  • the processing circuit 210 may be configured to divide the one or more remote devices into one or more handover groups based on the received information of the desired relay device.
  • the processing circuit 210 may divide the remote devices having the same desired relay device into the same switching group.
  • the remote device may send one desired relay device, or may send multiple desired relay devices to the electronic device 200.
  • the processing circuit 210 can divide the plurality of remote devices into the same group. For example, remote device UE1 has desired relay devices A and B, remote device UE2 has desired relay devices A and C, and remote device UE3 has desired relay devices A and D, then processing circuit 210 can remote device UE1-UE3 are divided into the same handover group because they have the same desired relay device A.
  • the remote device UE4 has the desired relay device E
  • the remote device UE5 has the desired relay devices E and F
  • the remote device UE6 has the desired relay device F
  • the processing circuit 210 can use the remote device UE4 and UE5.
  • the remote device UE4 is divided into one switching group, and the remote device UE5 and the UE6 are divided into one switching group.
  • the processing circuit 210 may use all of the divided switch groups as the switch group included in the group-based relay switch command. That is, the processing circuit 210 can determine the device member list of each of the switching groups included in the group-based relay switching command based on the well-defined switching group. For example, the processing circuit 210 divides two handover groups according to the information of the desired relay device reported by the remote device: the handover group G1 includes the remote devices UE1-UE3; the handover group G2 includes the remote devices UE4 and UE5.
  • the generated group-based handover command includes information of the device member lists UE1-UE3 and the target relay device of the handover group G1; and information of the device member lists UE4 and UE5 of the handover group G2 and the target relay device.
  • FIG. 5 is a signaling flowchart illustrating splitting a handover group, in accordance with an embodiment of the present disclosure.
  • both the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the remote UE1 and the remote UE2 respectively detect a trigger event.
  • the remote UE1 and the remote UE2 respectively report the information of the desired relay device to the source relay UE.
  • the source relay UE divides the far end UE1 and the far end UE2 into handover groups according to the information of the desired relay devices of the remote UE1 and the remote UE2.
  • FIG. 5 only shows a case where the source relay UE provides relay services for two remote UEs. Of course, the source relay UE can also serve more remote UEs.
  • the triggering entity that detects the triggering event is the remote device, and the source relaying device may receive the information of the desired relaying device reported by the plurality of remote devices at the same time point or time period. , thereby dividing the switching group.
  • multiple remote devices that need to perform the relay handover process are divided into handover groups, so that devices in the handover group can cooperate to perform some operations, reduce signaling overhead, and reduce the possibility of signaling collision.
  • the transceiver circuit 220 may forward the received information of the desired relay device to the network side device, and the network side device may, according to the information of the desired relay device of the remote device, the one or more remote devices. Divided into one or more switch groups. Next, the transceiver circuit 220 may further receive the information of the divided handover group from the network side device, and determine, according to the information of the handover group received from the network side device, each handover group included in the group-based relay handover command. A list of device members.
  • FIG. 6 is a signaling flowchart illustrating splitting a handover group, in accordance with an embodiment of the present disclosure.
  • both the far end UE1 and the far end UE2 perform communication with the eNB through the source relay UE.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the remote UE1 and the remote UE2 respectively detect a trigger event.
  • the remote UE1 and the remote UE2 report the information of the desired relay device to the eNB through the source relay UE.
  • step S603 the eNB divides the remote UE1 and the remote UE2 into handover groups according to the information of the desired relay devices of the remote UE1 and the remote UE2.
  • step S604 the eNB transmits the information of the divided handover group to the source relay UE.
  • FIG. 6 only shows a case where the source relay UE provides relay services for two remote UEs. Of course, the source relay UE can also serve more remote UEs.
  • the embodiment shown in FIG. 6 is similar to that in FIG. 5, and the triggering entity that detects the triggering event is the remote device, and the difference is that the entity that divides the switching group is the network side device. Similarly, a plurality of remote devices that need to perform a relay handover process are divided into handover groups, so that devices in the handover group can cooperate to perform some operations, reduce signaling overhead, and reduce the possibility of signaling collisions.
  • the transceiver circuit 220 may be further configured to transmit desired relay device request information to each of the one or more remote devices. Further, the transceiver circuit 220 can receive, from each remote device, information of the desired relay device transmitted in response to the desired relay device request information.
  • the transceiver circuit 220 can transmit desired relay device request information to a remote device that needs to perform relay switching.
  • the electronic device 200 can determine which remote devices are remote devices that need to perform relay switching according to different trigger events.
  • the triggering entity that detects the triggering event may be the electronic device 200.
  • the remote device that needs to perform relay switching may be all remote devices served by the electronic device 200.
  • the electronic device 200 may transmit the desired relay device request information to all remote devices that it serves. To request the desired relay device for all remote devices.
  • the processing circuit 210 may also determine a desired relay device to which the electronic device 200 desires to switch.
  • the electronic device 200 needs to become the remote device to perform communication with the network side device through the other relay device.
  • the desired relay device of electronic device 200 may also include one or more relay devices.
  • the processing circuit 210 may further divide the electronic device 200 and all remote devices served by the electronic device 200 into one or more switching groups according to the desired relay device of the electronic device 200 and the desired relay device of the received remote device. .
  • the processing circuit 210 may divide the remote device or the electronic device 200 having the same desired relay device into the same switching group. For example, if the remote devices in the switching group G2 have the same desired relay device UE1 and the desired relay device of the electronic device 200 also includes the UE1, the electronic device 200 can be divided into the switching group G2.
  • the method for grouping such packets is similar to the method for grouping remote devices as described in the foregoing, and details are not described herein again. Further, in the case where the device member list of the switching group includes the electronic device 200, the electronic device 200 may also save the generated group-based relay switching command.
  • the remote device that needs to perform relay switching may be a part of the remote device served by the electronic device 200.
  • the electronic device 200 may indicate the one or more far points indicated in the higher layer signaling.
  • the end device transmits the desired relay device request information to divide the one or more remote devices into a handover group.
  • the electronic device 200 may also divide the electronic device 200 into the switching group.
  • FIG. 7 is a signaling flow diagram illustrating splitting a handover group, in accordance with an embodiment of the present disclosure.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the source relay UE detects a trigger event.
  • the source relay UE may transmit desired relay device request information to the remote UE that needs to perform relay handover. It is assumed that the source relay UE transmits the desired relay device request information to the remote UE1 and the remote UE2.
  • step S703 the remote UE1 and the remote UE2 respectively report the information of the desired relay device to the source relay UE.
  • the source relay UE divides the far end UE1 and the far end UE2 into handover groups according to the information of the desired relay devices of the remote UE1 and the remote UE2.
  • the source relay UE may further configure the remote UE1, the remote UE2, and the source relay UE according to the information of the desired relay device of the remote UE1 and the remote UE2 and the information of the desired relay device of the source relay UE. Divided into switching groups.
  • the relay device divides the switching group, so it can be regarded as a dynamic grouping.
  • a remote device that needs to perform a relay handover is used in the process of grouping, and optionally also information of a desired relay device of the source relay device that needs to relay the service, and thus the packet is accurate.
  • information of the handover group may also be determined according to information unrelated to the desired relay device, which may occur before the trigger event is detected by the remote device or the source relay device, or may occur at a far distance After the end device or the source relay device detects the trigger event. This can be called a semi-static grouping.
  • the handover group may be determined by the electronic device 200 as a relay device, or may be determined by a network side device (for example, an eNB).
  • a network side device for example, an eNB
  • the processing circuit 210 of the electronic device 200 as a relay device may divide the plurality of remote devices served by the electronic device 200 and the electronic device 200 into one or more switching groups, and the transceiver circuit 220 may each The information of the switching group is sent to all remote devices in the switching group.
  • the processing circuit 210 may divide the switching group based on at least one of the following: location information of each remote device, location information of the electronic device 200, and each remote device and the electronic device 200 Inter-link quality information, link quality information between each remote device and a desired relay device of the remote device, and connection status information between each remote device and the electronic device 200.
  • the remote device may report the location information to the electronic device 200 periodically or non-periodically. Further, the remote device may report the link quality information between the remote device and the electronic device 200 and the link quality information between the remote device and the desired relay device to the electronic device 200 periodically or non-periodically.
  • the electronic device 200 receives the above information, the electronic device 200 and the remote device may be divided into a switching group according to at least one of the above information and connection state information between each remote device and the electronic device 200.
  • the transceiver circuit 220 can also separately send information of the switch group in which the remote device is located to the remote device served by the electronic device 200.
  • the information of the switching group may include information of all devices in the switching group.
  • the information of the handover group may include identification information of all devices in the handover group.
  • the processing circuit 210 can also save information of the switching group in which the electronic device 200 is located.
  • each relay device can divide the remote device and the relay device it serves into a handover group.
  • the relay device can divide the remote device and the relay device that may have similar switching requirements into the same switching group, and all devices in the switching group will perform the relay switching process as a whole, thereby reducing Signaling overhead and reduce the probability of signaling collisions.
  • FIG. 8 is a signaling flow diagram illustrating splitting a handover group, in accordance with an embodiment of the present disclosure.
  • both the remote UE1 and the remote UE2 perform communication with the network side device by relaying the UE.
  • the relay UE here can be implemented by the electronic device 200.
  • the relay UE groups all the remote UEs and the relay UEs within its service range.
  • the relay UE transmits information of the handover group to all remote UEs. Further, the relay UE can also save the information of the handover group in which it is located.
  • the handover group may also be determined by the network side device, that is, the transceiver circuit 220 of the electronic device 200 may receive information of the handover group where the electronic device 200 is located and the remote device served by the electronic device 200 from the network side device.
  • the information of the switching group is located, and the processing circuit 210 can save the information of the switching group in which the electronic device 200 is located.
  • the transceiver circuit 220 can also separately send information of the switch group in which the remote device is located to the remote device served by the electronic device 200.
  • the network side device may determine the information of the handover group based on at least one of the following information: location information of the electronic device 200, location information of the remote device served by the electronic device 200, and between the electronic device 200 and the network side device Link quality information and link quality information between the remote device and the network side device served by the electronic device 200.
  • FIG. 9 is a signaling flow diagram illustrating splitting a handover group, in accordance with an embodiment of the present disclosure.
  • both the far end UE1 and the far end UE2 perform communication with the eNB by relaying the UE.
  • the relay UE here can be implemented by the electronic device 200.
  • the eNB groups all remote UEs and relay UEs within its service range.
  • the eNB transmits the information of the handover group to the relay UE within its service range.
  • the relay UE transmits information of the handover group to all the remote UEs it serves. Further, the relay UE can also save the information of the handover group in which it is located.
  • this semi-static grouping process is independent of the group-based relay switching process. That is, the process of semi-static grouping can occur before the group-based relay handover process, or in the group-based relay handover process. Furthermore, the process of semi-static grouping can be performed periodically or non-periodically.
  • the process of dividing the switching group is described in connection with FIG. 5-9 as described above.
  • the electronic device 200 as the source relay device knows the information of the handover group, the information of the handover group can be utilized to generate a group-based relay handover command.
  • the transceiver circuit 220 may receive information of a desired relay device from one or more remote devices served by the electronic device 200, and the processing circuit 210 may be based on a desired relay of the remote device Information about the device to divide the switch group. Further, the processing circuit 210 can also determine the target relay device of each of the switching groups based on the information of the desired relay device of the remote device.
  • the target relay device of the switching group may be the same desired relay device that the devices in the switching group have.
  • FIG. 10 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • both the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the remote UE1 and the remote UE2 respectively detect a trigger event.
  • the remote UE1 and the remote UE2 respectively report the information of the desired relay device to the source relay UE.
  • step S1003 the source relay UE divides the far end UE1 and the far end UE2 into handover groups according to the information of the desired relay devices of the remote UE1 and the remote UE2, and determines the target relay device of each handover group.
  • FIG. 10 only shows a case where the source relay UE provides relay services for two remote UEs. Of course, the source relay UE can also serve more remote UEs.
  • the transceiver circuit 220 of the electronic device 200 can forward the information of the desired relay device reported by the remote device to the network side device, and the network side device divides the switch group based on the information of the desired relay device of the remote device. .
  • the network side device may also determine the target relay device of each switching group based on the information of the desired relay device of the remote device.
  • the transceiver circuit 220 may receive information of the handover group from the network side device, wherein the information of the handover group includes information of devices included in each handover group and target relay devices of each handover group.
  • FIG. 11 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • both the far end UE1 and the far end UE2 perform communication with the eNB through the source relay UE.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the remote UE1 and the remote UE2 respectively detect a trigger event.
  • the remote UE1 and the remote UE2 report the information of the desired relay device to the eNB through the source relay UE.
  • step S1103 the eNB divides the remote UE1 and the remote UE2 into handover groups according to the information of the target handover device of the remote UE1 and the remote UE2.
  • step S1104 the eNB transmits information of the handover group to the source relay UE.
  • the information of the handover group here includes information of devices included in each handover group and target relay devices of each handover group.
  • FIG. 11 only shows a case where the source relay UE provides relay services for two remote UEs. Of course, the source relay UE can also serve more remote UEs.
  • the transmitting and receiving circuit 220 of the electronic device 200 can also transmit the desired relaying device request information to the remote device that needs to perform the relay switching.
  • FIG. 12 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • both the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE here can be implemented by the aforementioned electronic device 200.
  • the source relay UE detects a trigger event.
  • the source relay UE may transmit the desired relay device request information to the remote UE that needs to perform the relay handover. It is assumed that the source relay UE transmits the desired relay device request information to the remote UE1 and the remote UE2.
  • step S1203 the remote UE1 and the remote UE2 respectively report the information of the desired relay device to the source relay UE.
  • step S1204 the source relay UE divides the far end UE1 and the far end UE2 into handover groups according to the information of the desired relay devices of the remote UE1 and the remote UE2, and determines the target relay device of each handover group.
  • the source relay UE may further configure the remote UE1, the remote UE2, and the source relay UE according to the information of the desired relay device of the remote UE1 and the remote UE2 and the information of the desired relay device of the source relay UE. Divide into switching groups and determine the target relay device for each switching group.
  • a group-based relay handover command may be generated.
  • the handover group included in the group-based relay handover command is a handover group that needs to perform a relay handover procedure.
  • the handover group that needs to perform the relay handover procedure is the handover group divided by the electronic device 200 or the eNB. Therefore, the electronic device 200 regards the divided switching group as the switching group included in the group-based relay switching command, thereby determining the device member list and the target relay device of each switching group, and finally generating a command. In this case, the electronic device 200 transmits a command to the remote device in the device member list of the switching group included in the command. In effect, the electronic device 200 transmits a command to the remote device that expects the relay device information.
  • the processing circuit 210 may perform relay reselection measurements to determine a target relay device for each switching group.
  • the electronic device 200 since the electronic device 200 provides a service to the remote device, the electronic device 200 knows the information of the remote device, and the electronic device 200 is also geographically close to the remote device, so that the remote device can be replaced.
  • the switching group in which it is located determines the target relay device.
  • the electronic device 200 may perform relay reselection measurement to determine one or more desired relay devices, and determine one of the one or more desired relay devices as the switching group in which the remote device is located. Target relay device.
  • the transceiver circuit 220 may receive group-based relay switching request information from the remote device, the group-based relay switching request information indicating that the remote device desires Perform a relay switching operation. Further, the processing circuit 210 can perform relay reselection measurement in response to the received group-based relay switching request information.
  • FIG. 13 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE groups all remote UEs and relay UEs within its service range.
  • the source relay UE transmits information of the handover group to all remote UEs. Further, the source relay UE can also save the information of the switch group in which it is located.
  • the remote UE 2 detects a trigger event.
  • the remote UE2 transmits group-based relay handover request information to the source relay UE.
  • step S1305 the source relay UE performs relay reselection measurement to determine a target relay device of the handover group in which the remote UE2 is located.
  • the handover group is semi-statically divided by the source relay UE is shown, and of course, the handover group can also be semi-statically divided by the eNB.
  • FIG. 13 only shows the situation before the semi-static division switching group occurs before the handover triggering process. In fact, the process of semi-statically dividing the switching group may also occur before the group-based relay switching command is generated after the handover triggering process. Any time.
  • a group-based relay switching command may be generated.
  • the handover group included in the group-based relay handover command is a handover group that needs to perform a relay handover procedure.
  • the handover group that needs to perform the relay handover procedure is the handover group in which the remote device detecting the trigger event is located. That is, the electronic device 200 regards the handover group in which the remote UE 2 is located as the handover group included in the group-based relay handover command.
  • the generated command includes the device member list of the switching group where the remote UE2 is located and the information of the target relay device.
  • the electronic device 200 can send a command to all remote devices in the handover group in which the remote UE2 is located. That is, although the other remote devices of the handover group in which the remote UE2 is located do not detect the trigger event, they also receive the group-based relay handover command and perform the group-based relay handover procedure.
  • the processing circuit 210 may perform a relay reselection measurement in response to detecting the triggering event.
  • FIG. 14 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE groups all remote UEs and relay UEs within its service range.
  • the source relay UE transmits the information of the handover group to all the remote UEs. Further, the source relay UE can also save the information of the switch group in which it is located.
  • the source relay UE detects a trigger event.
  • step S1404 the source relay UE performs relay reselection measurement to determine a target relay device of the handover group in which the remote device that needs to perform the relay handover is located.
  • FIG. 14 only shows the case where the handover group is semi-statically divided by the source relay UE, and of course, the handover group can also be semi-statically divided by the eNB.
  • FIG. 14 only shows the situation before the semi-static division switching group occurs before the handover triggering process. In fact, the process of semi-statically dividing the switching group may also occur before the group-based relay switching command is generated after the handover triggering process. Any time.
  • a group-based relay switching command may be generated.
  • the handover group included in the group-based relay handover command is a handover group that needs to perform a relay handover procedure.
  • the handover group that needs to perform the relay handover procedure is a handover group in which the remote device (and optionally the source relay device itself) that needs to perform the relay handover is located.
  • the source relay device may determine, according to the trigger event, the remote device that needs to perform the relay handover (optionally including the source relay device itself) .
  • the triggering event is that the link quality between the electronic device 200 and the network side device is less than the second threshold
  • the device that needs to perform the relay switching is all the remote devices served by the electronic device 200
  • the triggering event is the electronic device
  • the link quality between the network device and the network side device is less than the third threshold
  • the device that needs to perform the relay switching is all the remote devices served by the electronic device 200 and the electronic device 200 itself
  • the trigger event is that the electronic device 200 receives the representation
  • the device that needs to perform relay switching is the remote device specified in the high-level signaling (optional)
  • the ground also includes the electronic device 200 itself).
  • the electronic device 200 sets the handover group in which the remote device (and optionally the source relay device itself) that needs to perform the relay handover is included in the handover included in the group-based relay handover command. group.
  • the generated command includes the device member list of the switching group and the information of the target relay device.
  • the electronic device 200 can send commands to all of the remote devices in the switch group.
  • the electronic device 200 can also save the command.
  • the electronic device 200 can perform relay reselection measurement to determine a target relay device for a handover group that needs to perform relay handover. In this way, signaling overhead and processing time can be saved.
  • the electronic device 200 may further determine a target relay device of the handover group in which the remote device is located according to the information of the desired relay device reported by the remote device.
  • the electronic device 200 may receive group-based relay switching request information from the remote device, the group-based relay switching request information including the remote device The information of the desired relay device.
  • the information of the desired relay device of the remote device may include identification information of the desired relay device of the remote device, and the desired relay device of the remote device may include one or more desired relay devices.
  • the processing circuit 210 can determine that one of the desired relay devices of the remote device is the target relay device of the switching group in which the remote device is located.
  • FIG. 15 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE groups all remote UEs and relay UEs within its service range.
  • the source relay UE transmits information of the handover group to all remote UEs. Further, the source relay UE can also save the information of the switch group in which it is located.
  • the remote UE 2 detects a trigger event.
  • step S1504 the remote UE2 sends the group-based relay handover request information to the source relay UE, where the request information includes information of the desired relay device of the remote UE2.
  • step S1505 the source relay determines that one desired relay device of the remote UE2 is the target relay device of the handover group in which the remote UE2 is located.
  • the handover group is semi-statically divided by the source relay UE is shown, and of course, the handover group can also be semi-statically divided by the eNB.
  • FIG. 15 only shows a situation in which the semi-static partition switching group occurs before the handover triggering process. In fact, the process of semi-statically dividing the switching group may also occur before the grouping-based relay switching command is generated after the handover triggering process. Any time.
  • the handover group that needs to perform the relay handover procedure is the handover group in which the remote device detecting the trigger event is located. That is, the electronic device 200 regards the handover group in which the remote UE 2 is located as the handover group included in the group-based relay handover command. In this way, the generated command includes the device member list of the switching group where the remote UE2 is located and the information of the target relay device. Next, the electronic device 200 can send a command to all remote devices in the handover group in which the remote UE2 is located. That is, although the other remote devices of the handover group in which the remote UE2 is located do not detect the trigger event, they also receive the group-based relay handover command and perform the group-based relay handover procedure.
  • the transmitting and receiving circuit 220 may transmit the desired relaying device request information to one or more of the remote devices that need to perform the relaying handover.
  • the electronic device 200 knows in advance the switching group situation of the remote device it serves, after the electronic device 200 determines the remote device that needs to perform the relay switching, it can determine which remote devices to send the desired according to certain criteria.
  • the relay device requests information.
  • the electronic device 200 may select one remote device from each of the switch groups that need to perform the relay handover to transmit the desired relay device request information. More preferably, the selected remote device may have a higher battery power level or better link quality and the like.
  • the transceiver circuit 220 can receive information from the remote device that is expected to be transmitted in response to the desired relay device request information.
  • the processing circuit 210 may determine a target relay device of each of the switching groups that need to perform relay switching based on the received information of the desired relay device. Specifically, when only one remote device in the same switching group reports the desired relay device, the processing circuit 210 may determine that one desired relay device of the remote device is the target relay device; when there are multiple switches in the same group When the remote device reports the desired relay device, the processing circuit 210 may cause as many of the plurality of remote devices as the desired relay device of the remote device to include the determined target relay device.
  • the remote UE1 and the remote UE2 report the desired relay device, the desired relay device of the remote UE1 is R1 and R2, and the desired relay device of the remote UE2 is R1 and R3, and the processing circuit 210 may determine that the target relay device of the switching group G1 is R1.
  • the remote UE2 - UE4 reports the desired relay device, the desired relay device of the remote UE2 is R4 and R5, and the desired relay device of the remote UE3 is R4 and R6, and the remote UE4 It is contemplated that the relay devices are R7 and R8, and processing circuit 210 can determine that the target relay device of handover group G2 is R4.
  • FIG. 16 is a signaling flowchart illustrating determining a target relay device according to the above-described embodiments of the present disclosure.
  • the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE groups all remote UEs and relay UEs within its service range.
  • the source relay UE transmits the information of the handover group to all the remote UEs. Further, the source relay UE can also save the information of the switch group in which it is located.
  • the source relay UE detects a trigger event.
  • the source relay UE transmits the desired relay device request information to the partial remote UE.
  • step S1605 the remote UE1 and the remote UE2 that have received the desired relay device request information report the information of the desired relay device to the source relay UE.
  • step S1606 the source relay determines a target relay device of each switching group that needs to perform relay switching.
  • the handover group is semi-statically divided by the source relay UE is shown, and of course, the handover group can also be semi-statically divided by the eNB.
  • FIG. 16 only shows the situation before the semi-static division switching group occurs before the handover triggering process. In fact, the process of semi-statically dividing the switching group may also occur before the group-based relay switching command is generated after the handover triggering process. Any time.
  • a group-based relay switching command can be generated.
  • the handover group included in the group-based relay handover command is a handover group that needs to perform a relay handover procedure.
  • the handover group that needs to perform the relay handover procedure is a handover group in which the remote device (and optionally the source relay device itself) that needs to perform the relay handover is located.
  • the electronic device 200 sets the switching group in which the remote device (and optionally the source relay device itself) that needs to perform the relay switching is the switching group included in the group-based relay switching command.
  • the generated command includes the device member list of the switching group and the information of the target relay device.
  • the electronic device 200 can send commands to all of the remote devices in the switch group. When the electronic device 200 itself also needs to perform a relay service, the electronic device 200 can also save the command.
  • the electronic device 200 can determine the target relay device of the handover group according to the desired relay device reported by the remote device. In this way, the determined target relay device is more accurate and reliable.
  • the electronic device 200 as a source relay device may generate a group-based relay switching command including information of a device member list and a target relay device of each switching group.
  • each switching group can cooperate to complete the process of relay switching, thereby reducing signaling overhead and reducing the risk of signaling collision.
  • the processing circuit 210 may also determine a group head device of the switching group.
  • the group head device may also be determined by the network side device, and the transceiver circuit 220 may receive information of the group head device of each switching group from the network side device.
  • the information of the group head device may include the identification information of the group head device.
  • the group head device of the switching group may be determined by the device that divides the switching group. For example, when the switching group is divided by the electronic device 200, the group head device may be determined by the electronic device 200; when the switching group is divided by the network side device, the group head device may be determined by the network side device.
  • the group head device may be a relay device or a remote device.
  • the head device since the head device consumes a large amount of power, the head device can also be periodically or non-periodically changed.
  • a remote device may be determined as a group header device of the handover group according to information of all remote devices in the handover group (eg, battery power information, geographic location information, etc.).
  • information of a group head device may be included in a group-based relay switching command. That is to say, the group-based relay switching command may include a device member list of each switching group, information of the target relay device, and information of the group head device.
  • the information of the group header device may also be included in the information of the handover group and transmitted to each of the relay device and the remote device in the handover group.
  • a group head device of each switching group can be determined, and the group head device will perform a switching execution process as a representative of the switching group.
  • the signaling process can be simplified and the signaling overhead can be greatly reduced.
  • the remote device may report information of the desired relay device to the source relay device that provides the service thereto.
  • the relay device may determine a measurement configuration of each remote device that it serves, and send measurement configuration information to each remote device that it serves, the measurement configuration information is used to identify the remote device measurement expectation Time-frequency resource information of the relay device.
  • the relay device may divide the entire discovery period (including time resources and frequency resources) for measuring the desired relay device into a plurality of sub-cycles, each of which includes time resource information and frequency resource information, where The time resource information indicates a subframe in which the desired relay device measurement is performed, and the frequency resource information indicates a frequency band in which the desired relay device measurement is performed.
  • the relay device can assign a different sub-period to each remote device according to certain criteria. In this way, the remote device only needs to use the time-frequency resource information allocated by the relay device to measure the desired relay device, which can effectively reduce resources that need to be monitored, thereby reducing power consumption.
  • step S1701 the source relay UE determines the measurement configuration of each remote UE it serves.
  • step S1702 the source relay UE separately transmits measurement configuration information to the remote UEs it serves.
  • the relay device may periodically determine a measurement configuration for the remote device it serves and periodically transmit measurement configuration information to the remote device it serves.
  • the relay device may also periodically determine the measurement configuration for the remote device it serves, and carry the measurement configuration information in the desired relay device request information sent to the remote device.
  • the relay device may determine the measurement configuration information of the remote device according to the battery power information of the remote device it serves. According to an embodiment of the present disclosure, the relay device may receive battery power information of the remote device from the remote device it serves. According to an embodiment of the present disclosure, the relay device may also transmit battery power request information to the remote device it serves. Here, the process of transmitting battery power request information to the remote device and receiving the battery power information from the remote device may be periodically operated such that the relay device may periodically determine the measurement configuration of each remote device.
  • the relay device may configure a sub-period with more time-frequency resources for the remote device with sufficient battery power, and a sub-period with less time-frequency resources for the remote device with less battery power.
  • the relay device can also determine the group head device by using the battery power information reported by the remote device. For example, in the case where the group head device is determined by the relay device, the relay device may determine that the remote device having sufficient battery power is the group head device.
  • the source relay device can determine to which devices the desired relay device request information is transmitted. For example, the source relay device may select a remote device with sufficient battery power in each switch group and send desired relay device request information to the remote device.
  • the remote UE1 and the remote UE2 perform communication with the network side device through the source relay UE.
  • the source relay UE transmits battery power request information to the remote UE1 and the remote UE2.
  • the remote UE1 and the remote UE2 report battery power information to the source relay UE.
  • the source relay UE determines the measurement configuration of each remote UE it serves.
  • the source relay UE separately transmits measurement configuration information to the remote UEs it serves.
  • the relay device can configure measurement configuration information for remote devices within its coverage. In this way, the remote device does not need to listen to all resources when measuring the desired relay device, which can effectively reduce power consumption.
  • the source relay device for generating a group-based relay switching command is explained in detail above.
  • the target relay device for generating a group-based relay switching command will be explained below.
  • the transceiver circuit 220 of the electronic device 200 may transmit the source relay device that provides a service to the remote device in the device member list of each switching group.
  • Group-based relay switching commands Preferably, the transceiver circuit 220 of the electronic device 200 can broadcast a group based relay switching command.
  • the switching group when the electronic device 200 functions as a target relay device, the switching group may be divided by the electronic device 200, the target relay device of each switching group is determined, and a group-based relay switching command is generated.
  • the triggering entity that detects the trigger event is the electronic device 200, and the triggering event includes the electronic device 200 receiving the indication that the one or more remote devices need to be switched to High layer signaling of the electronic device 200.
  • the electronic device 200 can divide the remote devices into one switching group.
  • the electronic device 200 may also divide the remote device into multiple according to the source relay device that provides services for the remote device.
  • a switching group that is, a remote device belonging to the same source relay device is divided into one switching group.
  • the handover group included in the group-based relay handover command generated by the electronic device 200 is a handover group that needs to perform relay handover.
  • the switching groups divided by the electronic device 200 are all switching groups that need to perform relay switching. Therefore, the electronic device 200 can take its divided switching group as a switching group included in the command, and determine a device member list of each switching group.
  • the electronic device 200 when the electronic device 200 functions as a target relay device, all remote devices that need to perform relay switching need to switch to the electronic device 200, and thus the electronic device 200 can determine target relay devices of all switching groups. Both are electronic devices 200.
  • the electronic device 200 can determine one or more handover groups and determine a target relay device for each handover group. Next, the electronic device 200 can generate a group-based relay switching command.
  • the transceiver circuit 220 of the electronic device 200 may transmit the group-based relay switching command to a source relay device serving a remote device included in a device member list of the switching group to cause the source relay The device can forward the command to the corresponding remote device.
  • FIG. 19 is a signaling flowchart illustrating generation of a group-based relay handover command by a target relay device, according to an embodiment of the present disclosure.
  • the target relay UE detects a handover event, that is, the target relay UE receives high-level signaling indicating that one or more remote devices need to be handed over to the target relay UE, this one Or multiple remote devices belong to the source relay UE1 and the source relay UE2. That is to say, a part of the remote device originally performs communication with the network side device through the source relay UE1, and another part of the remote device originally performs communication with the network side device through the source relay UE2.
  • the target relay UE generates a group-based relay handover command.
  • the target relay UE transmits a group-based relay handover command to the source relay UE1 and the source relay UE2, respectively.
  • the electronic device 200 as a target relay device may generate a group-based relay switching command including information of a device member list and a target relay device of each switching group.
  • each switching group can cooperate to complete the process of relay switching, thereby reducing signaling overhead and reducing the risk of signaling collision.
  • the processing circuit 210 may also determine a group head device of the switching group.
  • the information of the group head device may include the identification information of the group head device.
  • the group head device since the group head device consumes a large amount of power, the group head device may also be periodically or non-periodically changed.
  • the processing circuit 210 can determine a remote device as the group head device of the switching group according to information of all remote devices in the switching group (eg, power information, geographic location information, etc.).
  • information of a group head device may be included in a group-based relay switching command. That is to say, the group-based relay switching command may include a device member list of each switching group, information of the target relay device, and information of the group head device.
  • a group head device of each switching group can be determined, and the group head device will perform a switching execution process as a representative of the switching group.
  • the signaling process can be simplified and the signaling overhead can be greatly reduced.
  • the execution of the handover execution process is started.
  • the group head device may send connection establishment request information to the target relay device, where the connection establishment request information may include information of all devices in the device member list of the switch group in which the group head device is located.
