WO2021238750A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021238750A1
WO2021238750A1 PCT/CN2021/094757 CN2021094757W WO2021238750A1 WO 2021238750 A1 WO2021238750 A1 WO 2021238750A1 CN 2021094757 W CN2021094757 W CN 2021094757W WO 2021238750 A1 WO2021238750 A1 WO 2021238750A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab
electronic device
base station
host
node
Prior art date
Application number
PCT/CN2021/094757
Other languages
English (en)
French (fr)
Inventor
周明拓
刘敏
Original Assignee
索尼集团公司
周明拓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 周明拓 filed Critical 索尼集团公司
Priority to EP21812783.5A priority Critical patent/EP4135471A4/en
Priority to US17/922,980 priority patent/US20230180308A1/en
Priority to CN202180026512.3A priority patent/CN115918243A/zh
Publication of WO2021238750A1 publication Critical patent/WO2021238750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, an electronic device as a user equipment in a wireless communication system, and a wireless communication system performed by a network-side device in a wireless communication system.
  • a communication method, a wireless communication method executed by a user equipment in a wireless communication system, and a computer-readable storage medium are examples of a wireless communication method.
  • the IAB donor (IAB donor) node can be connected to the core network, and the IAB node (IAB node) acting as a relay is directly or indirectly connected to the host node Thereby connecting to the core network.
  • the donor node is also called the donor base station.
  • the IAB node integrates a wireless access (Access) link and a wireless backhaul (BH) link, where the access link is the communication link between the UE and the IAB node, and the backhaul link is between the IAB nodes Or the communication link between the IAB node and the donor base station.
  • UE User Equipment
  • UE User Equipment
  • the IAB technology is more suitable for dense scenarios, reducing the burden of deploying wired transmission networks and expanding the coverage of the cell.
  • the UE can communicate through the IAB nodes that are relatively close, thereby saving energy.
  • the UE since the UE may need to be connected to the host node via one or more IAB nodes, in the case of a very long link, a relatively long time delay may be caused due to the long relay time.
  • the present disclosure expects to propose a hybrid connection method of IAB connection and direct connection to solve at least one of the above problems.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium, so as to propose a hybrid connection mode of IAB connection and direct connection, so as to utilize the advantages of both IAB connection and direct connection.
  • an electronic device including a processing circuit, configured to: connect to an IAB host through one or more integrated access and backhaul IAB nodes; and directly connect to a service of the electronic device Base station; and use the IAB connection with the IAB host or the direct connection with the serving base station to send uplink data, and use the IAB connection or the direct connection to receive downlink data.
  • an electronic device including a processing circuit, configured to directly connect to a user equipment served by the electronic device, and the user equipment may also pass one or more accesses and backhauls.
  • the integrated IAB node is connected to the IAB host; and uses the IAB connection between the user equipment and the IAB host or the direct connection between the user equipment and the electronic device to send downlink data, and uses the IAB connection or the Connect directly to receive upstream data.
  • a wireless communication method performed by an electronic device, including: connecting to an IAB host through one or more integrated access and backhaul IAB nodes, and directly connecting to the electronic device And use the IAB connection with the IAB host or the direct connection with the serving base station to send uplink data, and use the IAB connection or the direct connection to receive downlink data.
  • a wireless communication method executed by an electronic device including: directly connecting to a user device served by the electronic device, and the user device further through one or more access and backhaul
  • the integrated IAB node is connected to the IAB host; and uses the IAB connection between the user equipment and the IAB host or the direct connection between the user equipment and the electronic device to send downlink data, and uses the IAB connection or the Connect directly to receive upstream data.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • a computer program that, when executed by a computer, causes the computer to execute the wireless communication method according to the present disclosure.
  • the electronic device as a user equipment can be connected to an IAB host and a serving base station, so that an IAB connection or a direct connection can be used to send uplink data/receive downlink data.
  • the electronic device as the user equipment can flexibly choose the direct connection and the IAB connection, so that it can take advantage of the advantages of both the direct connection and the IAB connection, and take into account the requirements of network delay and energy saving.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure
  • FIGS. 2(a) and 2(b) are schematic diagrams showing the architecture of a network in which direct connection and IAB connection are maintained according to an embodiment of the present disclosure
  • Figures 3(a), 3(b) and 3(c) are schematic diagrams showing scenarios under the first architecture according to an embodiment of the present disclosure
  • 4(a) and 4(b) are schematic diagrams showing a scenario under the second architecture according to an embodiment of the present disclosure
  • Fig. 5 is a signaling flowchart showing a method for determining an IAB node and a serving base station according to an embodiment of the present disclosure
  • FIG. 6 is a signaling flowchart showing a method for maintaining a direct connection and an IAB connection under the first architecture according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flowchart showing a method for maintaining a direct connection and an IAB connection under the first architecture according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flowchart showing a method for maintaining a direct connection and an IAB connection under the second architecture according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flowchart showing a method for maintaining a direct connection and an IAB connection under the second architecture according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram showing a scenario of switching IAB hosts under the first architecture according to an embodiment of the present disclosure
  • FIG. 11 is a signaling flowchart showing a method for switching IAB hosts under the first architecture according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram showing a scenario of switching IAB parent nodes under the first architecture according to an embodiment of the present disclosure
  • FIG. 13 is a signaling flowchart showing a method for switching an IAB parent node under the first architecture according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram showing a scenario of handover of a serving base station under a second architecture according to an embodiment of the present disclosure
  • FIG. 15 is a signaling flowchart showing a method for switching a serving base station under a second architecture according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram showing a scenario of switching IAB hosts under the second architecture according to an embodiment of the present disclosure
  • FIG. 17 is a signaling flowchart showing a method for switching IAB hosts under the second architecture according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram illustrating a method of transmitting uplink data in a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure
  • 19 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure.
  • 20 is a signaling flowchart showing a method for coordinating uplink and downlink resources under the first architecture according to an embodiment of the present disclosure
  • FIG. 21 is a signaling flowchart showing a method for coordinating uplink and downlink resources under the second architecture according to an embodiment of the present disclosure
  • FIG. 22 is a schematic diagram illustrating a method of transmitting downlink data in a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure
  • FIG. 23 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • FIG. 24 is a flowchart showing a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • Fig. 25 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 26 is a block diagram showing a second example of the schematic configuration of an eNB
  • FIG. 27 is a block diagram showing an example of a schematic configuration of a smart phone.
  • FIG. 28 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that no specific details are required, and the exemplary embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • the present disclosure expects to propose a hybrid connection mode of IAB connection and direct connection, so that user equipment/base station equipment can flexibly select IAB connection or direct connection to send uplink data/downlink data, thereby taking into account the requirements of time delay and energy saving.
  • the wireless communication system according to the present disclosure may be a 5G NR communication system. Further, IAB technology can be applied in the wireless communication system.
  • the wireless communication system according to the present disclosure may include one or more IAB donor nodes, one or more IAB nodes, one or more UEs, and serving base stations for each UE.
  • the IAB node and the IAB host node according to the present disclosure may be network side devices.
  • the network side device may be a base station device deployed by an operator, for example, an eNB, or a gNB (a base station in the 5th generation communication system).
  • the IAB node according to the present disclosure may also be an electronic device that is independent of the base station device and has partial functions of the base station device.
  • the IAB node can have the functions of sending and receiving data, and can be connected to the UE through an access link, and connected to other IAB nodes or host nodes through a backhaul link.
  • the serving base station according to the present disclosure may be an eNB or a gNB.
  • the IAB host node and the serving base station according to the present disclosure may be located on a satellite device, and the satellite device may be a non-transparent satellite device with data processing capabilities.
  • the IAB host node and the serving base station may also be located in a ground station connected to a transparent satellite device that does not have data processing capabilities, and the ground station is responsible for processing the data forwarded by the transparent satellite device.
  • the wireless communication system according to the present disclosure may include NTN (Non-terrestrial network, non-terrestrial network) and TN (Terrestrial network, terrestrial network).
  • the IAB host node located on the non-transparent satellite device or the ground station connected to the transparent satellite device can be connected to the core network, and the IAB node located on the ground can be directly or indirectly connected to the host node Connect to connect to the core network.
  • the UE is connected to the host node through one or more IAB nodes located on the ground. In this way, since the IAB node is located on the ground and is relatively close to the UE, the energy consumption of the UE can be greatly reduced. However, because the satellite equipment is far away from the UE, the UE's time delay increases. Therefore, applying the hybrid connection method of IAB connection and direct connection proposed in the present disclosure in the NTN network has a more obvious effect.
  • the UE may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) .
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 here can be used as a user equipment in a wireless communication system.
  • the electronic device 100 may include a connection unit 110 and a communication unit 120.
  • each unit of the electronic device 100 may be included in the processing circuit.
  • the electronic device 100 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • connection unit 110 may make the electronic device 100 connect to an IAB host through one or more IAB nodes, and make the electronic device 100 directly connect to the serving base station of the electronic device 100.
  • the electronic device 100 may use an IAB connection with an IAB host or a direct connection with a serving base station to transmit uplink data through the communication unit 120, and use an IAB connection or a direct connection to receive downlink data.
  • the electronic device 100 can be connected to both the IAB host and the serving base station, so that the IAB connection or the direct connection can be used to send uplink data/receive downlink data.
  • the electronic device 100 can flexibly choose the direct connection and the IAB connection, so that it can take advantage of the advantages of both the direct connection and the IAB connection, and take into account the requirements of network delay and energy saving.
  • two network architectures for maintaining direct connection and IAB connection are proposed.
  • the IAB host and the serving base station of the electronic device 100 are located in the same device. That is, the electronic device 100 can be connected to the IAB host through one or more IAB nodes. Since the IAB host is also the serving base station of the electronic device 100, the electronic device 100 can also be directly connected to the serving base station.
  • the IAB host and the serving base station of the electronic device 100 are located in different devices. That is, the electronic device 100 may be connected to an IAB host through one or more IAB nodes, and the electronic device 100 may also be directly connected to a serving base station different from the IAB host.
  • Fig. 2(a) is a schematic diagram showing a first architecture of a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure.
  • the UE is connected to an IAB host through IAB node 1 and IAB node 2, and the IAB host can be connected to NGC (Next Generation Core, 5G core network).
  • NGC Next Generation Core, 5G core network
  • the IAB host is the serving gNB of the UE, so the UE can directly connect to the serving gNB.
  • Fig. 2(b) is a schematic diagram showing a second architecture of a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure.
  • the UE is connected to an IAB host through IAB node 1 and IAB node 2, and the IAB host can be connected to NGC. Further, the UE can be directly connected to the serving gNB, and the serving gNB can also be connected to the NGC.
  • both the IAB host and the serving gNB are base station equipment, they can communicate through the Xn interface.
  • FIG. 2(a) and FIG. 2(b) show an example in which the UE is connected to the IAB host through two IAB nodes.
  • the number of IAB nodes may not be limited to two.
  • gNB will be used as an example to illustrate the serving base station.
  • FIG. 3(a), 3(b), and 3(c) are schematic diagrams showing scenarios under the first architecture according to an embodiment of the present disclosure.
  • both UE1 and UE2 may include the electronic device 100, and the serving gNB and the IAB host are the same device.
  • the serving gNB (IAB host) is located on a non-transparent satellite device.
  • UE1 is connected to the IAB host via IAB node 1 and IAB node 2, and can be directly connected to the serving gNB.
  • UE2 is connected to the IAB host through IAB node 2, and can be directly connected to the serving gNB.
  • the serving gNB (IAB host) is located on the ground base station equipment connected to the transparent satellite equipment.
  • UE1 is connected to the transparent satellite device via IAB node 1 and IAB node 2, the transparent satellite device is connected to the IAB host on the ground, and UE1 can be directly connected to the transparent satellite device, and the transparent satellite device is connected to the serving gNB on the ground.
  • UE2 is connected to the transparent satellite device via the IAB node 2, which is connected to the IAB host on the ground, and UE2 can be directly connected to the transparent satellite device, and the transparent satellite device is connected to the serving gNB on the ground.
  • the serving gNB (IAB host) is located on the ground base station equipment connected to the transparent satellite equipment, and different transparent satellite equipment can be connected to the same ground base station equipment.
  • UE1 is connected to the transparent satellite device 2 via IAB node 1 and IAB node 2.
  • the transparent satellite device 2 is connected to the IAB host on the ground, and UE1 can be directly connected to the transparent satellite device 1, and the transparent satellite device 1 is connected to the service gNB on the ground .
  • UE2 is connected to transparent satellite device 2 via IAB node 2, and transparent satellite device 2 is connected to an IAB host on the ground, and UE2 can be directly connected to transparent satellite device 2, and transparent satellite device 2 is connected to a serving gNB on the ground.
  • the base station equipment therefore belongs to the first architecture where the serving base station and the IAB host are the same.
  • Figures 4(a) and 4(b) are schematic diagrams showing scenarios under the second architecture according to an embodiment of the present disclosure; in Figures 4(a) and 4(b), the UE may include electronic The device 100, and the serving gNB and the IAB host are different devices.
  • the serving gNB is located on the non-transparent satellite device, and the IAB host is also located on the non-transparent satellite device.
  • the UE is connected to the IAB host via the IAB node 1 and the IAB node 2, and can be directly connected to the serving gNB.
  • the IAB host and the serving gNB can communicate through the Xn interface.
  • the serving gNB is located in the ground base station equipment connected to the transparent satellite equipment, and the IAB host is also located in the ground base station equipment connected to the transparent satellite equipment.
  • the UE is connected to the transparent satellite device 1 via the IAB node 1 and the IAB node 2.
  • the transparent satellite device 1 is connected to the gNB on the ground as the IAB host, and the UE can be directly connected to the transparent satellite device 2, and the transparent satellite device 2 can be connected to the ground On the gNB as serving gNB.
  • the serving gNB on the ground and the gNB serving as the IAB host on the ground can communicate through the Xn interface.
  • the connection where the UE connects to the IAB host through one or more IAB nodes is also referred to as an IAB connection
  • the connection between the UE and the serving base station is also referred to as a direct connection. That is, according to an embodiment of the present disclosure, the UE can maintain both direct connection and IAB connection.
  • each of the direct connection and the IAB connection can provide uplink transmission and downlink transmission.
  • the electronic device 100 may further include a generating unit 130 and a type determining unit 140.
  • the generating unit 130 may generate request information, which is used to send request information to the serving base station or the IAB node that is the parent node of the electronic device 100 (the parent node refers to the IAB node directly connected to the electronic device 100) Request identification information or type information. Further, the electronic device 100 may send the request information generated by the generating unit 130 to the serving base station or the IAB node that is the parent node of the electronic device 100 through the communication unit 120. According to an embodiment of the present disclosure, the electronic device 100 may carry the request information through Msg. 3 (message 3) of the random access procedure.
  • Msg. 3 messages 3) of the random access procedure.
  • the electronic device 100 may receive response information from a serving base station or an IAB node that is the parent node of the electronic device 100 through the communication unit 120, and the response information may include the serving base station or the IAB node that is the parent node of the electronic device 100 Identification information or type information of the node. According to an embodiment of the present disclosure, the electronic device 100 may receive the response information through Msg. 4 (message 4) of the random access procedure.
  • the type determining unit 140 may determine whether the device sending the response information is the serving base station or the IAB node according to the identification information or the type information.
  • the type information may include the type of the device, and the type includes the serving base station and the IAB node.
  • one bit may be used to indicate the type in the response information, so that the type determining unit 140 may determine, according to the type information, whether the device sending the response information is the serving base station or the IAB node.
  • the type determining unit 140 may determine whether the device sending the response information is the serving base station or the IAB node according to the identification information.
  • the electronic device 100 can also set a timer, and can start the timer when sending the request information, and if the response message is not received before the timer expires, the electronic device 100 can give up access The IAB node or serving base station.
  • the electronic device 100 may generate request information after establishing a connection with an IAB node or a serving base station as a parent node, so as to determine whether the connected device is an IAB node or a serving base station.
  • the electronic device 100 may also generate request information in the process of establishing a connection with an IAB node or a serving base station as a parent node, so as to determine whether the device it is connecting to is an IAB node or a serving base station.
  • Fig. 5 is a signaling flowchart showing a method of determining an IAB node and a serving base station according to an embodiment of the present disclosure.
  • the UE sends request information to the IAB node or the serving gNB as the parent node to request the type of device.
  • the IAB node or the serving gNB sends identification information or type information to the UE.
  • the UE determines whether the device sending the response information is an IAB node or a serving gNB according to the identification information or the type information.
  • the electronic device 100 can maintain both the direct connection and the IAB connection, the electronic device 100 can access the serving base station or the parent node through a random access process. However, after the electronic device 100 accesses the serving base station or the parent node, it is not sure which device is connected. Therefore, the electronic device 100 can determine whether it is connected to an IAB node or a serving base station by sending a request information query.
  • the connecting unit 110 may first connect the electronic device 100 to the IAB host through one or more IAB nodes. That is, the electronic device 100 may first connect to the IAB node as the parent node.
  • the information of the IAB host may be received from the IAB node that is the parent node of the electronic device 100 through the communication unit 120, and the connecting unit 110 It can be determined that the IAB host is the serving base station of the electronic device 100. Further, according to the information of the IAB host, the connecting unit 110 may directly connect the electronic device 100 to the IAB host.
  • Fig. 6 is a signaling flowchart showing a method for maintaining a direct connection and an IAB connection under the first architecture according to an embodiment of the present disclosure.
  • the UE may include the electronic device 100.
  • step S601 the IAB node 2 establishes a connection with the IAB host.
  • step S602 the IAB node 1 and the IAB node 2 establish a connection.
  • step S603 the IAB node 2 sends information about the IAB host to the IAB node 1.
  • the IAB node 1 replies to the IAB node 2 to confirm receipt of the information about the IAB host from the IAB node 2.
  • the UE establishes a connection with the IAB node 1.
  • step S606 the IAB node 1 sends information about the IAB host to the UE.
  • step S607 the UE replies to the IAB node 1 to confirm receipt of the information about the IAB host from the IAB node 1.
  • step S608 the UE determines the IAB host as the serving gNB, and directly establishes a connection with the serving gNB.
  • step S609 the UE sends a message to the IAB node 1 to indicate that the UE has successfully accessed the serving gNB.
  • step S610 the IAB node 1 sends a message to the IAB node 2 to indicate that the UE successfully accesses the serving gNB.
  • step S611 the UE sends information about the IAB node 1 to the serving gNB to notify the serving gNB that the IAB node 1 is the parent node of the UE.
  • the UE can connect to the IAB host through the IAB node 1 and the IAB node 2, and directly connect to the serving gNB.
  • the UE in the first architecture, can first connect to the IAB host through one or more IAB nodes, and then directly connect to the serving base station, thereby establishing both a direct connection and an IAB connection.
  • connection unit 110 may cause the electronic device 100 to first establish a direct connection with the serving base station. That is, the electronic device 100 is directly connected to the serving base station first.
  • the electronic device 100 may receive the recommendation information of the IAB node that is the parent node of the electronic device 100 from the serving base station through the communication unit 120.
  • the serving base station may determine the IAB node recommended as the parent node according to the location of the IAB node and the available bandwidth of the IAB node. For example, the serving base station may determine the IAB node closest to the electronic device 100 as the recommended parent node, and may also determine the IAB node with the largest available bandwidth as the recommended parent node.
  • the connection unit 110 may determine the IAB node as the parent node according to the recommendation information. For example, the connection unit 110 may determine the IAB node included in the recommendation information as the parent node. Further, the connecting unit 110 may connect the electronic device 100 to the IAB node as the parent node.
  • FIG. 7 is a signaling flowchart illustrating a method of maintaining a direct connection and an IAB connection under the first architecture according to an embodiment of the present disclosure.
  • the UE may include the electronic device 100.
  • the UE establishes a direct connection with the serving gNB.
  • the serving gNB sends information about the UE to the IAB node 2.
  • the IAB node 2 sends information about the UE to the IAB node 1. In this way, each IAB node can know the information of the UE.
  • the serving gNB sends recommendation information about the parent node to the UE.
  • step S705 the UE determines that the IAB node 1 is the parent node according to the recommendation information, and establishes a connection with the IAB node 1.
  • the UE can connect to the IAB host through the IAB node 1 and the IAB node 2, and directly connect to the serving gNB.
