WO2018195731A1 - 电调的操作方法、电调和无人飞行器 - Google Patents

电调的操作方法、电调和无人飞行器 Download PDF

Info

Publication number
WO2018195731A1
WO2018195731A1 PCT/CN2017/081738 CN2017081738W WO2018195731A1 WO 2018195731 A1 WO2018195731 A1 WO 2018195731A1 CN 2017081738 W CN2017081738 W CN 2017081738W WO 2018195731 A1 WO2018195731 A1 WO 2018195731A1
Authority
WO
WIPO (PCT)
Prior art keywords
esc
capacitor
heat
temperature
temperature sensor
Prior art date
Application number
PCT/CN2017/081738
Other languages
English (en)
French (fr)
Inventor
肖乐
倪锦云
刘炜刚
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780011243.7A priority Critical patent/CN108700902B/zh
Priority to PCT/CN2017/081738 priority patent/WO2018195731A1/zh
Publication of WO2018195731A1 publication Critical patent/WO2018195731A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/04Metal casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]

Definitions

  • Embodiments of the present invention relate to the field of UAV technologies, and in particular, to an ESC operating method, an ESC, and an UAV.
  • the electronic governor referred to as ESC
  • the unmanned aerial vehicle drives the motor through the ESC to complete various commands.
  • the main function of the ESC is to control the motor to complete the specified speed and motion.
  • the ESC will continue to generate heat, which will cause the temperature to rise continuously. When the temperature rises above the normal operating temperature of the capacitor in the ESC, it will cause the capacitor life to decrease or the slurry to burst. phenomenon.
  • Embodiments of the present invention provide an electronic tuning operation method, an ESC, and an unmanned aerial vehicle, which are used to obtain an accurate temperature of a capacitor, and effectively avoid a rapid decrease in the life of the capacitor and a failure phenomenon caused by the explosion.
  • an embodiment of the present invention provides an operation method of an ESC, where the ESC includes a capacitor, a circuit board, and a heat conducting housing; the capacitor is carried on the circuit board and electrically connected to the circuit board The circuit board is received in the heat-conducting housing; the inner surface of the heat-conducting housing is provided with at least one accommodating groove, at least part of the capacitor is received in the accommodating groove, so that the capacitor Heat is transferred to the thermally conductive housing; the method includes:
  • the operation of the ESC is controlled in accordance with the temperature.
  • controlling the operation of the ESC according to the temperature includes:
  • the power of the ESC is lowered or the ESC is controlled to stop working.
  • the preset temperature is greater than or equal to 120 degrees Celsius.
  • an embodiment of the present invention provides an electrical adjustment, including: a capacitor, a temperature sensor, a controller, a circuit board, and a heat conductive housing;
  • the capacitor, the temperature sensor, the controller are electrically connected to the circuit board; the capacitor is carried on the circuit board, the controller is disposed on the circuit board, and the temperature sensor is fixed at the Below the circuit board, the circuit board is housed in the thermally conductive housing;
  • the inner surface of the heat-conducting housing is provided with at least one accommodating groove, at least part of the capacitor is received in the accommodating groove, so that heat of the capacitor is transmitted to the heat-conducting housing;
  • the temperature sensor abuts on an inner surface of the heat conducting housing for sensing a temperature on the inner surface and outputting the temperature to the controller;
  • the controller is communicatively coupled to the temperature sensor for controlling operation of the ESC based on the temperature.
  • the controller is specifically configured to: when the temperature is greater than a preset temperature, reduce the power of the ESC or control the ESC to stop working.
  • the preset temperature is greater than or equal to 120 degrees Celsius.
  • the inner surface of the heat conducting housing is provided with a boss, and the boss is located outside the end of the receiving groove;
  • the temperature sensor abuts on the boss.
  • the temperature sensor is connected to the upper surface of the boss.
  • the temperature sensor is attached to the boss by a heat conducting medium.
  • a gap is reserved between the boss and the end of the receiving groove.
  • the inner surface of the heat-conducting housing is further provided with two steps, and an accommodating space is formed between the steps, and the at least one accommodating groove is located in the accommodating space.
  • the step is integrally formed with the heat conductive housing.
  • the boss is disposed adjacent to one end of the two steps.
  • the capacitor is disposed in the receiving groove in a lying manner.
  • a curved groove wall that is in contact with the outer wall of the capacitor is disposed in the accommodating groove.
  • the curved groove wall conforms to the shape of the outer wall.
  • a heat conductive medium is filled between the curved groove wall and the outer wall of the capacitor.
  • the curved groove wall in the accommodating groove is two, and the two curved groove walls pass Portions of the inner surface of the thermally conductive housing are planarly connected.
  • a heat conducting medium is filled between the partial plane and the capacitor.
  • the number of the receiving slots is the same as the number of the capacitors.
  • adjacent curved groove walls of each of the two receiving slots are connected in a back direction.
  • the heat conductive medium is a liquid or paste heat conductive medium, and after drying, forms a heat conductive layer.
  • the heat conductive medium comprises at least one of the following: a thermal grease, a thermal silica gel, an anodized film, and a phase change heat transfer medium.
  • the heat conducting housing is a metal housing.
  • an embodiment of the present invention provides an unmanned aerial vehicle, including: a rack, a power system, and a battery;
  • a flight controller is disposed in the rack; the battery is disposed in a battery compartment of the rack;
  • the power system includes: the above-mentioned ESC, motor and propeller; the ESC is electrically connected to the flight controller and the motor, respectively.
  • the operation method of the ESC, the ESC and the UAV provided by the embodiment of the present invention because the inner surface of the electrically conductive heat-conducting casing is provided with at least one accommodating groove, and the capacitor is accommodated in the accommodating groove, the heat of the capacitor It can be quickly transferred to the inner surface of the heat-conducting casing. Therefore, the temperature sensor is abutted on the inner surface of the heat-conducting casing, and the temperature detected by the temperature sensor is very close to the temperature of the capacitor. Therefore, the present embodiment obtains the capacitance through the temperature sensor. The temperature accuracy is high, and the operation of the ESC is controlled at the temperature of the accurate capacitor, which can avoid the rapid decrease of the life of the capacitor and the failure phenomenon caused by the explosion.
  • FIG. 1 is a flowchart of an operation method of an ESC according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an ESC according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of an ESC according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an electric adjustment according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for operating an ESC according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment includes:
  • the electrical regulation in this embodiment includes a capacitor, a circuit board, and a heat conducting housing; the capacitor is carried on the circuit board and electrically connected to the circuit board, the circuit board is housed in the heat conducting housing; and the inner surface of the heat conducting housing is provided with at least one capacitor
  • the slot is disposed, and at least a portion of the capacitor is received in the receiving slot to transfer heat of the capacitor to the heat conducting housing.
  • the ESC includes a housing, the housing is a heat-conducting housing, and the inside of the heat-conducting housing can form a receiving space, the receiving space can accommodate a circuit board, and the circuit board carries a capacitor, so the capacitor is also set. Inside the heat-conducting housing.
  • the inner surface of the inner portion of the heat-conducting housing of the embodiment is provided with at least one accommodating groove. At least part of the capacitor is received in the accommodating groove. If the number of capacitors is plural, the plurality of capacitors can be accommodated in the capacitor. In the same accommodating slot, different capacitors may be accommodated in different accommodating slots. Since the capacitor is received in the receiving groove in the inner surface of the heat conducting housing, the capacitor is in direct contact with the inner surface of the heat conducting housing. Moreover, the heat conducting housing has a heat conducting function, and the contact area of the receiving groove and the capacitor is large, so the heat of the capacitor can be quickly transmitted to the inner surface of the heat conducting housing, since the heat of the capacitor can be quickly transmitted to the heat conducting housing. The inner surface, so the temperature of the inner surface of the thermally conductive housing is very close to the temperature of the capacitor, and the temperature of the inner surface of the thermally conductive housing detected at this time can be used as the temperature of the capacitor.
  • a temperature sensor is disposed under the circuit board such that the temperature sensor abuts on the inner surface of the heat conductive housing, so that the temperature sensor is fixed to the inner surface of the heat conductive housing and the circuit board Between, and the temperature sensor abuts on one side of the inner surface, the temperature sensor is more robust and more stable in the ESC, and the operation process of installing the temperature sensor is convenient. Since the temperature sensor is in direct contact with the inner surface of the heat-conducting casing, the temperature sensor can accurately detect the temperature of the inner surface of the heat-conducting casing in real time, and the embodiment can obtain the inside of the heat-conducting casing through the temperature sensor.
  • the temperature on the surface, the temperature on the inner surface corresponds to the temperature of the capacitor. Then, the present embodiment controls the operation of the ESC based on the temperature on the inner surface (corresponding to the temperature of the capacitor).
  • a feasible implementation manner of controlling the operation of the ESC is: determining whether the temperature detected by the temperature sensor is greater than a preset temperature, and when the temperature detected by the temperature sensor is greater than a preset temperature, indicating a capacitance The temperature is too high, in order to avoid the temperature of the capacitor continues to rise, reduce the power of the ESC and control the ESC to stop working, so that the temperature of the capacitor drops.
  • the preset temperature is greater than or equal to 120 degrees Celsius.
  • the inner surface of the electrically conductive heat-conducting casing is provided with at least one accommodating groove, and the capacitor is accommodated in the accommodating groove, heat of the capacitor can be quickly transmitted to the inner surface of the heat-conducting casing.
  • the temperature sensor is abutted on the inner surface of the heat-conducting housing, and the temperature detected by the temperature sensor is very close to the temperature of the capacitor. Therefore, the temperature accuracy of the capacitor obtained by the temperature sensor is high, and the temperature is controlled at an accurate temperature of the capacitor.
  • the work of ESC can avoid the rapid decrease of capacitor life and the failure caused by pulping.
  • FIG. 2 is a schematic structural diagram of an ESC according to Embodiment 1 of the present invention.
  • the ESC 200 of the present embodiment may include: a capacitor 210, a temperature sensor 220, a controller 230, a circuit board 240, and a heat conducting housing. 250.
  • the capacitor 210, the temperature sensor 220, and the controller 230 are electrically connected to the circuit board 240; the capacitor 210 is carried on the circuit board 240, and the controller 230 is disposed on the circuit board 240.
  • the temperature sensor 220 is fixed under the circuit board 240, and the circuit board 240 is housed in the heat conducting housing 250.
  • the inner surface 251 of the heat-conducting housing 250 is provided with at least one accommodating groove 260. At least a portion of the capacitor 210 is received in the accommodating groove 260, so that the heat of the capacitor 210 is transmitted to the The heat conducting housing 250 is described.
  • the temperature sensor 220 abuts on the inner surface 251 of the heat conducting housing 250 for sensing the temperature on the inner surface 251 and outputting the temperature to the controller 230.
  • the controller 230 is communicatively coupled to the temperature sensor 220 for controlling the operation of the ESC 210 according to the temperature.
  • the controller 230 is specifically configured to: when the temperature is greater than a preset temperature, reduce the power of the ESC 200 or control the ESC 200 to stop working.
  • the preset temperature is greater than or equal to 120 degrees Celsius.
  • FIG. 3 is a schematic structural diagram of an electric tones according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a heat conducting housing 250 including a first housing 252 and a second housing 253.
  • FIG. A schematic cross-sectional view of the electrical tones provided by the example, as shown in FIG. 3 and FIG. 4, is provided on the inner surface 251 of the thermally conductive housing 250 of the present embodiment on the basis of the configuration of the electrical modulation shown in FIG.
  • the temperature sensor 220 abuts on the boss 270.
  • the present embodiment may fill a heat conductive medium between the temperature sensor 220 and the inner surface 251.
  • the present embodiment is provided with a boss 270 on the inner surface 251 of the heat conducting housing 250.
  • the boss 270 protrudes from the inner surface 251 toward the inner portion of the heat conducting housing 250. This allows the temperature sensor 220 to abut against the boss 270.
  • the boss 270 protrudes from the inner surface 251, so that the temperature of the inner surface 251 can be quickly transmitted to the boss 270, so that the temperature of the boss 270 detected by the temperature sensor 220 is very close to the temperature of the capacitor 210, which is improved.
  • the accuracy of detecting the temperature of the capacitor 210 is measured.
  • the boss 270 is a metal boss 270, which facilitates rapid heat transfer to the boss 270.
  • the temperature sensor 220 abuts on the upper surface 271 of the boss 270. Since the upper surface 271 of the boss 270 is opposite to the lower surface of the circuit board 240, the temperature sensor 220 abuts on the upper surface 271 of the boss 270, which corresponds to the temperature sensor 220 being sandwiched under the circuit board and convex. The position of the temperature sensor 220 is further consolidated between the upper portions of the stage 270.
  • the temperature sensor 220 is attached to the boss 270 by a heat conducting medium.
  • the height of the temperature sensor 220 may still be insufficient to directly abut on the boss 270, so that there is a certain gap between the temperature sensor 220 and the boss 270, and the presence of the gap may lower the temperature sensor 220.
  • the accuracy of the detected temperature is such that, in this embodiment, the heat transfer medium is filled between the temperature sensor 220 and the boss 270, so that the temperature sensor 220 is attached to the boss 270 through the heat transfer medium, thereby realizing the temperature sensor 220. Connected to the boss 270.
  • a gap 280 is reserved between the boss 270 and the end 261 of the receiving groove 260.
  • the gap 280 can provide a escaping space. Since the capacitor 210 is not a regular cylinder, the end portion has a ring-shaped protrusion which is placed just in the gap, so that the capacitor 210 is placed in the accommodating groove just lying down. Within 260.
  • the inner surface 251 of the heat-conducting housing 250 is further provided with two steps 290, and an accommodating space is formed between the steps 290, and the at least one accommodating groove 260 is located in the accommodating space. Since the accommodating groove 260 is located between the two steps 290, it is defined in the accommodating space, so that the heat transferred from the capacitor 210 to the accommodating groove 260 is not easily radiated outward, ensuring that the temperature of the capacitor 210 is accurately transmitted to the heat conducting case. On the inner surface 251 of the body 250.
  • the step 290 is integrally formed with the heat conducting housing 250. Since the step 290 is part of the heat conducting housing 250, the heat of the capacitor 210 is transferred to the step 290, which is equivalent to being transferred into the heat conducting housing 250, thereby avoiding the loss of heat of the capacitor 210.
  • the boss 270 is disposed adjacent to one end of the two steps 290.
  • the capacitor 210 is disposed in the receiving groove 260 in a lying manner. Since the capacitor 210 is generally cylindrical, the capacitor 210 is disposed in the accommodating groove 260, which further increases the contact area between the capacitor 210 and the accommodating groove 260, further accelerating the heat transfer of the capacitor 210 to the accommodating groove 260. .
  • a curved groove wall 262 that is in contact with the outer wall 211 of the capacitor 210 is disposed in the accommodating groove 260. Since the outer wall 211 of the capacitor 210 is curved, the groove wall of the accommodating groove 260 is also curved, and the degree of cooperation between the curved surface and the curved surface is higher, thereby further increasing the contact area between the capacitor 210 and the accommodating groove 260. Further, the heat transfer of the capacitor 210 is further accelerated to the inner wall of the accommodating groove 260.
  • the curved groove wall 262 conforms to the shape of the outer wall 211.
  • the curved groove wall 262 is consistent with the shape of the outer wall 211, and may refer to the outer wall 211 of the capacitor 210.
  • the curvature is the same as that of the curved groove wall 262 of the accommodating groove 260, so that the contact gap between the capacitor 210 and the accommodating groove 260 can be further reduced, and the contact area between the capacitor 210 and the accommodating groove 260 is enlarged, and the capacitor 210 is accelerated. The heat is transferred to the inner wall of the accommodating groove 260.
  • a heat conductive medium is filled between the curved groove wall 262 and the outer wall 211 of the capacitor 210.
  • the present embodiment is on the curved groove wall 262 and the outer wall of the capacitor 210.
  • the heat transfer medium is filled between the 211, so that the curved groove wall 262 and the outer wall 211 of the capacitor 210 achieve the effect of completing the mating, and the outer wall 211 of the capacitor 210 is more in contact with the curved groove wall 262, so that the heat of the capacitor 210 can be quickly
  • the heat is transferred to the curved surface wall 262 of the accommodating groove 260, thereby accelerating the heat transfer of the capacitor 210 to the inner surface 251 of the heat conducting housing 250.
  • the curved groove wall 262 in the accommodating groove 260 is two, and the two curved groove walls 262 are connected by a partial plane of the inner surface 251 of the heat conducting housing 250.
  • a heat conducting medium is filled between the partial plane and the capacitor 210. Since the outer wall 211 of the capacitor 210 is curved, there is a certain gap between the capacitor and the partial plane. In order to make the capacitor 210 and a part of the plane fit well, the embodiment is filled with a heat conductive medium between the partial plane and the capacitor 210, and is filled.
  • the thermally conductive medium can enable the heat of the capacitor 210 to be quickly transferred to the inner surface 251 of the thermally conductive housing 250.
  • the number of the receiving slots 260 is the same as the number of the capacitors 210. Since different capacitors 210 are placed in different accommodating slots 260, the contact area of the capacitor 210 and the accommodating slot 260 is increased, which facilitates heat transfer of the capacitor 210 to the inner surface 251 of the heat conducting housing 250. 3 and 4 show that the number of capacitors 210 is two, and the number of accommodating slots 260 is also two.
  • adjacent curved groove walls 262 of each of the two receiving grooves 260 are connected in a back direction.
  • the adjacent curved groove walls 262 of the receiving groove 260 are seamlessly connected, so that the heat of the receiving groove 260 is transferred to the inner surface 251 of the heat conducting housing 250.
  • the heat conductive medium is a liquid or paste heat conductive medium, and after drying, forms a heat conductive layer.
  • the heat conductive medium comprises at least one of the following: a thermal grease, a thermal silica gel, an anodized film, and a phase change heat transfer medium.
  • the heat conducting housing 250 is a metal housing. Since the metal casing has good thermal conductivity, the heat conducting casing 250 is a metal casing, and the heat of the capacitor 210 is quickly transferred to the heat conduction. On the housing 250.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 500 of the present embodiment may include a rack 510 , a power system 520 , and a battery 530 .
  • the flight controller 511 is disposed in the rack 510; the battery 530 is disposed in the battery compartment of the rack 510.
  • the power system 520 includes an electric modulo 521, a motor 522, and a propeller 523.
  • the ESC 521 is electrically connected to the flight controller 511 and the motor 522, respectively.
  • the electrical modulo 521 can adopt the structure of the embodiment shown in any of FIG. 2 to FIG. 4, and correspondingly, the technical solution of the foregoing method embodiment of the present invention can be performed, and the implementation principle and the technical effect are similar, and details are not described herein again. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种电调(200)包括电容(210)、电路板(240)、以及导热壳体(250);所述电容(210)承载在所述电路板(240),并且与所述电路板(240)电连接,所述电路板(240)容纳在所述导热壳体(250)内;所述导热壳体(250)的内表面设置有至少一个容置槽,所述电容(210)的至少部分容置在所述容置槽中,以使所述电容(210)的热量传递至所述导热壳体(250)上。

Description

电调的操作方法、电调和无人飞行器 技术领域
本发明实施例涉及无人机技术领域,尤其涉及一种电调的操作方法、电调和无人飞行器。
背景技术
电子调速器,简称电调,是无人飞行器上的一个重要部件,无人飞行器通过电调来驱动电机完成各种指令,而电调的主要作用是控制电机完成规定的速度和动作等。但是,随着无人飞行器的持续工作,电调会不断产生热量,从而导致温度持续上升,当温度上升至电调中电容的正常工作温度以上时,会引起电容寿命降低或者爆浆而产生失效现象。
发明内容
本发明实施例提供一种电调的操作方法、电调和无人飞行器,用于获取准确的电容的温度,有效避免电容寿命快速降低以及爆浆导致的失效现象的发生。
第一方面,本发明实施例提供一种电调的操作方法,所述电调包括电容、电路板、以及导热壳体;所述电容承载在所述电路板,并且与所述电路板电连接,所述电路板容纳在所述导热壳体内;所述导热壳体的内表面设置有至少一个容置槽,所述电容的至少部分容置在所述容置槽中,以使所述电容的热量传递至所述导热壳体上;所述方法包括:
配置一温度传感器在所述电路板下方,使所述温度传感器抵接在所述导热壳体的内表面上;
通过所述温度传感器,获取所述内表面上的温度;以及
根据所述温度,控制所述电调的工作。
可选地,所述根据所述温度,控制所述电调的工作,包括:
当所述温度大于预设温度时,降低所述电调的功率或控制所述电调停止工作。
可选地,所述预设温度大于等于120摄氏度。
第二方面,本发明实施例提供一种电调,包括:电容、温度传感器、控制器、电路板和导热壳体;
所述电容、所述温度传感器、所述控制器电连接至所述电路板;所述电容承载在所述电路板,所述控制器设置在所述电路板上,所述温度传感器固定在所述电路板下方,所述电路板容纳在所述导热壳体内;
其中,所述导热壳体的内表面设置有至少一个容置槽,所述电容的至少部分容置在所述容置槽中,以使所述电容的热量传递至所述导热壳体上;
所述温度传感器,抵接在所述导热壳体的内表面上,用于感测所述内表面上的温度,并将所述温度输出给所述控制器;
所述控制器,与所述温度传感器通信连接,用于根据所述温度,控制所述电调的工作。
可选地,所述控制器,具体用于,当所述温度大于预设温度时,降低所述电调的功率或控制所述电调停止工作。
可选地,所述预设温度大于等于120摄氏度。
可选地,所述导热壳体的内表面上设置有凸台,所述凸台位于所述容置槽的端部的外侧;
所述温度传感器,抵接在所述凸台上。
可选地,所述温度传感器,低接在所述凸台的上表面上。
可选地,所述温度传感器通过导热介质贴附在所述凸台上。
可选地,所述凸台与所述容置槽的端部之间预留有间隙。
可选地,所述导热壳体的内表面上还设置有两个台阶,所述台阶之间形成容置空间,所述至少一个容置槽位于所述容置空间内。
可选地,所述台阶与所述导热壳体为一体成型而成。
可选地,所述凸台靠近所述两个台阶的一端设置。
可选地,所述电容平躺地设置在所述容置槽中。
可选地,所述容置槽内设置有与所述电容的外壁接触的曲面槽壁。
可选地,所述曲面槽壁与所述外壁的形状相吻合。
可选地,所述曲面槽壁与所述电容的外壁之间填充有导热介质。
可选地,所述容置槽中的所述曲面槽壁为两个,所述两个曲面槽壁通过 所述导热壳体的内表面的部分平面连接。
可选地,所述部分平面与所述电容之间填充有导热介质。
可选地,所述容置槽的数量与所述电容的数量相同。
可选地,每两个所述容置槽的相邻曲面槽壁背向连接。
可选地,所述导热介质为液态或膏状的导热介质,干涸后形成导热层。
可选地,所述导热介质包括以下至少一种:导热硅脂、导热硅胶、阳极氧化膜以及相变化导热介质。
可选地,所述导热壳体为金属壳体。
第三方面,本发明实施例提供一种无人飞行器,包括:机架、动力系统和电池;
所述机架内设置有飞行控制器;所述电池设置在所述机架的电池仓内;
所述动力系统包括:上述的电调、电机和螺旋桨;所述电调分别与所述飞行控制器与所述电机电连接。
本发明实施例提供的电调的操作方法、电调和无人飞行器,由于电调的导热壳体的内表面设置有至少一个容置槽,而电容容置在容置槽内,所以电容的热量可以快速传递至导热壳体的内表面,因此,将温度传感器抵接在导热壳体的内表面上,温度传感器检测的温度非常接近电容的温度,因此,本实施例通过此温度传感器获取电容的温度准确率高,在准确的电容的温度下控制电调的工作,可以避免电容寿命快速降低以及爆浆导致的失效现象的发生。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的电调的操作方法的流程图;
图2为本发明实施例一提供的电调的结构示意图;
图3为本发明实施例二提供的电调的结构示意图;
图4为本发明实施例提供的电调的一种剖面示意图;
图5为本发明一实施例提供的无人飞行器的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明一实施例提供的电调的操作方法的流程图,如图1所示,本实施例的方法包括:
S101、配置温度传感器在电路板下方,使温度传感器抵接在导热壳体的内表面上。
S102、通过温度传感器,获取内表面上的温度。
S103、根据温度,控制电调的工作。
本实施例中的电调包括电容、电路板、以及导热壳体;电容承载在电路板,并且与电路板电连接,电路板容纳在导热壳体内;导热壳体的内表面设置有至少一个容置槽,电容的至少部分容置在容置槽中,以使电容的热量传递至导热壳体上。也就是,电调包括壳体,该壳体为导热壳体,该导热壳体的内部可以形成一个容纳空间,该容纳空间内可以容纳电路板,电路板上承载有电容,因此,电容也是设置在导热壳体内。并且本实施例的导热壳体的内部的内表面设置有至少一个容置槽,该电容的至少部分容置在容置槽中,若电容的数量为多个,则多个电容可以容置在同一容置槽中,也可以是不同的电容容置在不同的容置槽中。由于电容是容置在导热壳体的内表面中的容置槽内,相当于是电容与导热壳体的内表面直接接触。而且导热壳体具有导热功能,并且容置槽与电容的接触面积大,所以电容的热量可以快速地传递至导热壳体的内表面上,由于电容的热量可以很快地传递至导热壳体的内表面,所以导热壳体的内表面的温度非常接近电容的温度,此时检测到的导热壳体的内表面的温度可以作为电容的温度。
所以,本实施例在电路板下方配置温度传感器,使得该温度传感器抵接在导热壳体的内表面上,从而温度传感器固定至导热壳体的内表面与电路板 之间,并且,温度传感器抵接在内表面的一个面上,所以温度传感器在电调内的牢固性更好,更加稳定,而且安装温度传感器的操作过程方便。由于温度传感器是与导热壳体的内表面是直接接触的,所以温度传感器可以实时准确地检测到导热壳体的内表面的温度,而本实施例可以通过该温度传感器,获取导热壳体的内表面上的温度,该内表面上的温度即相当于电容的温度,然后,本实施例根据内表面上的温度(相当于是电容的温度),控制电调的工作。
可选地,根据温度,控制电调的工作的一种可行的实现方式为:确定温度传感器检测到的温度是否大于预设温度,当温度传感器检测到的温度大于预设温度时,说明电容的温度过高,为了避免电容的温度继续升高,降低电调的功率以及控制电调停止工作,从而使得电容的温度下降。当温度传感器检测到的温度小于或等于预设温度时,说明电容的温度不高,此时不需要对电容进行降温处理,继续控制电调保持工作。可选地,上述的预设温度大于或等于120摄氏度。
本实施例中,由于电调的导热壳体的内表面设置有至少一个容置槽,而电容容置在容置槽内,所以电容的热量可以快速传递至导热壳体的内表面,因此,将温度传感器抵接在导热壳体的内表面上,温度传感器检测的温度非常接近电容的温度,因此,本实施例通过此温度传感器获取电容的温度准确率高,在准确的电容的温度下控制电调的工作,可以避免电容寿命快速降低以及爆浆导致的失效现象的发生。
图2为本发明实施例一提供的电调的结构示意图,如图2所示,本实施例的电调200可以包括:电容210、温度传感器220、控制器230、电路板240和导热壳体250。
所述电容210、所述温度传感器220、所述控制器230电连接至所述电路板240;所述电容210承载在所述电路板240,所述控制器230设置在所述电路板240上,所述温度传感器220固定在所述电路板240下方,所述电路板240容纳在所述导热壳体250内。
其中,所述导热壳体250的内表面251设置有至少一个容置槽260,所述电容210的至少部分容置在所述容置槽260中,以使所述电容210的热量传递至所述导热壳体250上。
所述温度传感器220,抵接在所述导热壳体250的内表面251上,用于感测所述内表面251上的温度,并将所述温度输出给所述控制器230。
所述控制器230,与所述温度传感器220通信连接,用于根据所述温度,控制所述电调210的工作。
可选地,所述控制器230,具体用于,当所述温度大于预设温度时,降低所述电调200的功率或控制所述电调200停止工作。
可选地,所述预设温度大于等于120摄氏度。
本实施例的电调,可以用于执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图3为本发明实施例二提供的电调的结构示意图,其中,图3中以导热壳体250包括第一壳体252和第二壳体253为例进行图示,图4为本发明实施例提供的电调的一种剖面示意图,如图3和图4所示,本实施例在图2所示电调的方案的基础上,本实施例的导热壳体250的内表面251上设置有凸台270,所述凸台270位于所述容置槽260的端部261的外侧。温度传感器220,抵接在所述凸台270上。
本实施例中,为了避免温度传感器220的高度可能不够,而使得温度传感器220不能直接抵接在导热壳体250的内表面251上,进而温度传感器220检测到的温度不够准确的现象。在一种可行的实现方式中,本实施例可以在温度传感器220与内表面251之间填充导热介质。
在另一种可行的实现方式中,本实施例在导热壳体250的内表面251上设置有凸台270,该凸台270是从内表面251朝导热壳体250的内部凸出一定高度,这样可以使得温度传感器220可以抵接在凸台270。该凸台270是从内表面251凸出来的,所以内表面251的温度可以快速地传递交至凸台270上,所以温度传感器220检测到的凸台270的温度非常接近电容210的温度,提高了检测电容210的温度的准确率。可选地,该凸台270为金属凸台270,这样有利于热量快速传递至凸台270上。
可选地,所述温度传感器220,抵接在所述凸台270的上表面271上。由于凸台270的上表面271是与电路板240的下表面是相对地,所以温度传感器220抵接在凸台270的上表面271上,相当于,温度传感器220夹在电路板的下方与凸台270的上方之间,进一步巩固了温度传感器220的位置。
可选地,所述温度传感器220通过导热介质贴附在所述凸台270上。本实施例中,可能存在温度传感器220的高度仍不够,不能直接抵接在凸台270上,而使得温度传感器220与凸台270之间存在一定的间隙,而间隙的存在会降低温度传感器220检测到的温度的准确率,因此,本实施例在温度传感器220与凸台270之间填充有导热介质,使得温度传感器220通过导热介质贴附在凸台270上,从而实现了温度传感器220抵接在凸台270上。
可选地,所述凸台270与所述容置槽260的端部261之间预留有间隙280。该间隙280可以提供避让空间,由于电容210不是规则的圆柱体,其端部有一圈环形的凸起,该凸起刚好放置在这个间隙内,这是使得电容210刚好平躺地位于容置槽260内。
可选地,所述导热壳体250的内表面251上还设置有两个台阶290,所述台阶290之间形成容置空间,所述至少一个容置槽260位于所述容置空间内。由于容置槽260位于两个台阶290之间,限定于容置空间内,这样电容210传递至容置槽260内的热量不容易向外散发,保证了电容210的温度准确地传递至导热壳体250的内表面251上。
可选地,所述台阶290与所述导热壳体250为一体成型而成。由于台阶290属于导热壳体250的一部分,所以电容210的热量传递至台阶290后,相当于是传递至导热壳体250中,避免了电容210的热量的损失。
可选地,所述凸台270靠近所述两个台阶290的一端设置。
可选地,所述电容210平躺地设置在所述容置槽260中。由于电容210一般是圆柱形,因此电容210平躺地设置在容置槽260,进一步增大了电容210与容置槽260的接触面积,进一步加速了电容210的热量传递至容置槽260中。
可选地,所述容置槽260内设置有与所述电容210的外壁211接触的曲面槽壁262。由于电容210的外壁211是曲面的,所以容置槽260的槽壁也设置成曲面的,曲面与曲面的配合度较高,因此,更进一步增大了电容210与容置槽260的接触面积,更进一步加速了电容210的热量传递至容置槽260的内壁。
可选地,所述曲面槽壁262与所述外壁211的形状相吻合。本实施例中,曲面槽壁262与所述外壁211的形状相吻合,可以是指电容210的外壁211 的弯曲度以与容置槽260的曲面槽壁262的弯曲度相同,这样可以进一步缩小电容210与容置槽260的接触空隙,扩大电容210与容置槽260的接触面积,加速了电容210的热量传递至容置槽260的内壁。
可选地,所述曲面槽壁262与所述电容210的外壁211之间填充有导热介质。本实施例中,由于在实际制造过程中,曲面槽壁262与所述电容210的外壁211或多或少存在一定的空隙,所以,本实施例在曲面槽壁262与所述电容210的外壁211之间填充有导热介质,使得曲面槽壁262与电容210的外壁211达到完成配合的效果,并且使得电容210的外壁211与曲面槽壁262的接触更加良好,使得电容210的热量能够快速地传递至容置槽260的曲面槽壁262中,从而加速了电容210的热量传递至导热壳体250的内表面251上。
可选地,所述容置槽260中的所述曲面槽壁262为两个,所述两个曲面槽壁262通过所述导热壳体250的内表面251的部分平面连接。
可选地,所述部分平面与所述电容210之间填充有导热介质。由于电容210的外壁211为曲面的,所以电容与部分平面之间存在一定空隙,为了使电容210与部分平面能良好的配合,本实施例在部分平面与电容210之间填充有导热介质,填充的导热介质可以使得电容210的热量能够快速地传递至导热壳体250的内表面251上。
可选地,所述容置槽260的数量与所述电容210的数量相同。由于不同的电容210放置在不同的容置槽260中,增大了电容210与容置槽260的接触面积,有利于电容210的热量传递至导热壳体250的内表面251上。其中,图3和图4中示出电容210的数量为两个,容置槽260的数量也为两个。
可选地,每两个所述容置槽260的相邻曲面槽壁262背向连接。本实施例中,容置槽260的相邻曲面槽壁262是无缝连接,因此,有利于容置槽260的热量传递至导热壳体250的内表面251上。
可选地,所述导热介质为液态或膏状的导热介质,干涸后形成导热层。
可选地,所述导热介质包括以下至少一种:导热硅脂、导热硅胶、阳极氧化膜以及相变化导热介质。
可选地,所述导热壳体250为金属壳体。由于金属壳体具有良好的导热性,所以导热壳体250为金属壳体有利于电容210的热量快速地传递至导热 壳体250上。
图5为本发明一实施例提供的无人飞行器的结构示意图,如图5所示,本实施例的无人飞行器500可以包括:机架510、动力系统520和电池530。其中,所述机架510内设置有飞行控制器511;所述电池530设置在所述机架510的电池仓内。其中,所述动力系统520包括:电调521、电机522和螺旋桨523。所述电调521分别与所述飞行控制器511与所述电机522电连接。其中,电调521可以采用图2~图4任一所示实施例的结构,其对应地,可以执行本发明上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种电调的操作方法,其特征在于,所述电调包括电容、电路板、以及导热壳体;所述电容承载在所述电路板,并且与所述电路板电连接,所述电路板容纳在所述导热壳体内;所述导热壳体的内表面设置有至少一个容置槽,所述电容的至少部分容置在所述容置槽中,以使所述电容的热量传递至所述导热壳体上;所述方法包括:
    配置一温度传感器在所述电路板下方,使所述温度传感器抵接在所述导热壳体的内表面上;
    通过所述温度传感器,获取所述内表面上的温度;以及
    根据所述温度,控制所述电调的工作。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述温度,控制所述电调的工作,包括:
    当所述温度大于预设温度时,降低所述电调的功率或控制所述电调停止工作。
  3. 根据权利要求1或2所述的方法,其特征在于,所述预设温度大于等于120摄氏度。
  4. 一种电调,其特征在于,包括:电容、温度传感器、控制器、电路板和导热壳体;
    所述电容、所述温度传感器、所述控制器电连接至所述电路板;所述电容承载在所述电路板,所述控制器设置在所述电路板上,所述温度传感器固定在所述电路板下方,所述电路板容纳在所述导热壳体内;
    其中,所述导热壳体的内表面设置有至少一个容置槽,所述电容的至少部分容置在所述容置槽中,以使所述电容的热量传递至所述导热壳体上;
    所述温度传感器,抵接在所述导热壳体的内表面上,用于感测所述内表面上的温度,并将所述温度输出给所述控制器;
    所述控制器,与所述温度传感器通信连接,用于根据所述温度,控制所述电调的工作。
  5. 根据权利要求4所述的电调,其特征在于,所述控制器,具体用于,当所述温度大于预设温度时,降低所述电调的功率或控制所述电调停止工作。
  6. 根据权利要求4所述的电调,其特征在于,所述预设温度大于等 于120摄氏度。
  7. 根据权利要求4-6任意一项所述的电调,其特征在于,所述导热壳体的内表面上设置有凸台,所述凸台位于所述容置槽的端部的外侧;
    所述温度传感器,抵接在所述凸台上。
  8. 根据权利要求7所述的电调,其特征在于,所述温度传感器,低接在所述凸台的上表面上。
  9. 根据权利要求7或8所述的电调,其特征在于,所述温度传感器通过导热介质贴附在所述凸台上。
  10. 根据权利要求7-9任意一项所述的电调,其特征在于,所述凸台与所述容置槽的端部之间预留有间隙。
  11. 根据权利要求7-10任意一项所述的电调,其特征在于,所述导热壳体的内表面上还设置有两个台阶,所述台阶之间形成容置空间,所述至少一个容置槽位于所述容置空间内。
  12. 根据权利要求11所述的电调,其特征在于,所述台阶与所述导热壳体为一体成型而成。
  13. 根据权利要求11或12所述的电调,其特征在于,所述凸台靠近所述两个台阶的一端设置。
  14. 根据权利要求4-13任意一项所述电调,其特征在于,所述电容平躺地设置在所述容置槽中。
  15. 根据权利要求14所述的电调,其特征在于,所述容置槽内设置有与所述电容的外壁接触的曲面槽壁。
  16. 根据权利要求15所述的电调,其特征在于,所述曲面槽壁与所述外壁的形状相吻合。
  17. 根据权利要求16所述的电调,其特征在于,所述曲面槽壁与所述电容的外壁之间填充有导热介质。
  18. 根据权利要求14-17任意一项所述的电调,其特征在于,所述容置槽中的所述曲面槽壁为两个,所述两个曲面槽壁通过所述导热壳体的内表面的部分平面连接。
  19. 根据权利要求18所述的电调,其特征在于,所述部分平面与所述电容之间填充有导热介质。
  20. 根据权利要求4-19任意一项所述的电调,其特征在于,所述容置槽的数量与所述电容的数量相同。
  21. 根据权利要求20所述的电调,其特征在于,每两个所述容置槽的相邻曲面槽壁背向连接。
  22. 根据权利要求9或16或19所述的电调,其特征在于,所述导热介质为液态或膏状的导热介质,干涸后形成导热层。
  23. 根据权利要求9或16或19所述的电调,其特征在于,所述导热介质包括以下至少一种:导热硅脂、导热硅胶、阳极氧化膜以及相变化导热介质。
  24. 根据权利要求4-23任意一项所述的电调,其特征在于,所述导热壳体为金属壳体。
  25. 一种无人飞行器,其特征在于,包括:机架、动力系统和电池;
    所述机架内设置有飞行控制器;所述电池设置在所述机架的电池仓内;
    所述动力系统包括:权利要求4-24任意一项所述的电调、电机和螺旋桨;所述电调分别与所述飞行控制器与所述电机电连接。
PCT/CN2017/081738 2017-04-24 2017-04-24 电调的操作方法、电调和无人飞行器 WO2018195731A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780011243.7A CN108700902B (zh) 2017-04-24 2017-04-24 电调的操作方法、电调和无人飞行器
PCT/CN2017/081738 WO2018195731A1 (zh) 2017-04-24 2017-04-24 电调的操作方法、电调和无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081738 WO2018195731A1 (zh) 2017-04-24 2017-04-24 电调的操作方法、电调和无人飞行器

Publications (1)

Publication Number Publication Date
WO2018195731A1 true WO2018195731A1 (zh) 2018-11-01

Family

ID=63844134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081738 WO2018195731A1 (zh) 2017-04-24 2017-04-24 电调的操作方法、电调和无人飞行器

Country Status (2)

Country Link
CN (1) CN108700902B (zh)
WO (1) WO2018195731A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111056A1 (fr) * 2019-12-05 2021-06-10 Valeo Systemes Thermiques Dispositif de chauffage de fluide, notamment destine a un vehicule

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113386A1 (zh) * 2018-12-03 2020-06-11 深圳市大疆创新科技有限公司 电子调速器、动力装置及无人飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205679744U (zh) * 2016-06-02 2016-11-09 云南电网有限责任公司电力科学研究院 一种螺旋桨电机参数的测量装置
CN205707338U (zh) * 2016-04-29 2016-11-23 易瓦特科技股份公司 散热型电调
CN205952283U (zh) * 2016-08-30 2017-02-15 北京奇正数元科技股份有限公司 一种散热性能优良的轻小型无人机
CN206024346U (zh) * 2016-09-26 2017-03-15 深圳市大疆创新科技有限公司 电子调速器
CN206024350U (zh) * 2016-09-26 2017-03-15 深圳市大疆创新科技有限公司 电子调速器及具有该电子调速器的云台、无人飞行器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20110312A1 (it) * 2011-04-06 2012-10-07 Denso Mfg Italia S P A Regolatore di tensione per un alternatore
EP2620965A1 (en) * 2012-01-25 2013-07-31 Volvo Car Corporation Supercapacitors assembly with extended lifetime by heat and charging/discharging protection management of said supercapacitors
CN205283412U (zh) * 2015-11-24 2016-06-01 佛山市南海辰宇电子元件有限公司 一种摩托车整流稳压器
CN205544915U (zh) * 2016-01-27 2016-08-31 深圳市大疆创新科技有限公司 电源控制电路、电子调速器及无人飞行器
CN206068124U (zh) * 2016-09-26 2017-04-05 深圳市大疆创新科技有限公司 无人飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205707338U (zh) * 2016-04-29 2016-11-23 易瓦特科技股份公司 散热型电调
CN205679744U (zh) * 2016-06-02 2016-11-09 云南电网有限责任公司电力科学研究院 一种螺旋桨电机参数的测量装置
CN205952283U (zh) * 2016-08-30 2017-02-15 北京奇正数元科技股份有限公司 一种散热性能优良的轻小型无人机
CN206024346U (zh) * 2016-09-26 2017-03-15 深圳市大疆创新科技有限公司 电子调速器
CN206024350U (zh) * 2016-09-26 2017-03-15 深圳市大疆创新科技有限公司 电子调速器及具有该电子调速器的云台、无人飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111056A1 (fr) * 2019-12-05 2021-06-10 Valeo Systemes Thermiques Dispositif de chauffage de fluide, notamment destine a un vehicule
FR3104240A1 (fr) * 2019-12-05 2021-06-11 Valeo Systemes Thermiques Dispositif de chauffage de fluide, notamment destiné à un véhicule

Also Published As

Publication number Publication date
CN108700902A (zh) 2018-10-23
CN108700902B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN109892026B (zh) 电子调速器及无人机
US10405459B2 (en) Actuated immersion cooled electronic assemblies
EP3229573B1 (en) Immersion cooling systems and methods
JP6340089B2 (ja) ファイバブラッググレーティング復調器及びその温度制御方法
WO2018195731A1 (zh) 电调的操作方法、电调和无人飞行器
JP5818120B2 (ja) 断熱構造を有するデバイス
KR20170099892A (ko) 무선 충전 디바이스들에서의 열 관리를 위한 시스템 및 방법
CN101895255A (zh) 恒温型晶体振荡器
WO2015125198A1 (ja) 温度検出装置
JP2011244515A (ja) 無線通信装置
CN216751694U (zh) 谐振器封装体和振荡器
WO2019175555A1 (en) Emergency lighting apparatus, associated method and computer program instructions
KR101596794B1 (ko) 발열량 측정 장치 및 발열량 측정 방법
CN205810995U (zh) 一种电池组均衡装置的散热结构
CN109558623A (zh) 用于光具座的集成加热器的加热器形状的优化
US11243099B2 (en) Lightning proof sensor
JP2022146854A (ja) ソケット構造
KR101395600B1 (ko) 배터리 팩 및 그의 배터리 사용 용량 증대 방법
JP2010212477A (ja) 半導体素子モジュール
CN104822243A (zh) 一种芯片散热方法及芯片散热系统
CN113659956B (zh) 一种石英晶体谐振器
CN109561521A (zh) 用于光具座的具有优化形状的集成加热器
JP6451201B2 (ja) 真空ポンプ
CN109478697A (zh) 具有温度传感器的电池单元
CN219322229U (zh) 电子水泵及冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907885

Country of ref document: EP

Kind code of ref document: A1