  • the group head device may broadcast transmission connection establishment request information.
  • the group head device may transmit connection establishment request information in response to receiving or generating a group-based relay switching command.
  • the non-header device in the handover group may activate the first timer and perform relay reselection when the connection establishment response information from the target relay device is not received before the expiration of the first timer Operation, that is, abandoning the group-based relay switching operation, can measure the desired relay device by itself and perform a conventional relay switching operation, including transmitting connection establishment request information to the desired relay device and receiving the connection establishment response information.
  • the group head device may also start the second timer after transmitting the connection establishment request information, and execute when the connection establishment response information from the target relay device is not received before the second timer expires. Following the reselection operation.
  • the group head device may also start the third timer before sending the connection establishment request information after receiving or generating the group-based relay switching command, and does not receive the target relay device before the third timer expires. The relay reselection operation is performed when the connection establishes the response information.
  • the expiration times of the first timer, the second timer, and the third timer are different.
  • the group head device and the non-head device may receive connection establishment response information from the target relay device, and the connection establishment response information indicates that the group head device and the non-head device are allowed to access the target relay device.
  • connection establishment response information may be information that is transmitted by the target relay device, and carries identification information of a device that allows access to the target relay device.
  • the connection establishment response information may also be information that the target relay device transmits to the group head device, where the device that allows access to the target relay device is carried Identification information.
  • the group head device can forward connection establishment response information to other devices.
  • FIG. 20 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure.
  • the group head device and other devices that are non-group head devices are located in the same switching group, and the target relay device of the switching group is the target relay UE.
  • the group head device receives or generates a group-based relay switching command, and sends connection establishment request information to the target relay UE, where the information of the group head device and other devices is carried, and then in step S2004, in step S2004 Start the timer.
  • the other device receives or generates a group-based relay switching command, and starts a timer in step S2005.
  • the target relay UE broadcasts the transmission connection establishment response information including the information of the device that allows the access target to relay the UE. It is assumed here that the group head device and other devices are allowed to access the target relay UE, and the group head device and other devices can receive the connection establishment response information.
  • the switching group may further include a plurality of other devices, and the operations of the plurality of other devices are the same as those shown in FIG. The operation of the device is similar.
  • step S2101 the group head device receives or generates a group-based relay switching command, and sends connection establishment request information to the target relay UE in step S2103, where the information of the group head device and other devices is carried, and then in step S2104 Start the timer.
  • step S2102 the other device receives or generates a group-based relay switching command, and starts a timer in step S2105.
  • the target relay UE transmits connection establishment response information to the group head device, including information of a device that allows access to the target relay UE.
  • the head device is a relay device
  • the target relay UE allows the group head device and other devices to access the target relay UE
  • the group head device forwards the connection establishment response information to the other device.
  • FIG. 21 only the case where one group head device and one other device are included in the switching group is shown, and the switching group may further include a plurality of other devices, and the operations of the plurality of other devices are the same as those shown in FIG. The operation of the device is similar.
  • the group head device may be a source relay device or a remote device.
  • the handover execution process according to an embodiment of the present disclosure will be described in detail below.
  • FIG. 22 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure.
  • the remote UE originally performs communication with the network side device through the source relay UE. After the group-based relay handover event is triggered, the source relay UE and the remote UE are located in the same handover group.
  • the group header of the handover group is a source relay UE, and the target relay device is a target relay UE.
  • the source relay UE generates a group-based relay handover command.
  • the source relay UE sends a group-based relay handover command to the remote UE.
  • the source relay UE sends the connection establishment request information to the target relay UE, including the information of the device in the device member list of the handover group where the source relay UE is located, for example, including the source relay UE and the remote UE. information.
  • the source relay UE starts a timer and performs a relay reselection operation when the connection establishment response information from the target relay UE is not received before the timer expires.
  • the remote UE starts a timer in response to receiving the group-based relay handover command in step S2202, and performs when the connection establishment response information from the target relay UE is not received before the timer expires. Relay reselection operation.
  • the target relay UE broadcasts transmission connection establishment response information including information of a device that allows access to the target relay UE. It is assumed here that the target relay UE allows the source relay UE and the remote UE to access the target relay UE, so both the source relay UE and the remote UE can receive the connection establishment response information.
  • a group-based relay handover command is generated by the source relay UE, and of course, a group-based relay handover command may also be generated by the target relay UE, in which case the source relay UE responds to receiving the group-based medium.
  • the connection establishment request information is transmitted following the handover command.
  • the group-based relay handover command and the connection establishment request information sent by the source relay UE may be broadcast-transmitted information, and the source relay UE may combine the two types of information together for broadcast transmission.
  • the source relay UE first transmits a connection establishment request information restart timer.
  • the source relay UE may also start a timer and then send the connection establishment request information, and only needs to set the expiration time of the timer to be different. Further, only the case where the target relay UE broadcasts the connection establishment response information is shown in FIG.
  • the target relay UE may also directly send the connection setup response information to the source relay UE, and the source relay UE forwards to the remote UE.
  • FIG. 23 is a signaling flowchart illustrating performing a handover execution procedure according to an embodiment of the present disclosure.
  • the remote UE1 and the remote UE2 originally perform communication with the network side device through the source relay UE. After the group-based relay handover event is triggered, the remote UE1 and the remote UE2 are located at the same time.
  • a handover group, the group header device of the handover group is the remote UE2, and the target relay device is the target relay UE.
  • the source relay UE generates a group-based relay handover command.
  • the source relay UE transmits a group-based relay handover command to the remote UE1 and the remote UE2.
  • the remote UE2 sends connection establishment request information to the target relay UE in response to receiving the group-based relay handover command, including information of the device in the device member list of the handover group where the remote UE2 is located, for example, Information including the remote UE1 and the remote UE2.
  • the remote UE 2 starts a timer and performs a relay reselection operation when the connection establishment response information from the target relay UE is not received before the timer expires.
  • the remote UE 1 starts a timer in response to receiving the group-based relay handover command in step S2302, and executes when the connection establishment response information from the target relay UE is not received before the timer expires. Relay reselection operation.
  • the target relay UE broadcasts transmission connection establishment response information including information of a device that allows access to the target relay UE. It is assumed here that the target relay UE allows the far-end UE1 and the far-end UE2 to access the target relay UE, so both the far-end UE1 and the far-end UE2 can receive the connection establishment response information.
  • a group-based relay handover command is generated by the source relay UE, and of course, a group-based relay handover command may also be generated by the target relay UE.
  • the remote UE 2 first transmits a connection establishment request information restart timer.
  • the remote UE2 may also start a timer and then send the connection establishment request information, and only needs to set the expiration time of the timer to be different.
  • the target relay UE may also directly transmit the connection setup response information to the source relay UE, and the source relay UE forwards to the remote UE1 and the remote UE2.
  • the process of relay handover may be performed by replacing the entire handover group by the group header device in the handover group, including transmitting connection establishment request information and receiving connection establishment response information.
  • the process of relay handover may be performed by replacing the entire handover group by the group header device in the handover group, including transmitting connection establishment request information and receiving connection establishment response information.
  • other devices of the non-header device do not need to send connection establishment request information, which can greatly reduce signaling overhead and reduce the probability of signaling collision.
  • the source relay device may have a binding relationship with some remote devices. That is, regardless of the manner in which the source relay device performs communication with the network side device, including directly communicating with the network side device and communicating with the network side device through other relay devices, these remote devices hope to pass through the source.
  • the device performs communication with the network side device. That is, even if the source relay device performs communication with the network side device through other relay devices, these remote devices also desire to perform communication with the network side device through the source relay device and other relay devices. .
  • the source relay device is a mobile device belonging to the user
  • the remote device is a wearable device belonging to the user.
  • the user's wearable device always desires to perform communication with the network side device through the source relay device.
  • the remote device having the binding relationship with a certain source relay device may be divided into the following switch group: the target relay device of the switch group is the source relay device.
  • the group-based relay handover procedure may also be made transparent to these bound remote devices. That is, the source relay device may send connection establishment request information to the target relay device, where the connection establishment request information includes information of the source relay device, and further includes a remote device that has a binding relationship with the source relay device. information. The target relay device may determine whether the source relay device and the remote device having the binding relationship with the source relay device are allowed to access the target relay device.
  • the target relay device may send connection establishment response information to the source relay device, It also carries information of the active relay device and information of the remote device that has a binding relationship with the source relay device.
  • the source relay UE has one or more bound remote UEs.
  • the source relay UE detects a trigger event, that is, the source relay UE desires to perform communication with the network side device through the target relay UE.
  • the source relay UE sends connection establishment request information to the target relay UE, where the information of the source relay UE and the remote UE bound to the source relay UE is carried.
  • step S2403 the target relay UE sends connection establishment response information to the source relay UE, where the information of the active relay UE and the remote UE bound to the source relay UE is also carried, indicating that the source relay UE and the source relay UE are allowed.
  • the bound remote UE accesses the target relay UE.
  • the flow of the handover can be simplified according to an embodiment of the present disclosure, saving signaling overhead and handover time.
  • the group-based relay handover procedure according to an embodiment of the present disclosure is described in detail above. After the group-based relay switching process, the remote device and the source relay device no longer have a direct connection relationship. In this case, the context of the remote relay device may have a large number of remote device contexts to be processed.
  • the source relay device may interact with the remote device to exchange context information in the cache through the device-to-device D2D communication manner. This situation can occur when the source relay device is close to the remote device.
  • the source relay device may transmit the context information in the cache to the target relay device, and be forwarded by the target relay device. Go to the remote device.
  • the source relay device may also send the context information in the cache to the network side device (direct communication or forwarding through other relay devices), and the network side device forwards to the remote device.
  • the electronic device 200 is detailed above.
  • An electronic device 2500 according to an embodiment of the present disclosure will be described in detail below.
  • the electronic device 2500 may be a remote device in a wireless communication system, that is, the electronic device 2500 may perform communication with the network side device through the source relay device.
  • FIG. 25 is a block diagram showing the structure of an electronic device 2500 according to an embodiment of the present disclosure. As shown in FIG. 25, the electronic device 2500 can include a transceiver circuit 2520 for transmitting and receiving information.
  • FIG. 26 is a block diagram showing the structure of an electronic device 2500 according to an embodiment of the present disclosure.
  • the electronic device 2500 can also include a processing circuit 2510. It should be noted that the electronic device 2500 may include one processing circuit 2510 or multiple processing circuits 2510.
  • processing circuit 2510 may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the transceiver circuit 2520 may receive a group-based relay switching command including a device member list of the switching group in which the electronic device 2500 is located and information of the target relay device.
  • the transceiver circuit 2520 may also receive information of the group head device of the switching group in which the electronic device 2500 is located.
  • the information of the group head device may be included in the group based relay switching command.
  • the transceiver circuit 2520 may also transmit group-based relay switching request information to a source relay device serving the electronic device 2500.
  • the group-based relay switching request information may include information of a desired relay device to which the electronic device 2500 desires to switch.
  • the transceiver circuit 2520 may further send connection establishment request information to the target relay device of the handover group where the electronic device 2500 is located, where the connection establishment request information includes the device in the device member list of the handover group where the electronic device 2500 is located. Information.
  • the transceiver circuit 2520 may also receive connection establishment response information from a target relay device of the handover group in which the electronic device 2500 is located, and the connection establishment response information indicates that the electronic device 2500 is allowed to access the target relay device.
  • the processing circuit 2510 may start a timer and perform relay reselection when the connection establishment response information from the target relay device of the switching group in which the electronic device 2500 is located is not received before the timer expires operating.
  • the electronic device 2500 can function as a remote device in a wireless communication system, and thus can perform information interaction with the electronic device 200 as a source relay device or a target relay device, and thus all implementations of the electronic device 200 The method is applicable to this.
  • the electronic device 2700 can be a target relay device in a wireless communication system, ie, there is one or more remote devices or the source relay device desires to switch to the electronic device 2700.
  • FIG. 27 is a block diagram showing the structure of an electronic device 2700 according to an embodiment of the present disclosure. As shown in FIG. 27, the electronic device 2700 can include a transceiver circuit 2720 for transmitting and receiving information.
  • FIG. 28 is a block diagram showing the structure of an electronic device 2700 according to another embodiment of the present disclosure.
  • the electronic device 2700 can also include a processing circuit 2710. It should be noted that the electronic device 2700 may include one processing circuit 2710 or multiple processing circuits 2710.
  • processing circuit 2710 can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the transceiver circuit 2720 may receive connection establishment request information from a source relay device or a remote device, where the connection establishment request information includes a source relay device or a device in a member device list of a handover group where the remote device is located. Information in which the devices in the list of member devices are expected to switch to the electronic device 2700.
  • the transceiver circuit 2720 may also broadcast transmission connection establishment response information including information that allows access to the device of the electronic device 2700.
  • the transceiver circuit 2720 may also send connection establishment response information to the relay device that allows access to the electronic device 2700, and to the relay device that is allowed to access the remote device of the access device 2700, the connection establishment.
  • the response information includes information that allows access to the device of the electronic device 2700.
  • the electronic device 2700 can function as a target relay device in a wireless communication system, and thus can perform information interaction with the electronic device 200 as a source relay device and the electronic device 2500 as a remote device, and thus regarding the electronic All embodiments of device 200 and electronic device 2500 are suitable for use herein.
  • a method performed by the electronic device 200 according to an embodiment of the present disclosure will be described in detail next. All embodiments regarding the electronic device 200 are applicable thereto.
  • FIG. 29 is a flowchart illustrating a method performed by electronic device 200, in accordance with an embodiment of the present disclosure.
  • the electronic device 200 may be a relay device in a wireless communication system, including a source relay device and a target relay device.
  • a group-based relay switching command is generated based on a triggering event, and the group-based relay switching command includes a device member list and a target in each of the one or more switching groups. Following the information of the device.
  • the method is performed by a source relay device in a wireless communication system, and the method further comprises transmitting a group-based relay handover command to the remote device in the device member list of each handover group.
  • the method further comprises: determining a group head device of each switching group, and transmitting information of the group head device to the remote device in the device member list of each switching group.
  • the method further comprises: receiving information of the desired relay device to which the remote device desires to switch from one or more remote devices served by the electronic device, and determining each based on information of the desired relay device of each remote device The target relay device of the switch group.
  • the method further comprises dividing the one or more remote devices into one or more handover groups based on information of the desired relay device of each remote device.
  • the method further comprises transmitting the desired relay device request information to each of the one or more remote devices.
  • the desired relay device request information includes measurement configuration information, and the measurement configuration information is used to identify the remote device to measure time-frequency resource information of the desired relay device.
  • the method further comprises determining measurement configuration information based on battery power information of the remote device.
  • the method further comprises: performing a relay reselection measurement to determine a target relay device of each of the handover groups.
  • the method further includes: sending connection establishment request information to the target relay device of the handover group where the electronic device is located, where the connection establishment request information includes information of the device in the device member list of the handover group where the electronic device is located.
  • the method further comprises: combining the group-based relay handover command and the connection establishment request information together for broadcast transmission.
  • the method further comprises: receiving connection establishment response information from the target relay device of the handover group in which the electronic device is located, the connection establishment response information indicating that the electronic device is allowed to access the target relay device.
  • the method further comprises: starting a timer, and performing a relay reselection operation when the connection establishment response information from the target relay device of the switching group in which the electronic device is located is not received before the timer expires.
  • the triggering event comprises one or more of the following: a link quality between the electronic device and one or more remote devices served by the electronic device is less than a first threshold; a link quality between the electronic device and the network side device Less than the second threshold; and the electronic device receives high-level signaling that one or more remote devices representing its service need to perform a relay handover or indicate that a relay service needs to be provided for the electronic device.
  • the method may be performed by a target relay device in the wireless communication system, and the method further comprises: transmitting a group-based relay to the source relay device serving the remote device in the device member list of each handover group Switch commands.
  • the method further comprises: determining a group head device of each switching group, and transmitting information of the group head device to the source relay device serving the remote device in the device member list of each switching group.
  • the method further comprises: receiving connection establishment request information from the group head device of each handover group, the connection establishment request information includes information of the device in the device member list of the handover group, and transmitting connection establishment response information, connection establishment response information Includes information that allows access to the device of the electronic device.
  • the triggering event comprises: the electronic device receiving high layer signaling indicating that one or more remote devices need to be handed over to the electronic device.
  • the electronic device 2500 which may be a remote device in a wireless communication system, and thus all embodiments in describing the electronic device 2500, are applicable to this.
  • FIG. 30 is a flowchart showing a method performed by the electronic device 2500, in accordance with an embodiment of the present disclosure.
  • step S3010 a group-based relay switching command is received, and the group-based relay switching command includes information of a device member list of the switching group in which the electronic device 2500 is located and a target relay device.
  • the method further includes: receiving information of the group head device of the switching group in which the electronic device 2500 is located.
  • the method further comprises transmitting the group-based relay handover request information to the source relay device serving the electronic device 2500.
  • the group-based relay handover request information includes information of a desired relay device to which the electronic device 2500 desires to switch.
  • the method further includes: sending connection establishment request information to the target relay device of the handover group where the electronic device 2500 is located, where the connection establishment request information includes information of the device in the device member list of the handover group where the electronic device 2500 is located.
  • the method further comprises: receiving connection establishment response information from the target relay device of the handover group in which the electronic device 2500 is located, the connection establishment response information indicating that the electronic device 2500 is allowed to access the target relay device.
  • the method further comprises: starting a timer, and performing a relay reselection operation when the connection establishment response information from the target relay device of the switching group in which the electronic device 2500 is located is not received before the timer expires.
  • the electronic device 2700 herein may be a relay device in a wireless communication system, specifically a target relay device, and thus all embodiments related to the electronic device 2700 are applicable thereto.
  • FIG. 31 is a flowchart illustrating a method performed by an electronic device for a secondary system, in accordance with an embodiment of the present disclosure.
  • step S3110 the connection establishment request information is received from the source relay device or the remote device, where the connection establishment request information includes the source relay device or the device in the member device list of the handover group where the remote device is located.
  • the method further comprises: broadcasting the connection establishment response information, the connection establishment response information including information of the device allowing access to the electronic device 2700.
  • the network side device can be implemented as any type of eNB, such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • a terminal device as a remote device and a relay device may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or Vehicle terminal (such as car navigation equipment).
  • the terminal device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the remote device can also be implemented as a wearable device.
  • the eNB 3200 includes one or more antennas 3210 and base station devices 3220.
  • the base station device 3220 and each antenna 3210 may be connected to each other via an RF cable.
  • Each of the antennas 3210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 3220 to transmit and receive wireless signals.
  • the eNB 3200 can include multiple antennas 3210.
  • multiple antennas 3210 can be compatible with multiple frequency bands used by eNB 3200.
  • FIG. 32 illustrates an example in which the eNB 3200 includes a plurality of antennas 3210, the eNB 3200 may also include a single antenna 3210.
  • the base station device 3220 includes a controller 3221, a memory 3222, a network interface 3223, and a wireless communication interface 3225.
  • the controller 3221 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 3220. For example, controller 3221 generates data packets based on data in signals processed by wireless communication interface 3225 and delivers the generated packets via network interface 3223. The controller 3221 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 3221 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 3222 includes a RAM and a ROM, and stores programs executed by the controller 3221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 3223 is a communication interface for connecting base station device 3220 to core network 3224. Controller 3221 can communicate with a core network node or another eNB via network interface 3223. In this case, the eNB 3200 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 3223 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 3223 is a wireless communication interface, the network interface 1823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 3225.
  • the wireless communication interface 3225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 3200 via the antenna 3210.
  • Wireless communication interface 3225 may typically include, for example, a baseband (BB) processor 3226 and RF circuitry 3227.
  • the BB processor 3226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 3226 may have some or all of the above described logic functions.
  • the BB processor 3226 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 3226 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 3220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 3227 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3210.
  • the wireless communication interface 3225 can include a plurality of BB processors 3226.
  • multiple BB processors 3226 can be compatible with multiple frequency bands used by eNB 3200.
  • the wireless communication interface 3225 can include a plurality of RF circuits 3227.
  • multiple RF circuits 3227 can be compatible with multiple antenna elements.
  • FIG. 32 illustrates an example in which the wireless communication interface 3225 includes a plurality of BB processors 3226 and a plurality of RF circuits 3227, the wireless communication interface 3225 may also include a single BB processor 3226 or a single RF circuit 3227.
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 3330 includes one or more antennas 3340, base station equipment 3350, and RRH 3360.
  • the RRH 3360 and each antenna 3340 may be connected to each other via an RF cable.
  • the base station device 3350 and the RRH 3360 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 3340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 3360 to transmit and receive wireless signals.
  • the eNB 3330 can include multiple antennas 3340.
  • multiple antennas 3340 can be compatible with multiple frequency bands used by eNB 3330.
  • FIG. 33 illustrates an example in which the eNB 3330 includes multiple antennas 3340, the eNB 3330 may also include a single antenna 3340.
  • the base station device 3350 includes a controller 3351, a memory 3352, a network interface 3353, a wireless communication interface 3355, and a connection interface 3357.
  • the controller 3351, the memory 3352, and the network interface 3353 are the same as the controller 3321, the memory 3322, and the network interface 3323 described with reference to FIG.
  • the wireless communication interface 3355 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 3360 via the RRH 3360 and the antenna 3340.
  • Wireless communication interface 3355 can typically include, for example, BB processor 3356.
  • the BB processor 3356 is identical to the BB processor 3226 described with reference to FIG. 32 except that the BB processor 3356 is connected to the RF circuit 3364 of the RRH 3360 via the connection interface 3357.
  • the wireless communication interface 3355 can include a plurality of BB processors 3356.
  • multiple BB processors 3356 can be compatible with multiple frequency bands used by eNB 3330.
  • FIG. 33 illustrates an example in which the wireless communication interface 3355 includes a plurality of BB processors 3356, the wireless communication interface 3355 may also include a single BB processor 3356.
  • connection interface 3357 is an interface for connecting the base station device 3350 (wireless communication interface 3355) to the RRH 3360.
  • the connection interface 3357 may also be a communication module for connecting the base station device 3350 (wireless communication interface 3355) to the communication in the above-described high speed line of the RRH 3360.
  • the RRH 3360 includes a connection interface 3361 and a wireless communication interface 3363.
  • connection interface 3361 is an interface for connecting the RRH 3360 (wireless communication interface 3363) to the base station device 3350.
  • the connection interface 3361 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 3363 transmits and receives wireless signals via the antenna 3340.
  • Wireless communication interface 3363 may typically include, for example, RF circuitry 3364.
  • the RF circuit 3364 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 3340.
  • the wireless communication interface 3363 can include a plurality of RF circuits 3364.
  • multiple RF circuits 3364 can support multiple antenna elements.
  • FIG. 33 shows an example in which the wireless communication interface 3363 includes a plurality of RF circuits 3364, the wireless communication interface 3363 may also include a single RF circuit 3364.
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smartphone 3400 to which the technology of the present disclosure can be applied.
  • the smart phone 3400 includes a processor 3401, a memory 3402, a storage device 3403, an external connection interface 3404, an imaging device 3406, a sensor 3407, a microphone 3408, an input device 3409, a display device 3410, a speaker 3411, a wireless communication interface 3412, and one or more An antenna switch 3415, one or more antennas 3416, a bus 3417, a battery 3418, and an auxiliary controller 3419.
  • the processor 3401 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 3400.
  • the memory 3402 includes a RAM and a ROM, and stores data and programs executed by the processor 3401.
  • the storage device 3403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 3404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 3400.
  • the image pickup device 3406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 3407 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 3408 converts the sound input to the smartphone 3400 into an audio signal.
  • the input device 3409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 3410, and receives an operation or information input from a user.
  • the display device 3410 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 3400.
  • the speaker 3411 converts the audio signal output from the smartphone 3400 into sound.
  • the wireless communication interface 3412 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 3412 may typically include, for example, BB processor 3413 and RF circuitry 3414.
  • the BB processor 3413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 3414 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3416.
  • the wireless communication interface 3412 can be a chip module on which the BB processor 3413 and the RF circuit 3414 are integrated. As shown in FIG.
  • the wireless communication interface 3412 can include a plurality of BB processors 3413 and a plurality of RF circuits 3414.
  • FIG. 34 illustrates an example in which the wireless communication interface 3412 includes a plurality of BB processors 3413 and a plurality of RF circuits 3414, the wireless communication interface 3412 may also include a single BB processor 3413 or a single RF circuit 3414.
  • wireless communication interface 3412 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 3412 can include a BB processor 3413 and RF circuitry 3414 for each wireless communication scheme.
  • Each of the antenna switches 3415 switches the connection destination of the antenna 3416 between a plurality of circuits included in the wireless communication interface 3412, such as circuits for different wireless communication schemes.
  • Each of the antennas 3416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3412 to transmit and receive wireless signals.
  • the smartphone 3400 can include a plurality of antennas 3416.
  • FIG. 34 shows an example in which the smartphone 3400 includes a plurality of antennas 3416, the smartphone 3400 may also include a single antenna 3416.
  • smart phone 3400 can include an antenna 3416 for each wireless communication scheme.
  • the antenna switch 3415 can be omitted from the configuration of the smartphone 3400.
  • the bus 3417 connects the processor 3401, the memory 3402, the storage device 3403, the external connection interface 3404, the imaging device 3406, the sensor 3407, the microphone 3408, the input device 3409, the display device 3410, the speaker 3411, the wireless communication interface 3412, and the auxiliary controller 3419 to each other. connection.
  • Battery 3418 provides power to various blocks of smart phone 3400 shown in FIG. 34 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 3419 operates the minimum required function of the smartphone 3400, for example, in a sleep mode.
  • the processing circuit 210 described using FIG. 2, the processing circuit 2510 described with reference to FIG. 26, and the processing circuit 2710 described by FIG. 28 can be controlled by the processor 3401 or auxiliary.
  • the device 3419 is implemented. At least a portion of the functionality may also be implemented by processor 3401 or auxiliary controller 3419.
  • the processor 3401 or the auxiliary controller 3419 may perform a function of generating a group-based relay switching command by executing an instruction stored in the memory 3402 or the storage device 3403.
  • FIG. 35 is a block diagram showing an example of a schematic configuration of a car navigation device 3520 to which the technology of the present disclosure can be applied.
  • the car navigation device 3520 includes a processor 3521, a memory 3522, a global positioning system (GPS) module 3524, a sensor 3525, a data interface 3526, a content player 3527, a storage medium interface 3528, an input device 3529, a display device 3530, a speaker 3531, and a wireless device.
  • the processor 3521 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 3520.
  • the memory 3522 includes a RAM and a ROM, and stores data and programs executed by the processor 3521.
  • the GPS module 3524 measures the position (such as latitude, longitude, and altitude) of the car navigation device 3520 using GPS signals received from GPS satellites.
  • Sensor 3525 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 3526 is connected to, for example, the in-vehicle network 3541 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 3527 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 3528.
  • the input device 3529 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 3530, and receives an operation or information input from a user.
  • the display device 3530 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 3531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 3533 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 3533 may typically include, for example, BB processor 3534 and RF circuitry 3535.
  • the BB processor 3534 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 3535 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3537.
  • the wireless communication interface 3533 can also be a chip module on which the BB processor 3534 and the RF circuit 3535 are integrated. As shown in FIG.
  • the wireless communication interface 3533 may include a plurality of BB processors 3534 and a plurality of RF circuits 3535.
  • FIG. 35 illustrates an example in which the wireless communication interface 3533 includes a plurality of BB processors 3534 and a plurality of RF circuits 3535, the wireless communication interface 3533 may also include a single BB processor 3534 or a single RF circuit 3535.
  • the wireless communication interface 3533 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 3533 may include a BB processor 3534 and an RF circuit 3535 for each wireless communication scheme.
  • Each of the antenna switches 3536 switches the connection destination of the antenna 3537 between a plurality of circuits included in the wireless communication interface 3533, such as circuits for different wireless communication schemes.
  • Each of the antennas 3537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3533 to transmit and receive wireless signals.
  • car navigation device 3520 can include a plurality of antennas 3537.
  • FIG. 35 shows an example in which the car navigation device 3520 includes a plurality of antennas 3537, the car navigation device 3520 may also include a single antenna 3537.
  • car navigation device 3520 can include an antenna 3537 for each wireless communication scheme.
  • the antenna switch 3536 can be omitted from the configuration of the car navigation device 3520.
  • Battery 3538 provides power to various blocks of car navigation device 3520 shown in FIG. 35 via a feeder, which is partially shown as a dashed line in the figure. Battery 3538 accumulates power supplied from the vehicle.
  • the processor 3521 can be implemented by the processing circuit 210 described using FIG. 2, the processing circuit 2510 described with reference to FIG. 26, and the processing circuit 2710 described with reference to FIG. At least a portion of the functionality can also be implemented by processor 3521.
  • the processor 3521 can perform the function of generating a group-based relay switching command by executing an instruction stored in the memory 3522.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 3540 including one or more of the car navigation device 3520, the in-vehicle network 3541, and the vehicle module 3542.
  • vehicle module 3542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 3541.
  • the present disclosure may have a configuration as described below.
  • An electronic device comprising processing circuitry configured to generate a group-based relay handover command based on a triggering event, the group-based relay handover command comprising each of one or more handover groups Information about the device member list and the target relay device.
  • the electronic device further includes a transceiver circuit configured to send the group-based relay switching command to a remote device in a device member list of each switching group.
  • transceiver circuit is further configured to receive, from one or more remote devices served by the electronic device, a desired one that the remote device desires to switch to Following the information of the device, and the processing circuit is further configured to determine a target relay device for each of the switching groups based on information of the desired relay device of each remote device.
  • processing circuit is further configured to divide the one or more remote devices into the based on information of a desired relay device of each remote device Describe one or more switch groups.
  • transceiver circuit is further configured to transmit desired relay device request information to each of the one or more remote devices.
  • the desired relay device request information includes measurement configuration information
  • the measurement configuration information is used to identify that the remote device measures a time frequency of a desired relay device. Resource information.
  • connection establishment request information The information of the device in the device member list of the switching group in which the electronic device is located.
  • transceiver circuit is further configured to receive connection establishment response information from a target relay device of the switching group in which the electronic device is located, the connection establishment The response information indicates that the electronic device is allowed to access the target relay device.
  • the triggering event comprises one or more of the following: a link quality between the electronic device and one or more remote devices served thereby Less than the first threshold; the link quality between the electronic device and the network side device is less than a second threshold; and the electronic device receives one or more remote devices indicating that its service needs to perform relay switching or indicates that it needs High-level signaling for relay services for electronic devices.
  • the electronic device further includes a transceiver circuit configured to send the group-based relay switching command to a source relay device serving a remote device in a device member list of each switching group.
  • transceiver circuit is further configured to receive connection establishment request information from a group head device of each switching group, the connection establishment request information including the switching group The device information in the device member list, and the connection establishment response information is transmitted, the connection establishment response information including information of a device that allows access to the electronic device.
  • the electronic device of (15) above, wherein the triggering event comprises: the electronic device receiving high layer signaling indicating that one or more remote devices need to be handed over to the electronic device.
  • An electronic device comprising transceiver circuitry configured to receive a group-based relay handover command, the group-based relay handover command including a device member list and a target relay of a handover group in which the electronic device is located Device information.
  • An electronic device comprising: a transceiver circuit configured to receive connection establishment request information from a source relay device or a remote device, where the connection establishment request information includes a handover of the source relay device or a remote device The information of the devices in the member device list of the group, wherein the devices in the member device list are expected to switch to the electronic device.
  • connection establishment response information including information of a device allowing access to the electronic device.