  • the UE in the first architecture, can first directly connect to the serving base station, and then connect to the IAB node as the parent node, thereby establishing both the direct connection and the IAB connection.
  • the connecting unit 110 may first connect the electronic device 100 to the IAB host through one or more IAB nodes. That is, the electronic device 100 may first be connected to the IAB node as the parent node.
  • the electronic device 100 may receive information about the IAB host from the IAB node that is the parent node of the electronic device 100 through the communication unit 120. Further, the connecting unit 110 may determine a serving base station different from the IAB host according to the information of the IAB host. That is, the electronic device 100 can determine the serving base station, which is different from the IAB host.
  • the connecting unit 110 may directly connect the electronic device 100 to the serving base station.
  • information about the serving base station may be sent to the IAB host through one or more IAB nodes for the IAB host to establish a connection with the serving base station.
  • the IAB host does not need to perform operations.
  • the IAB host can establish an Xn interface connection with the serving base station. In this way, uplink and/or downlink transmission can be realized through the IAB connection.
  • FIG. 8 is a signaling flowchart illustrating a method for maintaining a direct connection and an IAB connection under the second architecture according to an embodiment of the present disclosure.
  • the UE may include the electronic device 100.
  • the UE accesses the IAB node 1.
  • the IAB node 1 sends information about the IAB host to the UE.
  • the UE determines a base station different from the IAB host as the serving gNB, and directly accesses the serving gNB.
  • the UE sends information about the serving gNB to the IAB node 1.
  • the IAB node 1 confirms that it has received information about the serving gNB.
  • step S806 the IAB node 1 sends to the IAB node 2 information about the serving gNB of the UE.
  • step S807 the IAB node 2 confirms to the IAB node 1 that the information about the serving gNB of the UE is received.
  • step S808 the IAB node 2 sends information about the serving gNB of the UE to the IAB host.
  • step S809 the IAB host confirms to the IAB node 2 that the information about the serving gNB of the UE is received.
  • step S810 the IAB host establishes an Xn interface with the serving gNB according to the information about the UE's serving gNB.
  • step S811 the IAB host sends information about the UE to the serving gNB to notify the serving gNB of the IAB host of the UE.
  • step S812 the serving gNB confirms to the IAB host that it has received information about the UE.
  • a connection has been established between the IAB node 1 and the IAB node 2, and the IAB node 2 and the IAB host.
  • the UE is connected to the IAB host through the IAB node 1 and the IAB node 2, and is directly connected to the serving gNB.
  • step S810 can be omitted, and the IAB host directly notifies the serving gNB of information about the UE.
  • the UE can first connect to the IAB node as the parent node, and then connect to the serving gNB.
  • connection unit 110 may first directly connect the electronic device 100 to the serving base station.
  • the connection unit 110 may determine the IAB node that is the parent node of the electronic device 100.
  • the IAB host of the parent node is different from the serving base station. That is, the electronic device 100 can determine the parent node.
  • the connecting unit 110 may determine a suitable IAB node from the surrounding IAB nodes as the candidate parent node.
  • the connection unit 110 may send request information to the candidate parent node to request the IAB host of the candidate parent node.
  • the connecting unit 110 may use the candidate parent node as the parent node.
  • the connection unit 110 may re-determine other candidate parent nodes until a parent node with a different IAB host from the serving base station is found.
  • connection unit 110 may connect the electronic device 100 to the IAB node as the parent node.
  • the electronic device 100 may send information about the serving base station to the IAB host through one or more IAB nodes through the communication unit 120 for the IAB host and service
  • the base station establishes a connection.
  • FIG. 9 is a signaling flowchart illustrating a method for maintaining a direct connection and an IAB connection under the second architecture according to an embodiment of the present disclosure.
  • the UE may include the electronic device 100.
  • the UE establishes a connection with the serving gNB.
  • the UE regards the IAB node 1 whose IAB host is not serving gNB as the parent node, and accesses the IAB node 1.
  • the UE sends information about the serving gNB to the IAB node 1.
  • the IAB node 1 confirms that it has received information about the serving gNB.
  • step S905 the IAB node 1 sends to the IAB node 2 information about the serving gNB of the UE.
  • step S906 the IAB node 2 confirms to the IAB node 1 that the information about the serving gNB of the UE is received.
  • step S907 the IAB node 2 sends information about the serving gNB of the UE to the IAB host.
  • step S908 the IAB host confirms to the IAB node 2 that the information about the serving gNB of the UE is received.
  • step S909 the IAB host establishes an Xn interface with the serving gNB according to the information about the UE's serving gNB.
  • step S910 the IAB host sends information about the UE to the serving gNB to notify the serving gNB of the IAB host of the UE.
  • the serving gNB confirms to the IAB host that it has received information about the UE.
  • a connection has been established between the IAB node 1 and the IAB node 2, and the IAB node 2 and the IAB host.
  • the UE is connected to the IAB host through the IAB node 1 and the IAB node 2, and is directly connected to the serving gNB.
  • step S909 can be omitted, and the IAB host directly notifies the serving gNB of information about the UE.
  • the UE can first connect to the serving gNB, and then connect to the IAB node as the parent node.
  • the electronic device 100 may first establish a direct connection and then an IAB connection, or may establish an IAB connection first and then establish a direct connection.
  • the electronic device 100 when the electronic device 100 scans the IAB node as the parent node, the electronic device 100 can first establish an IAB connection; if it scans the serving base station first, the electronic device 100 can Establish a direct connection first.
  • the electronic device 100 can select the method of establishing both the direct connection and the IAB connection according to the scanning process.
  • the network when laying out the network, the network can be laid out as framework one or the network can be laid out in framework two.
  • the operation of the generating unit 130 and the type determining unit 140 described above can be used to determine whether to connect to an IAB node or a serving base station. .
  • the electronic device 100 may be in a motion state.
  • the IAB host and the serving base station may also be in a moving state.
  • the IAB host and serving base station may change. Therefore, handover may occur. In the present disclosure, there may be handovers in the following situations.
  • the IAB host in the IAB connection of the electronic device 100 is switched.
  • the parent node in the IAB connection of the electronic device 100 is switched.
  • the serving base station in the direct connection of the electronic device 100 is switched.
  • FIG. 10 is a schematic diagram showing a scenario of switching the IAB host under the first architecture according to an embodiment of the present disclosure.
  • the UE may include an electronic device 100, and the IAB host is the same as the serving gNB and is located on a non-transparent satellite device.
  • the UE is connected to the current IAB host through the IAB node 1 and the IAB node 2.
  • the current IAB host is also the current serving gNB, and the UE is directly connected to the current serving gNB. Due to the movement of the satellite equipment or the change in channel quality, the IAB host is switched, that is, the IAB host of the UE is switched from the current IAB host to the new IAB host.
  • the IAB node 2 can trigger the handover. For example, when the IAB node 2 finds that the distance of the current IAB host becomes longer or the signal from the current IAB host becomes worse, the IAB node 2 searches for a new IAB host. In this process, since the network is the first architecture, it is necessary to ensure that the new IAB host is also the new service gNB.
  • Figure 10 shows a situation where the IAB host and the serving gNB are the same and are located on a non-transparent satellite device.
  • the IAB host is the same as the serving gNB and located at the ground station connected to the transparent satellite device
  • IAB node 2 switches to the new transparent satellite device, and the ground station connected to the new transparent satellite device is the same as the transparent satellite before the switch
  • the ground station connected to the equipment is the same, it is considered that no IAB host switch has occurred; if IAB node 2 switches to a new transparent satellite device, and the ground station connected to the new transparent satellite device is connected to the transparent satellite device before the switch
  • the ground station is different, it is considered that a switch of the IAB host has occurred.
  • the ground station connected to the transparent satellite device is the IAB host, and it is determined whether the IAB host switch has occurred according to whether the ground station has changed.
  • the electronic device 100 can receive the switched IAB host information from the IAB node that is the parent node of the electronic device 100 through the communication unit 120 . Further, the connecting unit 110 may determine the switched IAB host as the new serving gNB. Further, according to the information of the switched IAB host, the connecting unit 110 may directly connect the electronic device 100 to the switched IAB host. Thus, the electronic device 100 is connected to the switched IAB host through one or more IAB nodes, and the switched IAB host is also the switched serving gNB, and the electronic device 100 can be directly connected to the switched serving gNB.
  • FIG. 11 is a signaling flowchart illustrating a method for switching IAB hosts under the first architecture according to an embodiment of the present disclosure.
  • the IAB node 2 switches to the new IAB host.
  • the IAB node 2 sends information about the new IAB host to the IAB node 1.
  • the IAB node 2 confirms to the IAB node 1 that it has received the information about the new IAB host.
  • the IAB node 1 sends information about the new IAB host to the UE.
  • the UE confirms to the IAB node 1 that the information about the new IAB host is received.
  • the IAB node directly connected to the new IAB host notifies the UE of the information about the new IAB host through the IAB connection.
  • the UE confirms the new IAB host as the new serving gNB, and directly connects to the new serving gNB.
  • the UE sends to the IAB node 1 information that it has successfully switched to the new serving gNB.
  • the IAB node 1 sends to the IAB node 2 information that the UE has successfully switched to the new serving gNB.
  • the UE sends information about the IAB node 1 to the new IAB host to notify the new IAB host that its parent node is the IAB node 1.
  • the IAB host is handed over, and since the IAB host is also the serving base station, the serving base station is also handed over. After the handover, the UE still maintains both direct connection and IAB connection.
  • FIG. 12 is a schematic diagram showing a scenario of switching an IAB parent node under the first architecture according to an embodiment of the present disclosure.
  • the UE may include the electronic device 100, and the IAB host is the same as the serving gNB and located on the non-transparent satellite device.
  • the UE is connected to the IAB host through the IAB node 1 and the IAB node 2.
  • the IAB host is also a serving gNB, and the UE is directly connected to the serving gNB. Due to the movement of the UE or the change in channel quality, the UE can switch the parent node. This handover can be triggered by the UE.
  • the UE can search for a new IAB node as the parent node.
  • the parent node of the UE is switched from IAB node 1 to IAB node 3. That is, after the handover, the UE is connected to the IAB host through the IAB node 3 and the IAB node 2.
  • the network is the first architecture, it is necessary to ensure that the IAB host of the parent node after the handover is the same as the serving gNB of the UE.
  • the connection unit 110 may determine the IAB node that is the parent node of the electronic device 100 after the handover.
  • the IAB host of the IAB node as the parent node after the handover is the same as the serving base station of the electronic device 100.
  • the manner in which the connection unit 110 determines the parent node after switching may be the same as the manner in which the connection unit 110 determines the parent node to be accessed.
  • the connecting unit 110 may determine a suitable IAB node from the surrounding IAB nodes as the candidate parent node after the handover. After the connection unit 110 determines the candidate switched parent node, it may send a request message to the candidate switched parent node to request the IAB host of the candidate switched parent node.
  • the connection unit 110 may use the candidate switched parent node as the parent node.
  • the connecting unit 110 may re-determine other candidate parent nodes after the handover until a parent node with a different IAB host and the serving base station is found.
  • the connecting unit 110 may connect the electronic device 100 to the parent node after switching. Further, the electronic device 100 may send the switched information of the IAB node as the parent node to the serving base station through the communication unit 120. Thus, in the case where the parent node is switched, the electronic device 100 can connect to the IAB host through the switched parent node.
  • FIG. 13 is a signaling flowchart showing a method for switching an IAB parent node under the first architecture according to an embodiment of the present disclosure.
  • the UE in step S1301, the UE is originally connected to the IAB node 1.
  • the UE determines that the parent node is switched, and selects the IAB node 3 as the candidate parent node, and the UE may send connection request information to the IAB node 3.
  • the IAB node 3 does not know the IAB host of the IAB node 3, it needs to request information about the IAB host from its parent node.
  • the IAB node 2 sends information about the IAB host to the IAB node 3.
  • step S1303 can be omitted.
  • the IAB node 3 sends information about the IAB host of the IAB node 3 to the UE.
  • the UE confirms to the IAB node 3 that the information about the IAB host of the IAB node 3 is received, and determines that the IAB host of the IAB node 3 is the same as the serving gNB of the UE.
  • the UE switches to the IAB node 3.
  • step S1307 the UE sends the information of the IAB node 3 to the IAB host to notify the IAB host that its parent node is switched to the IAB node 3.
  • the UE may select an appropriate parent node after the handover by receiving the IAB host of the IAB node from the IAB node and judging whether the IAB host is the same as the serving gNB of the UE.
  • the UE may also carry the UE's serving gNB information in the connection request information, so that the IAB node 3 can determine whether the serving gNB is the same as the IAB host of the IAB node 3.
  • the IAB node 3 can send the UE the information agreeing to access; when the UE’s serving gNB is different from the IAB node 3’s IAB host, the IAB node 3 It is possible to send a message denying access to the UE. Therefore, after the parent node of the UE is switched, the UE can connect to the IAB host through the new parent node.
  • FIG. 14 is a schematic diagram showing a scenario of handover of a serving base station under the second architecture according to an embodiment of the present disclosure.
  • the UE may include an electronic device 100, the IAB host and the serving gNB of the UE are both located on the non-transparent satellite device, and the IAB host and the serving gNB are different.
  • the UE is connected to the IAB host through the IAB node 1 and the IAB node 2, and is directly connected to the current serving gNB, and the current serving gNB is connected to the IAB host through the Xn interface. Due to the movement of the serving gNB or the change in channel quality, the UE needs to switch to a new serving gNB.
  • This process can be triggered by the UE. For example, when the UE finds that it is far away from the current serving gNB or the signal from the current serving gNB becomes worse, the UE can search for a new serving gNB. Since the network is the second architecture, a new service gNB is required to establish an Xn interface connection with the IAB host.
  • Figure 14 shows a situation where the serving gNB is located on a non-transparent satellite device.
  • the serving gNB is located in the ground station connected to the transparent satellite device
  • the transparent satellite device connected to the UE changes, and the ground station connected to the new transparent satellite device is the same as the ground station connected to the transparent satellite device before the handover, then It is considered that no handover of serving gNB has occurred; if the transparent satellite device connected to the UE has changed, and the ground station connected to the new transparent satellite device is different from the ground station connected to the transparent satellite device before the handover, it is considered that a handover of serving gNB has occurred .
  • the ground station connected to the transparent satellite device is the serving gNB of the UE, and whether the serving gNB is switched is judged based on whether the ground station changes.
  • the connection unit 110 may determine the serving base station after the handover.
  • the electronic device 100 may determine a new serving base station according to the signal quality of various surrounding serving base stations.
  • the connecting unit 110 may directly connect the electronic device 100 to the serving base station after the handover.
  • the electronic device 100 may send the information of the switched serving base station to the IAB host through one or more IAB nodes through the communication unit 120 for the IAB host to establish a connection with the switched serving base station.
  • FIG. 15 is a signaling flow chart showing a method for switching a serving base station under the second architecture according to an embodiment of the present disclosure.
  • the UE switches to a new serving gNB.
  • the UE sends information about the new serving gNB to the IAB host through the IAB node 1 and the IAB node 2.
  • the IAB host confirms to the UE that it has received information about the new serving gNB.
  • the IAB host establishes a connection with the new serving gNB.
  • step S1505 the new serving gNB sends the connection status between the IAB host and the new serving gNB to the UE to indicate that a connection has been established between the IAB host and the new serving gNB.
  • step S1506 the UE confirms to the new serving gNB that the connection state between the IAB host and the new serving gNB is received. As a result, the UE switches to the new serving gNB, and the new serving gNB establishes a connection with the IAB host.
  • FIG. 16 is a schematic diagram showing a scenario of switching the IAB host under the second architecture according to an embodiment of the present disclosure.
  • the UE may include an electronic device 100, the IAB host and the serving gNB of the UE are both located on the non-transparent satellite device, and the IAB host and the serving gNB are different.
  • the UE is connected to the current IAB host through the IAB node 1 and the IAB node 2, and the UE is directly connected to the serving gNB, and the serving gNB is connected to the current IAB host through the Xn interface. Due to the movement of the IAB host or the change in channel quality, the IAB node 2 switches to the new IAB host.
  • This process can be triggered by the IAB node 2. For example, if the IAB node 2 finds that it is far away from the current IAB host or the signal quality from the current IAB host is not good, the IAB node 2 can search for a new IAB host. In this process, because the network is under the second architecture, it is necessary to ensure that the service gNB establishes a connection with the new IAB host.
  • Figure 16 shows a situation where the IAB host is located on a non-transparent satellite device.
  • the IAB host is located in the ground station connected to the transparent satellite device.
  • the transparent satellite device connected to IAB node 2 changes, and the ground station connected to the new transparent satellite device is the same as the ground station connected to the transparent satellite device before the handover . It is considered that no IAB host switching has occurred; if the transparent satellite device connected to IAB node 2 has changed, and the ground station connected to the new transparent satellite device is different from the ground station connected to the transparent satellite device before switching, it is considered that it has occurred Switch of IAB host.
  • the ground station connected to the transparent satellite device is the IAB host, and whether the IAB host has been switched is determined by whether the ground station has changed.
  • the electronic device 100 may receive the switched IAB host information from the IAB node that is the parent node of the electronic device 100 through the communication unit 120.
  • the electronic device 100 may use the direct connection with the serving base station through the communication unit 120 to send the information of the IAB host after the handover to the serving base station for the establishment of the service base station and the IAB host after the handover. connect.
  • FIG. 17 is a signaling flowchart showing a method for switching IAB hosts under the second architecture according to an embodiment of the present disclosure.
  • the IAB node 2 switches to the new IAB host.
  • the IAB node 2 sends information about the new IAB host to the IAB node 1.
  • the IAB node 1 sends information about the new IAB host to the UE.
  • the UE confirms that it has received the information about the new IAB host.
  • the UE directly sends information about the new IAB host to the serving gNB.
  • step S1706 the serving gNB establishes a connection with the new IAB host according to the information about the new IAB host.
  • the serving gNB sends the connection status between the new IAB host and the serving gNB to the UE to indicate that a connection has been established between the new IAB host and the serving gNB.
  • step S1708 the UE confirms to the serving gNB that the connection status between the new IAB host and the serving gNB is received. As a result, the UE switches to the new IAB host, and the serving gNB establishes a connection with the new IAB host.
  • the UE can still maintain the direct connection and the IAB connection at the same time.
  • each of the direct connection and the IAB connection can provide uplink transmission and downlink transmission. That is to say, according to the embodiments of the present disclosure, any one of the following transmission methods can be flexibly adopted: IAB connection is used to transmit uplink data and IAB connection is used to transmit downlink data; direct connection is used to transmit uplink data and direct connection is used to transmit data. Transmit downlink data; use IAB connection to transmit uplink data and use direct connection to transmit downlink data; according to use direct connection to transmit uplink data and use IAB connection to transmit downlink data.
  • the electronic device 100 may further include a selection unit 150 for selecting a connection for sending uplink data, that is, determining whether to use an IAB connection or a direct connection to send uplink data.
  • the selection unit 150 may preferentially select an IAB connection to send uplink data.
  • IAB connection is the default way to send upstream data.
  • the selection unit 150 may determine whether there is a resource suitable for sending uplink data in the IAB connection. Further, when there is a resource suitable for sending uplink data in the IAB connection, the selection unit 150 may use the IAB connection to send the uplink data.
  • the IAB host or parent node of the electronic device 100 can allocate resources for the electronic device 100 to send uplink data using the IAB connection.
  • the existence of resources suitable for sending uplink data in the IAB connection may include: the IAB host or parent node allocates resources for the electronic device 100 to use the IAB connection to send uplink data, and according to the QoS requirements, the electronic device 100 can map the uplink data to On the right resources.
  • the selection unit 150 can use the IAB connection to send uplink data.
  • the selection unit 150 may determine to use the direct connection to send the uplink data.
  • the selection unit 150 may also determine whether there is a resource suitable for sending uplink data in the direct connection.
  • the existence of resources suitable for sending uplink data in a direct connection may include: the serving base station allocates resources for the electronic device 100 to send uplink data using the direct connection, and the electronic device 100 can map the uplink data to appropriate resources according to QoS requirements. superior.
  • the selection unit 150 can use a direct connection to send uplink data.
