WO2018196188A1 - 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构 - Google Patents

一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构 Download PDF

Info

Publication number
WO2018196188A1
WO2018196188A1 PCT/CN2017/094227 CN2017094227W WO2018196188A1 WO 2018196188 A1 WO2018196188 A1 WO 2018196188A1 CN 2017094227 W CN2017094227 W CN 2017094227W WO 2018196188 A1 WO2018196188 A1 WO 2018196188A1
Authority
WO
WIPO (PCT)
Prior art keywords
stiffness
positive
negative
quasi
zero
Prior art date
Application number
PCT/CN2017/094227
Other languages
English (en)
French (fr)
Inventor
唐忠
李耀明
张浩天
赵慧敏
卢红亮
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB1801239.3A priority Critical patent/GB2565171B/en
Publication of WO2018196188A1 publication Critical patent/WO2018196188A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/18Threshing devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the invention belongs to the field of load-bearing frame structure of a combine harvester threshing separation device, in particular to a quasi-zero stiffness complex beam structure for controlling low-frequency vibration of a longitudinal axial flow threshing drum.
  • the longitudinal axial threshing drum of the combine harvester is restrained by the stalk of rice stalk during the threshing process.
  • the obvious vibration generated by the drum during the threshing process of the vertical axial flow drum is generated with the start of threshing, changes with the fluctuation of the feed amount, and disappears with the end of the threshing.
  • the vibration characteristics are transient and it is difficult to reduce vibration.
  • the vibration generated during the threshing process of the longitudinal axial flow drum often causes resonance of the centrifugal fan, vibrating screen, returning plate, shaking plate, cutting roller or frame on the supporting frame, which seriously affects the structural reliability and threshing performance of the threshing device.
  • Patent CN201510418855.0 invents a quasi-zero stiffness vibration isolation system and its nonlinear feedback control method, which can solve the suppression resonance peak in the passive vibration isolation system and the feedback control system, and reduce the amplitude of the main resonance peak of the vibration isolation system; CN201610182527.XInvented a quasi-zero stiffness compression rod which can be installed on various vibration isolation platforms to have high static and low dynamic stiffness characteristics in each degree, thereby realizing low frequency vibration isolation; patent CN201610599158.4 invented one A three-dimensional isolation/vibration bearing with quasi-zero stiffness characteristics, the invented disc spring is just in a flattened state, and the vertical isolation/vibration system is in a quasi-zero stiffness state, which can isolate vertical vibration or earthquake;
  • the obvious vibration phenomenon of the drum in the longitudinal axial flow drum threshing process of the existing crawler combine harvester occurs with the start of threshing, changes with the fluctuation of the feed amount, disappears with the end of the threshing, transient vibration characteristics and is difficult to reduce vibration
  • the invention provides a quasi-zero stiffness complex beam structure for controlling low frequency vibration of a longitudinal axial flow threshing drum.
  • the right side of the quasi-zero stiffness complex beam is connected with the right connecting member of the complex beam, and the left side is connected with the left connecting member of the complex beam, the complex beam
  • the right connecting piece is connected with the right vertical column
  • the left connecting part of the composite beam is connected with the left vertical column
  • the middle part of the quasi-zero stiffness complex beam is connected with the barrel of the threshing drum through the threshing roller bearing seat;
  • the positive rigidity beam is in equilibrium position by the dynamic load of the longitudinal axial flow threshing drum Time-positive stiffness and negative stiffness
  • the total stiffness of the negative stiffness is approximately zero, and the quasi-zero stiffness complex beam equilibrium point is formed; the quasi-zero stiffness complex beam equilibrium point to the longitudinal axis flow
  • the low-frequency vibration generated during the threshing drum threshing process performs vibration isolation control.
  • the present invention achieves the above technical objects by the following technical means.
  • a quasi-zero stiffness composite beam structure for controlling low-frequency vibration of a longitudinal axial flow threshing drum comprising: a left column and a right column fixed on a chassis frame, a quasi-zero stiffness complex beam, a right beam right connecting member and a complex beam a left connecting member;
  • the quasi-zero stiffness composite beam comprises a positive stiffness beam, a negative stiffness bending beam and a positive and negative stiffness beam connecting pad, the positive stiffness beam is located on the upper side of the negative stiffness bending beam, and the middle portion of the two is fixedly connected, positive and negative stiffness
  • the beam connection pad is located at a gap between the positive stiffness beam and the middle portion of the negative stiffness beam; the left and right ends of the quasi-zero stiffness composite beam are respectively connected to the left column and the right column through the right beam connecting member and the complex beam left connecting member
  • a pre-stressed screw is disposed at the right connecting member of the composite beam to apply a pre-stress to the negative-
  • the positive stiffness beam is subjected to a positive stiffness when the vertical axial flow threshing drum is in an equilibrium position
  • E 1 is the elastic modulus of the positive stiffness beam
  • I 1 is the moment of inertia of the positive stiffness beam
  • is the constant 3.14
  • L is the length of the positive stiffness beam
  • the negative stiffness of the beam end is prestressed by the prestressed screw extrusion
  • E 2 is the elastic modulus of the negative stiffness bending beam
  • I 2 is the negative stiffness bending beam moment of inertia
  • is the constant 3.14
  • l is the length of the negative stiffness bending beam
  • k is the stiffness of the negative stiffness bending beam free state
  • the stiffness of the beam and the negative stiffness of the flexural beam at the equilibrium point k + +K - ⁇ 0 is the quasi-zero stiffness complex beam equilibrium point, which is fixed by the positive and negative stiffness beam connecting screw at the
  • a negative stiffness bending beam stress transverse plate is connected to the right end of the negative rigidity bending beam, and a screw positioning sleeve is disposed on the right end surface of the stress transverse plate, and the prestressing screw extends into the screw positioning sleeve and is positioned by the same Negative stiffness
  • the left end face of the transverse beam of the flexural beam is provided with a negative stiffness bending beam right connecting ear, and the right end of the negative stiffness bending beam is connected by a bolt to the right connecting ear of the negative stiffness bending beam.
  • the right beam right connecting member comprises a complex beam right connecting U-shaped sleeve and a prestressed nut, and the right beam connecting U-shaped sleeve is fixed on the right column by two bolts;
  • the complex beam is connected to the U-shaped sleeve
  • the upper part is provided with a circular through hole for assembling a positive rigidity beam, the prestressed nut is fixed on the right end surface of the right beam connecting U-shaped sleeve, the prestressed screw passes through the right column and the prestressed nut and the negative rigidity bending beam
  • the stress transverse plates are connected;
  • the left connecting member of the composite beam comprises a left beam connecting U-shaped sleeve and a left connecting U-shaped sleeve ear, and the left connecting U-shaped sleeve of the composite beam is fixed on the left vertical column by two bolts;
  • a positioning collar 504 is respectively fixed on the upper middle side of the negative rigidity bending beam and the lower middle side of the positive rigidity beam; the middle part of the negative rigidity bending beam is connected with the middle part of the positive rigidity beam through the positioning ring.
  • the quasi-positive stiffness beam and the negative stiffness flex beam are both leaf springs having a width of 40 mm to 60 mm, a thickness of 2 mm to 4 mm, and a length of 500 mm to 600 mm; and a negatively rigid bent beam having a left inner diameter of 12 mm to 16 mm, Two through holes with an inner diameter of 12 mm to 16 mm are opened at 25 mm inside the right edge of the negative stiffness beam.
  • the present invention designs a quasi-zero stiffness composite beam structure for controlling low-frequency vibration of a longitudinal axial flow threshing drum for low-frequency vibration isolation caused by rice stalk entanglement during longitudinal axial threshing, from positive stiffness beam and negative stiffness Flexing beam, positioning ring, positive and negative stiffness beam connecting screw, positive and negative stiffness beam connecting pad, positive stiffness and negative stiffness bending beam axial end prestressing when the positive stiffness beam is subjected to the vertical axial flow threshing drum dynamic load in equilibrium position
  • the quasi-zero stiffness complex beam equilibrium point is formed; the quasi-zero stiffness complex beam has a high static and low dynamic stiffness characteristic; the quasi-zero stiffness complex beam equilibrium point to the longitudinal axis flow
  • the low-frequency vibration generated during the threshing process of the threshing drum is subjected to vibration isolation control, which solves the vibration transmission caused by the eccentric load and the unbalanced vibration existing in the drum thre
  • the prestressed screw of the present invention passes through the prestressed nut and is in contact with the negative stiffness bending beam stress transverse plate.
  • the left end of the prestressed screw is limited by the screw positioning sleeve, and the prestressed screw and the prestressed nut are pretensioned.
  • the prestressing force is applied to the transverse stiffening beam of the negative stiffness, and the prestressing structure of the axial end of the negative stiffness bending beam is simple.
  • the negative stiffness of the negative stiffness bending beam can be conveniently controlled by adjusting the prestressed screw, and the negative stiffness bending beam structure adjustment and operation Simple; it is also possible to accurately adjust the pre-stress of the negative stiffness flexural beam end according to the yield and growth characteristics of the field crops to construct a quasi-zero stiffness composite beam structure suitable for different crop harvesting.
  • the zero-stiffness complex beam balance point controls the vibration of the longitudinal axial flow drum threshing process.
  • the quasi-zero stiffness composite beam structure and external dimensions match with the existing crawler combine harvester, which can directly replace the vertical axial flow threshing drum bearing of the existing crawler combine harvester.
  • the cross beam can also directly apply the invention to the crawler rice combine harvester of the existing structural size, which reduces the research and development cost and greatly improves the versatility and universality of the present invention.
  • the right side of the quasi-zero stiffness complex beam of the present invention is connected to the right connecting member of the complex beam
  • the left side of the quasi-zero stiffness complex beam is connected to the left connecting member of the complex beam
  • the right beam of the complex beam is connected to the U-shaped sleeve on the right column
  • the left beam of the composite beam is connected to the left column
  • the middle part of the quasi-zero stiffness composite beam is connected to the barrel of the threshing drum through the threshing roller bearing seat.
  • the present invention adopts a method of prestressing the shaft end to construct a controllable negative stiffness.
  • the beam and prestressed flexural beam do not change the original structure and working parameters of the drum frame, which ensures the strength and stability of the load-bearing beam under dynamic load excitation, and solves the problem that it is difficult to carry the vertical axial flow roller with the existing quasi-zero stiffness structure. Ensure the strength and stability of dynamic load bearing during drum threshing.
  • Fig. 1 is an assembly view of a quasi-zero stiffness composite beam structure and a longitudinal axial flow threshing drum.
  • Fig. 2 Schematic diagram of the assembly structure of the quasi-zero stiffness composite beam structure and the longitudinal axial flow threshing drum.
  • Fig. 3 is a plan view of the quasi-zero stiffness composite beam assembled through the connecting member and the column.
  • Fig. 4 is a schematic view showing the assembly of the right side stress member of the negative stiffness bending beam.
  • Fig. 5 is a schematic view showing the assembly of the members of the negative stiffness bending beam stress plate.
  • Figure 6 is a top view of the left beam of the composite beam.
  • Figure 8 is a top view of the right beam of the composite beam.
  • Figure 9 is a left side view of the right beam of the composite beam.
  • Figure 10 Right side view of the right beam of the composite beam.
  • Figure 11 is a front view of the positive stiffness beam.
  • Figure 12 is a front view of the negative stiffness bending beam.
  • Figure 13 is a top view of the negative stiffness flex beam.
  • Figure 14 is a front view of the positive and negative stiffness beam connecting screw.
  • Figure 15 is a top view of the positioning ferrule.
  • Figure 16 is a front view of the negative stiffness of the right connecting lug.
  • Figure 17 is a front view of the negative stiffness bending beam stress transverse plate.
  • Figure 18 is a front view of the screw positioning sleeve.
  • Figure 19 is a left side view of the U-shaped sleeve ear.
  • Figure 20 is a front view of the pre-stressed screw.
  • Figure 21 Main view of the left column.
  • Figure 22 is a front view of the right column.
  • Fig. 23 is a schematic view showing the structure of the free-standing beam and the negative-stiffness bending beam.
  • Fig. 24 Schematic diagram of the low-frequency vibration of the longitudinal axial flow drum controlled by the quasi-zero stiffness complex beam.
  • the quasi-zero stiffness complex beam structure for controlling the low-frequency vibration of the longitudinal axial flow threshing drum includes a left column 2, a right column 3, a quasi-zero stiffness complex beam 5, and a complex beam right connection.
  • the left column 2 and the right column 3 are fixed to the chassis frame.
  • the right side of the quasi-zero stiffness complex beam 5 is connected to the right column 3 through the right beam right connecting member 8, and the left side of the quasi-zero stiffness complex beam 5 is connected to the left column 2 through the complex beam left connecting member 9.
  • the threshing drum 6 includes a threshing drum body 601, a threshing drum bearing seat 602, and a threshing drum shaft 603.
  • the upper side of the threshing drum body 601 is a drum top cover 7, the lower side is a concave screen 4; and the threshing drum shaft 603 of the threshing drum 6. It is fixed to the middle of the quasi-zero stiffness complex beam 5 by a threshing drum bearing block 602.
  • the quasi-zero stiffness composite beam 5 includes a positive stiffness beam 501, a negative stiffness bending beam 502, and a positive and negative stiffness beam connection pad 503.
  • the positive stiffness beam 501 is located on the upper side of the negative stiffness bending beam 502, and the positive and negative stiffness beam connection pad 503 Located between the positive stiffness beam 501 and the negative stiffness beam 502.
  • the positive stiffness beam 501 is fixedly coupled to the middle of the negative stiffness beam 502.
  • a negative stiffness bending beam ferrule 504B is mounted on the upper middle portion of the negative stiffness bending beam 502, and a right rigidity bending beam 502 right end is connected to the negative stiffness bending beam stress transverse plate 509;
  • Negative stiffness bending beam stress transverse plate 509 is symmetrically mounted with two negative stiffness bending beam right connecting ears 508, negative stiffness bending beam stress transverse plate 509 right center
  • a screw positioning sleeve 506 is mounted at the position; the right side of the negative stiffness flex beam 502 and the negative stiffness flex beam right connecting lug 508 are fixed by a negative stiffness flex beam connecting the right screw 507.
  • the composite beam left connecting member 9 includes a composite beam left connecting U sleeve 901 and a left connecting U-shaped sleeve ear 902, and the complex beam left connecting U sleeve 901 has diameters on the left and right sides. It is 2 through holes of 12mm to 16mm, and the center distance between the two holes is 100mm ⁇ 120mm.
  • the plexus left connecting U sleeve 901 is sleeved on the left vertical column 2, and the composite beam left connecting U sleeve 901 is fixed by two bolts having a diameter of 10 mm to 14 mm and the left vertical column 2.
  • the upper portion of the composite beam left connecting member 9 is provided with a circular through hole for assembling the positive rigidity beam 501; the left end of the positive rigidity beam 501 penetrates into the circular through hole of the upper portion of the complex beam left connecting member 9.
  • the left connecting U-shaped sleeve 902 is located at the lower right side of the left side connecting member 9 of the complex beam, and is a left connecting U-shaped sleeve A 902A and a left connecting U-shaped sleeve B 902B respectively, and is symmetrically installed in the middle of the 2 through holes .
  • the distance between the left connecting U-shaped sleeve ear A902A and the left connecting U-shaped sleeve ear B902B is 6 mm to 8 mm.
  • the left end of the negative stiffness bending beam 502 is annular and is located between the left connecting U-shaped sleeve A 902A and the left connecting U-shaped sleeve B 902B, and is fixed to the left connecting U-shaped sleeve 902 by bolts.
  • the right beam right connecting member 8 includes a complex beam right connecting U-shaped sleeve 801, a pre-stressed nut 802, and a pre-stressed screw 803; the complex beam is connected to the U-shaped sleeve.
  • the right side of the sleeve 801 is provided with three through holes having a diameter of 12 mm to 16 mm, and the center spacing of the adjacent two holes is 40 mm to 60 mm; the outer diameter of the right side of the right beam connecting the U-shaped sleeve 801 is embedded with an outer diameter. Prestressed nut 802 from 12mm to 16mm.
  • the right beam connecting U-shaped sleeve 801 is sleeved on the right vertical column 3, and the right beam connecting U-shaped sleeve 801 is fixed by two bolts having a diameter of 10 mm to 14 mm and the right vertical column 3; the complex beam is connected to the U-shaped sleeve 801.
  • the upper portion is provided with a circular through hole for assembling the positive rigidity beam 501, and the right end of the positive rigidity beam 501 penetrates into the circular through hole of the upper left portion of the plexus beam right connecting U-shaped sleeve 801.
  • the right side of the negative stiffness bending beam 502 passes through the right side of the right beam of the U-shaped sleeve 801.
  • the prestressed screw 803 passes through the prestressed nut 802 and the right column 3 contacts the negative stiffness bending beam stress transverse plate 509.
  • the left end of the screw 803 is restrained by the screw positioning sleeve 506, and the pre-stressed screw 803 and the pre-stress nut 802 are pre-tensioned to apply pre-stress to the negative stiffness bending beam stress transverse plate 509.
  • the quasi-positive stiffness beam 501 and the negative stiffness flex beam 502 are both leaf springs having a width of 40 mm to 60 mm, a thickness of 2 mm to 4 mm, and a length of 500 mm to 600 mm; and a negative stiffness bending beam 502
  • a round hook having an inner diameter of 12 mm to 16 mm is bent on the left side, and two through holes having an inner diameter of 12 mm to 16 mm are opened at 25 mm inside the right edge of the negative rigidity bending beam 502.
  • a positive stiffness beam ferrule 504A is mounted on the lower middle portion of the positive stiffness beam 501, and the negative stiffness beam ferrule 504B and the positive stiffness beam ferrule 504A are connected by a positive and negative stiffness beam connecting screw 505 to achieve a negative stiffness bending beam 502 and a positive just A fixed connection in the middle of the beam 501.
  • the positive and negative stiffness beam connecting screw 505 is a U-shaped screw having a diameter of 10 mm to 12 mm. As shown in FIG. 14, the center distance between the screw ends of the two ends is 50 mm to 60 mm.
  • the inner diameter of the positive stiffness beam ferrule 504A and the negative stiffness beam ferrule 504B is 12 mm to 16 mm, the thickness is 2 mm, and the length is 10 mm to 12 mm, as shown in FIG.
  • the negative rigidity bending beam right connecting lug 508 has a shape of 40 mm ⁇ 60 mm and a thickness of 4 mm to 6 mm, and two through holes of 12 mm to 16 mm are symmetrically opened in the middle, as shown in FIG. 16 .
  • the negative rigidity bending beam stress transverse plate 509 has a shape of 40 mm ⁇ 60 mm and a thickness of 4 mm to 6 mm, as shown in FIG. 17; the screw positioning sleeve 506 has an inner diameter of 12 mm to 16 mm, a height of 8 mm to 10 mm, and a thickness of 4mm ⁇ 6mm steel ring, as shown in Figure 18.
  • the U-shaped sleeve B 902B is connected to a through hole having an inner diameter of 12 mm to 16 mm, as shown in FIG.
  • the prestressing screw 803 has a diameter of 10 mm to 14 mm and a length of 50 mm to 60 mm, as shown in FIG.
  • the left column 2 and the right column 3 are square steel having a wall thickness of 2 mm to 3 mm and a cross-sectional shape of 40 mm ⁇ 40 mm; and the left and right sides of the left column 2 are provided with a diameter of 12 mm to 16 mm. 2 through holes, the center spacing of the two holes is 100mm ⁇ 120mm; the left and right sides of the right column 3 are provided with 3 through holes with a diameter of 12mm ⁇ 16mm, the center spacing of the two holes is 40mm ⁇ 60mm; the middle column of the left column 2 is 12mm ⁇ A prestressed nut 802 having an outer diameter of 12 mm to 16 mm is embedded in the through hole of 16 mm.
  • the positive stiffness beam 501 is subjected to the positive stiffness of the longitudinal axial flow threshing drum 6 when the dynamic load is in an equilibrium position.
  • E 1 is the elastic modulus of the positive stiffness beam 501
  • I 1 is the moment of inertia of the positive stiffness beam 501
  • is a constant 3.14
  • L is the length of the positive stiffness beam 501
  • the negative stiffness bending beam 502 is terminated by the prestressed screw Negative stiffness when 803 extrusion produces prestress
  • E 2 is the elastic modulus of the negative stiffness bending beam 502
  • I 2 is the negative stiffness bending beam 502 moment of inertia
  • is a constant 3.14
  • l is the length of the negative stiffness bending beam 502
  • k is the negative stiffness bending beam 502 free state Stiffness
  • the positive stiffness beam 501 includes a positive stiffness beam left side 501A and a positive stiffness beam right side 501B, and a negative stiffness bending beam 502 includes a negative stiffness curved beam left side 502A and a negative stiffness curved beam right side 502B; positive stiffness Beam 501 and the negative stiffness bending beam 502 form a quasi-zero stiffness structural balance point at the positive and negative stiffness beam connection pad 503; when the quasi-zero stiffness complex beam 5 equilibrium point is subjected to the excitation force 5010, if the quasi-zero stiffness complex beam equilibrium point is upward For motion, the 501A on the left side of the positive stiffness beam and the 501B on the right side of the positive stiffness beam are absorbed by the energy.
  • the left side of the negative stiffness curved beam 502A and the negative stiffness curved beam right side 502B are pulled to release energy.
  • the quasi-zero stiffness complex beam 5 balance point is just right. Balance with the exciting force 5010; if the quasi-zero stiffness complex beam equilibrium point moves downward, the left side of the positive stiffness beam 501A and the right stiffness beam right side 501B are pulled to release energy, the negative stiffness curved beam left side 502A and the negative stiffness curved beam right
  • the side 502B is under pressure to absorb energy, and the quasi-zero stiffness complex beam 5 balance point force is just balanced with the exciting force 5010.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,包括左立柱(2)、右立柱(3)、准零刚度复梁(5)、复梁右连接件(8)和复梁左连接件(9),准零刚度复梁(5)右侧与复梁右连接件(8)相连、复梁(5)左侧与复梁左连接件(9)相连,复梁右连接件(8)与右立柱(3)相连、复梁左连接件(9)与左立柱(2)相连,在准零刚度复梁承载位置通过脱粒滚筒轴承座(602)与脱粒滚筒轴(603)相连;正刚度横梁受纵轴流脱粒滚筒动载作用处于平衡位置时的正刚度与负刚度屈梁轴端预应力产生负刚度的总刚度近似为零时,形成准零刚度复梁平衡点;在准零刚度复梁平衡状态处由连接螺杆对正负刚度梁结构进行固定,在正刚度横梁与负刚度屈梁平衡位置空隙内填充连接垫;从而能有效控制纵轴流滚筒脱粒过程中产生的低频振动。

Description

一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构 技术领域
本发明属于联合收割机脱粒分离装置承载机架结构领域,尤其是涉及一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构。
背景技术
联合收割机纵轴流脱粒滚筒在脱粒过程中受水稻茎秆缠绕约束,纵轴流滚筒脱粒过程中滚筒产生的明显振动随脱粒开始而产生、随喂入量波动而变化、随脱粒结束而消失,振动特性瞬变,难以减振。纵轴流滚筒脱粒过程中产生的振动常引起承载机架上离心风机、振动筛、回程板、抖动板、切流滚筒或机架等结构共振,严重影响脱粒装置结构可靠性和脱粒性能。2014年《农业工程学报》的30(8)期文章《履带式全喂入水稻联合收获机振动测试与分析》指出联合收割机脱粒滚筒空载及田间收获的最大激振频率分别12.70Hz和23.44Hz;2014年《Applied Mechanics and Materials》的69(3)期文章《Dynamic balancing of the threshing drum in combine harvesters-The process,sources of imbalance and negative impact of mechanical vibrations》指出联合收割机脱粒滚筒主频振动小于30Hz。国外大型联合收割机自重达10t~15t,常通过调节滚筒转动惯量的方法控制脱粒过程中的振动,但该方法将增大滚筒脱粒过程中的功耗或整机重量;通过液压驱动阻尼控制滚筒脱粒过程中振动的方法,目前很难与现有履带式联合收割机结构相匹配。
由于结构固有频率与刚度成正比,则刚度近似为零的准零刚度结构其固有频率也近似为零,准零刚度结构常被用于中低频的隔振控制。专利CN201510418855.0发明了一种准零刚度隔振系统及其非线性反馈控制方法,能解决被动隔振系统及反馈控制系统中的抑制共振峰,减少隔振系统主共振峰出的振幅;专利CN201610182527.X发明了一种准零刚度压杆,可安装于各类隔振平台,使其在各自由度上具有高静低动刚度特性,从而实现低频隔振;专利CN201610599158.4发明了一种带准零刚度特性的三维隔震/振支座,发明的碟形弹簧刚好处于压平状态,竖向隔震/振系统处于准零刚度状态,能起到隔离竖向振动或地震目的;但现有准零刚度减振结构无法与联合收割机脱粒滚筒结构及承载机架匹配。由于联合收割机收获中,水稻喂入具有时变性,滚筒脱粒过程中随着籽粒的分离及柔性稻秆的旋绕约束,滚筒脱粒过程中存在的偏心负载及不平衡振动无法避免,但难以采用配重、反向振动、液压可控阻尼等方法对滚筒脱粒过程中的振动进行控制。因此,需要针对我国水稻收获期特性设计履带式联合收割机纵轴流滚筒脱粒过程的振动控 制准零刚度减振复梁结构。
发明内容
针对现有履带式联合收割机纵轴流滚筒脱粒过程中滚筒产生的明显振动现象,随脱粒开始而产生、随喂入量波动而变化、随脱粒结束而消失,振动特性瞬变且难以减振,本发明提供了一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,准零刚度复梁右侧与复梁右连接件相连、左侧与复梁左连接件相连,复梁右连接件与右立柱相连、复梁左连接件与左立柱相连,准零刚度复梁中部通过脱粒滚筒轴承座与脱粒滚筒轴相连;正刚度横梁受纵轴流脱粒滚筒动载作用处于平衡位置时正刚度与负刚度屈梁轴端受预应力螺杆挤压产生预应力时负刚度的总刚度近似为零时形成准零刚度复梁平衡点;通过准零刚度复梁平衡点对纵轴流脱粒滚筒脱粒过程中产生的低频振动进行隔振控制。
本发明是通过以下技术手段实现上述技术目的的。
一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,包括固定在底盘机架上的左立柱和右立柱、准零刚度复梁、复梁右连接件和复梁左连接件;所述准零刚度复梁包括正刚度横梁、负刚度屈梁和正负刚度梁连接垫,所述正刚度横梁位于负刚度屈梁上侧、且两者的中部固定连接,正负刚度梁连接垫位于正刚度横梁和负刚度屈梁中部之间的空隙处;所述准零刚度复梁左右两端分别通过复梁右连接件、复梁左连接件连接在左立柱和右立柱上,所述复梁右连接件处设置预应力螺杆,对负刚度屈梁施加预应力;所述脱粒滚筒的脱粒滚筒轴两端通过轴承座装在准零刚度复梁中部。
进一步地,所述正刚度横梁受纵轴流脱粒滚筒动载作用处于平衡位置时的正刚度
Figure PCTCN2017094227-appb-000001
其中E1为正刚度横梁的弹性模量,I1为正刚度横梁的惯性矩,π为常数3.14,L为正刚度横梁的长度;负刚度屈梁轴端受预应力螺杆挤压产生预应力时的负刚度
Figure PCTCN2017094227-appb-000002
其中E2为负刚度屈梁的弹性模量,I2为负刚度屈梁惯性矩,π为常数3.14,l为负刚度屈梁的长度,k为负刚度屈梁自由状态的刚度;正刚度横梁和负刚度屈梁在平衡点处的刚度k++K-≈0即产生准零刚度复梁平衡点,在准零刚度复梁平衡状态处由正负刚度梁连接螺杆固定,所述正负刚度梁连接螺杆为U型螺杆。
进一步地,所述负刚度屈梁右端连接有负刚度屈梁应力横板,所述应力横板的右端面上设置有螺杆定位套,所述预应力螺杆延伸至螺杆定位套中、由其定位,所述负刚度 屈梁应力横板左端面设有负刚度屈梁右连接耳,负刚度屈梁右端通过螺栓与负刚度屈梁右连接耳相连。
进一步地,所述复梁右连接件包括复梁右连接U形套、预应力螺帽,复梁右连接U形套由2个螺栓固定在右立柱上;所述复梁右连接U形套上部设置有用于装配正刚度横梁的圆形通孔,预应力螺帽固定在所述复梁右连接U形套右端面上,预应力螺杆穿过右立柱和预应力螺帽与负刚度屈梁应力横板相连;所述复梁左连接件包括复梁左连接U套和左连接U形套耳,复梁左连接U套由2个螺栓固定在左立柱上;复梁左连接件上部设有用于装配正刚度横梁的圆形通孔;负刚度屈梁左端为圆环状,通过螺栓固定在左连接U形套耳上;正刚度横梁两端分别装在复梁左连接件、复梁右连接U形套的圆形通孔内。
进一步地,所述负刚度屈梁中部上侧、正刚度横梁中部下侧分别固定有一个定位套圈504;所述负刚度屈梁中部与正刚度横梁中部通过定位套圈相连。
进一步地,所述准正刚度横梁和负刚度屈梁均为宽度40mm~60mm,厚2mm~4mm,长500mm~600mm的板簧;负刚度屈梁左侧弯出内径为12mm~16mm圆钩,负刚度屈梁右侧边缘以内25mm处开有内孔径为12mm~16mm的两个通孔。
本发明的有益效果:
(1)本发明针对纵轴流脱粒过程中受水稻茎秆缠绕约束产生的低频隔振设计了一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,由正刚度横梁、负刚度屈梁、定位套圈、正负刚度梁连接螺杆、正负刚度梁连接垫构成,在正刚度横梁受纵轴流脱粒滚筒动载作用处于平衡位置时正刚度与负刚度屈梁轴端预应力产生负刚度的总刚度近似为零时,即形成准零刚度复梁平衡点;在准零刚度复梁平衡点位置具有高静低动刚度特性;通过准零刚度复梁平衡点对纵轴流脱粒滚筒脱粒过程中产生的低频振动进行隔振控制,解决了滚筒脱粒过程中随着籽粒的分离及柔性稻秆的旋绕约束存在的偏心负载及不平衡振动产生的振动传递。
(2)本发明的预应力螺杆穿过预应力螺帽并与负刚度屈梁应力横板接触,预应力螺杆左端头由螺杆定位套限位,由预应力螺杆与预应力螺帽进行预紧对负刚度屈梁应力横板施加预应力,负刚度屈梁的轴端预应力施加结构简单,通过调节预应力螺杆可以方便控制负刚度屈梁的负刚度大小,负刚度屈梁结构调节和操作简单;也可以根据田间作物的产量和生长特性精准调节负刚度屈梁轴端预应力构建适用不同作物收获的准零刚度复梁结构。
(3)本发明的正刚度横梁和负刚度屈梁在平衡点处的正负总刚度为零时,即产生准 零刚度复梁平衡点控制纵轴流滚筒脱粒过程振动,准零刚度复梁结构及外形尺寸与现有履带式联合收割机匹配,可以直接替换现有履带式联合收割机上纵轴流脱粒滚筒承载横梁,也可以将本发明直接应用在现有结构尺寸的履带式水稻联合收割机上,减少了研发成本,极大的提高了本发明的通用性和普适性。
(4)本发明的准零刚度复梁右侧与复梁右连接件相连、准零刚度复梁左侧与复梁左连接件相连,复梁右连接U形套套在右立柱上、所述复梁左连接U套套在左立柱上,再将准零刚度复梁中部通过脱粒滚筒轴承座与脱粒滚筒的脱粒滚筒轴相连,本发明采用在轴端施加预应力的方法构建可控负刚度屈梁,预应力屈梁不改变滚筒机架原有结构和工作参数,保证了动载激振下承载横梁强度和稳定性,解决了采用现有准零刚度结构承载纵轴流滚筒动载时难以保证滚筒脱粒过程中动载荷承载的强度和稳定性问题。
附图说明
图1准零刚度复梁结构与纵轴流脱粒滚筒的装配图。
图2准零刚度复梁结构与纵轴流脱粒滚筒装配结构原理图。
图3准零刚度复梁通过连接件与立柱装配的俯视图。
图4负刚度屈梁右侧应力构件装配示意图。
图5负刚度屈梁应力板受力构件装配示意图。
图6复梁左连接件俯视图。
图7复梁左连接件右视图。
图8复梁右连接件俯视图。
图9复梁右连接件左视图。
图10复梁右连接件右视图。
图11正刚度横梁主视图。
图12负刚度屈梁主视图。
图13负刚度屈梁俯视图。
图14正负刚度梁连接螺杆主视图。
图15定位套圈俯视图。
图16负刚度屈梁右连接耳主视图。
图17负刚度屈梁应力横板主视图。
图18螺杆定位套主视图。
图19左连接U形套耳主视图。
图20预应力螺杆主视图。
图21左立柱主视图。
图22右立柱主视图。
图23正刚度横梁与负刚度屈梁自由状态结构示意图。
图24准零刚度复梁控制纵轴流滚筒低频振动原理图。
附图标记说明如下:
1-底盘机架,2-左立柱,3-右立柱,4-凹板筛,5-准零刚度复梁,501-正刚度横梁,501A-正刚度横梁左侧,501B-正刚度横梁右侧,502-负刚度屈梁,502A-负刚度曲梁左侧,502B-负刚度曲梁右侧,503-正负刚度梁连接垫,504A-正刚度横梁套圈,504B-负刚度屈梁套圈,505-正负刚度梁连接螺杆,506-螺杆定位套,507-负刚度屈梁连接右螺杆,508-负刚度屈梁右连接耳,509-负刚度屈梁应力横板,5010-激振力,6-脱粒滚筒,601-脱粒滚筒体,602-脱粒滚筒轴承座,603-脱粒滚筒轴,7-滚筒顶盖,8-复梁右连接件,801-复梁右连接U形套,802-预应力螺帽,803-预应力螺杆,9-复梁左连接件,901-复梁左连接U套,902-左连接U形套耳,902A-左连接U形套耳A,902B-左连接U形套耳B。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1和图2所述,本发明所述的控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,包括左立柱2、右立柱3、准零刚度复梁5、复梁右连接件8和复梁左连接件9。左立柱2、右立柱3固定在底盘机架上。所述准零刚度复梁5右侧通过复梁右连接件8连接在右立柱3上,准零刚度复梁5左侧通过复梁左连接件9连接在左立柱2上。所述脱粒滚筒6包括脱粒滚筒体601、脱粒滚筒轴承座602、脱粒滚筒轴603,脱粒滚筒体601上侧为滚筒顶盖7、下侧为凹板筛4;脱粒滚筒6的脱粒滚筒轴603通过脱粒滚筒轴承座602固定在所述准零刚度复梁5中部。
所述准零刚度复梁5包括正刚度横梁501、负刚度屈梁502和正负刚度梁连接垫503,所述正刚度横梁501位于负刚度屈梁502上侧,正负刚度梁连接垫503位于正刚度横梁501和负刚度屈梁502之间。所述正刚度横梁501与负刚度屈梁502的中部固定连接。
如图3、图4和图5所示,所述负刚度屈梁502上侧中部安装有负刚度屈梁套圈504B,负刚度屈梁502右端与负刚度屈梁应力横板509相连;所述负刚度屈梁应力横板509左侧面上下对称安装有两个负刚度屈梁右连接耳508,负刚度屈梁应力横板509右侧中心 位置安装有螺杆定位套506;负刚度屈梁502右侧与负刚度屈梁右连接耳508通过负刚度屈梁连接右螺杆507固定。
如图6和图7所示,所述复梁左连接件9包括复梁左连接U套901和左连接U形套耳902,所述复梁左连接U套901左右两侧面上开有直径为12mm~16mm的2个通孔,两孔中心间距为100mm~120mm。所述复梁左连接U套901套在左立柱2上,复梁左连接U套901由2个直径为10mm~14mm的螺栓与左立柱2进行固定。复梁左连接件9上部设有用于装配正刚度横梁501的圆形通孔;正刚度横梁501的左端穿入复梁左连接件9上部的圆形通孔内。左连接U形套耳902位于所述复梁左连接件9右侧下部,分别为左连接U形套耳A 902A和左连接U形套耳B 902B,位于所述2通孔中间且对称安装。左连接U形套耳A902A和左连接U形套耳B902B间距为6mm~8mm。负刚度屈梁502左端为圆环状,并位于左连接U形套耳A 902A和左连接U形套耳B 902B中间,通过螺栓固定在左连接U形套耳902上。
如图8、图9、图10所示,所述复梁右连接件8包括复梁右连接U形套801、预应力螺帽802、预应力螺杆803;所述复梁右连接U形套801左侧面上开有直径为12mm~16mm的2个通孔,相邻两孔中心间距为40mm~60mm,2个通孔中间位置开有6mm×6mm的方形通孔;复梁右连接U形套801右侧面上开有直径为12mm~16mm的3个通孔,相邻两孔中心间距为40mm~60mm;复梁右连接U形套801右侧中间通孔内嵌有外径为12mm~16mm的预应力螺帽802。复梁右连接U形套801套在右立柱3上,复梁右连接U形套801由2个直径为10mm~14mm的螺栓与右立柱3进行固定;所述复梁右连接U形套801上部设置有用于装配正刚度横梁501的圆形通孔,正刚度横梁501右端穿入所述复梁右连接U形套801左上部的圆形通孔内。负刚度屈梁502右侧穿过复梁右连接U形套801左侧方孔,预应力螺杆803穿过预应力螺帽802、右立柱3与负刚度屈梁应力横板509接触,预应力螺杆803左端头由螺杆定位套506限位,由预应力螺杆803与预应力螺帽802进行预紧对负刚度屈梁应力横板509施加预应力。
如图11、图12、图13所示,所述准正刚度横梁501和负刚度屈梁502均为宽度40mm~60mm,厚2mm~4mm,长500mm~600mm的板簧;负刚度屈梁502左侧弯出内径为12mm~16mm圆钩,负刚度屈梁502右侧边缘以内25mm处开有内孔径为12mm~16mm的两个通孔。
所述正刚度横梁501下侧中部安装有正刚度横梁套圈504A,负刚度屈梁套圈504B与正刚度横梁套圈504A通过正负刚度梁连接螺杆505相连,实现负刚度屈梁502与正刚 度横梁501中部的固定连接。所述正负刚度梁连接螺杆505为直径为10mm~12mm的U型螺杆,如图14所示,两端螺杆中心间距为50mm~60mm。所述正刚度横梁套圈504A和负刚度屈梁套圈504B的内孔径为12mm~16mm、厚度为2mm、长度为10mm~12mm的空心圆柱,如图15所示。
所述负刚度屈梁右连接耳508外形为40mm×60mm、厚为4mm~6mm的钢板,中间对称开有12mm~16mm的2个通孔,如图16所示。所述负刚度屈梁应力横板509外形为40mm×60mm、厚为4mm~6mm的钢板,如图17所示;所述螺杆定位套506内径为12mm~16mm、高度为8mm~10mm、厚为4mm~6mm的钢圈,如图18所示。
左连接U形套耳A902A和左连接U形套耳B 902B厚度为4mm~6mm、宽度为度40mm~60mm、高度为50mm~60mm的矩形与半圆组合钢板,在U形套耳A 902A和左连接U形套耳B 902B一段开有内孔径为12mm~16mm的通孔,如图19所示。所述预应力螺杆803直径为10mm~14mm、长度为50mm~60mm的螺栓,如图20所示。
如图21和图22所示,所述左立柱2和右立柱3为壁厚2mm~3mm,截面形状为40mm×40mm的方钢;左立柱2左右两侧面上开有直径为12mm~16mm的2个通孔,两孔中心间距为100mm~120mm;右立柱3左右两侧面上开有直径为12mm~16mm的3个通孔,两孔中心间距为40mm~60mm;左立柱2上中间12mm~16mm的通孔内嵌有外径为12mm~16mm的预应力螺帽802。
如图23所示,所述正刚度横梁501受纵轴流脱粒滚筒6动载作用处于平衡位置时的正刚度
Figure PCTCN2017094227-appb-000003
其中E1为正刚度横梁501的弹性模量,I1为正刚度横梁501的惯性矩,π为常数3.14,L为正刚度横梁501的长度;,负刚度屈梁502轴端受预应力螺杆803挤压产生预应力时的负刚度
Figure PCTCN2017094227-appb-000004
其中E2为负刚度屈梁502的弹性模量,I2为负刚度屈梁502惯性矩,π为常数3.14,l为负刚度屈梁502的长度,k为负刚度屈梁502自由状态的刚度;正刚度横梁501和负刚度屈梁502在平衡点处的刚度k++K-≈0即产生准零刚度复梁5平衡点,在准零刚度复梁5平衡状态处由正负刚度梁连接螺杆505固定,在正刚度横梁501和负刚度屈梁502平衡状态的中间放置正负刚度梁连接垫503。
如图24所示,所述正刚度横梁501包括正刚度横梁左侧501A和正刚度横梁右侧501B,负刚度屈梁502包括负刚度曲梁左侧502A和负刚度曲梁右侧502B;正刚度横梁 501与负刚度屈梁502在正负刚度梁连接垫503处形成准零刚度结构平衡点;在准零刚度复梁5平衡点处受到激振力5010时,若准零刚度复梁平衡点向上运动,则正刚度横梁左侧501A和正刚度横梁右侧501B受压吸收能量,负刚度曲梁左侧502A和负刚度曲梁右侧502B受拉释放能量,准零刚度复梁5平衡点合力正好与激振力5010平衡;若准零刚度复梁平衡点向下运动,则正刚度横梁左侧501A和正刚度横梁右侧501B受拉释放能量,负刚度曲梁左侧502A和负刚度曲梁右侧502B受压吸收能量,准零刚度复梁5平衡点合力正好与激振力5010平衡。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (6)

  1. 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,包括固定在底盘机架上的左立柱(2)和右立柱(3)、准零刚度复梁(5)、复梁右连接件(8)和复梁左连接件(9);所述准零刚度复梁(5)包括正刚度横梁(501)、负刚度屈梁(502)和正负刚度梁连接垫(503),所述正刚度横梁(501)位于负刚度屈梁(502)上侧、且两者的中部固定连接,正负刚度梁连接垫(503)位于正刚度横梁(501)和负刚度屈梁(502)中部之间的空隙处;所述准零刚度复梁(5)左右两端分别通过复梁右连接件(8)、复梁左连接件(9)连接在左立柱(2)和右立柱(3)上,所述复梁右连接件(8)处设置预应力螺杆(803),对负刚度屈梁(502)施加预应力;所述脱粒滚筒(6)的脱粒滚筒轴(603)两端通过轴承座(602)装在准零刚度复梁(5)中部。
  2. 根据权利要求1所述的控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,所述正刚度横梁(501)受纵轴流脱粒滚筒(6)动载作用处于平衡位置时的正刚度
    Figure PCTCN2017094227-appb-100001
    其中E1为正刚度横梁(501)的弹性模量,I1为正刚度横梁(501)的惯性矩,π为常数3.14,L为正刚度横梁(501)的长度;负刚度屈梁(502)轴端受预应力螺杆(803)挤压产生预应力时的负刚度
    Figure PCTCN2017094227-appb-100002
    其中E2为负刚度屈梁(502)的弹性模量,I2为负刚度屈梁(502)惯性矩,π为常数3.14,l为负刚度屈梁(502)的长度,k为负刚度屈梁(502)自由状态的刚度;正刚度横梁(501)和负刚度屈梁(502)在平衡点处的刚度k++K-≈0即产生准零刚度复梁(5)平衡点,在准零刚度复梁(5)平衡状态处由正负刚度梁连接螺杆(505)固定,所述正负刚度梁连接螺杆(505)为U型螺杆。
  3. 根据权利要求1所述的控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,所述负刚度屈梁(502)右端连接有负刚度屈梁应力横板(509),所述应力横板(509)的右端面上设置有螺杆定位套(506),所述预应力螺杆(803)延伸至螺杆定位套(506)中、由其定位,所述负刚度屈梁应力横板(509)左端面设有负刚度屈梁右连接耳(508),负刚度屈梁(502)右端通过螺栓与负刚度屈梁右连接耳(508)相连。
  4. 根据权利要求3所述的控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,所述复梁右连接件(8)包括复梁右连接U形套(801)、预应力螺帽(802),复梁右连接U形套(801)由2个螺栓固定在右立柱(3)上;所述复梁右连接U形套 (801)上部设置有用于装配正刚度横梁(501)的圆形通孔,预应力螺帽(802)固定在所述复梁右连接U形套(801)右端面上,预应力螺杆(803)穿过右立柱(3)和预应力螺帽(802)与负刚度屈梁应力横板(509)相连;所述复梁左连接件(9)包括复梁左连接U套(901)和左连接U形套耳(902),复梁左连接U套(901)由2个螺栓固定在左立柱(2)上;复梁左连接件(9)上部设有用于装配正刚度横梁(501)的圆形通孔;负刚度屈梁(502)左端为圆环状,通过螺栓固定在左连接U形套耳(902)上;正刚度横梁(501)两端分别装在复梁左连接件(9)、复梁右连接U形套(801)的圆形通孔内。
  5. 根据权利要求1所述的一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,所述负刚度屈梁(502)中部上侧、正刚度横梁(501)中部下侧分别固定有负刚度屈梁套圈504B、正刚度横梁套圈504A;所述负刚度屈梁套圈504B、正刚度横梁套圈504A通过正负刚度梁连接螺杆(505)相连。
  6. 根据权利要求1-5中任一项所述的控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构,其特征在于,所述准正刚度横梁(501)和负刚度屈梁(502)均为宽度40mm~60mm,厚2mm~4mm,长500mm~600mm的板簧;负刚度屈梁(502)左侧弯出内径为12mm~16mm圆钩,负刚度屈梁(502)右侧边缘以内25mm处开有内孔径为12mm~16mm的两个通孔。
PCT/CN2017/094227 2017-04-26 2017-07-25 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构 WO2018196188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1801239.3A GB2565171B (en) 2017-07-25 2017-07-25 Quasi-zero stiffness composite beam for controlling low-frequency vibration of longitudinal axial threshing cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710283552.1A CN107135749B (zh) 2017-04-26 2017-04-26 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构
CN201710283552.1 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018196188A1 true WO2018196188A1 (zh) 2018-11-01

Family

ID=59775125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094227 WO2018196188A1 (zh) 2017-04-26 2017-07-25 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构

Country Status (2)

Country Link
CN (1) CN107135749B (zh)
WO (1) WO2018196188A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108124602B (zh) * 2018-01-03 2019-07-23 湖南农业大学 用于芡欧鼠尾草脱粒的浮动控制轴流式脱粒方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069693A2 (en) * 2001-03-01 2002-09-12 Dotan Ltd. Tree trunk shaker
RU2240406C2 (ru) * 2003-01-04 2004-11-20 Иркутский государственный университет путей сообщения (ИрГУПС) Сейсмостойкое здание
CN102678804A (zh) * 2012-05-10 2012-09-19 上海交通大学 滑动梁和弹簧组合非线性超低频隔振器
RU2557865C1 (ru) * 2014-06-20 2015-07-27 Анвар Рашитович Валеев Амортизатор с квазинулевой жесткостью
CN105864339A (zh) * 2016-06-01 2016-08-17 福州大学 一种适用于隔离微幅低频振动的准零刚度隔振器及其实现方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201896907U (zh) * 2010-11-25 2011-07-13 陕西通力专用汽车有限责任公司 一种柔性变速箱辅助支承装置
CN202873374U (zh) * 2012-10-31 2013-04-17 江苏大学 一种360°轴流脱粒分离系统
CN105114524B (zh) * 2015-07-27 2017-08-01 上海交通大学 基于现有舰船隔振系统的改进方法及装置
CN205596614U (zh) * 2016-02-29 2016-09-28 四川刚毅科技集团有限公司 小型全喂入联合收割机纵轴流脱粒装置
CN205780496U (zh) * 2016-06-01 2016-12-07 福州大学 一种适用于隔离微幅低频振动的准零刚度隔振器
CN106402262B (zh) * 2016-11-11 2017-10-27 中国人民解放军海军工程大学 一种刚度可调的磁性准零刚度隔振器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069693A2 (en) * 2001-03-01 2002-09-12 Dotan Ltd. Tree trunk shaker
RU2240406C2 (ru) * 2003-01-04 2004-11-20 Иркутский государственный университет путей сообщения (ИрГУПС) Сейсмостойкое здание
CN102678804A (zh) * 2012-05-10 2012-09-19 上海交通大学 滑动梁和弹簧组合非线性超低频隔振器
RU2557865C1 (ru) * 2014-06-20 2015-07-27 Анвар Рашитович Валеев Амортизатор с квазинулевой жесткостью
CN105864339A (zh) * 2016-06-01 2016-08-17 福州大学 一种适用于隔离微幅低频振动的准零刚度隔振器及其实现方法

Also Published As

Publication number Publication date
CN107135749A (zh) 2017-09-08
CN107135749B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
GB2565171A (en) Quasi-Zero stiffness composite beam structure for controlling Low-Frequency vibration of Longitudinal Axial flow threshing drum
WO2018196188A1 (zh) 一种控制纵轴流脱粒滚筒低频振动的准零刚度复梁结构
WO2012051563A1 (en) Seismic vibrator having composite baseplate
US5396029A (en) Vehicle-carried vibrator for producing seismic vibrations
CN209082751U (zh) 一种高层建筑抗震架
JP2007015657A (ja) 牽引式四輪作業機のサスペンション装置およびこれを用いた牽引式四輪作業機
CN212697637U (zh) 一种烟叶梗头对齐装置
CN213359000U (zh) L形转动摩擦阻尼器
CN110453801B (zh) 一种高柔结构的多方向减震防护系统及其减震方法
CN219175528U (zh) 一种率无关被动负刚度阻尼减震装置
CN202326254U (zh) 真空泵的减振装置
CN208167968U (zh) 一种建筑用伸缩式钢支架结构
CN110513432A (zh) 一种双非线性隔振装置
CN214744381U (zh) 一种航空发动机附件维护支架
CN213358998U (zh) 菱形转动摩擦阻尼器
CN215253619U (zh) 一种双向调谐质量阻尼减振装置
CN211342010U (zh) 一种具有抗震性的厂房钢结构
CN211501471U (zh) 一种梁柱减震结构
CN211665930U (zh) 具有减震作用的钢结构加劲装置
CN211341882U (zh) 一种建筑工程用调节式抗震加固板
CN217951628U (zh) 一种高强度稳定型电气设备抗震支架
CN106969042A (zh) 一种缓冲型轴承座
CN219887226U (zh) 一种抗震钢结构支架
CN103883671B (zh) 一种撑杆内置吸振装置
CN215635701U (zh) 一种矩形风管双向抗震支架

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201801239

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170725

WWE Wipo information: entry into national phase

Ref document number: 1801239.3

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907964

Country of ref document: EP

Kind code of ref document: A1