Abstract

本公开涉及一种电子设备及由电子设备执行的方法。根据本公开的电子设备包括处理电路,被配置为基于触发事件生成基于组的中继切换命令,所述基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。使用根据本公开的电子设备及由电子设备执行的方法,可以减小信令开销并且降低信令碰撞的概率。

Description

电子设备及由电子设备执行的方法
本申请要求于2017年4月28日提交中国专利局、申请号为201710296496.5、发明名称为“电子设备及由电子设备执行的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及电子设备及由电子设备执行的方法。更具体地,本发明的实施例涉及无线通信系统中的中继设备和远端设备以及由无线通信系统中的中继设备执行的方法和由无线通信系统中的远端设备执行的方法。
背景技术
在FeD2D(Further enhanced Device to Device,进一步增强设备到设备)通信系统中,远端用户(remote UE)可以通过中继用户(relay UE)与网络侧设备(例如基站,包括但不限于eNB(演进型节点B))进行通信。具体地,远端用户与中继用户通过辅路(sidelink)或者例如蓝牙、Wifi(Wireless Fidelity,无线保真)等的非3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)链路进行通信,而中继用户与网络侧设备可以通过传统的蜂窝链路进行通信。
在这样的网络结构中,当远端用户与中继用户之间的辅路或者中继用户与网络侧设备之间的蜂窝链路的链路质量下降到一定程度时,远端用户将会执行中继切换过程,即中继用户不再为远端用户执行中继服务,中继用户也可能需要变成远端用户,通过其它中继用户执行与网络侧设备之间的通信。在传统的方法中,需要远端用户或者中继用户单独执行切换过程,包括向目标切换设备发送连接建立请求以及接收连接建立响应等流程,由此导致较大的信令开销。此外,同一个目标切换设备可能会在很短的时间内接收到多个来自不同设备的连接建立请求,导致信令碰撞。
因此,有必要提出一种改进的中继切换方案,以节约信令开销并减少信令碰撞的概率。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种基于组的中继切换方案,以减小信令开销并且降低信令碰撞的概率。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为基于触发事件生成基于组的中继切换命令,所述基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
根据本公开的另一方面,提供了一种电子设备,包括收发电路,被配置为接收基于组的中继切换命令,所述基于组的中继切换命令包括所述电子设备所在的切换组的设备成员列表和目标中继设备的信息。
根据本公开的另一方面,提供了一种电子设备,包括收发电路,被配置为从源中继设备或者远端设备接收连接建立请求信息,所述连接建立请求信息包括所述源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,所述成员设备列表中的设备期望切换到所述电子设备。
根据本公开的另一方面,提供了一种无线通信方法,包括:基于触发事件生成基于组的中继切换命令,所述基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:接收基于组的中继切换命令,所述基于组的中继切换命令包括所述电子设备所在的切换组的设备成员列表和目标中继设备的信息。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:从源中继设备或者远端设备接收连接建立请求信息,所述连接建立请求信息包括所述源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,所述成员设备列表中的设备期望切换到所述电子设备。
使用根据本公开的电子设备及由电子设备执行的无线通信方法,使得电子设备能够生成基于组的中继切换命令,切换命令中包括每个切换组的设备成员列表和目标中继设备的信息。这样一来,以切换组为单位对设备进行了划分,同一个切换组中的设备可以作为一个整体执行中继切换的 执行过程,从而减小信令开销并且降低信令碰撞的概率。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出本公开的应用场景的示意图;
图2是示出根据本公开的实施例的电子设备的结构的框图;
图3是示出根据本公开的另一个实施例的电子设备的结构的框图;
图4是示出根据本公开的实施例的基于组的中继切换的流程示意图;
图5是示出根据本公开的实施例的划分切换组的信令流程图;
图6是示出根据本公开的实施例的划分切换组的信令流程图;
图7是示出根据本公开的实施例的划分切换组的信令流程图;
图8是示出根据本公开的实施例的划分切换组的信令流程图;
图9是示出根据本公开的实施例的划分切换组的信令流程图;
图10是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图11是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图12是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图13是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图14是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图15是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图16是示出根据本公开的实施例的确定目标中继设备的信令流程图;
图17是示出根据本公开的实施例的为远端设备配置测量配置的信令流程图;
图18是示出根据本公开的实施例的为远端设备配置测量配置的信令流程图;
图19是示出根据本公开的实施例的由目标中继设备生成基于组的中继切换命令的信令流程图;
图20是示出根据本公开的实施例的执行切换执行过程的信令流程图;
图21是示出根据本公开的实施例的执行切换执行过程的信令流程图;
图22是示出根据本公开的实施例的执行切换执行过程的信令流程图;
图23是示出根据本公开的实施例的执行切换执行过程的信令流程图;
图24是示出根据本公开的另一个实施例的基于组的中继切换的信令流程图;
图25是示出根据本公开的又一个实施例的电子设备的结构的框图;
图26是示出根据本公开的又一个实施例的电子设备的结构的框图;
图27是示出根据本公开的又一个实施例的电子设备的结构的框图;
图28是示出根据本公开的又一个实施例的电子设备的结构的框图;
图29是示出根据本公开的实施例的由电子设备执行的方法的流程图;
图30是示出根据本公开的另一个实施例的由电子设备执行的方法的流程图;
图31是示出根据本公开的又一个实施例的由电子设备执行的方法的流程图;
图32是示出演进型节点B(eNB)的示意性配置的第一示例的框图;
图33是示出eNB的示意性配置的第二示例的框图;
图34是示出智能电话的示意性配置的示例的框图;以及
图35是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
图1是本公开的应用场景图。如图1所示,eNB的覆盖范围内存在多个UE(User Equipment,用户设备)。其中,UE1和UE2可以作为中继设备,而UE3-UE7可以作为远端设备,并且UE3和UE4通过UE1来执行与eNB之间的通信,UE5-UE7通过UE2来执行与eNB之间的通信。值得注意的是,这里示出的UE3-UE7都处于eNB的覆盖范围内,但是,即使UE3-UE7中的一个或者多个用户设备位于eNB的覆盖范围外,也可以通过UE1或UE2来执行与eNB之间的通信。此外,图1中虽然通过移动终端来示出了UE1-UE7,但是UE1-UE7并不限于移动终端,还可以被实现为车载设备和MTC(Machine Type Commubication,机器类型通信)设备等。特别地,作为远端设备的UE3-UE7可以被实现为可穿戴设备。
如前文中所述,当远端用户与中继用户之间的辅路或者中继用户与网络侧设备之间的蜂窝链路的链路质量下降到一定程度时,远端用户将会执行中继切换过程,而中继用户也可能需要通过其它中继用户执行与网络 侧设备之间的通信。例如,当UE3与UE1之间的辅路的链路质量下降到一定程度时,UE3可能需要切换到其它中继设备来执行与eNB之间的通信;当eNB与UE1之间的蜂窝链路的链路质量下降到一定程度时,UE3和UE4可能需要切换到其它中继设备来执行与eNB之间的通信,而UE1可能需要作为远端设备通过其它中继设备来执行与eNB之间的通信。此外,中继用户可能会收到来自高层的信令,该高层的信令指明其服务的一个或多个远端用户需要执行中继切换过程或者中继用户需要变成远端用户。另外,中继用户也可能会收到来自高层的信令,该高层的信令指明需要将一个或多个其它中继用户服务的远端用户切换到本中继用户。
本公开针对中继用户停止为远端用户提供服务的场景,提出一种基于组的中继切换方案,以减小信令开销并且降低信令碰撞的概率。
图2是示出根据本公开的实施例的电子设备200的结构的框图。
如图2所示,电子设备200可以包括处理电路210。需要说明的是,电子设备200既可以包括一个处理电路210,也可以包括多个处理电路210。进一步,处理电路210可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,处理电路210可以基于触发事件生成基于组的中继切换命令,基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
也就是说,处理电路210可以生成基于组的中继切换命令,命令中包括了与一个或多个切换组中的每个切换组相关的信息,包括该切换组的设备成员列表以及该切换组的目标中继设备的信息。这里,该切换组的设备成员列表可以例如包括该切换组中的所有设备的标识信息,目标中继设备的信息可以例如包括该目标中继设备的标识信息。
根据本公开的实施例,每个切换组的设备成员列表中的所有成员设备都期望切换到该切换组的目标中继设备。因此,在本公开的实施例中,以切换组为单位对设备进行了划分,同一个切换组中的设备可以作为一个整体执行中继切换的执行过程,从而减小信令开销并且降低信令碰撞的概率。
图3是示出根据本公开的另一个实施例的电子设备200的结构的框图。如图3所示,电子设备200还可以包括用于收发信息的收发电路220。
根据本公开的实施例,电子设备200可以作为无线通信系统中的源中继设备,即基于组的中继切换命令中的切换组的设备成员列表中的远端设备都通过电子设备200执行与网络侧设备之间的通信。可选地,设备成员列表中可能还包括电子设备200本身。在这个实施例中,收发电路220可以向每个切换组的设备成员列表中的远端设备发送该基于组的中继切换命令。
根据本公开的实施例,电子设备200还可以作为无线通信系统中的目标中继设备,即基于组的中继切换命令中的切换组的设备成员列表中的设备都期望切换到电子设备200。换句话说,基于组的中继切换命令中的切换组的目标中继设备都是电子设备200。在这个实施例中,收发电路220可以向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送该基于组的中继切换命令。
图4是示出根据本公开的实施例的基于组的中继切换的流程示意图。在图4中,远端UE原本通过源中继UE进行与网络侧设备之间的通信,基于某个触发事件,远端UE需要切换到目标中继UE,从而通过目标中继UE进行与网络侧设备之间的通信。如图4所示,在步骤S401中,基于组的中继切换过程触发,即一个或多个触发实体检测到了触发事件。在由源中继UE生成基于组的中继切换命令的情况下,在步骤S402中,源中继UE生成基于组的中继切换命令,并且在步骤S403中,源中继UE向基于组的中继切换命令中的设备成员列表中包括的远端UE发送该基于组的中继切换命令。在由目标中继UE生成基于组的中继切换命令的情况下,在步骤S402中,由目标中继UE生成基于组的中继切换命令,并且在步骤S403中,目标中继UE向为基于组的中继切换命令中的设备成员列表中的远端UE服务的源中继UE发送该基于组的中继切换命令,并且源中继UE将该命令转发给相应的远端UE。接下来,在步骤S404中,进行切换执行步骤。
下面将详述根据本公开的实施例的电子设备200。
<1.切换触发>
根据本公开的实施例,处理电路210可以基于触发事件生成基于组的中继切换命令。这里,触发事件包括由一个或者多个触发实体检测到的触发基于组的中继切换流程的事件。也就是说,当一个或者多个触发实体 检测到触发事件时,触发基于组的中继切换流程。根据本公开的实施例,检测到触发事件的触发实体可以是远端设备、源中继设备和目标中继设备。
<1.1触发实体是远端UE>
根据本公开的实施例,当电子设备200表示源中继设备时,触发实体可以是电子设备200服务的远端设备,即作为触发实体的远端设备通过电子设备200执行与网络侧设备之间的通信。
根据本公开的实施例,触发事件可以包括:远端设备与电子设备200之间的链路质量小于第一阈值。
在本公开中,可以根据SIR(Signal to Interference Ratio,信干比)、SINR(Signal to Interference plus Noise Ratio,信干噪比)或者SNR(Signal Noise Ratio,信噪比)中的一种或多种来表示链路质量,本公开对此不做限定。
根据本公开的实施例,远端设备可以周期性或者事件性测量其与电子设备200之间的链路质量,并比较与第一阈值之间的关系。这里的第一阈值表示中继设备可以为远端设备提供中继服务的链路质量的阈值。也就是说,当远端设备与电子设备200之间的链路质量小于该阈值时,电子设备200不再适合为远端设备提供中继服务。
根据本公开的实施例,触发事件还可以包括:远端设备与电子设备200之间的链路质量小于第一阈值而远端设备与其它中继设备之间的链路质量大于第一阈值。也就是说,远端设备还可以周期性或者事件性测量其与其它中继设备之间的链路质量。当电子设备200不再适合为远端设备提供中继服务,而其他中继设备适合为远端设备提供中继服务时,远端设备触发基于组的中继切换流程。
此外,根据本公开的实施例,在相同的时间点或者时间段可能会存在多个远端设备检测到触发事件。如果这多个远端设备通过相同的中继设备执行与网络侧设备之间的通信,则该中继设备基于远端设备检测到的触发事件生成基于组的中继切换命令。
<1.2触发实体是源中继UE>
根据本公开的实施例,当电子设备200表示源中继设备时,触发实体可以是电子设备200。
根据本公开的实施例,触发事件可以包括:电子设备200与网络侧设备之间的链路质量小于第二阈值。
根据本公开的实施例,中继设备可以周期性或者事件性测量其与网络侧设备之间的链路质量,并比较与第二阈值之间的关系。这里的第二阈值表示中继设备可以提供中继服务的链路质量的阈值。也就是说,当中继设备与网络侧设备之间的链路质量小于该阈值时,中继设备不再适合提供中继服务。此时,电子设备200可以触发基于组的中继切换流程,以将其服务的远端设备切换到其它中继设备。
根据本公开的实施例,触发事件还可以包括:电子设备200与网络侧设备之间的链路质量小于第三阈值,其中,第三阈值小于第二阈值。
根据本公开的实施例,中继设备可以周期性或者事件性测量其与网络侧设备之间的链路质量,并比较与第三阈值之间的关系。这里的第三阈值表示中继设备可以与网络侧设备正常通信的链路质量的阈值。也就是说,当中继设备与网络侧设备之间的链路质量小于该阈值时,中继设备不再适合提供中继服务,并且中继设备还需要变成远端设备从而通过其它中继设备执行与网络侧设备之间的通信。此时,电子设备200可以触发基于组的中继切换流程,以将其服务的远端设备切换到其它中继设备并且将电子设备200变成其它中继设备的远端设备。
根据本公开的实施例,触发事件还可以包括:电子设备200接收到高层信令,该高层信令表示电子设备200服务的一个或多个远端设备需要执行中继切换和/或表示电子设备200需要中继服务。
根据本公开的实施例,电子设备200可以接收到来自高层的信令,例如作为网络侧设备的eNB等通知电子设备200其服务的一个或多个远端设备需要执行中继切换。此时,电子设备200可以触发基于组的中继切换流程,以将高层信令中指明的远端设备切换到其它中继设备。当高层信令还表明电子设备200需要中继服务,即变成远端设备时,电子设备200可以触发基于组的中继切换流程,以使得电子设备200通过其它中继设备执行与网络侧设备的通信。
如上所述,当源中继设备检测到表示需要其停止针对一个或多个远端设备的中继服务的触发事件时,源中继设备可以生成基于组的中继切换命令。
<1.3触发实体是目标中继UE>
根据本公开的实施例,当电子设备200表示目标中继设备时,触发实体可以是电子设备200。
根据本公开的实施例,触发事件可以包括:电子设备200接收到高层信令,该高层信令表示需要将一个或多个远端设备切换到电子设备200。
根据本公开的实施例,当需要进行负载均衡等操作时,电子设备200可能会收到来自高层的信令,例如作为网络侧设备的eNB等来通知电子设备200需要将本来由其它中继设备服务的一个或多个远端设备切换到电子设备200。此时,电子设备200可以触发基于组的中继切换流程,以将这些远端设备切换到电子设备200。
如上所述,当目标中继设备检测到表示需要将一个或多个远端设备切换到该目标中继设备的触发事件时,目标中继设备可以生成基于组的中继切换命令。
如上所述详细介绍了根据本公开的实施例的切换触发过程。根据本公开的实施例,检测到触发事件的触发实体可以是远端设备、源中继设备和目标中继设备。当触发实体是远端设备和源中继设备时,源中继设备可以生成基于组的中继切换命令;当触发实体是目标中继设备时,目标中继设备可以生成基于组的中继切换命令。
<2.基于组的中继切换命令的生成与发送>
如前文所述,基于组的中继切换命令可以由源中继设备和目标中继设备来生成。下文将基于这两种情况分别介绍命令的生成和发送过程。
此外,根据本公开的实施例,基于组的中继切换命令包括一个或多个切换组的每个切换组的设备成员列表和目标中继设备的信息。因此,在生成基于组的中继切换命令之前,需要确定切换组的设备成员列表以及切换组的目标中继设备。
<2.1.由源中继UE生成基于组的中继切换命令>
根据本公开的实施例,当电子设备200作为源中继设备时,电子设备200的收发电路220可以向每个切换组的设备成员列表中的远端设备发送该基于组的中继切换命令。优选地,电子设备200的收发电路220可以广播发送基于组的中继切换命令。
根据本公开的实施例,当电子设备200作为源中继设备时,可以由电子设备200来划分切换组、确定每个切换组的目标中继设备并生成基于组的中继切换命令,也可以由与电子设备200通信的网络侧设备(例如eNB)来划分切换组并确定每个切换组的目标中继设备,然后由电子设备200来生成基于组的中继切换命令。
<2.1.1.划分切换组>
根据本公开的实施例,收发电路220可以从电子设备200服务的一个或多个远端设备接收期望中继设备的信息。根据本公开的实施例,期望中继设备的信息可以包括期望中继设备的标识信息。此外,一个远端设备的期望中继设备可以包括一个或者多个中继设备。
根据本公开的实施例,这一个或多个远端设备可以是检测到触发事件的远端设备,期望中继设备表示远端设备期望切换到的中继设备。也就是说,当一个或多个远端设备检测到触发事件时,这一个或多个远端设备中的每个远端设备都可以向为其提供服务的中继设备,即电子设备200上报期望中继设备的信息。
根据本公开的实施例,处理电路210可以被配置为基于接收到的期望中继设备的信息将一个或多个远端设备划分为一个或多个切换组。
根据本公开的实施例,处理电路210可以将具有相同期望中继设备的远端设备划分到同一个切换组。这里,远端设备可能会发送一个期望中继设备,也可能会发送多个期望中继设备到电子设备200。这里,只要多个远端设备的多个期望中继设备中都包括一个相同的期望中继设备,处理电路210就可以将这多个远端设备划分到同一个组。例如,远端设备UE1具有期望中继设备A和B,远端设备UE2具有期望中继设备A和C,远端设备UE3具有期望中继设备A和D,则处理电路210可以将远端设备UE1-UE3划分到同一个切换组,因为它们具有相同的期望中继设备A。再如,远端设备UE4具有期望中继设备E,远端设备UE5具有期望中继设备E和F,远端设备UE6具有期望中继设备F,则处理电路210可以将远端设备UE4和UE5划分为一个切换组,远端设备UE6划分为一个切换组,也可以将远端设备UE4划分为一个切换组,远端设备UE5和UE6划分为一个切换组。
根据本公开的实施例,处理电路210可以将划分好的所有切换组作为基于组的中继切换命令中包括的切换组。即,处理电路210可以根据划 分好的切换组来确定基于组的中继切换命令中包括的每个切换组的设备成员列表。例如,处理电路210根据远端设备上报的期望中继设备的信息划分出两个切换组:切换组G1包括远端设备UE1-UE3;切换组G2包括远端设备UE4和UE5。则生成的基于组的切换命令包括切换组G1的设备成员列表UE1-UE3和目标中继设备的信息;以及切换组G2的设备成员列表UE4和UE5和目标中继设备的信息。
图5是示出根据本公开的实施例的划分切换组的信令流程图。如图5所示,远端UE1和远端UE2都通过源中继UE执行与网络侧设备的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S501中,远端UE1和远端UE2分别检测到了触发事件。接下来,在步骤S502中,远端UE1和远端UE2分别向源中继UE上报期望中继设备的信息。接下来,在步骤S503中,源中继UE根据远端UE1和远端UE2的期望中继设备的信息将远端UE1和远端UE2划分为切换组。这里,图5仅仅示出了源中继UE为两个远端UE提供中继服务的情况。当然,源中继UE还可以服务更多个远端UE。
根据本公开的上述实施例,检测到触发事件的触发实体是远端设备,并且源中继设备在同一个时间点或者时间段可能会接收到多个远端设备上报的期望中继设备的信息,从而划分切换组。这样一来,多个需要进行中继切换过程的远端设备被划分成了切换组,从而切换组中的设备可以协作执行一些操作,减小信令开销并降低信令碰撞的可能性。
根据本公开的实施例,收发电路220可以将接收到的期望中继设备的信息转发到网络侧设备,由网络侧设备根据远端设备的期望中继设备的信息将一个或多个远端设备划分为一个或多个切换组。接下来,收发电路220还可以从网络侧设备接收划分好的切换组的信息,并根据从网络侧设备接收的切换组的信息来确定基于组的中继切换命令中包括的每个切换组的设备成员列表。
图6是示出根据本公开的实施例的划分切换组的信令流程图。如图6所示,远端UE1和远端UE2都通过源中继UE执行与eNB的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S601中,远端UE1和远端UE2分别检测到了触发事件。接下来,在步骤S602中,远端UE1和远端UE2分别通过源中继UE向eNB上报期望中继设备的信息。接下来,在步骤S603中,eNB根据远端UE1和远端UE2的期望中继设备的信息将远端UE1和远端UE2划分为切换组。接下来,在步骤S604 中,eNB向源中继UE发送划分好的切换组的信息。这里,图6仅仅示出了源中继UE为两个远端UE提供中继服务的情况。当然,源中继UE还可以服务更多个远端UE。
图6中所示的实施例与图5中类似,检测到触发事件的触发实体是远端设备,区别在于划分切换组的实体为网络侧设备。同样地,多个需要进行中继切换过程的远端设备被划分成了切换组,从而切换组中的设备可以协作执行一些操作,减小信令开销并降低信令碰撞的可能性。
根据本公开的实施例,收发电路220还可以被配置为向一个或多个远端设备中的每个远端设备发送期望中继设备请求信息。进一步,收发电路220可以从每个远端设备接收响应于期望中继设备请求信息而发送的期望中继设备的信息。
这里,收发电路220可以向需要进行中继切换的远端设备发送期望中继设备请求信息。电子设备200可以根据触发事件的不同来确定哪些远端设备是需要进行中继切换的远端设备。
根据本公开的实施例,检测到触发事件的触发实体可以是电子设备200。
根据本公开的实施例,需要进行中继切换的远端设备可以是电子设备200服务的所有远端设备。例如,在触发事件是电子设备200与网络侧设备之间的链路质量小于第二阈值或者第三阈值的情况下,电子设备200可以向其服务的所有远端设备发送期望中继设备请求信息,以请求所有远端设备的期望中继设备。