  • the electronic device 100 when there is no resource suitable for sending uplink data in the direct connection, the electronic device 100 can discard the uplink data.
  • FIG. 18 is a schematic diagram illustrating a method of transmitting uplink data in a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure.
  • the electronic device 100 maps the uplink data to the resource of the IAB connection according to the QoS requirements.
  • the electronic device 100 determines whether the uplink data is successfully mapped to the resource of the IAB connection. If it is, the uplink data is sent through the IAB connection. If not, the electronic device 100 maps the uplink data to the directly connected resources according to the QoS requirements.
  • the electronic device 100 determines whether the uplink data is successfully mapped to the directly connected resource. If it is, the upstream data is sent through the direct connection. If not, the electronic device 100 discards the data.
  • the electronic device 100 can flexibly select IAB connection or direct connection to transmit uplink data. Further, the electronic device 100 can use the IAB connection by default, so as to expand the cell coverage as much as possible and save energy consumption. When the IAB connection cannot meet the QoS requirements, a direct connection can be used to reduce the delay and ensure the QoS requirements.
  • the IAB host and the serving base station are the same; in the second architecture, the IAB host and the serving base station are different.
  • the electronic device 100 can maintain both the IAB connection and the direct connection.
  • the electronic device 100 can confirm whether it is connected to an IAB node or a serving base station by sending request information.
  • both IAB connection and direct connection can still be guaranteed. In this way, the electronic device 100 can flexibly select the IAB connection and the direct connection to send uplink data, so that it can take advantage of the advantages of both the direct connection and the IAB connection, and take into account the requirements of network delay and energy saving.
  • FIG. 19 is a block diagram showing the structure of an electronic device 1900 in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 1900 here may be used as a network side device, specifically a base station device.
  • the electronic device 1900 may include a connection unit 1910 and a communication unit 1920.
  • each unit of the electronic device 1900 may be included in the processing circuit. It should be noted that the electronic device 1900 may include one processing circuit or multiple processing circuits. Further, the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • connection unit 1910 may directly connect the electronic device 1900 to the user equipment served by the electronic device 1900.
  • the user equipment is also connected to the IAB host through one or more IAB nodes.
  • the electronic device 1900 may use the IAB connection between the user equipment and the IAB host or the direct connection between the user equipment and the electronic device 1900 through the communication unit 1920 to send downlink data, and use the IAB connection or the direct connection to receive uplink data .
  • the electronic device 1900 since the user equipment can maintain both the direct connection and the IAB connection, the electronic device 1900 can flexibly select the method of sending downlink data, thereby being able to use the direct connection and the IAB connection.
  • the advantages of both take into account the requirements of network delay and energy-saving requirements.
  • the electronic device 1900 may receive request information from the user device through the communication unit 1920, the request information requesting identification information or type information of the electronic device 1900.
  • the electronic device 1900 may further include a generating unit 1930 for generating response information, the response information including identification information or type information of the electronic device 1900. Further, the electronic device 1900 may send response information to the user equipment through the communication unit 1920. In this way, the user equipment can determine whether the electronic device 1900 is a serving base station or an IAB node according to the identification information or type information of the electronic device 1900.
  • the electronic device 1900 and the user equipment have the same IAB host.
  • the IAB host of the electronic device 1900 is different from that of the user equipment.
  • the electronic device 1900 may further include a generating unit 1940.
  • the generating unit 1940 can generate the recommendation information of the IAB node that is the parent node of the user equipment. For example, the electronic device 1900 may determine the IAB node recommended as the parent node according to the location of the IAB node and the available bandwidth of the IAB node. As an example, the electronic device 1900 may determine the IAB node closest to the user equipment as the recommended parent node, and may also determine the IAB node with the largest available bandwidth as the recommended parent node. Further, the generating unit 1940 may include the identification information of the recommended parent node in the recommendation information, and send the recommendation information to the user equipment through the communication unit 1920. Thus, the user equipment can determine the parent node to be connected to according to the recommendation information.
  • the connection unit 1910 can also establish a connection with the IAB host.
  • the electronic device 1900 may determine that the IAB host of the user equipment is the IAB host according to the notification information from the IAB host.
  • the notification information may include the identification information of the user equipment, so that the electronic device 1900 can determine that the user equipment also has an IAB connection with the IAB host.
  • the user equipment when the user equipment has only one radio frequency for uplink transmission and downlink transmission, that is, the user equipment uses a half-duplex mode to work, it can be considered that the user equipment uses an IAB connection to send uplink data, and Use direct connection to receive downstream data. In this way, the user equipment can use one or more IAB nodes to send uplink data, so the power consumption of the user equipment can be greatly reduced.
  • the user equipment receives downlink data through a direct connection, which can greatly reduce the time delay. In this case, since the user equipment cannot receive data and send data at the same time, the resources used by the user equipment for sending uplink data and the resources used for receiving downlink data need to be orthogonal in time.
  • the electronic device 1900 may further include an allocation unit 1950, configured to allocate resources for receiving downlink data to the user equipment.
  • the allocation unit 1950 may also allocate resources for the user equipment to send uplink data.
  • the allocation unit 1950 can allocate resources for sending uplink data and resources for receiving downlink data for the user equipment, so that the resources used for sending uplink data and the resources used for sending uplink data can be allocated to the user equipment.
  • the resources for receiving downlink data are orthogonal in time.
  • the user equipment may send an uplink resource request to the IAB host via one or more IAB nodes to request resources for sending uplink data.
  • the allocation unit 1950 of the electronic device 1900 as the IAB host can allocate the resource for sending uplink data in the IAB connection to the user equipment according to the uplink resource request from the user equipment.
  • the allocating unit 1950 may allocate the resource for receiving the downlink data in the direct connection to the user equipment.
  • the allocation unit 1950 allocates resources for sending uplink data in the IAB connection and resources for receiving downlink data in the direct connection, it needs to ensure that the user equipment is used.
  • the resources used to send uplink data and the resources used to receive downlink data are orthogonal in time.
  • FIG. 20 is a signaling flowchart illustrating a method for coordinating uplink and downlink resources under the first architecture according to an embodiment of the present disclosure.
  • the serving gNB IAB hosting
  • the serving gNB may include an electronic device 1900.
  • the UE sends an uplink resource request for an IAB connection to the IAB node 1 to request uplink resources for sending uplink data using the IAB connection.
  • the IAB node 1 forwards the IAB uplink resource request of the UE to the IAB node 2.
  • the IAB node 2 forwards the IAB uplink resource request of the UE to the IAB host.
  • step S2004 when the IAB host allocates resources for sending uplink data to the UE, it needs to consider the resources allocated to the UE for receiving downlink data through a direct connection, so that the UE's resources for sending uplink data and usage The resources for receiving downlink data are orthogonal in time.
  • step S2005 the IAB host sends an IAB uplink resource schedule to the IAB node 2, including the resource allocated for the UE to send uplink data using the IAB connection.
  • step S2006 the IAB node 2 forwards the IAB uplink resource scheduling of the UE to the IAB node 1.
  • step S2007 the IAB node 1 forwards the UE's IAB uplink resource scheduling to the UE.
  • step S2008 the serving gNB sends a direct connection downlink resource schedule to the UE, which includes the resource for the UE to receive downlink data through the direct connection.
  • step S2009 the UE is ready to send uplink data.
  • step S2010 the UE uses the received IAB uplink resource scheduling to send uplink data to the IAB node 1.
  • step S2011 the IAB node 1 forwards the uplink data of the UE to the IAB node 2.
  • step S2012 the IAB node 2 forwards the uplink data of the UE to the IAB host.
  • step S2013 the UE is ready to receive downlink data.
  • step S2014 the serving gNB sends downlink data to the UE through a direct connection. Therefore, the serving gNB (IAB host) coordinates the UE's resources for sending uplink data and the resources for receiving downlink data.
  • the electronic device 1900 receives from the IAB host through the communication unit 1920 the resource allocated to the user equipment by the IAB host for sending uplink data. Further, the allocation unit 1950 allocates resources for receiving downlink data to the user equipment, so that the resources for sending uplink data and the resources for receiving downlink data are orthogonal in time.
  • the electronic device 1900 is different from the IAB host.
  • the user equipment sends uplink data through the IAB connection, so the IAB host allocates resources for the user equipment to send uplink data.
  • the allocating unit 1950 may allocate the resource for receiving the downlink data in the direct connection to the user equipment.
  • the allocation unit 1950 allocates resources for receiving downlink data in a direct connection to the user equipment, it needs to ensure that the resources for receiving downlink data are the same as those received from the IAB host.
  • the resources used to transmit uplink data are orthogonal in time.
  • FIG. 21 is a signaling flowchart illustrating a method for coordinating uplink and downlink resources under the second architecture according to an embodiment of the present disclosure.
  • the serving gNB may include an electronic device 1900.
  • the UE sends an uplink resource request for an IAB connection to the IAB node 1 to request uplink resources for sending uplink data using the IAB connection.
  • the IAB node 1 forwards the IAB uplink resource request of the UE to the IAB node 2.
  • the IAB node 2 forwards the UE's IAB uplink resource request to the IAB host.
  • step S2104 the IAB host sends an IAB uplink resource schedule to the IAB node 2, including the resource allocated for the UE to send uplink data using the IAB connection.
  • step S2105 the IAB node 2 forwards the IAB uplink resource scheduling of the UE to the IAB node 1.
  • step S2106 the IAB node 1 forwards the UE's IAB uplink resource scheduling to the UE.
  • step S2107 the IAB host sends to the serving gNB the resource allocated for the UE for sending uplink data.
  • the serving gNB allocates resources for the UE to receive downlink data by direct connection according to the received resources of the UE for sending uplink data, so that the resources for receiving downlink data are the same as those used for sending uplink data.
  • the resources of the data are orthogonal in time.
  • the serving gNB sends the direct connection downlink resource scheduling to the UE, which includes the resource for the UE to use the direct connection to receive downlink data.
  • the UE is ready to send uplink data.
  • the UE uses the received IAB uplink resource scheduling to send uplink data to the IAB node 1.
  • the IAB node 1 forwards the uplink data of the UE to the IAB node 2.
  • step S2113 the IAB node 2 forwards the uplink data of the UE to the IAB host.
  • step S2114 the UE is ready to receive downlink data.
  • step S2115 the serving gNB sends downlink data to the UE through a direct connection.
  • the serving gNB and the IAB host coordinate the UE's resources for sending uplink data and resources for receiving downlink data.
  • an IAB connection can be used to send uplink data and a direct connection can be used to receive downlink data.
  • the electronic device 1900, or the electronic device 1900 and the IAB host may coordinate the resource for sending uplink data and the resource for receiving downlink data of the user equipment, so that they are orthogonal in time. In this way, the energy of user equipment can be saved and the delay of downlink data can be reduced.
  • the electronic device 1900 may further include a selection unit 1960 for selecting a connection for sending downlink data, that is, determining whether to use an IAB connection or a direct connection to send the downlink data.
  • the selection unit 1960 may preferentially select an IAB connection to send downlink data.
  • IAB connection is the default way to send downlink data.
  • the selection unit 1960 may determine whether there is a resource suitable for sending downlink data in the IAB connection. Further, in the case that there are resources suitable for sending downlink data in the IAB connection, the selection unit 1960 may use the IAB connection to send the downlink data.
  • the existence of resources suitable for sending downlink data in the IAB connection may include: the IAB host or parent node allocates resources for the user equipment to receive the downlink data through the IAB connection, and the electronic device 1900 can map the downlink data to the appropriate On the resources.
  • the selection unit 1960 can use the IAB connection to send downlink data.
  • the selection unit 1960 may determine to use a direct connection to send the downlink data.
  • the selection unit 1960 may also determine whether there is a resource suitable for sending downlink data in the direct connection.
  • the existence of resources suitable for sending downlink data in the direct connection may include: the electronic device 1900 allocates resources for the user equipment to receive downlink data through the direct connection, and the electronic device 1900 can map the downlink data to appropriate resources according to QoS requirements superior.
  • the selection unit 1960 can use a direct connection to send downlink data.
  • the electronic device 1900 may discard the uplink data.
  • FIG. 22 is a schematic diagram illustrating a method of transmitting downlink data in a network in which a direct connection and an IAB connection are maintained according to an embodiment of the present disclosure.
  • the electronic device 1900 maps the downlink data to the resource of the IAB connection according to the QoS requirements.
  • the electronic device 1900 determines whether the downlink data is successfully mapped to the resource of the IAB connection. If it is, the downlink data is sent through the IAB connection. If not, the electronic device 1900 maps the downlink data to the directly connected resources according to the QoS requirements.
  • the electronic device 1900 determines whether the downlink data is successfully mapped to the directly connected resource. If it is, the downlink data is sent through the direct connection. If not, the electronic device 1900 discards the data.
  • the electronic device 1900 can flexibly select IAB connection or direct connection to send downlink data. Further, the electronic device 1900 can use the IAB connection by default, thereby expanding the cell coverage as much as possible and saving energy consumption. When the IAB connection cannot meet the QoS requirements, a direct connection can be used to reduce the delay and ensure the QoS requirements.
  • the IAB host is the same as the electronic device 1900; under the second architecture, the IAB host is different from the electronic device 1900.
  • the user equipment can maintain both the IAB connection and the direct connection.
  • the electronic device 1900 can flexibly select an IAB connection and a direct connection to send downlink data, so that it can take advantage of the advantages of both the direct connection and the IAB connection, and take into account the requirements of network delay and energy saving.
  • the electronic device 1900 can perform resource coordination so that the resources used for sending uplink data and the resources used for receiving downlink data of the user equipment are orthogonal in time, so that Reduce the energy consumption of user equipment and reduce the delay of downlink transmission.
  • FIG. 23 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • one or more IAB nodes are connected to the IAB host, and directly connected to the serving base station of the electronic device 100.
  • step S2320 the IAB connection with the IAB host or the direct connection with the serving base station is used to send uplink data, and the IAB connection or the direct connection is used to receive downlink data.
  • the wireless communication method further includes: sending request information to the serving base station; receiving response information from the serving base station, the response information including identification information or type information of the serving base station; and determining whether the serving base station is based on the identification information or type information of the serving base station
  • the serving base station is also an IAB node.
  • the wireless communication method further includes: sending request information to the IAB node as the parent node of the electronic device; receiving response information from the parent node, the response information including identification information or type information of the parent node; and according to the identification information or type information of the parent node
  • the type information determines whether the parent node is a serving base station or an IAB node.
  • the serving base station is the same as the IAB host.
  • the wireless communication method further includes: after connecting to the IAB host through one or more IAB nodes, receiving information of the IAB host from the IAB node that is the parent node of the electronic device 100; and directly connecting to the IAB host according to the information of the IAB host Host.
  • the wireless communication method further includes: after directly connecting to the serving base station, receiving recommendation information of the IAB node as the parent node of the electronic device 100 from the serving base station; determining the IAB node as the parent node according to the recommendation information; and connecting to the IAB node as the parent node.
  • the IAB node of the parent node is not limited to: a Wi-Fi connection, a Wi-Fi connection, or a Wi-Fi connection, or determining the IAB node as the parent node according to the recommendation information; and connecting to the IAB node as the parent node.
  • the wireless communication method further includes: receiving the information of the switched IAB host from the IAB node which is the parent node of the electronic device 100 when the IAB host changes; and directly connecting to the switched IAB host according to the information of the switched IAB host IAB host after switching.
  • the wireless communication method further includes: determining the IAB node as the parent node of the electronic device 100 after the handover, the IAB host of the IAB node as the parent node after the handover is the same as the serving base station; and connecting to the parent node after the handover IAB node; and sending the information of the IAB node as the parent node after the handover to the serving base station.
  • the serving base station is different from the IAB host.
  • the wireless communication method further includes: after connecting to the IAB host through one or more IAB nodes, receiving information about the IAB host from the IAB node that is the parent node of the electronic device 100; Different serving base stations; and directly connected to the serving base station.
  • the wireless communication method further includes: after directly connecting to the serving base station, determining the IAB node as the parent node of the electronic device 100, the IAB host of the parent node is different from the serving base station; and connecting to the IAB node as the parent node.
  • the wireless communication method further includes: sending information about the serving base station to the IAB host through the one or more IAB nodes, so as to use the IAB host to establish a connection with the serving base station.
  • the wireless communication method further includes: determining the serving base station after the handover; directly connecting to the serving base station after the handover; and sending the information of the serving base station after the handover to the IAB host through one or more IAB nodes for use in the IAB The host establishes a connection with the serving base station after the handover.
  • the wireless communication method further includes: receiving the information of the switched IAB host from the IAB node that is the parent node of the electronic device 100 when the IAB host changes; and sending the information of the switched IAB host to the service
  • the base station is used to establish a connection between the serving base station and the IAB host after the handover.
  • the wireless communication method further includes: when there are resources suitable for sending uplink data in the IAB connection, using the IAB connection to send the uplink data; and there is no resource suitable for sending uplink data in the IAB connection.
  • a direct connection is used to send upstream data.
  • the IAB host includes a non-transparent satellite device or a ground station connected to the transparent satellite device
  • the serving base station includes a non-transparent satellite device or a ground station connected to the transparent satellite device.
  • the subject that executes the above-mentioned method may be the electronic device 100 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 100 are applicable to this.
  • FIG. 24 is a flowchart illustrating a wireless communication method performed by an electronic device 1900 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S2410 the user equipment is directly connected to the user equipment served by the electronic device 1900, and the user equipment is also connected to the IAB host through one or more IAB nodes.
  • step S2420 the IAB connection between the user equipment and the IAB host or the direct connection between the user equipment and the electronic device 1900 is used to send downlink data, and the IAB connection or the direct connection is used to receive uplink data.
  • the wireless communication method further includes: receiving request information from the user equipment; and sending response information to the user equipment.
  • the response information includes identification information or type information of the electronic device 1900 for the user equipment according to the identification information or type information of the electronic device 1900.
  • the type information determines whether the electronic device 1900 is a serving base station or an IAB node.
  • the electronic device 1900 is the same as the IAB host.
  • the wireless communication method further includes: after directly connecting to the user equipment, sending to the user equipment the recommendation information of the IAB node that is the parent node of the user equipment.
  • the wireless communication method further includes: allocating resources for sending uplink data and resources for receiving downlink data to the user equipment, so that the resources for sending uplink data and the resources for receiving downlink data are aligned in time. pay.
  • the electronic device 1900 is different from the IAB host.
  • the wireless communication method further includes: establishing a connection with the IAB host; and determining that the IAB host of the user equipment is the IAB host according to the notification information from the IAB host.
  • the wireless communication method further includes: receiving, from the IAB host, a resource allocated by the IAB host to the user equipment for sending uplink data; and allocating the user equipment with resources for receiving downlink data, so that the resource is used for sending uplink data.
  • the resources of and the resources used to receive downlink data are orthogonal in time.
  • the wireless communication method further includes: when there is a resource suitable for sending downlink data in the IAB connection, using the IAB connection to send the downlink data; and when there is no resource suitable for sending the downlink data in the IAB connection , Use direct connection to send downlink data.
  • the IAB host includes a non-transparent satellite device or a ground station connected to the transparent satellite device
  • the electronic device 1900 includes a non-transparent satellite device or a ground station connected to the transparent satellite device.
  • the subject that executes the above-mentioned method may be the electronic device 1900 according to the embodiment of the present disclosure, and therefore all the foregoing embodiments regarding the electronic device 1900 are applicable to this.
  • the technology of the present disclosure can be applied to various products.
  • the network side equipment can be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (a base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless heads (RRH) arranged in a different place from the main body.
  • RRH remote wireless heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 25 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 2500 includes one or more antennas 2510 and base station equipment 2520.
  • the base station device 2520 and each antenna 2510 may be connected to each other via an RF cable.
  • Each of the antennas 2510 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 2520 to transmit and receive wireless signals.
  • the eNB 2500 may include multiple antennas 2510.
  • multiple antennas 2510 may be compatible with multiple frequency bands used by eNB 2500.
  • FIG. 25 shows an example in which the eNB 2500 includes multiple antennas 2510, the eNB 2500 may also include a single antenna 2510.
  • the base station equipment 2520 includes a controller 2521, a memory 2522, a network interface 2523, and a wireless communication interface 2525.
