WO2018196076A1 - 背光模组及液晶显示装置 - Google Patents

背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2018196076A1
WO2018196076A1 PCT/CN2017/085861 CN2017085861W WO2018196076A1 WO 2018196076 A1 WO2018196076 A1 WO 2018196076A1 CN 2017085861 W CN2017085861 W CN 2017085861W WO 2018196076 A1 WO2018196076 A1 WO 2018196076A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
region
light guide
backlight module
Prior art date
Application number
PCT/CN2017/085861
Other languages
English (en)
French (fr)
Inventor
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/533,647 priority Critical patent/US20180306960A1/en
Publication of WO2018196076A1 publication Critical patent/WO2018196076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide

Definitions

  • the present invention relates to the field of display, and in particular to a backlight module and a liquid crystal display device.
  • the backlight module of the LCD includes two types of light-in which are side-input and direct-lit.
  • the light source 11 is disposed on the side of the light guide plate 12 , and the light emitted by the light source 11 enters the light guide plate 12 from the light incident surface of the light guide plate 12 , and The inside of the light guide plate 12 is diffused and reflected from the light-emitting surface of the light guide plate 12, and is then supplied to the liquid crystal panel 14 through various optical films 13, such as diffusion sheets, to form a uniform surface light source. Since the light emitted by the light source 11 is relatively divergent, it is difficult to achieve regionalization after entering the light guide plate 12, that is, it is difficult to achieve local dimming.
  • the light source 21 is disposed under the light guide plate 22, and the light emitted by the light source 21 passes through the light guide plate 22 and various optical films 23 to form a uniform surface light source. And supplied to the liquid crystal panel 24.
  • the direct light backlight module can realize the area brightness control by controlling the light source 21 under the light guide plate 22.
  • a light mixing distance must be set between the light source 21 and the light guide plate 22, so that the light emitted by the light source 21 is sufficiently mixed, thereby ensuring uniform brightness of the display area.
  • the setting of the light mixing distance is not conducive to the thin and light design requirements of the backlight module.
  • the present invention provides a backlight module and a liquid crystal display device, which can realize the brightness control of the backlight module and the thin and light design requirements of the backlight module.
  • a backlight module includes a plurality of brightness adjustment regions arranged in a matrix.
  • the backlight module includes a light guide plate and a light source, and the light guide plate includes parallel to the light guide plate. a first region and a second region disposed in a direction, the thickness of the light guide plate in the first region is smaller than the thickness thereof in the second region, and the light guide plate has a preset vertical between the bottom of the first region and the bottom of the second region Distance, the light guide plate is provided with a diffraction grating in the first region, and the light The source is located below the diffraction grating, and the light source comprises a micron-level light emitting diode LED.
  • the light guide plate is provided with a light incident surface on a side of the second region adjacent to the first region, and the light incident surface is disposed adjacent to the light source, and the diffraction grating is used for the light source.
  • the emitted light is diffracted such that the light enters the second region of the light guide plate from the light incident surface at a predetermined polar angle.
  • a backlight module includes a light guide plate and a light source.
  • the light guide plate includes a first region and a second region disposed along a direction parallel to the light guide plate.
  • the light guide plate is provided with a diffraction grating in the first region, and the light source is located in the diffraction grating.
  • the light guide plate is provided with a light incident surface on a side of the second region adjacent to the first region, and the diffraction grating is used for diffracting light emitted by the light source, so that the light enters the light guide plate from the light incident surface at a predetermined polar angle. region.
  • a liquid crystal display device includes the backlight module, the backlight module includes a light guide plate and a light source, and the light guide plate includes a first region and a second region disposed along a direction parallel to the light guide plate, and the light guide plate is in the first a region is provided with a diffraction grating, the light source is located below the diffraction grating, and the light guide plate is provided with a light incident surface on a side of the second region adjacent to the first region, and the diffraction grating is used for diffracting light emitted by the light source so that the light is at a predetermined pole The corner enters the second area of the light guide plate from the light entrance surface.
  • the light guide plate of the present invention is provided with a diffraction grating in a first region, and a side of the second region adjacent to the diffraction grating is disposed as a light incident surface, and a light guide plate of the second region can be regarded as a side light-introducing light guide plate.
  • the invention is equivalent to introducing the vertical direction light into the side light-introducing light guide through the diffraction grating, and the light mixing distance required by the direct-lighting backlight module is not needed, thereby realizing the brightness control of the backlight module while realizing the brightness control of the area. Design requirements.
  • FIG. 1 is a cross-sectional view showing the structure of an LCD having a side-lit backlight module in the prior art
  • FIG. 2 is a cross-sectional view showing the structure of an LCD having a direct light backlight module in the prior art
  • FIG. 3 is a cross-sectional view showing the structure of a backlight module according to a first embodiment of the present invention
  • FIG. 4 is a top plan view showing the structure of the backlight module shown in FIG. 3;
  • Figure 5 is a cross-sectional view showing the structure of a backlight module according to a second embodiment of the present invention.
  • FIG. 6 is a top plan view showing the structure of the backlight module shown in FIG. 5;
  • Fig. 7 is a cross-sectional view showing the structure of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 3 is a backlight module according to a first embodiment of the present invention.
  • the backlight module 30 includes a back plate 31 and a plurality of light sources 32, a light guide plate 33, a driving circuit 34, and various optical films 35 carried on the back plate 31.
  • the plurality of light sources 32 are connected to the driving circuit 34.
  • the driving circuit 34 can be an FPCB (Flexible Printed Circuit Board) and disposed on a side of the backing plate 31 adjacent to the light guiding plate 33.
  • the driving circuit 34 can individually control each light source. 32 switches and brightness.
  • the light guide plate 33 and the optical film 35 are disposed above the plurality of light sources 32 for converting the light emitted from the plurality of light sources 32 into a uniform surface light source and supplied to the liquid crystal panel disposed on the light exit surface of the light guide plate 33.
  • the optical film 35 includes, but is not limited to, a diffuser and a polarizer.
  • the light guide plate 33 includes a first region 331 and a second region 332 which are alternately arranged in parallel in the direction parallel to the light guide plate 33, and the width of the first region 331 is smaller than the width of the second region 332.
  • the thickness of the light guide plate 33 in the first region 331 is equal to its thickness in the second region 332.
  • the light guide plate 33 is provided with a diffraction grating 333 in the first region 331.
  • the diffraction grating 333 may be located on the bottom surface of the light guide plate 33 of the first region 331, and each of the light sources 32 is disposed below the corresponding one of the diffraction gratings 333.
  • the light guide plate 33 is provided with a light incident surface on a side of the second region 332 adjacent to the first region 331, that is, the light incident surface is disposed on the side of the light guide plate 33 of the second region 332, and the light guide plate of the second region 332 22 can be regarded as a side-lit light guide.
  • the light guide plate 33 may be an integrally formed structure, and the first region 331 and the second region 332 are electrically connected to each other, and the light guide plate 33 has the same refractive index at the first region 331 and the second region 332.
  • the entrance surface is not a side that is exposed to the outside.
  • the diffraction grating 333 is for diffracting the light emitted from the light source 32 such that the light enters the second region 332 of the light guide plate 33 from the light incident surface at a predetermined polar angle. That is to say, the diffraction grating 333 can convert the light in the vertical direction emitted from the light source 32 into the light in the non-vertical direction.
  • the diffraction grating 333 can make the light emitted by the light source 32 diffract only after the first-order diffraction peak enters the visible region, and the other diffraction peaks are located outside the visible region, in other words, the light passing through the diffraction grating 333 (out Only the first-order diffraction peak can enter the second region 332 of the light guide plate 33 from the light incident surface at a predetermined polar angle.
  • the polar coordinate ( ⁇ 1 , ⁇ 1 ) of the first-order diffraction peak of the emitted light satisfies the following relationship:
  • Tan ⁇ 1 sin ⁇ /(cos ⁇ -N*sin ⁇ *( ⁇ / ⁇ )
  • ⁇ 1 represents the polar diameter of the outgoing light
  • ⁇ 1 represents the polar angle of the outgoing light
  • represents the period of the diffraction grating 333
  • represents the azimuth angle of the outgoing light
  • N represents the refractive index of the light guide plate 33
  • represents the entrance diffraction grating.
  • represents the wavelength of incident light.
  • the present embodiment can select the light guide plate 33 having a predetermined refractive index so that only the first-order diffraction peaks of the light enter the visible region after being diffracted.
  • the light guide plate 33 of the present embodiment can totally reflect the diffracted light having a predetermined polar angle on the top surface of the first region 331 to prevent light from the light guide plate 33 in the first region 331.
  • the top surface is injected into the air.
  • the light guide plate 33 of the second region 332 has the same structure as the conventional side light-introducing light guide plate.
  • the light guide plate 33 may be provided with a plurality of collision points 334 at the bottom of the second region 332, and the light enters the second region 332 at a predetermined polar angle. After each of the bumps 334 is irradiated, diffuse reflection occurs, and the diffused light is emitted from the light guide plate 33 on the light exit surface of the second region 332, and passes through the optical film 35 to form a uniform surface light source and is supplied to the liquid crystal panel.
  • the backlight module 30 includes a plurality of brightness adjustment regions 36 arranged in a matrix.
  • Each of the brightness control regions 36 is provided with a light source 32, a first region 331 and a second region 332.
  • each light source 32 is individually controlled by the driving circuit 34, and the brightness of each brightness control area 36 can be adjusted, and the area brightness control can be easily realized.
  • the vertical direction light is introduced into the light incident surface of the side light-introducing light guide plate (the light guide plate 33 of the second region 332) by the diffraction grating 333, and the light mixing required for the direct light-type backlight module is not required.
  • the distance can be used to facilitate the brightness control of the backlight module 30 while facilitating the brightness control of the area.
  • the light source 32 can be a micro-light LED (micro-light-emitting diode), that is, the LED has a micron-thickness, so that the thickness of the backlight module 30 can be further reduced, which is advantageous for the thin and light design of the backlight module 30. Claim.
  • FIG. 5 is a backlight module according to a second embodiment of the present invention.
  • the backlight module 50 includes a back plate 51 and a plurality of light sources 52, a light guide plate 53, a driving circuit 54, and various optical films 55 carried on the back plate 51.
  • the plurality of light sources 52 are connected to the driving circuit 54.
  • the driving circuit 54 can be an FPCB and disposed on a side of the back plate 51 adjacent to the light guiding plate 53, and the driving circuit 54 can be separately controlled. The switches and brightness of each of the light sources 52 are made.
  • the light guide plate 53 and the optical film 55 are disposed above the plurality of light sources 52 for converting the light emitted from the plurality of light sources 52 into a uniform surface light source and supplying the light to the liquid crystal panel disposed on the light exit surface of the light guide plate 53.
  • the optical film 55 includes, but is not limited to, a diffusion sheet and a polarizing plate.
  • the light guide plate 53 includes a first region 531 and a second region 532 disposed in a direction parallel to the light guide plate 53, and the width of the first region 531 is smaller than the width of the second region 532.
  • the thickness of the light guide plate 53 in the first region 531 is smaller than the thickness thereof in the second region 532, that is, the light guide plate 53 has a predetermined vertical distance between the bottom of the first region 531 and the bottom of the second region 532.
  • the light guide plate 53 is provided with a diffraction grating 533 at a first region 531.
  • the diffraction grating 533 may be located at the bottom of the light guide plate 53 of the first region 531, and each of the light sources 52 is disposed below a corresponding one of the diffraction gratings 533.
  • the light guide plate 53 is provided with a light incident surface on a side of the second region 532 adjacent to the first region 531, that is, the light incident surface is disposed on the side of the light guide plate 53 of the second region 532, and the light guide plate 22 of the second region 532 is disposed. Can be considered as a side-lit light guide.
  • the light guide plate 53 may be an integrally formed structure, and the first region 531 and the second region 532 are electrically connected to each other, and the light guide plate 53 has the same refractive index at the first region 531 and the second region 532.
  • the diffraction grating 533 is for diffracting the light emitted from the light source 52 such that the light enters the second region 532 of the light guide plate 53 from the light incident surface at a predetermined polar angle.
  • the light guide plate 53 of the second region 532 has the same structure as the conventional side light-introducing light guide plate.
  • the light guide plate 53 may be provided with a plurality of collision points 534 at the bottom of the second region 532, and the light enters the second region 532 at a predetermined polar angle. After each of the bumps 534 is irradiated, diffuse reflection occurs, and the diffused light is emitted from the light guide plate 53 on the light exit surface of the second region 532, passes through the optical film 55, and a uniform surface light source is formed and supplied to the liquid crystal panel.
  • the light guide plate 53 of the present embodiment is equivalent to providing a groove above each light source 52, and the light source 52 can be located in the corresponding groove, and the light guide plate 53 is The light incident surface of the second region 532 is disposed adjacent to the light source 52. Based on this, the light guide plate 53 of the second region 532 can receive light not only by the diffraction grating 533 but also directly from the light source 52, thereby improving light utilization efficiency.
  • the backlight module 60 of the present embodiment includes a plurality of brightness adjustment regions 66 arranged in a matrix, and each brightness adjustment region 66 is provided with a light source 52, a first region 531 and a second region. 532.
  • each light source is individually controlled by the driving circuit 54. 52, the brightness of each brightness adjustment area 56 can be adjusted, and the area brightness control can be easily realized.
  • the vertical direction light is introduced into the light incident surface of the side light-introducing light guide plate (the light guide plate 53 of the second region 532) by the diffraction grating 533, and the light mixing required for the direct-lighting backlight module is not required.
  • the distance can be used to facilitate the brightness control of the backlight module 50 while facilitating the brightness control of the area.
  • the light source 52 can be a micron-sized LED, so that the thickness of the backlight module 50 can be further reduced, which is beneficial to the thin and light design requirements of the backlight module 50.
  • the backlight module 30 shown in FIG. 3 and the backlight module 50 shown in FIG. 5 are only schematic diagrams for explaining the purpose of the present invention, and the backlight module of the present invention may have other structures.
  • the backlight module may further include a plastic frame, and the plastic frame is disposed around the light guide plate, and the liquid crystal panel disposed on the light-emitting surface of the light guide plate is pressed and fixed on the light guide plate.
  • the light guide plate of the present invention can be made of PC (Polycarbonate, polycarbonate or engineering plastic) or glass, and since the diffusion of light in the glass is better than PC, the point source is converted into a surface light source.
  • the path of light required to be refracted in the glass light guide plate is smaller than the path required to be refracted in the light guide plate of the PC material, so the use of the glass material can reduce the thickness of the light guide plate, thereby reducing the entire backlight mode.
  • the thickness of the group is smaller than the path required to be refracted in the light guide plate of the PC material, so the use of the glass material can reduce the thickness of the light guide plate, thereby reducing the entire backlight mode.
  • the present invention also provides a liquid crystal display device.
  • the liquid crystal display device 70 includes a backlight module 71 and a liquid crystal panel 72 disposed in a light emitting direction of the backlight module 71 .
  • the backlight module 71 can be the backlight module 30 shown in FIG. 3 or the backlight module 50 shown in FIG. 5 . Therefore, the liquid crystal display device 70 can be generated by the backlight modules 30 and 50 . Beneficial effect.

Abstract

一种背光模组(30)及液晶显示装置(70),背光模组(30)的导光板(33)包括第一区域(331)和第二区域(332),导光板(33)在第二区域(332)邻近第一区域(331)的一侧设置有入光面,第一区域(331)设置有衍射光栅(333),光源(32)设置于衍射光栅(333)的下方,衍射光栅(333)用于对光源(32)发出的光进行衍射,使得光以预定极角从入光面进入导光板(33)的第二区域(332),能够在实现区域亮度控制的同时有利于背光模组(30)的轻薄化设计要求。

Description

背光模组及液晶显示装置 【技术领域】
本发明涉及显示领域,具体涉及一种背光模组及液晶显示装置。
【背景技术】
LCD(Liquid Crystal Display,液晶显示装置)的背光模组(Backlight Module)包括两种入光方式,分别为侧入光式和直下光式。
如图1所示,在侧入光式背光模组的结构设计中,光源11设置于导光板12的侧方,光源11发出的光从导光板12的入光面进入导光板12,并在导光板12内部经过漫反射后从导光板12的出光面射出,再经由各种光学膜片13,例如扩散片,形成均匀的面光源并提供给液晶面板14。由于光源11发出的光较为发散,从而在进入导光板12后不易实现区域化,即不易实现区域亮度控制(local dimming)。
如图2所示,在直下光式背光模组的结构设计中,光源21设置于导光板22的下方,光源21发出的光经过导光板22和各种光学膜片23后形成均匀的面光源,并提供给液晶面板24。直下光式背光模组通过控制导光板22下方的光源21可以实现区域亮度控制。但是,为了确保区域亮度控制的显示品质,光源21和导光板22之间必须设置混光距离,才能使得光源21发出的光混光充足,并以此保证显示区域的亮度均匀。但是,该混光距离的设置不利于背光模组的轻薄化设计要求。
【发明内容】
有鉴于此,本发明提供一种背光模组及液晶显示装置,能够在实现区域亮度控制的同时有利于背光模组的轻薄化设计要求。
本发明一实施例的背光模组,包括呈矩阵排布的多个亮度调控区域,在每一亮度调控区域中,所述背光模组包括导光板和一个光源,导光板包括沿平行于导光板方向设置的第一区域和第二区域,导光板在第一区域的厚度小于其在第二区域的厚度,且导光板在第一区域的底部与其在第二区域的底部之间具有预设垂直距离,导光板在第一区域设置有衍射光栅,光 源位于衍射光栅的下方,光源包括微米级发光二极管LED,导光板在第二区域邻近第一区域的一侧设置有入光面,且所述入光面邻近光源设置,衍射光栅用于对光源发出的光进行衍射,使得光以预定极角从入光面进入导光板的第二区域。
本发明一实施例的背光模组,包括导光板和光源,导光板包括沿平行于导光板方向设置的第一区域和第二区域,导光板在第一区域设置有衍射光栅,光源位于衍射光栅的下方,导光板在第二区域邻近第一区域的一侧设置有入光面,衍射光栅用于对光源发出的光进行衍射,使得光以预定极角从入光面进入导光板的第二区域。
本发明一实施例的液晶显示装置,包括上述背光模组,所述背光模组包括导光板和光源,导光板包括沿平行于导光板方向设置的第一区域和第二区域,导光板在第一区域设置有衍射光栅,光源位于衍射光栅的下方,导光板在第二区域邻近第一区域的一侧设置有入光面,衍射光栅用于对光源发出的光进行衍射,使得光以预定极角从入光面进入导光板的第二区域。
有益效果:本发明设计导光板在第一区域设置有衍射光栅,并将第二区域邻近衍射光栅的一侧设置为入光面,第二区域的导光板可视为侧入光式导光板,本发明相当于通过衍射光栅将垂直方向的光引入侧入光式导光板,无需直下光式背光模组所需要的混光距离,从而能够在实现区域亮度控制的同时有利于背光模组的轻薄化设计要求。
【附图说明】
图1是现有技术中具有侧入光式背光模组的LCD的结构剖视图;
图2是现有技术中具有直下光式背光模组的LCD的结构剖视图;
图3是本发明第一实施例的背光模组的结构剖视图;
图4是图3所示背光模组的结构俯视图;
图5是本发明第二实施例的背光模组的结构剖视图;
图6是图5所示背光模组的结构俯视图;
图7是本发明一实施例的液晶显示装置的结构剖视图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明所提供的各个示例性的实施例的技术方案进行清楚、完整地描述。在不冲突的情况下,下述各个实施例及其技术特征可以相互组合。
请参阅图3,为本发明第一实施例的背光模组。所述背光模组30包括背板31以及承载于背板31上的多个光源32、导光板33、驱动电路34以及各种光学膜片35。多个光源32与驱动电路34连接,驱动电路34可以为FPCB(Flexible Printed Circuit Board,柔性印刷电路板),并设置于背板31邻近导光板33的一侧,驱动电路34可以单独控制各个光源32的开关以及亮度。导光板33和光学膜片35设置于多个光源32的上方,用于将多个光源32发出的光转换为均匀的面光源,并提供给设置于导光板33的出光面上的液晶面板。其中,光学膜片35包括但不限于扩散片(diffuser)和偏振片(polarizer)。
导光板33包括沿平行于导光板33方向依次交替排布的第一区域331和第二区域332,第一区域331的宽度小于第二区域332的宽度。导光板33在第一区域331的厚度等于其在第二区域332的厚度。导光板33在第一区域331设置有衍射光栅333,该衍射光栅333可以位于第一区域331的导光板33的底面,每一个光源32设置于对应的一个衍射光栅333的下方。导光板33在第二区域332邻近第一区域331的一侧设置有入光面,即,所述入光面设置于第二区域332的导光板33的侧方,第二区域332的导光板22可视为侧入光式导光板。其中,导光板33可以为一体成型结构,第一区域331和第二区域332之间相互导通,且导光板33在第一区域331和第二区域332的折射率相同,基于此,所述入光面并非是一个暴露于外的侧面。
衍射光栅333用于对光源32发出的光进行衍射,使得光以预定极角从入光面进入导光板33的第二区域332。也就是说,衍射光栅333可以将光源32发出的垂直方向的光转变为非垂直方向的光。其中,衍射光栅333可以使得光源32发出的光经过衍射后仅有第一级衍射峰进入可视区,其余各级衍射峰均位于可视区之外,换言之,经过衍射光栅333的光(出射光)仅有第一级衍射峰能够以预定极角从入光面进入导光板33的第二区域332。根据衍射光栅333的工作原理,出射光的第一级衍射峰的极角坐标(φ1,θ1)满足如下关系式:
tanφ1=sinφ/(cosφ-N*sinθ*(Λ/λ)
sin21)=(Λ/λ)2+(N*sinφ)2-2N*sinθ*cosφ*(λ/Λ)
其中,φ1表示出射光的极径,θ1表示出射光的极角,Λ表示衍射光栅333的周期,φ表示出射光的方位角,N表示导光板33的折射率,θ表示进入衍射光栅333的光(入射光)的极角,λ表示入射光的波长。
由上述关系式可知,本实施例可以通过选取具有预定折射率的导光板33,使得光经过衍射后仅有第一级衍射峰进入可视区。
为了提高光利用率,本实施例的导光板33在第一区域331的顶面可以对经过衍射后且具有预定极角的光进行全反射,以避免光从导光板33在第一区域331的顶面出射入空气中。
第二区域332的导光板33与现有侧入光式导光板的结构相同,例如导光板33在第二区域332的底部可以设置有多个撞点334,光以预定极角进入第二区域332并照射到各个撞点334后发生漫反射,漫反射的光从导光板33在第二区域332的出光面射出,并经过光学膜片35后,形成均匀的面光源并提供给液晶面板。
结合图4所示,背光模组30包括呈矩阵排布的多个亮度调控区域36,每一亮度调控区域36设置有一个光源32、一个第一区域331和一个第二区域332。本实施例通过驱动电路34单独控制各个光源32,即可调整各个亮度调控区域36的亮度,容易实现区域亮度控制。
由上述可知,本实施例通过衍射光栅333将垂直方向的光引入侧入光式导光板(第二区域332的导光板33)的入光面,无需直下光式背光模组所需要的混光距离,从而能够在容易实现区域亮度控制的同时,有利于背光模组30的轻薄化设计要求。
另外,光源32可以采用微米级LED(Micro Light Emitting Diode,微米级发光二极管),即LED具有微米级的厚度,从而能够进一步降低背光模组30的厚度,有利于背光模组30的轻薄化设计要求。
图5为本发明第二实施例的背光模组。如图5所示,背光模组50包括背板51以及承载于背板51上的多个光源52、导光板53、驱动电路54以及各种光学膜片55。多个光源52与驱动电路54连接,驱动电路54可以为FPCB,并设置于背板51邻近导光板53的一侧,驱动电路54可以单独控 制各个光源52的开关以及亮度。导光板53和光学膜片55设置于多个光源52的上方,用于将多个光源52发出的光转换为均匀的面光源,并提供给设置于导光板53的出光面上的液晶面板。其中,光学膜片55包括但不限于扩散片和偏振片。