根据本公开的实施例,在触发事件是电子设备200与网络侧设备之间的链路质量小于第三阈值的情况下,处理电路210还可以确定电子设备200期望切换到的期望中继设备。这里,当电子设备200与网络侧设备之间的链路质量小于第三阈值时,电子设备200需要变成远端设备从而通过其它中继设备执行与网络侧设备之间的通信。同样地,电子设备200的期望中继设备也可以包括一个或者多个中继设备。进一步,处理电路210还可以根据电子设备200的期望中继设备以及接收到的远端设备的期望中继设备将电子设备200以及电子设备200服务的所有远端设备划分为一个或多个切换组。根据本公开的实施例,处理电路210可以将具有相同期望中继设备的远端设备或电子设备200划分到同一个切换组。例如,切换组G2中的远端设备都具有相同的期望中继设备UE1,而电子设备200的 期望中继设备也包括UE1,则可以将电子设备200划分到切换组G2中。这样的分组的方法与前文中所述的对远端设备进行分组的方法类似,在此不再赘述。此外,在切换组的设备成员列表包括电子设备200的情况下,电子设备200还可以保存生成的基于组的中继切换命令。
根据本公开的实施例,需要执行中继切换的远端设备可以是电子设备200服务的部分远端设备。例如,在触发事件是电子设备200接收到表示其服务的一个或多个远端设备需要执行中继切换的高层信令时,电子设备200可以向高层信令中指明的这一个或多个远端设备发送期望中继设备请求信息,以将这一个或多个远端设备划分为切换组。此外,在触发事件是电子设备200接收到表示电子设备200需要中继服务的高层信令时,电子设备200还可以将电子设备200也划分到切换组中。
图7是示出根据本公开的实施例的划分切换组的信令流程图。如图7所示,远端UE1和远端UE2都通过源中继UE执行与网络侧设备的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S701中,源中继UE检测到触发事件。接下来,在步骤S702中,源中继UE可以向需要进行中继切换的远端UE发送期望中继设备请求信息。假定源中继UE向远端UE1和远端UE2发送了期望中继设备请求信息。接下来,在步骤S703中,远端UE1和远端UE2分别向源中继UE上报期望中继设备的信息。接下来,在步骤S704中,源中继UE根据远端UE1和远端UE2的期望中继设备的信息将远端UE1和远端UE2划分为切换组。可选地,源中继UE还可以根据远端UE1和远端UE2的期望中继设备的信息以及源中继UE的期望中继设备的信息将远端UE1、远端UE2和源中继UE划分为切换组。
如上所述,在由远端设备或者源中继设备检测到触发事件后,由作为源中继设备的电子设备200或者为电子设备200提供服务的网络侧设备根据多个远端UE上报的期望中继设备来划分切换组,因此可以看做是动态分组。在这样的实施方式中,在分组的过程中使用了需要执行中继切换的远端设备,可选地还包括需要中继服务的源中继设备的期望中继设备的信息,因此分组准确。
根据本公开的实施例,还可以根据与期望中继设备无关的信息确定切换组的信息,这个过程可以发生在由远端设备或者源中继设备检测到触发事件之前,也可以发生在由远端设备或者源中继设备检测到触发事件之后。这可以称为半静态分组。
根据本公开的实施例,切换组可以由作为中继设备的电子设备200来确定,也可以由网络侧设备(例如eNB)来确定。
根据本公开的实施例,作为中继设备的电子设备200的处理电路210可以将电子设备200和电子设备200服务的多个远端设备划分为一个或者多个切换组,收发电路220可以将每个切换组的信息发送到切换组中的所有远端设备。
根据本公开的实施例,处理电路210可以基于以下信息中的至少一种来划分切换组:每个远端设备的位置信息、电子设备200的位置信息、每个远端设备与电子设备200之间的链路质量信息、每个远端设备与该远端设备的期望中继设备之间的链路质量信息以及每个远端设备与电子设备200之间的连接状态信息。
根据本公开的实施例,远端设备可以周期性或非周期性向电子设备200上报位置信息。进一步,远端设备还可以周期性或非周期性向电子设备200上报远端设备与电子设备200之间的链路质量信息以及远端设备与其期望中继设备之间的链路质量信息。当电子设备200接收到上述信息时,可以根据上述信息以及每个远端设备与电子设备200之间的连接状态信息中的至少一种来将电子设备200和远端设备划分为切换组。
此外,收发电路220还可以向电子设备200服务的远端设备分别发送该远端设备所在的切换组的信息。切换组的信息可以包括切换组中的所有设备的信息。优选地,切换组的信息可以包括切换组中的所有设备的标识信息。进一步,处理电路210还可以保存电子设备200所在的切换组的信息。
如上所述,根据本公开的实施例,每个中继设备都可以将其服务的远端设备和中继设备划分为切换组。这样一来,中继设备可以将可能具有类似切换需求的远端设备和中继设备划分到同一个切换组,而切换组中的所有设备将作为一个整体执行中继切换过程,因而可以减小信令开销,并降低信令碰撞的概率。
图8是示出根据本公开的实施例的划分切换组的信令流程图。如图8所示,远端UE1和远端UE2都通过中继UE执行与网络侧设备的通信。这里的中继UE可以通过电子设备200来实现。在步骤S801中,中继UE对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S802中,中继UE向所有远端UE发送切换组的信息。进一步,中继UE还可以保 存其所在的切换组的信息。
根据本公开的实施例,切换组还可以由网络侧设备来确定,即电子设备200的收发电路220可以从网络侧设备接收电子设备200所在的切换组的信息以及电子设备200服务的远端设备所在的切换组的信息,并且处理电路210可以保存电子设备200所在的切换组的信息。此外,收发电路220还可以向电子设备200服务的远端设备分别发送该远端设备所在的切换组的信息。
这里,网络侧设备可以基于以下信息中的至少一种来确定切换组的信息:电子设备200的位置信息、电子设备200服务的远端设备的位置信息、电子设备200与网络侧设备之间的链路质量信息以及电子设备200服务的远端设备与网络侧设备之间的链路质量信息。
图9是示出根据本公开的实施例的划分切换组的信令流程图。如图9所示,远端UE1和远端UE2都通过中继UE执行与eNB的通信。这里的中继UE可以通过电子设备200来实现。在步骤S901中,eNB对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S902中,eNB将切换组的信息发送到其服务范围内的中继UE。在步骤S903中,中继UE向其服务的所有远端UE发送切换组的信息。进一步,中继UE还可以保存其所在的切换组的信息。
如上所述,在半静态分组的实施方式中,无需所有的远端设备都上报期望中继设备的信息,信令开销较小。值得注意的是,这种半静态分组的过程与基于组的中继切换过程是独立进行的。也就是说,半静态分组的过程可以发生在基于组的中继切换过程之前,也可以发生在基于组的中继切换过程中。此外,半静态分组的过程可以周期性或者非周期性的执行。
如上所述结合图5-9介绍了划分切换组的过程。在作为源中继设备的电子设备200获知了切换组的信息之后,可以利用切换组的信息来生成基于组的中继切换命令。
<2.1.2.确定目标中继设备>
如前文所述,根据本公开的实施例,收发电路220可以从电子设备200服务的一个或多个远端设备接收期望中继设备的信息,并且处理电路210可以基于远端设备的期望中继设备的信息来划分切换组。此外,处理电路210还可以基于远端设备的期望中继设备的信息来确定每个切换组的目标中继设备。
根据本公开的实施例,在动态分组的情况下,切换组的目标中继设备可以是该切换组中的设备具有的相同的期望中继设备。
图10是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图10所示,远端UE1和远端UE2都通过源中继UE执行与网络侧设备的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S1001中,远端UE1和远端UE2分别检测到了触发事件。接下来,在步骤S1002中,远端UE1和远端UE2分别向源中继UE上报期望中继设备的信息。接下来,在步骤S1003中,源中继UE根据远端UE1和远端UE2的期望中继设备的信息将远端UE1和远端UE2划分为切换组并且确定每个切换组的目标中继设备。这里,图10仅仅示出了源中继UE为两个远端UE提供中继服务的情况。当然,源中继UE还可以服务更多个远端UE。
如前文所述,电子设备200的收发电路220可以将远端设备上报的期望中继设备的信息转发给网络侧设备,由网络侧设备基于远端设备的期望中继设备的信息来划分切换组。此外,网络侧设备还可以基于远端设备的期望中继设备的信息来确定每个切换组的目标中继设备。
也就是说,收发电路220可以从网络侧设备接收切换组的信息,其中切换组的信息包括每个切换组中包括的设备以及每个切换组的目标中继设备的信息。
图11是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图11所示,远端UE1和远端UE2都通过源中继UE执行与eNB的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S1101中,远端UE1和远端UE2分别检测到了触发事件。接下来,在步骤S1102中,远端UE1和远端UE2分别通过源中继UE向eNB上报期望中继设备的信息。接下来,在步骤S1103中,eNB根据远端UE1和远端UE2的目标切换设备的信息将远端UE1和远端UE2划分为切换组。接下来,在步骤S1104中,eNB向源中继UE发送切换组的信息。这里的切换组的信息包括每个切换组中包括的设备以及每个切换组的目标中继设备的信息。这里,图11仅仅示出了源中继UE为两个远端UE提供中继服务的情况。当然,源中继UE还可以服务更多个远端UE。
如前文所述,在触发实体是电子设备200的情况下,电子设备200的收发电路220还可以向需要执行中继切换的远端设备发送期望中继设备请求信息。
图12是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图12所示,远端UE1和远端UE2都通过源中继UE执行与网络侧设备的通信。这里的源中继UE可以通过前述的电子设备200来实现。在步骤S1201中,源中继UE检测到触发事件。接下来,在步骤S1202中,源中继UE可以向需要进行中继切换的远端UE发送期望中继设备请求信息。假定源中继UE向远端UE1和远端UE2发送了期望中继设备请求信息。接下来,在步骤S1203中,远端UE1和远端UE2分别向源中继UE上报期望中继设备的信息。接下来,在步骤S1204中,源中继UE根据远端UE1和远端UE2的期望中继设备的信息将远端UE1和远端UE2划分为切换组并确定每个切换组的目标中继设备。可选地,源中继UE还可以根据远端UE1和远端UE2的期望中继设备的信息以及源中继UE的期望中继设备的信息将远端UE1、远端UE2和源中继UE划分为切换组并确定每个切换组的目标中继设备。
根据本公开的实施例,在电子设备200确定或者获知了切换组以及每个切换组的目标中继设备之后,可以生成基于组的中继切换命令。基于组的中继切换命令中所包括的切换组是需要执行中继切换过程的切换组。
在如上所述的动态分组的实施例中,需要执行中继切换过程的切换组就是电子设备200或者eNB划分的切换组。因此,电子设备200将划分好的切换组作为基于组的中继切换命令中包括的切换组,从而确定每个切换组的设备成员列表和目标中继设备,最终生成命令。在这种情况下,电子设备200向命令中包括的切换组的设备成员列表中的远端设备发送命令,实际上,电子设备200向上报期望中继设备信息的远端设备发送命令。
下面将详述在半静态分组的情况下确定目标中继设备的过程。
根据本公开的实施例,处理电路210可以进行中继重选测量来确定每个切换组的目标中继设备。根据本公开的实施例,由于电子设备200为远端设备提供服务,因此电子设备200知晓远端设备的信息,并且电子设备200在地理位置上也比较接近远端设备,从而可以替远端设备所在的切换组确定目标中继设备。这里,电子设备200可以进行中继重选测量以确定一个或多个期望中继设备,并将一个或多个期望中继设备中的一个期望中继设备确定为远端设备所在的切换组的目标中继设备。
根据本公开的实施例,在触发实体是远端设备的情况下,收发电路220可以从远端设备接收基于组的中继切换请求信息,该基于组的中继切 换请求信息表明远端设备期望进行中继切换操作。进一步,处理电路210可以响应于接收到的基于组的中继切换请求信息而执行中继重选测量。
图13是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图13所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1301中,源中继UE对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S1302中,源中继UE向所有远端UE发送切换组的信息。进一步,源中继UE还可以保存其所在的切换组的信息。在步骤S1303中,远端UE2检测到了触发事件。在步骤S1304中,远端UE2向源中继UE发送基于组的中继切换请求信息。在步骤S1305中,源中继UE进行中继重选测量以确定远端UE2所在的切换组的目标中继设备。这里,仅仅示出了由源中继UE半静态划分切换组的情形,当然还可以由eNB来半静态划分切换组。此外,图13仅仅示出了半静态划分切换组发生在切换触发过程之前的情形,实际上,半静态划分切换组的过程还可以发生在切换触发过程之后生成基于组的中继切换命令之前的任意时刻。
根据本公开的实施例,在电子设备200确定目标中继设备之后,可以生成基于组的中继切换命令。基于组的中继切换命令中所包括的切换组是需要执行中继切换过程的切换组。在如上所述的实施例中,需要执行中继切换过程的切换组是检测到触发事件的远端设备所在的切换组。也就是说,电子设备200将远端UE2所在的切换组作为基于组的中继切换命令中包括的切换组。这样一来,生成的命令中包括远端UE2所在的切换组的设备成员列表和目标中继设备的信息。接下来,电子设备200可以向远端UE2所在的切换组中的所有远端设备发送命令。也就是说,虽然远端UE2所在的切换组的其它远端设备没有检测到触发事件,但是也会收到基于组的中继切换命令并执行基于组的中继切换流程。
根据本公开的实施例,在触发实体是源中继设备的情况下,处理电路210可以响应于检测到触发事件而执行中继重选测量。
图14是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图14所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1401中,源中继UE对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S1402中,源中继UE向所有远端UE发送切换组的信息。进一步,源中继UE还可以保存其所在的切换组的信息。在步骤S1403中,源中继UE检测到了触发事件。在步骤 S1404中,源中继UE进行中继重选测量以确定需要执行中继切换的远端设备所在的切换组的目标中继设备。同样地,图14仅仅示出了由源中继UE半静态划分切换组的情形,当然还可以由eNB来半静态划分切换组。此外,图14仅仅示出了半静态划分切换组发生在切换触发过程之前的情形,实际上,半静态划分切换组的过程还可以发生在切换触发过程之后生成基于组的中继切换命令之前的任意时刻。
根据本公开的实施例,在电子设备200确定目标中继设备之后,可以生成基于组的中继切换命令。基于组的中继切换命令中所包括的切换组是需要执行中继切换过程的切换组。在如上所述的实施例中,需要执行中继切换过程的切换组是需要进行中继切换的远端设备(可选地还包括源中继设备本身)所在的切换组。
如前文所述,在触发实体是源中继设备的情况下,源中继设备可以根据触发事件的不同来确定需要进行中继切换的远端设备(可选地还包括源中继设备本身)。具体地,当触发事件是电子设备200与网络侧设备之间的链路质量小于第二阈值时,需要进行中继切换的设备是电子设备200服务的所有远端设备;当触发事件是电子设备200与网络侧设备之间的链路质量小于第三阈值时,需要进行中继切换的设备是电子设备200服务的所有远端设备以及电子设备200本身;当触发事件是电子设备200接收到表示其服务的一个或多个远端设备需要执行中继切换或者表示电子设备200需要中继服务的高层信令时,需要进行中继切换的设备是高层信令中指明的远端设备(可选地还包括电子设备200本身)。
在如上所述的实施例中,电子设备200将需要进行中继切换的远端设备(可选地还包括源中继设备本身)所在的切换组作为基于组的中继切换命令中包括的切换组。这样一来,生成的命令中包括这些切换组的设备成员列表和目标中继设备的信息。接下来,电子设备200可以向这些切换组中的所有远端设备发送命令。当电子设备200本身也需要执行中继服务时,电子设备200还可以保存该命令。
如上所述,电子设备200可以进行中继重选测量来为需要执行中继切换的切换组确定目标中继设备。这样一来,可以节约信令开销和处理时间。
根据本公开的实施例,在半静态分组的情况下,电子设备200还可以根据远端设备上报的期望中继设备的信息来确定该远端设备所在的切换组的目标中继设备。
根据本公开的实施例,在远端设备是触发实体的情况下,电子设备200可以从远端设备接收基于组的中继切换请求信息,该基于组的中继切换请求信息包括该远端设备的期望中继设备的信息。这里,远端设备的期望中继设备的信息可以包括远端设备的期望中继设备的标识信息,并且远端设备的期望中继设备可以包括一个或多个期望中继设备。在这种情况下,处理电路210可以确定远端设备的其中一个期望中继设备作为该远端设备所在的切换组的目标中继设备。
图15是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图15所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1501中,源中继UE对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S1502中,源中继UE向所有远端UE发送切换组的信息。进一步,源中继UE还可以保存其所在的切换组的信息。在步骤S1503中,远端UE2检测到了触发事件。在步骤S1504中,远端UE2向源中继UE发送基于组的中继切换请求信息,该请求信息中包括了远端UE2的期望中继设备的信息。在步骤S1505中,源中继确定远端UE2的一个期望中继设备作为远端UE2所在的切换组的目标中继设备。这里,仅仅示出了由源中继UE半静态划分切换组的情形,当然还可以由eNB来半静态划分切换组。此外,图15仅仅示出了半静态划分切换组发生在切换触发过程之前的情形,实际上,半静态划分切换组的过程还可以发生在切换触发过程之后生成基于组的中继切换命令之前的任意时刻。
同样地,在如上所述的实施例中,需要执行中继切换过程的切换组是检测到触发事件的远端设备所在的切换组。也就是说,电子设备200将远端UE2所在的切换组作为基于组的中继切换命令中包括的切换组。这样一来,生成的命令中包括远端UE2所在的切换组的设备成员列表和目标中继设备的信息。接下来,电子设备200可以向远端UE2所在的切换组中的所有远端设备发送命令。也就是说,虽然远端UE2所在的切换组的其它远端设备没有检测到触发事件,但是也会收到基于组的中继切换命令并执行基于组的中继切换流程。
根据本公开的实施例,当触发实体是作为源中继UE的电子设备200时,收发电路220可以向需要执行中继切换的远端设备中的一个或多个发送期望中继设备请求信息。这里,由于电子设备200事先知晓其服务的远端设备的切换组情况,因此当电子设备200确定了需要执行中继切换的远 端设备之后,可以根据一定的准则确定向哪些远端设备发送期望中继设备请求信息。优选地,电子设备200可以从需要执行中继切换的每个切换组中挑选出一个远端设备发送期望中继设备请求信息。更优选地,挑选出的远端设备可以具有较高的电池电力水平或者较好的链路质量等。
进一步,收发电路220可以从远端设备接收响应于期望中继设备请求信息而发送的期望中继设备的信息。接下来,处理电路210可以基于接收到的期望中继设备的信息确定需要执行中继切换的每个切换组的目标中继设备。具体地,当同一个切换组只有一个远端设备上报了期望中继设备时,处理电路210可以确定该远端设备的一个期望中继设备作为目标中继设备;当同一个切换组有多个远端设备上报了期望中继设备时,处理电路210可以使得这多个远端设备中尽可能多的远端设备的期望中继设备包括确定的目标中继设备。例如,切换组G1中有远端UE1和远端UE2上报了期望中继设备,远端UE1的期望中继设备是R1和R2,远端UE2的期望中继设备是R1和R3,则处理电路210可以确定切换组G1的目标中继设备是R1。再如,切换组G2中有远端UE2-UE4上报了期望中继设备,远端UE2的期望中继设备是R4和R5,远端UE3的期望中继设备是R4和R6,远端UE4的期望中继设备是R7和R8,则处理电路210可以确定切换组G2的目标中继设备是R4。
图16是示出根据本公开的上述实施例的确定目标中继设备的信令流程图。如图16所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1601中,源中继UE对其服务范围内的所有远端UE以及中继UE进行分组。在步骤S1602中,源中继UE向所有远端UE发送切换组的信息。进一步,源中继UE还可以保存其所在的切换组的信息。在步骤S1603中,源中继UE检测到了触发事件。在步骤S1604中,源中继UE向部分远端UE发送期望中继设备请求信息。在步骤S1605中,接收到期望中继设备请求信息的远端UE1和远端UE2向源中继UE上报期望中继设备的信息。在步骤S1606中,源中继确定需要执行中继切换的每个切换组的目标中继设备。这里,仅仅示出了由源中继UE半静态划分切换组的情形,当然还可以由eNB来半静态划分切换组。此外,图16仅仅示出了半静态划分切换组发生在切换触发过程之前的情形,实际上,半静态划分切换组的过程还可以发生在切换触发过程之后生成基于组的中继切换命令之前的任意时刻。
同样地,在电子设备200确定目标中继设备之后,可以生成基于组 的中继切换命令。基于组的中继切换命令中所包括的切换组是需要执行中继切换过程的切换组。在如上所述的实施例中,需要执行中继切换过程的切换组是需要进行中继切换的远端设备(可选地还包括源中继设备本身)所在的切换组。电子设备200将需要进行中继切换的远端设备(可选地还包括源中继设备本身)所在的切换组作为基于组的中继切换命令中包括的切换组。这样一来,生成的命令中包括这些切换组的设备成员列表和目标中继设备的信息。接下来,电子设备200可以向这些切换组中的所有远端设备发送命令。当电子设备200本身也需要执行中继服务时,电子设备200还可以保存该命令。
如上所述,电子设备200可以根据远端设备上报的期望中继设备来确定切换组的目标中继设备。这样一来,确定的目标中继设备更加准确可靠。
如上所述,根据本公开的实施例,作为源中继设备的电子设备200可以生成基于组的中继切换命令,包括每个切换组的设备成员列表和目标中继设备的信息。这样一来,每个切换组可以协作完成中继切换的流程,从而减小信令开销,并降低信令碰撞的风险。
<2.1.3.确定组头设备>
根据本公开的实施例,处理电路210还可以确定切换组的组头设备。此外,组头设备也可以由网络侧设备来确定,收发电路220可以从网络侧设备接收每个切换组的组头设备的信息。具体地,组头设备的信息可以包括组头设备的标识信息。
根据本公开的实施例,可以由划分切换组的设备来确定切换组的组头设备。例如,当由电子设备200来划分切换组时,可以由电子设备200来确定组头设备;当由网络侧设备来划分切换组时,可以由网络侧设备来确定组头设备。
根据本公开的实施例,组头设备可以是中继设备,也可以是远端设备。此外,由于组头设备耗电较大,因此组头设备也可以是周期性或者非周期性变化的。
优选地,对于包括电子设备200本身的切换组,由于电子设备200知晓所有远端设备的信息,因此可以确定电子设备200为电子设备200所在的切换组的组头设备。对于不包括电子设备200的切换组,可以根据切换组中的所有远端设备的信息(例如电池电力信息、地理位置信息等) 确定一个远端设备作为该切换组的组头设备。
根据本公开的实施例,组头设备的信息可以被包括在基于组的中继切换命令中。也就是说,基于组的中继切换命令中可以包括每个切换组的设备成员列表、目标中继设备的信息以及组头设备的信息。
此外,在半静态分组的实施方式中,组头设备的信息也可以被包括在切换组的信息中发送至切换组中的每个中继设备和远端设备。
如上所述,根据本公开的实施例,可以确定每个切换组的组头设备,组头设备将作为切换组的代表执行切换执行过程。这样一来,可以简化信令流程并大大减小信令开销。
<2.1.4.测量配置>
根据本公开的实施例,远端设备可以向为其提供服务的源中继设备上报期望中继设备的信息。根据本公开的实施例,中继设备可以确定其服务的每个远端设备的测量配置,并向其服务的每个远端设备发送测量配置信息,测量配置信息用于标识远端设备测量期望中继设备的时频资源信息。