  • the controller 2521 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station apparatus 2520. For example, the controller 2521 generates a data packet based on the data in the signal processed by the wireless communication interface 2525, and transmits the generated packet via the network interface 2523. The controller 2521 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 2521 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 2522 includes RAM and ROM, and stores programs executed by the controller 2521 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 2523 is a communication interface for connecting the base station equipment 2520 to the core network 2524.
  • the controller 2521 may communicate with a core network node or another eNB via a network interface 2523.
  • the eNB 2500 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 2523 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2523 is a wireless communication interface, the network interface 2523 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2525.
  • the wireless communication interface 2525 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 2500 via the antenna 2510.
  • the wireless communication interface 2525 may generally include, for example, a baseband (BB) processor 2526 and an RF circuit 2527.
  • the BB processor 2526 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 2526 may have a part or all of the above-mentioned logical functions.
  • the BB processor 2526 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 2526.
  • the module may be a card or a blade inserted into the slot of the base station equipment 2520. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2527 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2510.
  • the wireless communication interface 2525 may include a plurality of BB processors 2526.
  • multiple BB processors 2526 may be compatible with multiple frequency bands used by the eNB 2500.
  • the wireless communication interface 2525 may include a plurality of RF circuits 2527.
  • multiple RF circuits 2527 may be compatible with multiple antenna elements.
  • FIG. 25 shows an example in which the wireless communication interface 2525 includes a plurality of BB processors 2526 and a plurality of RF circuits 2527, the wireless communication interface 2525 may also include a single BB processor 2526 or a single RF circuit 2527.
  • FIG. 26 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 2630 includes one or more antennas 2640, base station equipment 2650, and RRH 2660.
  • the RRH 2660 and each antenna 2640 may be connected to each other via an RF cable.
  • the base station equipment 2650 and the RRH 2660 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 2640 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 2660 to transmit and receive wireless signals.
  • the eNB 2630 may include multiple antennas 2640.
  • multiple antennas 2640 may be compatible with multiple frequency bands used by eNB 2630.
  • FIG. 26 shows an example in which the eNB 2630 includes multiple antennas 2640, the eNB 2630 may also include a single antenna 2640.
  • the base station equipment 2650 includes a controller 2651, a memory 2652, a network interface 2653, a wireless communication interface 2655, and a connection interface 2657.
  • the controller 2651, the memory 2652, and the network interface 2653 are the same as the controller 2521, the memory 2522, and the network interface 2523 described with reference to FIG. 25.
  • the network interface 2653 is a communication interface for connecting the base station device 2650 to the core network 2654.
  • the wireless communication interface 2655 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to terminals located in the sector corresponding to the RRH 2660 via the RRH 2660 and the antenna 2640.
  • the wireless communication interface 2655 may generally include, for example, a BB processor 2656.
  • the BB processor 2656 is the same as the BB processor 2526 described with reference to FIG. 25 except that the BB processor 2656 is connected to the RF circuit 2664 of the RRH 2660 via the connection interface 2657.
  • the wireless communication interface 2655 may include a plurality of BB processors 2656.
  • multiple BB processors 2656 may be compatible with multiple frequency bands used by eNB 2630.
  • FIG. 26 shows an example in which the wireless communication interface 2655 includes a plurality of BB processors 2656, the wireless communication interface 2655 may also include a single BB processor 2656.
  • connection interface 2657 is an interface for connecting the base station device 2650 (wireless communication interface 2655) to the RRH 2660.
  • the connection interface 2657 may also be a communication module used to connect the base station device 2650 (wireless communication interface 2655) to the communication in the above-mentioned high-speed line of the RRH 2660.
  • the RRH 2660 includes a connection interface 2661 and a wireless communication interface 2663.
  • connection interface 2661 is an interface for connecting the RRH 2660 (wireless communication interface 2663) to the base station equipment 2650.
  • the connection interface 2661 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 2663 transmits and receives wireless signals via the antenna 2640.
  • the wireless communication interface 2663 may generally include, for example, an RF circuit 2664.
  • the RF circuit 2664 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2640.
  • the wireless communication interface 2663 may include a plurality of RF circuits 2664.
  • multiple RF circuits 2664 can support multiple antenna elements.
  • FIG. 26 shows an example in which the wireless communication interface 2663 includes a plurality of RF circuits 2664, the wireless communication interface 2663 may include a single RF circuit 2664.
  • the connecting unit 1910, the generating unit 1930, the generating unit 1940, the allocating unit 1950, and the selecting unit 1960 described in FIG. 19 can be controlled by the controller 2521 and/or ⁇ 2651 is implemented. At least part of the functions may also be implemented by the controller 2521 and the controller 2651.
  • the controller 2521 and/or the controller 2651 may execute the instructions stored in the corresponding memory to connect to the user equipment, generate response information, generate the recommendation information of the IAB parent node, allocate downlink resources, select the IAB connection or directly connect to it. The function of sending downstream data.
  • FIG. 27 is a block diagram showing an example of a schematic configuration of a smart phone 2700 to which the technology of the present disclosure can be applied.
  • the smartphone 2700 includes a processor 2701, a memory 2702, a storage device 2703, an external connection interface 2704, a camera 2706, a sensor 2707, a microphone 2708, an input device 2709, a display device 2710, a speaker 2711, a wireless communication interface 2712, one or more An antenna switch 2715, one or more antennas 2716, a bus 2717, a battery 2718, and an auxiliary controller 2719.
  • the processor 2701 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 2700.
  • the memory 2702 includes RAM and ROM, and stores data and programs executed by the processor 2701.
  • the storage device 2703 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2704 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smart phone 2700.
  • USB universal serial bus
  • the imaging device 2706 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2707 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2708 converts the sound input to the smart phone 2700 into an audio signal.
  • the input device 2709 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2710, and receives an operation or information input from the user.
  • the display device 2710 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2700.
  • the speaker 2711 converts the audio signal output from the smart phone 2700 into sound.
  • the wireless communication interface 2712 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 2712 may generally include, for example, a BB processor 2713 and an RF circuit 2714.
  • the BB processor 2713 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2714 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via an antenna 2716.
  • the wireless communication interface 2712 may be a chip module on which the BB processor 2713 and the RF circuit 2714 are integrated. As shown in FIG.
  • the wireless communication interface 2712 may include a plurality of BB processors 2713 and a plurality of RF circuits 2714.
  • FIG. 27 shows an example in which the wireless communication interface 2712 includes a plurality of BB processors 2713 and a plurality of RF circuits 2714, the wireless communication interface 2712 may also include a single BB processor 2713 or a single RF circuit 2714.
  • the wireless communication interface 2712 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2712 may include a BB processor 2713 and an RF circuit 2714 for each wireless communication scheme.
  • Each of the antenna switches 2715 switches the connection destination of the antenna 2716 among a plurality of circuits included in the wireless communication interface 2712 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2716 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2712 to transmit and receive wireless signals.
  • the smart phone 2700 may include multiple antennas 2716.
  • FIG. 27 shows an example in which the smart phone 2700 includes a plurality of antennas 2716, the smart phone 2700 may also include a single antenna 2716.
  • the smart phone 2700 may include an antenna 2716 for each wireless communication scheme.
  • the antenna switch 2715 may be omitted from the configuration of the smart phone 2700.
  • the bus 2717 connects the processor 2701, the memory 2702, the storage device 2703, the external connection interface 2704, the camera 2706, the sensor 2707, the microphone 2708, the input device 2709, the display device 2710, the speaker 2711, the wireless communication interface 2712, and the auxiliary controller 2719 to each other. connect.
  • the battery 2718 supplies power to each block of the smart phone 2700 shown in FIG. 27 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 2719 operates the minimum necessary functions of the smartphone 2700 in the sleep mode, for example.
  • connection unit 110, the generation unit 130, the type determination unit 140, and the selection unit 150 described in FIG. 1 can be implemented by the processor 2701 or the auxiliary controller 2719. At least part of the functions may also be implemented by the processor 2701 or the auxiliary controller 2719.
  • the processor 2701 or the auxiliary controller 2719 may execute instructions stored in the memory 2702 or the storage device 2703 to maintain the IAB connection and direct connection, generate request information, determine the serving base station or IAB node, and select the IAB connection or direct connection. The function of sending upstream data.
  • FIG. 28 is a block diagram showing an example of a schematic configuration of a car navigation device 2820 to which the technology of the present disclosure can be applied.
  • the car navigation device 2820 includes a processor 2821, a memory 2822, a global positioning system (GPS) module 2824, a sensor 2825, a data interface 2826, a content player 2827, a storage medium interface 2828, an input device 2829, a display device 2830, a speaker 2831, a wireless A communication interface 2833, one or more antenna switches 2836, one or more antennas 2837, and a battery 2838.
  • GPS global positioning system
  • the processor 2821 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 2820.
  • the memory 2822 includes RAM and ROM, and stores data and programs executed by the processor 2821.
  • the GPS module 2824 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2820.
  • the sensor 2825 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2826 is connected to, for example, an in-vehicle network 2841 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2827 reproduces content stored in a storage medium (such as CD and DVD), which is inserted into the storage medium interface 2828.
