WO2018196190A1 - 一种终端和摄像头 - Google Patents

一种终端和摄像头 Download PDF

Info

Publication number
WO2018196190A1
WO2018196190A1 PCT/CN2017/094523 CN2017094523W WO2018196190A1 WO 2018196190 A1 WO2018196190 A1 WO 2018196190A1 CN 2017094523 W CN2017094523 W CN 2017094523W WO 2018196190 A1 WO2018196190 A1 WO 2018196190A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging sensor
sensor assembly
hole
photoelectric conversion
control board
Prior art date
Application number
PCT/CN2017/094523
Other languages
English (en)
French (fr)
Inventor
尹帮实
谢鹏飞
陈晓萌
严斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780010097.6A priority Critical patent/CN108702435B/zh
Publication of WO2018196190A1 publication Critical patent/WO2018196190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the present application relates to the field of terminal technologies, and in particular, to a terminal and a camera.
  • the camera function has become an indispensable part of the terminal product.
  • the camera with auto focus function can automatically set the focal length according to the distance between the internal imaging sensor and the object to ensure the quality and clarity of the photo. A wide range of applications.
  • FIG. 1 is a camera with auto focus function commonly used in the prior art.
  • the camera includes a support base 01 , a printed circuit board (PCB) 02 , an imaging sensor 03 , and an infrared filter.
  • PCB printed circuit board
  • the infrared filter 04 is disposed at the upper end opening of the through hole, the imaging sensor 03 is fixed in the through hole, the lens 05 is located above the support base 01, and is opposite to the imaging sensor 03, and the voice coil motor sleeve 06 is disposed on the lens side.
  • the wall is one week, and the voice coil motor 06 is used to drive the lens 05 to move toward or away from the imaging sensor 03 to achieve autofocus of the camera. For example, as shown in FIG. 2, the voice coil motor 06 drives the lens 05 to move to the micro.
  • the lens 05 and the voice coil motor 06 are relatively movable, and there is inevitably a gap between the lens 05 and the voice coil motor 06. At this time, water or dust in the external environment. Along this gap, the optical path between the lens and the imaging sensor can be entered, thereby occluding the imaging sensor and forming a shadow on the imaging image, thereby affecting the imaging quality and sharpness of the camera.
  • Embodiments of the present application provide a terminal and a camera that can prevent water or dust from entering the internal optical path of the camera and affect the photographing quality and clarity of the terminal.
  • a terminal provided by the present application includes a housing, a terminal body, and a camera.
  • the terminal body is located in the housing.
  • the upper surface of the terminal body is provided with a mounting slot, and the housing is mounted on the housing.
  • a light-transmitting window is disposed at a position opposite to the slot
  • the camera is mounted in the mounting slot
  • the camera includes a support base, a lens, a control board and an imaging sensor assembly
  • the support base is opened through the support base a through hole of the surface
  • the lens is connected to the upper side of the support base
  • a sealing cover is disposed at an upper end opening of the through hole
  • the control board is connected to the lower side of the support base
  • the sealing cover is disposed at the At the lower end opening of the through hole
  • the imaging sensor assembly is located in the through hole and is in communication connection with the control board
  • the imaging sensor assembly is
  • a focus driving device is disposed between the inner wall of the through hole or the control board, and the focus driving device is
  • the terminal includes a camera
  • the camera includes a support base, a lens, a control board, and an imaging sensor assembly.
  • the support base defines a through hole penetrating through the upper and lower surfaces of the support base, and the lens is connected to the upper side of the support base, and Covered at the upper end opening of the through hole, the imaging sensor assembly is located in the through hole, and a focus driving device is disposed between the imaging sensor assembly and the inner wall of the through hole or the control board, and the focusing driving device can drive the imaging sensor assembly toward or away from The direction of the lens is moved, thereby driving the imaging sensor assembly to move by the focus driving device, thereby realizing the autofocus of the camera.
  • the lens sealing cover is disposed at the upper end opening of the through hole, the control board is connected below the support seat, and the sealing cover is disposed at the lower end opening of the through hole, thereby forming a sealing inside the through hole.
  • the optical path between the lens and the imaging sensor assembly is sealed in the through hole, and water or dust between the outer casing and the terminal body cannot enter between the lens and the imaging sensor assembly.
  • water or dust is prevented from affecting the internal light path of the camera, thereby ensuring the quality and clarity of the camera.
  • the focus driving device includes a fixed electrode, a movable electrode, and a driving circuit, the fixed electrode and the movable electrode being located in the imaging sensor assembly
  • the inner walls of the through holes are spaced apart from each other and disposed opposite to each other in the axial direction of the through holes, and the fixed electrodes are relatively fixed to the inner wall of the through holes, and the movable electrodes are relatively fixed to the imaging sensor assembly.
  • the driving circuit is configured to apply the same or different charges to the fixed electrode and the movable electrode to drive the movable electrode to move the imaging sensor assembly toward or away from the fixed electrode. Thereby, the imaging sensor assembly can be driven to move toward or away from the lens to realize the autofocus operation of the camera.
  • the composition of the focus driving device is simple, and the structure is compacted to facilitate the through hole in the space. Install it inside.
  • the fixed electrode includes a first insulating layer and the first insulating layer faces the movable electrode a first conductive layer on the side
  • the movable electrode includes a second insulating layer and a second conductive layer on a side of the second insulating layer facing the fixed electrode
  • the driving circuit is configured to be toward the first conductive layer The same or a different charge is applied to the second conductive layer.
  • the electric field between the fixed electrode and the movable electrode can be confined in the first conductive layer, the second conductive layer, and the gap between the first conductive layer and the second conductive layer to avoid the first conductive layer and the second conductive layer.
  • the layer and the circuitry outside the gap between the first conductive layer and the second conductive layer cause interference.
  • the fixed electrode and the movable electrode are multiple, and the plurality of the fixed electrodes and the plurality of The movable electrodes are spaced apart from each other along the axial direction of the through hole, and the plurality of fixed electrodes are disposed opposite to the plurality of movable electrodes to form a plurality of driving structures, which can increase the driving force of the focus driving device and improve the focusing. effectiveness.
  • the focus driving device is a linear voice coil motor
  • the linear voice coil motor is disposed on the imaging sensor assembly and the through hole Between the inner walls, and the stator of the linear voice coil motor is relatively fixed to the inner wall of the through hole, and the mover of the linear voice coil motor is relatively fixed to the imaging sensor assembly.
  • the linear voice coil motor has the advantages of small size, large thrust, and high speed, so that the driving force and focusing efficiency of the focus driving device can be improved, and the size of the focus driving device can be reduced.
  • the focus driving device includes a connecting member and a temperature control device, wherein the connecting member is formed by stretching the shape memory alloy at a normal temperature state, And the connecting member is connected to the imaging sensor assembly at one end in a stretching direction thereof, and the other end extends downward and is connected to the inner wall of the through hole or the control board, and the temperature control device is used for controlling the The temperature of the connecting member drives the connecting member to generate a telescopic deformation, thereby driving the imaging sensor assembly to move toward or away from the lens, thereby realizing the autofocus operation of the camera.
  • the focus drive device has a simple structure and is advantageous for miniaturization of the structure to facilitate installation in a through hole having a limited space.
  • the temperature control device includes a heating circuit, a switch, and a control unit, the heating circuit and the connector Electrically connected, the switch is connected in series with an electrical connection path between the heating circuit and the connecting member, the control unit is connected to the switch, and is used for controlling the opening and closing time of the switch, This controls the heating and cooling time of the connector to control the temperature of the connector.
  • the temperature control device has a simple structure and is easy to implement.
  • the connector is in the form of a wire, and the imaging sensor assembly and the control panel
  • An elastic support member is connected between the elastic support member for applying an upward elastic supporting force to the imaging sensor assembly.
  • the connecting member When the connecting member is heated and contracted, the connecting member can pull the imaging sensor assembly to move downward and compress the elastic support.
  • the piece accumulates the elastic force; when the connecting member cools and expands, the elastic supporting member returns to the initial state under the elastic force to push the imaging sensor to move upward.
  • the filamentary connector requires less heat to deform and deform, preventing the image sensor assembly from being burned out, while the wire-like connector is small in size and is easily installed in a through-hole having limited space.
  • the elastic support member may be a coil spring or a spring piece, which is not specifically limited herein.
  • the focus driving device is a linear ultrasonic motor
  • the linear ultrasonic motor is disposed between the imaging sensor assembly and the control board
  • the stator of the linear ultrasonic motor is relatively fixed to the control board
  • the mover of the linear ultrasonic motor is relatively fixed to the imaging sensor assembly.
  • Linear ultrasonic motor has the advantages of simple structure, small size and light weight, fast response, low noise, low speed and large torque, good control characteristics, self-locking of power failure, no interference from magnetic field, accurate motion, etc., so it can improve the accuracy of focusing. And efficiency, while reducing the size of the focus drive.
  • the imaging sensor assembly includes a housing and a sensor body fixed in the housing A mounting port is defined in a portion of the housing between the sensor body and the lens, and an infrared filter is mounted in the mounting port.
  • the infrared ray filter can filter out the infrared ray in the optical path, prevent overexposure, and dispose the sensor body in the casing, so as to reduce the interference of water or dust in the through hole on the sensor body to a certain extent.
  • the focus driving device is disposed between the housing and the inner wall of the through hole or the control panel, and the inner wall of the housing
  • An electromagnetic shielding layer is provided on the outer wall and/or on the outer wall. In this way, it is possible to prevent the focus drive device or other structure from causing electromagnetic interference to the sensor body in the housing.
  • the imaging sensor component is a Flexible Printed Circuit (FPC) Connected to the control board in communication.
  • the flexible printed circuit board can realize the flexible connection between the imaging sensor component and the control board, avoiding the limitation of the focusing motion of the imaging sensor component, and the flexible printed circuit board has the advantages of light weight, thin thickness and the like, and is convenient for the through hole in the space. Install it inside.
  • the imaging sensor component is communicatively coupled to the control panel via an optical communication structure.
  • Light can be accurately transmitted within the micro-distance gap, so there is no need to connect the optical transmission medium between the imaging sensor assembly and the control board, thereby avoiding obstruction to the focusing motion of the imaging sensor assembly.
  • the optical communication structure has the advantages of high transmission speed, large transmission capacity, and the like, and thus can improve the communication efficiency between the imaging sensor assembly and the control board.
  • the optical communication structure includes a first processing device, a first photoelectric conversion device, and a second processing device And a second photoelectric conversion device, the first processing device and the first photoelectric conversion device being fixed to the imaging sensor assembly, and between the imaging sensor assembly and the first processing device, and the a processing device is in communication with the first photoelectric conversion device, the second processing device and the second photoelectric conversion device are fixed on the control board, and the control board and the second processing a communication connection between the devices and between the second processing device and the second photoelectric conversion device, the first photoelectric conversion device being located on a lower surface of the imaging sensor assembly, the second photoelectric conversion device being located The upper surface of the control board is disposed opposite to the first photoelectric conversion device, the first photoelectric conversion device includes a plurality of first communication interfaces, and the second photoelectric conversion device Comprising a second plurality of communication interfaces, the plurality of the first communication interface with a plurality of the second
  • the optical signal can be transmitted and transmitted and received in the air without connecting the optical transmission medium between the imaging sensor component and the control board. Thereby, it is possible to prevent the optical communication structure from restricting the focusing motion of the imaging sensor assembly.
  • the optical coupling between the first photoelectric conversion device and the second photoelectric conversion device is soft And a light-passing hole is formed between the first communication interface and the second communication interface corresponding to the first communication interface on the light-absorbing soft material. In this way, the interference portion between the adjacent two optical paths is absorbed by the light absorbing soft material, and interference between the adjacent two optical paths can be avoided, thereby ensuring the accuracy of signal transmission.
  • a limit structure is provided between the imaging sensor component and the control board
  • the limiting structure is configured to allow axial movement of the imaging sensor assembly relative to the control panel along the through hole and to prevent the imaging sensor assembly from being along the through hole of the control panel Move to.
  • the moving direction of the imaging sensor assembly is defined by the limiting structure, which effectively prevents the first communication interface and the second communication interface from being misaligned during the focusing movement of the imaging sensor assembly.
  • the limiting structure in conjunction with the fifteenth alternative implementation of the first aspect, in the sixteenth alternative implementation of the first aspect, includes a limiting hole and an edge extending along an axial direction of the through hole An axially extending limiting post of the through hole, the limiting post is slidably fitted in the limiting hole, and one of the limiting hole and the limiting post is disposed on the imaging sensor assembly The other one of the limiting hole and the limiting post is disposed on the control board.
  • This structure is simple and easy to implement.
  • the present application provides a camera for a terminal, including a support base, a lens, a control panel, and an imaging sensor assembly, wherein the support base defines a through hole penetrating through the upper and lower surfaces of the support base, and the lens is connected Above the support base, and a sealing cover is disposed at an upper end opening of the through hole, the control board is connected to the lower side of the support base, and a sealing cover is disposed at a lower end opening of the through hole,
  • the imaging sensor assembly is located in the through hole and is communicably connected to the control board, and a focus driving device is disposed between the imaging sensor assembly and the inner wall of the through hole or the control board, and the focus driving device A means for driving the imaging sensor assembly to move toward or away from the lens.
  • the camera provided by the embodiment of the present application has a through hole penetrating through the upper and lower surfaces of the support base, the lens is connected above the support base, and is disposed at the upper end opening of the through hole, and the imaging sensor component is located in the through hole.
  • a focusing driving device is disposed between the imaging sensor assembly and the inner wall of the through hole or the control panel, and the focusing driving device can drive the imaging sensor assembly to move toward or away from the lens, thereby driving the imaging sensor assembly to move by the focusing driving device.
  • the lens sealing cover is disposed at the upper end opening of the through hole, the control board is connected below the support seat, and the sealing cover is disposed at the lower end opening of the through hole, thereby forming a sealing inside the through hole.
  • the focus driving device includes a fixed electrode, a movable electrode, and a driving circuit, wherein the fixed electrode and the movable electrode are located in the imaging sensor assembly
  • the inner walls of the through holes are spaced apart from each other and disposed opposite to each other in the axial direction of the through holes, and the fixed electrodes are relatively fixed to the inner wall of the through holes, and the movable electrodes are relatively fixed to the imaging sensor assembly.
  • the driving circuit is configured to apply the same or different charges to the fixed electrode and the movable electrode to drive the movable electrode to move the imaging sensor assembly toward or away from the fixed electrode. Thereby, the imaging sensor assembly can be driven to move toward or away from the lens to realize the autofocus operation of the camera.
  • the composition of the focus driving device is simple, and the structure is compacted to facilitate the through hole in the space. Install it inside.
  • the fixed electrode includes a first insulating layer and the first insulating layer faces the movable electrode a first conductive layer on the side
  • the movable electrode includes a second insulating layer and a second conductive layer on a side of the second insulating layer facing the fixed electrode
  • the driving circuit is configured to be toward the first conductive layer The same or a different charge is applied to the second conductive layer.
  • the electric field between the fixed electrode and the movable electrode can be confined in the first conductive layer, the second conductive layer, and the gap between the first conductive layer and the second conductive layer to avoid the first conductive layer and the second conductive layer.
  • the layer and the circuitry outside the gap between the first conductive layer and the second conductive layer cause interference.
  • the fixed electrode and the movable electrode are multiple, and the plurality of the fixed electrodes and the plurality of The movable electrodes are spaced apart from each other along the axial direction of the through hole, and the plurality of fixed electrodes are disposed opposite to the plurality of movable electrodes to form a plurality of driving structures, which can increase the driving force of the focus driving device and improve the focusing. effectiveness.
  • the focus driving device is a linear voice coil motor
  • the linear voice coil motor is disposed on the imaging sensor assembly and the through hole Between the inner walls, and the stator of the linear voice coil motor is relatively fixed to the inner wall of the through hole, and the mover of the linear voice coil motor is relatively fixed to the imaging sensor assembly.
  • Linear voice coil motor has small size, large thrust, high speed, etc. Therefore, it is possible to improve the driving force and focusing efficiency of the focus driving device, and at the same time, it is advantageous to realize a compact design of the focus driving device.
  • the focus driving device includes a connecting member and a temperature control device, wherein the connecting member is formed by stretching the shape memory alloy at a normal temperature state, And the connecting member is connected to the imaging sensor assembly at one end in a stretching direction thereof, and the other end extends downward and is connected to the inner wall of the through hole or the control board, and the temperature control device is used for controlling the The temperature of the connecting member drives the connecting member to generate a telescopic deformation, thereby driving the imaging sensor assembly to move toward or away from the lens, thereby realizing the autofocus operation of the camera.
  • the focus drive device has a simple structure and is advantageous for miniaturization of the structure to facilitate installation in a through hole having a limited space.
  • the temperature control device includes a heating circuit, a switch, and a control unit, the heating circuit and the connector Electrically connected, the switch is connected in series with an electrical connection path between the heating circuit and the connecting member, the control unit is connected to the switch, and is used for controlling the opening and closing time of the switch, This controls the heating and cooling time of the connector to control the temperature of the connector.
  • the temperature control device has a simple structure and is easy to implement.
  • the connector is in the form of a wire, and the imaging sensor assembly and the control panel
  • An elastic support member is connected between the elastic support member for applying an upward elastic supporting force to the imaging sensor assembly.
  • the connecting member When the connecting member is heated and contracted, the connecting member can pull the imaging sensor assembly to move downward and compress the elastic support.
  • the piece accumulates the elastic force; when the connecting member cools and expands, the elastic supporting member returns to the initial state under the elastic force to push the imaging sensor to move upward.
  • the filamentary connector requires less heat to deform and deform, preventing the image sensor assembly from being burned out, while the wire-like connector is small in size and is easily installed in a through-hole having limited space.
  • the elastic support member may be a coil spring or a spring piece, which is not specifically limited herein.
  • the focus driving device is a linear ultrasonic motor
  • the linear ultrasonic motor is disposed between the imaging sensor assembly and the control board
  • the stator of the linear ultrasonic motor is relatively fixed to the control board
  • the mover of the linear ultrasonic motor is relatively fixed to the imaging sensor assembly.
  • Linear ultrasonic motor has the advantages of simple structure, small size and light weight, fast response, low noise, low speed and large torque, good control characteristics, self-locking of power failure, no interference from magnetic field, accurate motion, etc., so it can improve the accuracy of focusing. And efficiency, while reducing the size of the focus drive.
  • the imaging sensor assembly includes a housing and a sensor body fixed in the housing A mounting port is defined in a portion of the housing between the sensor body and the lens, and an infrared filter is mounted in the mounting port.
  • the infrared ray filter can filter out the infrared ray in the optical path, prevent overexposure, and dispose the sensor body in the casing, so as to reduce the interference of water or dust in the through hole on the sensor body to a certain extent.
  • the focus driving device is disposed between the housing and the inner wall of the through hole or the control board, and the inner wall of the housing
  • An electromagnetic shielding layer is provided on the outer wall and/or on the outer wall. In this way, it is possible to prevent the focus drive device or other structure from causing electromagnetic interference to the sensor body in the housing.
  • the imaging sensor assembly is communicatively coupled to the control panel via a flexible printed circuit board.
  • the flexible printed circuit board can realize the flexible connection between the imaging sensor component and the control board, avoiding the limitation of the focusing motion of the imaging sensor component, and the flexible printed circuit board has the advantages of light weight, thin thickness and the like, and is convenient for the through hole in the space. Install it inside.
  • the imaging sensor component is communicatively coupled to the control panel via an optical communication structure.
  • Light can be accurately transmitted within the micro-distance gap, so there is no need to connect the optical transmission medium between the imaging sensor assembly and the control board, thereby avoiding obstruction to the focusing motion of the imaging sensor assembly.
  • the optical communication structure has the advantages of high transmission speed, large transmission capacity, and the like, and thus can improve the communication efficiency between the imaging sensor assembly and the control board.
  • the optical communication structure includes a first processing device, a first photoelectric conversion device, and a second processing device And a second photoelectric conversion device, the first processing device and the first photoelectric conversion device being fixed to the imaging sensor assembly, and between the imaging sensor assembly and the first processing device, and the a processing device is in communication with the first photoelectric conversion device, the second processing device and the second photoelectric conversion device are fixed on the control board, and the control board and the second processing a communication connection between the devices and between the second processing device and the second photoelectric conversion device, the first photoelectric conversion device being located on a lower surface of the imaging sensor assembly, the second photoelectric conversion device being located The upper surface of the control board is disposed opposite to the first photoelectric conversion device, the first photoelectric conversion device includes a plurality of first communication interfaces, and the second photoelectric conversion device Comprising a second plurality of communication interfaces, the plurality of the first communication interface with a plurality of the second
  • the optical signal can be transmitted and transmitted and received in the air without connecting the optical transmission medium between the imaging sensor component and the control board. Thereby, it is possible to prevent the optical communication structure from restricting the focusing motion of the imaging sensor assembly.
  • the optical coupling between the first photoelectric conversion device and the second photoelectric conversion device is soft And a light-passing hole is formed between the first communication interface and the second communication interface corresponding to the first communication interface on the light-absorbing soft material. In this way, the interference portion between the adjacent two optical paths is absorbed by the light absorbing soft material, and interference between the adjacent two optical paths can be avoided, thereby ensuring the accuracy of signal transmission.
  • a limit structure is provided between the imaging sensor component and the control board
  • the limiting structure is configured to allow axial movement of the imaging sensor assembly relative to the control panel along the through hole and to prevent the imaging sensor assembly from being along the through hole of the control panel Move to.
  • the moving direction of the imaging sensor assembly is defined by the limiting structure, which effectively prevents the first communication interface and the second communication interface from being misaligned during the focusing movement of the imaging sensor assembly.
  • the limiting structure in conjunction with the fifteenth alternative implementation of the second aspect, in the sixteenth alternative implementation of the second aspect, includes a limiting hole and an edge extending along an axial direction of the through hole An axially extending limiting post of the through hole, the limiting post is slidably fitted in the limiting hole, and one of the limiting hole and the limiting post is disposed on the imaging sensor assembly The other one of the limiting hole and the limiting post is disposed on the control board.
  • This structure is simple and easy to implement.
  • FIG. 1 is a schematic structural view of a camera in the prior art
  • FIG. 2 is a schematic structural view of the camera shown in FIG. 1 in a macro state
  • FIG. 3 is a schematic diagram of a first structure of a camera provided by an embodiment of the present application.
  • FIG. 4 is a partial schematic structural view of a region A in the camera shown in FIG. 3;
  • Figure 5 is a second partial schematic view of the area A of the camera shown in Figure 3;
  • Figure 6 is a third partial schematic view of the area A of the camera shown in Figure 3;
  • Figure 7 is a fourth partial schematic view of the area A of the camera shown in Figure 3;
  • FIG. 8 is a schematic diagram of a second structure of a camera provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a third structure of a camera provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fourth structure of a camera provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an imaging sensor assembly in a camera provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an imaging sensor assembly in a camera provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication sensor assembly and a control board in a camera connected by a flexible printed circuit board according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of an image sensor assembly and a control board in a camera connected by an optical communication structure according to an embodiment of the present disclosure
  • 15 is a schematic structural diagram of a lower surface of an imaging sensor assembly in a camera provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of an upper surface of a control board in a camera according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of an optical communication structure in a camera according to an embodiment of the present disclosure.
  • FIG. 18 is another schematic structural diagram of an optical communication structure in a camera provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication sensor assembly and a control board in a camera according to an embodiment of the present invention, which are connected by another optical communication structure;
  • FIG. 20 is a schematic cross-sectional structural diagram of a terminal according to an embodiment of the present application.
  • connection may also be a contraceptive connection or an integral connection; the specific meaning of the above terms in the present application may be understood by a person of ordinary skill in the art.
  • the present application provides a terminal, as shown in FIG. 20, including a housing 20, a terminal body 30, and a camera 10.
  • the terminal body 30 is located in the housing 20, and the upper surface of the terminal body 30 is provided with a mounting slot 50.
  • a light-transmitting window 60 is disposed on the outer casing 20 at a position opposite to the mounting groove 50, and the camera 10 is mounted in the mounting groove 50.
  • the camera 10 includes a support base 11, a lens 12, a control board 13, and an imaging sensor assembly 14, and the support base 11 is provided with a through hole penetrating the upper and lower surfaces of the support base 11.
  • the lens 12 is connected to the upper side of the support base 11 and the sealing cover is disposed at the upper end opening of the through hole 15.
  • the control board 13 is connected to the lower side of the support base 11 and is sealed and sealed.
  • the imaging sensor assembly 14 is located in the through hole 15 at a lower end opening of the through hole 15, and is communicably connected to the control board 13, and the imaging sensor assembly 14 and the inner wall of the through hole 15 or
  • a focus driving device 16 is provided between the control boards 13 for driving the imaging sensor assembly 14 to move toward or away from the lens 12.
  • the camera provided in the embodiment of the present invention has a through hole 15 extending through the upper and lower surfaces of the support base 11 , and the lens 12 is connected to the upper side of the support base 11 and is disposed at the upper end opening of the through hole 15 .
  • the component 14 is located in the through hole 15, and a focus driving device 16 is provided between the imaging sensor assembly 14 and the inner wall of the through hole 15 or the control board 13, and the focusing driving device 16 can drive the imaging sensor assembly 14 toward or away from the lens 12. Moving, thereby driving the imaging sensor assembly 14 by the focus drive device 16, achieves autofocus of the camera 10.
  • the lens 12 sealing cover is disposed at the upper end opening of the through hole 15, the control board 13 is connected below the support base 11, and the sealing cover is disposed at the lower end opening of the through hole 15, so that the through hole 15 a sealed space is formed inside, and since the imaging sensor assembly 14 is located in the through hole 15, the optical path between the lens 12 and the imaging sensor assembly 14 is sealed in the through hole 15, and water or dust in the external environment cannot enter.