根据本公开的实施例,中继设备可以将用于测量期望中继设备的整个发现周期(包括时间资源和频率资源)分为多个子周期,每个子周期包括时间资源信息和频率资源信息,其中时间资源信息表示进行期望中继设备测量的子帧,频率资源信息表示进行期望中继设备测量的频段。接下来,中继设备可以根据一定的准则为每个远端设备分配不同的子周期。这样一来,远端设备只需使用中继设备为其分配的时频资源信息来测量期望中继设备,可以有效减少需要监听的资源,从而减少功耗。
图17是示出根据本公开的实施例的为远端设备配置测量配置的信令流程图。如图17所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1701中,源中继UE确定其服务的每个远端UE的测量配置。在步骤S1702中,源中继UE分别向其服务的远端UE分别发送测量配置信息。
根据本公开的实施例,中继设备可以周期性为其服务的远端设备确定测量配置,并周期性向其服务的远端设备发送测量配置信息。此外,中继设备也可以周期性为其服务的远端设备确定测量配置,而在向远端设备发送的期望中继设备请求信息中携带该测量配置信息。
根据本公开的实施例,中继设备可以根据其服务的远端设备的电池 电力信息来确定远端设备的测量配置信息。根据本公开的实施例,中继设备可以从其服务的远端设备接收该远端设备的电池电力信息。根据本公开的实施例,中继设备还可以向其服务的远端设备发送电池电力请求信息。这里,向远端设备发送电池电力请求信息以及从远端设备接收电池电力信息的过程可以是周期性操作的,从而使得中继设备可以周期性地确定每个远端设备的测量配置。
根据本公开的实施例,中继设备可以为电池电力比较充足的远端设备配置时频资源较多的子周期,而为电池电力不太充足的远端设备配置时频资源较少的子周期。
此外,中继设备还可以利用远端设备上报的电池电力信息确定组头设备。例如,在由中继设备确定组头设备的情况下,中继设备可以确定电池电力较为充足的远端设备作为组头设备。
进一步,如前文中所述,在半静态分组并且源中继设备作为触发实体的情况下,源中继设备可以确定向哪些设备发送期望中继设备请求信息。例如,源中继设备可以在每个切换组中选择一个电池电力较为充足的远端设备并向该远端设备发送期望中继设备请求信息。
图18是示出根据本公开的上述实施例的为远端设备配置测量配置的信令流程图。如图18所示,远端UE1和远端UE2通过源中继UE执行与网络侧设备之间的通信。在步骤S1801中,源中继UE向远端UE1和远端UE2发送电池电力请求信息。在步骤S1802中,远端UE1和远端UE2向源中继UE上报电池电力信息。在步骤S1803中,源中继UE确定其服务的每个远端UE的测量配置。在步骤S1804中,源中继UE分别向其服务的远端UE分别发送测量配置信息。
如上所述,中继设备可以为其覆盖范围内的远端设备配置测量配置信息。这样一来,远端设备在测量期望中继设备时无需监听所有的资源,可以有效减小功耗。
以上详细阐述了用于生成基于组的中继切换命令的源中继设备。下面将阐述用于生成基于组的中继切换命令的目标中继设备。
<2.2.由目标中继UE生成基于组的中继切换命令>
根据本公开的实施例,当电子设备200作为目标中继设备时,电子设备200的收发电路220可以向为每个切换组的设备成员列表中的远端设备提供服务的源中继设备发送该基于组的中继切换命令。优选地,电子设 备200的收发电路220可以广播发送基于组的中继切换命令。
根据本公开的实施例,当电子设备200作为目标中继设备时,可以由电子设备200来划分切换组、确定每个切换组的目标中继设备并生成基于组的中继切换命令。
<2.2.1.划分切换组>
如前文中所述,当电子设备200作为目标中继设备时,检测到触发事件的触发实体是电子设备200,并且触发事件包括电子设备200接收到表示需要将一个或多个远端设备切换到电子设备200的高层信令。
根据本公开的实施例,由于这一个或多个远端设备都需要切换到电子设备200,因此电子设备200可以将这些远端设备都划分为一个切换组。
根据本公开的实施例,当这一个或多个远端设备分属于不同的源中继设备时,电子设备200也可以根据为远端设备提供服务的源中继设备将远端设备划分为多个切换组,即将属于同一个源中继设备的远端设备划分为一个切换组。
根据本公开的实施例,电子设备200生成的基于组的中继切换命令中包括的切换组是需要执行中继切换的切换组。在电子设备200是目标中继设备的情况下,电子设备200划分的切换组都是需要执行中继切换的切换组。因此,电子设备200可以将其划分的切换组作为命令中包括的切换组,并确定每个切换组的设备成员列表。
<2.2.2.确定目标中继设备>
根据本公开的实施例,当电子设备200作为目标中继设备时,需要执行中继切换的所有远端设备都需要切换到电子设备200,因此电子设备200可以确定所有切换组的目标中继设备都是电子设备200。
如上所述,电子设备200可以确定一个或者多个切换组并确定每个切换组的目标中继设备。接下来,电子设备200可以生成基于组的中继切换命令。
根据本公开的实施例,电子设备200的收发电路220可以向为切换组的设备成员列表中包括的远端设备服务的源中继设备发送该基于组的中继切换命令,以使得源中继设备可以将该命令转发到相应的远端设备。
图19是示出根据本公开的实施例的由目标中继设备生成基于组的中继切换命令的信令流程图。如图19所示,在步骤S1901中,目标中继 UE检测到切换事件,即目标中继UE收到表示需要将一个或多个远端设备切换到目标中继UE的高层信令,这一个或多个远端设备分属于源中继UE1和源中继UE2。也就是说,一部分远端设备原本通过源中继UE1执行与网络侧设备之间的通信,另一部分远端设备原本通过源中继UE2执行与网络侧设备之间的通信。在步骤S1902中,目标中继UE生成基于组的中继切换命令。在步骤S1903中,目标中继UE分别向源中继UE1和源中继UE2发送基于组的中继切换命令。
如上所述,根据本公开的实施例,作为目标中继设备的电子设备200可以生成基于组的中继切换命令,包括每个切换组的设备成员列表和目标中继设备的信息。这样一来,每个切换组可以协作完成中继切换的流程,从而减小信令开销,并降低信令碰撞的风险。
<2.2.3.确定组头设备>
根据本公开的实施例,处理电路210还可以确定切换组的组头设备。具体地,组头设备的信息可以包括组头设备的标识信息。
根据本公开的实施例,由于组头设备耗电较大,因此组头设备也可以是周期性或者非周期性变化的。处理电路210可以根据切换组中的所有远端设备的信息(例如电量信息、地理位置信息等)确定一个远端设备作为该切换组的组头设备。
根据本公开的实施例,组头设备的信息可以被包括在基于组的中继切换命令中。也就是说,基于组的中继切换命令中可以包括每个切换组的设备成员列表、目标中继设备的信息以及组头设备的信息。
如上所述,根据本公开的实施例,可以确定每个切换组的组头设备,组头设备将作为切换组的代表执行切换执行过程。这样一来,可以简化信令流程并大大减小信令开销。
<3.切换执行>
根据本公开的实施例,当源中继设备或者目标中继设备生成并发送了基于组的中继切换命令之后,开始执行切换执行过程。
根据本公开的实施例,组头设备可以向目标中继设备发送连接建立请求信息,该连接建立请求信息中可以包括组头设备所在的切换组的设备成员列表中的所有设备的信息。
根据本公开的实施例,组头设备可以广播发送连接建立请求信息。
根据本公开的实施例,组头设备可以响应于接收或者生成基于组的中继切换命令而发送连接建立请求信息。
根据本公开的实施例,切换组中的非组头设备可以启动第一定时器,并在第一定时器期满前没有收到来自目标中继设备的连接建立响应信息时执行中继重选操作,即放弃基于组的中继切换操作,可以自行测量期望中继设备并执行传统的中继切换操作,包括向期望中继设备发送连接建立请求信息并接收连接建立响应信息。
根据本公开的实施例,组头设备在发送连接建立请求信息之后也可以启动第二定时器,并在第二定时器期满前没有收到来自目标中继设备的连接建立响应信息时执行中继重选操作。可选地,组头设备也可以在接收或生成基于组的中继切换命令之后发送连接建立请求信息之前启动第三定时器,并在第三定时器期满前没有收到来自目标中继设备的连接建立响应信息时执行中继重选操作。这里的第一定时器、第二定时器和第三定时器的期满时间各不相同。
根据本公开的实施例,组头设备和非组头设备可以接收来自目标中继设备的连接建立响应信息,连接建立响应信息表示允许组头设备和非组头设备接入目标中继设备。
根据本公开的实施例,连接建立响应信息可以是目标中继设备广播发送的信息,其中携带允许接入目标中继设备的设备的标识信息。
根据本公开的实施例,在组头设备是中继设备的情况下,连接建立响应信息也可以是目标中继设备发送到组头设备的信息,其中携带允许接入目标中继设备的设备的标识信息。组头设备可以将连接建立响应信息转发到其它设备。
图20是示出根据本公开的实施例的执行切换执行过程的信令流程图。如图20所示,组头设备和作为非组头设备的其它设备位于同一个切换组,该切换组的目标中继设备是目标中继UE。在步骤S2001中,组头设备接收或生成基于组的中继切换命令,在步骤S2003中向目标中继UE发送连接建立请求信息,其中携带有组头设备和其它设备的信息,然后在步骤S2004中启动定时器。在步骤S2002中,其它设备接收或生成基于组的中继切换命令,在步骤S2005中启动定时器。接下来,在步骤S2006中,目标中继UE广播发送连接建立响应信息,其中包括了允许接入目标 中继UE的设备的信息。这里假定允许组头设备和其它设备接入目标中继UE,则组头设备和其它设备都可以接收到连接建立响应信息。在图20中,仅仅示出了切换组中包括一个组头设备和一个其它设备的情形,切换组中还可以包括多个其它设备,这多个其它设备的操作与图20中所示的其它设备的操作类似。
图21是示出根据本公开的实施例的执行切换执行过程的信令流程图。如图21所示,组头设备和作为非组头设备的其它设备位于同一个切换组,该切换组的目标中继设备是目标中继UE。在步骤S2101中,组头设备接收或生成基于组的中继切换命令,在步骤S2103中向目标中继UE发送连接建立请求信息,其中携带有组头设备和其它设备的信息,然后在步骤S2104中启动定时器。在步骤S2102中,其它设备接收或生成基于组的中继切换命令,在步骤S2105中启动定时器。接下来,在步骤S2106中,目标中继UE向组头设备发送连接建立响应信息,其中包括了允许接入目标中继UE的设备的信息。这里假定组头设备是中继设备,并且目标中继UE允许组头设备和其它设备接入目标中继UE,则在步骤S2107中,组头设备向其它设备转发连接建立响应信息。在图21中,仅仅示出了切换组中包括一个组头设备和一个其它设备的情形,切换组中还可以包括多个其它设备,这多个其它设备的操作与图21中所示的其它设备的操作类似。
前文中提到,组头设备可以是源中继设备,也可以是远端设备,下面将分这两种情况详细描述根据本公开的实施例的切换执行过程。
<3.1源中继UE作为组头设备>
图22是示出根据本公开的实施例的执行切换执行过程的信令流程图。如图22所示,远端UE原本通过源中继UE执行与网络侧设备之间的通信,当基于组的中继切换事件被触发之后,源中继UE和远端UE位于同一个切换组,该切换组的组头是源中继UE,目标中继设备是目标中继UE。在步骤S2201中,源中继UE生成基于组的中继切换命令。在步骤S2202中,源中继UE向远端UE发送基于组的中继切换命令。在步骤S2203中,源中继UE向目标中继UE发送连接建立请求信息,包括源中继UE所在的切换组的设备成员列表中的设备的信息,例如包括源中继UE和远端UE的信息。在步骤S2204中,源中继UE启动定时器,并在定时器期满前没有接收到来自目标中继UE的连接建立响应信息时执行中继重选操作。在步骤S2205中,远端UE响应于在步骤S2202中接收到 基于组的中继切换命令而启动定时器,并在定时器期满前没有接收到来自目标中继UE的连接建立响应信息时执行中继重选操作。在步骤S2206中,目标中继UE广播发送连接建立响应信息,其中包括允许接入目标中继UE的设备的信息。这里假定目标中继UE允许源中继UE和远端UE接入目标中继UE,因此源中继UE和远端UE都可以接收到连接建立响应信息。
在图22中,由源中继UE生成基于组的中继切换命令,当然还可以由目标中继UE生成基于组的中继切换命令,此时源中继UE响应于接收到基于组的中继切换命令而发送连接建立请求信息。
在图22中,源中继UE发送的基于组的中继切换命令和连接建立请求信息都可以是广播发送的信息,并且源中继UE可以将这两种信息合并在一起广播发送。
在图22中,源中继UE先发送连接建立请求信息再启动定时器。根据本公开的实施例,源中继UE也可以先启动定时器再发送连接建立请求信息,只需将定时器的期满时间设定的不同即可。此外,在图22中仅仅示出了目标中继UE广播发送连接建立响应信息的情况。根据本公开的实施例,目标中继UE也可以将连接建立响应信息直接发送到源中继UE,由源中继UE转发到远端UE。
<3.2远端UE作为组头设备>
图23是示出根据本公开的实施例的执行切换执行过程的信令流程图。如图23所示,远端UE1和远端UE2原本通过源中继UE执行与网络侧设备之间的通信,当基于组的中继切换事件被触发之后,远端UE1和远端UE2位于同一个切换组,该切换组的组头设备是远端UE2,目标中继设备是目标中继UE。在步骤S2301中,源中继UE生成基于组的中继切换命令。在步骤S2302中,源中继UE向远端UE1和远端UE2发送基于组的中继切换命令。在步骤S2303中,远端UE2响应于接收到基于组的中继切换命令而向目标中继UE发送连接建立请求信息,包括远端UE2所在的切换组的设备成员列表中的设备的信息,例如包括远端UE1和远端UE2的信息。在步骤S2304中,远端UE2启动定时器,并在定时器期满前没有接收到来自目标中继UE的连接建立响应信息时执行中继重选操作。在步骤S2305中,远端UE1响应于在步骤S2302中接收到基于组的中继切换命令而启动定时器,并在定时器期满前没有接收到来自目标中继UE的连接建立响应信息时执行中继重选操作。在步骤S2306中, 目标中继UE广播发送连接建立响应信息,其中包括允许接入目标中继UE的设备的信息。这里假定目标中继UE允许远端UE1和远端UE2接入目标中继UE,因此远端UE1和远端UE2都可以接收到连接建立响应信息。
同样地,在图23中,由源中继UE生成基于组的中继切换命令,当然还可以由目标中继UE生成基于组的中继切换命令。在图23中,远端UE2先发送连接建立请求信息再启动定时器。根据本公开的实施例,远端UE2也可以先启动定时器再发送连接建立请求信息,只需将定时器的期满时间设定的不同即可。此外,在图23中仅仅示出了目标中继UE广播发送连接建立响应信息的情况。根据本公开的实施例,目标中继UE也可以将连接建立响应信息直接发送到源中继UE,由源中继UE转发到远端UE1和远端UE2。
如上详细描述了根据本公开的实施例的切换执行过程。根据本公开的实施例,可以由切换组中的组头设备代替整个切换组来执行中继切换的过程,包括发送连接建立请求信息和接收连接建立响应信息。这样一来,非组头设备的其它设备无需发送连接建立请求信息,可以大大减小信令开销,并降低信令碰撞的概率。
<4.具有绑定远端UE的源中继UE的切换流程>
根据本公开的实施例,源中继设备可以与某些远端设备具有绑定关系。也就是说,无论源中继设备通过何种方式执行与网络侧设备的通信,包括直接与网络侧设备通信以及通过其它中继设备与网络侧设备进行通信,这些远端设备都希望通过源中继设备执行与网络侧设备的通信。也就是说,即便源中继设备通过其它中继设备执行与网络侧设备之间的通信,这些远端设备也希望通过源中继设备和其它中继设备来执行与网络侧设备之间的通信。
例如,源中继设备是属于用户的移动设备,而远端设备是属于该用户的可穿戴设备。在这样的情况下,该用户的可穿戴设备一直希望通过源中继设备来执行与网络侧设备的通信。
在上述的情形中,可以根据本公开的上述实施例,将与某个源中继设备具有绑定关系的远端设备划分到如下切换组:该切换组的目标中继设备是该源中继设备。
根据本公开的实施例,为了简化切换流程,也可以使得基于组的中继切换流程对于这些绑定的远端设备来说是透明的。也就是说,源中继设备可以向目标中继设备发送连接建立请求信息,该连接建立请求信息中包括源中继设备的信息,还包括与源中继设备具有绑定关系的远端设备的信息。目标中继设备可以确定是否允许源中继设备以及与源中继设备具有绑定关系的远端设备接入目标中继设备。在目标中继设备允许源中继设备以及与源中继设备具有绑定关系的远端设备接入目标中继设备的情况下,目标中继设备可以向源中继设备发送连接建立响应信息,其中也携带有源中继设备的信息以及与源中继设备具有绑定关系的远端设备的信息。
图24是示出根据本公开的另一个实施例的基于组的中继切换的信令流程图。如图24所示,源中继UE具有一个或多个绑定的远端UE。在步骤S2401中,源中继UE检测到触发事件,即源中继UE期望通过目标中继UE来执行与网络侧设备之间的通信。在步骤S2402中,源中继UE向目标中继UE发送连接建立请求信息,其中携带源中继UE以及与源中继UE绑定的远端UE的信息。在步骤S2403中,目标中继UE向源中继UE发送连接建立响应信息,其中也携带有源中继UE以及与源中继UE绑定的远端UE的信息,表示允许源中继UE及绑定的远端UE接入目标中继UE。
如上所述,在源中继设备具有绑定远端设备的情况下,根据本公开的实施例可以简化切换的流程,节约信令开销和切换的时间。
<5.上下文的连续性>
如上详细描述了根据本公开的实施例的基于组的中继切换流程。在经过基于组的中继切换流程之后,远端设备与源中继设备之间不再具有直接的连接关系,这时源中继设备的缓存中可能存在大量远端设备的上下文需要进行处理。
根据本公开的实施例,源中继设备可以通过设备到设备D2D通信方式与远端设备交互缓存中的上下文信息。这种情况可以发生在源中继设备与远端设备距离较近的情况下。
根据本公开的实施例,如果源中继设备与远端设备切换到了相同的目标中继设备,则源中继设备可以将缓存中的上下文信息发送到目标中继设备,由目标中继设备转发到远端设备。
根据本公开的实施例,源中继设备也可以将缓存中的上下文信息发送到网络侧设备(直接通信或者通过其它中继设备转发),由网络侧设备转发到远端设备。
以上详述了根据本公开的实施例的电子设备200。下面将详细描述根据本公开的实施例的电子设备2500。电子设备2500可以是无线通信系统中的远端设备,即电子设备2500可以通过源中继设备执行与网络侧设备之间的通信。
图25是示出根据本公开的实施例的电子设备2500的结构的框图。如图25所示,电子设备2500可以包括用于收发信息的收发电路2520。
图26是示出根据本公开的实施例的电子设备2500的结构的框图。
如图26所示,电子设备2500还可以包括处理电路2510。需要说明的是,电子设备2500既可以包括一个处理电路2510,也可以包括多个处理电路2510。
这里虽然没有示出处理电路2510的功能单元,但是处理电路2510可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,收发电路2520可以接收基于组的中继切换命令,基于组的中继切换命令包括电子设备2500所在的切换组的设备成员列表和目标中继设备的信息。
根据本公开的实施例,收发电路2520还可以接收电子设备2500所在的切换组的组头设备的信息。这里,组头设备的信息可以包括在基于组的中继切换命令中。
根据本公开的实施例,收发电路2520还可以向为电子设备2500服务的源中继设备发送基于组的中继切换请求信息。
根据本公开的实施例,基于组的中继切换请求信息可以包括电子设备2500期望切换到的期望中继设备的信息。
根据本公开的实施例,收发电路2520还可以向电子设备2500所在的切换组的目标中继设备发送连接建立请求信息,连接建立请求信息包括电子设备2500所在的切换组的设备成员列表中的设备的信息。
根据本公开的实施例,收发电路2520还可以接收来自于电子设备2500所在的切换组的目标中继设备的连接建立响应信息,连接建立响应信息表示允许电子设备2500接入目标中继设备。
根据本公开的实施例,处理电路2510可以启动定时器,并且当在定时器期满前没有接收到来自电子设备2500所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
根据本公开的实施例,电子设备2500可以作为无线通信系统中的远端设备,因此可以与作为源中继设备或者目标中继设备的电子设备200进行信息交互,因而关于电子设备200的所有实施方式都适用于此。
下面将详细描述根据本公开的实施例的电子设备2700。电子设备2700可以是无线通信系统中的目标中继设备,即存在一个或多个远端设备或者源中继设备期望切换到电子设备2700。
图27是示出根据本公开的实施例的电子设备2700的结构的框图。如图27所示,电子设备2700可以包括用于收发信息的收发电路2720。
图28是示出根据本公开的另一个实施例的电子设备2700的结构的框图。
如图28所示,电子设备2700还可以包括处理电路2710。需要说明的是,电子设备2700既可以包括一个处理电路2710,也可以包括多个处理电路2710。
这里虽然没有示出处理电路2710的功能单元,但是处理电路2710可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,收发电路2720可以从源中继设备或者远端设备接收连接建立请求信息,连接建立请求信息包括源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,所述成员设备列表中的设备期望切换到电子设备2700。
根据本公开的实施例,收发电路2720还可以广播发送连接建立响应信息,连接建立响应信息包括允许接入电子设备2700的设备的信息。
根据本公开的实施例,收发电路2720还可以向允许接入电子设备 2700的中继设备,以及向为允许接入电子设备2700的远端设备服务的中继设备发送连接建立响应信息,连接建立响应信息包括允许接入电子设备2700的设备的信息。
根据本公开的实施例,电子设备2700可以作为无线通信系统中的目标中继设备,因此可以与作为源中继设备的电子设备200以及作为远端设备的电子设备2500进行信息交互,因而关于电子设备200和电子设备2500的所有实施方式都适用于此。
接下来将详细描述根据本公开的实施例的由电子设备200执行的方法。关于电子设备200的全部实施方式都适用于此。
图29是示出根据本公开的实施例的由电子设备200执行的方法的流程图。电子设备200可以是无线通信系统中的中继设备,包括源中继设备和目标中继设备。
如图29所示,在步骤S2910中,基于触发事件生成基于组的中继切换命令,基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
优选地,方法由无线通信系统中的源中继设备执行,并且方法还包括:向每个切换组的设备成员列表中的远端设备发送基于组的中继切换命令。
优选地,方法还包括:确定每个切换组的组头设备,并且向每个切换组的设备成员列表中的远端设备发送组头设备的信息。
优选地,方法还包括:从电子设备服务的一个或多个远端设备接收远端设备期望切换到的期望中继设备的信息,并且基于每个远端设备的期望中继设备的信息确定每个切换组的目标中继设备。
优选地,方法还包括:基于每个远端设备的期望中继设备的信息将一个或多个远端设备划分为一个或多个切换组。
优选地,方法还包括:向一个或多个远端设备中的每个远端设备发送期望中继设备请求信息。
优选地,期望中继设备请求信息包括测量配置信息,测量配置信息用于标识远端设备测量期望中继设备的时频资源信息。
优选地,方法还包括:根据远端设备的电池电力信息确定测量配置 信息。
优选地,方法还包括:进行中继重选测量以确定每个切换组的目标中继设备。
优选地,方法还包括:向电子设备所在的切换组的目标中继设备发送连接建立请求信息,连接建立请求信息包括电子设备所在的切换组的设备成员列表中的设备的信息。
优选地,方法还包括:将基于组的中继切换命令和连接建立请求信息合并在一起广播发送。
优选地,方法还包括:接收来自于电子设备所在的切换组的目标中继设备的连接建立响应信息,连接建立响应信息表示允许电子设备接入目标中继设备。
优选地,方法还包括:启动定时器,并且当在定时器期满前没有接收到来自电子设备所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
优选地,触发事件包括以下中的一种或多种:电子设备与其服务的一个或多个远端设备之间的链路质量小于第一阈值;电子设备与网络侧设备之间的链路质量小于第二阈值;以及电子设备接收到表示其服务的一个或多个远端设备需要执行中继切换或者表示需要为电子设备提供中继服务的高层信令。
优选地,方法可以由无线通信系统中的目标中继设备来执行,并且方法还包括:向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送基于组的中继切换命令。
优选地,方法还包括:确定每个切换组的组头设备,并且向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送组头设备的信息。
优选地,方法还包括:从每个切换组的组头设备接收连接建立请求信息,连接建立请求信息包括切换组的设备成员列表中的设备的信息,并且发送连接建立响应信息,连接建立响应信息包括允许接入电子设备的设备的信息。