  • the input device 2829 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2830, and receives an operation or information input from the user.
  • the display device 2830 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2831 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2833 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 2833 may generally include, for example, a BB processor 2834 and an RF circuit 2835.
  • the BB processor 2834 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2835 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2837.
  • the wireless communication interface 2833 can also be a chip module on which the BB processor 2834 and the RF circuit 2835 are integrated. As shown in FIG.
  • the wireless communication interface 2833 may include a plurality of BB processors 2834 and a plurality of RF circuits 2835.
  • FIG. 28 shows an example in which the wireless communication interface 2833 includes a plurality of BB processors 2834 and a plurality of RF circuits 2835, the wireless communication interface 2833 may also include a single BB processor 2834 or a single RF circuit 2835.
  • the wireless communication interface 2833 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2833 may include a BB processor 2834 and an RF circuit 2835.
  • Each of the antenna switches 2836 switches the connection destination of the antenna 2137 among a plurality of circuits included in the wireless communication interface 2833, such as circuits for different wireless communication schemes.
  • Each of the antennas 2837 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2833 to transmit and receive wireless signals.
  • the car navigation device 2820 may include multiple antennas 2837.
  • FIG. 28 shows an example in which the car navigation device 2820 includes a plurality of antennas 2837, the car navigation device 2820 may also include a single antenna 2837.
  • the car navigation device 2820 may include an antenna 2837 for each wireless communication scheme.
  • the antenna switch 2836 may be omitted from the configuration of the car navigation device 2820.
  • the battery 2838 supplies power to each block of the car navigation device 2820 shown in FIG. 28 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 2838 accumulates electric power supplied from the vehicle.
  • connection unit 110 the generation unit 130, the type determination unit 140, and the selection unit 150 described in FIG. 1 may be implemented by the processor 2821. At least part of the functions may also be implemented by the processor 2821.
  • the processor 2821 may execute the functions of maintaining the IAB connection and direct connection, generating request information, determining the serving base station or IAB node, and selecting the IAB connection or direct connection to send uplink data by executing the instructions stored in the memory 2822.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2840 including one or more blocks in a car navigation device 2820, an in-vehicle network 2841, and a vehicle module 2842.
  • vehicle module 2842 generates vehicle data (such as vehicle speed, engine speed, and fault information), and outputs the generated data to the in-vehicle network 2841.
  • the units shown in dashed boxes in the functional block diagram shown in the accompanying drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备、无线通信方法和计算机可读存储介质,所述电子设备包括处理电路,被配置为:通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;直接连接至所述电子设备的服务基站;以及利用与所述IAB宿主的IAB连接或者与所述服务基站的直接连接来发送上行数据,并且利用所述IAB连接或者所述直接连接来接收下行数据。通过采用IAB连接和直接连接的混合连接方式,能够利用IAB连接和直接连接两者的优势,兼顾时延和节能的要求。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年5月27日提交中国专利局、申请号为202010461099.0、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
在IAB(Integrated Access and Backhaul,接入和回传一体化)网络中,IAB宿主(IAB donor)节点可以与核心网相连,而作为中继的IAB节点(IAB node)与宿主节点直接或间接相连从而连接到核心网。宿主节点也被称为宿主基站。IAB节点集成了无线接入(Access)链路和无线回传(backhaul,BH)链路,其中接入链路为UE与IAB节点之间的通信链路,回传链路为IAB节点之间或者IAB节点与宿主基站之间的通信链路。UE(User Equipment,用户设备)可以通过一个或多个IAB节点连接至宿主节点。
IAB技术更适合应用于密集场景,减轻了部署有线传输网络的负担,扩大了小区的覆盖范围。另一方面,UE可以通过距离较近的IAB节点进行通信,从而节约能量。然而,由于UE可能需要经由一个或多个IAB节点连接至宿主节点,因此在链路很长的情况下可能由于中继时间过久而引起较大的时延。
因此,本公开期望提出一种IAB连接和直接连接的混合连接方式,以解决以上问题中的至少一个。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以提出一种IAB连接和直接连接的混合连接方式,从而利用IAB连接和直接连接两者的优势。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;直接连接至所述电子设备的服务基站;以及利用与所述IAB宿主的IAB连接或者与所述服务基站的直接连接来发送上行数据,并且利用所述IAB连接或者所述直接连接来接收下行数据。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:直接连接至所述电子设备服务的用户设备,所述用户设备还通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;以及利用所述用户设备与所述IAB宿主的IAB连接或者所述用户设备与所述电子设备的直接连接来发送下行数据,并且利用所述IAB连接或者所述直接连接来接收上行数据。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:通过一个或多个接入和回传一体化IAB节点连接至IAB宿主,并且直接连接至所述电子设备的服务基站;以及利用与所述IAB宿主的IAB连接或者与所述服务基站的直接连接来发送上行数据,并且利用所述IAB连接或者所述直接连接来接收下行数据。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:直接连接至所述电子设备服务的用户设备,所述用户设备还通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;以及利用所述用户设备与所述IAB宿主的IAB连接或者所述用户设备与所述电子设备的直接连接来发送下行数据,并且利用所述IAB连接或者所述直接连接来接收上行数据。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序 当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,作为用户设备的电子设备可以连接至IAB宿主和服务基站,从而可以利用IAB连接或者直接连接来发送上行数据/接收下行数据。这样一来,作为用户设备的电子设备可以灵活地选择直接连接和IAB连接,从而能够利用直接连接和IAB连接两者的优势,兼顾网络时延的要求和节能的要求。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的电子设备的配置的示例的框图;
图2(a)和图2(b)是示出根据本公开的实施例的其中保持直接连接和IAB连接的网络的架构的示意图;
图3(a)、图3(b)和图3(c)是示出根据本公开的实施例的在第一种架构下的场景的示意图;
图4(a)和图4(b)是示出根据本公开的实施例的在第二种架构下的场景的示意图;
图5是示出根据本公开的实施例的确定IAB节点和服务基站的方法的信令流程图;
图6是示出根据本公开的实施例的在第一种架构下保持直接连接和IAB连接的方法的信令流程图;
图7是示出根据本公开的实施例的在第一种架构下保持直接连接和IAB连接的方法的信令流程图;
图8是示出根据本公开的实施例的在第二种架构下保持直接连接和IAB连接的方法的信令流程图;
图9是示出根据本公开的实施例的在第二种架构下保持直接连接和IAB连接的方法的信令流程图;
图10是示出根据本公开的实施例的在第一种架构下切换IAB宿主的场景的示意图;
图11是示出根据本公开的实施例的在第一种架构下切换IAB宿主的方法的信令流程图;
图12是示出根据本公开的实施例的在第一种架构下切换IAB父节点的场景的示意图;
图13是示出根据本公开的实施例的在第一种架构下切换IAB父节点的方法的信令流程图;
图14是示出根据本公开的实施例的在第二种架构下切换服务基站的场景的示意图;
图15是示出根据本公开的实施例的在第二种架构下切换服务基站的方法的信令流程图;
图16是示出根据本公开的实施例的在第二种架构下切换IAB宿主的场景的示意图;
图17是示出根据本公开的实施例的在第二种架构下切换IAB宿主的方法的信令流程图;
图18是示出根据本公开的实施例的在其中保持直接连接和IAB连接的网络中发送上行数据的方法的示意图;
图19是示出根据本公开的实施例的电子设备的配置的示例的框图;
图20是示出根据本公开的实施例的在第一种架构下协调上行和下行资源的方法的信令流程图;
图21是示出根据本公开的实施例的在第二种架构下协调上行和下行资源的方法的信令流程图;
图22是示出根据本公开的实施例的在其中保持直接连接和IAB连接的网络中发送下行数据的方法的示意图;
图23是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图24是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图25是示出eNB(Evolved Node B,演进型节点B)的示意性配置的 第一示例的框图;
图26是示出eNB的示意性配置的第二示例的框图;
图27是示出智能电话的示意性配置的示例的框图;以及
图28是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.综述;
2.用户设备的配置示例;
3.基站设备的配置示例;
4.方法实施例;
5.应用示例。
<1.综述>
本公开期望提出一种IAB连接和直接连接的混合连接方式,以使得用户设备/基站设备能够灵活地选择IAB连接或直接连接来发送上行数据/下行数据,从而兼顾时延和节能的要求。
根据本公开的无线通信系统可以是5G NR通信系统。进一步,在该无线通信系统中可以应用IAB技术。根据本公开的无线通信系统可以包括一个或多个IAB宿主节点、一个或多个IAB节点、一个或多个UE、各个UE的服务基站。
根据本公开的IAB节点和IAB宿主节点可以是网络侧设备。网络侧设备可以是运营商部署的基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。此外,根据本公开的IAB节点也可以是独立于基站设备的具备基站设备部分功能的电子设备。该IAB节点可以具备发送数据和接收数据的功能,并可以通过接入链路与UE相连,通过回传链路与其它IAB节点或者宿主节点相连。
根据本公开的服务基站可以是是eNB,也可以是gNB。
根据本公开的IAB宿主节点和服务基站可以位于卫星设备上,该卫星设备可以是具备数据处理能力的非透明卫星设备。此外,IAB宿主节点和服务基站也可以位于与不具备数据处理能力的透明卫星设备连接的地面站中,该地面站负责对透明卫星设备转发的数据进行处理。也就是说,根据本公开的无线通信系统可以包括NTN(Non-terrestrial network,非地面网络)和TN(Terrestrial network,地面网络)。
根据本公开的实施例,在IAB连接中,位于非透明卫星设备上或者与透明卫星设备连接的地面站中的IAB宿主节点可以与核心网相连,而位于地面的IAB节点与宿主节点直接或间接相连从而连接到核心网。UE通过一个或多个位于地面的IAB节点连接至宿主节点。这样一来,由于IAB节点位于地面从而距离UE较近,所以可以大大减少UE的耗能。但是,由于卫星设备距离UE较远,因此UE的时延增加。因此,在NTN网络中应用本公开提出的IAB连接和直接连接的混合连接方式具有更明显的效果。
根据本公开的UE可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.用户设备的配置示例>
图1是示出根据本公开的实施例的电子设备100的配置的示例的框图。这里的电子设备100可以作为无线通信系统中的用户设备。
如图1所示,电子设备100可以包括连接单元110和通信单元120。
这里,电子设备100的各个单元都可以包括在处理电路中。需要说明的是,电子设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,连接单元110可以使得电子设备100通过一个或多个IAB节点连接至IAB宿主,并且使得电子设备100直接连接至电子设备100的服务基站。
根据本公开的实施例,电子设备100可以通过通信单元120利用与IAB宿主的IAB连接或者与服务基站的直接连接来发送上行数据,并且利用IAB连接或者直接连接来接收下行数据。
由此可见,根据本公开的实施例的电子设备100,可以连接至IAB宿主和服务基站两者,从而可以利用IAB连接或者直接连接来发送上行数据/接收下行数据。这样一来,电子设备100可以灵活地选择直接连接和IAB连接,从而能够利用直接连接和IAB连接两者的优势,兼顾网络时延的要求和节能的要求。
根据本公开的实施例,提出了两种保持直接连接和IAB连接的网络架构。在第一种架构下,电子设备100的IAB宿主和服务基站位于同一个设备中。也就是说,电子设备100可以通过一个或多个IAB节点连接至IAB宿主,由于该IAB宿主同时也是电子设备100的服务基站,因此电子设备100还可以直接连接至服务基站。在第二种架构下,电子设备100的IAB宿主和服务基站位于不同的设备中。也就是说,电子设备100可以通过一个或多个IAB节点连接至IAB宿主,电子设备100还可以直接连接至不同于该IAB宿主的服务基站。
图2(a)是示出根据本公开的实施例的其中保持直接连接和IAB连接的网络的第一种架构的示意图。如图2(a)所示,UE通过IAB节点1、IAB节点2连接至IAB宿主,该IAB宿主可以连接至NGC(Next Generation Core,下一代核心网,5G核心网)。进一步,该IAB宿主为UE的服务gNB,因此UE可以直接连接至服务gNB。
图2(b)是示出根据本公开的实施例的其中保持直接连接和IAB连接的网络的第二种架构的示意图。如图2(b)所示,UE通过IAB节点1、IAB节点2连接至IAB宿主,该IAB宿主可以连接至NGC。进一步,UE可以直接连接至服务gNB,服务gNB也可以连接至NGC。此外,由于IAB宿主和服务gNB都是基站设备,因此可以通过Xn接口来通信。
这里,图2(a)和图2(b)示出了UE通过两个IAB节点连接至IAB宿主的示例,实际上IAB节点的数目可以不限于2。此外,在下面的描述中将以gNB为例来说明服务基站。
图3(a)、图3(b)和图3(c)是示出根据本公开的实施例的在第一种架构下的场景的示意图。在图3(a)、图3(b)和图3(c)中,UE1和UE2均可以包括电子设备100,并且服务gNB与IAB宿主是相同的设备。
如图3(a)所示,服务gNB(IAB宿主)位于非透明卫星设备上。UE1经由IAB节点1和IAB节点2连接至IAB宿主,并且可以直接连接至服务gNB。类似地,UE2通过IAB节点2连接至IAB宿主,并且可以直接连接至服务gNB。
如图3(b)所示,服务gNB(IAB宿主)位于与透明卫星设备连接的地面基站设备上。UE1经由IAB节点1和IAB节点2连接至透明卫星设备,透明卫星设备连接至地面上的IAB宿主,并且UE1可以直接连接至透明卫星设备,透明卫星设备连接至地面上的服务gNB。类似地,UE2经由IAB节点2连接至透明卫星设备,透明卫星设备连接至地面上的IAB宿主,并且UE2可以直接连接至透明卫星设备,透明卫星设备连接至地面上的服务gNB。
如图3(c)所示,服务gNB(IAB宿主)位于与透明卫星设备连接的地面基站设备上,并且不同的透明卫星设备可以连接至相同的地面基站设备。UE1经由IAB节点1和IAB节点2连接至透明卫星设备2,透明卫星设备2连接至地面上的IAB宿主,并且UE1可以直接连接至透明卫星设备1,透明卫星设备1连接至地面上的服务gNB。类似地,UE2经由IAB节点2连接至透明卫星设备2,透明卫星设备2连接至地面上的IAB宿主,并且UE2可以直接连接至透明卫星设备2,透明卫星设备2连接至地面上的服务gNB。这里,对于UE1来说,虽然其经由IAB节点1和IAB节点2连接至透明卫星设备2,并且直接连接至透明卫星设备1,但是由于透明卫星设备1和透明卫星设备2都连接至相同的地面基站设备,因此 属于服务基站与IAB宿主相同的第一种架构。
图4(a)和图4(b)是示出根据本公开的实施例的在第二种架构下的场景的示意图;在图4(a)和图4(b)中,UE可以包括电子设备100,并且服务gNB与IAB宿主是不同的设备。
如图4(a)所示,服务gNB位于非透明卫星设备上,IAB宿主也位于非透明卫星设备上。UE经由IAB节点1和IAB节点2连接至IAB宿主,并且可以直接连接至服务gNB。这里,IAB宿主和服务gNB可以通过Xn接口进行通信。
如图4(b)所示,服务gNB位于与透明卫星设备连接的地面基站设备中,IAB宿主也位于与透明卫星设备连接的地面基站设备中。UE经由IAB节点1和IAB节点2连接至透明卫星设备1,透明卫星设备1连接至地面上的作为IAB宿主的gNB,并且UE可以直接连接至透明卫星设备2,透明卫星设备2可以连接至地面上的作为服务gNB的gNB。这里,地面上的服务gNB和地面上的作为IAB宿主的gNB可以通过Xn接口进行通信。
如上所述,以示例性的方式描述了根据本公开的两种架构的一些场景,但是本公开并不限于上述场景。在本公开中,UE通过一个或多个IAB节点连接至IAB宿主的连接也被称为IAB连接,UE与服务基站的连接也被称为直接连接。也就是说,根据本公开的实施例,UE可以保持直接连接和IAB连接两者。此外,直接连接和IAB连接中的每一个均可以提供上行传输和下行传输。
根据本公开的实施例,如图2所示,电子设备100还可以包括生成单元130和类型确定单元140。
根据本公开的实施例,生成单元130可以生成请求信息,该请求信息用于向服务基站或者作为电子设备100的父节点(父节点指的是与电子设备100直接连接的IAB节点)的IAB节点请求标识信息或者类型信息。进一步,电子设备100可以通过通信单元120向服务基站或者作为电子设备100的父节点的IAB节点发送生成单元130生成的请求信息。根据本公开的实施例,电子设备100可以通过随机接入过程的Msg.3(消息3)来携带该请求信息。
根据本公开的实施例,电子设备100可以通过通信单元120从服务基站或者作为电子设备100的父节点的IAB节点接收响应信息,该响应信 息可以包括服务基站或者作为电子设备100的父节点的IAB节点的标识信息或者类型信息。根据本公开的实施例,电子设备100可以通过随机接入过程的Msg.4(消息4)来接收该响应信息。
根据本公开的实施例,类型确定单元140可以根据标识信息或者类型信息确定发送响应信息的设备是服务基站还是IAB节点。具体地,在响应信息包括类型信息的情况下,类型信息可以包括设备的类型,类型包括服务基站和IAB节点。例如,可以在响应信息中用1比特指示类型,从而类型确定单元140可以根据类型信息确定发送响应信息的设备是服务基站还是IAB节点。在响应信息包括标识信息的情况下,由于IAB节点和服务基站的标识不同,因此类型确定单元140可以根据标识信息确定发送响应信息的设备是服务基站还是IAB节点。
根据本公开的实施例,电子设备100还可以设定计时器,当发送请求信息时可以启动计时器,并且在计时器期满前没有收到响应消息的情况下,电子设备100可以放弃接入该IAB节点或者服务基站。
根据本公开的实施例,电子设备100可以在与作为父节点的IAB节点或者服务基站建立连接之后生成请求信息,从而确定其已经连接的设备是IAB节点还是服务基站。可选地,电子设备100也可以在与作为父节点的IAB节点或者服务基站建立连接的过程中生成请求信息,从而确定其正在连接的设备是IAB节点还是服务基站。
图5是示出根据本公开的实施例的确定IAB节点和服务基站的方法的信令流程图。如图5所示,在步骤S501中,UE向作为父节点的IAB节点或者服务gNB发送请求信息,以请求设备的类型。接下来,在步骤S502中,IAB节点或者服务gNB向UE发送标识信息或类型信息。接下来,在步骤S503中,UE根据标识信息或类型信息确定发送响应信息的设备是IAB节点还是服务gNB。
如上所述,由于电子设备100可以保持直接连接和IAB连接两者,电子设备100可以通过随机接入过程接入服务基站或者父节点。然而,电子设备100在接入了服务基站或者父节点之后,并不确定接入的是什么设备,因此电子设备100可以通过发送请求信息查询的方式来确定连接的是IAB节点还是服务基站。
根据本公开的实施例,在第一种架构中,连接单元110可以使电子设备100先通过一个或多个IAB节点连接至IAB宿主。也就是说,电子 设备100可以先连接至作为父节点的IAB节点。
根据本公开的实施例,在电子设备100通过一个或多个IAB节点连接至IAB宿主之后,可以通过通信单元120从作为电子设备100的父节点的IAB节点接收IAB宿主的信息,并且连接单元110可以确定该IAB宿主为电子设备100的服务基站。进一步,根据IAB宿主的信息,连接单元110可以使电子设备100直接连接至IAB宿主。
图6是示出根据本公开的实施例的在第一种架构下保持直接连接和IAB连接的方法的信令流程图。在图6中,UE可以包括电子设备100。如图6所示,在步骤S601中,IAB节点2与IAB宿主建立连接。在步骤S602中,IAB节点1与IAB节点2建立连接。在步骤S603中,IAB节点2向IAB节点1发送关于IAB宿主的信息。在步骤S604中,IAB节点1向IAB节点2回复确认收到来自IAB节点2的关于IAB宿主的信息。在步骤S605中,UE与IAB节点1建立连接。在步骤S606中,IAB节点1向UE发送关于IAB宿主的信息。在步骤S607中,UE向IAB节点1回复确认收到来自IAB节点1的关于IAB宿主的信息。在步骤S608中,UE将IAB宿主确定为服务gNB,并与服务gNB直接建立连接。在步骤S609中,UE向IAB节点1发送消息以表示UE成功接入服务gNB。在步骤S610中,IAB节点1向IAB节点2发送消息以表示UE成功接入服务gNB。在步骤S611中,UE向服务gNB发送关于IAB节点1的信息,以向服务gNB通知IAB节点1是UE的父节点。由此,UE可以通过IAB节点1和IAB节点2连接至IAB宿主,并直接连接至服务gNB。
如上所述,根据本公开的实施例,在第一种架构中,UE可以先通过一个或多个IAB节点连接至IAB宿主,再直接连接至服务基站,从而建立直接连接和IAB连接两者。
根据本公开的实施例,连接单元110可以使电子设备100先建立与服务基站的直接连接。也就是说,电子设备100先直接连接至服务基站。
根据本公开的实施例,在电子设备100直接连接至服务基站之后,电子设备100可以通过通信单元120从服务基站接收作为电子设备100的父节点的IAB节点的推荐信息。这里,服务基站可以根据IAB节点的位置和/IAB节点的可用带宽来确定推荐作为父节点的IAB节点。例如,服务基站可以将距离电子设备100最近的IAB节点确定为推荐的父节点,也可以将具有最大可用带宽的IAB节点确定为推荐的父节点。
根据本公开的实施例,连接单元110可以根据推荐信息确定作为父节点的IAB节点。例如,连接单元110可以将推荐信息中包括的IAB节点确定为父节点。进一步,连接单元110可以使电子设备100连接至作为父节点的IAB节点。
图7是示出根据本公开的实施例的在第一种架构下保持直接连接和IAB连接的方法的信令流程图。在图7中,UE可以包括电子设备100。如图7所示,在步骤S701中,UE建立与服务gNB的直接连接。在步骤S702中,服务gNB向IAB节点2发送关于UE的信息。在步骤S703中,IAB节点2向IAB节点1发送关于UE的信息。由此,各个IAB节点都可以知晓UE的信息。在步骤S704中,服务gNB向UE发送关于父节点的推荐信息。在步骤S705中,UE根据推荐信息确定IAB节点1为父节点,并建立与IAB节点1的连接。这里,假定IAB节点1与IAB节点2、以及IAB节点2与IAB宿主之间已经建立了连接。由此,UE可以通过IAB节点1和IAB节点2连接至IAB宿主,并直接连接至服务gNB。
如上所述,根据本公开的实施例,在第一种架构中,UE可以先直接连接至服务基站,再连接至作为父节点的IAB节点,从而建立直接连接和IAB连接两者。
根据本公开的实施例,在第二种架构中,连接单元110可以先使电子设备100通过一个或多个IAB节点连接至IAB宿主。也就是说,电子设备100可以先连接至作为父节点的IAB节点。
根据本公开的实施例,在通过一个或多个IAB节点连接至IAB宿主之后,电子设备100可以通过通信单元120从作为电子设备100的父节点的IAB节点接收关于IAB宿主的信息。进一步,连接单元110可以根据IAB宿主的信息确定与IAB宿主不同的服务基站。也就是说,可以由电子设备100来确定服务基站,该服务基站与IAB宿主不同。
根据本公开的实施例,在确定服务基站之后,连接单元110可以使电子设备100直接连接至服务基站。
根据本公开的实施例,在电子设备100确定服务基站之后,可以将关于服务基站的信息通过一个或多个IAB节点发送至IAB宿主,以用于IAB宿主与服务基站建立连接。这里,如果IAB宿主与服务基站之前已经建立了连接,则IAB宿主无需执行操作。如果IAB宿主与服务基站之前没有建立连接,则IAB宿主可以与服务基站建立Xn接口的连接。这样一 来,可以实现通过IAB连接进行上行和/或下行传输。
图8是示出根据本公开的实施例的在第二种架构下保持直接连接和IAB连接的方法的信令流程图。在图8中,UE可以包括电子设备100。在步骤S801中,UE接入IAB节点1。在步骤S802中,IAB节点1向UE发送关于IAB宿主的信息。在步骤S803中,UE确定与IAB宿主不同的基站作为服务gNB,并直接接入该服务gNB。在步骤S804中,UE将关于服务gNB的信息发送至IAB节点1。在步骤S805中,IAB节点1确认接收到关于服务gNB的信息。在步骤S806中,IAB节点1向IAB节点2发送关于UE的服务gNB的信息。在步骤S807中,IAB节点2向IAB节点1确认接收到关于UE的服务gNB的信息。在步骤S808中,IAB节点2向IAB宿主发送关于UE的服务gNB的信息。在步骤S809中,IAB宿主向IAB节点2确认接收到关于UE的服务gNB的信息。在步骤S810中,IAB宿主根据关于UE的服务gNB的信息建立与服务gNB之间的Xn接口。在步骤S811中,IAB宿主向服务gNB发送关于UE的信息,以向服务gNB通知UE的IAB宿主。在步骤S812中,服务gNB向IAB宿主确认接收到关于UE的信息。这里,假定IAB节点1与IAB节点2、以及IAB节点2与IAB宿主之间已经建立连接。由此,UE通过IAB节点1和IAB节点2连接至IAB宿主,并且直接连接至服务gNB。在图8中,如果IAB宿主与服务gNB之间已经建立了连接,则步骤S810可以省略,IAB宿主直接向服务gNB通知关于UE的信息。
如上所述,根据本公开的实施例,在第二种架构下,UE可以先连接至作为父节点的IAB节点,再连接至服务gNB。
根据本公开的实施例,连接单元110可以使电子设备100先直接连接至服务基站。
根据本公开的实施例,在电子设备100直接连接至服务基站之后,连接单元110可以确定作为电子设备100的父节点的IAB节点。这里,父节点的IAB宿主与服务基站不同。也就是说,可以由电子设备100来确定父节点。例如,连接单元110可以从周围的IAB节点中确定合适的IAB节点作为候选父节点。当连接单元110确定了候选父节点之后,可以向候选父节点发送请求信息以请求候选父节点的IAB宿主。当确定候选父节点的IAB宿主与服务基站不同时,连接单元110可以将该候选父节点作为父节点。当确定候选父节点的IAB宿主与服务基站相同时,连接单元110可以重新确定其它的候选父节点,直到找到IAB宿主与服务基站不同的父 节点。
根据本公开的实施例,在连接单元110确定作为父节点的IAB节点之后,连接单元110可以使电子设备100连接至作为父节点的IAB节点。
根据本公开的实施例,在电子设备100连接至父节点之后,电子设备100可以通过通信单元120将关于服务基站的信息通过一个或多个IAB节点发送至IAB宿主,以用于IAB宿主与服务基站建立连接。
图9是示出根据本公开的实施例的在第二种架构下保持直接连接和IAB连接的方法的信令流程图。在图9中,UE可以包括电子设备100。在步骤S901中,UE与服务gNB建立连接。在步骤S902中,UE将IAB宿主不是服务gNB的IAB节点1作为父节点,并接入IAB节点1。在步骤S903中,UE将关于服务gNB的信息发送至IAB节点1。在步骤S904中,IAB节点1确认接收到关于服务gNB的信息。在步骤S905中,IAB节点1向IAB节点2发送关于UE的服务gNB的信息。在步骤S906中,IAB节点2向IAB节点1确认接收到关于UE的服务gNB的信息。在步骤S907中,IAB节点2向IAB宿主发送关于UE的服务gNB的信息。在步骤S908中,IAB宿主向IAB节点2确认接收到关于UE的服务gNB的信息。在步骤S909中,IAB宿主根据关于UE的服务gNB的信息建立与服务gNB之间的Xn接口。在步骤S910中,IAB宿主向服务gNB发送关于UE的信息,以向服务gNB通知UE的IAB宿主。在步骤S911中,服务gNB向IAB宿主确认接收到关于UE的信息。这里,假定IAB节点1与IAB节点2、以及IAB节点2与IAB宿主之间已经建立连接。由此,UE通过IAB节点1和IAB节点2连接至IAB宿主,并且直接连接至服务gNB。在图9中,如果IAB宿主与服务gNB之间已经建立了连接,则步骤S909可以省略,IAB宿主直接向服务gNB通知关于UE的信息。
如上所述,根据本公开的实施例,在第二种架构下,UE可以先连接至服务gNB,再连接至作为父节点的IAB节点。
如上所述介绍了电子设备100建立直接连接和IAB连接两者的方式。无论是在第一种架构下还是在第二种架构下,电子设备100都可以先建立直接连接,再建立IAB连接,也可以先建立IAB连接,再建立直接连接。根据本公开的实施例,电子设备100在执行扫描的过程中,如果先扫描到了作为父节点的IAB节点,则电子设备100可以先建立IAB连接;如果先扫描到了服务基站,则电子设备100可以先建立直接连接。也就是说,电子设备100可以根据扫描的过程选择建立直接连接和IAB连接两者的方 式。进一步,在对网络布局时,可以将网络布局为架构一,或者将网络布局为架构二。此外,在电子设备100建立直接连接/IAB连接之后或者建立直接连接/IAB连接的过程中,可以通过前文中所述的生成单元130和类型确定单元140的操作来确定连接至IAB节点还是服务基站。
根据本公开的实施例,在电子设备100建立了直接连接和IAB连接之后,电子设备100可能处于运动状态中。此外,在IAB宿主和服务基站位于非透明卫星设备上的情况下,IAB宿主和服务基站也可能处于运动状态中。在IAB宿主和服务基站位于与透明卫星设备连接的地面站的情况下,由于透明卫星设备处于运动状态下,因此与透明卫星设备连接的地面站可能会发生变化。因此,可能发生切换。在本公开中,可能存在以下几种情况的切换。在一种情况中,由于IAB宿主的运动或者IAB宿主与IAB节点之间的信道质量变差,导致电子设备100的IAB连接中的IAB宿主发生切换。在另一种情况中,由于电子设备100的运动或者电子设备100与父节点之间的信道质量变差,导致电子设备100的IAB连接中的父节点发生切换。在又一种情况中,由于服务基站、电子设备100的运动、或者服务基站与电子设备100之间的信道质量变差,导致电子设备100的直接连接中的服务基站发生切换。下面将详细描述几种切换的情况。
图10是示出根据本公开的实施例的在第一种架构下切换IAB宿主的场景的示意图。在图10中,UE可以包括电子设备100,并且IAB宿主与服务gNB相同且位于非透明卫星设备上。如图10所示,UE通过IAB节点1和IAB节点2连接至当前的IAB宿主,该当前的IAB宿主也是当前的服务gNB,UE直接连接至当前的服务gNB。由于卫星设备的移动或者信道质量的变化,IAB宿主发生了切换,即UE的IAB宿主由当前的IAB宿主切换至新的IAB宿主。这里,可以由IAB节点2来触发切换,例如当IAB节点2发现当前的IAB宿主距离变远或者来自当前的IAB宿主的信号变差,则IAB节点2搜索新的IAB宿主。在这个过程中,由于网络是第一种架构,因此需要确保新的IAB宿主也是新的服务gNB。
图10示出了IAB宿主与服务gNB相同且位于非透明卫星设备上的情形。对于IAB宿主与服务gNB相同且位于与透明卫星设备连接的地面站的情形,如果IAB节点2切换至新的透明卫星设备,并且该新的透明卫星设备所连接的地面站与切换前的透明卫星设备所连接的地面站相同,则认为没有发生IAB宿主的切换;如果IAB节点2切换至新的透明卫星设备,并且该新的透明卫星设备所连接的地面站与切换前的透明卫星设备所 连接的地面站不同,则认为发生了IAB宿主的切换。也就是说,与透明卫星设备连接的地面站是IAB宿主,根据该地面站是否发生了变化来确定是否发生了IAB宿主的切换。
根据本公开的实施例,在第一种架构下,在IAB宿主发生变化的情况下,电子设备100可以通过通信单元120从作为电子设备100的父节点的IAB节点接收切换后的IAB宿主的信息。进一步,连接单元110可以将切换后的IAB宿主确定为新的服务gNB。进一步,根据切换后的IAB宿主的信息,连接单元110可以使电子设备100直接连接至切换后的IAB宿主。由此,电子设备100通过一个或多个IAB节点连接至切换后的IAB宿主,该切换后的IAB宿主也是切换后的服务gNB,电子设备100可以直接连接至切换后的服务gNB。
图11是示出根据本公开的实施例的在第一种架构下切换IAB宿主的方法的信令流程图。如图11所示,在步骤S1101中,IAB节点2切换至新的IAB宿主。在步骤S1102中,IAB节点2向IAB节点1发送关于新的IAB宿主的信息。在步骤S1103中,IAB节点2向IAB节点1确认接收到关于新的IAB宿主的信息。在步骤S1104中,IAB节点1向UE发送关于新的IAB宿主的信息。在步骤S1105中,UE向IAB节点1确认接收到关于新的IAB宿主的信息。也就是说,由与新的IAB宿主直接连接的IAB节点通过IAB连接向UE通知关于新的IAB宿主的信息。在步骤S1106中,UE将新的IAB宿主确认为新的服务gNB,并直接连接至新的服务gNB。在步骤S1107中,UE向IAB节点1发送其成功切换至新的服务gNB的信息。在步骤S1108中,IAB节点1向IAB节点2发送UE成功切换至新的服务gNB的信息。在步骤S1109中,UE向新的IAB宿主发送关于IAB节点1的信息,以向新的IAB宿主通知其父节点是IAB节点1。由此,IAB宿主发生了切换,由于IAB宿主也是服务基站,因此服务基站也发生了切换。在切换后,UE仍然保持直接连接和IAB连接两者。
图12是示出根据本公开的实施例的在第一种架构下切换IAB父节点的场景的示意图。在图12中,UE可以包括电子设备100,并且IAB宿主与服务gNB相同且位于非透明卫星设备上。如图12所示,UE通过IAB节点1和IAB节点2连接至IAB宿主,该IAB宿主也是服务gNB,UE直接连接至服务gNB。由于UE的移动或者信道质量的变化,UE可以切换父节点。这个切换可以由UE来触发,例如UE发现远离IAB节点1或者来自IAB节点1的信号质量变差,UE可以搜索新的IAB节点作为父节 点。这里,UE的父节点由IAB节点1切换至IAB节点3。也就是说,切换后,UE通过IAB节点3和IAB节点2连接至IAB宿主。在这个过程中,由于网络是第一种架构,因此需要确保切换后的父节点的IAB宿主与UE的服务gNB相同。
根据本公开的实施例,连接单元110可以确定切换后的作为电子设备100的父节点的IAB节点。这里,切换后的作为父节点的IAB节点的IAB宿主与电子设备100的服务基站相同。这里,连接单元110确定切换后的父节点的方式可以与连接单元110确定要接入的父节点的方式相同。例如,连接单元110可以从周围的IAB节点中确定合适的IAB节点作为候选的切换后的父节点。当连接单元110确定了候选的切换后的父节点之后,可以向候选的切换后的父节点发送请求信息以请求候选的切换后的父节点的IAB宿主。当确定候选的切换后的父节点的IAB宿主与服务基站不同时,连接单元110可以将该候选的切换后的父节点作为父节点。当确定候选的切换后的父节点的IAB宿主与服务基站相同时,连接单元110可以重新确定其它的候选的切换后的父节点,直到找到IAB宿主与服务基站不同的父节点。
根据本公开的实施例,在确定了切换后的父节点之后,连接单元110可以使电子设备100连接至切换后的父节点。进一步,电子设备100可以通过通信单元120将切换后的作为父节点的IAB节点的信息发送至服务基站。由此,在父节点发生切换的情况下,电子设备100可以通过切换后的父节点连接至IAB宿主。
图13是示出根据本公开的实施例的在第一种架构下切换IAB父节点的方法的信令流程图。如图13所示,在步骤S1301中,UE原本连接至IAB节点1。在步骤S1302中,UE确定父节点发生切换,并选择了IAB节点3作为候选的父节点,UE可以向IAB节点3发送连接请求信息。这里,如果IAB节点3不知道IAB节点3的IAB宿主,则需要向其父节点请求关于IAB宿主的信息。在步骤S1303中,IAB节点2向IAB节点3发送关于IAB宿主的信息。如果IAB节点3知道IAB节点3的IAB宿主,则步骤S1303可以省略。在步骤S1304中,IAB节点3向UE发送关于IAB节点3的IAB宿主的信息。在步骤S1305中,UE向IAB节点3确认接收到关于IAB节点3的IAB宿主的信息,并确定IAB节点3的IAB宿主与UE的服务gNB相同。在步骤S1306中,UE切换至IAB节点3。在步骤S1307中,UE将IAB节点3的信息发送至IAB宿主,以向IAB宿主通知 其父节点切换为IAB节点3。这里,UE可以通过从IAB节点接收该IAB节点的IAB宿主并判断IAB宿主是否与UE的服务gNB相同的方式来选择合适的切换后的父节点。可选地,UE还可以在连接请求信息中携带UE的服务gNB的信息,以用于IAB节点3确定该服务gNB是否与IAB节点3的IAB宿主相同。在UE的服务gNB与IAB节点3的IAB宿主相同的情况下,IAB节点3可以向UE发送同意接入的信息;在UE的服务gNB与IAB节点3的IAB宿主不同的情况下,IAB节点3可以向UE发送拒绝接入的信息。由此,UE的父节点发生切换之后,UE可以通过新的父节点连接至IAB宿主。
图14是示出根据本公开的实施例的在第二种架构下切换服务基站的场景的示意图。在图14中,UE可以包括电子设备100,UE的IAB宿主和服务gNB均位于非透明卫星设备上,并且IAB宿主和服务gNB不同。如图14所示,UE通过IAB节点1和IAB节点2连接至IAB宿主,并且直接连接至当前的服务gNB,当前的服务gNB与IAB宿主通过Xn接口连接。由于服务gNB的运动或者信道质量的变化,UE需要切换至新的服务gNB。这个过程可以由UE来触发,例如UE发现远离当前的服务gNB或者来自当前的服务gNB的信号变差的情况下,UE可以搜索新的服务gNB。由于网络是第二种架构,因此需要新的服务gNB与IAB宿主之间建立Xn接口的连接。
图14示出了服务gNB位于非透明卫星设备上的情形。对于服务gNB位于与透明卫星设备连接的地面站的情形,如果UE连接的透明卫星设备发生了变化,并且新的透明卫星设备连接的地面站与切换前的透明卫星设备连接的地面站相同,则认为没有发生服务gNB的切换;如果UE连接的透明卫星设备发生了变化,并且新的透明卫星设备连接的地面站与切换前的透明卫星设备连接的地面站不同,则认为发生了服务gNB的切换。也就是说,与透明卫星设备连接的地面站为UE的服务gNB,以该地面站是否变化来判断是否发生了服务gNB的切换。
根据本公开的实施例,连接单元110可以确定切换后的服务基站。例如,电子设备100可以根据周围的各个服务基站的信号质量来确定新的服务基站。在确定切换后的服务基站之后,连接单元110可以使电子设备100直接连接至切换后的服务基站。
根据本公开的实施例,电子设备100可以通过通信单元120将切换后的服务基站的信息通过一个或多个IAB节点发送至IAB宿主,以用于 IAB宿主与切换后的服务基站建立连接。
图15是示出根据本公开的实施例的在第二种架构下切换服务基站的方法的信令流程图。如图15所示,在步骤S1501中,UE切换至新的服务gNB。在步骤S1502中,UE通过IAB节点1和IAB节点2向IAB宿主发送关于新的服务gNB的信息。在步骤S1503中,IAB宿主向UE确认接收到关于新的服务gNB的信息。在步骤S1504中,IAB宿主与新的服务gNB建立连接。在步骤S1505中,新的服务gNB向UE发送IAB宿主与新的服务gNB之间的连接状态,以表示IAB宿主与新的服务gNB之间已经建立连接。在步骤S1506中,UE向新的服务gNB确认接收到IAB宿主与新的服务gNB之间的连接状态。由此,UE切换至新的服务gNB,并且新的服务gNB与IAB宿主建立了连接。
图16是示出根据本公开的实施例的在第二种架构下切换IAB宿主的场景的示意图。在图16中,UE可以包括电子设备100,UE的IAB宿主和服务gNB均位于非透明卫星设备上,并且IAB宿主和服务gNB不同。如图16所示,UE通过IAB节点1和IAB节点2连接至当前的IAB宿主,并且UE直接连接至服务gNB,服务gNB与当前的IAB宿主之间通过Xn接口连接。由于IAB宿主的运动或者信道质量的变化,IAB节点2切换至新的IAB宿主。这个过程可以由IAB节点2来触发,例如,IAB节点2发现远离当前的IAB宿主或者来自当前的IAB宿主的信号质量不好,IAB节点2可以搜索新的IAB宿主。在这个过程中,由于网络在第二种架构下,因此需要确保服务gNB与新的IAB宿主之间建立连接。
图16示出了IAB宿主位于非透明卫星设备上的情形。对于IAB宿主位于与透明卫星设备连接的地面站的情形,如果IAB节点2连接的透明卫星设备发生了变化,并且新的透明卫星设备连接的地面站与切换前的透明卫星设备连接的地面站相同,则认为没有发生IAB宿主的切换;如果IAB节点2连接的透明卫星设备发生了变化,并且新的透明卫星设备连接的地面站与切换前的透明卫星设备连接的地面站不同,则认为发生了IAB宿主的切换。也就是说,与透明卫星设备连接的地面站为IAB宿主,以该地面站是否变化来判断是否发生了IAB宿主的切换。
根据本公开的实施例,在IAB宿主发生变化的情况下,电子设备100可以通过通信单元120从作为电子设备100的父节点的IAB节点接收切换后的IAB宿主的信息。
根据本公开的实施例,电子设备100可以通过通信单元120,利用与 服务基站之间的直接连接将切换后的IAB宿主的信息发送至服务基站,以用于服务基站与切换后的IAB宿主建立连接。
图17是示出根据本公开的实施例的在第二种架构下切换IAB宿主的方法的信令流程图。如图17所示,在步骤S1701中,IAB节点2切换至新的IAB宿主。在步骤S1702中,IAB节点2向IAB节点1发送关于新的IAB宿主的信息。在步骤S1703中,IAB节点1向UE发送关于新的IAB宿主的信息。在步骤S1704中,UE确认接收到关于新的IAB宿主的信息。在步骤S1705中,UE将关于新的IAB宿主的信息直接发送至服务gNB。在步骤S1706中,服务gNB根据关于新的IAB宿主的信息建立与新的IAB宿主之间的连接。在步骤S1707中,服务gNB向UE发送新的IAB宿主与服务gNB之间的连接状态,以表示新的IAB宿主与服务gNB之间已经建立连接。在步骤S1708中,UE向服务gNB确认接收到新的IAB宿主与服务gNB之间的连接状态。由此,UE切换至新的IAB宿主,并且服务gNB与新的IAB宿主建立了连接。
如上所述,描述了在第一种架构下IAB宿主发生切换以及父节点发生切换的两种情形,以及在第二种架构下服务基站发生切换以及IAB宿主发生切换的两种情形。无论哪种情形,在完成切换过程之后,UE仍然可以同时保持直接连接和IAB连接。
根据本公开的实施例,由于直接连接和IAB连接中的每一个都可以提供上行传输和下行传输。也就是说,根据本公开的实施例,可以灵活地采用以下任意一种传输方式:采用IAB连接来传输上行数据并且采用IAB连接来传输下行数据;采用直接连接来传输上行数据并且采用直接连接来传输下行数据;采用IAB连接来传输上行数据并且采用直接连接来传输下行数据;根据采用直接连接来传输上行数据并且采用IAB连接来传输下行数据。
如图1所示,根据本公开的实施例,电子设备100还可以包括选择单元150,用于选择用于发送上行数据的连接,即确定利用IAB连接还是直接连接来发送上行数据。
根据本公开的实施例,选择单元150可以优先选择IAB连接来发送上行数据。也就是说,IAB连接为发送上行数据的默认方式。
根据本公开的实施例,选择单元150可以确定在IAB连接中是否存在适于发送上行数据的资源。进一步,在在IAB连接中存在适于发送上行 数据的资源情况下,选择单元150可以利用IAB连接来发送上行数据。
在IAB连接中,电子设备100的IAB宿主或者父节点可以为电子设备100分配用于利用IAB连接发送上行数据的资源。在IAB连接中存在适于发送上行数据的资源可以包括:IAB宿主或者父节点为电子设备100分配了用于利用IAB连接发送上行数据的资源、并且按照QoS要求电子设备100能够将上行数据映射到合适的资源上。也就是说,在IAB连接中存在发送上行数据的资源并且该资源能够满足电子设备100的QoS要求。在这种情况下,选择单元150可以利用IAB连接来发送上行数据。
根据本公开的实施例,在IAB连接中不存在适于发送上行数据的资源的情况下,选择单元150可以确定利用直接连接来发送上行数据。可选地,选择单元150还可以确定直接连接中是否存在适于发送上行数据的资源。在直接连接中存在适于发送上行数据的资源可以包括:服务基站为电子设备100分配了用于利用直接连接发送上行数据的资源、并且按照QoS要求电子设备100能够将上行数据映射到合适的资源上。也就是说,在直接连接中存在发送上行数据的资源并且该资源能够满足电子设备100的QoS要求。在这种情况下,选择单元150可以利用直接连接来发送上行数据。
根据本公开的实施例,在直接连接中不存在适于发送上行数据的资源的情况下,电子设备100可以丢弃该上行数据。
图18是示出根据本公开的实施例的在其中保持直接连接和IAB连接的网络中发送上行数据的方法的示意图。如图18所示,在电子设备100有上行数据要发送的情况下,电子设备100根据QoS要求将上行数据映射到IAB连接的资源上。接下来,电子设备100判断是否成功地将上行数据映射到IAB连接的资源。如果是,则通过IAB连接发送上行数据。如果否,则电子设备100根据QoS要求将上行数据映射到直接连接的资源上。接下来,电子设备100判断是否成功地将上行数据映射到直接连接的资源。如果是,则通过直接连接发送上行数据。如果否,则电子设备100丢弃该数据。
如上所述,根据本公开的实施例,电子设备100可以灵活地选择IAB连接或直接连接来发送上行数据。进一步,电子设备100可以默认使用IAB连接,从而尽可能地扩大小区覆盖并节约能耗。当IAB连接不能满足QoS要求时,可以使用直接连接,从而减少时延,保证QoS的要求。
由此可见,根据本公开的实施例,提出了两种网络架构,其中在第一种架构下,IAB宿主与服务基站相同;在第二种架构下,IAB宿主与服务基站不同。进一步,电子设备100可以保持IAB连接和直接连接两者。电子设备100可以通过发送请求信息的方式确认其连接至IAB节点还是服务基站。此外,在IAB宿主、服务基站或者父节点发生切换的情况下,仍然可以保证IAB连接和直接连接两者。这样一来,电子设备100可以灵活地选择IAB连接和直接连接来发送上行数据,从而能够利用直接连接和IAB连接两者的优势,兼顾网络时延的要求和节能的要求。
<3.基站设备的配置示例>
图19是示出根据本公开的实施例的无线通信系统中的电子设备1900的结构的框图。这里的电子设备1900可以作为网络侧设备,具体地为基站设备。
如图19所示,电子设备1900可以包括连接单元1910和通信单元1920。
这里,电子设备1900的各个单元都可以包括在处理电路中。需要说明的是,电子设备1900既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,连接单元1910可以使电子设备1900直接连接至电子设备1900服务的用户设备。这里,用户设备还通过一个或多个IAB节点连接至IAB宿主。
根据本公开的实施例,电子设备1900可以通过通信单元1920利用用户设备与IAB宿主的IAB连接或者用户设备与电子设备1900的直接连接来发送下行数据,并且利用IAB连接或者直接连接来接收上行数据。
如上所述,根据本公开的实施例的电子设备1900,由于用户设备可以保持直接连接和IAB连接两者,因此电子设备1900可以灵活地选择发送下行数据的方式,从而能够利用直接连接和IAB连接两者的优势,兼顾网络时延的要求和节能的要求。
根据本公开的实施例,电子设备1900可以通过通信单元1920从用户设备接收请求信息,该请求信息请求电子设备1900的标识信息或类型信息。
根据本公开的实施例,如图19所示,电子设备1900还可以包括生成单元1930,用于生成响应信息,响应信息包括电子设备1900的标识信息或者类型信息。进一步,电子设备1900可以通过通信单元1920向用户设备发送响应信息。这样一来,用户设备可以根据电子设备1900的标识信息或者类型信息确定电子设备1900是服务基站还是IAB节点。
如前文所述,在第一种架构下,电子设备1900与用户设备的IAB宿主相同。在第二种架构下,电子设备1900与用户设备的IAB宿主不同。
根据本公开的实施例,如图19所示,电子设备1900还可以包括生成单元1940。在第一种架构下,在电子设备1900直接连接至用户设备之后,生成单元1940可以生成作为用户设备的父节点的IAB节点的推荐信息。例如,电子设备1900可以根据IAB节点的位置和/IAB节点的可用带宽来确定推荐作为父节点的IAB节点。作为一个示例,电子设备1900可以将距离用户设备最近的IAB节点确定为推荐的父节点,也可以将具有最大可用带宽的IAB节点确定为推荐的父节点。进一步,生成单元1940可以将推荐的父节点的标识信息包括在推荐信息中,并通过通信单元1920向用户设备发送推荐信息。由此,用户设备可以根据推荐信息确定其要连接的父节点。
根据本公开的实施例,在第二种架构下,连接单元1910还可以与IAB宿主建立连接。这里,电子设备1900可以根据来自IAB宿主的通知信息确定用户设备的IAB宿主为该IAB宿主。例如,该通知信息中可以包括用户设备的标识信息,从而电子设备1900可以确定用户设备还具有与该IAB宿主的IAB连接。
这里,电子设备1900与用户设备建立连接,同时该用户设备还保持IAB连接的实施方式在前文中已经详细描述过,在此不再赘述。
根据本公开的实施例,在用户设备仅具有一个射频用于上行传输和下行传输,即用户设备采用半双工的方式进行工作的情况下,可以考虑用户设备利用IAB连接来发送上行数据,并且利用直接连接来接收下行数据。这样一来,用户设备可以利用一个或多个IAB节点发送上行数据,因此可以大大减少用户设备的功耗。另一方面,用户设备通过直接连接来接收下行数据,可以大大减少时延。在这种情况下,由于用户设备不能同时接收数据和发送数据,因此用户设备用于发送上行数据的资源和用于接收下行数据的资源需要在时间上正交。
根据本公开的实施例,如图19所示,电子设备1900还可以包括分配单元1950,用于向用户设备分配用于接收下行数据的资源。可选地,在电子设备1900与IAB宿主相同的情况下,因为IAB宿主需要为用户设备分配用户发送上行数据的资源,因此分配单元1950还可以向用户设备分配用于发送上行数据的资源。
根据本公开的实施例,在第一种架构下,分配单元1950可以为用户设备分配用于发送上行数据的资源和用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