  • the optical path between the lens 12 and the imaging sensor assembly 14 prevents water or dust from affecting the internal optical path of the camera 10, thereby ensuring the quality and clarity of the camera 10.
  • the camera 10 since the terminal includes the camera 10, the camera 10 includes a support base 11, a lens 12, a control board 13, and an imaging sensor assembly 14.
  • the support base 11 is provided with a through hole penetrating the upper and lower surfaces of the support base 11. 15.
  • the lens 12 is connected above the support base 11 and is disposed at the upper end opening of the through hole 15.
  • the imaging sensor assembly 14 is located in the through hole 15 and between the imaging sensor assembly 14 and the inner wall of the through hole 15 or the control board 13.
  • a focus driving device 16 is provided, which is capable of driving the imaging sensor assembly 14 to move toward or away from the lens 12, thereby driving the imaging sensor assembly 14 to move by the focus driving device 16, realizing autofocusing of the camera 10.
  • the lens 12 sealing cover is disposed at the upper end opening of the through hole 15, the control board 13 is connected below the support base 11, and the sealing cover is disposed at the lower end opening of the through hole 15, so that the through hole 15 a sealed space is formed inside, and since the imaging sensor assembly 14 is located in the through hole 15, the optical path between the lens 12 and the imaging sensor assembly 14 is sealed in the through hole 15, between the outer casing 20 and the terminal body 30. Water or dust cannot enter the optical path between the lens 12 and the imaging sensor assembly 14, thereby preventing water or dust from affecting the internal optical path of the camera 10, thereby ensuring the quality and clarity of the photographing of the terminal.
  • the terminal may be a mobile phone, a tablet, a watch, a camera, etc., and is not specifically limited herein.
  • the lens 12 of the camera 10 is opposite to the light-transmitting window 60, and the main control board 40 is further disposed in the terminal body 30, and the control board 13 of the camera 10 is communicably connected with the main control board 40. .
  • a transparent plate is mounted in the light-transmitting window 60, and the transparent plate can allow light to enter the camera 10 through the light-transmitting window 60, and block water or dust from entering the outer environment. 20 inside.
  • the lens 12 can be fabricated as shown in FIG. 3, that is, the lens 12 includes a lens barrel 121 and a lens body 122 located in the lens barrel 121.
  • the edge of the lens body 122 is sealingly bonded to the inner wall of the lens barrel 121 one week. This structure is simple and easy to implement.
  • the support base 11 may be a cylindrical shape or a square column shape, etc., and is not specifically limited herein.
  • the structure of the focus driving device 16 may include the following four optional implementations. example:
  • the focus driving device 16 includes a fixed electrode 161, a movable electrode 162, and a driving circuit (not shown).
  • the fixed electrode 161 and the movable electrode 162 are located on the inner wall of the imaging sensor assembly 14 and the through hole 15. Between and spaced apart from each other along the axial direction of the through hole 15, and the fixed electrode 161 is fixed to the inner wall of the through hole 15, the movable electrode 162 is fixed to the imaging sensor assembly 14, and the driving circuit is used for the fixed electrode 161 and the movable electrode.
  • the same or a different charge is applied to 162 to drive the movable electrode 162 to move the imaging sensor assembly 14 toward or away from the fixed electrode 161. Thereby, the imaging sensor assembly 14 can be driven to move toward or away from the lens 12 to realize the autofocus operation of the camera.
  • the composition of the focus driving device 16 is simple, and the structure is compacted to facilitate limited space.
  • the through hole 15 is installed inside.
  • the driving circuit may be disposed on the inner wall of the imaging sensor assembly 14 and/or the through hole 15, which is not specifically limited herein.
  • the fixed electrode 161 may be located above the movable electrode 162 or below the movable electrode 162, which is not specifically limited herein.
  • a positive voltage may be applied at the same time, or a negative voltage may be simultaneously applied, which is not specifically limited herein, when the driving circuit is directed to the fixed electrode 161 and the movable electrode.
  • a positive voltage may be applied to the fixed electrode 161
  • a negative voltage may be applied to the movable electrode 162
  • a negative voltage may be applied to the fixed electrode 161
  • a positive voltage may be applied to the movable electrode 162.
  • the fixed electrode 161 and the movable electrode 162 can be moved toward or away from each other under the driving of the driving circuit.
  • the structures of the fixed electrode 161 and the movable electrode 162 can include the following two alternative implementations. :
  • the fixed electrode 161 and the movable electrode 162 are entirely made of a conductive material, and the driving circuit is used to apply the same or different charges to the entire fixed electrode 161 and the entire movable electrode 162. .
  • both the fixed electrode 161 and the movable electrode 162 can be made of one layer of material, whereby the structural complexity of the fixed electrode 161 and the movable electrode 162 can be reduced.
  • the fixed electrode 161 includes a first insulating layer 1611 and a first conductive layer 1612 on a side of the first insulating layer 1611 facing the movable electrode 162, and the movable electrode 162 includes a second The insulating layer 1621 and the second conductive layer 1622 on the side of the second insulating layer 1621 facing the fixed electrode 161 are used to apply the same or different charges to the first conductive layer 1612 and the second conductive layer 1622.
  • the electric field between the fixed electrode 161 and the movable electrode 162 can be limited in the gap between the first conductive layer 1612, the second conductive layer 1622, and the first conductive layer 1612 and the second conductive layer 1622, avoiding the first Conductive layer 1612, second conductive layer 1622, and circuitry outside of the gap between first conductive layer 1612 and second conductive layer 1622 create interference.
  • the number of the fixed electrodes 161 may be one or plural, and is not specifically limited herein.
  • the corresponding number of the movable electrodes 162 may be one, or may be one.
  • the fixed electrode 161 and the movable electrode 162 are multiple, and the plurality of fixed electrodes 161 and the plurality of movable electrodes 162 are spaced apart from each other along the axial direction of the through hole 15 and are alternately arranged, and the plurality of fixed electrodes 161 are disposed.
  • the plurality of movable electrodes 162 are disposed opposite to each other to form a plurality of sets of driving structures, and the driving force of the focus driving device 16 can be increased to improve the focusing efficiency.
  • the fixed electrode 161 and the movable electrode 162 may each be two, three, four, etc., and are not specifically limited herein.
  • Embodiment 2 As shown in FIG. 7, the focus driving device 16 is a linear voice coil motor, and the linear voice coil motor is disposed between the imaging sensor assembly 14 and the inner wall of the through hole 15, and the stator 163 of the linear voice coil motor and The inner wall of the through hole 15 is relatively fixed, and the mover 164 of the linear voice coil motor is relatively fixed to the imaging sensor assembly 14.
  • the linear voice coil motor has the advantages of small size, large thrust, high speed, and the like, so that the driving force and the focusing efficiency of the focus driving device 16 can be improved, and the size of the focus driving device 16 can be reduced.
  • the focus driving device 16 includes a connecting member 165 and a temperature controlling device (not shown), and the connecting member 165 is formed by stretching the shape memory alloy at a normal temperature state. And the connecting member 165 is connected to the imaging sensor assembly 14 at one end in the stretching direction thereof, and the other end extends downward and is connected to the inner wall of the through hole 15 or the control board 13.
  • the temperature control device controls the temperature of the connecting member 165 to drive
  • the connecting member 165 generates a telescopic deformation, thereby driving the imaging sensor assembly 14 to move toward or away from the lens, thereby realizing the autofocus operation of the camera.
  • the focus drive device 16 has a simple structure and is advantageous in achieving a compact design of the structure to facilitate installation in the through hole 15 having a limited space.
  • the connecting member 165 may be in the form of a wire, a block, a column, a rod, or the like, and is not specifically limited herein.
  • the connecting member 165 may be connected between the bottom wall of the imaging sensor assembly 14 and the control board 13, or may be connected between the sidewall of the imaging sensor assembly 14 and the inner wall of the through hole 15 (as shown in FIG. 8 or FIG. 9). It can also be connected between the sidewall of the imaging sensor assembly 14 and the control board 13, which is not specifically limited herein.
  • the structure of the temperature control device may include the following two alternative embodiments:
  • the temperature control device comprises an electric heating element, a heating circuit, a switch and a control unit
  • the electric heating element is in thermal conduction contact with the connecting piece
  • the heating circuit is electrically connected to the electric heating element
  • the switch is connected in series with the heating circuit and the electric
  • the control unit is connected to the switch and is used to control the opening and closing time of the switch, thereby controlling the heating and cooling time of the electric heating element, thereby controlling the temperature of the electric heating element, thereby controlling the connection The temperature of the piece.
  • the temperature control device has a simple structure and is easy to implement.
  • the electric heating element may be a heating wire, an electric heating rod or an electric heating tube, etc., and is not specifically limited herein.
  • the temperature control device comprises a heating circuit, a switch and a control unit, the heating circuit is electrically connected to the connecting member, and the switch is connected in series in the electrical connection path between the heating circuit and the connecting member, and the control unit is The switches are connected and used to control the opening and closing times of the switches, thereby controlling the heating and cooling times of the connectors to control the temperature of the connectors.
  • the temperature control device has a simple structure and is advantageous for realizing a compact design of the temperature control device.
  • the heating circuit may be disposed on the imaging sensor component or on the control panel, which is not specifically limited herein.
  • the connecting member 165 is in the form of a wire, and an elastic supporting member 17 is connected between the imaging sensor assembly 14 and the control board 13.
  • the elastic supporting member 17 is configured to apply an upward elastic supporting force to the imaging sensor assembly 14 to be connected.
  • the connecting member 165 can pull the imaging sensor assembly 14 to move downward, and compress the elastic supporting member to accumulate elastic force; when the connecting member 165 cools and expands, the elastic supporting member 17 returns to the initial state under the elastic force. State to push the imaging sensor up.
  • the wire-like connector 165 requires less heat to deform and deform, preventing the image sensor assembly 14 from being burned out, while the wire-like connector 165 is small in size, facilitating installation in the through-hole 15 having limited space.
  • the elastic support member 17 may be a coil spring as shown in FIG. 9 or a spring piece as shown in FIG. 8 , which is not specifically limited herein.
  • Embodiment 4 As shown in FIG. 10, the focus driving device 16 is a linear ultrasonic motor, and the linear ultrasonic motor is disposed between the imaging sensor assembly 14 and the control board 13, and the stator of the linear ultrasonic motor is relatively fixed to the control board 13. The mover of the linear ultrasonic motor is relatively fixed to the imaging sensor assembly 14.
  • Linear ultrasonic motor realizes linear drive by using the inverse piezoelectric effect of piezoelectric material. It has simple structure, small size and light weight, fast response, low noise, low speed and large torque, good control characteristics, self-locking and self-locking. The advantages of interference, accurate motion, and the like can improve the accuracy and efficiency of focusing while reducing the volume of the focus driving device 16.
  • imaging sensor assembly 14 can include the following two alternative configurations:
  • the imaging sensor assembly 14 includes only an imaging sensor, which is simple in construction and easy to implement.
  • the imaging sensor assembly 14 includes a housing 141 and a sensor body 142 fixed in the housing 141.
  • the portion of the housing 141 between the sensor body 142 and the lens 12 is opened.
  • the mounting port has an infrared filter 143 installed therein.
  • the infrared ray filter 143 can filter out the infrared ray in the optical path, prevent overexposure, and dispose the sensor body 142 in the casing 141, thereby further preventing the water or dust in the through hole 15 from interfering with the sensor body 142.
  • the focus driving device 16 is disposed between the housing 141 and the inner wall of the through hole 15 or the control board 13.
  • the electromagnetic shielding layer is disposed on the inner wall and/or the outer wall of the housing 141. Thereby, it is possible to prevent the focus drive device 16 or other structure from causing electromagnetic interference to the sensor body 142 in the housing 141.
  • the first solution is that the imaging sensor assembly 14 is communicatively coupled to the control board 13 via a flexible printed circuit board 18.
  • the flexible printed circuit board 18 enables a flexible connection between the imaging sensor assembly 14 and the control board 13 to avoid limiting the focus motion of the imaging sensor assembly 14, while the flexible printed circuit board 18 has the advantages of light weight, thin thickness, etc. Installation is performed in the through hole 15 having a limited space.
  • a second solution, as shown in FIG. 14, is that the imaging sensor assembly 14 is communicatively coupled to the control board 13 via an optical communication structure 19.
  • Light can be accurately transmitted within the micro-distance gap, so there is no need to connect the optical transmission medium between the imaging sensor assembly 14 and the control board 13, thereby avoiding obstruction to the focusing motion of the imaging sensor assembly 14.
  • the optical communication structure 19 has the advantages of high transmission speed, large transmission capacity, and the like, and thus can improve communication efficiency between the imaging sensor assembly 14 and the control board 13.
  • the optical communication structure 19 is fabricated as shown in FIG. 14, that is, the optical communication structure includes the first processing device 191, the first photoelectric conversion device 192, the second processing device 193, and The second photoelectric conversion device 194, the first processing device 191 and the first photoelectric conversion device 192 are fixed on the imaging sensor assembly 14, and between the imaging sensor assembly 14 and the first processing device 191, and the first processing device 191 and the first The photoelectric conversion devices 192 are each communicatively coupled, the second processing device 193 and the second photoelectric conversion device 194 are fixed to the control board 13, and between the control board and the second processing device 193, and the second processing device 193 and the second The photoelectric conversion devices 194 are each in communication connection.
  • the first photoelectric conversion device 192 is located on the lower surface of the imaging sensor assembly 14.
  • the second photoelectric conversion device 194 is located on the upper surface of the control board and is disposed opposite to the first photoelectric conversion device 192.
  • a photoelectric conversion device 192 includes a plurality of first communication interfaces 1921 (shown in FIG. 15), and the second photoelectric conversion device 194 includes a plurality of second communication interfaces 1941 (shown in FIG. 16).
  • the plurality of first communication interfaces 1921 are disposed opposite to the plurality of second communication interfaces 1941. In this way, by arranging the plurality of first communication interfaces 1921 and the plurality of second communication interfaces 1941 one-to-one, optical signal transmission, transmission and reception in the air can be realized without connecting between the imaging sensor assembly 14 and the control board.
  • the optical transmission medium is capable of preventing the optical communication structure from restricting the focusing motion of the imaging sensor assembly 14.
  • the second communication interface 1941 opposite to the first communication interface 1921 receives the optical signal.
  • the second communication interface 1941 opposite the first communication interface 1921 transmits an optical signal.
  • the first photoelectric conversion device 192 may include only one component, which may be used to convert an optical signal into an electrical signal, and may also be used to convert an electrical signal into an optical signal.
  • the first photoelectric conversion device 192 The included first communication interface 1921 can be used to both transmit optical signals and receive optical signals. As shown in FIG.
  • the first photoelectric conversion device 192 may also include two components of a first conversion element 192a and a second conversion element 192b, the first conversion element 192a for converting an electrical signal into an optical signal,
  • the second conversion element 192b is configured to convert the optical signal into an electrical signal, and then a part of the plurality of first communication interfaces 1921 included in the first photoelectric conversion device 192 belongs to the first conversion element 192a, and the other part belongs to the second conversion element 192b.
  • the first communication interface 1921 included in the first conversion element 192a is for transmitting an optical signal
  • the first communication interface 1921 included in the second conversion element 192b is for receiving an optical signal.
  • the second photoelectric conversion device 194 may include only one component, which may be used to convert an optical signal into an electrical signal or to convert an electrical signal into an optical signal.
  • the second photoelectric conversion device 194 The included second communication interface 1941 can be used to both transmit optical signals and receive optical signals.
  • the second photoelectric conversion device 194 may also include two components, a third conversion element 194a and a fourth conversion element 194b, for converting an electrical signal into an optical signal.
  • the fourth conversion element 194b is for converting the optical signal into an electrical signal, and then a part of the plurality of second communication interfaces 1941 included in the second photoelectric conversion device 194 belongs to the third conversion element 194a, and the other part belongs to the fourth conversion element 194b.
  • the second communication interface 1941 included in the third conversion element 194a is for transmitting an optical signal
  • the second communication interface 1941 included in the fourth conversion element 194b is for receiving an optical signal.
  • the first processing device 191 may include only one component which can be used to modulate the sensing signal of the imaging sensor assembly 14. And transmitted to the first conversion element 192a, which in turn can be used to demodulate the electrical signal sent by the second conversion element 192b.
  • the first processing device 191 may also include two components, a first modulation component 191a and a first demodulation component 191b.
  • the first modulation component 191a is communicatively coupled to the first conversion component 192a
  • the 191b is communicatively coupled to the second conversion element 192b.
  • the second processing device 193 may include only one component that can be used to modulate the control signal of the control board and transmit it to the third conversion element 194a, and can also be used to demodulate the fourth conversion element 194b. electric signal.
  • the second processing device 193 may also include two components, a second modulation component 193a and a second demodulation component 193b.
  • the second modulation component 193a is communicatively coupled to the third conversion component 194a
  • the second demodulation component 193b is communicatively coupled to fourth conversion element 194b.
  • the first photoelectric conversion device 192 includes a first power interface 1922 and a first ground interface 1923 in addition to the first communication interface 1921, and correspondingly, the second photoelectric conversion
  • the device 194 includes a second power interface 1942 and a second ground interface 1943 in addition to the second communication interface 1941, a first power interface 1922 and a second power interface 1942, and a first ground interface 1923 and a second ground.
  • the interfaces 1943 can be connected by wires or by flexible printed circuit boards.
  • first processing device 191 may be fixed on the lower surface of the imaging sensor assembly 14 or may be fixed on the sidewall of the imaging sensor assembly 14, which is not specifically limited herein.
  • second processing device 193 may be fixed to the upper surface of the control board or may be fixed to the lower surface of the imaging sensor, which is not specifically limited herein.
  • the first photoelectric conversion A light absorbing soft material 100 is connected between the device 192 and the second photoelectric conversion device 194, and each of the first communication interface 1921 and the second communication interface 1941 corresponding to the first communication interface 1921 is opened between the light absorbing soft material 100. There is a light through hole 101. In this way, the interference portion between the adjacent two optical paths is absorbed by the light absorbing soft material 100, and interference between the adjacent two optical paths can be avoided, thereby ensuring the accuracy of signal transmission.
  • the light absorbing soft material 100 may be a dark sponge or a dark foam or the like, which is not specifically limited herein.
  • the imaging sensor assembly and the control panel are optional.
  • a limiting structure (not shown) is provided between the limiting structure for allowing axial movement of the imaging sensor assembly relative to the control panel along the through hole and preventing radial movement of the imaging sensor assembly relative to the control panel along the through hole .
  • the moving direction of the imaging sensor assembly is defined by the limiting structure, which effectively prevents the first communication interface and the second communication interface from being misaligned during the focusing movement of the imaging sensor assembly.
  • the limiting structure may be a structure, that is, the limiting structure includes a limiting hole extending along the axial direction of the through hole and a limiting post extending along the axial direction of the through hole, and the limiting column is slidingly matched with the limit One of the position hole and the limit column is disposed on the imaging sensor assembly, and the other of the limiting hole and the limiting column is disposed on the control board.
  • This structure is simple and easy to implement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种终端和摄像头,涉及终端技术领域,能够阻止水或粉尘进入摄像头的内部光路,保证终端的拍照质量和清晰度。该摄像头包括支撑座、镜头、控制板和成像传感器组件,所述支撑座上开设有贯穿所述支撑座上下表面的通孔,所述镜头连接于所述支撑座的上方,并密封盖设于所述通孔的上端开口处,所述控制板连接于所述支撑座的下方,并密封盖设于所述通孔的下端开口处,所述成像传感器组件位于所述通孔内,并与所述控制板通信连接,且所述成像传感器组件与所述通孔内壁或所述控制板之间设有对焦驱动装置,所述对焦驱动装置用于驱动所述成像传感器组件向靠近或远离所述镜头的方向移动。本申请用于实现终端的拍照功能。

Description

一种终端和摄像头
本申请要求于2017年04月26日提交中国专利局、申请号为201710284039.4、申请名称为“一种摄像模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种终端和摄像头。
背景技术
随着终端功能的不断丰富和提高,拍照功能已然成为终端产品不可或缺的部分。而在众多能够实现终端拍照功能的摄像头中,具有自动对焦功能的摄像头因其能够根据内部成像传感器与被摄物体之间的距离,自动设定焦距以保证照片的质量和清晰度,而得到了广泛的应用。
示例的,图1为现有技术中常用的一种具有自动对焦功能的摄像头,参见图1,摄像头包括支撑座01、印制电路板(Printed Circuit Board,PCB)02、成像传感器03、红外线滤光片04、镜头05和音圈马达06,其中,支撑座01上开设有贯穿支撑座上下表面的通孔,印制电路板02连接于支撑座01的下端,并盖设于通孔的下端开口处,红外线滤光片04盖设于通孔的上端开口处,成像传感器03固定于通孔内,镜头05位于支撑座01上方,并与成像传感器03相对,音圈马达套06设于镜头侧壁一周,且音圈马达06用于驱动镜头05向靠近或远离成像传感器03的方向移动,以实现摄像头的自动对焦,示例的,如图2所示为音圈马达06驱动镜头05移动至微距状态时的结构示意图。
但是,在图1所示的摄像头中,镜头05与音圈马达06之间可相对移动,镜头05与音圈马达06之间不可避免的会存在间隙,此时,外界环境中的水或粉尘可沿此间隙进入镜头与成像传感器之间光路中,从而对成像传感器产生遮挡,并在成像画面上形成暗影,进而影响了摄像头的成像质量和清晰度。
发明内容
本申请的实施例提供一种终端和摄像头,能够避免水或粉尘进入摄像头的内部光路而影响终端的拍照质量和清晰度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供的一种终端,包括外壳、终端本体和摄像头,所述终端本体位于所述外壳内,所述终端本体的上表面开设有安装槽,所述外壳上与所述安装槽相对的位置设有透光窗口,所述摄像头安装于所述安装槽内,所述摄像头包括支撑座、镜头、控制板和成像传感器组件,所述支撑座上开设有贯穿所述支撑座上下表面的通孔,所述镜头连接于所述支撑座的上方,并密封盖设于所述通孔的上端开口处,所述控制板连接于所述支撑座的下方,并密封盖设于所述通孔的下端开口处,所述成像传感器组件位于所述通孔内,并与所述控制板通信连接,且所述成像传感器组件与所述 通孔内壁或所述控制板之间设有对焦驱动装置,所述对焦驱动装置用于驱动所述成像传感器组件向靠近或远离所述镜头的方向移动。
本申请实施例提供的终端,由于终端包括摄像头,摄像头包括支撑座、镜头、控制板和成像传感器组件,支撑座上开设有贯穿支撑座上下表面的通孔,镜头连接于支撑座的上方,并盖设于通孔的上端开口处,成像传感器组件位于通孔内,且成像传感器组件与通孔内壁或控制板之间设有对焦驱动装置,此对焦驱动装置能够驱动成像传感器组件向靠近或远离镜头的方向移动,由此通过对焦驱动装置驱动成像传感器组件移动,实现了摄像头的自动对焦。与现有技术相比,由于镜头密封盖设于通孔的上端开口处,控制板连接于支撑座的下方,并密封盖设于通孔的下端开口处,因此在通孔内部形成了一个密闭的空间,又由于成像传感器组件位于通孔内,因此将镜头与成像传感器组件之间的光路密封于通孔内,外壳与终端本体之间的水或粉尘无法进入镜头与成像传感器组件之间的光路中,从而避免了水或粉尘对摄像头的内部光路产生影响,进而保证了终端的拍照质量和清晰度。
结合第一方面,在第一方面的第一种可选实现方式中,所述对焦驱动装置包括固定电极、活动电极和驱动电路,所述固定电极和所述活动电极位于所述成像传感器组件与所述通孔内壁之间,并沿所述通孔的轴向间隔且相对设置,且所述固定电极与所述通孔内壁相对固定,所述活动电极与所述成像传感器组件相对固定,所述驱动电路用于向所述固定电极和所述活动电极上施加相同或相异的电荷,以驱动所述活动电极带动所述成像传感器组件向靠近或远离所述固定电极的方向移动。由此,可驱动成像传感器组件向靠近或远离镜头的方向移动,以实现摄像头的自动对焦操作,此对焦驱动装置的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔内进行安装。
结合第一方面的第一种可选实现方式,在第一方面的第二种可选实现方式中,所述固定电极包括第一绝缘层以及位于所述第一绝缘层朝向所述活动电极一侧的第一导电层,所述活动电极包括第二绝缘层以及位于所述第二绝缘层朝向所述固定电极一侧的第二导电层,所述驱动电路用于向所述第一导电层和所述第二导电层上施加相同或相异的电荷。这样,可将固定电极与活动电极之间的电场限制在第一导电层、第二导电层以及第一导电层与第二导电层之间的间隙内,避免对第一导电层、第二导电层以及第一导电层与第二导电层之间间隙范围之外的电路产生干扰。
结合第一方面的第二种可选实现方式,在第一方面的第三种可选实现方式中,所述固定电极和所述活动电极均为多个,多个所述固定电极和多个所述活动电极沿所述通孔的轴向间隔且交错设置,多个固定电极与多个活动电极一一相对设置,以形成多组驱动结构,能够增大对焦驱动装置的驱动力,提高对焦效率。
结合第一方面,在第一方面的第四种可选实现方式中,所述对焦驱动装置为直线型音圈马达,所述直线型音圈马达设置于所述成像传感器组件与所述通孔内壁之间,且所述直线型音圈马达的定子与所述通孔内壁相对固定,所述直线型音圈马达的动子与所述成像传感器组件相对固定。直线型音圈马达具有体积小、推力大、速度高等优势,因此能够提高对焦驱动装置的驱动力和对焦效率,同时有利于实现对焦驱动装置的体积小型化设计。
结合第一方面,在第一方面的第五种可选实现方式中,所述对焦驱动装置包括连接件和温控装置,所述连接件为由形状记忆合金在常温状态下拉伸后形成,且所述连接件在其拉伸方向上的一端与所述成像传感器组件连接,另一端向下延伸并与所述通孔内壁或所述控制板连接,所述温控装置用于控制所述连接件的温度,以驱动所述连接件产生伸缩变形,由此带动成像传感器组件向靠近或远离镜头的方向移动,从而实现了摄像头的自动对焦操作。此对焦驱动装置的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔内进行安装。
结合第一方面的第五种可选实现方式,在第一方面的第六种可选实现方式中,所述温控装置包括加热电路、开关和控制单元,所述加热电路与所述连接件电连接,所述开关串接于所述加热电路与所述连接件之间的电连接通路中,所述控制单元与所述开关连接,并用于控制所述开关的开启和关断时间,由此控制连接件的加热和冷却时间,从而控制连接件的温度。此温控装置的组成结构简单,容易实现。
结合第一方面的第五种或第六种可选实现方式,在第一方面的第七种可选实现方式中,所述连接件呈丝状,且所述成像传感器组件与所述控制板之间连接有弹性支撑件,所述弹性支撑件用于向所述成像传感器组件施加一个向上的弹性支撑力,连接件加热收缩时,连接件能够拉动成像传感器组件向下移动,并压缩弹性支撑件以积蓄弹性力;连接件冷却伸长时,弹性支撑件在弹性力的作用下恢复至初始状态,以推动成像传感器向上移动。丝状的连接件伸缩变形时所需的热量较少,防止烧坏成像传感器组件,同时丝状的连接件体积较小,便于在空间有限的通孔内进行安装。其中,弹性支撑件可以是螺旋弹簧,也可以是弹片,在此不做具体限定。
结合第一方面,在第一方面的第八种可选实现方式中,所述对焦驱动装置为直线型超声波电动机,所述直线型超声波电动机设置于所述成像传感器组件与所述控制板之间,且所述直线型超声波电动机的定子与所述控制板相对固定,所述直线型超声波电动机的动子与所述成像传感器组件相对固定。直线型超声波电动机具有结构简单、小型轻量、响应速度快、噪声低、低速大转矩、控制特点好、断电自锁、不受磁场干扰、运动准确等优点,因此能够提高对焦的准确度和效率,同时能够缩小对焦驱动装置的体积。
结合第一方面至第一方面的第八种可选实现方式,在第一方面的第九种可选实现方式中,所述成像传感器组件包括壳体以及固定于所述壳体内的传感器本体,所述壳体上位于所述传感器本体与所述镜头之间的部分开设有安装口,所述安装口内安装有红外线滤光片。这样,通过红外线滤光片可滤除光路中的红外线,可防止过度曝光,且将传感器本体设置于壳体内,能够在一定程度上减小通孔内的水或粉尘对传感器本体产生的干扰。
结合第一方面的第九种可选实现方式,在第一方面的第十种可选实现方式中,所述对焦驱动装置设置于壳体与通孔内壁或控制板之间,壳体的内壁和/或外壁上设有电磁屏蔽层。这样,能够防止对焦驱动装置或其他结构对壳体内的传感器本体产生电磁干扰。
结合第一方面至第一方面的第十种可选实现方式,在第一方面的第十一种可选实现方式中,所述成像传感器组件通过柔性印刷电路板(Flexible Printed Circuit,FPC) 与所述控制板通信连接。柔性印刷电路板能够实现成像传感器组件与控制板之间的柔性连接,避免对成像传感器组件的对焦运动产生限制,同时柔性印刷电路板具有重量轻、厚度薄等优点,便于在空间有限的通孔内进行安装。
结合第一方面至第一方面的第十种可选实现方式,在第一方面的第十二种可选实现方式中,所述成像传感器组件通过光通信结构与所述控制板通信连接。光在微距离间隙内可以准确传输,因此无需在成像传感器组件与控制板之间连接光传输介质,从而避免对成像传感器组件的对焦运动产生阻碍。同时,光通信结构具有传输速度快、传输容量大等优点,因此能够提高成像传感器组件与控制板之间的通信效率。
结合第一方面的第十二种可选实现方式,在第一方面的第十三种可选实现方式中,所述光通信结构包括第一处理器件、第一光电转换器件、第二处理器件和第二光电转换器件,所述第一处理器件和所述第一光电转换器件固定于所述成像传感器组件上,且所述成像传感器组件与所述第一处理器件之间、以及所述第一处理器件与所述第一光电转换器件之间均通信连接,所述第二处理器件和所述第二光电转换器件固定于所述控制板上,且所述控制板与所述第二处理器件之间、以及所述第二处理器件与所述第二光电转换器件之间均通信连接,所述第一光电转换器件位于所述成像传感器组件的下表面,所述第二光电转换器件位于所述控制板的上表面,并与所述第一光电转换器件相对设置,所述第一光电转换器件包括多个第一通信接口,所述第二光电转换器件包括多个第二通信接口,多个所述第一通信接口与多个所述第二通信接口一一相对设置。这样,通过将多个第一通信接口与多个第二通信接口一一相对设置,可实现光信号的发送、在空气中传输和接收,无需在成像传感器组件与控制板之间连接光传输介质,从而能够防止光通信结构对成像传感器组件的对焦运动产生限制。
结合第一方面的第十三种可选实现方式,在第一方面的第十四种可选实现方式中,所述第一光电转换器件与所述第二光电转换器件之间连接有吸光软质材料,所述吸光软质材料上、每个所述第一通信接口与所述第一通信接口对应的所述第二通信接口之间均开设有通光孔。这样,通过吸光软质材料吸收了相邻两条光路之间的干涉部分,能够避免相邻两条光路之间产生干扰,从而保证信号传输的准确性。
结合第一方面的第十三种或第十四种可选实现方式,在第一方面的第十五种可选实现方式中,所述成像传感器组件与所述控制板之间设有限位结构,所述限位结构用于允许所述成像传感器组件相对于所述控制板沿所述通孔的轴向移动,并阻止所述成像传感器组件相对于所述控制板沿所述通孔的径向移动。这样,通过限位结构限定了成像传感器组件的移动方向,有效避免了第一通信接口和第二通信接口在成像传感器组件的对焦移动过程中产生错位。
结合第一方面的第十五种可选实现方式,在第一方面的第十六种可选实现方式中,所述限位结构包括沿所述通孔的轴向延伸的限位孔和沿所述通孔的轴向延伸的限位柱,所述限位柱滑动配合于所述限位孔内,且所述限位孔和所述限位柱中的一个设置于所述成像传感器组件上,所述限位孔和限位柱中的另一个设置于所述控制板上。此结构简单,容易实现。
第二方面,本申请提供一种摄像头,用于终端,包括支撑座、镜头、控制板和成像传感器组件,所述支撑座上开设有贯穿所述支撑座上下表面的通孔,所述镜头连接 于所述支撑座的上方,并密封盖设于所述通孔的上端开口处,所述控制板连接于所述支撑座的下方,并密封盖设于所述通孔的下端开口处,所述成像传感器组件位于所述通孔内,并与所述控制板通信连接,且所述成像传感器组件与所述通孔内壁或所述控制板之间设有对焦驱动装置,所述对焦驱动装置用于驱动所述成像传感器组件向靠近或远离所述镜头的方向移动。
本申请实施例提供的摄像头,由于支撑座上开设有贯穿支撑座上下表面的通孔,镜头连接于支撑座的上方,并盖设于通孔的上端开口处,成像传感器组件位于通孔内,且成像传感器组件与通孔内壁或控制板之间设有对焦驱动装置,此对焦驱动装置能够驱动成像传感器组件向靠近或远离镜头的方向移动,由此通过对焦驱动装置驱动成像传感器组件移动,实现了摄像头的自动对焦。与现有技术相比,由于镜头密封盖设于通孔的上端开口处,控制板连接于支撑座的下方,并密封盖设于通孔的下端开口处,因此在通孔内部形成了一个密闭的空间,又由于成像传感器组件位于通孔内,因此将镜头与成像传感器组件之间的光路密封于通孔内,外界环境中的水或粉尘无法进入镜头与成像传感器组件之间的光路中,从而避免了水或粉尘对摄像头的内部光路产生影响,进而保证了摄像头的拍摄质量和清晰度。
结合第二方面,在第二方面的第一种可选实现方式中,所述对焦驱动装置包括固定电极、活动电极和驱动电路,所述固定电极和所述活动电极位于所述成像传感器组件与所述通孔内壁之间,并沿所述通孔的轴向间隔且相对设置,且所述固定电极与所述通孔内壁相对固定,所述活动电极与所述成像传感器组件相对固定,所述驱动电路用于向所述固定电极和所述活动电极上施加相同或相异的电荷,以驱动所述活动电极带动所述成像传感器组件向靠近或远离所述固定电极的方向移动。由此,可驱动成像传感器组件向靠近或远离镜头的方向移动,以实现摄像头的自动对焦操作,此对焦驱动装置的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔内进行安装。
结合第二方面的第一种可选实现方式,在第二方面的第二种可选实现方式中,所述固定电极包括第一绝缘层以及位于所述第一绝缘层朝向所述活动电极一侧的第一导电层,所述活动电极包括第二绝缘层以及位于所述第二绝缘层朝向所述固定电极一侧的第二导电层,所述驱动电路用于向所述第一导电层和所述第二导电层上施加相同或相异的电荷。这样,可将固定电极与活动电极之间的电场限制在第一导电层、第二导电层以及第一导电层与第二导电层之间的间隙内,避免对第一导电层、第二导电层以及第一导电层与第二导电层之间间隙范围之外的电路产生干扰。
结合第二方面的第二种可选实现方式,在第二方面的第三种可选实现方式中,所述固定电极和所述活动电极均为多个,多个所述固定电极和多个所述活动电极沿所述通孔的轴向间隔且交错设置,多个固定电极与多个活动电极一一相对设置,以形成多组驱动结构,能够增大对焦驱动装置的驱动力,提高对焦效率。
结合第二方面,在第二方面的第四种可选实现方式中,所述对焦驱动装置为直线型音圈马达,所述直线型音圈马达设置于所述成像传感器组件与所述通孔内壁之间,且所述直线型音圈马达的定子与所述通孔内壁相对固定,所述直线型音圈马达的动子与所述成像传感器组件相对固定。直线型音圈马达具有体积小、推力大、速度高等优 势,因此能够提高对焦驱动装置的驱动力和对焦效率,同时有利于实现对焦驱动装置的体积小型化设计。
结合第二方面,在第二方面的第五种可选实现方式中,所述对焦驱动装置包括连接件和温控装置,所述连接件为由形状记忆合金在常温状态下拉伸后形成,且所述连接件在其拉伸方向上的一端与所述成像传感器组件连接,另一端向下延伸并与所述通孔内壁或所述控制板连接,所述温控装置用于控制所述连接件的温度,以驱动所述连接件产生伸缩变形,由此带动成像传感器组件向靠近或远离镜头的方向移动,从而实现了摄像头的自动对焦操作。此对焦驱动装置的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔内进行安装。
结合第二方面的第五种可选实现方式,在第二方面的第六种可选实现方式中,所述温控装置包括加热电路、开关和控制单元,所述加热电路与所述连接件电连接,所述开关串接于所述加热电路与所述连接件之间的电连接通路中,所述控制单元与所述开关连接,并用于控制所述开关的开启和关断时间,由此控制连接件的加热和冷却时间,从而控制连接件的温度。此温控装置的组成结构简单,容易实现。
结合第二方面的第五种或第六种可选实现方式,在第二方面的第七种可选实现方式中,所述连接件呈丝状,且所述成像传感器组件与所述控制板之间连接有弹性支撑件,所述弹性支撑件用于向所述成像传感器组件施加一个向上的弹性支撑力,连接件加热收缩时,连接件能够拉动成像传感器组件向下移动,并压缩弹性支撑件以积蓄弹性力;连接件冷却伸长时,弹性支撑件在弹性力的作用下恢复至初始状态,以推动成像传感器向上移动。丝状的连接件伸缩变形时所需的热量较少,防止烧坏成像传感器组件,同时丝状的连接件体积较小,便于在空间有限的通孔内进行安装。其中,弹性支撑件可以是螺旋弹簧,也可以是弹片,在此不做具体限定。
结合第二方面,在第二方面的第八种可选实现方式中,所述对焦驱动装置为直线型超声波电动机,所述直线型超声波电动机设置于所述成像传感器组件与所述控制板之间,且所述直线型超声波电动机的定子与所述控制板相对固定,所述直线型超声波电动机的动子与所述成像传感器组件相对固定。直线型超声波电动机具有结构简单、小型轻量、响应速度快、噪声低、低速大转矩、控制特点好、断电自锁、不受磁场干扰、运动准确等优点,因此能够提高对焦的准确度和效率,同时能够缩小对焦驱动装置的体积。
结合第二方面至第二方面的第八种可选实现方式,在第二方面的第九种可选实现方式中,所述成像传感器组件包括壳体以及固定于所述壳体内的传感器本体,所述壳体上位于所述传感器本体与所述镜头之间的部分开设有安装口,所述安装口内安装有红外线滤光片。这样,通过红外线滤光片可滤除光路中的红外线,可防止过度曝光,且将传感器本体设置于壳体内,能够在一定程度上减小通孔内的水或粉尘对传感器本体产生的干扰。
结合第二方面的第九种可选实现方式,在第二方面的第十种可选实现方式中,所述对焦驱动装置设置于壳体与通孔内壁或控制板之间,壳体的内壁和/或外壁上设有电磁屏蔽层。这样,能够防止对焦驱动装置或其他结构对壳体内的传感器本体产生电磁干扰。
结合第二方面至第二方面的第十种可选实现方式,在第二方面的第十一种可选实现方式中,所述成像传感器组件通过柔性印刷电路板与所述控制板通信连接。柔性印刷电路板能够实现成像传感器组件与控制板之间的柔性连接,避免对成像传感器组件的对焦运动产生限制,同时柔性印刷电路板具有重量轻、厚度薄等优点,便于在空间有限的通孔内进行安装。
结合第二方面至第二方面的第十种可选实现方式,在第二方面的第十二种可选实现方式中,所述成像传感器组件通过光通信结构与所述控制板通信连接。光在微距离间隙内可以准确传输,因此无需在成像传感器组件与控制板之间连接光传输介质,从而避免对成像传感器组件的对焦运动产生阻碍。同时,光通信结构具有传输速度快、传输容量大等优点,因此能够提高成像传感器组件与控制板之间的通信效率。
结合第二方面的第十二种可选实现方式,在第二方面的第十三种可选实现方式中,所述光通信结构包括第一处理器件、第一光电转换器件、第二处理器件和第二光电转换器件,所述第一处理器件和所述第一光电转换器件固定于所述成像传感器组件上,且所述成像传感器组件与所述第一处理器件之间、以及所述第一处理器件与所述第一光电转换器件之间均通信连接,所述第二处理器件和所述第二光电转换器件固定于所述控制板上,且所述控制板与所述第二处理器件之间、以及所述第二处理器件与所述第二光电转换器件之间均通信连接,所述第一光电转换器件位于所述成像传感器组件的下表面,所述第二光电转换器件位于所述控制板的上表面,并与所述第一光电转换器件相对设置,所述第一光电转换器件包括多个第一通信接口,所述第二光电转换器件包括多个第二通信接口,多个所述第一通信接口与多个所述第二通信接口一一相对设置。这样,通过将多个第一通信接口与多个第二通信接口一一相对设置,可实现光信号的发送、在空气中传输和接收,无需在成像传感器组件与控制板之间连接光传输介质,从而能够防止光通信结构对成像传感器组件的对焦运动产生限制。
结合第二方面的第十三种可选实现方式,在第二方面的第十四种可选实现方式中,所述第一光电转换器件与所述第二光电转换器件之间连接有吸光软质材料,所述吸光软质材料上、每个所述第一通信接口与所述第一通信接口对应的所述第二通信接口之间均开设有通光孔。这样,通过吸光软质材料吸收了相邻两条光路之间的干涉部分,能够避免相邻两条光路之间产生干扰,从而保证信号传输的准确性。
结合第二方面的第十三种或第十四种可选实现方式,在第二方面的第十五种可选实现方式中,所述成像传感器组件与所述控制板之间设有限位结构,所述限位结构用于允许所述成像传感器组件相对于所述控制板沿所述通孔的轴向移动,并阻止所述成像传感器组件相对于所述控制板沿所述通孔的径向移动。这样,通过限位结构限定了成像传感器组件的移动方向,有效避免了第一通信接口和第二通信接口在成像传感器组件的对焦移动过程中产生错位。
结合第二方面的第十五种可选实现方式,在第二方面的第十六种可选实现方式中,所述限位结构包括沿所述通孔的轴向延伸的限位孔和沿所述通孔的轴向延伸的限位柱,所述限位柱滑动配合于所述限位孔内,且所述限位孔和所述限位柱中的一个设置于所述成像传感器组件上,所述限位孔和限位柱中的另一个设置于所述控制板上。此结构简单,容易实现。
附图说明
图1为现有技术中的一种摄像头的结构示意图;
图2为图1所示摄像头处于微距状态时的结构示意图;
图3为本申请实施例提供的摄像头的第一种结构示意图;
图4为图3所示摄像头中区域A的局部结构示意图之一;
图5为图3所示摄像头中区域A的局部结构示意图之二;
图6为图3所示摄像头中区域A的局部结构示意图之三;
图7为图3所示摄像头中区域A的局部结构示意图之四;
图8为本申请实施例提供的摄像头的第二种结构示意图;
图9为本申请实施例提供的摄像头的第三种结构示意图;
图10为本申请实施例提供的摄像头的第四种结构示意图;
图11为本申请实施例提供的摄像头中成像传感器组件的一种结构示意图;
图12为本申请实施例提供的摄像头中成像传感器组件的另一种结构示意图;
图13为本申请实施例提供的摄像头中成像传感器组件与控制板之间通过柔性印刷电路板通信连接时的结构示意图;
图14为本申请实施例提供的摄像头中成像传感器组件与控制板之间通过一种光通信结构通信连接时的结构示意图;
图15为本申请实施例提供的摄像头中成像传感器组件的下表面的结构示意图;
图16为本申请实施例提供的摄像头中控制板的上表面的结构示意图;
图17为本申请实施例提供的摄像头中光通信结构的一种结构示意图;
图18为本申请实施例提供的摄像头中光通信结构的另一种结构示意图;
图19为本申请实施例提供的摄像头中成像传感器组件与控制板之间通过另一种光通信结构通信连接时的结构示意图;
图20为本申请实施例提供的终端的截面结构示意图。
具体实施方式
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请提供一种终端,如图20所示,包括外壳20、终端本体30和摄像头10,所述终端本体30位于所述外壳20内,所述终端本体30的上表面设有安装槽50,所述外壳20上与所述安装槽50相对的位置设有透光窗口60,所述摄像头10安装于所述安装槽50内。
在上述实施例中,如图3所示,摄像头10包括支撑座11、镜头12、控制板13和成像传感器组件14,所述支撑座11上开设有贯穿所述支撑座11上下表面的通孔15,所述镜头12连接于所述支撑座11的上方,并密封盖设于所述通孔15的上端开口处,所述控制板13连接于所述支撑座11的下方,并密封盖设于所述通孔15的下端开口处,所述成像传感器组件14位于所述通孔15内,并与所述控制板13通信连接,且所述成像传感器组件14与所述通孔15内壁或所述控制板13之间设有对焦驱动装置16,所述对焦驱动装置16用于驱动所述成像传感器组件14向靠近或远离所述镜头12的方向移动。
本申请实施例提供的摄像头,由于支撑座11上开设有贯穿支撑座11上下表面的通孔15,镜头12连接于支撑座11的上方,并盖设于通孔15的上端开口处,成像传感器组件14位于通孔15内,且成像传感器组件14与通孔15内壁或控制板13之间设有对焦驱动装置16,此对焦驱动装置16能够驱动成像传感器组件14向靠近或远离镜头12的方向移动,由此通过对焦驱动装置16驱动成像传感器组件14移动,实现了摄像头10的自动对焦。与现有技术相比,由于镜头12密封盖设于通孔15的上端开口处,控制板13连接于支撑座11的下方,并密封盖设于通孔15的下端开口处,因此在通孔15内部形成了一个密闭的空间,又由于成像传感器组件14位于通孔15内,因此将镜头12与成像传感器组件14之间的光路密封于通孔15内,外界环境中的水或粉尘无法进入镜头12与成像传感器组件14之间的光路中,从而避免了水或粉尘对摄像头10的内部光路产生影响,进而保证了摄像头10的拍摄质量和清晰度。
本申请实施例提供的终端,由于终端包括上述摄像头10,上述摄像头10包括支撑座11、镜头12、控制板13和成像传感器组件14,支撑座11上开设有贯穿支撑座11上下表面的通孔15,镜头12连接于支撑座11的上方,并盖设于通孔15的上端开口处,成像传感器组件14位于通孔15内,且成像传感器组件14与通孔15内壁或控制板13之间设有对焦驱动装置16,此对焦驱动装置16能够驱动成像传感器组件14向靠近或远离镜头12的方向移动,由此通过对焦驱动装置16驱动成像传感器组件14移动,实现了摄像头10的自动对焦。与现有技术相比,由于镜头12密封盖设于通孔15的上端开口处,控制板13连接于支撑座11的下方,并密封盖设于通孔15的下端开口处,因此在通孔15内部形成了一个密闭的空间,又由于成像传感器组件14位于通孔15内,因此将镜头12与成像传感器组件14之间的光路密封于通孔15内,外壳20与终端本体30之间的水或粉尘无法进入镜头12与成像传感器组件14之间的光路中,从而避免了水或粉尘对摄像头10的内部光路产生影响,进而保证了终端的拍照质量和清晰度。
其中,需要说明的是,终端可以为手机,平板,手表,相机等,在此不做具体限定。
在图20和图3所示的实施例中,摄像头10的镜头12与透光窗口60相对,终端本体30内还设有主控制板40,摄像头10的控制板13与主控制板40通信连接。
在图20所示的实施例中,可选的,透光窗口60内安装有透明板,透明板能够允许光穿过透光窗口60进入摄像头10,并阻隔外界环境中的水或粉尘进入外壳20内。
在图3所示的实施例中,具体的,镜头12可以制作为如图3所示结构,即,镜头 12包括镜筒121以及位于镜筒121内的镜头本体122,镜头本体122的边沿一周密封粘接于镜筒121的内壁一周。此结构简单,容易实现。
在图3所示的实施例中,支撑座11可以为圆柱状或方柱状等等,在此不做具体限定。
在图3所示的实施例中,为了使对焦驱动装置16能够驱动成像传感器组件14向靠近或远离镜头12的方向移动,具体的,对焦驱动装置16的结构可以包括以下四种可选的实施例:
实施例一:如图4所示,对焦驱动装置16包括固定电极161、活动电极162和驱动电路(图中未示出),固定电极161和活动电极162位于成像传感器组件14与通孔15内壁之间,并沿通孔15的轴向间隔且相对设置,且固定电极161与通孔15内壁相对固定,活动电极162与成像传感器组件14相对固定,驱动电路用于向固定电极161和活动电极162上施加相同或相异的电荷,以驱动活动电极162带动成像传感器组件14向靠近或远离固定电极161的方向移动。由此,可驱动成像传感器组件14向靠近或远离镜头12的方向移动,以实现摄像头的自动对焦操作,此对焦驱动装置16的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔15内进行安装。
其中,驱动电路可以布置于成像传感器组件14和/或通孔15内壁上,在此不做具体限定。
另外,固定电极161可以位于活动电极162的上方,也可以位于活动电极162的下方,在此不做具体限定。
再者,当驱动电路向固定电极161和活动电极162上施加相同电压时,可以同时施加正电压,也可以同时施加负电压,在此不做具体限定,当驱动电路向固定电极161和活动电极162上施加相异电压时,可以向固定电极161上施加正电压,向活动电极162上施加负电压,也可以向固定电极161上施加负电压,向活动电极162上施加正电压,在此不做具体限定。
进一步的,为了固定电极161和活动电极162能够在驱动电路的驱动下向相互靠近或相互远离的方向移动,具体的,固定电极161和活动电极162的结构可以包括以下两种可选的实现方式:
第一种可选的实现方式,如图4所示,固定电极161和活动电极162整体由导电材料制作,驱动电路用于向整个固定电极161和整个活动电极162上施加相同或相异的电荷。这样,固定电极161和活动电极162均可由一层材料制作,由此可降低固定电极161和活动电极162的结构复杂度。
第二种可选的实现方式,如图5所示,固定电极161包括第一绝缘层1611以及位于第一绝缘层1611朝向活动电极162一侧的第一导电层1612,活动电极162包括第二绝缘层1621以及位于第二绝缘层1621朝向固定电极161一侧的第二导电层1622,驱动电路用于向第一导电层1612和第二导电层1622上施加相同或相异的电荷。这样,可将固定电极161与活动电极162之间的电场限制在第一导电层1612、第二导电层1622以及第一导电层1612与第二导电层1622之间的间隙内,避免对第一导电层1612、第二导电层1622以及第一导电层1612与第二导电层1622之间间隙范围之外的电路产生干扰。
在上述第二种可选的实现方式中,固定电极161的数量可以为一个,也可以为多个,在此不做具体限定,与之对应的,活动电极162的数量可以为一个,也可以为多个,在此不做具体限定。可选的,如图6所示,固定电极161和活动电极162均为多个,多个固定电极161和多个活动电极162沿通孔15的轴向间隔且交错设置,多个固定电极161与多个活动电极162一一相对设置,以形成多组驱动结构,能够增大对焦驱动装置16的驱动力,提高对焦效率。其中,具体的,固定电极161和活动电极162可以均为2个、3个、4个等等,在此不做具体限定。
实施例二:如图7所示,对焦驱动装置16为直线型音圈马达,直线型音圈马达设置于成像传感器组件14与通孔15内壁之间,且直线型音圈马达的定子163与通孔15内壁相对固定,直线型音圈马达的动子164与成像传感器组件14相对固定。直线型音圈马达具有体积小、推力大、速度高等优势,因此能够提高对焦驱动装置16的驱动力和对焦效率,同时有利于实现对焦驱动装置16的体积小型化设计。
实施例三:如图8或图9所示,对焦驱动装置16包括连接件165和温控装置(图中未示出),连接件165为由形状记忆合金在常温状态下拉伸后形成,且连接件165在其拉伸方向上的一端与成像传感器组件14连接,另一端向下延伸并与通孔15内壁或控制板13连接,温控装置用于控制连接件165的温度,以驱动所述连接件165产生伸缩变形,由此带动成像传感器组件14向靠近或远离镜头的方向移动,从而实现了摄像头的自动对焦操作。此对焦驱动装置16的组成结构简单,有利于实现结构小型化设计,以便于在空间有限的通孔15内进行安装。
其中,连接件165可以呈丝状、块状、柱状、棒状等等,在此不做具体限定。
另外,连接件165可以连接于成像传感器组件14的底壁与控制板13之间,也可以连接于成像传感器组件14的侧壁与通孔15内壁之间(如图8或图9所示),还可以连接于成像传感器组件14的侧壁与控制板13之间,在此不做具体限定。
具体的,温控装置的结构可以包括以下两种可选实施例:
第一种可选实施例,温控装置包括电加热元件、加热电路、开关和控制单元,电加热元件与连接件热传导接触,加热电路与电加热元件电连接,开关串接于加热电路与电加热元件之间的电连接通路中,控制单元与开关连接,并用于控制开关的开启和关断时间,由此控制电加热元件的加热和冷却时间,从而控制电加热元件的温度,进而控制连接件的温度。此种温控装置的结构简单,容易实现。
在上述实施例中,电加热元件可以为电热丝、电热棒或电热管等等,在此不做具体限定。
第二种可选实施例,温控装置包括加热电路、开关和控制单元,加热电路与连接件电连接,开关串接于加热电路与连接件之间的电连接通路中,所述控制单元与所述开关连接,并用于控制开关的开启和关断时间,由此控制连接件的加热和冷却时间,从而控制连接件的温度。此温控装置的组成结构简单,有利于实现温控装置的体积小型化设计。
在上述第一种可选实施例或第二种可选实施例中,加热电路可以设置于成像传感器组件上,也可以设置于控制板上,在此不做具体限定。
在图8或图9所示的实施例中,为了减小连接件165伸缩变形时所需的热量,可 选的,连接件165呈丝状,且成像传感器组件14与控制板13之间连接有弹性支撑件17,弹性支撑件17用于向所述成像传感器组件14施加一个向上的弹性支撑力,连接件165加热收缩时,连接件165能够拉动成像传感器组件14向下移动,并压缩弹性支撑件以积蓄弹性力;连接件165冷却伸长时,弹性支撑件17在弹性力的作用下恢复至初始状态,以推动成像传感器向上移动。丝状的连接件165伸缩变形时所需的热量较少,防止烧坏成像传感器组件14,同时丝状的连接件165体积较小,便于在空间有限的通孔15内进行安装。
其中,弹性支撑件17可以是如图9所示的螺旋弹簧,也可以是如图8所示的弹片,在此不做具体限定。
实施例四:如图10所示,对焦驱动装置16为直线型超声波电动机,直线型超声波电动机设置于成像传感器组件14与控制板13之间,且直线型超声波电动机的定子与控制板13相对固定,直线型超声波电动机的动子与成像传感器组件14相对固定。直线型超声波电动机利用压电材料的逆压电效应实现了直线驱动,具有结构简单、小型轻量、响应速度快、噪声低、低速大转矩、控制特点好、断电自锁、不受磁场干扰、运动准确等优点,因此能够提高对焦的准确度和效率,同时能够缩小对焦驱动装置16的体积。
在图3所示的实施例中,具体的,成像传感器组件14可以包括以下两种可选结构:
第一种可选结构:如图11所示,成像传感器组件14仅包括成像传感器,此结构简单,容易实现。
第二种可选结构:如图12所示,成像传感器组件14包括壳体141以及固定于壳体141内的传感器本体142,壳体141上位于传感器本体142与镜头12之间的部分开设有安装口,安装口内安装有红外线滤光片143。这样,通过红外线滤光片143可滤除光路中的红外线,可防止过度曝光,且将传感器本体142设置于壳体141内,能够进一步避免通孔15内的水或粉尘对传感器本体142产生干扰。
在上述第二种可选结构中,可选的,对焦驱动装置16设置于壳体141与通孔15内壁或控制板13之间,壳体141的内壁和/或外壁上设有电磁屏蔽层,从而能够防止对焦驱动装置16或其他结构对壳体141内的传感器本体142产生电磁干扰。
在图3所示的实施例中,为了实现成像传感器组件14与控制板13之间的通信连接,同时为了避免成像传感器组件14与控制板13之间的通信连接结构对成像传感器组件14的移动形成阻碍,可选的,可以有以下两种解决方案:
第一种解决方案,如图13所示,成像传感器组件14通过柔性印刷电路板18与控制板13通信连接。柔性印刷电路板18能够实现成像传感器组件14与控制板13之间的柔性连接,避免对成像传感器组件14的对焦运动产生限制,同时柔性印刷电路板18具有重量轻、厚度薄等优点,便于在空间有限的通孔15内进行安装。
第二种解决方案,如图14所示,成像传感器组件14通过光通信结构19与控制板13通信连接。光在微距离间隙内可以准确传输,因此无需在成像传感器组件14与控制板13之间连接光传输介质,从而避免对成像传感器组件14的对焦运动产生阻碍。同时,光通信结构19具有传输速度快、传输容量大等优点,因此能够提高成像传感器组件14与控制板13之间的通信效率。
在上述第二种解决方案中,具体的,光通信结构19制作为如图14所示结构,即,光通信结构包括第一处理器件191、第一光电转换器件192、第二处理器件193和第二光电转换器件194,第一处理器件191和第一光电转换器件192固定于成像传感器组件14上,且成像传感器组件14与第一处理器件191之间、以及第一处理器件191与第一光电转换器件192之间均通信连接,第二处理器件193和第二光电转换器件194固定于控制板13上,且控制板与第二处理器件193之间、以及第二处理器件193与第二光电转换器件194之间均通信连接,第一光电转换器件192位于成像传感器组件14的下表面,第二光电转换器件194位于控制板的上表面,并与第一光电转换器件192相对设置,第一光电转换器件192包括多个第一通信接口1921(如图15所示),第二光电转换器件194包括多个第二通信接口1941(如图16所示),多个第一通信接口1921与多个第二通信接口1941一一相对设置。这样,通过将多个第一通信接口1921与多个第二通信接口1941一一相对设置,可实现光信号的发送、在空气中传输和接收,无需在成像传感器组件14与控制板之间连接光传输介质,从而能够防止光通信结构对成像传感器组件14的对焦运动产生限制。
其中,需要说明的是,在图15和图16所示的实施例中,若第一通信接口1921发送光信号,则与第一通信接口1921相对的第二通信接口1941接收光信号,若第一通信接口1921接收光信号,则与第一通信接口1921相对的第二通信接口1941则发送光信号。
另外,第一光电转换器件192可以仅包括一个元器件,此元器件既可用于将光信号转换成电信号,又可用于将电信号转换成光信号,此时,第一光电转换器件192所包括的第一通信接口1921既可用于发送光信号,又可用于接收光信号。如图17所示,第一光电转换器件192也可以包括第一转换元件192a和第二转换元件192b两个元器件,所述第一转换元件192a用于将电信号转换成光信号,所述第二转换元件192b用于将光信号转换成电信号,则第一光电转换器件192所包括的多个第一通信接口1921中一部分属于第一转换元件192a,另一部分属于第二转换元件192b,第一转换元件192a所包括的第一通信接口1921用于发送光信号,第二转换元件192b所包括的第一通信接口1921用于接收光信号。
同理,第二光电转换器件194可以仅包括一个元器件,此元器件既可用于将光信号转换成电信号,又可用于将电信号转换成光信号,此时,第二光电转换器件194所包括的第二通信接口1941既可用于发送光信号,又可用于接收光信号。如图17所示,第二光电转换器件194也可以包括第三转换元件194a和第四转换元件194b两个元器件,所述第三转换元件194a用于将电信号转换成光信号,所述第四转换元件194b用于将光信号转换成电信号,则第二光电转换器件194所包括的多个第二通信接口1941中一部分属于第三转换元件194a,另一部分属于第四转换元件194b,第三转换元件194a所包括的第二通信接口1941用于发送光信号,第四转换元件194b所包括的第二通信接口1941用于接收光信号。
当第一光电转换器件192和第二光电转换器件194为如图17所示结构时,第一处理器件191可以仅包括一个元器件,此元器件既可用于调制成像传感器组件14的传感信号并传送给第一转换元件192a,又可用于解调由第二转换元件192b发来的电信号。 如图18所示,第一处理器件191也可以包括第一调制元件191a和第一解调元件191b两个元器件,第一调制元件191a与第一转换元件192a通信连接,第一解调元件191b与第二转换元件192b通信连接。同理,第二处理器件193可以仅包括一个元器件,此元器件既可用于调制控制板的控制信号并传送给第三转换元件194a,又可用于解调由第四转换元件194b发来的电信号。如图18所示,第二处理器件193也可以包括第二调制元件193a和第二解调元件193b两个元器件,第二调制元件193a与第三转换元件194a通信连接,第二解调元件193b与第四转换元件194b通信连接。
在图15和图16所示的实施例中,第一光电转换器件192除了包括第一通信接口1921之外,还包括第一电源接口1922和第一接地接口1923,相应的,第二光电转换器件194除了包括第二通信接口1941之外,还包括第二电源接口1942和第二接地接口1943,第一电源接口1922与第二电源接口1942之间、以及第一接地接口1923与第二接地接口1943之间可以通过导线连接,也可以通过柔性印刷电路板连接。
进一步的,第一处理器件191可以固定于成像传感器组件14的下表面,也可以固定于成像传感器组件14的侧壁上,在此不做具体限定。而且,第二处理器件193可以固定于控制板的上表面,也可以固定于成像传感器的下表面,在此不做具体限定。
在图14所示的实施例中,为了避免在成像传感器组件14与控制板之间间隙内传播的相邻两条光路之间产生干扰,可选的,如图19所示,第一光电转换器件192与第二光电转换器件194之间连接有吸光软质材料100,吸光软质材料100上、每个第一通信接口1921与第一通信接口1921对应的第二通信接口1941之间均开设有通光孔101。这样,通过吸光软质材料100吸收了相邻两条光路之间的干涉部分,能够避免相邻两条光路之间产生干扰,从而保证信号传输的准确性。
在上述实施例中,吸光软质材料100可以为深色海绵或深色泡沫等等,在此不做具体限定。
在图15和图16所示的实施例中,为了避免第一通信接口1921和第二通信接口1941在成像传感器组件14的对焦移动过程中产生错位,可选的,成像传感器组件与控制板之间设有限位结构(图中未示出),限位结构用于允许成像传感器组件相对于控制板沿通孔的轴向移动,并阻止成像传感器组件相对于控制板沿通孔的径向移动。这样,通过限位结构限定了成像传感器组件的移动方向,有效避免了第一通信接口和第二通信接口在成像传感器组件的对焦移动过程中产生错位。
其中,具体的,限位结构可以为如下结构,即,限位结构包括沿通孔的轴向延伸的限位孔和沿通孔的轴向延伸的限位柱,限位柱滑动配合于限位孔内,且限位孔和限位柱中的一个设置于成像传感器组件上,限位孔和限位柱中的另一个设置于控制板上。此结构简单,容易实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种终端,包括外壳、终端本体和摄像头,所述终端本体位于所述外壳内,所述终端本体的上表面开设有安装槽,所述外壳上与所述安装槽相对的位置设有透光窗口,所述摄像头安装于所述安装槽内,其特征在于,