优选地,触发事件包括:电子设备接收到表示需要将一个或多个远端设备切换到电子设备的高层信令。
根据本公开的实施例的由电子设备200执行的方法在描述电子设备200时已经详细介绍过,在此不再赘述。
接下来将详细描述根据本公开的实施例的由电子设备2500执行的方法,这里的电子设备2500可以是无线通信系统中的远端设备,因而在描述电子设备2500时的全部实施方式都适用于此。
图30是示出根据本公开的实施例的由电子设备2500执行的方法的流程图。
如图30所示,在步骤S3010中,接收基于组的中继切换命令,基于组的中继切换命令包括电子设备2500所在的切换组的设备成员列表和目标中继设备的信息。
优选地,方法还包括:接收电子设备2500所在的切换组的组头设备的信息。
优选地,方法还包括:向为电子设备2500服务的源中继设备发送基于组的中继切换请求信息。
优选地,基于组的中继切换请求信息包括电子设备2500期望切换到的期望中继设备的信息。
优选地,方法还包括:向电子设备2500所在的切换组的目标中继设备发送连接建立请求信息,连接建立请求信息包括电子设备2500所在的切换组的设备成员列表中的设备的信息。
优选地,方法还包括:接收来自于电子设备2500所在的切换组的目标中继设备的连接建立响应信息,连接建立响应信息表示允许电子设备2500接入目标中继设备。
优选地,方法还包括:启动定时器,并且当在定时器期满前没有接收到来自电子设备2500所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
根据本公开的实施例的由电子设备2500执行的方法在描述电子设备200和电子设备2500时已经详细介绍过,在此不再赘述。
接下来将详细描述根据本公开的由电子设备2700执行的方法。这里 的电子设备2700可以是无线通信系统中的中继设备,具体地是目标中继设备,因而关于电子设备2700的全部实施方式都适用于此。
图31是示出根据本公开的实施例的由用于次系统的电子设备执行的方法的流程图。
如图31所示,在步骤S3110中,从源中继设备或者远端设备接收连接建立请求信息,连接建立请求信息包括源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,成员设备列表中的设备期望切换到电子设备2700。
优选地,方法还包括:广播发送连接建立响应信息,连接建立响应信息包括允许接入电子设备2700的设备的信息。
根据本公开的实施例的由电子设备2700执行的方法在描述电子设备2700时已经详细介绍过,在此不再赘述。
<应用示例>
本公开内容的技术能够应用于各种产品。例如,网络侧设备可以被实现为任何类型的eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
作为远端设备和中继设备的终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。特别地,远端设备还可以被实现为可穿戴设备。
[关于基站的应用示例]
(第一应用示例)
图32是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 3200包括一个或多个天线3210以及基站设备3220。基站设备3220和每个天线3210可以经由RF线缆彼此连接。
天线3210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备3220发送和接收无线信号。如图32所示,eNB 3200可以包括多个天线3210。例如,多个天线3210可以与eNB 3200使用的多个频带兼容。虽然图32示出其中eNB 3200包括多个天线3210的示例,但是eNB 3200也可以包括单个天线3210。
基站设备3220包括控制器3221、存储器3222、网络接口3223以及无线通信接口3225。
控制器3221可以为例如CPU或DSP,并且操作基站设备3220的较高层的各种功能。例如,控制器3221根据由无线通信接口3225处理的信号中的数据来生成数据分组,并经由网络接口3223来传递所生成的分组。控制器3221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器3221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器3222包括RAM和ROM,并且存储由控制器3221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口3223为用于将基站设备3220连接至核心网3224的通信接口。控制器3221可以经由网络接口3223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 3200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口3223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口3223为无线通信接口,则与由无线通信接口3225使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口3225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线3210来提供到位于eNB 3200的小区中的终端的无线连接。无线通信接口3225通常可以包括例如基带(BB)处理器3226和RF电路3227。BB处理器3226可以执行例如编码/解码、调制/ 解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器3221,BB处理器3226可以具有上述逻辑功能的一部分或全部。BB处理器3226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器3226的功能改变。该模块可以为插入到基站设备3220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路3227可以包括例如混频器、滤波器和放大器,并且经由天线3210来传送和接收无线信号。
如图32所示,无线通信接口3225可以包括多个BB处理器3226。例如,多个BB处理器3226可以与eNB 3200使用的多个频带兼容。如图32所示,无线通信接口3225可以包括多个RF电路3227。例如,多个RF电路3227可以与多个天线元件兼容。虽然图32示出其中无线通信接口3225包括多个BB处理器3226和多个RF电路3227的示例,但是无线通信接口3225也可以包括单个BB处理器3226或单个RF电路3227。
(第二应用示例)
图33是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 3330包括一个或多个天线3340、基站设备3350和RRH 3360。RRH 3360和每个天线3340可以经由RF线缆而彼此连接。基站设备3350和RRH 3360可以经由诸如光纤线缆的高速线路而彼此连接。
天线3340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 3360发送和接收无线信号。如图33所示,eNB 3330可以包括多个天线3340。例如,多个天线3340可以与eNB 3330使用的多个频带兼容。虽然图33示出其中eNB 3330包括多个天线3340的示例,但是eNB 3330也可以包括单个天线3340。
基站设备3350包括控制器3351、存储器3352、网络接口3353、无线通信接口3355以及连接接口3357。控制器3351、存储器3352和网络接口3353与参照图33描述的控制器3321、存储器3322和网络接口3323相同。
无线通信接口3355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 3360和天线3340来提供到位于与RRH 3360对应的 扇区中的终端的无线通信。无线通信接口3355通常可以包括例如BB处理器3356。除了BB处理器3356经由连接接口3357连接到RRH 3360的RF电路3364之外,BB处理器3356与参照图32描述的BB处理器3226相同。如图33所示,无线通信接口3355可以包括多个BB处理器3356。例如,多个BB处理器3356可以与eNB 3330使用的多个频带兼容。虽然图33示出其中无线通信接口3355包括多个BB处理器3356的示例,但是无线通信接口3355也可以包括单个BB处理器3356。
连接接口3357为用于将基站设备3350(无线通信接口3355)连接至RRH 3360的接口。连接接口3357还可以为用于将基站设备3350(无线通信接口3355)连接至RRH 3360的上述高速线路中的通信的通信模块。
RRH 3360包括连接接口3361和无线通信接口3363。
连接接口3361为用于将RRH 3360(无线通信接口3363)连接至基站设备3350的接口。连接接口3361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口3363经由天线3340来传送和接收无线信号。无线通信接口3363通常可以包括例如RF电路3364。RF电路3364可以包括例如混频器、滤波器和放大器,并且经由天线3340来传送和接收无线信号。如图33所示,无线通信接口3363可以包括多个RF电路3364。例如,多个RF电路3364可以支持多个天线元件。虽然图33示出其中无线通信接口3363包括多个RF电路3364的示例,但是无线通信接口3363也可以包括单个RF电路3364。
[关于终端设备的应用示例]
(第一应用示例)
图34是示出可以应用本公开内容的技术的智能电话3400的示意性配置的示例的框图。智能电话3400包括处理器3401、存储器3402、存储装置3403、外部连接接口3404、摄像装置3406、传感器3407、麦克风3408、输入装置3409、显示装置3410、扬声器3411、无线通信接口3412、一个或多个天线开关3415、一个或多个天线3416、总线3417、电池3418以及辅助控制器3419。
处理器3401可以为例如CPU或片上系统(SoC),并且控制智能电 话3400的应用层和另外层的功能。存储器3402包括RAM和ROM,并且存储数据和由处理器3401执行的程序。存储装置3403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口3404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话3400的接口。
摄像装置3406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器3407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风3408将输入到智能电话3400的声音转换为音频信号。输入装置3409包括例如被配置为检测显示装置3410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置3410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话3400的输出图像。扬声器3411将从智能电话3400输出的音频信号转换为声音。
无线通信接口3412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3412通常可以包括例如BB处理器3413和RF电路3414。BB处理器3413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路3414可以包括例如混频器、滤波器和放大器,并且经由天线3416来传送和接收无线信号。无线通信接口3412可以为其上集成有BB处理器3413和RF电路3414的一个芯片模块。如图34所示,无线通信接口3412可以包括多个BB处理器3413和多个RF电路3414。虽然图34示出其中无线通信接口3412包括多个BB处理器3413和多个RF电路3414的示例,但是无线通信接口3412也可以包括单个BB处理器3413或单个RF电路3414。
此外,除了蜂窝通信方案之外,无线通信接口3412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口3412可以包括针对每种无线通信方案的BB处理器3413和RF电路3414。
天线开关3415中的每一个在包括在无线通信接口3412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线3416的连接目的地。
天线3416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3412传送和接 收无线信号。如图34所示,智能电话3400可以包括多个天线3416。虽然图34示出其中智能电话3400包括多个天线3416的示例,但是智能电话3400也可以包括单个天线3416。
此外,智能电话3400可以包括针对每种无线通信方案的天线3416。在此情况下,天线开关3415可以从智能电话3400的配置中省略。
总线3417将处理器3401、存储器3402、存储装置3403、外部连接接口3404、摄像装置3406、传感器3407、麦克风3408、输入装置3409、显示装置3410、扬声器3411、无线通信接口3412以及辅助控制器3419彼此连接。电池3418经由馈线向图34所示的智能电话3400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器3419例如在睡眠模式下操作智能电话3400的最小必需功能。
在图34所示的智能电话3400中,通过使用图2所描述的处理电路210、通过图26所描述的处理电路2510以及通过图28所描述的处理电路2710可以由由处理器3401或辅助控制器3419实现。功能的至少一部分也可以由处理器3401或辅助控制器3419实现。例如,处理器3401或辅助控制器3419可以通过执行存储器3402或存储装置3403中存储的指令而执行生成基于组的中继切换命令的功能。
(第二应用示例)
图35是示出可以应用本公开内容的技术的汽车导航设备3520的示意性配置的示例的框图。汽车导航设备3520包括处理器3521、存储器3522、全球定位系统(GPS)模块3524、传感器3525、数据接口3526、内容播放器3527、存储介质接口3528、输入装置3529、显示装置3530、扬声器3531、无线通信接口3533、一个或多个天线开关3536、一个或多个天线3537以及电池3538。
处理器3521可以为例如CPU或SoC,并且控制汽车导航设备3520的导航功能和另外的功能。存储器3522包括RAM和ROM,并且存储数据和由处理器3521执行的程序。
GPS模块3524使用从GPS卫星接收的GPS信号来测量汽车导航设备3520的位置(诸如纬度、经度和高度)。传感器3525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口3526经由未示出的终端而连接到例如车载网络3541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器3527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口3528中。输入装置3529包括例如被配置为检测显示装置3530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置3530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器3531输出导航功能的声音或再现的内容。
无线通信接口3533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3533通常可以包括例如BB处理器3534和RF电路3535。BB处理器3534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路3535可以包括例如混频器、滤波器和放大器,并且经由天线3537来传送和接收无线信号。无线通信接口3533还可以为其上集成有BB处理器3534和RF电路3535的一个芯片模块。如图35所示,无线通信接口3533可以包括多个BB处理器3534和多个RF电路3535。虽然图35示出其中无线通信接口3533包括多个BB处理器3534和多个RF电路3535的示例,但是无线通信接口3533也可以包括单个BB处理器3534或单个RF电路3535。
此外,除了蜂窝通信方案之外,无线通信接口3533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口3533可以包括BB处理器3534和RF电路3535。
天线开关3536中的每一个在包括在无线通信接口3533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线3537的连接目的地。
天线3537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3533传送和接收无线信号。如图35所示,汽车导航设备3520可以包括多个天线3537。虽然图35示出其中汽车导航设备3520包括多个天线3537的示例,但是汽车导航设备3520也可以包括单个天线3537。
此外,汽车导航设备3520可以包括针对每种无线通信方案的天线3537。在此情况下,天线开关3536可以从汽车导航设备3520的配置中省略。
电池3538经由馈线向图35所示的汽车导航设备3520的各个块提供电力,馈线在图中被部分地示为虚线。电池3538累积从车辆提供的电力。
在图35示出的汽车导航设备3520中,通过使用图2所描述的处理电路210、通过图26所描述的处理电路2510以及通过图28所描述的处理电路2710可以由处理器3521实现。功能的至少一部分也可以由处理器3521实现。例如,处理器3521可以通过执行存储器3522中存储的指令而执行生成基于组的中继切换命令的功能。
本公开内容的技术也可以被实现为包括汽车导航设备3520、车载网络3541以及车辆模块3542中的一个或多个块的车载系统(或车辆)3540。车辆模块3542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络3541。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
此外,本公开可以具有如下所述的配置。
(1)一种电子设备,包括处理电路,被配置为基于触发事件生成基于组的中继切换命令,所述基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
(2)根据上述(1)所述的电子设备,其中,所述电子设备作为无线通信系统中的源中继设备,并且
其中,所述电子设备还包括收发电路,被配置为向每个切换组的设备成员列表中的远端设备发送所述基于组的中继切换命令。
(3)根据上述(2)所述的电子设备,其中,所述处理电路还被配置为确定每个切换组的组头设备,并且所述收发电路还被配置为向每个切换组的设备成员列表中的远端设备发送所述组头设备的信息。
(4)根据上述(2)所述的电子设备,其中,所述收发电路还被配置为从所述电子设备服务的一个或多个远端设备接收所述远端设备期望切换到的期望中继设备的信息,并且所述处理电路还被配置为基于每个远端设备的期望中继设备的信息确定每个切换组的目标中继设备。
(5)根据上述(4)所述的电子设备,其中,所述处理电路还被配置为基于每个远端设备的期望中继设备的信息将所述一个或多个远端设备划分为所述一个或多个切换组。
(6)根据上述(4)所述的电子设备,其中,所述收发电路还被配置为向所述一个或多个远端设备中的每个远端设备发送期望中继设备请求信息。
(7)根据上述(6)所述的电子设备,其中,所述期望中继设备请求信息包括测量配置信息,所述测量配置信息用于标识所述远端设备测量期望中继设备的时频资源信息。
(8)根据上述(7)所述的电子设备,其中,所述处理电路还被配置为根据所述远端设备的电池电力信息确定所述测量配置信息。
(9)根据上述(2)所述的电子设备,其中,所述处理电路还被配置为进行中继重选测量以确定每个切换组的目标中继设备。
(10)根据上述(2)所述的电子设备,其中,所述收发电路还被配置为向所述电子设备所在的切换组的目标中继设备发送连接建立请求信息,所述连接建立请求信息包括所述电子设备所在的切换组的设备成员列表中的设备的信息。
(11)根据上述(10)所述的电子设备,其中,所述收发电路还被配置为将所述基于组的中继切换命令和所述连接建立请求信息合并在一起广播发送。
(12)根据上述(2)所述的电子设备,其中,所述收发电路还被配置为接收来自于所述电子设备所在的切换组的目标中继设备的连接建立响应信息,所述连接建立响应信息表示允许所述电子设备接入所述目标中继设备。
(13)根据上述(2)所述的电子设备,其中,所述处理电路还被配置为启动定时器,并且当在所述定时器期满前没有接收到来自所述电子设备所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
(14)根据上述(2)所述的电子设备,其中,所述触发事件包括以下中的一种或多种:所述电子设备与其服务的一个或多个远端设备之间的链路质量小于第一阈值;所述电子设备与网络侧设备之间的链路质量小于第二阈值;以及所述电子设备接收到表示其服务的一个或多个远端设备需 要执行中继切换或者表示需要为电子设备提供中继服务的高层信令。
(15)根据上述(1)所述的电子设备,其中,所述电子设备作为无线通信系统中的目标中继设备,并且
其中,所述电子设备还包括收发电路,被配置为向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送所述基于组的中继切换命令。
(16)根据上述(15)所述的电子设备,其中,所述处理电路还被配置为确定每个切换组的组头设备,并且向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送所述组头设备的信息。
(17)根据上述(16)所述的电子设备,其中,所述收发电路还被配置为从每个切换组的组头设备接收连接建立请求信息,所述连接建立请求信息包括所述切换组的设备成员列表中的设备的信息,并且发送连接建立响应信息,所述连接建立响应信息包括允许接入所述电子设备的设备的信息。
(18)根据上述(15)所述的电子设备,其中,所述触发事件包括:所述电子设备接收到表示需要将一个或多个远端设备切换到所述电子设备的高层信令。
(19)一种电子设备,包括收发电路,被配置为接收基于组的中继切换命令,所述基于组的中继切换命令包括所述电子设备所在的切换组的设备成员列表和目标中继设备的信息。
(20)根据上述(19)所述的电子设备,其中,所述收发电路还被配置为接收所述电子设备所在的切换组的组头设备的信息。
(21)根据上述(19)所述的电子设备,其中,所述电子设备作为无线通信系统中的远端设备,所述收发电路还被配置为向为所述远端设备服务的源中继设备发送基于组的中继切换请求信息。
(22)根据上述(21)所述的电子设备,其中,所述基于组的中继切换请求信息包括所述电子设备期望切换到的期望中继设备的信息。
(23)根据上述(19)所述的电子设备,其中,所述收发电路还被配置为向所述电子设备所在的切换组的目标中继设备发送连接建立请求信息,所述连接建立请求信息包括所述电子设备所在的切换组的设备成员列表中的设备的信息。
(24)根据上述(19)所述的电子设备,其中,所述收发电路还被配置为接收来自于所述电子设备所在的切换组的目标中继设备的连接建立响应信息,所述连接建立响应信息表示允许所述电子设备接入所述目标中继设备。
(25)根据上述(19)所述的电子设备,其中,所述电子设备还包括处理电路,被配置为启动定时器,并且当在所述定时器期满前没有接收到来自所述电子设备所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
(26)一种电子设备,包括收发电路,被配置为从源中继设备或者远端设备接收连接建立请求信息,所述连接建立请求信息包括所述源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,所述成员设备列表中的设备期望切换到所述电子设备。
(27)根据上述(26)所述的电子设备,其中,所述收发电路还被配置为广播发送连接建立响应信息,所述连接建立响应信息包括允许接入所述电子设备的设备的信息。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (27)

  1. 一种电子设备,包括处理电路,被配置为基于触发事件生成基于组的中继切换命令,所述基于组的中继切换命令包括一个或多个切换组中的每个切换组的设备成员列表和目标中继设备的信息。
  2. 根据权利要求1所述的电子设备,其中,所述电子设备作为无线通信系统中的源中继设备,并且
    其中,所述电子设备还包括收发电路,被配置为向每个切换组的设备成员列表中的远端设备发送所述基于组的中继切换命令。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为确定每个切换组的组头设备,并且所述收发电路还被配置为向每个切换组的设备成员列表中的远端设备发送所述组头设备的信息。
  4. 根据权利要求2所述的电子设备,其中,所述收发电路还被配置为从所述电子设备服务的一个或多个远端设备接收所述远端设备期望切换到的期望中继设备的信息,并且所述处理电路还被配置为基于每个远端设备的期望中继设备的信息确定每个切换组的目标中继设备。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为基于每个远端设备的期望中继设备的信息将所述一个或多个远端设备划分为所述一个或多个切换组。
  6. 根据权利要求4所述的电子设备,其中,所述收发电路还被配置为向所述一个或多个远端设备中的每个远端设备发送期望中继设备请求信息。
  7. 根据权利要求6所述的电子设备,其中,所述期望中继设备请求信息包括测量配置信息,所述测量配置信息用于标识所述远端设备测量期望中继设备的时频资源信息。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为根据所述远端设备的电池电力信息确定所述测量配置信息。
  9. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为进行中继重选测量以确定每个切换组的目标中继设备。
  10. 根据权利要求2所述的电子设备,其中,所述收发电路还被配置为向所述电子设备所在的切换组的目标中继设备发送连接建立请求信息, 所述连接建立请求信息包括所述电子设备所在的切换组的设备成员列表中的设备的信息。
  11. 根据权利要求10所述的电子设备,其中,所述收发电路还被配置为将所述基于组的中继切换命令和所述连接建立请求信息合并在一起广播发送。
  12. 根据权利要求2所述的电子设备,其中,所述收发电路还被配置为接收来自于所述电子设备所在的切换组的目标中继设备的连接建立响应信息,所述连接建立响应信息表示允许所述电子设备接入所述目标中继设备。
  13. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为启动定时器,并且当在所述定时器期满前没有接收到来自所述电子设备所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
  14. 根据权利要求2所述的电子设备,其中,所述触发事件包括以下中的一种或多种:所述电子设备与其服务的一个或多个远端设备之间的链路质量小于第一阈值;所述电子设备与网络侧设备之间的链路质量小于第二阈值;以及所述电子设备接收到表示其服务的一个或多个远端设备需要执行中继切换或者表示需要为电子设备提供中继服务的高层信令。
  15. 根据权利要求1所述的电子设备,其中,所述电子设备作为无线通信系统中的目标中继设备,并且
    其中,所述电子设备还包括收发电路,被配置为向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送所述基于组的中继切换命令。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为确定每个切换组的组头设备,并且向为每个切换组的设备成员列表中的远端设备服务的源中继设备发送所述组头设备的信息。
  17. 根据权利要求16所述的电子设备,其中,所述收发电路还被配置为从每个切换组的组头设备接收连接建立请求信息,所述连接建立请求信息包括所述切换组的设备成员列表中的设备的信息,并且发送连接建立响应信息,所述连接建立响应信息包括允许接入所述电子设备的设备的信息。
  18. 根据权利要求15所述的电子设备,其中,所述触发事件包括:所述电子设备接收到表示需要将一个或多个远端设备切换到所述电子设 备的高层信令。
  19. 一种电子设备,包括收发电路,被配置为接收基于组的中继切换命令,所述基于组的中继切换命令包括所述电子设备所在的切换组的设备成员列表和目标中继设备的信息。
  20. 根据权利要求19所述的电子设备,其中,所述收发电路还被配置为接收所述电子设备所在的切换组的组头设备的信息。
  21. 根据权利要求19所述的电子设备,其中,所述电子设备作为无线通信系统中的远端设备,所述收发电路还被配置为向为所述远端设备服务的源中继设备发送基于组的中继切换请求信息。
  22. 根据权利要求21所述的电子设备,其中,所述基于组的中继切换请求信息包括所述电子设备期望切换到的期望中继设备的信息。
  23. 根据权利要求19所述的电子设备,其中,所述收发电路还被配置为向所述电子设备所在的切换组的目标中继设备发送连接建立请求信息,所述连接建立请求信息包括所述电子设备所在的切换组的设备成员列表中的设备的信息。
  24. 根据权利要求19所述的电子设备,其中,所述收发电路还被配置为接收来自于所述电子设备所在的切换组的目标中继设备的连接建立响应信息,所述连接建立响应信息表示允许所述电子设备接入所述目标中继设备。
  25. 根据权利要求19所述的电子设备,其中,所述电子设备还包括处理电路,被配置为启动定时器,并且当在所述定时器期满前没有接收到来自所述电子设备所在的切换组的目标中继设备的连接建立响应信息时执行中继重选操作。
  26. 一种电子设备,包括收发电路,被配置为从源中继设备或者远端设备接收连接建立请求信息,所述连接建立请求信息包括所述源中继设备或者远端设备所在的切换组的成员设备列表中的设备的信息,其中,所述成员设备列表中的设备期望切换到所述电子设备。
  27. 根据权利要求26所述的电子设备,其中,所述收发电路还被配置为广播发送连接建立响应信息,所述连接建立响应信息包括允许接入所述电子设备的设备的信息。
PCT/CN2018/079808 2017-04-28 2018-03-21 电子设备及由电子设备执行的方法 WO2018196513A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197011132A KR20190140896A (ko) 2017-04-28 2018-03-21 전자 디바이스 및 전자 디바이스에 의해 실행되는 방법
JP2019516993A JP2020518140A (ja) 2017-04-28 2018-03-21 電子機器、及び電子機器によって実行される方法
CN202310350787.3A CN116405170A (zh) 2017-04-28 2018-03-21 电子设备及无线通信方法
US16/319,488 US20210289401A1 (en) 2017-04-28 2018-03-21 Electronic device and method executed by electronic device
EP18790060.0A EP3618497B1 (en) 2017-04-28 2018-03-21 Electronic device and method executed by electronic device
CN201880002103.8A CN109155950A (zh) 2017-04-28 2018-03-21 电子设备及由电子设备执行的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710296496.5 2017-04-28
CN201710296496.5A CN108810854A (zh) 2017-04-28 2017-04-28 电子设备及由电子设备执行的方法

Publications (1)

Publication Number Publication Date
WO2018196513A1 true WO2018196513A1 (zh) 2018-11-01

Family

ID=63917998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079808 WO2018196513A1 (zh) 2017-04-28 2018-03-21 电子设备及由电子设备执行的方法

Country Status (6)

Country Link
US (1) US20210289401A1 (zh)
EP (1) EP3618497B1 (zh)
JP (1) JP2020518140A (zh)
KR (1) KR20190140896A (zh)
CN (3) CN108810854A (zh)
WO (1) WO2018196513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129554A1 (en) * 2019-12-24 2021-07-01 Mediatek Singapore Pte. Ltd. Group handover with delayed or omitted signalling for layer 2 sidelink relaying
CN115379120A (zh) * 2022-08-30 2022-11-22 核工业理化工程研究院 基于加速度信号的高速摄影电子触发装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391925A (zh) * 2017-08-10 2019-02-26 索尼公司 无线通信系统中的电子设备以及无线通信方法
JP7237163B2 (ja) * 2019-01-11 2023-03-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてモビリティを行う方法及び装置
CN111586765B (zh) * 2019-02-15 2023-01-13 华为技术有限公司 中继通信的方法和装置
US20220078693A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Relay switching for a remote user equipment
WO2022071572A1 (ja) * 2020-10-01 2022-04-07 京セラ株式会社 通信制御方法、中継ユーザ装置、及び遠隔ユーザ装置
WO2024020859A1 (zh) * 2022-07-27 2024-02-01 Oppo广东移动通信有限公司 中继链路之间切换的方法及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120003962A1 (en) * 2009-03-06 2012-01-05 Ajou University Industry-Academic Cooperation Foundation Group handover method and apparatus in broadband wireless communication system that supports mobile relay station
CN102958122A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 群组切换时的承载控制方法及装置
US20130322325A1 (en) * 2011-03-25 2013-12-05 Lg Electronics Inc. Method and Apparatus for Performing Handover Procedure in Wireless Communication System Including Mobile Relay Node
CN103686894A (zh) * 2012-09-12 2014-03-26 财团法人工业技术研究院 通过无线连接的群组切换方法及其装置
CN105451282A (zh) * 2014-08-22 2016-03-30 电信科学技术研究院 一种中继终端重选的方法及设备
CN105745965A (zh) * 2013-12-19 2016-07-06 英特尔公司 运动的自组织网络小小区中继切换
WO2017014716A1 (en) * 2015-07-23 2017-01-26 Intel IP Corporation Layer 2 relay protocols and mobility relay method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386212B1 (ko) * 2006-11-14 2014-04-21 한국전자통신연구원 이동 중계기를 고려한 핸드오버 방법
US8532056B2 (en) * 2009-04-13 2013-09-10 Qualcomm Incorporated Device mobility for split-cell relay networks
IN2014CN03338A (zh) * 2011-11-04 2015-07-03 Mitsubishi Electric Corp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120003962A1 (en) * 2009-03-06 2012-01-05 Ajou University Industry-Academic Cooperation Foundation Group handover method and apparatus in broadband wireless communication system that supports mobile relay station
US20130322325A1 (en) * 2011-03-25 2013-12-05 Lg Electronics Inc. Method and Apparatus for Performing Handover Procedure in Wireless Communication System Including Mobile Relay Node
CN102958122A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 群组切换时的承载控制方法及装置
CN103686894A (zh) * 2012-09-12 2014-03-26 财团法人工业技术研究院 通过无线连接的群组切换方法及其装置
CN105745965A (zh) * 2013-12-19 2016-07-06 英特尔公司 运动的自组织网络小小区中继切换
CN105451282A (zh) * 2014-08-22 2016-03-30 电信科学技术研究院 一种中继终端重选的方法及设备
WO2017014716A1 (en) * 2015-07-23 2017-01-26 Intel IP Corporation Layer 2 relay protocols and mobility relay method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129554A1 (en) * 2019-12-24 2021-07-01 Mediatek Singapore Pte. Ltd. Group handover with delayed or omitted signalling for layer 2 sidelink relaying
CN115379120A (zh) * 2022-08-30 2022-11-22 核工业理化工程研究院 基于加速度信号的高速摄影电子触发装置
CN115379120B (zh) * 2022-08-30 2024-02-09 核工业理化工程研究院 基于加速度信号的高速摄影电子触发装置

Also Published As

Publication number Publication date
KR20190140896A (ko) 2019-12-20
EP3618497B1 (en) 2022-10-12
CN109155950A (zh) 2019-01-04
EP3618497A1 (en) 2020-03-04
US20210289401A1 (en) 2021-09-16
JP2020518140A (ja) 2020-06-18
CN108810854A (zh) 2018-11-13
EP3618497A4 (en) 2020-04-15
CN116405170A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2018196513A1 (zh) 电子设备及由电子设备执行的方法
WO2020164439A1 (zh) 用户设备、网络侧设备、无线通信方法和存储介质
KR102352471B1 (ko) 무선 통신 전자 디바이스 및 방법
US11909688B2 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
CN110419255B (zh) 通信装置和终端装置
CN110546989B (zh) 无线通信系统中的电子设备以及无线通信方法
WO2016019655A1 (zh) 设备到设备业务处理方法及装置
WO2020182067A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
JP2018519693A (ja) 無線通信装置と無線通信方法
WO2018171313A1 (zh) 电子设备以及无线通信方法
JP2018504044A (ja) 通信装置と通信方法
WO2018099237A1 (zh) 无线通信系统中的设备和无线通信方法
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2011096147A1 (ja) 無線通信システム、無線基地局および協調制御方法
US10028256B2 (en) Apparatus
WO2021238750A1 (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516993

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197011132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018790060

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018790060

Country of ref document: EP

Effective date: 20191128