WO2018195742A1 - 一种车辆行驶控制方法和系统 - Google Patents

一种车辆行驶控制方法和系统 Download PDF

Info

Publication number
WO2018195742A1
WO2018195742A1 PCT/CN2017/081762 CN2017081762W WO2018195742A1 WO 2018195742 A1 WO2018195742 A1 WO 2018195742A1 CN 2017081762 W CN2017081762 W CN 2017081762W WO 2018195742 A1 WO2018195742 A1 WO 2018195742A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
data
line
unit
Prior art date
Application number
PCT/CN2017/081762
Other languages
English (en)
French (fr)
Inventor
李卓希
Original Assignee
李卓希
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李卓希 filed Critical 李卓希
Priority to PCT/CN2017/081762 priority Critical patent/WO2018195742A1/zh
Publication of WO2018195742A1 publication Critical patent/WO2018195742A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping

Definitions

  • the present invention relates to the field of traffic control technologies, and in particular, to a vehicle travel control method and system.
  • the existing assisted driving system generally identifies the lane line based on the camera device, and then calculates the distance between the edge of the vehicle body and the lane line to determine whether the vehicle has a line of pressure or a cross-line during the driving process.
  • the method is to use the optical imaging map of the lane line as a reference to determine whether the vehicle is traveling in a predetermined lane. Therefore, the clarity and accuracy of the optical imaging of the lane line may affect the result of the above judgment processing, but the weather existing during the driving of the automobile. Uncertain factors such as occlusion of obstacles may result in a decrease in the image quality of the lane line, thereby reducing the reliability of the lane keeping function of the assist driving system.
  • the technical problem to be solved by the present invention is that the prior art assisted driving system optically images the lane line, and then uses the image formed by the optical imaging as a reference to determine whether the vehicle has a pressure line or
  • the lane keeping function of the assisted driving system directly depends on the optical imaging quality of the lane line, which greatly reduces the reliability of the lane keeping operation of the assist driving system, and does not satisfy the driver's need to accurately monitor the driving of the vehicle.
  • the lane remains.
  • an embodiment of the present invention provides a vehicle travel control method, which includes:
  • the vehicle is provided with a plurality of distance sensing units, and the distance sensing unit is capable of transmitting a pulse and receiving a pulse reflected from the target, thereby obtaining point distribution data about the target. And/or point group distribution data as the target distribution data;
  • the curved surface data of the target is acquired based on the point distribution data and/or the point group distribution data, thereby calculating an average distance and standard of the target with respect to the curved surface set. Poorly calculating a measured distance of the target from the vehicle based on the average distance and the standard deviation;
  • an embodiment of the present invention further provides a vehicle travel control system, wherein the system includes: a processing unit, a storage unit, and a plurality of distance sensing units;
  • the distance sensing unit is configured to acquire distribution data of different objects with respect to the vehicle
  • the storage unit is configured to store the distribution data
  • the processing unit is configured to acquire travel route data of the vehicle, and determine lane data and lane distribution according to the distribution data, so as to perform matching processing on the travel route data and the lane distribution to determine whether the vehicle is Need to change the driving route;
  • the distance sensing unit is a radar distance sensing unit, an infrared distance sensing unit or an ultrasonic distance sensing unit;
  • the distance sensing unit includes a transmitting portion for transmitting a pulse, and a receiving portion for receiving the pulse reflected from the target. ;
  • the receiving unit is an intensity sensing receiving unit, a time sensing receiving unit, a phase sensing receiving unit or a wavelength sensing receiving unit;
  • system further includes a display unit for displaying a relative position between the driving line of the vehicle and the lane line, and a crossing or pressing line distance between the driving line and the lane line;
  • system further includes an alarm unit that emits an alarm in the form of sound, light, or image in the event that a travel line of the vehicle and a lane line cross or line.
  • the present invention provides a vehicle travel control method and system by the above technical solution, which acquires a pulse signal having a specific width to a target object and receives a pulse signal reflected by the target object to obtain each of the current driving environments.
  • the relative positional relationship between the target and the vehicle, and in determining whether the vehicle has a line running or a cross-line driving during driving, the method and system can ensure that the lane line picture is not required to be obtained.
  • the vehicle runs normally along the lane, so that the vehicle can accurately recognize the lane line under the condition of poor optical shooting conditions to improve the reliability and accuracy of the vehicle travel control.
  • FIG. 1 is a schematic flow chart of a vehicle travel control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a vehicle travel control system according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a vehicle travel control method according to an embodiment of the present invention.
  • the method includes:
  • the vehicle includes a plurality of distance sensing units capable of detecting a distance between the vehicle and different objects, and the plurality of distance sensing units may be disposed at different positions of the vehicle, preferably The distance sensing unit may be disposed uniformly or irregularly on the front, rear, top and/or side of the vehicle.
  • the distance sensing unit can be, but not limited to, a radar distance sensing unit, an infrared distance sensing unit, or an ultrasonic distance sensing unit.
  • the distance sensing unit comprises a transmitting portion and a receiving portion, and the transmitting portion can have a pulse of a specific structure, such as radar radio waves, infrared light waves or ultrasonic waves, wherein the specific structure distribution can be in the form of stripes or multiple layers. Wait.
  • the distance sensing unit can correspondingly transmit different types of pulses according to different types of targets.
  • the vehicle also includes a processing unit for controlling the operation of transmitting and receiving the distance sensing unit.
  • the processing unit can control the distance sensing unit to generate pulses with different bandwidths, or control the pulses to transmit in different periods; the processing unit can also denoise and filter the reflected pulses received from the distance sensing unit. And/or amplification, etc., to improve the accuracy of the processing unit and the reflected pulse processing.
  • the transmitting portion of the distance sensing unit emits a pulse to the target during the running of the vehicle, and the pulse is received by the receiving portion of the distance sensing unit after being reflected by the target.
  • the receiving unit may be an intensity sensing receiving unit, a time sensing receiving unit, a phase sensing receiving unit, or a wavelength sensing receiving unit.
  • the receiving portion is the intensity sensing receiving portion
  • the transmitting portion when the transmitting portion emits the first pulse having the first intensity value to the target, the first pulse passes through the reflection of the surface of the target to become a second pulse.
  • the second pulse is received by the receiving portion to obtain a corresponding second intensity value, and the processing unit performs difference processing on the first intensity value and the second intensity value to obtain point distribution data corresponding to the target object;
  • the transmitting portion emits a first pulse having a specific structure, such as a stripe distribution or a multi-layer distribution, to the target, and the first pulse passes through the reflection of the surface of the target to become a second pulse and is received by the receiving portion.
  • the processing unit can obtain the point group distribution data corresponding to the target by comparing the intensity distribution of the first pulse with respect to the original specific structure and the intensity distribution of the second pulse with respect to the new structure.
  • the transmitting unit transmits a first pulse, preferably a periodic pulse, to the target, and the first pulse passes through the reflection of the surface of the target to become a
  • the second pulse is received by the receiving portion.
  • the receiving unit acquires a time delay value or a phase delay value between the first pulse and the second pulse, and the processing unit obtains point group distribution data corresponding to the target based on the time delay value or the phase delay value.
  • the transmitting portion emits a first pulse having a first spectral distribution to the target, and the first pulse passes through the reflection of the surface of the target to become a second pulse and is Received by the receiving department.
  • the second pulse may have a second spectral distribution different from the first spectral distribution due to the reflection of the surface of the target, and the processing unit may obtain the comparison between the first spectral distribution and the second spectral distribution. Point group distribution data corresponding to the target.
  • the processing unit transfers the obtained point distribution data or point group distribution data about the target to the storage unit for storage, and further controls the distance sensing unit to acquire point distribution data or point group distribution data corresponding to other objects, to The sample data is calculated as the next step.
  • S102 Determine lane distribution on the road and obtain travel route data of the vehicle based on the lane data on the road.
  • the processing unit acquires the lane distribution on the traveling road on which the vehicle is currently located based on the point distribution data and/or the point group distribution data about the different objects acquired by the distance sensing unit.
  • the point distribution data or the point group distribution data is about a surface shape of the target, such as curved surface data, a set formed, and a measured distance of the target and the vehicle, the curved surface data including an arc radius and an arc shape
  • the length or the like, the curved surface data may be lateral and/or longitudinal data about the surface of the target to truly reflect the two-dimensional status of the surface of the target.
  • the measured distance DM of the different target and the vehicle is compared with the threshold distance DT. If the measured distance DM is greater than or equal to the threshold distance DT, the measured distance DM is divided into lane distribution data, otherwise, the measured distance is measured.
  • Distance The DM is divided into non-lane data, and the measurement distance DM for different objects is divided to obtain lane distribution data on the traveling road.
  • the processing unit obtains a grid map about the lane distribution based on the lane data and its corresponding point group distribution data, and determines the lane distribution position data according to the density of the point group distribution in the grid map.
  • the processing unit further acquires travel route data of the vehicle through the positioning unit, wherein the travel route data and the lane distribution location data are both acquired based on the same spatial coordinate system.
  • the processing unit acquires the lane distribution location data and the driving lane data from the storage unit, and calibrates the two types of data in the same spatial coordinate system.
  • the two kinds of data can be calibrated in the same spatial coordinate system in the form of point distribution or line distribution at the same time.
  • the processing unit performs the matching process based on a fitting deviation value of the lane distribution position and the respective point distribution or line distribution of the driving lane in the same spatial coordinate system, and specifically, the processing unit passes, for example, a least squares method
  • the method obtains the fitting deviation value, and compares the fitting deviation value with a preset deviation threshold. If the fitting deviation value is less than the deviation threshold, the processing unit indicates that the current driving route of the vehicle is in the lane limitation. If the fitting deviation value is greater than or equal to the deviation threshold, the processing unit indicates that the current driving route and the lane of the vehicle are over-line or pressed.
  • the vehicle further includes an alarm unit and a display unit, the processing unit instructing the alarm unit to emit an alarm in the form of sound, light or image to remind the driver of the current travel route after indicating that the vehicle has a crossover or a line.
  • the processing unit is further capable of calculating a crossover line or a line distance between the current travel line of the vehicle and the lane line, and displaying the relative position between the current travel line and the lane line on the display unit. And the crossing or pressing distance to enable the driver to correct the current driving route according to the content displayed by the display unit.
  • the vehicle travel control method acquires a pulse signal having a specific width to a target object and receives a pulse signal reflected by the target object to acquire between various objects in the current driving environment and the vehicle.
  • the relative positional relationship in the case of judging whether the vehicle has a line running or a cross-line driving during driving, the method can accurately acquire the relative positional relationship between the current driving line and the lane line of the vehicle, thereby ensuring the vehicle. It can keep driving in the lane to improve the driving safety of the vehicle.
  • the vehicle travel control system can control a travel route of the vehicle to remain within a corresponding lane range.
  • the vehicle travel control system includes a processing unit, a distance sensing unit, a storage unit, an alarm unit, and a display unit, wherein the processing unit is configured to control the operations of the distance sensing unit, the storage unit, the alarm unit, and the display unit.
  • the distance sensing unit is configured to acquire a distance between the vehicle and different objects, and the distance sensor unit may be a plurality of distance sensing units that are uniformly or irregularly disposed at different positions of the vehicle.
  • the distance sensing unit is preferably a radar distance sensing unit, an infrared distance sensing unit or an ultrasonic distance sensing unit.
  • the distance sensing unit includes a transmitting portion for emitting a pulse having a specific structural distribution or other optical distribution to the target, and the receiving portion is configured to receive a pulse reflected from a surface of the target .
  • the receiving portion may be, but not limited to, an intensity sensing receiving portion, a time sensing receiving portion, a phase sensing receiving portion, or a wavelength sensing receiving portion.
  • the storage unit is configured to store pulse data transmitted by the transmitting unit and pulse data received by the receiving unit, and the storage unit further stores a threshold for the processing unit to perform lane data and non-lane data dividing processing.
  • the distance DT, and a deviation threshold for the processing unit to perform the comparison processing of the fitting deviation value are configured to store pulse data transmitted by the transmitting unit and pulse data received by the receiving unit, and the storage unit further stores a threshold for the processing unit to perform lane data and non-lane data dividing processing.
  • the distance DT, and a deviation threshold for the processing unit to perform the comparison processing of the fitting deviation value.
  • the alarm unit is configured to, according to the processing unit, determine whether there is a crossover or a line between the driving route and the lane line of the vehicle, and issue an alarm in the form of sound, light or image to the driver to remind the driver that the current driving route is abnormal.
  • the display unit is configured to display to the driver the relative position between the current driving line and the lane line and the crossing or pressing distance to enable the driver to correct the current driving line according to the content displayed by the display unit.
  • the processing unit is capable of acquiring point distribution data and/or point group distribution data of the target object according to the data of the pulse in the transmitting unit and the receiving unit of the distance sensing unit, and is also capable of acquiring the lane distribution position data and the relative deviation between the driving line and the lane line. The related operation of the distance.
  • the vehicle travel control system acquires the current travel ring by transmitting a pulse signal having a specific width to the target and receiving a pulse signal reflected by the target.
  • the relative positional relationship between various targets and vehicles in the environment in the judgment of whether the vehicle has a crescent line or a cross-line driving during driving, the system can accurately identify the lane line to improve the reliability of the vehicle travel control. And accuracy.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆行驶控制方法,方法包括:获取车辆当前驾驶环境中的目标物分布数据,确定行驶道路上的车道数据(S101);基于行驶道路上的车道数据,确定行驶道路上的车道分布情况,以及获取车辆的行驶线路数据(S102);将车辆的行驶线路数据与车道分布情况进行匹配处理,并根据匹配处理的结果,确定车辆是否需要改变行驶线路(S103)。提供一种车辆行驶控制系统和一种准确性和抗干扰性较高的车辆行驶控制方法。

Description

一种车辆行驶控制方法和系统 技术领域
本发明涉及交通控制技术领域,尤其涉及一种车辆行驶控制方法和系统。
背景技术
随着城市交通路网的完善和汽车普及率的提高,自驾车已经成为人们出行的首要选择,同时城市汽车保有率的持续增加也给城市交通安全带来一定的挑战,从统计数据可知,车辆在行驶过程中的车道偏离已经成为造成交通事故的主要原因,驾驶员在驾车过程中通常需要集中注意力才能确保汽车沿着车道正常行驶。
目前,汽车都安装有能够辅助驾驶系统,该辅助驾驶系统都具有车道保持功能。现有的辅助驾驶系统一般是基于摄像装置对车道线进行识别,再计算汽车车体边缘与车道线之间的间距,来确定汽车在行驶过程中是否存在压线或者越线行驶的情况,上述手段是将车道线的光学成像图作为基准来判断汽车是否在预定车道内行驶,因此对车道线光学成像的清晰度和准确性都会影响上述判断处理的结果,然而汽车在行驶过程中存在的天气和障碍物遮挡等不确定因素都可能导致车道线的成像质量下降,从而使得辅助驾驶系统的车道保持功能可靠性降低。
发明内容
针对上述现有技术的缺陷,本发明所要解决的技术问题在于现有技术的辅助驾驶系统都是对车道线进行光学成像,再以该光学成像形成的图片为基准来判断车辆是否存在压线或者越线行驶的情况,辅助驾驶系统的车道保持功能直接依赖于车道线的光学成像质量,这大大地降低了辅助驾驶系统进行车道保持操作的可靠性,不能满足驾驶员需要准确监控汽车行驶中的车道保持情况。
为了解决上述技术问题,本发明实施例提供了一种车辆行驶控制方法,其特征在于,所述方法包括:
S101、获取车辆当前驾驶环境中的目标物分布数据,确定行驶道路上的车 道数据;
S102、基于所述行驶道路上的所述车道数据,确定所述行驶道路上的车道分布情况,以及获取所述车辆的行驶线路数据;
S103、将所述车辆的所述行驶线路数据与所述车道分布情况进行匹配处理,并根据所述匹配处理的结果,确定所述车辆是否需要改变行驶线路;
进一步,在S101中,所述车辆上设置有若干个距离传感单元,所述距离传感单元能够发射脉冲和接收来自该目标物反射回来的脉冲,从而获得关于所述目标物的点分布数据和/或点群分布数据作为所述目标物分布数据;
进一步,在S102中,基于所述点分布数据和/或所述点群分布数据,获取所述目标物的弧形表面数据,以此计算所述目标物关于弧形表面集合的平均距离和标准差,在根据所述平均距离和所述标准差计算所述目标物与所述车辆的测量距离;
并且,基于所述测量距离和阈值距离的比较情况,获取相应的车道数据;
进一步,在S103中,通过最小二乘法获取所述行驶线路数据与所述车道分布情况中的车道数据在同一坐标系中的拟合偏差值;
并且,将所述拟合偏差值与偏差阈值进行比较处理,根据所述比较处理的结果判断所述行驶线路与所述车道的车道线是否存在越线或者压线的情况;
进一步,在S103中,存在所述越线或者压线情况时,显示所述行驶线路和所述车道线之间的相对位置关系,以指示所述车辆对所述行驶线路进行纠偏。
相应地,本发明实施例还提供一种车辆行驶控制系统,其特征在于,所述系统包括:处理单元、存储单元和若干个距离传感单元;
所述距离传感单元用于获取不同目标物相对于车辆的分布数据;
所述存储单元用于存储所述分布数据;
所述处理单元用于获取车辆的行驶线路数据,并根据所述分布数据确定车道数据和车道分布情况,从而将所述行驶线路数据与所述车道分布情况进行匹配处理,以确定所述车辆是否需要改变行驶线路;
进一步,所述距离传感单元为雷达距离传感单元、红外距离传感单元或者超声距离传感单元;
所述距离传感单元包括一发射部和一接收部,所述发射部用于发射脉冲,所述接收部用于接收来自所述目标物反射的所述脉冲。;
进一步,所述接收部为强度传感式接收部、时间传感式接收部、相位传感式接收部或者波长传感式接收部;
进一步,所述系统还包括显示单元,所述显示单元用于显示车辆的行驶线路与车道线之间的相对位置、以及所述行驶线路与所述车道线之间的越线或者压线距离;
进一步,所述系统还包括警报单元,所述警报单元在车辆的行驶线路与车道线发生越线或者压线的情况下,发出声音、光线或者图像形式的警报。
本发明通过上述技术方案提供一种车辆行驶控制方法和系统,该方法和系统通过向目标物发射具有特定宽度的脉冲信号以及接收由该目标物反射回来的脉冲信号,以获取当前行驶环境中各种目标物与车辆之间的相对位置关系,在判断该车辆在驾驶过程中是否存在压线行驶或者越线行驶的情况,该方法和系统在不需要获取关于车道线图片的情况下也能够保证车辆沿着车道正常行驶,从而使得车辆在光学拍摄条件不佳的情况下,也能够准确识别车道线以提高车辆行驶控制的可靠性和准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种车辆行驶控制方法的流程示意图;
图2是本发明实施例提供的一种车辆行驶控制系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本发明实施例提供的一种车辆行驶控制方法的流程示意图,在本发明实施例中,所述方法包括:
S101、获取车辆当前驾驶环境中的目标物分布数据,确定行驶道路上的车道数据。
具体而言,该车辆包括若干个距离传感单元,该距离传感单元能够检测该车辆与不同目标物之间的距离,该若干个距离传感单元可设置在该车辆的不同位置处,优选地,该距离传感单元可均匀地或者不规则地设置在该车辆的前部、后部、顶部和/或侧部。该距离传感单元可为但不限于雷达距离传感单元、红外距离传感单元或者超声距离传感单元等。对应地,该距离传感单元包括一发射部和一接收部,该发射部能够具有特定结构分布的雷达无线电波、红外光波或者超声波等脉冲,其中该特定结构分布可以为条纹形式或者多层形式等。该距离传感单元可以根据不同类型的目标物来对应发射不同类型的脉冲。
该车辆还包括处理单元,该处理单元用于控制该距离传感单元的发射和接收等工作。比如,该处理单元能够控制该距离传感单元发生具有不同带宽的脉冲,或者控制该脉冲以不同周期进行发射;该处理单元还能对来自该距离传感单元接收的反射脉冲进行去噪、滤波和/或放大等处理,从而提高该处理单元与该反射脉冲处理的精度。
该距离传感单元的发射部在车辆行驶过程中向目标物发射脉冲,该脉冲经过该目标物的反射后,会被该距离传感单元中的接收部接收。其中,该接收部可为强度传感式接收部、时间传感式接收部、相位传感式接收部或者波长传感式接收部。
当该接收部为强度传感式接收部时,该发射部向该目标物发射具有第一强度值的第一脉冲时,该第一脉冲经过该目标物表面的反射后成为第二脉冲,该第二脉冲被该接收部接收后获得其对应的第二强度值,该处理单元将该第一强度值和第二强度值进行差值处理后能够获得与该目标物对应的点分布数据;又或者,该发射部向该目标物发射具有特定结构,如条纹分布或者多层分布,的第一脉冲,该第一脉冲经过该目标物表面的反射后成为第二脉冲并被该接收部接收,由于该目标物表面的反射作用,该第一脉冲原有特定结构会产生扭曲并 形成新的结构,该处理单元将该第一脉冲关于原有特定结构的强度分布与该第二脉冲关于新的结构的强度分布进行对比运算后能够获得与该目标物对应的点群分布数据。
当该接收部为时间传感式接收部或者相位传感式接收部时,该发射部向该目标物发射第一脉冲,优选为周期脉冲,该第一脉冲经过该目标物表面的反射后成为第二脉冲并被该接收部接收。该接收部获取该第一脉冲和第二脉冲之间的时间延迟值或者相位延迟值,该处理单元基于该时间延迟值或者相位延迟值获得该目标物对应的点群分布数据。
当该接收部为波长传感式接收部时,该发射部向该目标物发射具有第一频谱分布的第一脉冲,该第一脉冲经过该目标物表面的反射后成为第二脉冲并被该接收部接收。由于该目标物表面的反射作用,该第二脉冲会具有不同于该第一频谱分布的第二频谱分布,该处理单元将该第一频谱分布和第二频谱分布进行对比运算后能够获得与该目标物对应的点群分布数据。
该处理单元将获得的关于该目标物的点分布数据或者点群分布数据传送至存储单元进行保存,并进一步控制该距离传感单元获取其他目标物对应的点分布数据或者点群分布数据,以作为下一步骤的计算样本数据。
S102、基于该行驶道路上的车道数据,确定该行驶道路上的车道分布情况,以及获取车辆的行驶线路数据。
具体而言,该处理单元基于该距离传感单元获取的关于不同目标物的点分布数据和/或点群分布数据来获取车辆当前所在的行驶道路上的车道分布情况。其中,该点分布数据或者点群分布数据是关于目标物表面形状,如弧形表面数据,所形成的集合以及该目标物与车辆的测量距离,该弧形表面数据包括弧形半径和弧形长度等,该弧形表面数据可以是关于该目标物表面的横向和/或纵向数据,以真实地反映该目标物表面的二维现状。首先,该处理单元通过该弧形表面数据计算成关于该弧形表面数据集合的平均距离和标准差,并在该平均距离和标准差的基础上获得阈值距离,其具体为阈值距离DT=平均距离DA+α*标准差σ,其中α为标准差的纠正常数。第二,将不同目标物与车辆的测量距离DM与该阈值距离DT进行比较,若该测量距离DM大于或者等于该阈值距离DT时,将该测量距离DM划分为车道分布数据,否则,将测量距 离DM划分为非车道数据,针对不同目标物的测量距离DM进行划分,从而得到关于该行驶道路上的车道分布数据。第三,该处理单元基于该车道数据及其对应的点群分布数据得到关于车道分布的网格图,并根据该网格图中的点群分布的密度来确定车道分布位置数据。
该处理单元还通过定位单元获取该车辆的行驶线路数据,其中该行驶线路数据与该车道分布位置数据都是基于同一空间坐标系而获取的。
S103、将车辆的行驶线路数据与该车道分布情况进行匹配处理,并根据该匹配处理的结果,确定车辆是否需要改变行驶线路。
具体而言,该处理单元从该存储单元中获取该车道分布位置数据和该行驶线路数据,并在该同一空间坐标系内标定该两种数据。其中,该两种数据可以同时为点分布或者线分布的形式被标定在该同一空间坐标系中。该处理单元基于该车道分布位置与该行驶线路各自的点分布或者线分布在该同一空间坐标系中的拟合偏差值来实施该匹配处理,其具体为,该处理单元通过如最小二乘法的手段获取该拟合偏差值,并将该拟合偏差值与预设的偏差阈值进行比较处理,若该拟合偏差值小于该偏差阈值时,该处理单元指示该车辆当前的行驶线路在车道限定的范围内,若该拟合偏差值大于或等于该偏差阈值时,该处理单元指示该车辆当前的行驶线路与车道存在越线或者压线的情况。
该车辆还包括警报单元和显示单元,该处理单元指示该车辆存在越线或者压线的情况后,该处理单元控制该警报单元发出声音、光线或者图像等形式的警报以提醒驾驶员当前行驶线路异常;此外,该处理单元还能够计算出该车辆当前的行驶线路与车道线之间的越线或者压线距离,同时在该显示单元上显示出当前的行驶线路与车道线之间的相对位置和该越线或者压线距离,以使驾驶员能够根据该显示单元显示的内容对当前的行驶线路进行纠正。
从上述实施例可以看出,该车辆行驶控制方法通过向目标物发射具有特定宽度的脉冲信号以及接收由该目标物反射回来的脉冲信号,以获取当前行驶环境中各种目标物与车辆之间的相对位置关系,在判断该车辆在驾驶过程中是否存在压线行驶或者越线行驶的情况,该方法能够准确地获取车辆当前的行驶线路与车道线之间的相对位置关系,从而确保该车辆能够保持在车道范围内行驶,以提高车辆的行车安全性。
参见图2,为本发明实施例提供的一种车辆行驶控制系统的结构示意图,在本发明实施例中,该车辆行驶控制系统能够控制车辆的行驶线路保持在相应的车道范围内。该车辆行驶控制系统包括处理单元、距离传感单元、存储单元、警报单元和显示单元,其中该处理单元用于控制该距离传感单元、存储单元、警报单元和显示单元的工作。
该距离传感单元用于获取车辆与不同目标物之间的距离,该距离传感器单元可以是均匀地或者不规则地设置在该车辆不同位置的若干个距离传感单元。该距离传感单元优选为雷达距离传感单元、红外距离传感单元或者超声距离传感单元等。该距离传感单元包括一发射部和一接收部,该发射部用于向目标物发射具有特定结构分布或者其他光学分布的脉冲,该接收部用于接收来自该目标物的表面反射回来的脉冲。针对不同的距离获取原理,该接收部可为但不限于强度传感式接收部、时间传感式接收部、相位传感式接收部或者波长传感式接收部等。
该存储单元用于存储该距离传感单元中关于该发射部发射的脉冲数据和该接收部接收的脉冲数据,该存储单元还存储有用于该处理单元进行车道数据和非车道数据划分处理的阈值距离DT,以及用于该处理单元进行该拟合偏差值进行比较处理的偏差阈值。
该警报单元用于根据该处理单元判断车辆的行驶线路与车道线之间是否存在越线或者压线的情况,向驾驶员发出声音、光线或者图像形式的警报以提醒驾驶员当前行驶线路存在异常情况。该显示单元用于向驾驶员显示当前的行驶线路与车道线之间的相对位置和该越线或者压线距离,以使驾驶员能够根据该显示单元显示的内容对当前的行驶线路进行纠正。
该处理单元能够根据距离传感单元中发射部和接收部关于脉冲的数据获取目标物的点分布数据和/或点群分布数据,还能够实施获取车道分布位置数据以及行驶线路与车道线相对偏差距离的相关运算操作。
关于本实施例涉及的术语的含义以及举例,可以参考图1对应的实施例。此处不再赘述。
从上述实施例可以看出,该车辆行驶控制系统通过向目标物发射具有特定宽度的脉冲信号以及接收由该目标物反射回来的脉冲信号,以获取当前行驶环 境中各种目标物与车辆之间的相对位置关系,在判断该车辆在驾驶过程中是否存在压线行驶或者越线行驶的情况,该系统能够准确识别车道线以提高车辆行驶控制的可靠性和准确性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种车辆行驶控制方法,其特征在于,所述方法包括:
    S101、获取车辆当前驾驶环境中的目标物分布数据,确定行驶道路上的车道数据;
    S102、基于所述行驶道路上的所述车道数据,确定所述行驶道路上的车道分布情况,以及获取所述车辆的行驶线路数据;
    S103、将所述车辆的所述行驶线路数据与所述车道分布情况进行匹配处理,并根据所述匹配处理的结果,确定所述车辆是否需要改变行驶线路。
  2. 根据权利要求1所述的方法,其特征在于,
    在S101中,所述车辆上设置有若干个距离传感单元,所述距离传感单元能够发射脉冲和接收来自该目标物反射回来的脉冲,从而获得关于所述目标物的点分布数据和/或点群分布数据作为所述目标物分布数据。
  3. 根据权利要求2所述的方法,其特征在于,
    在S102中,基于所述点分布数据和/或所述点群分布数据,获取所述目标物的弧形表面数据,以此计算所述目标物关于弧形表面集合的平均距离和标准差,在根据所述平均距离和所述标准差计算所述目标物与所述车辆的测量距离;
    并且,基于所述测量距离和阈值距离的比较情况,获取相应的车道数据。
  4. 根据权利要求1所述的方法,其特征在于,
    在S103中,通过最小二乘法获取所述行驶线路数据与所述车道分布情况中的车道数据在同一坐标系中的拟合偏差值;
    并且,将所述拟合偏差值与偏差阈值进行比较处理,根据所述比较处理的结果判断所述行驶线路与所述车道的车道线是否存在越线或者压线的情况。
  5. 根据权利要求4所述的方法,其特征在于,
    在S103中,存在所述越线或者压线情况时,显示所述行驶线路和所述车道线之间的相对位置关系,以指示所述车辆对所述行驶线路进行纠偏。
  6. 一种车辆行驶控制系统,其特征在于,所述系统包括处理单元、存储单元和若干个距离传感单元;
    所述距离传感单元用于获取不同目标物相对于车辆的分布数据;
    所述存储单元用于存储所述分布数据;
    所述处理单元用于获取车辆的行驶线路数据,并根据所述分布数据确定车道数据和车道分布情况,从而将所述行驶线路数据与所述车道分布情况进行匹配处理,以确定所述车辆是否需要改变行驶线路。
  7. 根据权利要求6所述的系统,其特征在于,
    所述距离传感单元为雷达距离传感单元、红外距离传感单元或者超声距离传感单元;
    所述距离传感单元包括一发射部和一接收部,所述发射部用于发射脉冲,所述接收部用于接收来自所述目标物反射的所述脉冲。
  8. 根据权利要求7所述的系统,其特征在于,
    所述接收部为强度传感式接收部、时间传感式接收部、相位传感式接收部或者波长传感式接收部。
  9. 根据权利要求6所述的系统,其特征在于,
    所述系统还包括显示单元,所述显示单元用于显示车辆的行驶线路与车道线之间的相对位置、以及所述行驶线路与所述车道线之间的越线或者压线距离。
  10. 根据权利要求9所述的系统,其特征在于,
    所述系统还包括警报单元,所述警报单元在车辆的行驶线路与车道线发生越线或者压线的情况下,发出声音、光线或者图像形式的警报。
PCT/CN2017/081762 2017-04-24 2017-04-24 一种车辆行驶控制方法和系统 WO2018195742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081762 WO2018195742A1 (zh) 2017-04-24 2017-04-24 一种车辆行驶控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081762 WO2018195742A1 (zh) 2017-04-24 2017-04-24 一种车辆行驶控制方法和系统

