WO2018195724A2 - 飞行器 - Google Patents

飞行器 Download PDF

Info

Publication number
WO2018195724A2
WO2018195724A2 PCT/CN2017/081715 CN2017081715W WO2018195724A2 WO 2018195724 A2 WO2018195724 A2 WO 2018195724A2 CN 2017081715 W CN2017081715 W CN 2017081715W WO 2018195724 A2 WO2018195724 A2 WO 2018195724A2
Authority
WO
WIPO (PCT)
Prior art keywords
swing
wing
wings
aircraft
motor
Prior art date
Application number
PCT/CN2017/081715
Other languages
English (en)
French (fr)
Other versions
WO2018195724A3 (zh
Inventor
胡建坤
胡斐凡
胡斐然
胡建长
Original Assignee
胡建坤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡建坤 filed Critical 胡建坤
Priority to PCT/CN2017/081715 priority Critical patent/WO2018195724A2/zh
Publication of WO2018195724A2 publication Critical patent/WO2018195724A2/zh
Publication of WO2018195724A3 publication Critical patent/WO2018195724A3/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor

Definitions

  • the invention relates to an aircraft.
  • the wings of the aircraft appearing on the market are driven by rotating electric machines.
  • the rotary electric machine converts the rotary motion into a reciprocating swing by means of a cam mechanism or an eccentric link structure.
  • the rotating electric machine drives the reciprocating oscillating motion of the wings in this way, and the working current is large, especially when the starting current and the blocking current are abnormally large.
  • the variation of the swing frequency of the wings is limited, resulting in extremely limited flight modes and cannot be rapidly changed according to different environments.
  • the rotating motor deviates from the rated speed, the torque will decrease rapidly when the power consumption is increased or decreased when the power is high.
  • the invention mainly provides a novel aircraft.
  • an aircraft comprising:
  • An oscillating motor comprising a control circuit, a coil for forming a magnetic field, a permanent magnet for oscillating under a magnetic field, and a swing arm fixed to the permanent magnet, the swing arm being integrally connected with the permanent magnet, the coil generating The alternating magnetic field can drive the permanent magnet and the swing arm to realize the reciprocating rocking motion, and the swing arm is mounted on the main bracket and can rotate around a point:
  • At least one pair of wings mounted on the swing arm of the swing motor and capable of forming a reciprocating fan motion driven by the swing arm.
  • the wings are arranged to be movable around a point, and the swing arm and the wings are connected by a connecting rod, and the two ends of the connecting rod are respectively connected with the wings and the swing arm to form a spherical sub-connection.
  • a second oscillating motor for changing the longitudinal tilt angle of the wing is further included, the second oscillating motor outputs a reciprocating oscillating motion, and the wing passes between the oscillating axis of the second oscillating motor
  • the second link is connected, and the second link is respectively connected to the swing axis of the wing and the second swing motor to form a spherical sub-connection.
  • the active fulcrum of the wing is disposed on the main bracket and forms a spherical sub-connection with the main bracket at the fulcrum.
  • the active fulcrum is disposed at the root of the wing, or Close to the wing root and away from the wing tip; the connecting point of the connecting rod and the wing forming the spherical pair is located in the region of the wing active fulcrum to the wing tip.
  • the movable fulcrum is between the wing root and the wing tip, and the connecting point of the connecting rod and the wing forming the spherical pair is located in the region of the wing active fulcrum to the wing root.
  • the at least one pair of wings includes at least one pair of first wings and at least one pair of second wings, the swing arms being divided by the fulcrum into an inner arm and a direction close to the inside of the swing motor Externally extending outer arm;
  • first wing is mounted on an inner arm of the swing arm
  • second wing is mounted on an outer arm of the swing arm
  • first wing is mounted on the outer arm of the swing arm, and the second wing is mounted on the inner arm of the swing arm;
  • the swinging motor is two and disposed oppositely, the first wing and the second wing are cross-mounted on the inner wall and the outer arm of the swinging arms of the two swinging motors.
  • two wings arranged in a pair are mounted on the same oscillating motor, and the two wings are driven by the oscillating motor to perform synchronous fanning.
  • two swing motors are arranged, and two wings arranged in a pair are respectively mounted on different swing motors, and driven by respective swing motors to perform independent fanning.
  • a detection sensor for detecting the proximity of an object is also included, the detection sensor being coupled to the control circuit for the control circuit to output a control signal to drive the aircraft to change the flight state.
  • the detection sensor comprises at least one of an infrared detection sensor, an ultrasonic detection sensor or a microwave detection sensor.
  • a remote control is also included, the remote control being capable of establishing a communication connection with the control circuit for the operator to control the flight status of the aircraft.
  • the swing motor outputs a reciprocating oscillating motion having a swing arm.
  • the swing arm is mounted on the main bracket and can be rotated around a point.
  • the wings are mounted on the swing arm of the swing motor and are capable of forming a reciprocating fan motion driven by the swing arm.
  • the aircraft adopts a swing motor, and the control circuit of the swing motor generates an alternating pulse with adjustable frequency and pulse width, so that the moving direction of the permanent magnet alternates, thereby forming a reciprocating swing.
  • the swing motor does not have a stall, and the swing is automatically reduced when the resistance is high or when the swing frequency is high, but the output torque is stable, and the response signal is fast.
  • Speed can achieve a variety of frequency mode of the swing, can more realistically mimic the flying creatures, such as birds, insects and other wings swinging law, so that the aircraft form a richer flight mode; also help to make birds and insects wing movement Simulation experiments were carried out to analyze the law of wing motion.
  • Figure 1 is a schematic structural view of an embodiment of an aircraft of the present application
  • FIG. 2 is a schematic structural view of an embodiment of a swing motor of the present application
  • FIG. 3 is a schematic structural view of an embodiment of a swing motor of the present application.
  • Figure 4 is a schematic structural view of a second embodiment of the aircraft of the present application.
  • Figure 5 is a schematic structural view of a third embodiment of the aircraft of the present application.
  • Figure 6 is a schematic structural view of a fourth embodiment of the aircraft of the present application.
  • FIG. 7 is a schematic structural view of a swing motor in the embodiment shown in FIG. 6;
  • Figure 8 is a schematic structural view of a third embodiment of the swing motor of the present application.
  • FIG. 9 is a schematic structural view of a fourth embodiment of a swing motor of the present application.
  • Figure 10 is a schematic view showing the structure of the wing declination in the fifth embodiment of the aircraft of the present application.
  • FIG. 11 is a schematic structural view of a remote controller and a swing motor in an embodiment of the aircraft of the present application.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides an aircraft capable of more realistically mimicking the swinging law of bird wings, so that the aircraft forms a richer flight mode.
  • the aircraft includes a main bracket 100, a swing motor 200, and at least one pair of wings 300.
  • the main bracket 100 has its supporting function.
  • the swing motor 200 outputs a reciprocating oscillating motion having a swing arm 204.
  • the swing arm 204 is mounted on the main bracket 100 and is rotatable about a point.
  • the wings 300 are mounted on the swing arm 204 of the swing motor 200 and are capable of forming a reciprocating fan motion driven by the swing arm 204.
  • the swing motor 200 includes a control circuit 201, a coil 202 for forming a magnetic field, and a permanent magnet 203 for swinging under a magnetic field.
  • the swing arm 204 is integrated with the permanent magnet 203. Connected, the alternating magnetic field generated by the coil 202 can drive the permanent magnet 203 and the swing arm 204 to achieve a reciprocating rocking motion.
  • the coil 202 is mounted on a U-shaped yoke 205, and the control circuit 201 controls the coil 202 to generate an alternating magnetic field.
  • the four permanent magnets 203 are mounted on the second yoke 206, and the second yoke 206 is simultaneously coupled to the swing arm 204.
  • the four permanent magnets 203 realize a reciprocating rocking motion under the control of the magnetic field of the coil 202, thereby driving the swing arm 204 to swing around the fulcrum.
  • each leg of the U-shaped yoke corresponds to two permanent magnets 203.
  • the redundant design of the permanent magnet 203 is larger than that of the rotating electric machine of the same power, and the magnetic flux is large and driven.
  • the power is correspondingly reduced.
  • the motor directly drives the link mechanism, does not need a cam mechanism or an eccentric link structure, has low noise, long service life, small and stable driving current, and does not have a large current like a rotating motor, and the current does not change much when the pendulum swings.
  • the frequency does not change with the resistance, and can be powered by a rechargeable battery, which is convenient for portability design and the battery is safer and more durable.
  • the swing motor 200 can directly control the swing and swing frequency of the swing arm 204 through the input electrical signal, and can quickly change the vibration frequency of the wing 300, so that the vibration frequency of the aircraft wing 300 can be richly changed, and the resistance is large or high.
  • the swing can be automatically reduced, but the output torque is stable, which is more conducive to mimic the flight creatures, such as changes in the vibration frequency of the wings 300 such as birds and insects, and more realistically simulate the flight mode of the flying creature; Experiment to analyze the law of wing motion.
  • the control circuit 201 is simultaneously connected with a control switch 2011 to control the swing motor 200. Movement state.
  • a charging unit 2012, a rechargeable battery unit 2013, and a signal indicating unit 2014 are connected to realize various basic functions.
  • the wing 300 is disposed around a point.
  • the swing arm 204 and the wing 300 are connected by a connecting rod 400.
  • the two ends of the connecting rod 400 form a spherical pair a2 with the wing 300 and the swing arm 204 respectively. , a3 connection.
  • the movement of the wings 300 around a point may be a rotation around a point, or it may be a spherical sub-connection.
  • the active fulcrum of the wing 300 is disposed on the main bracket 100 and forms a spherical pair a1 connection with the main bracket 100 at the fulcrum.
  • the spherical pair is designed such that the wings 300 and the main bracket 100, between the link 400 and the wings 300 and the swing arm 204, can be rotated in any direction to enrich the variation of the wings 300.
  • two wings 300 ie, two wings of the same pair disposed in a pair are mounted on the same swing motor 200, and the swing motor 200 drives the The two wings 300 do the synchronous fanning.
  • the pair of wings 300 are respectively mounted on both sides of the swing arm 204 such that the swing arm 204 can simultaneously drive the pair of wings 300 to fan up or down in synchronization.
  • two sets of swing motors 200 may be further included, and two wings 300 (ie, two wings of the same pair) disposed in a pair are respectively mounted on different swing motors 200, Independent fanning is driven by the respective oscillating motor 200.
  • the advantage of separately providing the oscillating motor 200 is that the fanning state of each of the wings 300, such as the fanning frequency, can be individually controlled, so that the flight mode of the wings 300 is richer, so that the flying creatures such as birds and insects can be more realistically simulated during flight.
  • the wings of the 300 state of motion can be individually controlled, so that the flight mode of the wings 300 is richer, so that the flying creatures such as birds and insects can be more realistically simulated during flight.
  • the two oscillating motors 200 may be disposed in the same direction or in opposite directions.
  • the two oscillating motors 200 are disposed opposite each other, wherein the two wings 300 are respectively disposed on the swing arms 204 of the two oscillating motors 200.
  • the active fulcrum of the wing is placed at the root of the wing, or near the root of the wing and away from the tip of the wing.
