WO2018196433A1 - 多类型储能多级控制方法 - Google Patents

多类型储能多级控制方法 Download PDF

Info

Publication number
WO2018196433A1
WO2018196433A1 PCT/CN2017/120364 CN2017120364W WO2018196433A1 WO 2018196433 A1 WO2018196433 A1 WO 2018196433A1 CN 2017120364 W CN2017120364 W CN 2017120364W WO 2018196433 A1 WO2018196433 A1 WO 2018196433A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
energy storage
state
charge
time
Prior art date
Application number
PCT/CN2017/120364
Other languages
English (en)
French (fr)
Inventor
田春筝
高超
唐西胜
刘巍
李锰
付科源
孙玉树
李秋燕
王利利
郭勇
李鹏
孙义豪
全少理
郭新志
Original Assignee
国家电网公司
国网河南省电力公司经济技术研究院
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网河南省电力公司经济技术研究院, 中国科学院电工研究所 filed Critical 国家电网公司
Publication of WO2018196433A1 publication Critical patent/WO2018196433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Definitions

  • the present disclosure relates to a microgrid energy storage multi-level control method, for example, to a multi-type energy storage multi-level control method.
  • the application of the energy storage system to stabilize the microgrid power fluctuations can improve the safety and stability of the system operation, thereby improving the grid's consumption of renewable energy.
  • Fluctuations in micro-sources and loads in microgrids often have multiple different time scales, with long-term fluctuations that can last for hours or days, while short-term fluctuations are only a few minutes or even seconds. Therefore, it is difficult for a single energy storage technology to meet the requirements of capacity and response speed at the same time. It is necessary to use a plurality of complementary energy storage technologies to stabilize the power fluctuation of the microgrid.
  • the research in the related art mainly focuses on a multi-type energy storage composed of a power type energy storage and an energy type energy storage, and rarely involves a plurality of energy type energy storage and distribution strategies.
  • a combination of multiple energy storage devices has emerged.
  • how to coordinate power and energy types, as well as multiple power types and multiple energy types. Being able to operate internally is an important issue.
  • the control problem of power fluctuations of multiple types of energy storage systems with multiple energy storage and power storage has not been solved.
  • the multi-type energy storage multi-level control method provided by the present disclosure solves the problem of different fluctuation characteristics of renewable energy generation and load power in different time scales in the micro-grid, and realizes energy storage and energy-type battery energy storage. Load distribution.
  • the multi-type energy storage multi-level control method comprises: a three-level control method such as a fluctuation stabilization strategy, an energy/power allocation strategy, and an economic operation strategy, including: firstly, using a fluctuation stabilization strategy to smooth the microgrid original power curve and obtain Microgrid grid-connected power curve and total energy storage load curve; then, based on the first-order filtering algorithm, energy storage and discharge energy storage based on energy storage state of charge state is used to realize energy storage and power storage.
  • a three-level control method such as a fluctuation stabilization strategy, an energy/power allocation strategy, and an economic operation strategy, including: firstly, using a fluctuation stabilization strategy to smooth the microgrid original power curve and obtain Microgrid grid-connected power curve and total energy storage load curve; then, based on the first-order filtering algorithm, energy storage and discharge energy storage based on energy storage state of charge state is used to realize energy storage and power storage.
  • Power allocation then use the economic operation strategy based on the life cycle cost to realize the power distribution inside the power storage, that is, the power distribution of the supercapacitor and the flywheel energy storage, and realize the energy type by using the economic operation strategy based on the electricity cost
  • the power distribution inside the energy storage that is, the power distribution of the lithium battery and the flow battery.
  • the multi-type energy storage multi-level control method of the present disclosure includes:
  • the fluctuation-suppression strategy of the model predictive control algorithm is used to smooth the original power curve of the micro-grid, and the grid-connected power curve and the total energy storage load curve are obtained.
  • the volatility mitigation strategy adopts a model predictive control algorithm, which has strong ability to cope with disturbances and uncertainties, and is suitable for microgrid power fluctuations;
  • the core idea of the model predictive control algorithm is a rolling time domain optimization strategy, and the rolling time domain optimization strategy includes:
  • the update state is x(k+1); and at k+i, the update state is x(k+i), where i
  • the current time is k + i and the current state is x (k + i), and the above steps are repeated.
  • the rolling grid time domain optimization strategy can obtain the microgrid grid-connected power curve and the total energy storage load curve, including:
  • the grid-connected power P G (k) has the following equation (1) between the original power P MG (k) and the stored energy P ES (k):
  • the energy equation of the micro-grid power state is determined.
  • the method is as follows: the grid-connected power P G of the micro-grid
  • the energy storage state S oc, ES as the state variables x 1 and x 2
  • the stored power P ES as the control variable u
  • the microgrid original power P MG as the disturbance input r
  • P G and S oc, ES as the output
  • the variables y 1 and y 2 can be used to obtain the space equation of the power storage leveling microgrid power state as shown in equation (3):
  • T c represents the energy storage device control period
  • k represents the k time
  • the energy storage power constraint condition satisfies 0 ⁇ P ES (i) ⁇ P ES_max , the energy storage state constraint condition Satisfying 0 ⁇ S oc, ES (i) ⁇ 1, the microgrid grid-connected power volatility limit constraint is satisfied
  • is the fluctuation rate limiting value
  • P ES_max maximum value P ES (i) a, P ES (i) is a power storage time i
  • P rated is the rated capacity of the piconet
  • P Gmax (i) maximum and minimum power grid PG min (i), respectively
  • P G (i) a, P G (i) is the time i piconet;
  • the rolling time domain optimization strategy is used to perform rolling calculation on the original power of the microgrid, and the instruction sequence of the future time k+1, k+2, ... k+M is obtained.
  • the energy of the microgrid is constrained by the energy storage to restrain the power fluctuation of the microgrid, and the grid-connected power of the microgrid can be obtained.
  • the difference between the original power of the microgrid and the grid-connected power of the microgrid is the total energy demand of the energy storage.
  • the total energy storage load curve can be obtained by connecting the total energy demand of the energy storage in different time periods.
  • a power storage and discharge distribution strategy based on the power storage state of charge is adopted to implement power allocation between energy storage and power storage, including:
  • the stored energy of the demand at time t is determined.
  • Fourier analysis is performed on the original data of the microgrid to determine the main frequency of the original data of the microgrid, and the first order of the power is obtained according to the main frequency f.
  • the first-order low-pass filtering algorithm is determined to adjust the power state of the power storage state, and the first-order low-pass filtering algorithm is determined to adjust the upper and lower limits of the power storage state.
  • S oc, P.ESS, H are the first-order low-pass filtering algorithm to adjust the upper limit of the power storage state
  • S oc, P. ESS, L is the first-order low-pass filtering algorithm for the power storage Lower limit of electrical state adjustment
  • Charging or discharging power including:
  • the power allocation within the power storage is realized by an economic operation strategy based on a full life cycle cost, including:
  • the life cycle cost of power storage includes one investment cost, operation and maintenance cost, and recovery and environmental protection cost.
  • the life cycle cost of power storage meets the formula (4):
  • LCC is the life cycle cost
  • IC is the primary investment cost
  • OMC is the operation and maintenance cost
  • REC is the recycling and environmental protection cost
  • N P is the type of power storage, including supercapacitor and flywheel energy storage
  • LCC i is the i-th power-type energy storage cost
  • P i (t) is the i-th power storage The charge and discharge power of energy
  • t 0 and t c are the initial time and end time of energy storage respectively;
  • the constraint conditions are the total output limit of all energy storage batteries, the charge and discharge limits of different energy storage batteries, and the state of charge limitation.
  • P i,max and P i,min are the upper and lower limits of the power of the i-type energy storage , respectively;
  • S oc,i is the state of charge of the i-type energy storage, S oc,i , max and S oc,i,min are the upper and lower limits of S oc,i respectively;
  • the objective function is optimized to solve the internal distribution of power storage, so that the overall operating cost is the lowest.
  • the power distribution inside the energy storage device is realized by using an economic operation strategy based on the electricity cost, that is, the power distribution of the lithium battery and the flow battery, including:
  • C ost is the power cost of the battery
  • n is the cycle life
  • N b is the type of battery, including flow battery and lithium battery 2;
  • Cost , i is the power cost of the ith battery;
  • P 1i (t) is the charge and discharge power of the ith battery;
  • 0 and t c are the initial time and end time of energy storage respectively;
  • constraints are the total output limit of all energy storage batteries, the charge and discharge limits of different energy storage batteries, and the state of charge limitation.
  • P 1i,max and P 1i,min are respectively the upper and lower power limits of the i-type battery
  • S oc,1i is the state of charge of the i-type battery
  • S oc,1i,max and S oc, 1i,min are the upper and lower limits of S oc, 1i, respectively;
  • the objective function is optimized under the constraint condition to realize the internal distribution of energy storage, so that the overall operating cost is the lowest.
  • FIG. 1 is a schematic diagram of a multi-type energy storage coordinated control provided by an embodiment
  • FIG. 2 is a block diagram of a method for determining an energy storage load according to an embodiment
  • FIG. 3 is a block diagram of load distribution control of energy type and power type energy storage provided by an embodiment
  • FIG. 4 is a block diagram of load distribution control of various power type energy storages provided by an embodiment
  • FIG. 5 is a block diagram of load distribution control of various energy storage devices according to an embodiment
  • FIG. 6 is a flow chart of a multi-level control strategy provided by an embodiment
  • FIG. 7 is a time-domain diagram of the power of the piconet before and after the suppression provided by an embodiment
  • FIG. 8 is a 1 min fluctuation rate before and after the suppression provided by an embodiment
  • Figure 9 is a 30 min fluctuation rate before and after the suppression provided by an embodiment
  • 10 is an integrated energy storage, energy storage, and power storage power distribution curve provided by an embodiment
  • 11 is an economical load distribution curve of a power storage battery according to an embodiment
  • FIG. 12 is a diagram showing an economical load distribution curve of an energy storage battery according to an embodiment.
  • Figure 1 is a schematic diagram of multiple types of energy storage coordinated control.
  • P MG is the original power of the piconet
  • P G is the grid-connected power of the piconet
  • P ES is the total energy storage power
  • P P.ESS is the power storage power
  • P W.ESS is the energy storage.
  • Energy power P SC is supercapacitor power
  • P FESS is flywheel energy storage power
  • P VRB liquid battery energy storage power
  • P Li lithium battery energy storage power.
  • the fluctuation-suppression strategy of the model predictive control algorithm is used to smooth the original power curve of the micro-grid, and the grid-connected power curve and the total energy storage load curve are obtained.
  • the micro-grid is also called the micro-grid.
  • the fluctuation stabilization strategy uses a model prediction control algorithm. As shown in FIG. 1 , after the initial power input of the microgrid, based on the model predictive control algorithm, the rolling grid time domain optimization strategy can obtain the microgrid grid-connected power curve and the stored energy total load curve.
  • the model predictive control algorithm is a rolling time domain optimization strategy, and the rolling time domain optimization strategy includes:
  • the update state is x(k+i), where i is an integer greater than 1 and less than or equal to M, then the current time is k+i and the current state is x(k+i), and the above steps are repeated.
  • the total energy storage load curve is the connection of the total energy demand of the energy storage at different times.
  • FIG. 2 is a block diagram of the method for determining the total energy storage load curve.
  • MPC is a model predictive control algorithm.
  • Constraints include energy storage power constraints, energy storage state constraints, and microgrid grid-connected power volatility limits.
  • the energy storage power constraint satisfies 0 ⁇ P ES (i) ⁇ P ES_max , where P ES (i) is the energy storage power at time i, and P ES_max is the maximum value of P ES (i).
  • Energy storage state of charge of the constraint condition is satisfied 0 ⁇ S oc, ES (i) ⁇ 1 , where, S oc, ES (i) the state of charge of the energy storage time i.
  • Microgrid grid-connected volatility limit is met Where ⁇ is the volatility limit value, and the selected volatility limit value is ⁇ 2% within 1 min and ⁇ 7% within 30 min.
  • P rated is the rated capacity of the piconet; P Gmax (i), P Gmin (i) are maximum and minimum P G (i), the grid power P G (i) is the time i piconet.
  • the determination of the total energy storage load curve includes:
  • the energy equation of the micro-grid power state is determined.
  • the method is as follows: the grid-connected power P G of the micro-grid
  • the energy storage state S oc, ES as the state variables x 1 and x 2
  • the stored power P ES as the control variable u
  • the microgrid original power P MG as the disturbance input r
  • P G and S oc, ES as the output
  • the variables y 1 and y 2 can be used to obtain the space equation for the energy storage level of the microgrid.
  • T c represents the energy storage device control period and k represents the k time
  • the rolling time domain optimization strategy is used to calculate the raw power of the microgrid, and the control sequence of the future time k+1, k+2, ... k+M is obtained.
  • the energy of the microgrid is constrained by the energy storage to restrain the power fluctuation of the microgrid, and the grid-connected power of the microgrid can be obtained.
  • the difference between the original power of the microgrid and the grid-connected power of the microgrid is the total energy demand of the energy storage.
  • the total energy storage load curve can be obtained by connecting the total energy demand of the energy storage in different time periods.
  • the energy storage and discharge distribution strategy based on the state of the supercapacitor is used to realize the power distribution between energy storage and power storage.
  • the allocated power storage energy is distributed by the economic operation strategy to obtain the supercapacitor power and the flywheel energy storage power respectively, and the corresponding power is respectively delivered to the supercapacitor and the flywheel energy storage, and the supercapacitor and the flywheel energy storage output are controlled accordingly.
  • Power; the allocated energy-type energy storage power is distributed through the economic operation strategy, respectively, the liquid battery energy storage power and the lithium battery energy storage power are respectively obtained, and the corresponding power is respectively delivered to the liquid flow battery and the lithium battery to control the liquid flow.
  • the battery and lithium battery emit the corresponding power.
  • FIG 3 is a block diagram of load distribution control for energy storage and power storage.
  • S oc, P.ESS, lim are the state of charge limits for supercapacitor energy storage
  • P SC, lim are power limit values. .
  • the load distribution between the supercapacitor and the battery is realized based on the charge and discharge principle of the state of charge of the supercapacitor.
  • Load distribution control methods for energy storage and power storage include:
  • the stored energy of the demand at time t is determined.
  • Fourier analysis is performed on the original data of the microgrid to determine the main frequency of the original data of the microgrid, and the first order of the power is obtained according to the main frequency f.
  • the specific acquisition method is:
  • the first-order low-pass filtering algorithm is determined to adjust the power state of the power storage state, and the first-order low-pass filtering algorithm is determined to adjust the upper and lower limits of the power storage state.
  • S oc, P.ESS, H are the first-order low-pass filtering algorithm to adjust the upper limit of the power storage state
  • S oc, P. ESS, L is the first-order low-pass filtering algorithm for the power storage The lower limit of the electrical state adjustment.
  • time constant Te of the first-order low-pass filtering algorithm needs to be adjusted at the current time; if adjustment is needed, the charging or discharging power of the power storage energy is re-evaluated to m Examples of time include:
  • the specific acquisition method is: the total energy demand of the energy storage at time i and the super time of the i-time
  • the energy storage or charging power of the energy type battery at time i can be obtained by taking a difference in the charging or discharging power of the capacitor.
  • the power distribution inside the power storage energy is realized by the economic operation strategy based on the life cycle cost, that is, the power distribution of the supercapacitor and the flywheel energy storage.
  • FIG 4 is a block diagram of load distribution control for various power storages.
  • ⁇ P i is the total charge or discharge power of the i-th power type energy storage
  • S oc, SC, lim, and P SC, lim are The state of charge and power limitation of the supercapacitor, S oc, FESS, lim and P FESS, lim are the state of charge and power limitation of the flywheel energy storage , respectively.
  • the allocation strategies for various power storage loads include:
  • the life cycle cost of power storage includes one investment cost, operation and maintenance cost, and recovery and environmental protection cost.
  • the full life cycle cost of power storage meets the following conditions.
  • LCC is the life cycle cost
  • IC is the investment cost
  • OMC is the operation and maintenance cost
  • REC is the recycling and environmental protection cost.
  • the power-type energy storage life cycle cost is the lowest objective function in one control cycle. Since the charge and discharge power of the power storage is positive and negative, the square of the stored energy is used as an indicator of the power storage energy usage, and the objective function f is
  • N P is the type of power storage, including supercapacitor and flywheel energy storage
  • LCC i is the i-th power-type energy storage cost
  • P i (t) is the i-th power storage The charge and discharge power of the energy
  • t 0 and t c are the initial time and the end time of the energy storage, respectively.
  • constraints are the total output limit of all energy storage batteries, the charge and discharge limits of different energy storage batteries, and the state of charge limitation.
  • P i,max and P i,min are the upper and lower limits of the power of the i-type energy storage , respectively;
  • S oc,i is the state of charge of the i-type energy storage, S oc,i , max and S oc, i, min respectively S oc, upper and lower limit values of i.
  • FIG. 5 is a block diagram of load distribution control for energy storage of various energy cells.
  • ⁇ P 1i is the total charge and discharge power of the i-th battery
  • S oc, V, lim, and P V, lim are respectively flow batteries.
  • the state of charge and power limits, S oc, L, lim and P L, lim are the state of charge and power limitation of the lithium battery , respectively.
  • Load distribution control for energy storage of multiple energy cells includes:
  • the electricity cost of different energy storage batteries considering the charge and discharge of 1kW ⁇ h as the benchmark, combined with the characteristics of initial investment, cycle life and depth of charge and discharge, define the electricity cost of different energy storage batteries, the degree of energy storage battery.
  • the electricity cost meets the following conditions,
  • C ost is the power cost of the battery; n is the cycle life; D OD battery depth of discharge, O MC for the operation and maintenance costs.
  • N b is the type of battery, including flow battery and lithium battery 2; Cost , i is the power cost of the ith battery; P 1i (t) is the charge and discharge power of the ith battery; 0 and t c are the initial time and end time of the energy storage.
  • constraints are the total output limit of all energy storage batteries, the charge and discharge limits of different energy storage batteries, and the state of charge limitation.
  • P 1i,max and P 1i,min are the upper and lower power limits of the i-type battery , respectively;
  • S oc1i is the state of charge of the i-type battery, S oc,1i,max and S oc,1i, Min is the upper and lower limits of S oc, 1i , respectively.
  • the objective function is optimized under the constraint condition to realize the internal distribution of energy storage, so that the overall operating cost is the lowest.
  • the model predictive control algorithm is used to obtain the total energy storage load and grid-connected power
  • the power storage type energy storage and discharge control strategy is used to obtain the energy storage energy and the power storage energy load
  • the power distribution inside the energy storage is realized by the economic operation strategy based on the electricity cost, that is, the power distribution of the lithium battery and the flow battery.
  • Figure 7 is a time-domain diagram of the power of the microgrid before and after the suppression.
  • the fluctuation rate is ⁇ 2% within 1min and ⁇ 7% within 30min.
  • the model predictive control algorithm is used to simulate the micro-grid power data, as shown in Figure 6. Comparing and analyzing the microgrid power before and after the flattening, it can be found that the power fluctuation of the microgrid after the suppression is small, and the smoothing effect is relatively significant.
  • Figure 8 shows the fluctuation rate of 1 min before and after the suppression. It can be seen from Figure 7 that before the stabilization, the maximum power fluctuation rate of the microgrid is 6%, which does not meet the requirement of 1min fluctuation rate. The stabilized microgrid power fluctuation rate is effectively improved. Its 1min volatility is ⁇ 2%, which meets the requirements of grid-connected volatility.
  • Figure 9 shows the fluctuation rate of 30 min before and after the suppression. It can be seen from Fig. 8 that before the stabilization, the maximum power fluctuation rate of the microgrid is 18%, which does not meet the 30-min volatility requirement. The stabilized microgrid power volatility is effectively improved. Its 30-min volatility is ⁇ 7%, which meets the grid-connected volatility requirements.
  • Figure 10 shows the integrated energy storage, energy storage and power storage power distribution curves.
  • the first picture shows the integrated energy storage power curve
  • the second picture shows the energy storage energy curve
  • the third figure It is a power storage energy curve.
  • the integrated energy storage, energy storage and power storage distribution curve acquisition method is to calculate the total energy storage load curve obtained by the model prediction control algorithm by using the energy storage charge and discharge distribution strategy based on the supercapacitor state of charge.
  • the state of charge of the supercapacitor is high, the discharge is increased to reduce the charge; when the state of charge is lower, the charge is decreased to reduce the discharge.
  • the power storage load curve of the supercapacitor can be obtained preferentially, and the energy storage load curve can be obtained.
  • the slower power in Figure 10 is absorbed by energy-type energy storage, and the faster-changing power is absorbed by the power-type energy storage, so that the high-energy density and high-power density characteristics of multiple types of energy storage are effectively utilized.
  • Figure 11 shows the economic distribution curve of power storage energy storage.
  • the power storage energy mainly includes supercapacitor and flywheel energy storage. According to the set parameters, the full life cycle cost of the two types of power storage is obtained.
  • the power cost of the supercapacitor is about 500 yuan/kW
  • the power cost of the flywheel energy storage is about 1700 yuan/kW.
  • the cost is ordered from low to high for supercapacitors ⁇ flywheel energy storage.
  • Figure 11 shows the power distribution curve of the power storage energy load. It can be seen that the load of the power storage energy is first assumed by the supercapacitor with lower life cycle cost, and the supercapacitor bears a larger part of the power output; when the supercapacitor cannot satisfy When the energy storage power is required, the excess power is assumed by the flywheel energy storage in the order of the life cycle cost from low to high, so that the overall economic cost of the power storage is the lowest.
  • Figure 12 shows the economic distribution curve of the energy storage energy load.
  • the energy storage energy source mainly includes the flow battery and the lithium battery. According to the set parameters, the power consumption cost of the energy storage battery is obtained, and the parameters such as the power consumption cost and the power value of each battery are shown in the following table.
  • the energy distribution curve of the energy storage energy load of Fig. 12 can be seen that the energy storage energy load is first carried by the flow battery with lower electricity cost, and the liquid flow battery bears a larger part of the power output; When the energy storage power requirement cannot be met, the excess power portion is borne by the lithium battery in the order of the power cost from low to high, so that the overall economic cost of energy storage is the lowest.
  • the multi-type energy storage multi-level control method of the present disclosure solves the problem of different fluctuation characteristics of renewable energy generation and load power in different time scales in the micro-grid, and realizes multiple power-type energy storage and multiple energy-type batteries. Load distribution for energy storage.

Abstract

一种多类型储能多级控制方法,包括:波动平抑策略、能量/功率分配策略和经济运行策略;首先采用波动平抑策略对微网原始功率曲线进行平滑,获取微网并网功率曲线和储能总载荷曲线;然后在一阶滤波算法的基础上使用基于功率型储能荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配;继而利用基于全寿命周期成本的经济运行策略实现功率型储能内部的功率分配(即超级电容器和飞轮储能的功率分配),同时利用基于度电成本的经济运行策略实现能量型储能内部的功率分配(即锂电池和液流电池的功率分配)。

Description

多类型储能多级控制方法 技术领域
本公开涉及微网储能多级控制方法,例如涉及一种多类型储能多级控制方法。
背景技术
由于风、光等可再生能源发电的随机性和间歇性,以及负荷波动的不规律性,使得微网的非计划功率变化较大,这给系统的可靠运行带来了很大挑战。而应用储能系统进行微网功率波动的平抑,可以提高系统运行的安全性和稳定性,从而提高电网对可再生能源的消纳。
微网中微源和负荷的波动往往具有多个不同的时间尺度,长时间尺度的波动可以持续数小时或数天,而短时间尺度的波动只有几分钟,甚至几秒钟。因此,单一的储能技术难以同时满足容量和响应速度的要求,需要采用多种性能互补的复合储能平抑微网功率波动。
相关技术中的研究主要侧重于一种功率型储能和一种能量型储能组成的多类型储能,而很少涉及到多种能量型储能及其分配策略。而在实际工程当中,多种能量型储能的联合应用也已出现,在这种复杂的多类型储能系统中,如何协调功率型与能量型,以及多种功率型和多种能量型储能内部之间的运行,是一个重要课题。目前,含多种能量型储能和功率型储能的多类型储能系统平抑微网功率波动的控制问题尚未解决。
发明内容
本公开提供的多类型储能多级控制方法,解决了微网中可再生能源发电和负荷功率在不同时间尺度上存在的不同波动特性问题,实现了功率型储能和能量型电池储能的载荷分配。
本公开提供的多类型储能多级控制方法包括:波动平抑策略、能量/功率分配策略和经济运行策略等三级控制方法,包括:首先采用波动平抑策略对微网原始功率曲线进行平滑,获取微网并网功率曲线和储能总载荷曲线;然后在一阶滤波算法的基础上使用基于功率型储能荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配;继而利用基于全寿命周期成本的 经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配,同时利用基于度电成本的经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配。
可选地,本公开的多类型储能多级控制方法包括:
采用模型预测控制算法的波动平抑策略对微网原始功率曲线进行平滑,获取微网并网功率曲线和储能总载荷曲线;
所述的波动平抑策略采用模型预测控制算法,该算法具有较强的应对扰动和不确定性能力,适用于微网功率波动;
所述的模型预测控制算法的核心思想是滚动时域优化策略,滚动时域优化策略包括:
在当前时刻k和当前状态x(k),考虑当前时刻和未来时刻的约束条件,通过优化求解,得到未来时刻k+1,k+2,…k+M的指令序列;
将指令序列的第1个值应用于模型预测控制算法;在k+1时刻,更新状态为x(k+1);以及在k+i时刻,更新状态为x(k+i),其中i为大于1且小于等于M的整数,则当前时刻为k+i当前状态为x(k+i),重复上述步骤。
基于所述的模型预测控制算法,通过滚动时域优化策略,可得到微网并网功率曲线和储能总载荷曲线,包括:
确定微网的并网功率与微网原始功率和储能功率之间的关系,即假设k时刻微网原始功率为P MG(k),储能功率为P ES(k),则微网的并网功率P G(k)与原始功率P MG(k)、储能功率P ES(k)三者之间存在如下式(1):
P G(k+1)=P ES(k)+P MG(k);   (1)
确定储能的荷电状态,即假设储能装置控制周期为T c,储能装置总容量为C ES,则储能的荷电状态S oc,ES满足式(2):
S oc,ES(k+1)=S oc,ES(k)-T cP ES(k)/C ES;   (2)
综合考虑储能并网功率与微网原始功率、储能功率关系和储能荷电状态,确定储能平抑微网功率状态空间方程,获取的方法为:将微网的并网功率P G和 储能荷电状态S oc,ES分别作为状态变量x 1和x 2,储能功率P ES作为控制变量u,微网原始功率P MG作为扰动输入量r,P G和S oc,ES作为输出变量y 1和y 2,可得到储能平抑微网功率状态空间方程如式(3):
Figure PCTCN2017120364-appb-000001
式(3)中,T c代表储能装置控制周期,k代表k时刻;
确定储能平抑微网功率波动的约束条件;所述的储能平抑微网功率状态空间方程中,储能功率约束条件满足0≤P ES(i)≤P ES_max,储能荷电状态约束条件满足0≤S oc,ES(i)≤1,微网并网功率波动率限制约束条件满足
Figure PCTCN2017120364-appb-000002
式中,γ为波动率限制值,P ES_max为P ES(i)的最大值,P ES(i)为i时刻储能功率;P rated为微网的额定装机容量;P Gmax(i)、PG min(i)分别为P G(i)的最大值和最小值,P G(i)为i时刻微网的并网功率;
利用滚动时域优化策略对微网原始功率进行滚动计算,得到未来时刻k+1,k+2,…k+M的指令序列。通过储能平抑微网功率波动的约束条件对微网原始功率进行约束,可得到满足约束条件的微网并网功率,微网原始功率与微网并网功率的差值为储能总需求功率,将不同时间段的储能总需求功率进行连线处理,即可得到储能总载荷曲线。
可选地,在一阶滤波算法的基础上采用基于功率型储能荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配,包括:
通过查询储能总载荷曲线,确定t时刻需求的储能功率,同时,对微网原始数据进行傅里叶分析,确定微网原始数据的主频率,根据该主频率f获取该功率的一阶低通滤波算法时间常数Te满足Te=1/2πf。继而,选取一阶低通滤波算法时间常数Te对t时刻需求的储能功率进行一阶低通滤波处理,即可确定功率型储能t时刻的充电或放电功率。
获取不同时刻下功率型储能的充电或放电功率,包括:
通过改变一阶低通滤波算法时间常数T e,判断一阶低通滤波算法对功率型储能荷电状态调节能力,确定一阶低通滤波算法对功率型储能荷电状态调节上下限,式中,S oc,P.ESS,H为一阶低通滤波算法对功率型储能荷电状态调节上限,S oc,P.ESS,L为一阶低通滤波算法对功率型储能荷电状态调节下限;
将功率型储能储能荷电状态分为5个区域,分别为荷电状态空区(S oc,P.ESS(t)=0,S oc,P.ESS(t)代表t时刻功率型储能的荷电状态),荷电状态低区(0<S oc,P.ESS(t)≤S oc,P.ESS,L),荷电状态中区(S oc,P.ESS,L<S oc,P.ESS(t)<S oc,P.ESS,H),荷电状态高区(S oc,P.ESS,H≤S oc,P.ESS(t)<100%)和荷电状态满区(S oc,P.ESS(t)=100%);
根据不同时刻下(以m时刻为例)功率型储能荷电状态,判断在当前时刻下是否需要调整一阶低通滤波算法时间常数T e;如需调整,则重新求取功率型储能的充电或放电功率,包括:
当荷电状态属于荷电状态空区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为0,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)+ΔT,式中ΔT为调整的时间常数,且ΔT>0;
当荷电状态属于荷电状态低区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)-ΔT,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)+ΔT;
当荷电状态属于荷电状态中区时,不调整一阶低通滤波算法时间常数T e
当荷电状态属于荷电状态高区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)-ΔT;
当荷电状态属于荷电状态满区时,判断m时刻功率型储能状态,若功率型 储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若功率型储能处于充电状态,则功率型储能充电功率设为0;
可选地,利用基于全寿命周期成本的经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配,包括:
功率型储能全寿命周期成本包括一次投资成本,运行维护成本和回收及环保成本3部分,功率型储能的全寿命周期成本满足式(4):
LCC=IC+OMC+REC   (4)
式中,LCC为全寿命周期成本,IC为一次投资成本,OMC为运行维护成本,REC为回收及环保成本;
建立功率型储能的经济运行函数,考虑在1个控制周期内,以功率型储能全寿命周期成本最低为目标函数;由于功率型储能的充放电功率有正有负,所以将储能功率的平方作为功率型储能使用幅度的指标,目标函数f如式(5):
Figure PCTCN2017120364-appb-000003
式中,N P为功率型储能的种类,包括超级电容器和飞轮储能2类;LCC i为第i种功率型储能的度电成本;P i(t)为第i种功率型储能的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间;
3)确定经济运行的相关约束条件,约束条件为所有储能电池的总出力限制、不同储能电池的充放电限制和荷电状态限制等,如式(6):
Figure PCTCN2017120364-appb-000004
式中:P i,max和P i,min分别为i种功率型储能的功率上限值和下限值;S oc,i为i种功率型储能的荷电状态,S oc,i,max和S oc,i,min分别为S oc,i的上限值和下限值;
在约束条件下对目标函数进行优化求解,实现功率型储能的内部分配,使总体运行成本最低。
可选地,利用基于度电成本的经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配,包括:
根据不同储能电池的成本特性,考虑以充放电1kW·h的电量为基准,结合其初始投资、循环寿命以及充放电深度等特性,定义不同储能电池的度电成本,储能电池的度电成本满足式(7):
Figure PCTCN2017120364-appb-000005
式中,C ost为电池的度电成本;n为循环寿命;D OD为电池充放电深度,O MC为运行维护成本;
建立能量型储能电池的经济运行函数,考虑在1个控制周期内,以储能电池总的度电成本最低为目标函数。由于电池的充放电功率有正有负,所以将储能功率的平方作为电池使用幅度的指标,目标函数f如式(8):
Figure PCTCN2017120364-appb-000006
式中,N b为电池的种类,包括液流电池和锂电池2类;C ost,i为第i种电池的度电成本;P 1i(t)为第i种电池的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间;
确定经济运行的相关约束条件,约束条件为所有储能电池的总出力限制、不同储能电池的充放电限制和荷电状态限制等,如式(9):
Figure PCTCN2017120364-appb-000007
式中:P 1i,max和P 1i,min分别为i种电池的功率上限值和下限值;S oc,1i为i种电 池的荷电状态,S oc,1i,max和S oc,1i,min分别为S oc,1i的上限值和下限值;
在约束条件下对目标函数进行优化求解,实现能量型储能的内部分配,使总体运行成本最低。
附图说明
图1为一实施例提供的多类型储能协调控制原理图;
图2为一实施例提供的储能载荷的确定方法框图;
图3为一实施例提供的能量型和功率型储能的载荷分配控制框图;
图4为一实施例提供的多种功率型储能的载荷分配控制框图;
图5为一实施例提供的多种能量型储能的载荷分配控制框图;
图6为一实施例提供的多级控制策略流程图;
图7为一实施例提供的平抑前后微网功率时域图;
图8为一实施例提供的平抑前后1min波动率;
图9为一实施例提供的平抑前后30min波动率;
图10为一实施例提供的综合储能、能量型储能和功率型储能功率分配曲线;
图11为一实施例提供的功率型储能电池载荷经济分配曲线;
图12为一实施例提供的能量型储能电池载荷经济分配曲线。
具体实施方式
图1为多类型储能协调控制原理图。图1中,P MG为微网的原始功率,P G为微网的并网功率,P ES为总储能功率,P P.ESS为功率型储能功率,P W.ESS为能量型储能功率,P SC为超级电容器功率,P FESS为飞轮储能功率,P VRB为液流电池储能功率,P Li为锂电池储能功率。
本实施例提供的多类型储能多级控制方法包括:
采用模型预测控制算法的波动平抑策略对微网原始功率曲线进行平滑,获取微网并网功率曲线和储能总载荷曲线;其中,所述微网又叫微电网。
所述的波动平抑策略采用模型预测控制算法。如图1所示,当微网原始功率输入后,基于所述的模型预测控制算法,通过滚动时域优化策略,可得到微网并网功率曲线和储能总载荷曲线。
所述模型预测控制算法是滚动时域优化策略,滚动时域优化策略包括:
在当前时刻k和当前状态x(k),考虑当前时刻和未来时刻的约束条件,通过优化求解,得到未来时刻k+1,k+2,…k+M的控制序列;
将控制指令序列的第1个值应用于模型预测算法;在k+1时刻,更新状态为x(k+1);以及
在k+i时刻,更新状态为x(k+i),其中i为大于1且小于等于M的整数,则当前时刻为k+i当前状态为x(k+i),重复上述步骤。
所述的储能总载荷曲线即为在不同时刻下储能总功率需求的连线。
图2为储能总载荷曲线的确定方法框图。图2中,MPC为模型预测控制算法,约束条件包括储能功率约束条件、储能荷电状态约束条件和微网并网功率波动率限制。
储能功率约束条件满足0≤P ES(i)≤P ES_max,式中,P ES(i)为i时刻的储能功率,P ES_max为P ES(i)的最大值。
储能荷电状态约束条件满足0≤S oc,ES(i)≤1,式中,S oc,ES(i)为i时刻的储能荷电状态。
微网并网波动率限制满足
Figure PCTCN2017120364-appb-000008
式中,γ为波动率限制值,选择的波动率限制值为波动率限制条件为1min内≤2%和30min内≤7%。P rated为微网的额定装机容量;P Gmax(i)、P Gmin(i)分别为P G(i)的最大值和最小值,P G(i)为i时刻微网的并网功率。
储能总载荷曲线的确定包括:
确定微网的并网功率与微网原始功率和储能功率之间的关系,即假设k时刻微网原始功率为P MG(k),储能功率为P ES(k),则微网的并网功率P G(k)与原始功率P MG(k)、储能功率P ES(k)三者之间满足P G(k+1)=P ES(k)+P MG(k);
综合考虑储能并网功率与微网原始功率、储能功率关系和储能荷电状态,确定储能平抑微网功率状态空间方程,获取的方法为:将微网的并网功率P G和储能荷电状态S oc,ES分别作为状态变量x 1和x 2,储能功率P ES作为控制变量u,微网原始功率P MG作为扰动输入量r,P G和S oc,ES作为输出变量y 1和y 2,可得到储能 平抑微网功率状态空间方程如下,
Figure PCTCN2017120364-appb-000009
式中,T c代表储能装置控制周期,k代表k时刻;
利用滚动时域优化策略对微网原始功率进行滚动计算,得到未来时刻k+1,k+2,…k+M的控制序列。通过储能平抑微网功率波动的约束条件对微网原始功率进行约束,可得到满足约束条件的微网并网功率,微网原始功率与微网并网功率的差值为储能总需求功率,将不同时间段的储能总需求功率进行连线处理,即可得到储能总载荷曲线。
得到储能总载荷曲线后,在一阶滤波算法的基础上使用基于超级电容器荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配。所分配的功率型储能功率通过经济运行策略进行分配,分别得到超级电容器功率和飞轮储能功率,并将相应的功率分别输送给超级电容器和飞轮储能,控制超级电容器和飞轮储能输出相应功率;所分配的能量型储能功率通过经济运行策略进行分配,分别得到液流电池储能功率和锂电池储能功率,并将相应的功率分别输送给液流电池和锂电池,控制液流电池和锂电池发出相应功率。
图3为能量型储能和功率型储能的载荷分配控制框图,图3中,S oc,P.ESS,lim为超级电容器储能的荷电状态限制值,P SC,lim为功率限制值。考虑到超级电容器具有充放电速率快、循环寿命长等优点,基于超级电容器荷电状态的充放电原则来实现超级电容器和蓄电池之间的载荷分配。
能量型储能和功率型储能的载荷分配控制方法包括:
通过查询储能总载荷曲线,确定t时刻需求的储能功率,同时,对微网原始数据进行傅里叶分析,确定微网原始数据的主频率,根据该主频率f获取该功率的一阶低通滤波算法时间常数Te满足Te=1/2πf。继而,选取一阶低通滤波算法时间常数Te对t时刻需求的储能功率进行一阶低通滤波处理,确定功率型储能t时刻的充电或放电功率。
获取不同时刻下功率型储能的充电或放电功率,具体获取方法是:
通过改变一阶低通滤波算法时间常数T e,判断一阶低通滤波算法对功率型储能荷电状态调节能力,确定一阶低通滤波算法对功率型储能荷电状态调节上下限,式中,S oc,P.ESS,H为一阶低通滤波算法对功率型储能荷电状态调节上限,S oc,P.ESS,L为一阶低通滤波算法对功率型储能荷电状态调节下限。
将功率型储能储能荷电状态分为5个区域,分别为荷电状态空区(S oc,P.ESS(t)=0,S oc,P.ESS(t)代表t时刻功率型储能的荷电状态),荷电状态低区(0<S oc,P.ESS(t)≤S oc,P.ESS,L),荷电状态中区(S oc,P.ESS,L<S oc,P.ESS(t)<S oc,P.ESS,H),荷电状态高区(S oc,P.ESS,H≤S oc,P.ESS(t)<100%)和荷电状态满区(S oc,P.ESS(t)=100%)。
根据不同时刻下功率型储能荷电状态,判断在当前时刻下是否需要调整一阶低通滤波算法时间常数Te;如需调整,则重新求取功率型储能的充电或放电功率,以m时刻为例包括:
当荷电状态属于荷电状态空区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为0,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)+ΔT,式中ΔT为调整的时间常数,且ΔT>0;
当荷电状态属于荷电状态低区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)-ΔT,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)+ΔT;
当荷电状态属于荷电状态中区时,不调整一阶低通滤波算法时间常数T e
当荷电状态属于荷电状态高区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)-ΔT;
当荷电状态属于荷电状态满区时,判断m时刻功率型储能状态,若功率型储能处于放电状态,则功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若功率型 储能处于充电状态,则功率型储能充电功率设为0。
确定不同时刻下,能量型储能的充电或放电功率,以i时刻能量型储能的充电或放电功率获取为例,具体获取方法是:将i时刻的储能总需求功率与i时刻的超级电容器充电或放电功率取差即可得到i时刻的能量型电池储能充电或放电功率。
在得到功率型储能和能量型储能充电或放电功率后,利用基于全寿命周期成本的经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配。
图4为多种功率型储能的载荷分配控制框图,图4中,∑P i为第i种功率型储能总的充电或放电功率,S oc,SC,lim和P SC,lim分别为超级电容器的荷电状态和功率限制,S oc,FESS,lim和P FESS,lim分别为飞轮储能的荷电状态和功率限制。
多种功率型储能载荷的分配策略包括:
功率型储能全寿命周期成本包括一次投资成本,运行维护成本和回收及环保成本3部分,功率型储能的全寿命周期成本满足以下条件,
LCC=IC+OMC+REC
式中,LCC为全寿命周期成本,IC为一次投资成本,OMC为运行维护成本,REC为回收及环保成本。
建立功率型储能的经济运行函数,考虑在1个控制周期内,以功率型储能全寿命周期成本最低为目标函数。由于功率型储能的充放电功率有正有负,所以将储能功率的平方作为功率型储能使用幅度的指标,目标函数f为,
Figure PCTCN2017120364-appb-000010
式中,N P为功率型储能的种类,包括超级电容器和飞轮储能2类;LCC i为第i种功率型储能的度电成本;P i(t)为第i种功率型储能的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间。
确定经济运行的相关约束条件,约束条件为所有储能电池的总出力限制、 不同储能电池的充放电限制和荷电状态限制等,
Figure PCTCN2017120364-appb-000011
式中:P i,max和P i,min分别为i种功率型储能的功率上限值和下限值;S oc,i为i种功率型储能的荷电状态,S oc,i,max和S oc,i,min分别为S oc,i的上限值和下限值。
利用基于度电成本的经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配;
图5为多种能量型电池储能的载荷分配控制框图,图5中,∑P 1i为第i种电池总的充放电功率,S oc,V,lim和P V,lim分别为液流电池的荷电状态和功率限制,S oc,L,lim和P L,lim分别为锂电池的荷电状态和功率限制。
多种能量型电池储能的载荷分配控制包括:
根据不同储能电池的成本特性,考虑以充放电1kW·h的电量为基准,结合其初始投资、循环寿命以及充放电深度等特性,定义不同储能电池的度电成本,储能电池的度电成本满足以下条件,
Figure PCTCN2017120364-appb-000012
式中,C ost为电池的度电成本;n为循环寿命;D OD为电池充放电深度,O MC为运行维护成本。
建立能量型储能电池的经济运行函数,考虑在1个控制周期内,以储能电池总的度电成本最低为目标函数。由于电池的充放电功率有正有负,所以将储能功率的平方作为电池使用幅度的指标,目标函数f如下式:
Figure PCTCN2017120364-appb-000013
式中,N b为电池的种类,包括液流电池和锂电池2类;C ost,i为第i种电池的度电成本;P 1i(t)为第i种电池的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间。
确定经济运行的相关约束条件,约束条件为所有储能电池的总出力限制、不同储能电池的充放电限制和荷电状态限制等,
Figure PCTCN2017120364-appb-000014
式中:P 1i,max和P 1i,min分别为i种电池的功率上限值和下限值;S oc1i为i种电池的荷电状态,S oc,1i,max和S oc,1i,min分别为S oc,1i的上限值和下限值。
在约束条件下对目标函数进行优化求解,实现能量型储能的内部分配,使总体运行成本最低。
对多类型储能多级控制方案的控制流程进行梳理,可得到图6所示的多级控制策略流程图,包括:
输入实测微网功率数据;
根据并网波动率要求,利用模型预测控制算法求取储能总载荷和并网功率;
根据功率型储能的荷电状态和充放电功率限制,利用功率型储能优先充放电的控制策略求取能量型储能和功率型储能的载荷;
利用基于全寿命周期成本的经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配;
利用基于度电成本的经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配。
图7为平抑前后微网功率时域图,采用波动率限制条件为1min内≤2%和30min内≤7%。在该并网波动率限制下,采用模型预测控制算法对微网功率数据进行仿真分析,如图6所示。对比分析平抑前后的微网功率可以发现,平抑后的微网功率波动较小,平滑效果相对显著。
图8为平抑前后1min波动率,由图7可以看出,在平抑前,微网功率波动 率最大值在6%,不满足1min波动率要求,平抑后的微网功率波动率得到了有效改善,其1min的波动率<2%,满足并网波动率要求。
图9为平抑前后30min波动率,由图8可以看出,在平抑前,微网功率波动率最大值在18%,不满足30min波动率要求,平抑后的微网功率波动率得到了有效改善,其30min的波动率<7%,满足并网波动率要求。
图10为综合储能、能量型储能和功率型储能功率分配曲线,式中,第一个图为综合储能功率曲线,第二个图为能量型储能功率曲线,第三个图为功率型储能功率曲线。综合储能、能量型储能和功率型储能分配曲线获取方法为将模型预测控制算法求得的储能总载荷曲线利用基于超级电容器荷电状态的储能充放电分配策略进行处理。当超级电容器荷电状态较高时,提高放电减少充电;当其荷电状态较低时,提高充电减少放电。通过滤波常数的调整,优先获取超级电容器功率型储能载荷曲线,即可获取能量型储能载荷曲线。图10中变化较慢的功率由能量型储能吸收,变化较快的功率由功率型储能吸收,使多类型储能的高能量密度和高功率密度特性得到有效发挥。
图11为功率型储能载荷经济分配曲线,功率型储能主要包括超级电容器和飞轮储能。根据设定的参数求取两种功率型储能的全寿命周期成本,超级电容器的功率成本约为500元/kW,飞轮储能的功率成本约为1700元/kW,两种功率型储能成本由低到高的排序为超级电容器<飞轮储能。
图11的功率型储能载荷经济分配曲线可以看出,功率型储能的载荷首先由全寿命周期成本较低的超级电容器承担,超级电容器承担了较大部分的功率输出;当超级电容器不能满足储能功率要求时,超出的功率部分按照全寿命周期成本从低到高的顺序由飞轮储能承担,从而使得功率型储能的总体经济成本最低。
图12为能量型储能载荷经济分配曲线,能量型储能主要包括液流电池和锂电池。根据设定的参数求取储能电池的度电成本,每种电池的度电成本和功率数值等参数如下表所示。
表1 液流电池和锂电池度电成本特性
Figure PCTCN2017120364-appb-000015
Figure PCTCN2017120364-appb-000016
根据表1中2种电池的度电成本特性可以看出,2种电池成本由低到高的排序为:液流电池<锂电池。
图12的能量型储能载荷经济分配曲线可以看出,能量型储能的载荷首先由度电成本较低的液流电池承担,液流电池承担了较大部分的功率输出;当液流电池不能满足储能功率要求时,超出的功率部分按照度电成本从低到高的顺序由锂电池承担,从而使得能量型储能的总体经济成本最低。
工业实用性
本公开的多类型储能多级控制方法,解决了微网中可再生能源发电和负荷功率在不同时间尺度上存在的不同波动特性问题,实现了多种功率型储能和多种能量型电池储能的载荷分配。

Claims (7)

  1. 一种多类型储能的多级控制方法,包括:波动平抑策略、能量/功率分配策略和经济运行策略,其中,
    采用所述波动平抑策略对微网原始功率曲线进行平滑,获取微网并网功率曲线和储能总载荷曲线;
    在一阶滤波算法的基础上使用基于功率型储能荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配;
    利用基于全寿命周期成本的所述经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配,同时利用基于度电成本的所述经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配。
  2. 如权利要求1所述的多类型储能多级控制方法,包括:
    采用模型预测控制算法的所述波动平抑策略对微网原始功率曲线进行平滑,获取所述微网并网功率和所述储能总载荷曲线;
    在一阶滤波算法的基础上采用基于功率型储能荷电状态的储能充放电分配策略,实现能量型储能和功率型储能之间的功率分配;
    利用基于全寿命周期成本的所述经济运行策略实现功率型储能内部的功率分配,即超级电容器和飞轮储能的功率分配,同时利用基于度电成本的所述经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配。
  3. 如权利要求2所述的多类型储能多级控制方法,其中,所述的模型预测控制算法采用滚动时域优化策略,滚动时域优化策略包括:
    在当前时刻k和当前状态x(k),考虑当前时刻和未来时刻的约束条件,通过优化求解,得到未来时刻k+1,k+2,…k+M的指令序列;
    将所述指令序列的第1个值应用于所述模型预测控制算法,即在k+1时刻,更新状态为x(k+1);以及
    在k+i时刻,更新状态为x(k+i),其中i为大于1且小于等于M的整数,则当前时刻为k+i当前状态为x(k+i),考虑当前时刻和未来时刻的约束条件,通过优化求解,得到未来时刻的指令序列,并将所述指令序列的第1个值应用于所述模型预测控制算法。
  4. 如权利要求1或3所述的多类型储能多级控制方法,其中,获取所述微网并网功率曲线和所述储能总载荷曲线包括:
    确定所述微网的并网功率与微网原始功率和储能功率之间的关系,即假设k时刻所述微网原始功率为P MG(k),储能功率为P ES(k),则所述微网的并网功率P G(k) 与原始功率P MG(k)、储能功率P ES(k)三者之间存在如式(1)关系:
    P G(k+1)=P ES(k)+P MG(k);    (1)
    确定储能的荷电状态,即假设储能装置控制周期为T c,所述储能装置总容量为C ES,则所述储能的荷电状态S oc,ES满足式(2):
    S oc,ES(k+1)=S oc,ES(k)-T cP ES(k)/C ES;    (2)
    综合考虑储能并网功率与微网原始功率、储能功率关系和储能荷电状态,确定储能平抑微网功率状态空间方程,包括:将所述微网的并网功率P G和储能荷电状态S oc,ES分别作为状态变量x 1和x 2,所述储能功率P ES作为控制变量u,所述微网原始功率P MG作为扰动输入量r,P G和S oc,ES作为输出变量y 1和y 2,可得到所述储能平抑微网功率状态空间方程如式(3):
    Figure PCTCN2017120364-appb-100001
    式(3)中,T c代表储能装置控制周期,k代表k时刻;
    确定所述储能平抑微网功率波动的约束条件;所述储能平抑微网功率状态空间方程中,储能功率约束条件满足0≤P ES(i)≤P ES_max,储能荷电状态约束条件满足0≤S oc,ES(i)≤1,微网并网功率波动率限制约束条件满足
    Figure PCTCN2017120364-appb-100002
    式中,γ为波动率限制值,P ES_max为P ES(i)的最大值,P ES(i)为i时刻储能功率;P rated为微网的额定装机容量;P Gmax(i)、P Gmin(i)分别为P G(i)的最大值和最小值,P G(i)为i时刻微网的并网功率;
    利用滚动时域优化策略对所述微网原始功率进行滚动计算,得到未来时刻k+1,k+2,…k+M的所述指令序列;通过所述储能平抑微网功率波动的约束条件对微网原始功率进行约束,得到满足约束条件的所述微网并网功率,所述微 网原始功率与所述微网并网功率的差值为储能总需求功率,将不同时间段的储能总需求功率进行连线处理,即得到所述储能总载荷曲线。
  5. 如权利要求2所述的多类型储能多级控制方法,其中,所述能量型储能和功率型储能之间的功率分配包括:
    根据所述储能总载荷曲线,通过查询所述储能总载荷曲线,确定t时刻需求的所述储能功率,同时,对所述微网原始数据进行傅里叶分析,确定所述微网原始数据的主频率f,根据所述主频率f获取所述储能功率的一阶低通滤波算法时间常数T e满足T e=1/2πf;继而,选取一阶低通滤波算法时间常数T e对t时刻需求的所述储能功率进行一阶低通滤波处理,即可确定超级电容器t时刻的充电或放电的功率;
    获取不同时刻下所述功率型储能的所述充电或放电的功率,包括:
    通过改变一阶低通滤波算法时间常数T e,判断一阶低通滤波算法对所述功率型储能荷电状态的调节能力,确定一阶低通滤波算法对所述功率型储能荷电状态的调节上下限,式中,S oc,P.ESS,H为一阶低通滤波算法对所述功率型储能荷电状态的调节上限,S oc,P.ESS,L为一阶低通滤波算法对所述功率型储能荷电状态的调节下限;
    将所述功率型储能储能荷电状态分为5个区域,分别为荷电状态空区(S oc,P.ESS(t)=0,S oc,P.ESS(t)代表t时刻功率型储能的荷电状态),荷电状态低区(0<S oc,P.ESS(t)≤S oc,P.ESS,L),荷电状态中区(S oc,P.ESS,L<S oc,P.ESS(t)<S oc,P.ESS,H),荷电状态高区(S oc,P.ESS,H≤S oc,P.ESS(t)<100%)和荷电状态满区(S oc,P.ESS(t)=100%);
    根据不同时刻下(以m时刻为例)所述功率型储能荷电状态,判断在当前时刻下是否需要调整所述一阶低通滤波算法时间常数T e;当需要调整时,重新求取所述功率型储能的充电或放电功率,包括:
    当所述荷电状态属于所述荷电状态空区时,判断m时刻所述功率型储能状 态,若所述功率型储能处于放电状态,则所述功率型储能放电功率设为0,若所述功率型储能处于充电状态,则调整低通滤波时间常数为T e(m+1)=T e(m)+ΔT,式中ΔT为调整的时间常数,且ΔT>0;
    当所述荷电状态属于所述荷电状态低区时,判断m时刻所述功率型储能状态,若所述功率型储能处于所述放电状态,则所述功率型储能放电功率设为T e(m+1)=T e(m)-ΔT,若所述功率型储能处于所述充电状态,则调整所述低通滤波时间常数为T e(m+1)=T e(m)+ΔT;
    当所述荷电状态属于所述荷电状态中区时,不调整所述一阶低通滤波算法时间常数T e
    当所述荷电状态属于所述荷电状态高区时,判断m时刻所述功率型储能状态,若所述功率型储能处于所述放电状态,则所述功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若所述功率型储能处于所述充电状态,则调整所述低通滤波时间常数为T e(m+1)=T e(m)-ΔT;
    当所述荷电状态属于所述荷电状态满区时,判断m时刻所述功率型储能状态,若所述功率型储能处于所述放电状态,则所述功率型储能放电功率设为T e(m+1)=T e(m)+ΔT,若所述功率型储能处于所述充电状态,则所述功率型储能充电功率设为0;
    确定不同时刻下所述能量型储能的充电或放电功率;以i时刻所述能量型储能的充电或放电功率获取,包括:将i时刻的储能总需求功率与i时刻的所述功率型储能充电或放电功率取差即可得到i时刻的所述能量型储能充电或放电功率。
  6. 如权利要求2所述的多类型储能多级控制方法,其中,所述利用基于全寿命周期成本的经济运行策略实现功率型储能内部的功率分配,即所述超级电容器和飞轮储能的功率分配,包括:
    功率型储能全寿命周期成本包括一次投资成本,运行维护成本和回收及环保成本3部分,所述功率型储能全寿命周期成本满足如式(4)条件:
    LCC=IC+OMC+REC    (4)
    式中,LCC为全寿命周期成本,IC为一次投资成本,OMC为运行维护成本,REC为回收及环保成本;
    建立所述功率型储能的经济运行函数,考虑在1个控制周期内,以所述功率型储能全寿命周期成本最低为目标函数;由于功率型储能的充放电功率有正有负,所以将储能功率的平方作为功率型储能使用幅度的指标,目标函数f如式(5):
    Figure PCTCN2017120364-appb-100003
    式中,N P为功率型储能的种类,包括超级电容器和飞轮储能2类;LCC i为第i种功率型储能的度电成本;P i(t)为第i种功率型储能的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间;
    确定经济运行的相关约束条件,所述约束条件为所有储能电池的总出力限制、不同储能电池的充放电限制和荷电状态限制等,如式(6):
    Figure PCTCN2017120364-appb-100004
    式中:P i,max和P i,min分别为i种功率型储能的功率上限值和下限值;S oc,i为i种功率型储能的荷电状态,S oc,i,max和S oc,i,min分别为S oc,i的上限值和下限值;
    在所述约束条件下对目标函数进行优化求解,实现所述功率型储能的内部分配,使总体运行成本低于预设值。
  7. 如权利要求2所述的多类型储能多级控制方法,其中,所述利用基于度电 成本的经济运行策略实现能量型储能内部的功率分配,即锂电池和液流电池的功率分配,包括:
    根据不同储能电池的成本特性,考虑以充放电1kW·h的电量为基准,结合其初始投资、循环寿命以及充放电深度等特性,定义不同储能电池的度电成本,所述储能电池的度电成本满足式(7):
    Figure PCTCN2017120364-appb-100005
    式中,C ost为电池的度电成本;n为循环寿命;D OD为电池充放电深度,O MC为运行维护成本;
    建立能量型储能电池的经济运行函数,考虑在1个控制周期内,以储能电池总的度电成本最低为目标函数。由于电池的充放电功率有正有负,所以将储能功率的平方作为电池使用幅度的指标,目标函数f如式(8):
    Figure PCTCN2017120364-appb-100006
    式中,N b为电池的种类,包括液流电池和锂电池2类;C ost,i为第i种电池的度电成本;P li(t)为第i种电池的充放电功率;t 0、t c分别为储能作用时的初始时间和结束时间;
    确定经济运行的相关约束条件,所述约束条件为所有储能电池的总出力限制、不同储能电池的充放电限制和荷电状态限制等,如式(9):
    Figure PCTCN2017120364-appb-100007
    式中:P li,max和P li,min分别为i种电池的功率上限值和下限值;S oc,li为i种电池的荷电状态,S oc,li,max和S oc,li,min分别为S oc,li的上限值和下限值;
    在所述约束条件下对目标函数进行优化求解,以实现所述能量型储能的内 部分配,使总体运行成本最低。
PCT/CN2017/120364 2017-04-24 2017-12-29 多类型储能多级控制方法 WO2018196433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710269802.6A CN106972516B (zh) 2017-04-24 2017-04-24 一种适用于微网的多类型储能多级控制方法
CN201710269802.6 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018196433A1 true WO2018196433A1 (zh) 2018-11-01

Family

ID=59332581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120364 WO2018196433A1 (zh) 2017-04-24 2017-12-29 多类型储能多级控制方法

Country Status (2)

Country Link
CN (1) CN106972516B (zh)
WO (1) WO2018196433A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106616A (zh) * 2020-01-08 2020-05-05 上海煦达新能源科技有限公司 稳定光伏电站输出的组串架构混合电池储能系统
CN111371105A (zh) * 2020-04-15 2020-07-03 沈阳工业大学 一种基于配电网负荷频率指数的多源储能装置控制方法
CN111509738A (zh) * 2020-05-29 2020-08-07 上海交通大学 电热微网源荷储协同平滑联络线功率方法及系统
CN111859605A (zh) * 2020-04-28 2020-10-30 湖南大学 一种计及全寿命周期经济性的梯次电池储能容量配置方法
CN112491041A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN113285488A (zh) * 2021-05-26 2021-08-20 国网天津市电力公司 基于多层级架构的混合储能协调控制方法
CN113688576A (zh) * 2021-09-16 2021-11-23 国网浙江省电力有限公司宁波供电公司 一种城市区域能源互联网能量调度方法
CN114039364A (zh) * 2021-11-05 2022-02-11 上海大学 基于需求机会约束的分布式电池储能集群调频方法和装置
CN114362201A (zh) * 2021-12-29 2022-04-15 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN115000994A (zh) * 2022-04-08 2022-09-02 贵州大学 一种多储能单元分组一致性功率分配方法
CN115411755A (zh) * 2022-08-26 2022-11-29 中国长江三峡集团有限公司 一种电储能组合管理方法和系统
CN115566709A (zh) * 2022-09-13 2023-01-03 中国电力科学研究院有限公司 一种储能变流器单机能量就地控制方法及装置
CN116316742A (zh) * 2023-05-19 2023-06-23 坎德拉(深圳)新能源科技有限公司 飞轮储能单元的控制方法及飞轮储能单元的控制器和介质
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统
CN116995641A (zh) * 2023-09-26 2023-11-03 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件
CN117698487A (zh) * 2024-02-05 2024-03-15 四川智能建造科技股份有限公司 一种移动充储车电能动态调度方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972516B (zh) * 2017-04-24 2020-01-31 国家电网公司 一种适用于微网的多类型储能多级控制方法
CN107508303B (zh) * 2017-08-09 2020-08-11 国电南瑞科技股份有限公司 一种面向微电网的模块化储能装置优化配置及控制方法
CN107785919A (zh) * 2017-09-22 2018-03-09 中节能工程技术研究院有限公司 一种混合储能系统及其控制方法
CN109004670A (zh) * 2018-08-01 2018-12-14 广州供电局有限公司 多类型储能系统的容量配置方法、装置和系统
CN111064210B (zh) * 2019-12-12 2021-09-14 国网浙江省电力有限公司台州供电公司 增加新能源发电波动的海岛电网储能系统分层控制方法
CN112803451B (zh) * 2021-03-02 2022-11-25 青岛前沿发展技术有限公司 基于储能调控云平台及分布式储能的调度功率控制方法
CN112952877B (zh) * 2021-03-03 2022-10-14 华北电力大学 一种考虑不同种类电池特性的混合储能功率容量配置方法
CN113516306B (zh) * 2021-07-05 2023-04-07 内蒙古工业大学 飞轮储能系统的功率配置方法、装置、介质和电子设备
CN113725850A (zh) * 2021-08-30 2021-11-30 北方工业大学 一种用于模块化混合储能系统的预测电流控制方法和装置
CN114566958B (zh) * 2022-01-07 2023-05-30 湘潭大学 一种兼顾考虑储能使用寿命的多重应用能量控制策略

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133209A1 (en) * 2010-11-30 2012-05-31 General Electric Company Integration of renewable power generating technologies with integrated volt/var control systems
CN104104098A (zh) * 2012-12-27 2014-10-15 国网安徽省电力公司电力科学研究院 电源侧混合储能电站平抑可再生能源功率波动的方法
CN104795830A (zh) * 2015-04-29 2015-07-22 中国电力科学研究院 一种利用多类型储能系统跟踪发电计划出力的控制方法
CN106972516A (zh) * 2017-04-24 2017-07-21 国家电网公司 一种适用于微网的多类型储能多级控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779630B (zh) * 2015-05-08 2017-07-11 武汉大学 一种平抑风电输出功率波动的混合储能系统容量配置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133209A1 (en) * 2010-11-30 2012-05-31 General Electric Company Integration of renewable power generating technologies with integrated volt/var control systems
CN104104098A (zh) * 2012-12-27 2014-10-15 国网安徽省电力公司电力科学研究院 电源侧混合储能电站平抑可再生能源功率波动的方法
CN104795830A (zh) * 2015-04-29 2015-07-22 中国电力科学研究院 一种利用多类型储能系统跟踪发电计划出力的控制方法
CN106972516A (zh) * 2017-04-24 2017-07-21 国家电网公司 一种适用于微网的多类型储能多级控制方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106616A (zh) * 2020-01-08 2020-05-05 上海煦达新能源科技有限公司 稳定光伏电站输出的组串架构混合电池储能系统
CN111106616B (zh) * 2020-01-08 2024-02-09 上海煦达新能源科技有限公司 稳定光伏电站输出的组串架构混合电池储能系统
CN111371105A (zh) * 2020-04-15 2020-07-03 沈阳工业大学 一种基于配电网负荷频率指数的多源储能装置控制方法
CN111371105B (zh) * 2020-04-15 2023-05-02 沈阳工业大学 一种基于配电网负荷频率指数的多源储能装置控制方法
CN111859605A (zh) * 2020-04-28 2020-10-30 湖南大学 一种计及全寿命周期经济性的梯次电池储能容量配置方法
CN111859605B (zh) * 2020-04-28 2023-10-27 湖南大学 一种计及全寿命周期经济性的梯次电池储能容量配置方法
CN111509738A (zh) * 2020-05-29 2020-08-07 上海交通大学 电热微网源荷储协同平滑联络线功率方法及系统
CN112491041B (zh) * 2020-11-20 2023-02-07 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN112491041A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能混合微电网混合线性经济性规划方法
CN113285488A (zh) * 2021-05-26 2021-08-20 国网天津市电力公司 基于多层级架构的混合储能协调控制方法
CN113285488B (zh) * 2021-05-26 2022-12-06 国网天津市电力公司 基于多层级架构的混合储能协调控制方法
CN113688576A (zh) * 2021-09-16 2021-11-23 国网浙江省电力有限公司宁波供电公司 一种城市区域能源互联网能量调度方法
CN114039364A (zh) * 2021-11-05 2022-02-11 上海大学 基于需求机会约束的分布式电池储能集群调频方法和装置
CN114039364B (zh) * 2021-11-05 2023-10-20 上海大学 基于需求机会约束的分布式电池储能集群调频方法和装置
CN114362201B (zh) * 2021-12-29 2024-03-12 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN114362201A (zh) * 2021-12-29 2022-04-15 华北电力科学研究院有限责任公司 电网功率平衡控制方法、装置及储能电站集群
CN115000994B (zh) * 2022-04-08 2023-04-28 贵州大学 一种多储能单元分组一致性功率分配方法
CN115000994A (zh) * 2022-04-08 2022-09-02 贵州大学 一种多储能单元分组一致性功率分配方法
CN115411755B (zh) * 2022-08-26 2023-07-21 中国长江三峡集团有限公司 一种电储能组合管理方法和系统
CN115411755A (zh) * 2022-08-26 2022-11-29 中国长江三峡集团有限公司 一种电储能组合管理方法和系统
CN115566709A (zh) * 2022-09-13 2023-01-03 中国电力科学研究院有限公司 一种储能变流器单机能量就地控制方法及装置
CN116316742B (zh) * 2023-05-19 2023-08-15 坎德拉(深圳)新能源科技有限公司 飞轮储能单元的控制方法及飞轮储能单元的控制器和介质
CN116316742A (zh) * 2023-05-19 2023-06-23 坎德拉(深圳)新能源科技有限公司 飞轮储能单元的控制方法及飞轮储能单元的控制器和介质
CN116937623A (zh) * 2023-09-14 2023-10-24 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统
CN116937623B (zh) * 2023-09-14 2023-12-12 北京盛藏技术有限公司 一种利用新能源预测的混合储能辅调频控制方法及系统
CN116995641A (zh) * 2023-09-26 2023-11-03 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法
CN116995641B (zh) * 2023-09-26 2023-12-22 北京交通大学 一种应用于轨道交通储能的能量管理架构及方法
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件
CN117060553B (zh) * 2023-10-13 2024-01-02 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件
CN117698487A (zh) * 2024-02-05 2024-03-15 四川智能建造科技股份有限公司 一种移动充储车电能动态调度方法
CN117698487B (zh) * 2024-02-05 2024-04-09 四川智能建造科技股份有限公司 一种移动充储车电能动态调度方法

Also Published As

Publication number Publication date
CN106972516A (zh) 2017-07-21
CN106972516B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2018196433A1 (zh) 多类型储能多级控制方法
CN105846461B (zh) 一种大规模储能电站自适应动态规划的控制方法和系统
CN107222013B (zh) 独立光伏混合储能系统能量控制方法
CN107947231B (zh) 一种面向配电网优化运行的混合储能系统控制方法
CN106099965B (zh) 交流微电网并网状态下复杂混合储能系统的协调控制方法
CN104779630A (zh) 一种平抑风电输出功率波动的混合储能系统容量配置方法
CN104158202A (zh) 一种混合储能平抑风电功率波动系统及其协调控制方法
CN103956758A (zh) 一种风储系统中储能soc优化控制方法
CN106340892B (zh) 用于平抑风电输出功率的储能系统的控制设备
CN104242329A (zh) 基于模糊控制规则的微电网混合储能系统功率分配方法
CN104795830B (zh) 一种利用多类型储能系统跟踪发电计划出力的控制方法
CN105680478B (zh) 基于超短期预测的储能系统平滑新能源发电控制方法
CN110867873A (zh) 一种远洋孤岛微电网频率控制方法
WO2022156014A1 (zh) 混联风光微电网快速频率响应分布式协调控制方法及系统
CN108539757B (zh) 配电网光储集群的无功功率调度方法
CN115102239A (zh) 一种考虑soc均衡的储能电站一次调频控制方法及系统
CN112736973A (zh) 平抑风电、光伏电站出力波动的电池储能容量配置方法及系统
CN108711859A (zh) 一种基于自适应鲁棒控制的多源微电网频率协调方法
CN103248065A (zh) 一种风电场中电池储能系统的充放电控制方法
CN107482657A (zh) 风电爬坡率实时平抑方法和系统
EP3261211A1 (en) Systems and methods for controlling performance parameters of an energy storage device
CN115473241A (zh) 光伏混合储能系统运行稳定性策略优化控制方法
CN103633658B (zh) 一种基于实时调整滤波时间常数的储能系统出力计算方法及装置
Han et al. Dual-regulating feedback optimization control of distributed energy storage system in power smoothing scenariox based on KF-MPC
CN108718093B (zh) 一种高载能负荷参与风电消纳的有功-无功协调控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906814

Country of ref document: EP

Kind code of ref document: A1