Publications (1)

Publication Number Publication Date
WO2018195742A1 true WO2018195742A1 (zh) 2018-11-01

Family

ID=63917945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081762 WO2018195742A1 (zh) 2017-04-24 2017-04-24 一种车辆行驶控制方法和系统

Country Status (1)

Country Link
WO (1) WO2018195742A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617086A (en) * 1994-10-31 1997-04-01 International Road Dynamics Traffic monitoring system
CN105404844A (zh) * 2014-09-12 2016-03-16 广州汽车集团股份有限公司 一种基于多线激光雷达的道路边界检测方法
CN105835891A (zh) * 2016-01-26 2016-08-10 乐卡汽车智能科技(北京)有限公司 防止车道偏离的系统及方法
CN106127113A (zh) * 2016-06-15 2016-11-16 北京联合大学 一种基于三维激光雷达的道路车道线检测方法
CN106324618A (zh) * 2015-06-17 2017-01-11 百利得汽车主动安全系统(苏州)有限公司 基于激光雷达检测车道线的系统及其实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617086A (en) * 1994-10-31 1997-04-01 International Road Dynamics Traffic monitoring system
CN105404844A (zh) * 2014-09-12 2016-03-16 广州汽车集团股份有限公司 一种基于多线激光雷达的道路边界检测方法
CN106324618A (zh) * 2015-06-17 2017-01-11 百利得汽车主动安全系统(苏州)有限公司 基于激光雷达检测车道线的系统及其实现方法
CN105835891A (zh) * 2016-01-26 2016-08-10 乐卡汽车智能科技(北京)有限公司 防止车道偏离的系统及方法
CN106127113A (zh) * 2016-06-15 2016-11-16 北京联合大学 一种基于三维激光雷达的道路车道线检测方法

Similar Documents

Publication Publication Date Title
US10210406B2 (en) System and method of simultaneously generating a multiple lane map and localizing a vehicle in the generated map
US10572717B1 (en) System and method for evaluating the perception system of an autonomous vehicle
JP7461431B2 (ja) 車両隊列のためのギャップ測定
CN110316182B (zh) 一种自动泊车系统及方法
KR101075615B1 (ko) 주행 차량의 운전자 보조 정보 생성 장치 및 방법
CN105403893B (zh) 障碍物检测系统及方法
US10625743B2 (en) Method for ascertaining data of a traffic situation
CN102248915B (zh) 用于机动车后视和驻停系统的动态范围显示器
US9952058B2 (en) Driver visibility detection system and method for detecting driver visibility
KR101655553B1 (ko) 운전자 보조 장치 및 방법
US20160035220A1 (en) Method and System to Assess Abnormal Driving Behaviour of Vehicles Travelling on Road
CN111932901B (zh) 道路车辆跟踪检测设备、方法及存储介质
US6643588B1 (en) Geometric based path prediction method using moving and stop objects
KR101030211B1 (ko) 노면감지와 장애물감지를 위한 감지시스템 및 감지방법
US20180037162A1 (en) Driver assistance system
US20190180623A1 (en) Collision prediction method and device
CN111694031A (zh) 一种基于差分定位的无人驾驶车辆控制系统
JP2017062539A (ja) 走行制御装置
US11677931B2 (en) Automated real-time calibration
US11420632B2 (en) Output device, control method, program and storage medium
JP2022502642A (ja) 移動手段周辺の物体が移動手段の運転操作に及ぼす影響を評価する方法
JP5446559B2 (ja) 車両位置演算装置及び車両位置演算方法
CN114559935A (zh) 虚拟斑马线投影控制方法与装置、存储介质、导航系统
JP2013036837A (ja) 車両用物体形状認識装置
WO2018195742A1 (zh) 一种车辆行驶控制方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908085

Country of ref document: EP

Kind code of ref document: A1