WO2018194240A1 - 원심력을 이용한 디지털 pcr 장치 및 방법 - Google Patents

원심력을 이용한 디지털 pcr 장치 및 방법 Download PDF

Info

Publication number
WO2018194240A1
WO2018194240A1 PCT/KR2018/000163 KR2018000163W WO2018194240A1 WO 2018194240 A1 WO2018194240 A1 WO 2018194240A1 KR 2018000163 W KR2018000163 W KR 2018000163W WO 2018194240 A1 WO2018194240 A1 WO 2018194240A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
centrifugal force
digital pcr
rotating
pcr device
Prior art date
Application number
PCT/KR2018/000163
Other languages
English (en)
French (fr)
Inventor
이성운
남호철
Original Assignee
(주)레보스케치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)레보스케치 filed Critical (주)레보스케치
Priority to US16/605,453 priority Critical patent/US11260393B2/en
Priority to EP18787466.4A priority patent/EP3613501A4/en
Priority to CN201880025478.6A priority patent/CN111263660B/zh
Publication of WO2018194240A1 publication Critical patent/WO2018194240A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0841Drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels

Definitions

  • the present invention relates to a PCR device and method, and more particularly to a digital PCR device and method using centrifugal force.
  • PCR Polymerase Chain Reaction
  • the binding step primers bind to the template DNA.
  • the temperature at the binding stage is an important factor in determining the accuracy of the reaction. If the temperature is too high, the primer binds too weakly to the template DNA, resulting in very little product amplified DNA. If the temperature is too low, unwanted DNA can be amplified because the primers bind nonspecifically.
  • the diagnosis through the nucleic acid amplification or a specific gene search technique has a limitation in that it searches for one template at a time.
  • amplifying each one at a time is a cumbersome and time consuming task.
  • the cause of the onset is often caused by various kinds of infectious agents, and diagnosis of various pathogens is necessary individually.
  • cancer and genetic defects are known to be caused by complex mutations of various genes.
  • Genetic polymorphisms or mutations require additional screening of zygotes due to changes in loci of various genes. Since the amount of nucleic acid that can be extracted from a limited sample in a general environment is finite, it is often impossible to repeat the diagnosis through nucleic acid amplification using a limited amount of nucleic acid.
  • An object of the present invention for solving the above problems is to provide a digital PCR apparatus and method using a centrifugal force that can be easily carried out at a low cost in a single equipment mounting and PCR processing and analysis process.
  • the sample plate is a cylinder for mounting the microwell film; A cylindrical distribution cylinder in which bone is formed at regular intervals so that the sample can be spread evenly by the centrifugal force inside the cylinder; And a cover covering the cylinder.
  • the microwell film is mounted on a cylindrical inner wall.
  • the cylinder and the microwell film are characterized in that made of a transparent plastic or polymer.
  • Rotating the sample fractionated by the microfraction spout moves the portion of the test substance with a high specific gravity outward and the oil component with a low specific gravity moves toward the center of the sample mixed with the test substance and the oil component to automatically seal the microfraction spout. It features.
  • the door unit is a heater for controlling the temperature of the air; A fan for moving the air; And a temperature sensor for measuring the temperature of the air.
  • the lower end of the door portion is characterized in that it further comprises a projection for injecting air in close proximity to the hole of the sample dish.
  • the protrusion may include a nozzle for injecting air.
  • the door part is moved up and down through a hinge, it is characterized in that it is fixed on the top of the support.
  • the hinge is coupled to the support, characterized in that the support is fixed to the upper lift.
  • the scan head unit includes a light emitting unit and a light receiving unit, and installs 1 to 10 independently to generate a 2D image and a data map.
  • the lift is characterized in that for moving the sample plate fixed to the rotating portion for rotating the sample plate up and down.
  • the rotating unit is a mount for fixing the sample plate; A motor for rotating the mount; And an encoder for controlling the mount rotation speed.
  • a first base fixing the lift to an upper side;
  • a second base for mounting the scan head portion;
  • a support rod fixed to the other side of the first base and supporting the second base.
  • the digital PCR method using the centrifugal force of the present invention comprises the steps of mounting a sample plate to the mount and rotating the motor; Injecting a sample into the rotating sample dish and fractionating the sample into a micro well of a microwell film mounted on an inner wall of the sample dish by centrifugal force; Amplifying the fractionated sample by performing a PCR process through a door part; And reading a fluorescence signal of the sample through the scan head while rotating and moving the amplified sample up and down.
  • the method may further include generating a two-dimensional image and a data map by reading the fluorescence signal of the sample through the scan head unit.
  • the cost of the device itself is excellent, and the cost of the existing product is increased because the stamping process of the polymer is used.
  • the cost burden on consumable parts can be significantly reduced.
  • the device can be freely changed from a high speed system to a high precision device.
  • FIG. 1 is a perspective view showing a digital PCR device using a centrifugal force according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a digital PCR device using a centrifugal force according to an embodiment of the present invention.
  • FIG 3 is a perspective view showing a sample plate according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a scan head unit according to an embodiment of the present invention.
  • FIG. 5 is a perspective view showing a rotating part according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a digital PCR device using a centrifugal force according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing a digital PCR device using a centrifugal force according to an embodiment of the present invention
  • Figure 3 is 4 is a perspective view illustrating a sample plate according to one embodiment
  • FIG. 4 is a cross-sectional view illustrating a scan head unit according to an embodiment of the present invention
  • FIG. 5 is a perspective view illustrating a rotating unit according to an embodiment of the present invention.
  • the digital PCR device using the centrifugal force according to the present invention is a sample plate 80 having a micro well (micro well) and the PCR process by heating the temperature of the sample of the micro fountain.
  • the sample dish 80 is a cylindrical dispensing cylinder of the cylindrical 81 and a plurality of bones 83 formed at regular intervals at a constant distance from the center so that the sample can be spread evenly by the centrifugal force inside the cylinder 81 ( 82), a microwell film 84 mounted on the inner wall of the cylinder 81 and formed with a microspout, and a cover 85 covering the cylinder 81.
  • the cylinder 81 and the microwell film 84 may be made of a transparent plastic or a polymer material so as to irradiate a light source and sense the emitted light.
  • the microwell film 84 is a flexible film capable of forming microspouts of various sizes using a stamping process.
  • the prepared sample is introduced through the hole 86 in the center of the cover 85 of the sample plate 80.
  • the sample is partitioned into a micro well of the microwell film 84.
  • the portion of the test substance having a higher specific gravity moves to the outside and the oil component having a lower specific gravity moves toward the center of the sample mixed with the test substance and the oil component so that each microfraction is automatically sealed. do.
  • the door unit 50 is composed of a heater for controlling the temperature of the air therein, a fan for moving the air, and a temperature sensor for measuring the temperature of the air. At this time, the temperature of the air can be PID control to follow the setting of the target temperature to control the temperature in the sample dish (80).
  • the lower end of the door part 50 is provided with a protrusion 51 including a nozzle for injecting air close to the hole 86 of the sample dish 80 therein.
  • the door unit 50 is moved up and down through the hinge 52 and is fixed to the upper portion of the '53' shaped support 53.
  • the support 53 is fixed to the lift 40, the hinge 52 is coupled to the support 53.
  • the air is injected at a predetermined temperature while rotating the sample fractionated at each microfraction hole, and the PCR process proceeds. At this time, the amplification of the gene occurs in each microfraction with limited fractionated samples.
  • the scan head portion 60 is composed of a light emitting portion 61 and a light receiving portion 66, while rotating the sample (gene) amplified in the microfraction during PCR process and slowly moving up and down by the lift 40 Read the fluorescence signal.
  • the scan head unit 60 is installed 1 to 10 independently to read the fluorescence signal of the sample to generate 1 to 10 two-dimensional images and data maps, preferably at the same time obtain up to five fluorescence wavelengths
  • five independent scanhead units 60 are installed to read whether the target genes are expressed in each microfraction in each scanhead unit 60 to generate five two-dimensional images and data maps.
  • the microwell film 84 installed on the inner wall of the sample dish 80 has 2 million (500 rows x 4000 rows) of microfractions
  • the result reads a total of 2 million microfractions. 5 channels of images are generated.
  • information about 10 million pieces (500 rows x 4000 columns x 5 channels) of microfractions can be extracted, and various amounts of microfractions are formed according to the diameter of the cylinder 81 and the size of the fractions. can do.
  • the light emitter 61 includes a light source 62, a collimator 63, a band pass filter 64, a reflecting mirror 65, a dichronic mirror 71, and a focusing lens 70.
  • the light receiving unit 66 is composed of a photodiode 67, a condenser lens 68, a band pass filter 69, a dichroic mirror 71, and a focusing lens 70.
  • the light emitting unit 11 and the light receiving unit 16 are conventional techniques already known and implemented in various ways before the present application, a detailed description thereof will be omitted.
  • the lift 40 moves the support part 41 on which the rotating part 90 for rotating the sample plate 80 is fixed up and down.
  • the rotating unit 90 is a mount 91 for fixing the sample dish 80, a motor 93 for rotating the mount 91, and an encoder 92 for controlling the rotation speed of the mount 91. Consists of
  • the lift 40 is fixed to one side of the upper portion of the first base 10, and four support rods 30 are installed on the other side of the upper portion of the first base 10 so that 1 to 10 independent scan head portions ( 60 may support the second base 20 mounted thereon.
  • the sample plate 80 is mounted on the mount 91 and then rotated by the motor 93.
  • a PCR process is performed according to the set temperature change configuration through the door part 50 capable of temperature control to amplify the fractionated sample in a limited microfraction.
  • the PCR process is to close the protrusion 51 of the door 50 to the hole 86 of the sample dish 80 and then spray the air temperature control is possible to remove the gene from the microfraction of the limited sample Amplification can occur.
  • the amplified sample (gene) is continuously rotated, and the fluorescence signal of the sample is read through the scan head portion 60 while slowly moving the support portion 41 up and down by the lift 40.
  • each gene is processed so that the signal can be read by fluorescence in advance.
  • the target gene is expressed in each microfraction sphere by five independent scanheads 60 which emit light of up to five wavelengths and read out the expression of the emitted light. Generate five two-dimensional images and data maps.
  • the PCR reaction processor and the result analyzer are divided, and thus the change in each temperature cycle cannot be measured, but in the present invention, the result can be continuously rotated during the PCR reaction treatment cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

본 발명은 원심력을 이용한 디지털 PCR 장치에 관한 것으로, 미세분획구(micro well)가 형성된 마이크로웰필름을 장착하는 샘플접시; 상기 샘플접시를 회전시키면서 시료를 투입하여 원심력에 의해 미세분획구에 분획된 사료에 온도를 제어하여 PCR 과정을 진행하는 도어부; 및 상기 PCR 과정에서 미세분획구에 증폭된 시료를 회전시키면서 형광(florescence) 신호를 읽어내는 스캔헤드부;를 포함하는 것을 특징으로 한다.

Description

원심력을 이용한 디지털 PCR 장치 및 방법
본 발명은 PCR 장치 및 방법에 관한 것으로, 더욱 상세하게는 원심력을 이용한 디지털 PCR 장치 및 방법에 관한 것이다.
중합효소연쇄반응(PCR; Polymerase Chain Reaction)은 핵산을 포함하는 샘플 용액을 반복적으로 가열 및 냉각하여 핵산의 특정 염기 서열을 갖는 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 구체적으로 변성(Denaturation), 결합(Annealing), 및 신장(Extension) 등의 일련의 온도 효소 반응 단계로 진행될 수 있다.
첫 번째 단계인 변성 단계에서는 두 가닥의 DNA가 가열되어서 분리된다. 분리된 각각의 DNA는 주형(template)으로서 역할을 하게 된다.
두 번째 단계인 결합 단계에서는 프라이머(primer)들이 주형 DNA에 결합을 하게 된다. 결합 단계에서의 온도는 반응의 정확성을 결정하는 중요한 요소인데 만약 온도를 너무 높게 하면 프라이머가 주형 DNA에 너무 약하게 결합되어서 증폭된 DNA의 산물이 매우 적어진다. 또 만약 온도를 너무 낮게 하면 프라이머가 비특이적으로 결합하기 때문에 원하지 않는 DNA가 증폭될 수 있다.
세 번째 단계인 신장 단계에서는 열에 강한 DNA 중합 효소가 주형 DNA에서 새로운 DNA를 만들게 된다.
한편, 위와 같은 핵산 증폭을 통한 진단이나 특정 유전자의 검색 기법은 한번에 하나의 주형을 검색한다는 점에서 한계를 가진다. 여러 개의 주형을 증폭해야 하는 상황에서 각각의 주형을 한번에 하나씩 증폭하는 것은 번거롭고 시간을 많이 소비하는 작업이다. 예를 들면 같은 환자에게 같은 증상이 발생할지라도 발병의 원인이 여러 종류의 감염성 병원체에 의한 경우가 많아서 다양한 병원체의 진단이 개별적으로 필요하게 된다. 또한, 암이나 유전적인 결함 등은 여러 유전자의 복합적인 변이에 기인한다고 알려져 있다.
유전자 다형성(polymorphim)이나 돌연변이(mutation)는 다양한 유전자의 좌위(loci) 변화에 기인하여 추가적인 접합체(zygote)의 검사가 필요하다. 일반적인 환경에서 제한된 시료에서 추출할 수 있는 핵산의 양은 유한하므로, 제한된 양의 핵산을 이용하여 핵산 증폭을 통한 반복적인 진단이 불가능한 경우가 자주 발생할 수 있다.
최근 들어 진보된 3세대 PCR기법인 디지털 PCR의 기술이 대두되어 좀 더 정확한 검사가 가능해 지고 있다. 그러나, 현재 디지털 PCR 장치들은 시험을 진행하기 위하여 여러 가지의 장비를 사용해야 하거나 고비용의 미세분획구 칩(micro well chip) 등을 제작해야 하고, 준비과정에서도 번거롭거나 민감한 부분이 많아 디지털 PCR의 저변을 확대하는데 한계가 있다. 또한, 복잡한 절차와 방법들은 시험장비의 비용도 증가시키기 때문에 디지털 PCR의 도입에 큰 장애가 되고 있는 상황이다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 시료의 장착과 PCR 과정 처리 및 분석하는 과정을 하나의 장비에서 저비용으로 간편하게 진행할 수 있는 원심력을 이용한 디지털 PCR 장치 및 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 원심력을 이용한 디지털 PCR 장치는 미세분획구(micro well)가 형성된 마이크로웰필름을 장착하는 샘플접시; 상기 샘플접시를 회전시키면서 시료를 투입하여 원심력에 의해 미세분획구에 분획된 사료에 온도를 제어하여 PCR 과정을 진행하는 도어부; 및 상기 PCR 과정에서 미세분획구에 증폭된 시료를 회전시키면서 형광(florescence) 신호를 읽어내는 스캔헤드부;를 포함하는 것을 특징으로 한다.
상기 샘플접시는 상기 마이크로웰필름을 장착하는 원통; 상기 원통 내부에 원심력에 의해 시료가 골고루 퍼질 수 있도록 일정한 간격으로 골이 형성되어 있는 원통형의 분배통; 및 상기 원통을 덮는 커버;를 포함하는 것을 특징으로 한다.
상기 마이크로웰필름은 원통 내부 벽에 장착하는 것을 특징으로 한다.
상기 원통과 마이크로웰필름은 투명 플라스틱이나 중합체로 이루어진 것을 특징으로 한다.
상기 미세분획구로 분획된 시료를 회전시키면 시험물질과 기름성분이 섞여 있는 시료 중에 비중이 높은 시험물질 부분이 외곽으로 이동하고 비중이 낮은 기름성분이 중심 쪽으로 이동하여 미세분획구가 자동으로 밀봉되는 것을 특징으로 한다.
상기 도어부는 공기의 온도를 조절하는 히터; 상기 공기를 이동시키는 팬; 및 상기 공기의 온도를 측정하는 온도센서;를 포함하는 것을 특징으로 한다.
상기 도어부의 하부 끝단에는 샘플접시의 홀에 근접시켜 공기를 분사하는 돌출부를 더 포함하는 것을 특징으로 한다.
상기 돌출부는 공기를 분사하는 노즐을 포함하는 것을 특징으로 한다.
상기 도어부는 힌지를 통해 상하로 움직이고 지지대의 상부에 놓여 고정되는 것을 특징으로 한다.
상기 힌지는 지지대와 결합되고, 상기 지지대는 리프트 상부에 고정되는 것을 특징으로 한다.
상기 스캔헤드부는 발광부와 수광부로 구성되고, 1~10개를 독립적으로 설치하여 2차원 이미지 및 데이터 맵을 생성하는 것을 특징으로 한다.
상기 PCR 과정에서 미세분획구에 증폭된 시료를 상하로 이동시키는 리프트를 더 포함하는 것을 특징으로 한다.
상기 리프트는 샘플접시를 회전시키는 회전부가 고정된 지지부를 상하로 이동시키는 것을 특징으로 한다.
상기 회전부는 상기 샘플접시를 고정시키는 마운트; 상기 마운트를 회전시키는 모터; 및 상기 마운트 회전 속도를 제어하는 엔코더;를 포함하는 것을 특징으로 한다.
상기 리프트를 상부 일측에 고정하는 제1 베이스; 상기 스캔헤드부를 장착하는 제2 베이스; 및 상기 제1 베이스 상부 타측에 고정되어 상기 제2 베이스를 지지하는 지지봉;를 더 포함하는 것을 특징으로 한다.
또한, 본 발명의 원심력을 이용한 디지털 PCR 방법은 샘플접시를 마운트에 장착 후 모터로 회전시키는 단계; 상기 회전하는 샘플접시에 시료를 투입하여 원심력으로 샘플접시의 안쪽 벽에 장착된 마이크로웰필름의 미세분획구(Micro well)에 분획시키는 단계; 상기 분획된 시료를 도어부를 통해 PCR 과정을 진행시켜 증폭시키는 단계; 및 상기 증폭된 시료를 회전 및 상하로 이동시키면서 스캔헤드부를 통해 시료의 형광(Fluorescence) 신호를 읽어내는 단계;를 포함하는 것을 특징으로 한다.
상기 스캔헤드부를 통해 시료의 형광 신호를 읽어 2차원 이미지 및 데이터 맵을 생성하는 단계를 더 포함하는 것을 특징으로 하는 것을 특징으로 한다.
이상과 같이, 본 발명에 따르면 한 개의 장비로 디지털 PCR의 전과정을 수행할 수 있어 시료를 장비별로 이동시키는 번거로움을 없앨 수 있고, 원심력을 이용하여 자동 분획을 실시하기 때문에 번거로운 시료준비 과정을 거치지 않는 장점이 있다.
그리고, 본 발명에 따르면 시스템 전체 구조가 매우 단순해지기 때문에 기기 자체의 비용이 월등한 가격 경쟁력을 갖으며, 소모품 부분에 있어서도 대량생산이 가능한 중합체(Polymer) 각인공정을 사용하기 때문에 기존의 고가의 소모성 부품들에 대한 가격 부담을 크게 낮출 수 있다.
또한, 본 발명에 따르면 요구되는 민감도나 정확도에 따라 미세 분획구의 수를 회전 원통의 크기와 미세 분획구의 크기 조절에 의해 자유롭게 조절할 수 있기 때문에 고속시스템에서부터 고정밀도장치까지 장치의 자유로운 변화가 가능하다.
도 1은 본 발명의 일실시예에 따른 원심력을 이용한 디지털 PCR 장치를 나타낸 사시도이다.
도 2는 본 발명의 일실시예에 따른 원심력을 이용한 디지털 PCR 장치를 나타낸 단면도이다.
도 3은 본 발명의 일실시예에 따른 샘플접시를 나타낸 사시도이다.
도 4는 본 발명의 일실시예에 따른 스캔헤드부를 나타낸 단면도이다.
도 5는 본 발명의 일실시예에 따른 회전부를 나타낸 사시도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였다.
그러면 본 발명의 일실시예에 따른 원심력을 이용한 디지털 PCR 장치에 대하여 설명한다.
도 1은 본 발명의 일실시예에 따른 원심력을 이용한 디지털 PCR 장치를 나타낸 사시도이고, 도 2는 본 발명의 일실시예에 따른 원심력을 이용한 디지털 PCR 장치를 나타낸 단면도이고, 도 3은 본 발명의 일실시예에 따른 샘플접시를 나타낸 사시도이고, 도 4는 본 발명의 일실시예에 따른 스캔헤드부를 나타낸 단면도이며, 도 5는 본 발명의 일실시예에 따른 회전부를 나타낸 사시도이다.
도 1 내지 도 5를 참조하면, 본 발명에 따른 원심력을 이용한 디지털 PCR 장치는 미세분획구(micro well)를 갖는 샘플접시(80)와, 상기 미세분획구의 시료에 온도를 가열하여 PCR 과정을 진행하는 도어부(50)와, 상기 PCR 과정에서 미세분획구에 증폭된 시료를 회전시키면서 형광(florescence) 신호를 읽어내는 스캔헤드부(60)를 포함하여 구성된다.
상기 샘플접시(80)는 원통(81)과, 상기 원통(81) 내부에 원심력에 의해 시료가 골고루 퍼질 수 있도록 중앙에서 일정한 거리에 다수개의 골(83)이 일정한 간격으로 형성된 원통형의 분배통(82)과, 상기 원통(81) 내부 벽에 장착되고 미세분획구가 형성된 마이크로웰필름(84), 및 상기 원통(81)을 덮는 커버(85)로 구성되어 있다.
상기 원통(81)과 마이크로웰필름(84)은 광원을 조사하고 발현되는 광을 감지할 수 있도록 투명 플라스틱이나 중합체(Polymer) 재질로 이루어질 수 있다. 여기서, 상기 마이크로웰필름(84)은 각인 공정을 이용하여 다양한 크기의 미세분획구를 형성할 수 있는 유연한 필름이다.
상기 샘플접시(80)를 마운트(91)에 장착 후 모터(93)를 이용하여 회전시키면서 샘플접시(80)의 커버(85)의 중심에 있는 홀(86)을 통해 준비된 시료를 투입하면, 원심력에 의해 시료가 마이크로웰필름(84)의 미세분획구(Micro well)로 분획(partitioning)되게 된다. 이때, 회전이 진행됨에 따라 시험물질과 기름성분이 섞여 있는 시료 중에 비중이 높은 시험물질 부분이 외곽으로 이동하고 비중이 낮은 기름성분이 중심 쪽으로 이동함으로써 각 미세분획구가 자동으로 밀봉(Seal)되게 된다.
상기 도어부(50)는 내부에 공기의 온도를 조절하는 히터와, 상기 공기를 이동시키는 팬, 및 상기 공기의 온도를 측정하는 온도센서로 구성되어 있다. 이때, 상기 공기의 온도는 목표 온도의 설정에 따라가도록 PID제어가 이루어져 샘플접시(80) 내의 온도를 제어할 수 있다.
상기 도어부(50)의 하부 끝단에는 샘플접시(80)의 홀(86)에 근접하여 공기를 분사하는 노즐을 내부에 포함하는 돌출부(51)가 구성되어 있다.
그리고, 상기 도어부(50)는 힌지(52)를 통해 상하로 움직이고 'ㄴ'자 형상의 지지대(53)의 상부에 놓여 고정된다. 이때, 상기 지지대(53)는 리프트(40) 상부에 고정되고, 상기 힌지(52)는 지지대(53)와 결합된다.
상기 돌출부(51)를 샘플접시(80)의 홀(86)에 근접시킨 후 각 미세분획구에 분획된 시료를 회전시키면서 설정된 온도에 따라 공기를 분사시키면 PCR 과정이 진행된다. 이때, 분획된 시료가 제한된 각 미세분획구에서 유전자의 증폭이 일어나게 된다.
상기 스캔헤드부(60)는 발광부(61)와 수광부(66)로 구성되어, PCR 과정에서 미세분획구에서 증폭된 시료(유전자)를 회전시키고 리프트(40)로 상하로 천천히 이동시키면서 시료의 형광(florescence) 신호를 읽어낸다.
여기서, 상기 스캔헤드부(60)는 1~10개를 독립적으로 설치하여 시료의 형광 신호를 읽어 1~10개의 2차원 이미지 및 데이터 맵을 생성하고, 바람직하게는 최대 5가지 형광 파장을 동시에 획득하기 위해 5개의 독립적인 스캔헤드부(60)를 설치하여 각각의 스캔헤드부(60)에서 각 미세분획구에 목표한 유전자가 발현하는지를 읽어 5개의 2차원 이미지 및 데이터 맵을 생성한다.
예를 들어, 상기 샘플접시(80)의 내부 벽면에 설치한 마이크로웰필름(84)에는 2백만개(500줄 x 4000열)의 미세분획구가 있다고 하면 읽어낸 결과는 총 2백만개의 미세분획구가 보이는 5채널의 이미지가 생성된다. 본 예에서는 총 1천만개(500줄 x 4000열 x 5개 채널)의 미세분획구에 대한 정보를 추출할 수가 있으며, 원통(81)의 지름, 분획구의 크기에 따라 다양한 양의 미세분획구를 구성할 수 있다.
여기서, 상기 발광부(61)는 광원(62), 콜리메이터(63), 밴드패스필터(64), 반사거울(65), 다이크로닉(Dichronic)미러(71), 포커싱렌즈(70)로 구성되고, 수광부(66)는 포토다이오드(67), 집광렌즈(68), 밴드패스필터(69), 다이크로닉미러(71), 포커싱렌즈(70)로 구성된다. 여기서, 상기 발광부(11)와 수광부(16)는 이 출원 이전에 이미 다양하게 공지되어 시행되는 통상의 기술이므로 이에 대한 자세한 설명은 생략하기로 한다.
상기 리프트(40)는 샘플접시(80)를 회전시키는 회전부(90)가 고정된 지지부(41)를 상하로 이동시킨다. 여기서, 상기 회전부(90)는 샘플접시(80)를 고정시키는 마운트(91)와, 상기 마운트(91)를 회전시키는 모터(93), 및 상기 마운트(91) 회전 속도를 제어하는 엔코더(92)로 구성되어 있다.
본 발명에서 리프트(40)는 제1 베이스(10)의 상부 일측에 고정되고, 상기 제1 베이스(10) 상부 타측에는 4개의 지지봉(30)을 설치하여 1~10개의 독립적인 스캔헤드부(60)가 장착된 제2 베이스(20)를 지지할 수 있다.
이하에서는 본 발명에 따른 원심력을 이용한 디지털 PCR 방법에 대하여 설명하기로 한다.
먼저, 샘플접시(80)를 마운트(91)에 장착 후 모터(93)로 회전시킨다.
이어서, 상기 샘플접시(80)의 원통을 덮는 커버(85) 중심에 있는 홀(86)을 통해 준비된 시료를 투입하면 원심력으로 인해 시료가 샘플접시(80)의 내부 벽에 장착된 마이크로웰필름(84)의 미세분획구에 분획(partitioning)된다. 이때, 회전이 진행됨에 따라 시험물질과 기름성분이 섞여 있는 시료 중에 비중이 높은 시험물질 부분이 외곽으로 이동하고 비중이 낮은 기름성분이 중심 쪽으로 이동함으로써 각 미세분획구가 자동으로 밀봉(Seal)되게 된다.
이어서, 온도제어가 가능한 도어부(50)를 통해 설정된 온도 변화 구성에 따라 PCR 과정을 진행시켜 분획된 시료를 제한된 미세분획구에서 증폭시킨다. 여기서, PCR 진행 과정은 도어부(50)의 돌출부(51)를 샘플접시(80)의 홀(86)에 근접시킨 후 온도제어가 가능한 공기를 분사하면 분획된 시료가 제한된 미세분획구에서 유전자의 증폭이 일어날 수 있다.
다음으로, 증폭된 시료(유전자)를 계속 회전시키고 지지부(41)를 리프트(40)로 천천히 상하로 이동시키면서 스캔헤드부(60)를 통해 시료의 형광(Fluorescence) 신호를 읽어낸다. 이때, 각 유전자들은 미리 형광에 의해 신호를 읽어낼 수 있도록 처리되어 있다. 이 과정에서 최대 5가지의 파장의 빛을 조사하고(excitation) 발현하는 광(emission)을 읽어내는 5개의 독립적인 스캔헤드부(60)에 의하여 각 미세분획구에 목표한 유전자가 발현하는 지를 읽어 5개의 2차원 이미지 및 데이터 맵을 생성한다.
기존 방식들은 PCR반응 처리기와 결과 분석기가 분할되어 있어 각 온도 주기마다의 변화를 측정할 수 없었으나 본 발명에서는 PCR반응 처리 주기 중에도 계속 회전하며 결과 측정할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (17)

  1. 미세분획구(micro well)가 형성된 마이크로웰필름을 장착하는 샘플접시;
    상기 샘플접시를 회전시키면서 시료를 투입하여 원심력에 의해 미세분획구에 분획된 사료에 온도를 제어하여 PCR 과정을 진행하는 도어부; 및
    상기 PCR 과정에서 미세분획구에 증폭된 시료를 회전시키면서 형광(florescence) 신호를 읽어내는 스캔헤드부;를 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  2. 제1항에 있어서,
    상기 샘플접시는,
    상기 마이크로웰필름을 장착하는 원통;
    상기 원통 내부에 원심력에 의해 시료가 골고루 퍼질 수 있도록 일정한 간격으로 골이 형성되어 있는 원통형의 분배통; 및
    상기 원통을 덮는 커버;를 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  3. 제2항에 있어서,
    상기 마이크로웰필름은 원통 내부 벽에 장착하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  4. 제2항에 있어서,
    상기 원통과 마이크로웰필름은 투명 플라스틱이나 중합체로 이루어진 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  5. 제1항에 있어서,
    상기 미세분획구로 분획된 시료를 회전시키면 시험물질과 기름성분이 섞여 있는 시료 중에 비중이 높은 시험물질 부분이 외곽으로 이동하고 비중이 낮은 기름성분이 중심 쪽으로 이동하여 미세분획구가 자동으로 밀봉되는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  6. 제1항에 있어서,
    상기 도어부는,
    공기의 온도를 조절하는 히터;
    상기 공기를 이동시키는 팬; 및
    상기 공기의 온도를 측정하는 온도센서;를 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  7. 제6항에 있어서,
    상기 도어부의 하부 끝단에는 샘플접시의 홀에 근접시켜 공기를 분사하는 돌출부를 더 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  8. 제7항에 있어서,
    상기 돌출부는 공기를 분사하는 노즐을 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  9. 제6항에 있어서,
    상기 도어부는 힌지를 통해 상하로 움직이고 지지대의 상부에 놓여 고정되는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  10. 제9항에 있어서,
    상기 힌지는 지지대와 결합되고, 상기 지지대는 리프트 상부에 고정되는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  11. 제1항에 있어서,
    상기 스캔헤드부는 발광부와 수광부로 구성되고, 1~10개를 독립적으로 설치하여 2차원 이미지 및 데이터 맵을 생성하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  12. 제1항에 있어서,
    상기 PCR 과정에서 미세분획구에 증폭된 시료를 상하로 이동시키는 리프트를 더 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  13. 제12항에 있어서,
    상기 리프트는 샘플접시를 회전시키는 회전부가 고정된 지지부를 상하로 이동시키는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  14. 제13항에 있어서,
    상기 회전부는,
    상기 샘플접시를 고정시키는 마운트;
    상기 마운트를 회전시키는 모터; 및
    상기 마운트 회전 속도를 제어하는 엔코더;를 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  15. 제12항에 있어서,
    상기 리프트를 상부 일측에 고정하는 제1 베이스;
    상기 스캔헤드부를 장착하는 제2 베이스; 및
    상기 제1 베이스 상부 타측에 고정되어 상기 제2 베이스를 지지하는 지지봉;를 더 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 장치.
  16. 샘플접시를 마운트에 장착 후 모터로 회전시키는 단계;
    상기 회전하는 샘플접시에 시료를 투입하여 원심력으로 샘플접시의 안쪽 벽에 장착된 마이크로웰필름의 미세분획구(Micro well)에 분획시키는 단계;
    상기 분획된 시료를 도어부를 통해 PCR 과정을 진행시켜 증폭시키는 단계; 및
    상기 증폭된 시료를 회전 및 상하로 이동시키면서 스캔헤드부를 통해 시료의 형광(Fluorescence) 신호를 읽어내는 단계;를 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 방법.
  17. 제16항에 있어서,
    상기 스캔헤드부를 통해 시료의 형광 신호를 읽어 2차원 이미지 및 데이터 맵을 생성하는 단계를 더 포함하는 것을 특징으로 하는 원심력을 이용한 디지털 PCR 방법.
PCT/KR2018/000163 2017-04-17 2018-01-04 원심력을 이용한 디지털 pcr 장치 및 방법 WO2018194240A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/605,453 US11260393B2 (en) 2017-04-17 2018-01-04 Digital PCR device and method using centrifugal force
EP18787466.4A EP3613501A4 (en) 2017-04-17 2018-01-04 DIGITAL PCR DEVICE AND METHOD USING CENTRIFUGAL FORCE
CN201880025478.6A CN111263660B (zh) 2017-04-17 2018-01-04 利用离心力的数字pcr装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0048901 2017-04-17
KR1020170048901A KR102016131B1 (ko) 2017-04-17 2017-04-17 원심력을 이용한 디지털 pcr 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2018194240A1 true WO2018194240A1 (ko) 2018-10-25

Family

ID=63856347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000163 WO2018194240A1 (ko) 2017-04-17 2018-01-04 원심력을 이용한 디지털 pcr 장치 및 방법

Country Status (5)

Country Link
US (1) US11260393B2 (ko)
EP (1) EP3613501A4 (ko)
KR (1) KR102016131B1 (ko)
CN (1) CN111263660B (ko)
WO (1) WO2018194240A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040093A1 (en) * 2019-08-29 2021-03-04 Revosketch Inc. Emulsion composition for digital pcr and uniform partitioning method of pcr samples therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355377B1 (ko) * 2019-08-28 2022-01-25 (주)레보스케치 Pcr 용 시료 용기의 히팅 및 쿨링 시스템
KR102456309B1 (ko) 2020-10-19 2022-10-21 (주)레보스케치 카트리지형 디지털 pcr 장치
WO2023121119A1 (ko) * 2021-12-23 2023-06-29 한국과학기술원 시료 분석용 디스크
CN115569633B (zh) * 2022-10-10 2023-10-20 上海火运材料科技有限公司 一种环境治理方法及其治理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126494A (ja) * 2000-10-26 2002-05-08 Sugino Mach Ltd 偏心回転テーブル装置とそれを用いた処理装置
US20060091085A1 (en) * 2004-10-28 2006-05-04 Ishikawa Seisakusyo, Ltd. Microchip for sample, centrifugal dispension method of sample using the microchip and centrifugal dispenser
CN201107269Y (zh) * 2007-08-31 2008-08-27 北京工业大学 离心式pcr分析仪
US20080225295A1 (en) * 2007-03-12 2008-09-18 Resolved Technologies, Inc. Device for multiple tests from a single sample
KR20120016934A (ko) * 2010-08-17 2012-02-27 한국과학기술원 회전 pcr 장치, 이를 위한 pcr 칩 및 이를 이용한 회전 pcr 방법
CN203048945U (zh) * 2013-01-31 2013-07-10 合肥雅莱生物工程有限公司 一种圆盘式超高速实时荧光定量pcr仪
KR20140029142A (ko) * 2012-08-30 2014-03-10 주식회사 메디센서 회전형 pcr 장치 및 pcr 칩

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273749B1 (en) * 1990-06-04 2007-09-25 University Of Utah Research Foundation Container for carrying out and monitoring biological processes
AUPO652997A0 (en) * 1997-04-30 1997-05-29 Kindconi Pty Limited Temperature cycling device and method
ATE468175T1 (de) * 1999-03-25 2010-06-15 Alphahelix Molecular Diagnosti Homogenisierung von kleinvolumigen mischungen durch zentrifugierung und erhitzen
US7422860B2 (en) * 2001-02-07 2008-09-09 Massachusetts Institute Of Technology Optoelectronic detection system
AUPS205802A0 (en) * 2002-05-01 2002-06-06 Bio-Molecular Holdings Pty Limited Improved cycling device and method
US7485085B2 (en) * 2004-01-23 2009-02-03 Applied Biosystems Inc. Heat transfer for thermal cycling
US7651869B2 (en) * 2006-03-14 2010-01-26 Research International, Inc. Optical assay apparatus and methods
US8541238B2 (en) 2008-09-09 2013-09-24 Douglas Machine Inc. Apparatus and methods for performing real time PCR in array tape
KR20120031188A (ko) * 2012-01-17 2012-03-30 한국과학기술원 회전 pcr 장치 및 이를 이용한 회전 rt-pcr 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126494A (ja) * 2000-10-26 2002-05-08 Sugino Mach Ltd 偏心回転テーブル装置とそれを用いた処理装置
US20060091085A1 (en) * 2004-10-28 2006-05-04 Ishikawa Seisakusyo, Ltd. Microchip for sample, centrifugal dispension method of sample using the microchip and centrifugal dispenser
US20080225295A1 (en) * 2007-03-12 2008-09-18 Resolved Technologies, Inc. Device for multiple tests from a single sample
CN201107269Y (zh) * 2007-08-31 2008-08-27 北京工业大学 离心式pcr分析仪
KR20120016934A (ko) * 2010-08-17 2012-02-27 한국과학기술원 회전 pcr 장치, 이를 위한 pcr 칩 및 이를 이용한 회전 pcr 방법
KR20140029142A (ko) * 2012-08-30 2014-03-10 주식회사 메디센서 회전형 pcr 장치 및 pcr 칩
CN203048945U (zh) * 2013-01-31 2013-07-10 合肥雅莱生物工程有限公司 一种圆盘式超高速实时荧光定量pcr仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613501A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040093A1 (en) * 2019-08-29 2021-03-04 Revosketch Inc. Emulsion composition for digital pcr and uniform partitioning method of pcr samples therefor
EP4022087A4 (en) * 2019-08-29 2023-05-24 Revosketch Inc. EMULSION COMPOSITION FOR DIGITAL PCR AND METHOD FOR UNIFORM PARTITIONING OF PCR SAMPLES THEREOF

Also Published As

Publication number Publication date
US20210121886A1 (en) 2021-04-29
CN111263660A (zh) 2020-06-09
EP3613501A1 (en) 2020-02-26
EP3613501A4 (en) 2021-03-03
KR102016131B1 (ko) 2019-10-21
CN111263660B (zh) 2023-03-21
KR20180116526A (ko) 2018-10-25
US11260393B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2018194240A1 (ko) 원심력을 이용한 디지털 pcr 장치 및 방법
CN104204229B (zh) 用于自动分析生物试样的设备以及方法
US8338191B2 (en) Centrifugal device and method for performing binding assays
AU2009201529B2 (en) Apparatus For Polynucleotide Detection and Quantitation
CA2297340C (en) Monster capillary array electrophoresis scanner
Berthier et al. Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites
JP2003505711A (ja) 低容量の化学反応および生化学反応システム
KR101813870B1 (ko) 분자진단 자동분석장치
JP2005509871A (ja) 自動化サンプル調製方法および装置
WO2003027673A1 (fr) Appareil d'inspection genique et procede d'extraction d'acide nucleique cible faisant appel a cet appareil
Shi et al. Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates
CN108373971A (zh) 用于进行实时数字pcr的方法和装置
KR101642785B1 (ko) 어패류의 종 및 원산지 판별을 위한 전기화학적 검출신호를 비교 분석하는 유전자 판독기
US20180258465A1 (en) Methods and Devices for Performing Real Time Digital PCR
KR102456309B1 (ko) 카트리지형 디지털 pcr 장치
KR101672654B1 (ko) 생체 시료의 선별적 처리방법
WO1999000520A1 (en) Spectral cloning-a new technical approach to the cloning and characterization of every chromosomal aberration in cancer samples
US20020155618A1 (en) Methods of analyzing and sorting one or more analytes
KR20200061686A (ko) 분석용 일체형 칩장치
Kamahori et al. Capillary array electrophoresis analyzer
AU2003283064B2 (en) Centrifugal device and method for performing binding assays
WO2001080622A2 (en) Apparatus and methods for assays of one or more analytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018787466

Country of ref document: EP

Effective date: 20191118