根据本公开的实施例,当用户设备有需要发送的上行数据时,用户设备可以经由一个或多个IAB节点向IAB宿主发出上行资源请求,以请求用于发送上行数据的资源。作为IAB宿主的电子设备1900的分配单元1950可以根据来自用户设备的上行资源请求为用户设备分配IAB连接中的用于发送上行数据的资源。当电子设备1900有需要发送的下行数据时,分配单元1950可以为用户设备分配直接连接中的用于接收下行数据的资源。这里,由于用户设备是半双工的工作模式,因此分配单元1950在为用户设备分配IAB连接中的用于发送上行数据的资源以及直接连接中的用于接收下行数据的资源时,需要保证用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
图20是示出根据本公开的实施例的在第一种架构下协调上行和下行资源的方法的信令流程图。在图20中,服务gNB(IAB宿主)可以包括电子设备1900。如图20所示,在步骤S2001中,UE向IAB节点1发送IAB连接的上行资源请求,以请求利用IAB连接发送上行数据的上行资源。在步骤S2002中,IAB节点1向IAB节点2转发UE的IAB上行资源请求。在步骤S2003中,IAB节点2向IAB宿主转发UE的IAB上行资源请求。在步骤S2004中,IAB宿主在为UE分配用于发送上行数据的资源时,需要考虑为UE分配的用于利用直接连接接收下行数据的资源,以使得UE的用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。在步骤S2005中,IAB宿主向IAB节点2发送IAB上行资源调度,包括为UE分配的利用IAB连接发送上行数据的资源。在步骤S2006中,IAB节点2向IAB节点1转发UE的IAB上行资源调度。在步骤S2007中,IAB节点1向UE转发UE的IAB上行资源调度。在步骤S2008中,服务gNB向UE发送直接连接的下行资源调度,其中包括UE利用直接连接接收下行数据的资源。在步骤S2009中,UE准备好发送上行数据。在 步骤S2010中,UE利用接收到的IAB上行资源调度将上行数据发送至IAB节点1。在步骤S2011中,IAB节点1向IAB节点2转发UE的上行数据。在步骤S2012中,IAB节点2向IAB宿主转发UE的上行数据。在步骤S2013中,UE准备好接收下行数据。在步骤S2014中,服务gNB通过直接连接向UE发送下行数据。由此,由服务gNB(IAB宿主)来协调UE的用于发送上行数据的资源和用于接收下行数据的资源。
根据本公开的实施例,在第二种架构下,电子设备1900通过通信单元1920从IAB宿主接收IAB宿主为用户设备分配的用于发送上行数据的资源。进一步,分配单元1950为用户设备分配用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
根据本公开的实施例,在第二种架构下,电子设备1900与IAB宿主不同。用户设备通过IAB连接发送上行数据,因此IAB宿主为用户设备分配用于发送上行数据的资源。当电子设备1900有需要发送的下行数据时,分配单元1950可以为用户设备分配直接连接中的用于接收下行数据的资源。这里,由于用户设备是半双工的工作模式,因此分配单元1950在为用户设备分配直接连接中的用于接收下行数据的资源时,需要保证用于接收下行数据的资源与从IAB宿主接收的用于发送上行数据的资源在时间上正交。
图21是示出根据本公开的实施例的在第二种架构下协调上行和下行资源的方法的信令流程图。在图21中,服务gNB可以包括电子设备1900。如图21所示,在步骤S2101中,UE向IAB节点1发送IAB连接的上行资源请求,以请求利用IAB连接发送上行数据的上行资源。在步骤S2102中,IAB节点1向IAB节点2转发UE的IAB上行资源请求。在步骤S2103中,IAB节点2向IAB宿主转发UE的IAB上行资源请求。在步骤S2104中,IAB宿主向IAB节点2发送IAB上行资源调度,包括为UE分配的利用IAB连接发送上行数据的资源。在步骤S2105中,IAB节点2向IAB节点1转发UE的IAB上行资源调度。在步骤S2106中,IAB节点1向UE转发UE的IAB上行资源调度。在步骤S2107中,IAB宿主向服务gNB发送其为UE分配的用于发送上行数据的资源。在步骤S2108中,服务gNB根据接收到的UE的用于发送上行数据的资源,来为UE分配用于利用直接连接接收下行数据的资源,以使得用于接收下行数据的资源与用于发送上行数据的资源在时间上正交。在步骤S2109中,服务gNB向UE发送 直接连接的下行资源调度,其中包括UE利用直接连接接收下行数据的资源。在步骤S2110中,UE准备好发送上行数据。在步骤S2111中,UE利用接收到的IAB上行资源调度将上行数据发送至IAB节点1。在步骤S2112中,IAB节点1向IAB节点2转发UE的上行数据。在步骤S2113中,IAB节点2向IAB宿主转发UE的上行数据。在步骤S2114中,UE准备好接收下行数据。在步骤S2115中,服务gNB通过直接连接向UE发送下行数据。由此,由服务gNB和IAB宿主来协调UE的用于发送上行数据的资源和用于接收下行数据的资源。
如上所述,根据本公开的实施例,对于半双工工作模式的用户设备,可以利用IAB连接来发送上行数据并利用直接连接来接收下行数据。进一步,电子设备1900、或者电子设备1900与IAB宿主可以协调用户设备的用于发送上行数据的资源和用于接收下行数据的资源,以使其在时间上正交。这样一来,可以节约用户设备的能量,并降低下行数据的时延。
根据本公开的实施例,如图19所示,电子设备1900还可以包括选择单元1960,用于选择用于发送下行数据的连接,即确定利用IAB连接还是直接连接来发送下行数据。
根据本公开的实施例,选择单元1960可以优先选择IAB连接来发送下行数据。也就是说,IAB连接为发送下行数据的默认方式。
根据本公开的实施例,选择单元1960可以确定在IAB连接中是否存在适于发送下行数据的资源。进一步,在在IAB连接中存在适于发送下行数据的资源情况下,选择单元1960可以利用IAB连接来发送下行数据。
在IAB连接中存在适于发送下行数据的资源可以包括:IAB宿主或者父节点为用户设备分配了用于利用IAB连接接收下行数据的资源、并且按照QoS要求电子设备1900能够将下行数据映射到合适的资源上。也就是说,在IAB连接中存在发送下行数据的资源并且该资源能够满足QoS要求。在这种情况下,选择单元1960可以利用IAB连接来发送下行数据。
根据本公开的实施例,在所述IAB连接中不存在适于发送下行数据的资源的情况下,选择单元1960可以确定利用直接连接来发送下行数据。可选地,选择单元1960还可以确定直接连接中是否存在适于发送下行数据的资源。在直接连接中存在适于发送下行数据的资源可以包括:电子设备1900为用户设备分配了用于利用直接连接接收下行数据的资源、并且按照QoS要求电子设备1900能够将下行数据映射到合适的资源上。也就 是说,在直接连接中存在发送下行数据的资源并且该资源能够满足QoS要求。在这种情况下,选择单元1960可以利用直接连接来发送下行数据。
根据本公开的实施例,在直接连接中不存在适于发送下行数据的资源的情况下,电子设备1900可以丢弃该上行数据。
图22是示出根据本公开的实施例的在其中保持直接连接和IAB连接的网络中发送下行数据的方法的示意图。如图22所示,在电子设备1900有下行数据要发送的情况下,电子设备1900根据QoS要求将下行数据映射到IAB连接的资源上。接下来,电子设备1900判断是否成功地将下行数据映射到IAB连接的资源。如果是,则通过IAB连接发送下行数据。如果否,则电子设备1900根据QoS要求将下行数据映射到直接连接的资源上。接下来,电子设备1900判断是否成功地将下行数据映射到直接连接的资源。如果是,则通过直接连接发送下行数据。如果否,则电子设备1900丢弃该数据。
如上所述,根据本公开的实施例,电子设备1900可以灵活地选择IAB连接或直接连接来发送下行数据。进一步,电子设备1900可以默认使用IAB连接,从而尽可能地扩大小区覆盖并节约能耗。当IAB连接不能满足QoS要求时,可以使用直接连接,从而减少时延,保证QoS的要求。
如上所述,根据本公开的实施例,提出了两种网络架构,其中在第一种架构下,IAB宿主与电子设备1900相同;在第二种架构下,IAB宿主与电子设备1900不同。进一步,用户设备可以保持IAB连接和直接连接两者。此外,电子设备1900可以灵活地选择IAB连接和直接连接来发送下行数据,从而能够利用直接连接和IAB连接两者的优势,兼顾网络时延的要求和节能的要求。进一步,在用户设备处于半双工工作模式的情况下,电子设备1900可以进行资源协调以使得用户设备的用于发送上行数据的资源和用于接收下行数据的资源在时间上正交,从而可以减少用户设备的能耗并减少下行传输的时延。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法。
图23是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法的流程图。
如图23所示,在步骤S2310中,通过一个或多个IAB节点连接至 IAB宿主,并且直接连接至电子设备100的服务基站.
接下来,在步骤S2320中,利用与IAB宿主的IAB连接或者与服务基站的直接连接来发送上行数据,并且利用IAB连接或者直接连接来接收下行数据。
优选地,述无线通信方法还包括:向服务基站发送请求信息;从服务基站接收响应信息,响应信息包括服务基站的标识信息或者类型信息;以及根据服务基站的标识信息或者类型信息确定服务基站是服务基站还是IAB节点。
优选地,无线通信方法还包括:向作为电子设备的父节点的IAB节点发送请求信息;从父节点接收响应信息,响应信息包括父节点的标识信息或者类型信息;以及根据父节点的标识信息或者类型信息确定父节点是服务基站还是IAB节点。
优选地,服务基站与IAB宿主相同。
优选地,无线通信方法还包括:在通过一个或多个IAB节点连接至IAB宿主之后,从作为电子设备100的父节点的IAB节点接收IAB宿主的信息;以及根据IAB宿主的信息直接连接至IAB宿主。
优选地,无线通信方法还包括:在直接连接至服务基站之后,从服务基站接收作为电子设备100的父节点的IAB节点的推荐信息;根据推荐信息确定作为父节点的IAB节点;以及连接至作为父节点的IAB节点。
优选地,无线通信方法还包括:在IAB宿主发生变化的情况下,从作为电子设备100的父节点的IAB节点接收切换后的IAB宿主的信息;以及根据切换后的IAB宿主的信息直接连接至切换后的IAB宿主。
优选地,无线通信方法还包括:确定切换后的作为电子设备100的父节点的IAB节点,切换后的作为父节点的IAB节点的IAB宿主与服务基站相同;连接至切换后的作为父节点的IAB节点;以及将切换后的作为父节点的IAB节点的信息发送至服务基站。
优选地,服务基站与IAB宿主不同。
优选地,无线通信方法还包括:在通过一个或多个IAB节点连接至IAB宿主之后,从作为电子设备100的父节点的IAB节点接收关于IAB宿主的信息;根据IAB宿主的信息确定与IAB宿主不同的服务基站;以及直接连接至服务基站。
优选地,无线通信方法还包括:在直接连接至服务基站之后,确定作为电子设备100的父节点的IAB节点,父节点的IAB宿主与服务基站不同;以及连接至作为父节点的IAB节点。
优选地,无线通信方法还包括:将关于服务基站的信息通过所述一个或多个IAB节点发送至IAB宿主,以用于IAB宿主与服务基站建立连接。
优选地,无线通信方法还包括:确定切换后的服务基站;直接连接至切换后的服务基站;以及将切换后的服务基站的信息通过一个或多个IAB节点发送至IAB宿主,以用于IAB宿主与切换后的服务基站建立连接。
优选地,无线通信方法还包括:在IAB宿主发生变化的情况下,从作为电子设备100的父节点的IAB节点接收切换后的IAB宿主的信息;以及将切换后的IAB宿主的信息发送至服务基站,以用于服务基站与切换后的IAB宿主建立连接。
优选地,无线通信方法还包括:在IAB连接中存在适于发送上行数据的资源的情况下,利用IAB连接来发送所述上行数据;以及在IAB连接中不存在适于发送上行数据的资源的情况下,利用直接连接来发送上行数据。
优选地,IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且服务基站包括非透明卫星设备或者与透明卫星设备连接的地面站。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备100,因此前文中关于电子设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为基站设备的电子设备1900执行的无线通信方法。
图24是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备1900执行的无线通信方法的流程图。
如图24所示,在步骤S2410中,直接连接至电子设备1900服务的用户设备,用户设备还通过一个或多个IAB节点连接至IAB宿主。
接下来,在步骤S2420中,利用用户设备与IAB宿主的IAB连接或 者用户设备与电子设备1900的直接连接来发送下行数据,并且利用IAB连接或者直接连接来接收上行数据。
优选地,无线通信方法还包括:从用户设备接收请求信息;以及向用户设备发送响应信息,响应信息包括电子设备1900的标识信息或者类型信息,以用于用户设备根据电子设备1900的标识信息或者类型信息确定电子设备1900是服务基站还是IAB节点。
优选地,电子设备1900与IAB宿主相同。
优选地,无线通信方法还包括:在直接连接至用户设备之后,向用户设备发送作为用户设备的父节点的IAB节点的推荐信息。
优选地,无线通信方法还包括:为用户设备分配用于发送上行数据的资源和用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
优选地,电子设备1900与IAB宿主不同。
优选地,无线通信方法还包括:与IAB宿主建立连接;以及根据来自IAB宿主的通知信息确定用户设备的IAB宿主为IAB宿主。
优选地,无线通信方法还包括:从所述IAB宿主接收IAB宿主为用户设备分配的用于发送上行数据的资源;以及为用户设备分配用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
优选地,无线通信方法还包括:在IAB连接中存在适于发送下行数据的资源的情况下,利用IAB连接来发送下行数据;以及在IAB连接中不存在适于发送下行数据的资源的情况下,利用直接连接来发送下行数据。
优选地,IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且电子设备1900包括非透明卫星设备或者与透明卫星设备连接的地面站。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1900,因此前文中关于电子设备1900的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图25是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 2500包括一个或多个天线2510以及基站设备2520。基站设备2520和每个天线2510可以经由RF线缆彼此连接。
天线2510中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2520发送和接收无线信号。如图25所示,eNB 2500可以包括多个天线2510。例如,多个天线2510可以与eNB 2500使用的多个频带兼容。虽然图25示出其中eNB 2500包括多个天线2510的示例,但是eNB 2500也可以包括单个天线2510。
基站设备2520包括控制器2521、存储器2522、网络接口2523以及无线通信接口2525。
控制器2521可以为例如CPU或DSP,并且操作基站设备2520的较高层的各种功能。例如,控制器2521根据由无线通信接口2525处理的信号中的数据来生成数据分组,并经由网络接口2523来传递所生成的分组。控制器2521可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2521可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳 控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器2522包括RAM和ROM,并且存储由控制器2521执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2523为用于将基站设备2520连接至核心网2524的通信接口。控制器2521可以经由网络接口2523而与核心网节点或另外的eNB进行通信。在此情况下,eNB 2500与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2523还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2523为无线通信接口,则与由无线通信接口2525使用的频带相比,网络接口2523可以使用较高频带用于无线通信。
无线通信接口2525支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2510来提供到位于eNB 2500的小区中的终端的无线连接。无线通信接口2525通常可以包括例如基带(BB)处理器2526和RF电路2527。BB处理器2526可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2521,BB处理器2526可以具有上述逻辑功能的一部分或全部。BB处理器2526可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2526的功能改变。该模块可以为插入到基站设备2520的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2527可以包括例如混频器、滤波器和放大器,并且经由天线2510来传送和接收无线信号。
如图25所示,无线通信接口2525可以包括多个BB处理器2526。例如,多个BB处理器2526可以与eNB 2500使用的多个频带兼容。如图25所示,无线通信接口2525可以包括多个RF电路2527。例如,多个RF电路2527可以与多个天线元件兼容。虽然图25示出其中无线通信接口2525包括多个BB处理器2526和多个RF电路2527的示例,但是无线通信接口2525也可以包括单个BB处理器2526或单个RF电路2527。
(第二应用示例)
图26是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 2630包括一个或多个天线2640、基站设备2650和RRH 2660。RRH 2660和每个天线2640可以经由RF线缆而彼此连接。基 站设备2650和RRH 2660可以经由诸如光纤线缆的高速线路而彼此连接。
天线2640中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 2660发送和接收无线信号。如图26所示,eNB 2630可以包括多个天线2640。例如,多个天线2640可以与eNB 2630使用的多个频带兼容。虽然图26示出其中eNB 2630包括多个天线2640的示例,但是eNB 2630也可以包括单个天线2640。
基站设备2650包括控制器2651、存储器2652、网络接口2653、无线通信接口2655以及连接接口2657。控制器2651、存储器2652和网络接口2653与参照图25描述的控制器2521、存储器2522和网络接口2523相同。网络接口2653为用于将基站设备2650连接至核心网2654的通信接口。
无线通信接口2655支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 2660和天线2640来提供到位于与RRH 2660对应的扇区中的终端的无线通信。无线通信接口2655通常可以包括例如BB处理器2656。除了BB处理器2656经由连接接口2657连接到RRH 2660的RF电路2664之外,BB处理器2656与参照图25描述的BB处理器2526相同。如图26所示,无线通信接口2655可以包括多个BB处理器2656。例如,多个BB处理器2656可以与eNB 2630使用的多个频带兼容。虽然图26示出其中无线通信接口2655包括多个BB处理器2656的示例,但是无线通信接口2655也可以包括单个BB处理器2656。
连接接口2657为用于将基站设备2650(无线通信接口2655)连接至RRH 2660的接口。连接接口2657还可以为用于将基站设备2650(无线通信接口2655)连接至RRH 2660的上述高速线路中的通信的通信模块。
RRH 2660包括连接接口2661和无线通信接口2663。
连接接口2661为用于将RRH 2660(无线通信接口2663)连接至基站设备2650的接口。连接接口2661还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2663经由天线2640来传送和接收无线信号。无线通信接口2663通常可以包括例如RF电路2664。RF电路2664可以包括例如混频器、滤波器和放大器,并且经由天线2640来传送和接收无线信号。如图26所示,无线通信接口2663可以包括多个RF电路2664。例如,多个RF电路2664可以支持多个天线元件。虽然图26示出其中无线通信接 口2663包括多个RF电路2664的示例,但是无线通信接口2663也可以包括单个RF电路2664。
在图25和图26所示的eNB 2500和eNB2630中,通过使用图19所描述的连接单元1910、生成单元1930、生成单元1940、分配单元1950和选择单元1960可以由控制器2521和/或控制器2651实现。功能的至少一部分也可以由控制器2521和控制器2651实现。例如,控制器2521和/或控制器2651可以通过执行相应的存储器中存储的指令而执行连接用户设备、生成响应信息、生成IAB父节点的推荐信息、分配下行资源、选择IAB连接或者直接连接来发送下行数据的功能。
<关于终端设备的应用示例>
(第一应用示例)
图27是示出可以应用本公开内容的技术的智能电话2700的示意性配置的示例的框图。智能电话2700包括处理器2701、存储器2702、存储装置2703、外部连接接口2704、摄像装置2706、传感器2707、麦克风2708、输入装置2709、显示装置2710、扬声器2711、无线通信接口2712、一个或多个天线开关2715、一个或多个天线2716、总线2717、电池2718以及辅助控制器2719。
处理器2701可以为例如CPU或片上系统(SoC),并且控制智能电话2700的应用层和另外层的功能。存储器2702包括RAM和ROM,并且存储数据和由处理器2701执行的程序。存储装置2703可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2704为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2700的接口。
摄像装置2706包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2707可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2708将输入到智能电话2700的声音转换为音频信号。输入装置2709包括例如被配置为检测显示装置2710的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2710包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2700的输出图像。扬声器2711将从智能电话2700输出的音频信号转换为声音。
无线通信接口2712支持任何蜂窝通信方案(诸如LTE和LTE-先进), 并且执行无线通信。无线通信接口2712通常可以包括例如BB处理器2713和RF电路2714。BB处理器2713可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2714可以包括例如混频器、滤波器和放大器,并且经由天线2716来传送和接收无线信号。无线通信接口2712可以为其上集成有BB处理器2713和RF电路2714的一个芯片模块。如图27所示,无线通信接口2712可以包括多个BB处理器2713和多个RF电路2714。虽然图27示出其中无线通信接口2712包括多个BB处理器2713和多个RF电路2714的示例,但是无线通信接口2712也可以包括单个BB处理器2713或单个RF电路2714。
此外,除了蜂窝通信方案之外,无线通信接口2712可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2712可以包括针对每种无线通信方案的BB处理器2713和RF电路2714。
天线开关2715中的每一个在包括在无线通信接口2712中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2716的连接目的地。
天线2716中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2712传送和接收无线信号。如图27所示,智能电话2700可以包括多个天线2716。虽然图27示出其中智能电话2700包括多个天线2716的示例,但是智能电话2700也可以包括单个天线2716。
此外,智能电话2700可以包括针对每种无线通信方案的天线2716。在此情况下,天线开关2715可以从智能电话2700的配置中省略。
总线2717将处理器2701、存储器2702、存储装置2703、外部连接接口2704、摄像装置2706、传感器2707、麦克风2708、输入装置2709、显示装置2710、扬声器2711、无线通信接口2712以及辅助控制器2719彼此连接。电池2718经由馈线向图27所示的智能电话2700的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2719例如在睡眠模式下操作智能电话2700的最小必需功能。
在图27所示的智能电话2700中,通过使用图1所描述的连接单元110、生成单元130、类型确定单元140和选择单元150可以由由处理器 2701或辅助控制器2719实现。功能的至少一部分也可以由处理器2701或辅助控制器2719实现。例如,处理器2701或辅助控制器2719可以通过执行存储器2702或存储装置2703中存储的指令而执行保持IAB连接和直接连接、生成请求信息、确定服务基站或者IAB节点、选择IAB连接或直接连接来发送上行数据的功能。
(第二应用示例)
图28是示出可以应用本公开内容的技术的汽车导航设备2820的示意性配置的示例的框图。汽车导航设备2820包括处理器2821、存储器2822、全球定位系统(GPS)模块2824、传感器2825、数据接口2826、内容播放器2827、存储介质接口2828、输入装置2829、显示装置2830、扬声器2831、无线通信接口2833、一个或多个天线开关2836、一个或多个天线2837以及电池2838。
处理器2821可以为例如CPU或SoC,并且控制汽车导航设备2820的导航功能和另外的功能。存储器2822包括RAM和ROM,并且存储数据和由处理器2821执行的程序。
GPS模块2824使用从GPS卫星接收的GPS信号来测量汽车导航设备2820的位置(诸如纬度、经度和高度)。传感器2825可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2826经由未示出的终端而连接到例如车载网络2841,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2827再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2828中。输入装置2829包括例如被配置为检测显示装置2830的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2830包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2831输出导航功能的声音或再现的内容。
无线通信接口2833支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2833通常可以包括例如BB处理器2834和RF电路2835。BB处理器2834可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2835可以包括例如混频器、滤波器和放大器,并且经由天线2837来传送和接收无线信号。无线通信接口2833还可以为其上集成有BB处 理器2834和RF电路2835的一个芯片模块。如图28所示,无线通信接口2833可以包括多个BB处理器2834和多个RF电路2835。虽然图28示出其中无线通信接口2833包括多个BB处理器2834和多个RF电路2835的示例,但是无线通信接口2833也可以包括单个BB处理器2834或单个RF电路2835。
此外,除了蜂窝通信方案之外,无线通信接口2833可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2833可以包括BB处理器2834和RF电路2835。
天线开关2836中的每一个在包括在无线通信接口2833中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2837中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2833传送和接收无线信号。如图28所示,汽车导航设备2820可以包括多个天线2837。虽然图28示出其中汽车导航设备2820包括多个天线2837的示例,但是汽车导航设备2820也可以包括单个天线2837。
此外,汽车导航设备2820可以包括针对每种无线通信方案的天线2837。在此情况下,天线开关2836可以从汽车导航设备2820的配置中省略。
电池2838经由馈线向图28所示的汽车导航设备2820的各个块提供电力,馈线在图中被部分地示为虚线。电池2838累积从车辆提供的电力。
在图28示出的汽车导航设备2820中,通过使用图1所描述的连接单元110、生成单元130、类型确定单元140和选择单元150可以由处理器2821实现。功能的至少一部分也可以由处理器2821实现。例如,处理器2821可以通过执行存储器2822中存储的指令而执行保持IAB连接和直接连接、生成请求信息、确定服务基站或者IAB节点、选择IAB连接或直接连接来发送上行数据的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2820、车载网络2841以及车辆模块2842中的一个或多个块的车载系统(或车辆)2840。车辆模块2842生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2841。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (53)

  1. 一种电子设备,包括处理电路,被配置为:
    通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;
    直接连接至所述电子设备的服务基站;以及
    利用与所述IAB宿主的IAB连接或者与所述服务基站的直接连接来发送上行数据,并且利用所述IAB连接或者所述直接连接来接收下行数据。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向所述服务基站发送请求信息;
    从所述服务基站接收响应信息,所述响应信息包括所述服务基站的标识信息或者类型信息;以及
    根据所述服务基站的标识信息或者类型信息确定所述服务基站是服务基站还是IAB节点。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向作为所述电子设备的父节点的IAB节点发送请求信息;
    从所述父节点接收响应信息,所述响应信息包括所述父节点的标识信息或者类型信息;以及
    根据所述父节点的标识信息或者类型信息确定所述父节点是服务基站还是IAB节点。
  4. 根据权利要求1所述的电子设备,其中,所述服务基站与所述IAB宿主相同。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    在通过所述一个或多个IAB节点连接至所述IAB宿主之后,从作为所述电子设备的父节点的IAB节点接收所述IAB宿主的信息;以及
    根据所述IAB宿主的信息直接连接至所述IAB宿主。
  6. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    在直接连接至所述服务基站之后,从所述服务基站接收作为所述电子设备的父节点的IAB节点的推荐信息;
    根据所述推荐信息确定作为所述父节点的IAB节点;以及
    连接至作为所述父节点的IAB节点。
  7. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    在所述IAB宿主发生变化的情况下,从作为所述电子设备的父节点的IAB节点接收切换后的IAB宿主的信息;以及
    根据所述切换后的IAB宿主的信息直接连接至所述切换后的IAB宿主。
  8. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    确定切换后的作为所述电子设备的父节点的IAB节点,所述切换后的作为父节点的IAB节点的IAB宿主与所述服务基站相同;
    连接至所述切换后的作为父节点的IAB节点;以及
    将所述切换后的作为父节点的IAB节点的信息发送至所述服务基站。
  9. 根据权利要求1所述的电子设备,其中,所述服务基站与所述IAB宿主不同。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在通过所述一个或多个IAB节点连接至所述IAB宿主之后,从作为所述电子设备的父节点的IAB节点接收关于所述IAB宿主的信息;
    根据所述IAB宿主的信息确定与所述IAB宿主不同的服务基站;以及
    直接连接至所述服务基站。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在直接连接至所述服务基站之后,确定作为所述电子设备的父节点的IAB节点,所述父节点的IAB宿主与所述服务基站不同;以及
    连接至作为所述父节点的IAB节点。
  12. 根据权利要求10或11所述的电子设备,其中,所述处理电路还被配置为:
    将关于所述服务基站的信息通过所述一个或多个IAB节点发送至所述IAB宿主,以用于所述IAB宿主与所述服务基站建立连接。
  13. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    确定切换后的服务基站;
    直接连接至所述切换后的服务基站;以及
    将所述切换后的服务基站的信息通过所述一个或多个IAB节点发送至所述IAB宿主,以用于所述IAB宿主与所述切换后的服务基站建立连接。
  14. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在所述IAB宿主发生变化的情况下,从作为所述电子设备的父节点的IAB节点接收切换后的IAB宿主的信息;以及
    将所述切换后的IAB宿主的信息发送至所述服务基站,以用于所述服务基站与所述切换后的IAB宿主建立连接。
  15. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在所述IAB连接中存在适于发送上行数据的资源的情况下,利用所述IAB连接来发送所述上行数据;以及
    在所述IAB连接中不存在适于发送上行数据的资源的情况下,利用所述直接连接来发送所述上行数据。
  16. 根据权利要求1所述的电子设备,其中,所述IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且所述服务基站包括非透明卫星设备或者与透明卫星设备连接的地面站。
  17. 一种电子设备,包括处理电路,被配置为:
    直接连接至所述电子设备服务的用户设备,所述用户设备还通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;以及
    利用所述用户设备与所述IAB宿主的IAB连接或者所述用户设备与所述电子设备的直接连接来发送下行数据,并且利用所述IAB连接或者所述直接连接来接收上行数据。
  18. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收请求信息;以及
    向所述用户设备发送响应信息,所述响应信息包括所述电子设备的标识信息或者类型信息,以用于所述用户设备根据所述电子设备的标识信息或者类型信息确定所述电子设备是服务基站还是IAB节点。
  19. 根据权利要求17所述的电子设备,其中,所述电子设备与所述IAB宿主相同。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路还被配置为:
    在直接连接至所述用户设备之后,向所述用户设备发送作为所述用户设备的父节点的IAB节点的推荐信息。
  21. 根据权利要求19所述的电子设备,其中,所述处理电路还被配置为:
    为所述用户设备分配用于发送上行数据的资源和用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
  22. 根据权利要求17所述的电子设备,其中,所述电子设备与所述IAB宿主不同。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路还被配置为:
    与所述IAB宿主建立连接;以及
    根据来自所述IAB宿主的通知信息确定所述用户设备的IAB宿主为所述IAB宿主。
  24. 根据权利要求22所述的电子设备,其中,所述处理电路还被配 置为:
    从所述IAB宿主接收所述IAB宿主为所述用户设备分配的用于发送上行数据的资源;以及
    为所述用户设备分配用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
  25. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    在所述IAB连接中存在适于发送下行数据的资源的情况下,利用所述IAB连接来发送所述下行数据;以及
    在所述IAB连接中不存在适于发送下行数据的资源的情况下,利用所述直接连接来发送所述下行数据。
  26. 根据权利要求17所述的电子设备,其中,所述IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且所述电子设备包括非透明卫星设备或者与透明卫星设备连接的地面站。
  27. 一种由电子设备执行的无线通信方法,包括:
    通过一个或多个接入和回传一体化IAB节点连接至IAB宿主,并且直接连接至所述电子设备的服务基站;以及
    利用与所述IAB宿主的IAB连接或者与所述服务基站的直接连接来发送上行数据,并且利用所述IAB连接或者所述直接连接来接收下行数据。
  28. 根据权利要求27所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述服务基站发送请求信息;
    从所述服务基站接收响应信息,所述响应信息包括所述服务基站的标识信息或者类型信息;以及
    根据所述服务基站的标识信息或者类型信息确定所述服务基站是服务基站还是IAB节点。
  29. 根据权利要求27所述的无线通信方法,其中,所述无线通信方法还包括:
    向作为所述电子设备的父节点的IAB节点发送请求信息;
    从所述父节点接收响应信息,所述响应信息包括所述父节点的标识信息或者类型信息;以及
    根据所述父节点的标识信息或者类型信息确定所述父节点是服务基站还是IAB节点。
  30. 根据权利要求27所述的无线通信方法,其中,所述服务基站与所述IAB宿主相同。
  31. 根据权利要求30所述的无线通信方法,其中,所述无线通信方法还包括:
    在通过所述一个或多个IAB节点连接至所述IAB宿主之后,从作为所述电子设备的父节点的IAB节点接收所述IAB宿主的信息;以及
    根据所述IAB宿主的信息直接连接至所述IAB宿主。
  32. 根据权利要求30所述的无线通信方法,其中,所述无线通信方法还包括:
    在直接连接至所述服务基站之后,从所述服务基站接收作为所述电子设备的父节点的IAB节点的推荐信息;
    根据所述推荐信息确定作为所述父节点的IAB节点;以及
    连接至作为所述父节点的IAB节点。
  33. 根据权利要求30所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述IAB宿主发生变化的情况下,从作为所述电子设备的父节点的IAB节点接收切换后的IAB宿主的信息;以及
    根据所述切换后的IAB宿主的信息直接连接至所述切换后的IAB宿主。
  34. 根据权利要求30所述的无线通信方法,其中,所述无线通信方法还包括:
    确定切换后的作为所述电子设备的父节点的IAB节点,所述切换后的作为父节点的IAB节点的IAB宿主与所述服务基站相同;
    连接至所述切换后的作为父节点的IAB节点;以及
    将所述切换后的作为父节点的IAB节点的信息发送至所述服务基站。
  35. 根据权利要求27所述的无线通信方法,其中,所述服务基站与所述IAB宿主不同。
  36. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    在通过所述一个或多个IAB节点连接至所述IAB宿主之后,从作为所述电子设备的父节点的IAB节点接收关于所述IAB宿主的信息;
    根据所述IAB宿主的信息确定与所述IAB宿主不同的服务基站;以及
    直接连接至所述服务基站。
  37. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    在直接连接至所述服务基站之后,确定作为所述电子设备的父节点的IAB节点,所述父节点的IAB宿主与所述服务基站不同;以及
    连接至作为所述父节点的IAB节点。
  38. 根据权利要求36或37所述的无线通信方法,其中,所述无线通信方法还包括:
    将关于所述服务基站的信息通过所述一个或多个IAB节点发送至所述IAB宿主,以用于所述IAB宿主与所述服务基站建立连接。
  39. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    确定切换后的服务基站;
    直接连接至所述切换后的服务基站;以及
    将所述切换后的服务基站的信息通过所述一个或多个IAB节点发送至所述IAB宿主,以用于所述IAB宿主与所述切换后的服务基站建立连接。
  40. 根据权利要求35所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述IAB宿主发生变化的情况下,从作为所述电子设备的父节点的IAB节点接收切换后的IAB宿主的信息;以及
    将所述切换后的IAB宿主的信息发送至所述服务基站,以用于所述服 务基站与所述切换后的IAB宿主建立连接。
  41. 根据权利要求27所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述IAB连接中存在适于发送上行数据的资源的情况下,利用所述IAB连接来发送所述上行数据;以及
    在所述IAB连接中不存在适于发送上行数据的资源的情况下,利用所述直接连接来发送所述上行数据。
  42. 根据权利要求27所述的无线通信方法,其中,所述IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且所述服务基站包括非透明卫星设备或者与透明卫星设备连接的地面站。
  43. 一种由电子设备执行的无线通信方法,包括:
    直接连接至所述电子设备服务的用户设备,所述用户设备还通过一个或多个接入和回传一体化IAB节点连接至IAB宿主;以及
    利用所述用户设备与所述IAB宿主的IAB连接或者所述用户设备与所述电子设备的直接连接来发送下行数据,并且利用所述IAB连接或者所述直接连接来接收上行数据。
  44. 根据权利要求43所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备接收请求信息;以及
    向所述用户设备发送响应信息,所述响应信息包括所述电子设备的标识信息或者类型信息,以用于所述用户设备根据所述电子设备的标识信息或者类型信息确定所述电子设备是服务基站还是IAB节点。
  45. 根据权利要求43所述的无线通信方法,其中,所述电子设备与所述IAB宿主相同。
  46. 根据权利要求45所述的无线通信方法,其中,所述无线通信方法还包括:
    在直接连接至所述用户设备之后,向所述用户设备发送作为所述用户设备的父节点的IAB节点的推荐信息。
  47. 根据权利要求45所述的无线通信方法,其中,所述无线通信方法还包括:
    为所述用户设备分配用于发送上行数据的资源和用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
  48. 根据权利要求43所述的无线通信方法,其中,所述电子设备与所述IAB宿主不同。
  49. 根据权利要求48所述的无线通信方法,其中,所述无线通信方法还包括:
    与所述IAB宿主建立连接;以及
    根据来自所述IAB宿主的通知信息确定所述用户设备的IAB宿主为所述IAB宿主。
  50. 根据权利要求48所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述IAB宿主接收所述IAB宿主为所述用户设备分配的用于发送上行数据的资源;以及
    为所述用户设备分配用于接收下行数据的资源,以使得用于发送上行数据的资源和用于接收下行数据的资源在时间上正交。
  51. 根据权利要求43所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述IAB连接中存在适于发送下行数据的资源的情况下,利用所述IAB连接来发送所述下行数据;以及
    在所述IAB连接中不存在适于发送下行数据的资源的情况下,利用所述直接连接来发送所述下行数据。
  52. 根据权利要求43所述的无线通信方法,其中,所述IAB宿主包括非透明卫星设备或者与透明卫星设备连接的地面站,并且所述电子设备包括非透明卫星设备或者与透明卫星设备连接的地面站。
  53. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求27-52中任一项所述的无线通信方法。
PCT/CN2021/094757 2020-05-27 2021-05-20 电子设备、无线通信方法和计算机可读存储介质 WO2021238750A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21812783.5A EP4135471A4 (en) 2020-05-27 2021-05-20 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD AND COMPUTER-READABLE STORAGE MEDIUM
US17/922,980 US20230180308A1 (en) 2020-05-27 2021-05-20 Electronic device, wireless communication method, and computer readable storage medium
CN202180026512.3A CN115918243A (zh) 2020-05-27 2021-05-20 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010461099.0A CN113747607A (zh) 2020-05-27 2020-05-27 电子设备、无线通信方法和计算机可读存储介质
CN202010461099.0 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021238750A1 true WO2021238750A1 (zh) 2021-12-02

Family

ID=78723826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094757 WO2021238750A1 (zh) 2020-05-27 2021-05-20 电子设备、无线通信方法和计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230180308A1 (zh)
EP (1) EP4135471A4 (zh)
CN (2) CN113747607A (zh)
WO (1) WO2021238750A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442397A (zh) * 2013-08-01 2013-12-11 西安交通大学 Lte-a中继系统及其基于辅助载波的协作切换方法
WO2019184890A1 (zh) * 2018-03-26 2019-10-03 华为技术有限公司 一种信息传输方法和装置
WO2019192524A1 (zh) * 2018-04-04 2019-10-10 中兴通讯股份有限公司 接入选择方法及装置
US20190394084A1 (en) * 2018-06-20 2019-12-26 Industrial Technology Research Institute Network link topology adaptation method for intergrated access and backhaul node and intergrated access and backhaul node using the same
CN110753368A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 小区选择方法及装置、设备、存储介质
CN111107010A (zh) * 2018-10-25 2020-05-05 华为技术有限公司 传输控制方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139524A1 (en) * 2018-01-11 2019-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Packet forwarding in integrated access backhaul (iab) networks
EP3850890A1 (en) * 2018-09-12 2021-07-21 Telefonaktiebolaget Lm Ericsson (Publ) First node, fourth node and methods performed thereby for handling access to a communications network in a multi-hop deployment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442397A (zh) * 2013-08-01 2013-12-11 西安交通大学 Lte-a中继系统及其基于辅助载波的协作切换方法
WO2019184890A1 (zh) * 2018-03-26 2019-10-03 华为技术有限公司 一种信息传输方法和装置
WO2019192524A1 (zh) * 2018-04-04 2019-10-10 中兴通讯股份有限公司 接入选择方法及装置
US20190394084A1 (en) * 2018-06-20 2019-12-26 Industrial Technology Research Institute Network link topology adaptation method for intergrated access and backhaul node and intergrated access and backhaul node using the same
CN110753368A (zh) * 2018-07-23 2020-02-04 中国移动通信有限公司研究院 小区选择方法及装置、设备、存储介质
CN111107010A (zh) * 2018-10-25 2020-05-05 华为技术有限公司 传输控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "(TP for NR_IAB BL CR for TS 38.401): IAB-node migration in EN-DC", 3GPP DRAFT; R3-202860, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online Meeting ;20200420 - 20200430, 4 May 2020 (2020-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051881047 *

Also Published As

Publication number Publication date
CN113747607A (zh) 2021-12-03
CN115918243A (zh) 2023-04-04
EP4135471A4 (en) 2023-10-11
US20230180308A1 (en) 2023-06-08
EP4135471A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2020164439A1 (zh) 用户设备、网络侧设备、无线通信方法和存储介质
EP3618497B1 (en) Electronic device and method executed by electronic device
JP2019527948A (ja) 無線通信における電子デバイス及び方法
CN111684857B (zh) 电子设备、用户设备、无线通信方法和存储介质
CN110546989B (zh) 无线通信系统中的电子设备以及无线通信方法
EP3550875B1 (en) Devices in wireless communication system
US20200008077A1 (en) Apparatus for frequency band allocation
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2021238750A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2015186392A1 (ja) 装置
WO2021018077A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021004377A1 (zh) 电子设备、分布式单元设备、无线通信方法和存储介质
US10028256B2 (en) Apparatus
US20180192423A1 (en) Apparatus and method
WO2022183636A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2024046255A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN115968568A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2014185139A1 (ja) 通信制御装置、通信制御方法、端末装置及び情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021812783

Country of ref document: EP

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE