CN115102239A - 一种考虑soc均衡的储能电站一次调频控制方法及系统 - Google Patents

一种考虑soc均衡的储能电站一次调频控制方法及系统 Download PDF

Info

Publication number
CN115102239A
CN115102239A CN202210611502.2A CN202210611502A CN115102239A CN 115102239 A CN115102239 A CN 115102239A CN 202210611502 A CN202210611502 A CN 202210611502A CN 115102239 A CN115102239 A CN 115102239A
Authority
CN
China
Prior art keywords
soc
energy storage
power station
frequency modulation
storage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210611502.2A
Other languages
English (en)
Inventor
谢学渊
陈宏�
俞乾
詹世军
陈杰
曲旺
阳文闯
贺悝
谭庄熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Ditaier Comprehensive Energy Planning And Design Co ltd
National Network Hunan Integrated Energy Service Co ltd
Original Assignee
Hunan Ditaier Comprehensive Energy Planning And Design Co ltd
National Network Hunan Integrated Energy Service Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Ditaier Comprehensive Energy Planning And Design Co ltd, National Network Hunan Integrated Energy Service Co ltd filed Critical Hunan Ditaier Comprehensive Energy Planning And Design Co ltd
Priority to CN202210611502.2A priority Critical patent/CN115102239A/zh
Publication of CN115102239A publication Critical patent/CN115102239A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种考虑SOC均衡的储能电站一次调频控制方法及系统,本发明包括实时监测并计算电网频率的频率差值,各储能电站的荷电状态预期偏差值;针对任意的储能电站:通过判断频率差值确定电网处于调频死区内或者正常调频区间,判断荷电状态预期偏差值是否达到预期值,在调频死区内,SOC均衡需求与调频净功率调整需求契合时,储能电站将利用系统盈余/缺额功率进行充/放电实现SOC均衡,其余情况不动作以免频率反向扰动;在正常调频区间内储能电站的均衡控制叠加调频功率输出以响应电网正常调频需求。本发明针对电网调频需求实现了SOC均衡控制与虚拟下垂控制参与系统一次调频的协同控制,能够解决单个储能电站过度使用的问题。

Description

一种考虑SOC均衡的储能电站一次调频控制方法及系统
技术领域
本发明属于电网调频技术,具体涉及一种考虑SOC均衡的储能电站一次调频控制方法及系统。
背景技术
随着电力系统低碳化进程的推进,可再生能源发电占比不断提升,为实现其高效运行需求,实现最大功率跟踪点运行,可再生能源多经过电力电子变换装置并网运行,降低了电网的惯量水平。此外,其存在的出力预测困难、波动性较大等特性,进一步加剧了低惯量电网的频率波动,不利于电网的稳定运行。电池储能具有响应速度快,出力控制精确的特点,在参与快速调频的电网需求中具备极大的应用潜力。规模化储能电池多以储能电站的形式接入电网中,参与调峰调频等有功需求响应的场景,在各省电网及示范工程目前已取得初步的经济效益和运行效果。储能电站参与调峰通过跟踪日前调度指令实现;参与二次调频时则通过跟踪AGC指令生成功率跟踪信号,实现频率的误差调节,重点在于获得二次调频功率指令后的功率分配;一次调频需要各储能电站预设一次调频系数,基于下垂控制原理实现主动自发的参与频率调节。在我国,储能技术参与电网调频的研究与示范工程尚在起步与借鉴阶段。中国电科院在张北风光储基地投建的电池储能电站完成了跟踪调频指令的测试,南方电网深圳宝清电池储能电站与上海漕溪能源转换综合展示基地也具备系统调频的功能。虽然目前还未开展更深入的研究与示范应用工作,但储能技术参与电力调频将是未来智能电网必须关注的重要科学问题。