    所述摄像头包括支撑座、镜头、控制板和成像传感器组件,所述支撑座上开设有贯穿所述支撑座上下表面的通孔,所述镜头连接于所述支撑座的上方,并密封盖设于所述通孔的上端开口处,所述控制板连接于所述支撑座的下方,并密封盖设于所述通孔的下端开口处,所述成像传感器组件位于所述通孔内,并与所述控制板通信连接,且所述成像传感器组件与所述通孔内壁或所述控制板之间设有对焦驱动装置,所述对焦驱动装置用于驱动所述成像传感器组件向靠近或远离所述镜头的方向移动。
  2. 根据权利要求1所述的终端,其特征在于,所述对焦驱动装置包括固定电极、活动电极和驱动电路,所述固定电极和所述活动电极位于所述成像传感器组件与所述通孔内壁之间,并沿所述通孔的轴向间隔且相对设置,且所述固定电极与所述通孔内壁相对固定,所述活动电极与所述成像传感器组件相对固定,所述驱动电路用于向所述固定电极和所述活动电极上施加相同或相异的电荷,以驱动所述活动电极带动所述成像传感器组件向靠近或远离所述固定电极的方向移动。
  3. 根据权利要求2所述的终端,其特征在于,所述固定电极包括第一绝缘层以及位于所述第一绝缘层朝向所述活动电极一侧的第一导电层,所述活动电极包括第二绝缘层以及位于所述第二绝缘层朝向所述固定电极一侧的第二导电层,所述驱动电路用于向所述第一导电层和所述第二导电层上施加相同或相异的电荷。
  4. 根据权利要求3所述的终端,其特征在于,所述固定电极和所述活动电极均为多个,多个所述固定电极和多个所述活动电极沿所述通孔的轴向间隔且交错设置。
  5. 根据权利要求1所述的终端,其特征在于,所述对焦驱动装置为直线型音圈马达,所述直线型音圈马达设置于所述成像传感器组件与所述通孔内壁之间,且所述直线型音圈马达的定子与所述通孔内壁相对固定,所述直线型音圈马达的动子与所述成像传感器组件相对固定。
  6. 根据权利要求1所述的终端,其特征在于,所述对焦驱动装置包括连接件和温控装置,所述连接件为由形状记忆合金在常温状态下拉伸后形成,且所述连接件在其拉伸方向上的一端与所述成像传感器组件连接,另一端向下延伸并与所述通孔内壁或所述控制板连接,所述温控装置用于控制所述连接件的温度,以驱动所述连接件产生伸缩变形。
  7. 根据权利要求6所述的终端,其特征在于,所述温控装置包括加热电路、开关和控制单元,所述加热电路与所述连接件电连接,所述控制开关串接于所述加热电路与所述连接件之间的电连接通路中,所述控制单元与所述开关连接,并用于控制所述开关的开启和关断时间,以控制所述连接件的温度。
  8. 根据权利要求6或7所述的终端,其特征在于,所述连接件呈丝状,且所述成像传感器组件与所述控制板之间连接有弹性支撑件,所述弹性支撑件用于向所述成像传感器组件施加一个向上的弹性支撑力。
  9. 根据权利要求1所述的终端,其特征在于,所述对焦驱动装置为直线型超声波 电动机,所述直线型超声波电动机设置于所述成像传感器组件与所述控制板之间,且所述直线型超声波电动机的定子与所述控制板相对固定,所述直线型超声波电动机的动子与所述成像传感器组件相对固定。
  10. 根据权利要求1~9中任一项所述的终端,其特征在于,所述成像传感器组件包括壳体以及固定于所述壳体内的传感器本体,所述壳体上位于所述传感器本体与所述镜头之间的部分开设有安装口,所述安装口内安装有红外线滤光片。
  11. 根据权利要求1~10中任一项所述的终端,其特征在于,所述成像传感器组件通过光通信结构与所述控制板通信连接。
  12. 根据权利要求11所述的终端,其特征在于,所述光通信结构包括第一处理器件、第一光电转换器件、第二处理器件和第二光电转换器件,所述第一处理器件和所述第一光电转换器件固定于所述成像传感器组件上,且所述成像传感器组件与所述第一处理器件之间、以及所述第一处理器件与所述第一光电转换器件之间均通信连接,所述第二处理器件和所述第二光电转换器件固定于所述控制板上,且所述控制板与所述第二处理器件之间、以及所述第二处理器件与所述第二光电转换器件之间均通信连接,所述第一光电转换器件位于所述成像传感器组件的下表面,所述第二光电转换器件位于所述控制板的上表面,并与所述第一光电转换器件相对设置,所述第一光电转换器件包括多个第一通信接口,所述第二光电转换器件包括多个第二通信接口,多个所述第一通信接口与多个所述第二通信接口一一相对设置。
  13. 根据权利要求12所述的终端,其特征在于,所述第一光电转换器件与所述第二光电转换器件之间连接有吸光软质材料,所述吸光软质材料上、每个所述第一通信接口与所述第一通信接口对应的所述第二通信接口之间均开设有通光孔。
  14. 根据权利要求12或13所述的终端,其特征在于,所述成像传感器组件与所述控制板之间设有限位结构,所述限位结构用于允许所述成像传感器组件相对于所述控制板沿所述通孔的轴向移动,并阻止所述成像传感器组件相对于所述控制板沿所述通孔的径向移动。
  15. 根据权利要求14所述的终端,其特征在于,所述限位结构包括沿所述通孔的轴向延伸的限位孔和沿所述通孔的轴向延伸的限位柱,所述限位柱滑动配合于所述限位孔内,且所述限位孔和所述限位柱中的一个设置于所述成像传感器组件上,所述限位孔和限位柱中的另一个设置于所述控制板上。
  16. 一种摄像头,用于终端,其特征在于,包括支撑座、镜头、控制板和成像传感器组件,所述支撑座上开设有贯穿所述支撑座上下表面的通孔,所述镜头连接于所述支撑座的上方,并密封盖设于所述通孔的上端开口处,所述控制板连接于所述支撑座的下方,并密封盖设于所述通孔的下端开口处,所述成像传感器组件位于所述通孔内,并与所述控制板通信连接,且所述成像传感器组件与所述通孔内壁或所述控制板之间设有对焦驱动装置,所述对焦驱动装置用于驱动所述成像传感器组件向靠近或远离所述镜头的方向移动。
  17. 根据权利要求16所述的摄像头,其特征在于,所述对焦驱动装置包括固定电极、活动电极和驱动电路,所述固定电极和所述活动电极位于所述成像传感器组件与所述通孔内壁之间,并沿所述通孔的轴向间隔且相对设置,且所述固定电极与所述通 孔内壁相对固定,所述活动电极与所述成像传感器组件相对固定,所述驱动电路用于向所述固定电极和所述活动电极上施加相同或相异的电荷,以驱动所述活动电极带动所述成像传感器组件向靠近或远离所述固定电极的方向移动。
  18. 根据权利要求16所述的摄像头,其特征在于,所述成像传感器组件包括壳体以及固定于所述壳体内的传感器本体,所述壳体上位于所述传感器本体与所述镜头之间的部分开设有安装口,所述安装口内安装有红外线滤光片。
  19. 根据权利要求16所述的摄像头,其特征在于,所述成像传感器组件通过光通信结构与所述控制板通信连接。
  20. 根据权利要求19所述的摄像头,其特征在于,所述光通信结构包括第一处理器件、第一光电转换器件、第二处理器件和第二光电转换器件,所述第一处理器件和所述第一光电转换器件固定于所述成像传感器组件上,且所述成像传感器组件与所述第一处理器件之间、以及所述第一处理器件与所述第一光电转换器件之间均通信连接,所述第二处理器件和所述第二光电转换器件固定于所述控制板上,且所述控制板与所述第二处理器件之间、以及所述第二处理器件与所述第二光电转换器件之间均通信连接,所述第一光电转换器件位于所述成像传感器组件的下表面,所述第二光电转换器件位于所述控制板的上表面,并与所述第一光电转换器件相对设置,所述第一光电转换器件包括多个第一通信接口,所述第二光电转换器件包括多个第二通信接口,多个所述第一通信接口与多个所述第二通信接口一一相对设置。
PCT/CN2017/094523 2017-04-26 2017-07-26 一种终端和摄像头 WO2018196190A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780010097.6A CN108702435B (zh) 2017-04-26 2017-07-26 一种终端和摄像头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710284039.4 2017-04-26
CN201710284039 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018196190A1 true WO2018196190A1 (zh) 2018-11-01

Family

ID=63918081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094523 WO2018196190A1 (zh) 2017-04-26 2017-07-26 一种终端和摄像头

Country Status (1)

Country Link
WO (1) WO2018196190A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536058A (zh) * 2019-09-04 2019-12-03 广东以诺通讯有限公司 一种前后共用传感器的拍照装置及拍照方法
US11454806B2 (en) 2020-02-18 2022-09-27 Axis Ab Monitoring camera having a heater

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615698Y (zh) * 2003-04-11 2004-05-12 葛大庆 用于拍摄设备的自动和电动对焦装置
US20080203512A1 (en) * 2006-06-07 2008-08-28 Hon Hai Precision Industry Co., Ltd. Image sensor chip package
CN102360112A (zh) * 2011-08-31 2012-02-22 凌大刚 自动对焦机构及自动对焦方法
KR20140002171U (ko) * 2012-10-09 2014-04-17 주식회사 세코닉스 카메라 모듈의 렌즈 방수 구조
CN203870375U (zh) * 2014-04-14 2014-10-08 台睿科技股份有限公司 镜头驱动装置的防尘组件
KR20150000182A (ko) * 2013-06-24 2015-01-02 엘지이노텍 주식회사 카메라 모듈
CN104506760A (zh) * 2014-12-17 2015-04-08 青岛海信移动通信技术股份有限公司 一种摄像头密封结构及终端
CN104735311A (zh) * 2013-12-19 2015-06-24 安讯士有限公司 有密封的传感器空间的图像收集装置及密封该空间的方法
CN204989584U (zh) * 2015-09-14 2016-01-20 维沃移动通信有限公司 一种摄像头模组及移动设备
CN205123865U (zh) * 2015-11-24 2016-03-30 江西盛泰光学有限公司 一种手机摄像头芯片传感器安装结构
CN205545600U (zh) * 2016-04-01 2016-08-31 信利光电股份有限公司 一种摄像模组马达、摄像模组及电子设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615698Y (zh) * 2003-04-11 2004-05-12 葛大庆 用于拍摄设备的自动和电动对焦装置
US20080203512A1 (en) * 2006-06-07 2008-08-28 Hon Hai Precision Industry Co., Ltd. Image sensor chip package
CN102360112A (zh) * 2011-08-31 2012-02-22 凌大刚 自动对焦机构及自动对焦方法
KR20140002171U (ko) * 2012-10-09 2014-04-17 주식회사 세코닉스 카메라 모듈의 렌즈 방수 구조
KR20150000182A (ko) * 2013-06-24 2015-01-02 엘지이노텍 주식회사 카메라 모듈
CN104735311A (zh) * 2013-12-19 2015-06-24 安讯士有限公司 有密封的传感器空间的图像收集装置及密封该空间的方法
CN203870375U (zh) * 2014-04-14 2014-10-08 台睿科技股份有限公司 镜头驱动装置的防尘组件
CN104506760A (zh) * 2014-12-17 2015-04-08 青岛海信移动通信技术股份有限公司 一种摄像头密封结构及终端
CN204989584U (zh) * 2015-09-14 2016-01-20 维沃移动通信有限公司 一种摄像头模组及移动设备
CN205123865U (zh) * 2015-11-24 2016-03-30 江西盛泰光学有限公司 一种手机摄像头芯片传感器安装结构
CN205545600U (zh) * 2016-04-01 2016-08-31 信利光电股份有限公司 一种摄像模组马达、摄像模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536058A (zh) * 2019-09-04 2019-12-03 广东以诺通讯有限公司 一种前后共用传感器的拍照装置及拍照方法
US11454806B2 (en) 2020-02-18 2022-09-27 Axis Ab Monitoring camera having a heater

Similar Documents

Publication Publication Date Title
CN108702435B (zh) 一种终端和摄像头
KR20220143096A (ko) 카메라 모듈 및 전자 디바이스
EP4120670B1 (en) Photographing module and assembling method therefor, and electronic device
CN104834158A (zh) 双摄像头模组
TW201340701A (zh) 照相機模組及照相機裝置
EP4047917A1 (en) Camera module and electronic device
WO2021104017A1 (zh) 摄像头模组及电子设备
JP2021509967A (ja) 駆動機構、カメラモジュール及び電子機器
WO2018196190A1 (zh) 一种终端和摄像头
CN113315896A (zh) 摄像模组和电子设备
KR20150006785A (ko) 카메라 모듈
CN113885272B (zh) 驱动装置、摄像模组及电子设备
CN113747024B (zh) 摄像头模组及电子设备
EP3896516A1 (en) Camera and terminal device
CN116360185A (zh) 一种光圈可变的摄像头模组和电子设备
CN217932225U (zh) 镜头模组、摄像头模组以及电子设备
KR101465986B1 (ko) 렌즈 구동장치
KR100832071B1 (ko) 자동 초점 카메라 모듈
WO2024016428A1 (zh) 压电致动组件、镜头模组、摄像头模组以及电子设备
CN116360092B (zh) 一种液体透镜、摄像头模组及电子设备
CN113467043B (zh) 一种活动件、马达、镜头模组及电子设备
CN217388821U (zh) 摄像头模组及电子设备
CN115118845B (zh) 摄像模组及其组装方法、电子设备
KR20180044526A (ko) 카메라 모듈 및 광학 기기
EP4266664A1 (en) Camera module, assembly method therefor, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907421

Country of ref document: EP

Kind code of ref document: A1