  • the connection point between the link 400 and the wing 300 forming the spherical pair a2 is located in the region of the wing 300 from the movable fulcrum a1 to the wing tip.
  • the wing tip refers to the outermost portion of the wing 300. That is, as shown in FIG. 1, the connection point between the link 400 and the wing 300 forming the spherical pair a2 is located in the region of the outer pivot end of the wing 300 from the movable fulcrum a1 to the wing 300.
  • the active pivot of the wing is in the wing to the wing
  • the connection point between the link 400 and the wing 300 forming the spherical pair a2 is located in the region of the wing 300 from the movable fulcrum a1 to the wing root.
  • the wing root is an end opposite to the wing tip, and refers to the innermost portion of the wing 300.
  • the connection point between the link 400 and the wing 300 forming the spherical pair a2 is located at the active pivot point a1 to the wing 300 of the wing 300. Inside the inner end of the area.
  • FIGS. 4 and 5 may also be combined such that the connection point between the connecting rod 400 and the wing 300 forming the spherical pair a2 is located at the active pivot point of the wing 300 to the wing root (or In the region of the wing tip, a pair of two wings 300 (i.e., two wings of the same pair) are respectively mounted on different swing motors 200, and driven by respective swing motors 200 to perform independent fanning.
  • the swing arm 204 is divided by a fulcrum into an inner arm 2041 near the inside of the swing motor 200 and an outwardly extending outer arm 2042.
  • the wings 300 can include at least one pair of first wings and at least one pair of second wings.
  • the first wing is mounted on the inner arm 2041 of the swing arm 204
  • the second wing is mounted on the outer arm 2042 of the swing arm 204.
  • the first wing is mounted on the outer arm 2042 of the swing arm 204 and the second wing is mounted on the inner arm 2041 of the swing arm 204.
  • the swing motor 200 is two and disposed oppositely, and the first wing and the second wing are cross-mounted on the inner wall and the outer arm of the two swing motor swing arms 204.
  • the fanning direction of the first wing and the second wing is opposite.
  • the first wing is fanned upward
  • the second wing is fanned downward.
  • the first wing is fanned downward
  • a second swing motor 500 for changing the longitudinal tilt angle of the wing 300 is further included.
  • the second swing motor 500 outputs a reciprocating swing motion to cause the wing 300 to change its deflection about the wing active pivot point a1. angle.
  • the structure may be as shown in FIG. 2, or other swing motor structures may be employed.
  • the wing 300 is coupled to the swing shaft 504 of the second swing motor 500 via a second link that is coupled to the wing 300 and the swing shaft 504 of the second swing motor 500 to form spherical pairs a4, a5, respectively.
  • the control circuit 201 can drive the second swing motor 500 to change the deflection angle of the wing 300 about the wing active pivot point a1 during the fanning process.
  • the longitudinal direction of the wing 300 refers to the aircraft from the head to the tail or from the tail to the head.
  • the second swing motor 500 mainly drives the wings 300 to be deflected up and down by a certain angle.
  • the swinging motor 200 and the swinging frequency of the second swinging motor 500 correspond to each other.
  • the second swinging motor 500 is combined with the swinging motor 200 to complete a richer swinging mode change of the wing 300, thereby more realistically simulating the flying creature.
  • the aircraft can also simulate the dodging or approaching action of the flying creature to other objects, and cause the aircraft to make a landing or hovering action.
  • FIG. 2 further including a detecting sensor 2015 for detecting the approach of the object, the detecting sensor 2015 being connected to the control circuit 201, so that the control circuit 201 outputs a control signal to change the vibration frequency of the wing of the aircraft. And/or wing yaw angles to drive the aircraft to change flight conditions. This includes objects that evade or approach the aircraft and cause the aircraft to land or hover.
  • the detection sensor 2015 detects the approach of the object (including the object actively approaching the aircraft or the aircraft actively approaches other objects)
  • the signal is fed back to the control circuit 201.
  • the control circuit 201 controls the swing frequency of the swing motor 200 and/or the second swing motor 500 by changing the input signal, and drives the flap 300 to quickly change position or quickly decelerate. This is similar to flying creatures, when they encounter obstacles or when people want to catch flying creatures, they can speed up the swinging frequency and angle of the wings. Flying creatures can avoid agilely; or slow down the wings when approaching or landing on objects. Frequency and changing the swing angle, the flying creature quickly approaches or falls.
  • the oscillating motor can immediately follow the characteristics of the alternating pulse signal movement of the control circuit, so that the flight mode of the aircraft is more realistic and closer to the flight state of the flying creature. This is a function that is difficult to realize in the existing rotating electric machine.
  • the rotating electric machine deviates from the rated rotating speed, the power consumption is rapidly increased when the power consumption is too high or the torque is rapidly decreased.
  • the detecting sensor 2015 includes at least one of an infrared detecting sensor, an ultrasonic detecting sensor, or a microwave detecting sensor.
  • a remote control 600 is also included that is capable of establishing a communication connection with the control circuit 201 for the operator to control the flight status of the aircraft.
  • the remote controller 600 preferably establishes a connection with the control circuit 201 by wireless communication, and the operator can remotely control the flight state of the aircraft.
  • Various control keys can be provided on the remote controller 600 to facilitate the operator to input various commands to the aircraft.
  • the remote controller 600 can also be provided with a display device for displaying various indicators of the aircraft and other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种飞行器,包括主支架(100)、摆动电机(200)以及至少一对翅膀(300),摆动电机(200)输出往复摆动运动,其具有摆臂(204),摆臂(204)安装在主支架(100)上,并能绕一支点转动。翅膀(300)安装在摆动电机(200)的摆臂(204)上,并能够在摆臂(204)的驱动下形成往复扇动。本飞行器采用摆动电机,该摆动电机的控制电路产生脉宽可调的交变脉冲,使永磁体运动方向交替变化,进而形成往复摆动。该摆动电机不存在堵转,阻力大时或摆频高时自动减少摆幅,其对输入信号响应迅速,能够实现多种频率模式的摆动,可以更逼真的模仿飞行生物,例如鸟类、昆虫等翅膀的摆动规律,使飞行器形成更丰富的飞行模式。

Description

飞行器 技术领域
本发明涉及一种飞行器。
背景技术
目前,在市场上出现的翅膀摆动的飞行器都是采用旋转电机带动。旋转电机借助凸轮机构或偏心连杆结构来将旋转运动转换成往复摆动。旋转电机如此驱动翅膀往复摆动运动,工作电流大,尤其是启动时和堵转时工作电流异常大。而且这类飞行器在使用过程由于电机额定转速的限制,翅膀的摆动频率变化有限,导致飞行模式极其有限,不能根据不同的环境进行快速变化。旋转电机偏离额定转速,就会使得偏高时功耗快速加大或偏低时力矩快速减小。
发明内容
本发明主要提供一种新型的飞行器。
根据第一方面,一种实施例中提供一种飞行器,包括:
主支架;
摆动电机,所述摆动电机包括控制电路、用于形成磁场的线圈、用于在磁场下摆动的永磁体以及和永磁铁固定的摆臂,所述摆臂与永磁体一体连接,所述线圈产生的交变磁场可驱动永磁体及摆臂实现往复摇摆运动,所述摆臂安装在主支架上,并能绕一支点转动:
至少一对翅膀,所述翅膀安装在摆动电机的摆臂上,并能够在摆臂的驱动下形成往复扇动。
作为所述飞行器的进一步可选方案,所述翅膀绕一支点活动设置,所述摆臂与翅膀之间通过连杆连接,所述连杆两端分别与翅膀和摆臂形成球面副连接。
作为所述飞行器的进一步可选方案,还包括用于改变翅膀纵向倾斜角度的第二摆动电机,所述第二摆动电机输出往复摆动运动,所述翅膀与第二摆动电机的摆动轴之间通过第二连杆连接,所述第二连杆分别与翅膀和第二摆动电机的摆动轴形成球面副连接。
作为所述飞行器的进一步可选方案,所述翅膀的活动支点设置在主支架上,并与主支架在支点处形成球面副连接。
作为所述飞行器的进一步可选方案,所述活动支点设置在翅根,或 靠近翅根且远离翅尖;所述连杆与翅膀形成球面副的连接点位于翅膀活动支点到翅尖的区域内。
作为所述飞行器的进一步可选方案,所述活动支点在翅根到翅尖之间,所述连杆与翅膀形成球面副的连接点位于翅膀活动支点到翅根的区域内。
作为所述飞行器的进一步可选方案,所述至少一对翅膀包括至少一对第一翅膀和至少一对第二翅膀,所述摆臂以支点为界分为靠近摆动电机内部的内臂和向外延伸的外臂;
其中,所述第一翅膀安装在摆臂的内臂上,所述第二翅膀安装在摆臂的外臂上;
或所述第一翅膀安装在摆臂的外臂上,所述第二翅膀安装在摆臂的内臂上;
或所述摆动电机为两个,且对向设置,所述第一翅膀和第二翅膀交叉安装在两个摆动电机摆臂的内壁和外臂上。
作为所述飞行器的进一步可选方案,成一对设置的两个翅膀均安装在同一摆动电机上,由所述摆动电机驱动所述两个翅膀做同步扇动。
作为所述飞行器的进一步可选方案,包括两个摆动电机,成一对设置的两个翅膀分别安装在不同的摆动电机上,由各自的摆动电机驱动做独立的扇动。
作为所述飞行器的进一步可选方案,还包括用于检测物体靠近的探测传感器,所述探测传感器与控制电路连接,以便控制电路输出控制信号,以驱动飞行器改变飞行状态。
作为所述飞行器的进一步可选方案,所述探测传感器包括红外线探测传感器、超声波探测传感器或微波探测传感器中的至少一种。
作为所述飞行器的进一步可选方案,还包括遥控器,所述遥控器能够与控制电路建立通信连接,以便操作者控制飞行器的飞行状态。
依据上述实施例的飞行器,其摆动电机输出往复摆动运动,其具有摆臂。摆臂安装在主支架上,并能绕一支点转动。翅膀安装在摆动电机的摆臂上,并能够在摆臂的驱动下形成往复扇动。本飞行器采用摆动电机,该摆动电机的控制电路产生频率和脉宽可调的交变脉冲,使永磁体运动方向交替变化,进而形成往复摆动。该摆动电机不存在堵转,阻力大时或摆频高时自动减少摆幅,但输出力矩稳定,其对输入信号响应迅 速,能够实现多种频率模式的摆动,可以更逼真的模仿飞行生物,例如鸟类、昆虫等翅膀的摆动规律,使飞行器形成更丰富的飞行模式;也有利于做鸟类和昆虫的翅膀运动仿真实验,分析翅膀运动规律。
附图说明
图1为本申请飞行器一种实施例的结构简图;
图2为本申请摆动电机一种实施例的结构简图;
图3为本申请摆动电机一种实施例的结构示意图;
图4为本申请飞行器第二种实施例的结构简图;
图5为本申请飞行器第三种实施例的结构简图;
图6为本申请飞行器第四种实施例的结构简图;
图7为图6所示实施例中摆动电机一种结构示意图;
图8为本申请摆动电机第三种实施例的结构示意图;
图9为本申请摆动电机第四种实施例的结构示意图;
图10为本申请飞行器第五种实施例中翅膀偏角结构示意图;
图11为本申请飞行器一种实施例中遥控器与摆动电机的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区 分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
实施例一:
本实施例提供一种飞行器,该飞行器能够更逼真的模仿鸟类翅膀的摆动规律,使飞行器形成更丰富的飞行模式。
请参考图1,该飞行器包括主支架100、摆动电机200以及至少一对翅膀300。
该主支架100其支撑作用。该摆动电机200输出往复摆动运动,其具有摆臂204。摆臂204安装在主支架100上,并能绕一支点转动。翅膀300安装在摆动电机200的摆臂204上,并能够在摆臂204的驱动下形成往复扇动。
请参考图2和3,在一种实施例中,该摆动电机200包括控制电路201、用于形成磁场的线圈202和用于在磁场下摆动的永磁体203,摆臂204与永磁体203一体连接,线圈202产生的交变磁场可驱动永磁体203及摆臂204实现往复摇摆运动。
该线圈202安装在一个U型磁轭205上,控制电路201控制线圈202产生交变的磁场。四个永磁体203安装在第二磁轭206上,第二磁轭206同时与摆臂204连接为一体。四个永磁体203在线圈202磁场的控制下实现往复摇摆运动,进而带动摆臂204绕支点进行摆动。
采用以上摆动电机200的好处在于,U型磁轭的每个支脚对应两个永磁体203,这种永磁体203冗余的设计比同功率的旋转电机转矩更大,作用磁通大,驱动功率则相应的减小。该电机直接驱动连杆机构,不需要凸轮机构或偏心连杆结构,噪音小,寿命长,驱动电流小且稳定,也没有像旋转电机那样的启动大电流,堵摆时电流变化不大,摆动频率不随阻力变化,可用充电电池供电,便于便携性设计,电池更安全耐用。
而且摆动电机200可直接通过输入的电信号控制摆臂204的摆幅和摆频,可以快速地改变翅膀300的振动频率,使得飞行器翅膀300的振动频率可以有丰富的变化,阻力大时或高频摆动时可自动减小摆幅,但输出力矩稳定,更有利于模仿飞行生物,例如鸟类、昆虫等翅膀300振动频率的变化,更逼真的模拟飞行生物的飞行模式;并通过翅膀运动仿真实验,分析翅膀运动规律。
该控制电路201同时连接有控制开关2011,来控制摆动电机200的 运动状态。除此之外,还连接有充电单元2012、充电电池单元2013和信号指示单元2014,以实现各种基本功能。
进一步地,请参考图1,该翅膀300绕一支点活动设置,该摆臂204与翅膀300之间通过连杆400连接,该连杆400两端分别与翅膀300和摆臂204形成球面副a2、a3连接。
翅膀300绕一支点活动设置可能是绕一支点转动,也可能是形成一种球面副连接。
请继续参考图1,在一种实施例中,翅膀300的活动支点设置在主支架100上,并与主支架100在支点处形成球面副a1连接。
该球面副的设计可以使得翅膀300与主支架100之间,连杆400与翅膀300和摆臂204之间,可以在任意方向上实现转动,丰富翅膀300的变化。
另一方面,请参考图1,在一种实施例中,成一对设置的两个翅膀300(即同一对的两个翅膀)均安装在同一摆动电机200上,由该一个摆动电机200驱动该两个翅膀300做同步扇动。例如,如图3所示,该一对翅膀300分别安装在摆臂204的两侧,这样摆臂204可以同时驱动该一对翅膀300同步地向上或向下扇动。
或者,请参考图4,在一种实施例中,还可以包括两组摆动电机200,成一对设置的两个翅膀300(即同一对的两个翅膀)分别安装在不同的摆动电机200上,由各自的摆动电机200驱动做独立的扇动。
单独设置摆动电机200的好处在于,可以单独的控制每个翅膀300的扇动状态,例如扇动频率,使翅膀300的飞行模式更丰富,这样可以更真实的模仿鸟类、昆虫等飞行生物在飞行时的翅膀300运动状态。
该两个摆动电机200可以是同向设置,也可以是对向设置。例如图7所示,该两个摆动电机200对向设置,其中两个翅膀300分别设置在两个摆动电机200的摆臂204上。
进一步地,请参考图1,在一种实施例中,翅膀的活动支点设置在翅根,或靠近翅根且远离翅尖的位置。连杆400与翅膀300形成球面副a2的连接点位于翅膀300活动支点a1到翅尖的区域内。该翅尖是指翅膀300最靠外的部位,即如图1所示,连杆400与翅膀300形成球面副a2的连接点位于翅膀300活动支点a1到翅膀300最外端的区域内。
或者,请参考图5,在一种实施例中,翅膀的活动支点在翅根到翅 尖之间,连杆400与翅膀300形成球面副a2的连接点位于翅膀300活动支点a1到翅根的区域内。该翅根是与翅尖相对的一端,指翅膀300最靠内的部位,即如图5所示,连杆400与翅膀300形成球面副a2的连接点位于翅膀300活动支点a1到翅膀300最内端的区域内。
当然,请参考图6,在一种实施例中,也可以将图4和5的结构进行结合,使连杆400与翅膀300形成球面副a2的连接点位于翅膀300活动支点到翅根(或翅尖)的区域内,且成一对设置的两个翅膀300(即同一对的两个翅膀)分别安装在不同的摆动电机200上,由各自的摆动电机200驱动做独立的扇动。
另一方面,请参考图8,在一种实施例中,摆臂204以支点为界分为靠近摆动电机200内部的内臂2041和向外延伸的外臂2042。
该实施例中,翅膀300可以包括至少一对第一翅膀和至少一对第二翅膀。其中,该第一翅膀安装在摆臂204的内臂2041上,该第二翅膀安装在摆臂204的外臂2042上。
或,反过来,第一翅膀安装在摆臂204的外臂2042上,第二翅膀安装在摆臂204的内臂2041上。
或,如图9所示,摆动电机200为两个,且对向设置,第一翅膀和第二翅膀交叉安装在两个摆动电机摆臂204的内壁和外臂上。
该第一翅膀和第二翅膀的扇动方向是相反状态,当第一翅膀向上扇动时,第二翅膀向下扇动。当第一翅膀向下扇动时,第二翅膀向上扇动。这可以用来更真实地模拟某些具有多对翅膀的飞行生物,例如苍蝇、蚊子、蜻蜓等昆虫的飞行模式。
另一方面,为了能够更好的模拟转向等飞行模式。请参考图10,在一种实施例中,还包括用于改变翅膀300纵向倾斜角度的第二摆动电机500,该第二摆动电机500输出往复摆动运动,使翅膀300绕翅膀活动支点a1改变偏转角度。其结构可以采用如图2所示的结构,也可以采用其他摆动电机的结构。
该翅膀300与第二摆动电机500的摆动轴504之间通过第二连杆连接,该第二连杆分别与翅膀300和第二摆动电机500的摆动轴504形成球面副a4、a5连接。控制电路201可以驱动第二摆动电机500在扇动过程中绕翅膀活动支点a1改变翅膀300的偏转角度。
这里所说的翅膀300纵向是指飞行器自头部到尾部或自尾部到头部 的方向,在图10中,第二摆动电机500主要是驱动翅膀300上下偏转一定的角度。
翅膀摆动电机200和第二摆动电机500的摆动频率对应,该第二摆动电机500与摆动电机200结合,可以完成更丰富的翅膀300摆动模式变化,进而更逼真地实现对飞行生物的模仿。
进一步地,本飞行器还可以模拟飞行生物对其他物体的躲避或接近动作,以及使飞行器做出降落或悬停动作。
例如,在一种实施例中,请参考图2,还包括用于检测物体靠近的探测传感器2015,该探测传感器2015与控制电路201连接,以便控制电路201输出控制信号,改变飞行器翅膀的振动频率和/或翅膀偏角,以驱动飞行器改变飞行状态。包括使飞行器避让或接近靠近的物体,以及使飞行器做降落或悬停动作。
当探测传感器2015检测到物体的靠近(包括物体主动靠近飞行器或飞行器主动靠近其他物体)时,反馈信号至控制电路201。控制电路201通过改变输入信号控制摆动电机200和/或第二摆动电机500的摆动频率,驱动翅膀300快速变换位置或快速减速接近。这就类似于飞行生物在遇到障碍或人要用手抓飞行生物的时候,加快改变翅膀摆动频率和角度,飞行生物可以敏捷的躲避;或接近或降落到物体上的时候,减慢翅膀摆动频率和改变摆动角度,飞行生物快速的靠近或降落。该摆动电机能即时跟随控制电路的交变脉冲信号运动的特性,使得飞行器的飞行模式更真实,更接近飞行生物的飞行状态。这是现有的旋转电机难以实现的功能,旋转电机偏离额定转速,就会使得偏高时功耗快速加大或偏低时力矩快速减小。
其中,探测传感器2015包括红外线探测传感器、超声波探测传感器或微波探测传感器中的至少一种。
另外,请参考图11,在一种实施例中,还包括遥控器600,该遥控器600能够与控制电路201建立通信连接,以便操作者控制飞行器的飞行状态。
该遥控器600优选与控制电路201通过无线通信方式建立连接,操作者可以远程控制飞行器的飞行状态。遥控器600上可以设置各种控制键,以便于操纵者对飞行器进行各种命令的输入。
遥控器600也可以设置显示装置,用于显示飞行器各种指标状态和 其他信息。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (12)

  1. 一种飞行器,其特征在于,包括:
    主支架;
    摆动电机,所述摆动电机包括控制电路、用于形成磁场的线圈、用于在磁场下摆动的永磁体以及和永磁铁固定的摆臂,所述摆臂与永磁体一体连接,所述线圈产生的交变磁场可驱动永磁体及摆臂实现往复摇摆运动,所述摆臂安装在主支架上,并能绕一支点转动:
    至少一对翅膀,所述翅膀安装在摆动电机的摆臂上,并能够在摆臂的驱动下形成往复扇动。
  2. 如权利要求1所述的飞行器,其特征在于,所述翅膀绕一支点活动设置,所述摆臂与翅膀之间通过连杆连接,所述连杆两端分别与翅膀和摆臂形成球面副连接。
  3. 如权利要求2所述的飞行器,其特征在于,还包括用于改变翅膀纵向倾斜角度的第二摆动电机,所述第二摆动电机输出往复摆动运动,所述翅膀与第二摆动电机的摆动轴之间通过第二连杆连接,所述第二连杆分别与翅膀和第二摆动电机的摆动轴形成球面副连接。
  4. 如权利要求2所述的飞行器,其特征在于,所述翅膀的活动支点设置在主支架上,并与主支架在支点处形成球面副连接。
  5. 如权利要求2所述的飞行器,其特征在于,所述活动支点设置在翅根,或靠近翅根且远离翅尖;所述连杆与翅膀形成球面副的连接点位于翅膀活动支点到翅尖的区域内。
  6. 如权利要求2所述的飞行器,其特征在于,所述活动支点在翅根到翅尖之间,所述连杆与翅膀形成球面副的连接点位于翅膀活动支点到翅根的区域内。
  7. 如权利要求2所述的飞行器,其特征在于,所述至少一对翅膀包括至少一对第一翅膀和至少一对第二翅膀,所述摆臂以支点为界分为靠近摆动电机内部的内臂和向外延伸的外臂;
    其中,所述第一翅膀安装在摆臂的内臂上,所述第二翅膀安装在摆臂的外臂上;
    或所述第一翅膀安装在摆臂的外臂上,所述第二翅膀安装在摆臂的内臂上;
    或所述摆动电机为两个,且对向设置,所述第一翅膀和第二翅膀交 叉安装在两个摆动电机摆臂的内壁和外臂上。
  8. 如权利要求1所述的飞行器,其特征在于,成一对设置的两个翅膀均安装在同一摆动电机上,由所述摆动电机驱动所述两个翅膀做同步扇动。
  9. 如权利要求1所述的飞行器,其特征在于,包括两个摆动电机,成一对设置的两个翅膀分别安装在不同的摆动电机上,由各自的摆动电机驱动做独立的扇动。
  10. 如权利要求1-9任一项所述的飞行器,其特征在于,还包括用于检测物体靠近的探测传感器,所述探测传感器与控制电路连接,以便控制电路输出控制信号,以驱动飞行器改变飞行状态。
  11. 如权利要求10所述的飞行器,其特征在于,所述探测传感器包括红外线探测传感器、超声波探测传感器或微波探测传感器中的至少一种。
  12. 如权利要求11所述的飞行器,其特征在于,还包括遥控器,所述遥控器能够与控制电路建立通信连接,以便操作者控制飞行器的飞行状态。
PCT/CN2017/081715 2017-04-24 2017-04-24 飞行器 WO2018195724A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081715 WO2018195724A2 (zh) 2017-04-24 2017-04-24 飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081715 WO2018195724A2 (zh) 2017-04-24 2017-04-24 飞行器

Publications (2)

Publication Number Publication Date
WO2018195724A2 true WO2018195724A2 (zh) 2018-11-01
WO2018195724A3 WO2018195724A3 (zh) 2018-12-06

Family

ID=63917890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081715 WO2018195724A2 (zh) 2017-04-24 2017-04-24 飞行器

Country Status (1)

Country Link
WO (1) WO2018195724A2 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451984B1 (ko) * 2001-11-16 2004-10-08 주식회사 뉴로스 동력식 날개치기형 비행기
CN201214022Y (zh) * 2008-05-28 2009-04-01 王轶 一种结构简单的遥控玩具飞鸟
CN201415756Y (zh) * 2009-07-02 2010-03-03 中国科学院沈阳自动化研究所 一种扑翼式仿蝇机器人
CN101947389B (zh) * 2010-10-12 2012-07-25 上海交通大学 双翼式仿昆飞行器
CN102602537A (zh) * 2012-03-31 2012-07-25 西北工业大学 一种微型扑旋翼飞行器
CN103274049B (zh) * 2013-05-08 2016-04-13 上海交通大学 电磁驱动式仿昆虫扑翼微飞行器
CN104760697B (zh) * 2015-04-07 2017-05-10 广西壮族自治区科学技术馆 一种电磁驱动的微型扑翼机
CN105686335B (zh) * 2016-02-19 2018-09-07 胡建坤 用于生物体体表清洁的电动清洁毛刷
CN105598797B (zh) * 2016-02-19 2018-09-07 胡建坤 电动磨削器

Also Published As

Publication number Publication date
WO2018195724A3 (zh) 2018-12-06

Similar Documents

Publication Publication Date Title
US10518878B2 (en) Multi-rotor aircraft control
KR101200762B1 (ko) 입식전진비행이 가능한 원격조종 날갯짓 비행체
CN103612755A (zh) 一种双节主翼仿生扑翼机
JPWO2009004705A1 (ja) 遠隔操縦ヘリコプタのロータヘッド及び遠隔操縦ヘリコプタ
JP2009297449A (ja) ヘリコプター玩具
CN105857597B (zh) 一种仿生蜻蜓扑翼机器人
KR20130134473A (ko) 소형 비행체의 시소운동을 이용한 날개 플랩핑 장치
JP2004521803A (ja) 遠隔操作可能な航空機
CN203558206U (zh) 一种双节主翼仿生扑翼机
CN108058825A (zh) 一种可前后扫掠式的扑翼飞行器装置
JP2013521021A (ja) 同軸反転二重回転プロペラを有する、リモートコントロール模型ヘリコプターのリンケージ装置
CN110615098B (zh) 飞行器和飞行器控制方法
JP2012180050A (ja) 羽ばたき飛行装置
WO2018195724A2 (zh) 飞行器
JP2011195050A (ja) 小型飛翔装置
CN107140207B (zh) 飞行器
CN108706100A (zh) 仿大鸟扑翼飞行器
KR20060110241A (ko) 두 쌍의 날개를 갖는 잠자리 유형 날갯짓 비행체
CN107161340B (zh) 仿生扑翼飞行器及其飞行控制方法
JP2009045406A (ja) 羽ばたき飛行体
JP2017061285A (ja) セミの飛行制御を応用した羽ばたき飛行体
CN206968983U (zh) 飞行器
CN210707862U (zh) 电磁舵机和飞行器
CN209192229U (zh) 微型扑翼飞行器
KR20110010234A (ko) 비행체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907834

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907834

Country of ref document: EP

Kind code of ref document: A2