发明内容
本发明要解决的技术问题:针对现有技术的上述问题,提供一种考虑SOC均衡的储能电站一次调频控制方法及系统,本发明针对电网调频需求实现了SOC均衡控制与虚拟下垂控制参与系统一次调频的协同控制,能够解决单个储能电站过度使用的问题。
为了解决上述技术问题,本发明采用的技术方案为:
一种考虑SOC均衡的储能电站一次调频控制方法,包括:
S1,实时监测电网频率f与各个储能电站的荷电状态SOCi
S2,计算电网频率f与参考电网频率fref之间的频率差值Δf,荷电状态预期值SOCref以及各个储能电站的荷电状态SOCi与荷电状态预期值SOCref之间的荷电状态预期偏差值ΔSOCi
S3,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值Δfd成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,分别计算虚拟下垂控制中有功功率输出增量ΔPK1以及SOC均衡控制中有功功率输出增量ΔPK2,若满足ΔPK1·ΔPK2<0,则仅选择虚拟下垂控制参与一次调频动作,储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1;若不满足ΔPK1·ΔPK2<0,则同时选择虚拟下垂控制与SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1+ΔPK2,并且ΔPK不超过储能电站的额定功率。
可选地,步骤S2中荷电状态预期值SOCref的计算函数表达式为:
SOCref=(∑Ci*SOCi)/∑Ci
上式中,Ci为第i个储能电站的容量。
可选地,步骤S2中荷电状态预期偏差值ΔSOCi的计算函数表达式为:
ΔSOCi=SOCi-SOCref
上式中,SOCi表示第i个储能电站的荷电状态,SOCref为荷电状态预期值。
可选地,步骤S3中虚拟下垂控制中有功功率输出增量ΔPK1的计算函数表达式为:
ΔPK1=-K·Δf
上式中,K为自适应下垂出力系数。
可选地,步骤S3中SOC均衡控制中有功功率输出增量ΔPK2的计算函数表达式为:
ΔPK2=-γ·K·(SOC-SOCREF)
上式中,γ为储能电站的充放电约束系数,K为自适应下垂出力系数,SOC为储能电站的荷电状态,SOCREF为储能电站集群的SOC均衡期望值。
可选地,所述储能电站的充放电约束系数包括充电约束系数γc和放电约束系数γd,储能电站i的荷电状态预期偏差值ΔSOCi大于设定值ΔSOCd成立时基于放电约束系数γd进行放电以实现SOC均衡,储能电站i的荷电状态预期偏差值ΔSOCi小于设定值ΔSOCd的负数-ΔSOCd成立时基于充电约束系数γc进行充电以实现SOC均衡,令fref为频率差值Δf的预期值,当满足当Δf<-Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000031
当满足当-Δfd<Δf<fref时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000032
当满足当fref<Δf<Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000033
当满足当Δf>Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000034
其中,μ为最大约束系数,Kmax为自适应下垂出力系数K的最大值,n为调节参数。
可选地,步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,仅选择SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK2
可选地,步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd不成立时,同时选择虚拟下垂控制与SOC均衡控制都不参与一次调频。
此外,本发明还提供一种考虑SOC均衡的储能电站一次调频控制系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行所述考虑SOC均衡的储能电站一次调频控制方法的步骤。
此外,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,该计算机程序用于被微处理器编程或配置以执行所述考虑SOC均衡的储能电站一次调频控制方法的步骤。
和现有技术相比,本发明主要具有下述优点:本发明提供了一种考虑荷电状态(State of Charge,SOC)均衡的储能电站一次调频控制方法及系统,其结合了SOC均衡控制与虚拟下垂控制参与系统一次调频的协同控制策略,通过实时监测电网的频率与储能电站荷电状态,通过判断差值确定电网处于调频死区内或者正常调频区间,同时判断荷电状态是否达到预期值;在调频死区内,当储能电站的SOC均衡需求与调频净功率调整需求契合时,储能电站将利用系统盈余(缺额)功率进行充电(放电),从而实现SOC的均衡调整,其余情况下不动作,以避免造成频率的反向扰动;在正常调频区间内,储能电站的均衡控制类似,但同时会叠加调频功率输出,以响应电网正常调频需求。简而言之,本发明方法先通过监测电网实时运行状态与储能电站荷电状态,得到当前频率与额定频率的偏差及储能电站荷电状态与预期值的偏差;经过与电网调频需求功率进行比较,选择合适的场景进行SOC均衡动作。针对SOC均衡动作与调频动作方向相反的情况,选择虚拟下垂控制参与一次调频;针对SOC均衡动作与调频动作方向相同的情况,选择虚拟下垂控制与SOC均衡控制同时参与一次调频;此策略可大大削减影响单个储能电站过度使用的负面因素,有利于储能电站的合理利用。综上所述,本实施例方法能够在电网受到扰动时,有效缩小频率波动幅值,恢复电网频率,并且结果正确、可靠性强。本发明实现了电网频率的调节效果提升和储能电站SOC运行健康度,为保证电网安全稳定运行提供了科学的支撑。
附图说明
图1为本发明实施例中多个储能电池的区域电网调频动态模型。
图2为本发明实施例方法的基本流程示意图。
图3为本发明实施例中协同控制策略的思路图。
图4为本发明实施例中协同控制策略中均衡约束系数与Δf的关系示意图。
图5为本实例实施例中小扰动下某典型区域电网的频率偏差示意图。
图6为本实例实施例中小扰动下本文方法储能电站SOC状态曲线示意图。
图7为本实例实施例中小扰动下对比方法储能电站SOC状态曲线示意图。
图8为本实例实施例中小扰动下某典型区域电网的频率偏差示意图。
图9为本实例实施例中小扰动下本文方法储能电站SOC状态曲线示意图。
图10为本实例实施例中小扰动下对比方法储能电站SOC状态曲线示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本实施例考虑SOC均衡的储能电站一次调频控制方法提出一种考虑荷电状态均衡需求的储能电站协同调频控制策略,为研究多个储能电站接入下的电力系统一次调频问题,需要构建典型的电力系统有功频率响应模型。在一次调频的正常运行工况下,电力系统一次调频的频率波动小于0.05%,基于区域等效的方法,建立了含储能电池的区域电网一次调频动态模型,含多个储能电池的区域电网调频动态模型如图1所示。参见图1中,Kg为传统电源的单位调节功率,ΔPc(s)为二次调频给定值,电网频率偏差Δf(s)乘以传统电源的单位调节功率Kg后,与二次调频给定值ΔPc(s)求和后作为传统机组的控制输入,传统机组中Ggov(s)表示火电机组调速器传递函数,Gen(s)表示传统再热汽轮机传递函数,最终传统机组得到的出力功率改变量为ΔPG(s)。多个储能电池则构成分布式储能电池电站集合,其中多储能电站间协同调频控制器为分布式储能电池电站集合的控制主体,用于根据电网频率偏差Δf(s)给n个储能电站下达出力功率指令分别为ΔPb1(s)~ΔPbn(s);储能电站中的,Kb1~Kbn为各个储能电池的单位调节功率,Gb(s)表示储能电站的一阶惯性模型。然后,负荷功率波动量ΔPL(s)、传统机组得到的输出为ΔPG(s)以及各个储能电池的输出一起并网,并通过电网等效模型环节1/(Ms+D)获得新的电网频率偏差Δf(s),其中M和D分别为电网惯性时间常数和负荷阻尼系数。本实施例考虑SOC均衡的储能电站一次调频控制方法则涉及对图1中多储能电站间协同调频控制器的相关控制方法的改进。
如图2所示,本实施例考虑SOC均衡的储能电站一次调频控制方法包括:
S1,实时监测电网频率f与各个储能电站的荷电状态SOCi
S2,计算电网频率f与参考电网频率fref之间的频率差值Δf,荷电状态预期值SOCref以及各个储能电站的荷电状态SOCi与荷电状态预期值SOCref之间的荷电状态预期偏差值ΔSOCi
S3,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值Δfd成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,分别计算虚拟下垂控制中有功功率输出增量ΔPK1以及SOC均衡控制中有功功率输出增量ΔPK2,若满足ΔPK1·ΔPK2<0,则仅选择虚拟下垂控制参与一次调频动作,储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1;若不满足ΔPK1·ΔPK2<0,则同时选择虚拟下垂控制与SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1+ΔPK2,并且ΔPK不超过储能电站的额定功率。