导光板53包括沿平行于导光板53方向设置的第一区域531和第二区域532,第一区域531的宽度小于第二区域532的宽度。导光板53在第一区域531的厚度小于其在第二区域532的厚度,即,导光板53在第一区域531的底部与其在第二区域532的底部之间具有预设垂直距离。导光板53在第一区域531设置有衍射光栅533,该衍射光栅533可以位于第一区域531的导光板53的底部,每一个光源52设置于对应的一个衍射光栅533的下方。导光板53在第二区域532邻近第一区域531的一侧设置有入光面,即所述入光面设置于第二区域532的导光板53的侧方,第二区域532的导光板22可视为侧入光式导光板。导光板53可以为一体成型结构,第一区域531和第二区域532之间相互导通,且导光板53在第一区域531和第二区域532的折射率相同。
衍射光栅533用于对光源52发出的光进行衍射,使得光以预定极角从入光面进入导光板53的第二区域532。
第二区域532的导光板53与现有侧入光式导光板的结构相同,例如导光板53在第二区域532的底部可以设置有多个撞点534,光以预定极角进入第二区域532并照射到各个撞点534后发生漫反射,漫反射的光从导光板53在第二区域532的出光面射出,并经过光学膜片55后,形成均匀的面光源并提供给液晶面板。
不同于图3所示实施例的导光板33,本实施例的导光板53相当于在每一光源52的上方设置了一个凹槽,且光源52可以位于对应的凹槽中,导光板53在第二区域532的入光面邻近光源52设置。基于此,第二区域532的导光板53不仅可以从而衍射光栅533接收光,而且可以直接从光源52接收光,从而提高光利用率。
进一步结合图6所示,本实施例的背光模组60包括呈矩阵排布的多个亮度调控区域66,每一亮度调控区域66设置有一个光源52、一个第一区域531和一个第二区域532。本实施例通过驱动电路54单独控制各个光源 52,即可调整各个亮度调控区域56的亮度,容易实现区域亮度控制。
由上述可知,本实施例通过衍射光栅533将垂直方向的光引入侧入光式导光板(第二区域532的导光板53)的入光面,无需直下光式背光模组所需要的混光距离,从而能够在容易实现区域亮度控制的同时,有利于背光模组50的轻薄化设计要求。
另外,光源52可以采用微米级LED,从而能够进一步降低背光模组50的厚度,有利于背光模组50的轻薄化设计要求。
应该理解到,图3所示背光模组30和图5所示背光模组50仅为阐述本发明之发明目的示意图,本发明的背光模组还可以具有其他结构。例如,背光模组还可以包括胶框,胶框围绕导光板设置,并将设置于导光板的出光面上的液晶面板压持固定于导光板上。另外,本发明的导光板的制造材质可以为PC(Polycarbonate,聚碳酸酯或工程塑料),也可以为玻璃,并且由于光在玻璃中的扩散良于PC,因此要将点光源转换为面光源并实现相同的均匀度,光在玻璃材质的导光板中所需折射的路径小于在PC材质的导光板中所需折射的路径,因此采用玻璃材质能够降低导光板的厚度,从而降低整个背光模组的厚度。
本发明还提供一种液晶显示装置。如图7所示,所述液晶显示装置70包括背光模组71以及设置于背光模组71的出光方向上的液晶面板72。该背光模组71可以为图3所示的背光模组30,也可以为图5所示的背光模组50,因此,所述液晶显示装置70具有上述背光模组30、50所能产生的有益效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种背光模组,其中,所述背光模组包括呈矩阵排布的多个亮度调控区域,在每一亮度调控区域中,所述背光模组包括导光板和一个光源,所述导光板包括沿平行于所述导光板方向设置的第一区域和第二区域,所述导光板在第一区域的厚度小于其在所述第二区域的厚度,且所述导光板在第一区域的底部与其在所述第二区域的底部之间具有预设垂直距离,所述导光板在第一区域设置有衍射光栅,所述光源位于所述衍射光栅的下方,所述光源包括微米级发光二极管LED,所述导光板在第二区域邻近第一区域的一侧设置有入光面,且所述入光面邻近所述光源设置,所述衍射光栅用于对所述光源发出的光进行衍射,使得所述光以预定极角从所述入光面进入所述导光板的第二区域。
  2. 根据权利要求1所述的背光模组,其中,所述背光模组还包括背板、胶框和驱动电路,所述背板用于承载所述导光板、驱动电路和光源,所述驱动电路用于单独控制所述背光模组的多个所述光源,所述胶框围绕所述导光板设置,并用于将设置于所述导光板的出光面上的液晶面板压持固定于所述导光板上。
  3. 一种背光模组,其中,所述背光模组包括导光板和光源,所述导光板包括沿平行于所述导光板方向设置的第一区域和第二区域,所述导光板在第一区域设置有衍射光栅,所述光源位于所述衍射光栅的下方,所述导光板在第二区域邻近第一区域的一侧设置有入光面,所述衍射光栅用于对所述光源发出的光进行衍射,使得所述光以预定极角从所述入光面进入所述导光板的第二区域。
  4. 根据权利要求3所述的背光模组,其中,所述光源包括微米级发光二极管LED。
  5. 根据权利要求3所述的背光模组,其中,所述导光板在第一区域的厚度等于其在所述第二区域的厚度。
  6. 根据权利要求3所述的背光模组,其中,所述导光板在第一区域的厚度小于其在所述第二区域的厚度,且所述导光板在第一区域的底部与其在所述第二区域的底部之间具有预设垂直距离。
  7. 根据权利要求6所述的背光模组,其中,所述导光板在第二区域的入光面邻近所述光源设置。
  8. 根据权利要求3所述的背光模组,其中,所述背光模组还包括背板,所述背板用于承载所述导光板和光源。
  9. 根据权利要求8所述的背光模组,其中,所述背光模组包括呈矩阵排布的多个亮度调控区域,每一所述亮度调控区域设置有一个光源,所述背光模组还包括承载于所述背板上的驱动电路,所述驱动电路用于单独控制所述背光模组的多个所述光源。
  10. 根据权利要求3所述的背光模组,其中,所述背光模组还包括胶框,所述胶框围绕所述导光板设置,并用于将设置于所述导光板的出光面上的液晶面板压持固定于所述导光板上。
  11. 根据权利要求3所述的背光模组,其中,所述导光板的制造材质包括玻璃或聚碳酸酯PC。
  12. 一种液晶显示装置,其中,所述液晶显示装置包括背光模组,所述背光模组包括导光板和光源,所述导光板包括沿平行于所述导光板方向设置的第一区域和第二区域,所述导光板在第一区域设置有衍射光栅,所述光源位于所述衍射光栅的下方,所述导光板在第二区域邻近第一区域的一侧设置有入光面,所述衍射光栅用于对所述光源发出的光进行衍射,使得所述光以预定极角从所述入光面进入所述导光板的第二区域。
  13. 根据权利要求12所述的液晶显示装置,其中,所述光源包括微米级发光二极管LED。
  14. 根据权利要求12所述的液晶显示装置,其中,所述导光板在第一区域的厚度等于其在所述第二区域的厚度。
  15. 根据权利要求12所述的液晶显示装置,其中,所述导光板在第一区域的厚度小于其在所述第二区域的厚度,且所述导光板在第一区域的底部与其在所述第二区域的底部之间具有预设垂直距离。
  16. 根据权利要求15所述的液晶显示装置,其中,所述导光板在第二区域的入光面邻近所述光源设置。
  17. 根据权利要求12所述的液晶显示装置,其中,所述背光模组还包括背板,所述背板用于承载所述导光板和光源。
  18. 根据权利要求17所述的液晶显示装置,其中,所述背光模组包括呈矩阵排布的多个亮度调控区域,每一所述亮度调控区域设置有一个光源,所述背光模组还包括承载于所述背板上的驱动电路,所述驱动电路用于单独控制所述背光模组的多个所述光源。
  19. 根据权利要求12所述的液晶显示装置,其中,所述背光模组还包括胶框,所述胶框围绕所述导光板设置,并用于将设置于所述导光板的出光面上的液晶面板压持固定于所述导光板上。
  20. 根据权利要求12所述的液晶显示装置,其中,所述导光板的制造材质包括玻璃或聚碳酸酯PC。
PCT/CN2017/085861 2017-04-25 2017-05-25 背光模组及液晶显示装置 WO2018196076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/533,647 US20180306960A1 (en) 2017-04-25 2017-05-25 Backlight modules and liquid crystal displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710276898.9A CN106896579A (zh) 2017-04-25 2017-04-25 背光模组及液晶显示装置
CN201710276898.9 2017-04-25

Publications (1)

Publication Number Publication Date
WO2018196076A1 true WO2018196076A1 (zh) 2018-11-01

Family

ID=59197636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085861 WO2018196076A1 (zh) 2017-04-25 2017-05-25 背光模组及液晶显示装置

Country Status (2)

Country Link
CN (1) CN106896579A (zh)
WO (1) WO2018196076A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212655B (zh) 2017-06-30 2020-01-24 京东方科技集团股份有限公司 背光源及其制造方法、显示装置
CN107229088B (zh) 2017-08-07 2020-11-03 京东方科技集团股份有限公司 光学微结构及光学微结构层的制作方法、导光组件及显示装置
CN108398830B (zh) * 2018-03-07 2021-08-31 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN108563069B (zh) * 2018-04-25 2020-10-30 武汉华星光电技术有限公司 背光面光源及液晶显示装置
US10641942B2 (en) * 2018-07-16 2020-05-05 Shenzhen Guangjian Technology Co., Ltd. Light projecting method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201652057U (zh) * 2010-04-23 2010-11-24 北京京东方光电科技有限公司 背光模组和液晶显示器
CN201866647U (zh) * 2010-11-11 2011-06-15 上海向隆电子科技有限公司 背光模块及其液晶显示装置
CN103576385A (zh) * 2013-11-18 2014-02-12 京东方科技集团股份有限公司 背光模组及显示装置
CN104678477A (zh) * 2013-12-02 2015-06-03 鸿富锦精密工业(深圳)有限公司 导光板及具有该导光板的背光模组
CN105589254A (zh) * 2014-10-21 2016-05-18 群创光电股份有限公司 显示装置
EP3136159A1 (en) * 2015-08-26 2017-03-01 Samsung Electronics Co., Ltd. Backlight unit and 3d image display apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598987B1 (en) * 2000-06-15 2003-07-29 Nokia Mobile Phones Limited Method and apparatus for distributing light to the user interface of an electronic device
CN101329472B (zh) * 2007-06-18 2010-11-03 奇菱科技股份有限公司 发光装置及其制造方法
KR101007079B1 (ko) * 2009-03-23 2011-01-10 영남대학교 산학협력단 직하형 백라이트 유닛
CN101555997A (zh) * 2009-05-14 2009-10-14 上海广电光电子有限公司 Led光源装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201652057U (zh) * 2010-04-23 2010-11-24 北京京东方光电科技有限公司 背光模组和液晶显示器
CN201866647U (zh) * 2010-11-11 2011-06-15 上海向隆电子科技有限公司 背光模块及其液晶显示装置
CN103576385A (zh) * 2013-11-18 2014-02-12 京东方科技集团股份有限公司 背光模组及显示装置
CN104678477A (zh) * 2013-12-02 2015-06-03 鸿富锦精密工业(深圳)有限公司 导光板及具有该导光板的背光模组
CN105589254A (zh) * 2014-10-21 2016-05-18 群创光电股份有限公司 显示装置
EP3136159A1 (en) * 2015-08-26 2017-03-01 Samsung Electronics Co., Ltd. Backlight unit and 3d image display apparatus

Also Published As

Publication number Publication date
CN106896579A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2018196076A1 (zh) 背光模组及液晶显示装置
EP2857890B1 (en) Surface light source device and edge backlight module
US8920018B2 (en) Front light module
CN101932872B (zh) 面光源元件和具备其的图像显示装置
US7845812B2 (en) Light guide plate and direct-type backlight module with same
US20060203511A1 (en) Incident assembly of light guide plate
KR20080048759A (ko) 도광 유닛, 이를 채용한 백라이트 유닛 및 디스플레이 장치
US20140126237A1 (en) Surface light source device
JP5071675B2 (ja) 照明装置および表示装置
US20110109836A1 (en) Illumination device and liquid crystal display device
US7766533B2 (en) Illumination module, and a display and general lighting apparatus using the same
US20110235362A1 (en) Light concentration device and related backlight module
WO2008099989A1 (en) Backlight unit
US7837373B2 (en) Optical plate having encircling protrusions and elongated V-shaped protrusions and backlight module using the same
KR102236710B1 (ko) 광학 부재, 및 이를 포함하는 백라이트 유닛
JP2010108601A (ja) 面状光源及び液晶表示装置
KR20080072344A (ko) 백라이트 어셈블리
KR20100049339A (ko) 광학 부재 및 그를 포함하는 표시 장치
JP4427718B2 (ja) ライトガイド製造方法
US20180306960A1 (en) Backlight modules and liquid crystal displays
KR20120087409A (ko) 백라이트 유닛
TWI452389B (zh) A combination of puzzle-type light guide plates and a backlight module with a combination of puzzle-type light guide plates
WO2014056264A1 (zh) 背光模组
CN220983684U (zh) 背光模组及液晶显示装置
EP3423897B1 (en) Flat panel illuminator with concentrator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15533647

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907709

Country of ref document: EP

Kind code of ref document: A1