本实施例中针对任意的储能电站通过判断频率差值确定电网处于调频死区内或者正常调频区间,判断荷电状态预期偏差值是否达到预期值,在调频死区内,SOC均衡需求与调频净功率调整需求契合时,储能电站将利用系统盈余(缺额)功率进行充电(放电),从而实现SOC均衡,其余情况下不动作,以避免造成频率反向扰动;在正常调频区间内,储能电站的均衡控制类似,但同时会叠加调频功率输出,以响应电网正常调频需求。
本实施例中,步骤S2中荷电状态预期值SOCref的计算函数表达式为:
SOCref=(∑Ci*SOCi)/∑Ci
上式中,Ci为第i个储能电站的容量。
本实施例中,步骤S2中荷电状态预期偏差值ΔSOCi的计算函数表达式为:
ΔSOCi=SOCi-SOCref
上式中,SOCi表示第i个储能电站的荷电状态,SOCref为荷电状态预期值。
本实施例中,步骤S3中虚拟下垂控制中有功功率输出增量ΔPK1的计算函数表达式为:
ΔPK1=-K·Δf
上式中,K为自适应下垂出力系数。
需要说明的是,虚拟下垂控制为现有控制方法,例如可参见论文文献:颜湘武,宋子君,崔森,孙颖,李铁成.基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J].电工技术学报,2020,35(03):530-541.本实施例中仅仅涉及对虚拟下垂控制算法的应用,不涉及对虚拟下垂控制算法的改进,故其实现细节在此不再赘述。
本实施例中,步骤S3中SOC均衡控制中有功功率输出增量ΔPK2的计算函数表达式为:
ΔPK2=-γ·K·(SOC-SOCREF)
上式中,γ为储能电站的充放电约束系数,K为自适应下垂出力系数,SOC为储能电站的荷电状态,SOCREF为储能电站集群的SOC均衡期望值。
本实施例中,所述储能电站的充放电约束系数包括充电约束系数γc和放电约束系数γd,储能电站i的荷电状态预期偏差值ΔSOCi大于设定值ΔSOCd成立时基于放电约束系数γd进行放电以实现SOC均衡,储能电站i的荷电状态预期偏差值ΔSOCi小于设定值ΔSOCd的负数-ΔSOCd成立时基于充电约束系数γc进行充电以实现SOC均衡,令fref为频率差值Δf的预期值,当满足当Δf<-Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000081
当满足当-Δfd<Δf<fref时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000082
当满足当fref<Δf<Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000083
当满足当Δf>Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure BDA0003673222950000084
其中,μ为最大约束系数,Kmax为自适应下垂出力系数K的最大值,n为调节参数。根据函数可知,充电约束系数γc和放电约束系数γd与频率差值Δf之间的关系曲线如图4所示。
参见上述步骤可知,本实施例的SOC均衡控制中,当Δf<-Δfd时,以最大约束系数μ进行放电均衡,且避免充电均衡动作对电网频率造成冲击;当-Δfd<Δf<fref时,以相应关于最大约束系数μ和Δf的函数进行恰当充电进行均衡;当fref<Δf<Δfd时,以相应关于最大约束系数μ和Δf的函数进行恰当放电进行均衡;当Δfd<Δf时,以最大约束系数μ进行充电均衡,且避免放电均衡动作对电网频率造成冲击,从而实现了储能电站之间的SOC均衡。
进一步地,本实施例中步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,仅选择SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK2。进一步地,本实施例中步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd不成立时,同时选择虚拟下垂控制与SOC均衡控制都不参与一次调频。
本实施例方法中协控的基本原理如下:电网频率偏差不超过调频死区且储能电站荷电状态达到SOCref,则一次调频不动作,SOC均衡不动作。若电网频率偏差处于调频死区且储能电站荷电状态未达到SOCref,根据储能电站的SOC均衡需求与系统死区内盈余(缺额)功率契合时,储能电站将利用系统盈余(缺额)功率进行充电(放电),从而实现SOC的均衡调整,即一次调频不动作,SOC均衡动作;若电网频率偏差超过调频死区,根据电网频率调节需求功率与荷电状态均衡需求功率是否契合,若电网频率调节需求功率与储能电站SOC均衡功率出力方向不相同,例如需要储能电站放电参与频率调节和储能电站需要充电进行SOC均衡,则储能电站仅考虑电网调频需求采用虚拟下垂控制策略出力。若电网频率偏差超过调频死区,且电网频率调节需求功率与储能电站SOC均衡功率出力方向相同,例如需要储能电站放电参与频率调节和储能电站需要放电进行SOC均衡,则储能电站在满足出力不超过额定值的前提下进行调频和SOC均衡叠加出力。其中,预设的死区边界标幺值Δfd、设定值ΔSOCd是用于工况条件判断的关键依据。预设的死区边界标幺值Δfd、设定值ΔSOCd可根据实际情况进行设定,例如本实施例中预设的死区边界标幺值Δfd为0.033,设定值ΔSOCd取值为0.05。如图3所示,依据上述关键依据的具体取值,本实施例包含下述四种工况:
工况1:具体地,当电网频率偏差标幺值的绝对值小于死区边界标幺值0.033,且当储能电站SOC与预期值偏差ΔSOCi小于0.05,则该储能电站的荷电状态也属于正常波动范围,储能电站不参与一次调频,且SOC均衡控制不动作。
工况2:当频率偏差标幺值小于死区边界标幺值0.033,储能电站不参与一次调频;当储能电站SOC与预期值偏差ΔSOCi超过0.05,则该储能电站需要进行SOC均衡,否则属于正常波动范围,SOC均衡控制不动作。
工况3:当频率偏差标幺值大于死区边界标幺值0.033,所述虚拟下垂控制中有功功率输出增量为ΔPK1=-K·Δf,式中Δf为电网频率偏差,K为自适应下垂出力系数;当SOC偏差大于0.05时,所述均衡控制中有功功率输出增量为ΔPK2=-γ·K·(SOC-SOCREF),式中γ为储能电站的充放电约束系数,SOCREF为储能电站集群的SOC均衡期望值;此时若ΔPK1·ΔPK2<0,则储能电站的有功功率输出增量为ΔPK=ΔPK1
工况4:当频率偏差标幺值大于死区边界标幺值0.033,且当储能电站SOC与预期值偏差超过0.05,若ΔPK1·ΔPK2>0,则储能电站的有功功率输出增量为ΔPK=ΔPK1+ΔPK2,且ΔPK不超过储能电站的额定功率。
下面通过实例仿真对本方案做进一步说明。本实例是基于MATLAB仿真平台搭建某区域网络模型展开仿真验证。为了验证本文所提方法在多个储能电站参与一次调频场景中的可行性,选取某区域电网作为研究对象,相应的调频仿真模型如图1,其中系统额定容量为1000MW,三组储能电池容量分别为3MW·1h、3MW·1h、2MW·1h,初始SOC分别设置为0.7、0.4、0.3。需要指出的是,由于储能电站的引入,其一次调频效果显然会优于无储能的调频效果,故不再给出无储能情况下调频效果对比。
1)小扰动工况
在仿真模型运行1h常规小扰动综合负荷波动,得到频率偏差结果如图5所示,储能电池SOC曲线如图6和图7所示,调频指标如表1所示。从结果图中可以看出,相比传统策略本实施例方法(图中表示为本文策略或本文方法)不仅使系统频率偏差的波动幅值大大减小,且在SOC均衡的过程中无频率突变发生,在避免单个储能电站长期不健康运行方面较有优势。
表1:小扰动工况下对应调频指标
Figure BDA0003673222950000101
从表1中可以看出在常规小扰动工况下,本实施例方法相对传统方法在频率调节效果指标方面提升了75.3%,三个储能电站在SOC均衡指标方面分别提升了13.7%、9.9%、12.4%。
2)大扰动工况
在仿真模型运行1h常规小扰动综合负荷波动,得到频率偏差结果如下图8所示,储能电池SOC曲线如图9和图10所示。从结果图中可以看出,在极端大扰动工况下,本文方法相对传统方法在频率调节效果指标方面提升了25.7%,三个储能电站在SOC均衡性指标方面分别提升了24.9%、19.6%、27.2%,具体指标参数如表2所示。
表2:大扰动工况下对应调频指标。
Figure BDA0003673222950000111
由图8~图10,以及表2可见,本实施例方法能够挖掘不同荷电状态的储能电站的调频潜力,同时可以有效避免储能电站SOC越限,有助于各储能电站SOC的状态一致性。
综上所述,本实施例方法先通过监测电网实时运行状态与储能电站荷电状态,得到当前频率与额定频率的偏差及储能电站荷电状态与预期值的偏差;经过与电网调频需求功率进行比较,选择合适的场景进行SOC均衡动作。针对SOC均衡动作与调频动作方向相反的情况,选择虚拟下垂控制参与一次调频;针对SOC均衡动作与调频动作方向相同的情况,选择虚拟下垂控制与SOC均衡控制同时参与一次调频;此策略可大大削减影响单个储能电站过度使用的负面因素,有利于储能电站的合理利用。本实施例方法能够在电网受到扰动时,有效缩小频率波动幅值,恢复电网频率,并且结果正确、可靠性强。
此外,本实施例还提供一种考虑SOC均衡的储能电站一次调频控制系统,包括相互连接的微处理器和存储器,该微处理器被编程或配置以执行前述考虑SOC均衡的储能电站一次调频控制方法的步骤。
此外,本实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,该计算机程序用于被微处理器编程或配置以执行前述考虑SOC均衡的储能电站一次调频控制方法的步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种考虑SOC均衡的储能电站一次调频控制方法,其特征在于,包括:
S1,实时监测电网频率f与各个储能电站的荷电状态SOCi
S2,计算电网频率f与参考电网频率fref之间的频率差值Δf,荷电状态预期值SOCref以及各个储能电站的荷电状态SOCi与荷电状态预期值SOCref之间的荷电状态预期偏差值ΔSOCi
S3,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值Δfd成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,分别计算虚拟下垂控制中有功功率输出增量ΔPK1以及SOC均衡控制中有功功率输出增量ΔPK2,若满足ΔPK1·ΔPK2<0,则仅选择虚拟下垂控制参与一次调频动作,储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1;若不满足ΔPK1·ΔPK2<0,则同时选择虚拟下垂控制与SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK1+ΔPK2,并且ΔPK不超过储能电站的额定功率。
2.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S2中荷电状态预期值SOCref的计算函数表达式为:
SOCref=(∑Ci*SOCi)/∑Ci
上式中,Ci为第i个储能电站的容量。
3.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S2中荷电状态预期偏差值ΔSOCi的计算函数表达式为:
ΔSOCi=SOCi-SOCref
上式中,SOCi表示第i个储能电站的荷电状态,SOCref为荷电状态预期值。
4.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S3中虚拟下垂控制中有功功率输出增量ΔPK1的计算函数表达式为:
ΔPK1=-K·Δf
上式中,K为自适应下垂出力系数。
5.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S3中SOC均衡控制中有功功率输出增量ΔPK2的计算函数表达式为:
ΔPK2=-γ·K·(SOC-SOCREF)
上式中,γ为储能电站的充放电约束系数,K为自适应下垂出力系数,SOC为储能电站的荷电状态,SOCREF为储能电站集群的SOC均衡期望值。
6.根据权利要求5所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,所述储能电站的充放电约束系数包括充电约束系数γc和放电约束系数γd,储能电站i的荷电状态预期偏差值ΔSOCi大于设定值ΔSOCd成立时基于放电约束系数γd进行放电以实现SOC均衡,储能电站i的荷电状态预期偏差值ΔSOCi小于设定值ΔSOCd的负数-ΔSOCd成立时基于充电约束系数γc进行充电以实现SOC均衡,令fref为频率差值Δf的预期值,当满足当Δf<-Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure FDA0003673222940000021
当满足当-Δfd<Δf<fref时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure FDA0003673222940000022
当满足当fref<Δf<Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure FDA0003673222940000023
当满足当Δf>Δfd时,充电约束系数γc和放电约束系数γd的计算函数表达式:
Figure FDA0003673222940000024
其中,μ为最大约束系数,Kmax为自适应下垂出力系数K的最大值,n为调节参数。
7.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd成立时,仅选择SOC均衡控制参与一次调频,且储能电站的有功功率输出增量ΔPK为ΔPK=ΔPK2
8.根据权利要求1所述的考虑SOC均衡的储能电站一次调频控制方法,其特征在于,步骤S3中还包括,针对任意的储能电站i:在频率差值Δf的标幺值|Δf|大于预设的死区边界标幺值不成立、且储能电站i的荷电状态预期偏差值ΔSOCi的标幺值|ΔSOCi|大于设定值ΔSOCd不成立时,同时选择虚拟下垂控制与SOC均衡控制都不参与一次调频。
9.一种考虑SOC均衡的储能电站一次调频控制系统,包括相互连接的微处理器和存储器,其特征在于,该微处理器被编程或配置以执行权利要求1~8中任意一项所述考虑SOC均衡的储能电站一次调频控制方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其特征在于,该计算机程序用于被微处理器编程或配置以执行权利要求1~8中任意一项所述考虑SOC均衡的储能电站一次调频控制方法的步骤。
CN202210611502.2A 2022-05-31 2022-05-31 一种考虑soc均衡的储能电站一次调频控制方法及系统 Pending CN115102239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210611502.2A CN115102239A (zh) 2022-05-31 2022-05-31 一种考虑soc均衡的储能电站一次调频控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210611502.2A CN115102239A (zh) 2022-05-31 2022-05-31 一种考虑soc均衡的储能电站一次调频控制方法及系统

Publications (1)

Publication Number Publication Date
CN115102239A true CN115102239A (zh) 2022-09-23

Family

ID=83288742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210611502.2A Pending CN115102239A (zh) 2022-05-31 2022-05-31 一种考虑soc均衡的储能电站一次调频控制方法及系统

Country Status (1)

Country Link
CN (1) CN115102239A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882527A (zh) * 2023-02-24 2023-03-31 南方电网数字电网研究院有限公司 考虑储能的新能源站下垂特性一次调频协调控制方法
CN116436160A (zh) * 2023-03-29 2023-07-14 华能威海发电有限责任公司 Agc性能指标在线监控系统及方法
CN117154759A (zh) * 2023-08-30 2023-12-01 南京工程学院 一种考虑储能充放电均衡度的风储联合调频控制方法
CN117375049A (zh) * 2023-10-13 2024-01-09 华能山东发电有限公司 用于风电场多维考核标准的混合储能优化配置方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218511A1 (en) * 2013-10-17 2016-07-28 Zhangjiakou Wind And Solar Power Energy Demonstration A monitoring system and method for megawatt level battery energy storage power plant
CN110380438A (zh) * 2019-07-04 2019-10-25 湖南大学 一种考虑储能动作边界的快速调频控制方法
CN112671008A (zh) * 2021-01-11 2021-04-16 华北电力大学 一种储能站参与一次调频的有功调节裕度量化计算方法
CN114204577A (zh) * 2021-11-13 2022-03-18 国网辽宁省电力有限公司阜新供电公司 一种考虑soc的主动支撑型电池储能电站自适应控制方法
WO2022089165A1 (zh) * 2020-10-28 2022-05-05 许继集团有限公司 一种含储能的新能源电站调频控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218511A1 (en) * 2013-10-17 2016-07-28 Zhangjiakou Wind And Solar Power Energy Demonstration A monitoring system and method for megawatt level battery energy storage power plant
CN110380438A (zh) * 2019-07-04 2019-10-25 湖南大学 一种考虑储能动作边界的快速调频控制方法
WO2022089165A1 (zh) * 2020-10-28 2022-05-05 许继集团有限公司 一种含储能的新能源电站调频控制方法及系统
CN112671008A (zh) * 2021-01-11 2021-04-16 华北电力大学 一种储能站参与一次调频的有功调节裕度量化计算方法
CN114204577A (zh) * 2021-11-13 2022-03-18 国网辽宁省电力有限公司阜新供电公司 一种考虑soc的主动支撑型电池储能电站自适应控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882527A (zh) * 2023-02-24 2023-03-31 南方电网数字电网研究院有限公司 考虑储能的新能源站下垂特性一次调频协调控制方法
CN116436160A (zh) * 2023-03-29 2023-07-14 华能威海发电有限责任公司 Agc性能指标在线监控系统及方法
CN116436160B (zh) * 2023-03-29 2023-12-22 华能威海发电有限责任公司 Agc性能指标在线监控系统及方法
CN117154759A (zh) * 2023-08-30 2023-12-01 南京工程学院 一种考虑储能充放电均衡度的风储联合调频控制方法
CN117154759B (zh) * 2023-08-30 2024-02-27 南京工程学院 一种考虑储能充放电均衡度的风储联合调频控制方法
CN117375049A (zh) * 2023-10-13 2024-01-09 华能山东发电有限公司 用于风电场多维考核标准的混合储能优化配置方法和系统
CN117375049B (zh) * 2023-10-13 2024-04-09 华能山东发电有限公司 用于风电场多维考核标准的混合储能优化配置方法和系统

Similar Documents

Publication Publication Date Title
CN115102239A (zh) 一种考虑soc均衡的储能电站一次调频控制方法及系统
CN105406518B (zh) 储能参与电网二次调频的agc控制方法及控制系统
CN106972516A (zh) 一种适用于微网的多类型储能多级控制方法
CN110086180B (zh) 一种基于深充浅放原则的储能调频均衡控制方法
CN105406496B (zh) 一种基于实测频率响应辨识的孤立微电网调频控制方法
CN105490292B (zh) 一种储能系统参与电网二次频率控制的方法及装置
Meng et al. Energy storage auxiliary frequency modulation control strategy considering ACE and SOC of energy storage
CN107465204A (zh) 一种储能电站中多电池组功率优化分配方法和装置
CN108599194B (zh) 一种计及储能浅充浅放需求的调频控制方法
CN111900745A (zh) 一种用于平抑风电功率波动的混合储能分频协调控制系统
WO2022156014A1 (zh) 混联风光微电网快速频率响应分布式协调控制方法及系统
CN110380438A (zh) 一种考虑储能动作边界的快速调频控制方法
CN114336694B (zh) 一种混合储能电站能量优化控制方法
CN106786756B (zh) 一种光伏发电站虚拟同步控制方法及其控制系统
CN115459303A (zh) 电池储能参与电网一次调频的自适应控制方法
CN109066746B (zh) 一种含有储能系统的电力系统惯性时间常数获得方法
CN111276987A (zh) 一种储能系统的电储能控制方法及装置
CN114156912B (zh) 一种混合储能用于一次调频的能量管理方法及系统
CN103560533A (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN112865139B (zh) 储能电站安全参与电网一次调频的优化控制策略
CN111525597B (zh) 一种风储联合系统中双电池不平衡状态优化方法
CN115173433A (zh) 一种平抑风电波动的储能容量优化方法及系统
CN107919683A (zh) 一种储能减少风电场弃风电量的优化决策方法
CN112531735A (zh) 基于机器学习的自动发电控制系统的功率分配方法及装置
CN115360738B (zh) 一种考虑可控域约束的电动汽车一次调频控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination