WO2018194069A1 - 固体撮像素子及び固体撮像素子の製造方法 - Google Patents

固体撮像素子及び固体撮像素子の製造方法 Download PDF

Info

Publication number
WO2018194069A1
WO2018194069A1 PCT/JP2018/015907 JP2018015907W WO2018194069A1 WO 2018194069 A1 WO2018194069 A1 WO 2018194069A1 JP 2018015907 W JP2018015907 W JP 2018015907W WO 2018194069 A1 WO2018194069 A1 WO 2018194069A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
layer
color
solid
visible light
Prior art date
Application number
PCT/JP2018/015907
Other languages
English (en)
French (fr)
Inventor
高橋 聡
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2019513658A priority Critical patent/JP7088174B2/ja
Priority to CN201880017465.4A priority patent/CN110419105B/zh
Priority to KR1020197024927A priority patent/KR102468312B1/ko
Priority to EP18788212.1A priority patent/EP3614436B1/en
Publication of WO2018194069A1 publication Critical patent/WO2018194069A1/ja
Priority to US16/655,357 priority patent/US10998363B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors

Definitions

  • the present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device.
  • Examples of the technology relating to the solid-state imaging device and the manufacturing method thereof include those described in Patent Document 1 or 2.
  • JP 11-68076 A Japanese Patent No. 4905760
  • the material for forming the color filter is a material containing an organic substance and a metal. Therefore, it was found that shape processing by dry etching is difficult and residue is likely to remain, and that when there is no residue and dry etching is performed with good shape, the photoelectric conversion element is easily damaged by etching.
  • the present invention has been made in view of the above-described problem (knowledge), and an object thereof is to provide a high-definition, high-sensitivity solid-state imaging device with reduced color mixing and a method for manufacturing the same.
  • a solid-state imaging device includes a plurality of color filters corresponding to each photoelectric conversion element on a semiconductor substrate in which the plurality of photoelectric conversion elements are two-dimensionally arranged.
  • a solid-state imaging device having a color filter pattern in which a first visible light transmitting layer formed between the semiconductor substrate and the color filter pattern is formed between the adjacent color filters.
  • the second visible light transmitting layer is continuous, and the first visible light transmitting layer and the second visible light transmitting layer are made of the same material, and the color filters of the plurality of colors
  • the edge of the color filter having the largest area and the edge of the layer transmitting the second visible light are continuous, and the first visible light is applied to the side wall of the color filter having the largest area. Configure the transparent layer Wherein the reaction product layer containing minute are formed.
  • a plurality of color filters are arranged on a semiconductor substrate on which a plurality of photoelectric conversion elements are two-dimensionally arranged corresponding to each photoelectric conversion element.
  • the first color filter material is applied and cured in the opened portion after the patterning step.
  • a high-definition and high-sensitivity solid-state imaging device with reduced color mixing and a method for manufacturing the same.
  • a layer that transmits visible light that can be easily processed by dry etching is processed by dry etching, and the first color filter is simply applied and cured to form the first color filter. Therefore, it is easy to reduce the thickness of the first color filter, and the first color filter can be formed with good rectangularity. For this reason, color mixing can be reduced by shortening the total distance from the microlens top to the device, and a high-definition solid-state imaging device with high sensitivity can be obtained.
  • FIG. 1A is a cross-sectional view taken along the line AA ′ of FIG. 1, and FIG.
  • FIG. 1A is a cross-sectional view taken along the line AA ′ of FIG. 1
  • FIG. 1B a step of forming a surface protective layer and a partition layer that transmits visible light, and a portion where a first color filter is formed using a photosensitive resin pattern material are opened by a dry etching method. It is sectional drawing which shows the process order to be made.
  • FIG. It is sectional drawing which shows the process of producing the 2nd, 3rd color filter pattern based on 1st embodiment of this invention by photolithography in order of a process. It is sectional drawing which shows the manufacturing process of the micro lens based on 1st embodiment of this invention in order of a process. It is sectional drawing which shows the case where the microlens based on 1st embodiment of this invention is produced with the transfer method by etch back in order of a process.
  • the solid-state image sensor according to the first embodiment of the present invention includes a plurality of photoelectric conversion elements 11 arranged two-dimensionally as shown in FIG. , A plurality of microlenses 18 disposed on the semiconductor substrate 10, and a plurality of color filters 14, 15, 16 provided between the semiconductor substrate 10 and the microlenses 18. .
  • the plurality of color filters 14, 15, 16 are arranged corresponding to each photoelectric conversion element 11.
  • the surface protective layer that transmits visible light and the partition wall layer 12 formed on the surface of the semiconductor substrate 10 are integrally formed, and the color filters 14, 15, An upper planarization layer 13 is provided on the upper surface of 16.
  • the solid-state imaging device according to the first embodiment includes a lattice-shaped metal-containing lattice-shaped partition layer 30 in the partition layer 12 that transmits visible light located between the color filters 14, 15, and 16. .
  • the color filter 14 formed first in the manufacturing process is defined as the first color filter.
  • the color filter 15 formed second in the manufacturing process is defined as a second color filter, and the color filter 16 formed third in the manufacturing process is defined as a third color filter.
  • the color filter 14 formed first will be described as a color filter having the widest area.
  • a reaction product layer 40 is formed on the side wall of the color filter having the widest area when the layer transmitting visible light is etched.
  • the photoelectric conversion element 11 has a function of converting light into an electrical signal.
  • the semiconductor substrate 10 on which the photoelectric conversion element 11 is formed generally has an outermost surface formed of a protective film for the purpose of protecting and planarizing the surface.
  • the semiconductor substrate 10 is formed of a material that transmits visible light and can withstand a temperature of at least about 300 ° C. As such a material, e.g., Si, oxides such as SiO 2 and nitride such as SiN, and mixtures thereof, materials containing Si and the like.
  • the microlens 18 is disposed above the semiconductor substrate 10 and is provided for each of the plurality of photoelectric conversion elements 11 that are two-dimensionally disposed on the semiconductor substrate 10.
  • the microlens 18 can compensate for a decrease in sensitivity of the photoelectric conversion element 11 by condensing incident light incident on the microlens 18 on the corresponding photoelectric conversion element 11.
  • the surface protective layer and the partition layer 12 (hereinafter also simply referred to as the partition layer 12) that transmit visible light are layers provided as partition walls for surface protection, planarization, and color mixing prevention of the semiconductor substrate 10.
  • the surface protective layer in the partition wall layer 12 reduces unevenness on the upper surface of the semiconductor substrate 10 due to the fabrication of the photoelectric conversion element 11, reduces color mixing, and improves sensitivity.
  • the partition wall layer 12 is a material that transmits visible light having a wavelength of 400 nm to 700 nm, such as SiO 2 , ITO, SnO 2 , and ZnO, and that does not hinder pattern formation and adhesion of the color filters 14, 15, and 16. Any of them can be used. Further, preferably it has processing easier by dry etching, more preferably SiO 2.
  • the upper planarization layer 13 is a layer provided for planarizing the upper surfaces of the color filters 14, 15, 16.
  • the upper flattening layer 13 is made of, for example, a resin such as an acrylic resin, an epoxy resin, a polyimide resin, a phenol novolac resin, a polyester resin, a urethane resin, a melamine resin, a urea resin, or a styrene resin. Alternatively, it is formed of a resin containing a plurality. Note that the upper planarization layer 13 may be integrated with the microlens 18 without any problem.
  • the color filters 14, 15, and 16 are filters for color-separating incident light and are filters corresponding to the respective colors.
  • the color filters 14, 15, and 16 are provided between the semiconductor substrate 10 and the microlens 18, and are arranged in a regular pattern set in advance so as to correspond to each of the plurality of photoelectric conversion elements 11.
  • FIG. 2 shows the arrangement of the color filters 14, 15, 16 in a plan view.
  • the arrangement shown in FIG. 2 is a so-called Bayer arrangement.
  • 2A is a plan view of the AA ′ cross section shown in FIG. 1 and does not include the metal-containing grid-shaped partition wall layer 30.
  • FIG. FIG. 2B is a plan view of the BB ′ cross section shown in FIG. 1 and includes the metal-containing grid-shaped partition wall layer 30.
  • the color filters 14, 15, and 16 include a predetermined color pigment, a thermosetting component, and a photocuring component.
  • the color filter 14 includes a green pigment
  • the color filter 15 includes a blue pigment
  • the color filter 16 includes a red pigment.
  • a solid-state imaging device having a Bayer array color filter shown in FIG. 2 will be described.
  • the color filter of the solid-state imaging device is not necessarily limited to the Bayer array, and the color filter color is not limited to three colors of RGB.
  • a part of the array of green filters having a large area in the Bayer array may be replaced with a transparent layer whose refractive index is adjusted with a material that transmits visible light, or a transparent layer containing a material that cuts IR light. It may be replaced.
  • FIGS. 3, 4, 5, and 6 (Surface-protecting layer that transmits visible light and lattice-shaped metal barrier rib forming step in barrier rib layer)
  • a semiconductor substrate 10 having a plurality of two-dimensionally arranged photoelectric conversion elements 11 is prepared, and the surface thereof corresponds to the photoelectric conversion elements 11 between each color filter forming portion.
  • the metal-containing grid-shaped partition wall layer 30 is formed so as to be positioned.
  • the metal-containing lattice-shaped partition wall layer 30 includes, for example, one or more metal materials such as Al, W, Ti, Cu, and Ag so that light that has passed through the color filter does not enter the adjacent photoelectric conversion element 11. It is formed of a metal, a compound such as an oxide compound or a nitride compound of the metal.
  • a known method can be used as a method for forming the metal-containing lattice-shaped partition wall layer 30, a known method can be used. For example, a metal layer is formed on the semiconductor substrate 10, a mask pattern used as an etching mask in photolithography is formed on the metal layer, and the metal layer is formed into a lattice shape by etching, or by photolithography on the semiconductor substrate. After forming the mask pattern, a metal layer is formed by various film forming methods such as vapor deposition, sputtering, and CVD, and the metal-containing lattice-shaped partition wall layer 30 is formed using a known method such as patterning the metal layer into a desired lattice shape by lift-off. Form. The lattice shape is set so as to surround each photoelectric conversion element 11.
  • the film thickness (height) of the metal-containing grid-shaped partition wall layer 30 is preferably about 100 nm to 500 nm. Further, when the metal-containing grid-shaped partition wall layer 30 is thicker than the color filter film thickness (height), the metal-containing grid-shaped partition wall layer 30 increases the light absorption and reflection components. For this reason, it is preferable that the metal containing grid
  • the width of the lattice shape is desirably about 100 nm or less. When the width is increased, the area of the metal-containing grid-shaped partition wall layer 30 is increased, and the incidence of light on the photoelectric conversion element 11 is blocked. Therefore, if the color mixture of obliquely incident light can be reduced, the width of the grid shape can be reduced. desirable.
  • a partition layer 12 that transmits visible light is formed on the semiconductor substrate 10 so as to cover the metal-containing lattice-shaped partition layer 30.
  • the partition layer 12 may be formed by a known film formation method such as vapor deposition, sputtering, or CVD, although the formation method varies depending on the material composition used.
  • a layer containing SiO 2 is formed, a simple method such as applying a coating solution containing SiO 2 using SOG (Spin on Glass) and heating and curing the coating solution is also used. It is done.
  • SOG Spin on Glass
  • the partition wall layer 12 is formed to have a thickness greater than that of the metal-containing grid-shaped partition wall layer 30. In the present embodiment, a film thickness of about 150 nm to 700 nm is desirable. In addition, when the partition layer 12 is thicker than the color filters 14, 15, and 16, light transmitted through the partition layer 12 from above may enter the photoelectric conversion element 11.
  • the film thickness of 12 is preferably thinner than the film thickness of the color filters 14, 15, 16, and is preferably about 400 nm or less, for example.
  • the etching mask 20 is exposed to light using a photomask (not shown), and a chemical reaction is caused in which a pattern other than the necessary pattern is soluble in the developer.
  • unnecessary portions (exposed portions) of the etching mask 20 are removed by development.
  • the photosensitive resin mask layer 20a as an etching mask pattern having the opening 20b is formed.
  • the first color filter 14 is formed in the opening 20b in a later process.
  • a photosensitive resin mask material constituting the etching mask 20 for example, an acrylic resin, an epoxy resin, a polyimide resin, a phenol novolac resin, and other photosensitive resins may be used singly or in combination or in a copolymer. Can be used.
  • Examples of the exposure machine used in the photolithography process for patterning the etching mask 20 include a scanner, a stepper, an aligner, and a mirror projection aligner.
  • the etching mask 20 may be exposed by direct drawing with an electron beam, drawing with a laser, or the like.
  • a stepper or a scanner is generally used to form the first color filter 14 of the solid-state imaging device that needs to be miniaturized.
  • the photosensitive resin mask material it is desirable to use a general photoresist in order to produce a pattern with high resolution and high accuracy.
  • a photoresist unlike the case of forming a pattern with a color filter material having photosensitivity, a pattern with easy shape control and good dimensional accuracy can be formed.
  • the photoresist used at this time has high dry etching resistance.
  • a thermosetting process called post-baking is often used after development in order to improve the selectivity, which is the etching rate with the etching member.
  • a thermosetting process it may be difficult to remove the residual resist used as an etching mask in the removing process after dry etching.
  • a photoresist what can obtain a selection ratio between etching members, without using a thermosetting process is preferable.
  • a good selection ratio cannot be obtained, it is necessary to form the photoresist material with a large film thickness.
  • the film thickness is increased, it may be difficult to form a fine pattern. For this reason, a material having high dry etching resistance is preferable as the photoresist.
  • the etching rate ratio (selection ratio) between the photosensitive resin mask material that is the material of the etching mask 20 and the first color filter material that is the target of dry etching is preferably 0.5 or more, 0.8 or more is more preferable.
  • the partition wall layer 12 can be etched without erasing all of the photosensitive resin mask layer 20a.
  • the thickness of the partition wall layer 12 is about 0.2 ⁇ m or more and 0.8 ⁇ m or less
  • the thickness of the photosensitive resin mask layer 20a is desirably about 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • a positive resist that is susceptible to chemical reaction in the direction in which the chemical reaction progresses and dissolves is preferable to a negative resist that changes in the direction in which the chemical reaction progresses and cures due to external factors.
  • an etching mask pattern is formed.
  • etching process As shown in FIG. 3F, a part of the surface protective layer and the partition wall layer 12 that transmit visible light exposed from the opening 20b is removed by dry etching using the photosensitive resin mask layer 20a and dry etching gas.
  • dry etching method include ECR (Electron Cyclotron Resonance), parallel plate magnetron, DRM, ICP (Inductively Coupled Plasma), or two-frequency type RIE (Reactive Ion Etching).
  • the etching method is not particularly limited, but it can be controlled so that the etching rate and the etching shape do not change even if the line width or area is different, such as a large area pattern with a width of several mm or more or a micro pattern with a few hundreds of nm. Is desirable. Further, it is desirable to use a dry etching method of a control mechanism capable of uniformly performing dry etching on the entire surface of a wafer having a size of about 100 mm to 450 mm.
  • the dry etching gas may be a reactive gas (oxidizing / reducing), that is, an etching gas.
  • the gas having reactivity include a gas containing fluorine, oxygen, bromine, sulfur and chlorine.
  • a rare gas containing an element that has a low reactivity such as argon or helium and that performs etching by physical impact with ions can be used alone or in combination.
  • a gas such as hydrogen or nitrogen is also used. There is no problem.
  • etching gas depending on the material of the partition wall layer 12
  • SiO 2 which is preferable in this embodiment, a fluorine-based gas, an oxygen-based gas, or a mixture thereof is used as the etching gas.
  • Etching is performed.
  • a material such as ITO is used for the partition layer 12, it is desirable to perform etching by mixing a gas such as chlorine, methane, or hydrogen.
  • the partition layer 12 is etched and the semiconductor substrate 10 is not etched. Since the partition layer 12 is a material that transmits visible light, it is desirable that the partition layer 12 remain in a lower portion of a portion where the first color filter 14 is formed. Specifically, when performing dry etching of the partition wall layer 12, it is desirable to perform etching in multiple stages. For example, when the etching is performed to about 90% of the thickness of the partition wall layer 12, the reactive gas flow rate is reduced. Then, it is desirable to reduce the etching rate and stop the etching when the etching is performed to 95% or more and less than 100% of the thickness of the partition wall layer 12.
  • the dry etching of the partition wall layer 12 is performed until the surface of the semiconductor substrate 10 is reached or approached, and then the photosensitive resin mask layer 20a is removed, thereby removing the first color. A portion where the filter pattern is formed can be opened.
  • the etching may be performed by combining the dry etching process and the wet etching process. Specifically, the etching may be performed by dry etching up to 80% or more of the thickness of the partition wall layer 12, and the remaining film thickness may be etched by wet etching. However, in the case of wet etching, the etching proceeds isotropically, so it is desirable to dry-etch the outermost surface having etching damage at the end with good controllability and anisotropic etching.
  • the remaining photosensitive resin mask layer 20a is removed.
  • the method for removing the photosensitive resin mask layer 20a include a method of dissolving and peeling the photosensitive resin mask layer 20a by using a chemical solution or a solvent.
  • the solvent for removing the photosensitive resin mask layer 20a include N-methyl-2-pyrrolidone, cyclohexanone, diethylene glycol monomethyl ether acetate, methyl lactate, butyl lactate, dimethyl sulfoxide, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol.
  • An organic solvent such as monoethyl ether, propylene glycol monomethyl ether acetate or the like, or a mixed solvent obtained by mixing a plurality of organic solvents is used.
  • it is desirable that the solvent used at this time does not affect the color filter material. If the color filter material is not affected, there is no problem even with a peeling method using an acid chemical.
  • the photosensitive resin mask layer 20a can be removed by a method using an ashing technique, which is a resist ashing technique using photoexcitation or oxygen plasma.
  • ashing technique which is a resist ashing technique using photoexcitation or oxygen plasma.
  • a combination of these methods can also be used. For example, first, after removing the deteriorated layer by dry etching of the surface layer of the photosensitive resin mask layer 20a using an ashing technique that is an ashing technique by photoexcitation or oxygen plasma, the remaining layer is removed by wet etching using a solvent or the like. The layer may be removed. Further, the photosensitive resin mask layer 20a may be removed only by ashing as long as it does not damage the semiconductor substrate 10 and the partition wall layer 12. In addition to a dry process such as ashing, for example, a polishing step by CMP may be used.
  • a lattice-shaped metal-containing lattice-shaped partition layer 30 is formed on the semiconductor substrate 10 and covers the metal-containing lattice-shaped partition layer 30.
  • the surface protective layer and the barrier rib layer 12 that transmit visible light are formed, and the barrier rib layer 12 at the first color filter forming portion is removed by etching to complete the opening shape.
  • First color filter forming step First, with reference to FIG. 4, the process of forming the first color filter 14 on the surface of the partition wall layer 12 formed on the semiconductor substrate 10 will be described. On the surface of the partition wall layer 12 formed on the semiconductor substrate 10 on which the plurality of photoelectric conversion elements 11 are two-dimensionally arranged, as shown in FIG. ) Is applied to form a first color filter layer by applying a first color filter material composed of a first resin dispersion.
  • the solid-state imaging device according to the present embodiment is assumed to use a Bayer color filter as shown in FIG. For this reason, the first color is preferably green (G).
  • thermosetting resin such as an epoxy resin
  • photocurable resin such as an ultraviolet curable resin
  • the compounding quantity of photocurable resin it is preferable to make the compounding quantity of photocurable resin less than the compounding quantity of a thermosetting resin.
  • thermosetting resin By using a lot of thermosetting resin as the resin material, it becomes possible to increase the pigment content of the layer of the first color filter 14 unlike when using a lot of photocurable resin as the curable resin.
  • a mixed resin containing both a thermosetting resin and a photocurable resin will be described.
  • the present invention is not necessarily limited to a mixed resin, and may be a resin containing only one of the curable resins. .
  • the film thickness of the layer of the first color filter 14 is preferably about 400 nm to 800 nm.
  • the green filter in the Bayer array Specifically, the green filter in the Bayer array.
  • the entire surface of the layer of the first color filter 14 is irradiated with ultraviolet rays, so that the layer of the first color filter 14 is photocured.
  • the entire surface of the first color filter 14 layer is cured. Curing is possible even if the content of the photosensitive component is lowered.
  • the layer of the first color filter 14 is thermally cured at 200 ° C. or higher and 300 ° C. or lower. More specifically, it is preferable to heat at a temperature of 230 ° C. or higher and 270 ° C. or lower.
  • a high-temperature heating process of 200 ° C. or more and 300 ° C. or less is often used when the microlens 18 is formed. Therefore, it is desirable that the first color filter material has high-temperature resistance. For this reason, it is more preferable to use a thermosetting resin having high temperature resistance as the resin material.
  • an etching mask pattern having an opening is formed on the layer of the first color filter 14 formed in the previous step and the partition layer 12.
  • a photosensitive resin mask material is applied to the surface of the layer of the first color filter 14 and dried to form an etching mask 20.
  • the etching mask 20 is exposed to light using a photomask (not shown) to cause a chemical reaction in which a pattern other than the necessary pattern is soluble in the developer.
  • unnecessary portions (exposed portions) of the etching mask 20 are removed by development. Thereby, the photosensitive resin mask layer 20a having an opening is formed. At the position of the opening, the second color filter 15 or the third color filter 16 is formed in a later process.
  • the layer that becomes the color filter is generally composed of an organic substance containing a metal and is not a uniform layer. For this reason, when forming a color filter, it has been found that a residue due to variation in etching rate is likely to occur.
  • the first color filter 14 layer is about several hundreds of nanometers, and it is necessary to remove the partition wall layer 12 therebelow, but it is desirable that the bottom surface is smooth after the partition wall layer 12 is etched. Therefore, it is desirable that the color filter material be removed by dry etching so that no residue remains.
  • the dry etching gas may be a reactive gas (oxidizing / reducing), that is, an etching gas.
  • the gas having reactivity include a gas containing fluorine, oxygen, bromine, sulfur and chlorine.
  • a rare gas containing an element that has a low reactivity such as argon or helium and that performs etching by physical impact with ions can be used alone or in combination. Further, there is no problem even if the gas is not limited to these as long as it causes a reaction for forming a desired pattern in a dry etching process in a plasma environment using a gas.
  • etching mainly using physical impact is performed using an etching gas whose ions such as rare gas is 90% or more of the total gas flow rate, and then fluorine gas or oxygen is used as the gas.
  • an etching gas mixed with a system gas a chemical reaction is also used to perform etching with an improved etching rate.
  • etching can be performed so that the color filter layer becomes flat.
  • the above-described partition wall layer 12 is etched. Change the condition.
  • the etching rate is increased by increasing the ratio of the rare gas flow rate under the conditions for etching the partition wall layer 12. It is desirable that the partition wall layer 12 be etched flatly by lowering.
  • a reaction product layer 40 made of a reaction product is formed on the side walls of the partition wall layer 12 and the first color filter 14.
  • the width of the reaction product layer 40 at this time is preferably about 1 nm to 50 nm, although it varies depending on the etching conditions.
  • the removal of the photosensitive resin mask layer 20a includes, for example, a removal method of dissolving and peeling the photosensitive resin mask layer 20a without affecting the first color filter 14 by using a chemical solution or a solvent.
  • the solvent for removing the photosensitive resin mask layer 20a include N-methyl-2-pyrrolidone, cyclohexanone, diethylene glycol monomethyl ether acetate, methyl lactate, butyl lactate, dimethyl sulfoxide, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol.
  • An organic solvent such as monoethyl ether, propylene glycol monomethyl ether acetate or the like, or a mixed solvent obtained by mixing a plurality of organic solvents is used.
  • it is desirable that the solvent used at this time does not affect the color filter material. If the color filter material is not affected, there is no problem even with a peeling method using an acid chemical.
  • the photosensitive resin mask layer 20a can be removed by a method using an ashing technique, which is a resist ashing technique using photoexcitation or oxygen plasma.
  • ashing technique which is a resist ashing technique using photoexcitation or oxygen plasma.
  • a combination of these methods can also be used. For example, first, after removing the deteriorated layer by dry etching of the surface layer of the photosensitive resin mask layer 20a using an ashing technique that is an ashing technique by photoexcitation or oxygen plasma, the remaining layer is removed by wet etching using a solvent or the like. The layer may be removed. Further, the photosensitive resin mask layer 20a may be removed only by ashing as long as the first color filter material is not damaged. In addition to a dry process such as ashing, for example, a polishing step by CMP may be used.
  • the above-described steps complete the formation of the opening step for the second and subsequent color filters 15 and 16 to be formed.
  • the first color filter 14 is formed on the metal-containing grid-shaped partition wall layer 30 and the partition wall layer 12 by etching the partition wall layer 12 in the above process.
  • the first color filter 14 and the partition wall layer 12 that transmits visible light are etched at a time, as shown in FIG.
  • the surface and the surface of the edge portion that is removed by etching of the partition wall layer 12 that transmits visible light are continuously connected without a step, and further, outside the surface of the edge portion that is continuously connected, A structure in which a reaction product layer 40 made of a reaction product when the partition wall layer 12 is etched is attached.
  • second and third color filters 15 and 16 containing a pigment having a color different from that of the first color filter 14 are formed.
  • the methods for producing the patterns of the second and third color filters 15 and 16 can be roughly divided into two methods.
  • the first method uses the partition wall layer 12 and the first color filter pattern as a guide pattern, and the second and third color filters 15 and 16 are made of a photosensitive color filter material containing a photocurable resin.
  • the pattern is formed by selectively exposing with a conventional method.
  • the second method is a method in which the process of opening the second and subsequent color filter formation positions is repeated a plurality of times.
  • a second color filter material is applied to the entire surface of the semiconductor substrate 10 on which the first color filter 14 and the partition wall layer 12 are patterned.
  • dry etching is performed using the patterned photosensitive resin mask material layer as an etching mask, and an opening is provided at a position where the third color filter 16 is formed.
  • a third color filter material is applied to the place, and the excess color filter is removed by polishing or the like, whereby the third color filter 16 is formed in the opening.
  • the partition wall layer 12 at the second and third color filter formation locations was removed by etching during the step of opening the second and subsequent color filter formation locations.
  • the first method is characterized in that a color filter material (color resist) having a photosensitive component is used for the second color filter 15.
  • a photosensitive color filter material is applied as a second color filter material to the entire surface of the semiconductor substrate 10 on which the first color filter 14 and the partition wall layer 12 are patterned, That is, a photosensitive color filter material is applied to the entire surface of the opening 20b and dried to form the second color filter 15 layer.
  • the photosensitive color filter material used at this time contains a negative photosensitive component that cures when exposed to light.
  • the second color filter 15 is preferably formed to a thickness of 400 nm to 1000 nm.
  • the concentration of the color pigment can be reduced, so that the content of the photosensitive curing component can be increased and the shape controllability is improved.
  • the portion where the second color filter 15 is formed is exposed using a photomask, and a part of the layer of the second color filter 15 is photocured.
  • a part of the layer of the second color filter 15 that is not selectively exposed in the developing process is removed.
  • a curing treatment by high-temperature heating is performed.
  • the remaining layer of the second color filter 15 is cured.
  • the second color filter 15 is formed.
  • the temperature used for curing is preferably 200 ° C. or higher.
  • a third color filter material is applied to the entire surface of the semiconductor substrate 10 to form a third color filter 16 layer.
  • the third color filter 16 is preferably formed to a thickness of 400 nm to 1000 nm. When the film is formed thick, the concentration of the color pigment can be reduced, so that the content of the photosensitive curing component can be increased and the shape controllability is improved.
  • a portion of the third color filter 16 layer where the third color filter 16 is to be formed is selectively exposed to form a third color filter 16 layer. Light cure part.
  • the layer of the photosensitive third color filter 16 is developed, and a part of the layer of the third color filter 16 that is not exposed is removed.
  • a curing process by high-temperature heating is performed.
  • the remaining layer of the third color filter 16 is cured.
  • the third color filter 16 is formed. Note that a color filter having a desired number of colors can be formed by repeating the pattern forming process after the second color filter 15.
  • an upper planarization layer 13 is formed on the formed color filters 14, 15, and 16.
  • the upper flattening layer 13 is made of, for example, a resin such as acrylic resin, epoxy resin, polyimide resin, phenol novolac resin, polyester resin, urethane resin, melamine resin, urea resin, and styrene resin. Alternatively, it is formed of a resin containing a plurality. Further, the upper planarization layer 13 is not limited to these resins, and any material can be used as long as it transmits visible light having a wavelength of 400 nm to 700 nm and does not hinder pattern formation or adhesion of the color filters 14, 15, and 16. Can also be used.
  • the upper planarization layer 13 is preferably formed of a resin that does not affect the spectral characteristics of the color filters 14, 15, and 16. For example, it is preferable that the transmittance is 90% or more for visible light having a wavelength of 400 nm to 700 nm. For example, it can be formed using a resin containing one or a plurality of resin materials such as the acrylic resin described above. In this case, the upper planarization layer 13 can be formed by applying a resin material to the surface of the semiconductor substrate 10 and heating to cure. The upper planarization layer 13 can also be formed using a compound such as an oxide or nitride, for example. In this case, the upper planarization layer 13 can be formed by various film forming methods such as vapor deposition, sputtering, and CVD.
  • a microlens 18 is formed on the upper planarization layer 13.
  • the microlens 18 is formed by a known technique such as a manufacturing method using heat flow, a macrolens manufacturing method using a gray tone mask, or a microlens transfer method to the upper planarization layer 13 using dry etching.
  • a method of forming a microlens by using a dry etching patterning technique having excellent shape controllability is used first as a transparent resin layer (upper flattening layer 13) that finally becomes a microlens.
  • 7A shows a case where the upper flattening layer 13 is also formed) on the color filters 14, 15, and 16.
  • a matrix (lens matrix) of the microlens 18 is formed on the transparent resin layer by a heat flow method.
  • the lens matrix shape is transferred to the transparent resin layer by a dry etching method using the lens matrix as a mask. The appropriate lens shape can be transferred to the transparent resin layer by selecting the height and material of the lens matrix and adjusting the etching conditions.
  • the microlens 18 can be formed with good controllability. Using this technique, it is desirable to manufacture the microlens 18 so that the height from the lens top to the lens bottom of the microlens 18 is 400 to 800 nm. Through the above steps, the solid-state imaging device of this embodiment is completed. In the present embodiment, it is desirable to first form a color filter having the widest area as the first color filter 14. The second color filter 15 and the third color filter 16 are formed by photolithography using a color resist having photosensitivity.
  • a technique using a photosensitive color resist is a conventional technique for producing a color filter pattern.
  • the first color filter material and the partition wall layer 12 are formed with good rectangularity.
  • the second and third color filters 15 and 16 are formed so as to fill the place surrounded by the four sides. Can be formed. Therefore, even when a color resist having photosensitivity for the second and subsequent color filters is used, it is not necessary to use a color resist that emphasizes resolution as in the prior art. For this reason, since the photocuring component in a photocurable resin can be decreased, the ratio of the coloring component in a color filter material can be increased, and the color filters 15 and 16 can be made thinner.
  • the partition layer 12 is removed in the etching process when the first color filter 14 is etched, and the semiconductor substrate 10 or the partition layer 12 is exposed to the surface. It has become. In this case, it is considered that the surface of the semiconductor substrate 10 or the partition wall layer 12 is oxidized and is hydrophilic.
  • the hydrophilic semiconductor substrate 10 or the partition layer 12 and the second and subsequent color filters are in contact with each other. The developer may sneak into the part where it is. For this reason, it is assumed that the second and subsequent color filter patterns (patterns of the second and third color filters 15 and 16) are peeled off. Therefore, depending on the surface condition, the exposed surface can be made hydrophobic by existing methods such as HDMS (hexamethyldisilazane) treatment, thereby reducing the possibility of peeling off the second and subsequent color filter patterns. it can.
  • HDMS hexamethyldisilazane
  • the first color filter 14 is desirably formed of a material for a color filter having a low content of resin components involved in photocuring and a high pigment content.
  • the pigment content in the first color filter material is preferably 70% by mass or more.
  • the first color filter 14 is mainly composed of the first first color filter 14 mainly focusing on photocuring, not pattern formation, reducing the photosensitive component, and further curing with the thermosetting component. It is preferable to form it using a material. By doing so, the first color filter 14 is in close contact with the semiconductor substrate 10 and the partition wall layer 12, there is no residue or peeling that occurs when other color filters are formed, and high resolution can be achieved.
  • the second and third color filters 15 and 16 are formed by an efficient photolithography forming method with few steps using photosensitive second and third color filter materials. By doing so, the pattern of the first color filter 14 formed first becomes an accurate pattern, and the patterns of the second and third color filters 15 and 16 can be formed with good shape by photolithography.
  • each layer of the second and third color filters 15 and 16 is formed of a color filter material that does not have photosensitivity.
  • FIG. 8 (a) the first color filter 14 and the partition wall layer 12 described above prepare a substrate having openings for forming the second and subsequent color filters, and apply the second color filter material. .
  • the second color filter material used at this time is a thermosetting resin material that does not have photosensitivity and is cured by heating.
  • the second color filter material does not have photosensitivity, it is not necessary to add a photosensitive component as described above, and it is easy to increase the pigment concentration. For this reason, the film thickness of the second color filter 15 can be reduced. Thereafter, the second color filter material is cured to form a layer of the second color filter 15, and heating at a high temperature is performed.
  • the heating temperature is preferably within a range that does not affect the device, specifically 300 ° C. or lower, and more preferably 240 ° C. or lower.
  • a photosensitive resin mask material is applied to the upper part of the layer of the second color filter 15 to form an etching mask 20.
  • FIGS. 8C and 8D exposure and development are performed so that a place where the third color filter 16 is disposed is opened, and the photosensitive resin mask layer 20a provided with the opening is formed.
  • the third layer of the second color filter 15 is formed by using a dry etching technique using a photosensitive resin mask layer 20a having an opening.
  • An opening is formed by removing a portion that is not necessary for arranging the color filter 16.
  • the photosensitive resin mask layer 20a may be subjected to a curing process such as heating or ultraviolet irradiation.
  • the photosensitive resin mask layer 20a is removed by a known removal method such as ashing, which is stripping with a solvent, cleaning, photoexcitation, or ashing with oxygen plasma. Thereby, an opening is provided at a position where the third color filter 16 is formed, and the first color filter 14 and the second color filter 15 are formed at other positions.
  • the third color is formed so that the opening is filled in the entire surface of the semiconductor substrate 10 on which the first color filter 14 and the second color filter 15 are formed.
  • a filter material is applied and heat-cured to form a third color filter 16 layer.
  • the extra third color filter 16 layer on the first and second color filters 14 and 15 is polished to a predetermined film thickness, for example, a polishing process such as CMP. Alternatively, an etch back process is performed using a dry etching technique.
  • an extra layer of the third color filter 16 is removed by a process using a known technique such as flattening or removal of a desired film thickness to obtain the third color filter 16.
  • the color filter material is applied and cured in the same manner as the second and third color filters 15 and 16.
  • dry etching is performed using the photosensitive resin material that has been patterned to provide openings as the photosensitive resin mask layer 20a, and then the excess photosensitive resin mask layer 20a is removed, so that a color filter of multiple colors is obtained. Can be formed.
  • the partition wall layer 12 where the second and third color filters are formed may be separately formed by dry etching. Therefore, the case where the partition wall layers 12 where the second and third color filters are formed is formed separately will be described with reference to FIG.
  • the first color filter 14 layer formed in the previous step and an etching mask having openings on the partition layer 12 where the second color filter is formed are formed. Form a pattern.
  • a semiconductor substrate 10 on which a first color filter 14 layer and a partition wall layer 12 are formed is prepared.
  • a photosensitive resin mask material is applied to the surface of the layer of the first color filter 14 and dried to form an etching mask 20.
  • the etching mask 20 is exposed to light using a photomask (not shown) to cause a chemical reaction in which a pattern other than the necessary pattern is soluble in the developer.
  • unnecessary portions (exposed portions) of the etching mask 20 are removed by development. Thereby, the photosensitive resin mask layer 20a having an opening is formed. A second color filter is formed in the opening in a later step.
  • the dry etching technique using the photosensitive resin mask layer 20a having the openings described above is used in the first color filter 14 layer and the partition wall layer 12 region.
  • an unnecessary portion for disposing the second color filter 16 is removed to form an opening.
  • the photosensitive resin mask layer 20a may be subjected to a curing process such as heating or ultraviolet irradiation.
  • the photosensitive resin mask layer 20 a is removed by a known removal method such as ashing, which is stripping with a solvent, cleaning, photoexcitation, or ashing with oxygen plasma. Thereby, an opening is provided at a position where the second color filter 15 is formed, and the first color filter 14 and the partition wall layer 12 are formed at other positions.
  • a second color filter material is applied so as to fill the opening in the entire surface of the semiconductor substrate 10 on which the first color filter 14 and the partition wall layer 12 are formed. It is applied and cured by heating to form a second color filter 15 layer.
  • the third color filter is formed on the first color filter 14 layer, the second color filter 15 layer, and the partition wall layer 12 formed in the previous step. An etching mask pattern having an opening at a location is formed.
  • a photosensitive resin mask material is applied and dried to form an etching mask 20.
  • the etching mask 20 is exposed using a photomask (not shown) to cause a chemical reaction in which a pattern other than the necessary pattern is soluble in the developer.
  • unnecessary portions (exposed portions) of the etching mask 20 are removed by development. Thereby, the photosensitive resin mask layer 20a having an opening is formed. A third color filter is formed in the opening 20b in a later process.
  • the layer of the first color filter 14, the second color filter 15 and the partition walls are formed by the dry etching technique using the photosensitive resin mask layer 20a having the opening described above.
  • an unnecessary portion for disposing the third color filter 16 is removed to form an opening.
  • the photosensitive resin mask layer 20a may be subjected to a curing process such as heating or ultraviolet irradiation.
  • the photosensitive resin mask layer 20a is removed by a known removal method such as ashing, which is stripping with a solvent, cleaning, photoexcitation, or ashing with oxygen plasma. Thereby, an opening is provided at a position where the third color filter 15 is formed, and the first color filter 14, the second color filter 15, and the partition wall layer 12 are formed at other positions.
  • the opening is filled in the entire surface of the semiconductor substrate 10 on which the first color filter 14, the second color filter 15, and the partition wall layer 12 are formed.
  • a third color filter material is applied and heat-cured to form the third color filter 16 layer.
  • the extra third color filter 16 layer on the first and second color filters 14 and 15 is polished to a predetermined film thickness, for example, a polishing process such as CMP. Alternatively, an etch back process is performed using a dry etching technique. Finally, an extra layer of the third color filter 16 is removed by a process using a known technique such as flattening or removal of a desired film thickness to obtain the third color filter 16.
  • the first method described above is a method of forming the color filters after the second color filter 15 by photolithography. That is, in the first method, the color filter material after the second color filter 15 is provided with photo-curing properties, and selectively exposed and developed to form the second color filter 15 and later.
  • the second method described above is a formation method in which dry etching is repeated a plurality of times.
  • the color filter material after the second color filter 15 is provided with a thermosetting component without having a photosensitive component, and is applied to the entire surface to perform thermosetting.
  • a photosensitive resin mask material is formed as an etching mask on the first and second color filters 14 and 15 to be left, and the second color filter 15 and the subsequent layers are also produced by dry etching.
  • the second and third color filters 15 and 16 are formed by repeating the same process. If desired spectral characteristics are obtained, these processes are used in combination. Also good.
  • both the thermosetting resin and the photocurable resin are used for the first color filter 14.
  • a thermosetting resin or a photocurable resin may be used for the first color filter 14.
  • photocuring by exposure and heat curing by heat are used.
  • the solvent resistance tends to decrease.
  • the components of the first color filter 14 are dissolved, so that the spectral characteristics are obtained. Possible impact.
  • the surface of the color filter is cured, a thermosetting resin is mixed, and by heating and curing at a high temperature, the inside and the surface of the color filter are cured, It has the effect of improving solvent resistance.
  • the partition wall layer 12 that transmits visible light which is easy to control the shape by dry etching, is used, the degree of freedom of dimension control is high. Therefore, it is easy to form a thin partition wall between color filters. By using this characteristic, there is an effect that it is easy to produce a shape with an image sensor having a pixel size lower than 1.4 ⁇ m ⁇ 1.4 ⁇ m.
  • the solid-state imaging device according to the second embodiment of the present invention has a structure without the metal-containing grid-shaped partition wall layer 30 of the first embodiment.
  • the partition layer 12 is formed with a narrow width. It becomes possible.
  • the color mixture can be reduced by changing the refractive index of the partition wall layer 12 with the refractive index of the material of the color filter. Therefore, compared with the conventional structure without the metal-containing grid-shaped partition wall layer 30 and the partition wall layer 12, color mixing can be suppressed, and when the color filter is removed by dry etching, the residue can be reduced, and the color filters 14 and 15 have good rectangularity. 16 can be formed, and the film thickness of the color filter can be reduced.
  • the solid-state imaging device includes a semiconductor substrate 10 having a plurality of photoelectric conversion elements 11 arranged two-dimensionally, and a microlens 18.
  • the solid-state imaging device according to the second embodiment includes a plurality of color filters 14, 15, 16 provided between the semiconductor substrate 10 and the microlens 18, and a partition layer 12 provided on the semiconductor substrate 10. And an upper flattening layer 13 provided on the surface of the color filters 14, 15, 16.
  • each of the semiconductor substrate 10 having the photoelectric conversion element 11, the partition wall layer 12, the color filters 14, 15, 16, the upper planarization layer 13, and the microlens 18 includes each part of the solid-state imaging device according to the first embodiment. It is the same composition. For this reason, a detailed description of portions common to the respective portions of the solid-state imaging device according to the first embodiment is omitted.
  • FIG. 11A a partition layer 12 is formed on a semiconductor substrate 10 having a plurality of photoelectric conversion elements 11 arranged two-dimensionally.
  • FIGS. 11B to 11D an etching mask 20 is formed on the partition wall layer 12 to form a photosensitive resin mask layer 20a.
  • the photosensitive resin mask layer 20a is formed by exposing and developing so that the first color filter forming portion is opened.
  • the photosensitive resin mask layer 20a unlike the first embodiment, it is possible to form the first color filter forming portion with a large size. Also, when the second and third color filter forming locations are opened, the size can be increased in the same manner.
  • the width of the partition layer 12 between the color filters is preferably about 1 nm to 200 nm, more preferably an etching mask used when the partition layer 12 is processed by dry etching so as to have a width of 5 nm to 50 nm. To do.
  • the subsequent steps are the same as those in the first embodiment described above (see FIGS. 11E and 11F, FIGS. 12 and 13). Therefore, the description is omitted.
  • the manufacturing method of the solid-state imaging device according to the present embodiment includes a resin that constitutes the color filters 14, 15, and 16 provided in the solid-state imaging device, and a pigment that imparts color to the color filters 14, 15, and 16.
  • the concentration of the pigment contained in the color filters 14, 15, 16 is 50% by mass or more, the photosensitive resin contained in the resin constituting the color filter among the color filters 14, 15, 16 Any color filter that has the largest radius of curvature at the edge when the shape is cured by the property component can be selected as the first color filter, and the color of the first color filter is not limited. Absent.
  • Example 1 A tungsten film having a thickness of 200 nm was formed by CVD on a semiconductor substrate provided with two-dimensionally arranged photoelectric conversion elements.
  • a positive resist (OFPR-800: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated at 1000 rpm using a spin coater, and then pre-baked at 90 ° C. for 1 minute. This produced the sample which apply
  • This positive resist, which is the photosensitive resin mask material layer is dissolved in the developer by causing a chemical reaction when irradiated with ultraviolet rays.
  • the sample was subjected to photolithography that was exposed through a photomask.
  • an exposure apparatus using an i-line wavelength as a light source was used.
  • a development process is performed using 2.38% by mass of TMAH (tetramethylammonium hydride) as a developer, and a photosensitive resin mask layer having openings at the positions where the second and third color filters are formed is formed. did.
  • TMAH tetramethylammonium hydride
  • dehydration baking is performed after development, and the photoresist, which is a photosensitive resin mask material layer, is often cured. This time, dehydration baking was performed at a temperature of 120 degrees.
  • the resist film was formed to a thickness of 1.5 ⁇ m, which is more than twice the film thickness of the first color filter, which is a green filter.
  • dry etching was performed using the formed photosensitive resin mask layer.
  • the dry etching apparatus used is a parallel plate type dry etching apparatus. Further, the etching conditions were changed in the middle so as not to affect the underlying semiconductor substrate, and dry etching was performed in multiple stages.
  • etching was performed using a gas species obtained by mixing two types of SF 6 and Ar gas.
  • the gas flow rate of SF 6 was 50 ml / min, and the gas flow rate of Ar was 100 ml / min.
  • the pressure in the chamber was set to 2 Pa, and the RF power was set to 1000 W.
  • the etching conditions were changed to the following etching conditions when etching was performed to about 180 nm corresponding to 90% of the total film thickness of the tungsten layer.
  • etching was performed using a gas species obtained by mixing three types of SF 6 , O 2 , and Ar gas.
  • the SF 6 gas flow rate was 5 ml / min
  • the O 2 gas flow rate was 50 ml / min
  • the Ar gas flow rate was 100 ml / min
  • the entire thickness of the tungsten layer was removed by etching.
  • the photosensitive resin mask material used as an etching mask was removed.
  • the method used at this time was a method using a solvent, and the resist was removed with a spray cleaning apparatus using a stripping solution 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.). Thereafter, ashing with oxygen plasma was performed to remove the remaining resist.
  • a tungsten partition structure having a thickness of 200 nm and a width of 80 nm was formed in a lattice shape on the semiconductor substrate.
  • SOG was spin-coated at a rotation speed of 1000 rpm, and heat treatment was performed at 250 ° C. for 30 minutes with a hot plate to fill the lattice-shaped tungsten barrier structure, thereby forming SiO 2 with a film thickness of 350 nm.
  • a positive resist (OFPR-800: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated at 1000 rpm using a spin coater, and then pre-baked at 90 ° C. for 1 minute. This produced the sample which apply
  • the positive resist which is the photosensitive resin mask material layer, is dissolved in the developer by causing a chemical reaction when irradiated with ultraviolet rays.
  • the sample was subjected to photolithography that was exposed through a photomask.
  • the exposure apparatus an exposure apparatus using an i-line wavelength as a light source was used.
  • a development process is performed using 2.38% by mass of TMAH (tetramethylammonium hydride) as a developer, and a photosensitive resin mask layer having openings at the positions where the second and third color filters are formed is formed.
  • TMAH tetramethylammonium hydride
  • dehydration baking is performed after development, and the photoresist, which is a photosensitive resin mask material layer, is often cured. This time, dehydration baking was performed at a temperature of 120 degrees.
  • the resist film was formed to a thickness of 1.5 ⁇ m, which is more than twice the film thickness of the first color filter, which is a green filter.
  • the opening pattern at this time was 0.9 ⁇ m ⁇ 0.9 ⁇ m.
  • the dry etching apparatus used is a parallel plate type dry etching apparatus. Further, the etching conditions were changed in the middle so as not to affect the underlying semiconductor substrate, and dry etching was performed in multiple stages.
  • etching was performed using a gas species obtained by mixing three types of CF 4 , O 2 , and Ar gas. The CF 4 gas flow rate was 50 ml / min, the O 2 gas flow rate was 10 ml / min, and the Ar gas flow rate was 100 ml / min. In this case, the pressure in the chamber was set to 2 Pa, and the RF power was set to 1000 W. Using these conditions, the etching conditions were changed to the following etching conditions when etching was performed up to about 280 nm corresponding to 80% of 350 nm of the total thickness of the SiO 2 layer.
  • etching was performed using a gas species obtained by mixing three types of CF 4 , O 2 , and Ar gas.
  • the CF 4 gas flow rate was 25 ml / min
  • the O 2 gas flow rate was 10 ml / min
  • the Ar gas flow rate was 200 ml / min.
  • the pressure in the chamber at this time was 5 Pa
  • the RF power was 300 W.
  • O 2 gas and Ar gas were mixed so that the O 2 gas flow rate was 200 ml / min and the Ar gas flow rate was 10 ml / min.
  • Etching was performed under the conditions of a chamber internal pressure of 1.5 Pa and an RF power of 400 W. Etching was performed under these conditions to flatten the SiO 2 surface of the etched part.
  • the photosensitive resin mask material used as an etching mask was removed.
  • the method used at this time was a method using a solvent, and the resist was removed with a spray cleaning apparatus using a stripping solution 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • a first color filter material containing the first color green pigment a green pigment dispersion containing a photosensitive curable resin and a thermosetting resin was spin-coated at 1000 rpm.
  • the green pigment of the first color filter material has a color index of C.I. I. PG58 was used, and the pigment concentration was 70% by mass and the layer thickness was 500 nm.
  • the entire surface was exposed using a stepper, which is an i-line exposure device, to cure the photosensitive component.
  • the surface of the color filter was cured with this photosensitive curing component.
  • baking was performed at 230 ° C. for 6 minutes to thermally cure the green filter layer.
  • a positive resist (OFPR-800: manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated at 1000 rpm using a spin coater, and then pre-baked at 90 ° C. for 1 minute. This produced the sample which apply
  • the positive resist as the photosensitive resin mask layer is dissolved in the developer by causing a chemical reaction when irradiated with ultraviolet rays.
  • the sample was subjected to photolithography that was exposed through a photomask.
  • an exposure apparatus using an i-line wavelength as a light source was used.
  • a development process is performed using 2.38% by mass of TMAH (tetramethylammonium hydride) as a developer, and a photosensitive resin mask layer having openings at the positions where the second and third color filters are formed is formed.
  • TMAH tetramethylammonium hydride
  • dehydration baking is performed after development, and the photoresist, which is a photosensitive resin mask material layer, is often cured. This time, dehydration baking was performed at a temperature of 120 degrees.
  • the resist film was formed to a thickness of 1.5 ⁇ m.
  • the opening pattern at this time was 0.9 ⁇ m ⁇ 0.9 ⁇ m.
  • etching was performed using the formed photosensitive resin mask layer.
  • the green material which is the first color filter is 150 nm on the partition layer 350 nm composed of the SiO 2 layer, it is necessary to remove this green material by dry etching with little residue. Therefore, dry etching was performed in multiple stages.
  • etching was performed using a gas species obtained by mixing three types of CF 4 , O 2 , and Ar gas.
  • the CF 4 gas flow rate was 5 ml / min
  • the O 2 gas flow rate was 5 ml / min
  • the Ar gas flow rate was 100 ml / min.
  • the pressure in the chamber was set to 2 Pa, and the RF power was set to 1000 W. Using this condition, etching was performed for 135 nm corresponding to 90% of the thickness of 150 nm of the green layer, and the following etching conditions were changed.
  • etching was performed using a gas species obtained by mixing three types of CF 4 , O 2 , and Ar gas.
  • the CF 4 gas flow rate was 50 ml / min
  • the O 2 gas flow rate was 10 ml / min
  • the Ar gas flow rate was 100 ml / min.
  • the pressure in the chamber was set to 2 Pa
  • the RF power was set to 1000 W.
  • the etching conditions were changed to the following etching conditions when etching was performed to about 280 nm corresponding to 80% of the first color filter film thickness of 15 nm and 350 nm of the total film thickness of the SiO 2 layer.
  • etching was performed using a gas species obtained by mixing three types of CF 4 , O 2 , and Ar gas.
  • the CF 4 gas flow rate was 25 ml / min
  • the O 2 gas flow rate was 10 ml / min
  • the Ar gas flow rate was 200 ml / min.
  • the pressure in the chamber at this time was 5 Pa
  • the RF power was 300 W. Under these conditions, the etching was performed so that the removal of the reaction product adhering to the side surface of the photoresist which is an etching mask proceeds.
  • O 2 gas and Ar gas were mixed so that the O 2 gas flow rate was 200 ml / min and the Ar gas flow rate was 10 ml / min.
  • Etching was performed under the conditions of a chamber internal pressure of 1.5 Pa and an RF power of 400 W. Etching was performed under these conditions to flatten the SiO 2 surface of the etched part.
  • a reaction product of SiO 2 and dry etching gas adhered to the side wall of the Green layer.
  • the reaction product at that time was mainly SiO 2 attached by physical impact of Ar gas, and about 10 nm in the lateral (width) direction was attached to the side wall.
  • the photosensitive resin mask material used as an etching mask was removed.
  • the method used at this time was a method using a solvent, and the resist was removed with a spray cleaning apparatus using a stripping solution 104 (manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • a second color filter forming step was performed.
  • the SiO 2 layer as the partition wall layer is exposed in the first color filter formation step. Therefore, the surface is hydrophilic, and the second color filter may be peeled off due to the wraparound of the developer in the development process. Therefore, HMDS treatment was performed to make the exposed SiO 2 layer hydrophobic.
  • a photosensitive second color filter material containing pigment-dispersed blue was applied to the entire surface of the semiconductor substrate.
  • the photosensitive second color filter material was selectively exposed by photolithography using a photomask pattern.
  • the photosensitive color filter material was developed to form a blue second color filter.
  • the pigment used for the photosensitive color filter material of the blue resist is C.I. I. PB156, C.I. I. PV23 and the pigment concentration was 50% by mass.
  • the layer thickness of the second color filter which is blue was 0.70 ⁇ m.
  • an acrylic resin having photosensitivity was used as the resin that is the main component of the blue resist.
  • the photosensitive second color filter material was the second color filter (blue filter).
  • it was cured in an oven at 230 degrees for 30 minutes. After passing through this heating step, peeling and pattern collapse were not confirmed even after passing through steps such as a third color filter forming step.
  • the periphery of the second color filter was covered with the first color filter having good rectangularity and was formed with good rectangularity, so that it was confirmed that the second color filter was cured with good adhesion between the bottom surface and the periphery.
  • a photosensitive third color filter material containing pigment-dispersed red was applied to the entire surface of the semiconductor substrate.
  • the photosensitive third color filter material was selectively exposed by photolithography using a photomask pattern.
  • the photosensitive third color filter material was developed to form a red third color filter.
  • the pigment used for the photosensitive color filter material of the red resist is C.I. I. PR254, C.I. I. PY139, and the pigment concentration was 60% by mass.
  • the layer thickness of the third color filter which is red was 0.80 ⁇ m.
  • the photosensitive third color filter material to be the third color filter (red filter)
  • it was placed in an oven at 230 degrees for 20 minutes for curing.
  • the third color filter is covered with the first color filter with good rectangularity and formed with good rectangularity, so that it can be cured with good adhesion between the bottom surface and the periphery. confirmed.
  • a coating solution containing an acrylic resin is spin-coated on the color filter formed in the above flow at a rotation speed of 1000 rpm, and subjected to a heat treatment at 200 ° C. for 30 minutes on a hot plate to cure the resin.
  • An upper planarization layer was formed.
  • a microlens having a height from the lens top to the lens bottom of 500 nm is formed on the upper planarization layer by using the transfer method by etch back, which is a well-known technique described above. The device was completed.
  • tungsten barrier ribs are formed in a lattice shape, and barrier ribs made of SiO 2 are formed around it, and the green filter is formed with good rectangularity by dry etching. Yes. Further, a reaction product (SiO 2 is a main component) of about 10 nm when the SiO 2 partition is patterned by dry etching adheres to the sidewall of the partition made of SiO 2 and the sidewall of the green filter.
  • the first color green filter uses a thermosetting resin and a small amount of photosensitive curable resin, the concentration of the pigment in the solid content can be increased, and the color filter can be formed thinly. It was.
  • the solid-state imaging device has a short distance to the semiconductor substrate under the microlens, the green filter is formed with good rectangularity, and there is a partition structure between the color filters, so that color mixing can be reduced and good sensitivity can be achieved. It was a thing.
  • the color filter material of the first color filter which is a green filter
  • the color filter material of the first color filter is hardened by thermosetting, and the surface is hardened by exposure with a small amount of photosensitive resin, which improves solvent resistance. ing.
  • a green filter material having a high pigment content it may react with a solvent or other color filter material to change the spectral characteristics. Therefore, by using the above-mentioned thermosetting and photocuring together, the hardness can be improved, and there is an effect of suppressing the change in spectral characteristics.
  • Example 2 the barrier layer was not formed on the semiconductor substrate first, and the same method as in Example 1 was used.
  • the size of the opening of the etching mask was produced as 0.9 ⁇ m ⁇ 0.9 ⁇ m in Example 1, but in Example 2, it was 1.0 ⁇ m. It produced as * 1.0 micrometer.
  • a color filter of each color was formed by a photolithography process. This will be described in detail below.
  • a lower planarization layer of 60 nm was formed on the semiconductor substrate 10 used in Example 1 by using the same material as that of the upper planarization layer 13 of Example 1, and heat-cured at 230 ° C.
  • three film thicknesses of green, blue, and red were formed to a thickness of 700 nm.
  • a microlens was formed and produced in the same manner as in Example 1.
  • a solid-state imaging device according to the conventional method was manufactured. That is, the solid-state imaging device formed by the conventional method has a structure in which the partition layer 12 is not provided on the semiconductor substrate 10 and green, blue, and red color filters are produced by a photolithography process.
  • Example 1 As shown in Table 1, in the solid-state imaging device of Example 1 and Example 2 in which a partition structure is formed between each color filter by using a dry etching method, and a green filter is formed thin and with good rectangularity, the conventional method Compared with the case of forming by photolithography, the signal intensity of each color increased. In addition, in the manufacturing method of Example 2, since a partition layer containing metal was not included, the sensitivity was lower than that of Example 1 due to color mixing. However, since there is no metal barrier structure, the width of the partition can be made thin, and the size of each color filter can be increased, resulting in a high signal intensity for red, which has a high refractive index of the color filter. .
  • Example 2 tended to be somewhat lower than in Example 1, but the signal intensity was larger than that in the existing lithography structure. From this result, the presence of the barrier rib structure increased the signal intensity even in blue and red films having a film thickness higher than that of the existing method using lithography.
  • solid-state imaging devices such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) mounted on digital cameras and the like have been increased in size and miniaturization, and the pixels are particularly fine.
  • the pixel size is less than 1.4 ⁇ m ⁇ 1.4 ⁇ m.
  • the solid-state image sensor has a photoelectric conversion element and a pair of color filter patterns to achieve colorization. Further, the region (opening) where the photoelectric conversion element of the solid-state image sensor contributes to photoelectric conversion depends on the size and the number of pixels of the solid-state image sensor.
  • the opening is limited to about 20 to 50% with respect to the entire area of the solid-state imaging device. Since a small aperture leads to a decrease in sensitivity of the photoelectric conversion element as it is, in a solid-state imaging element, a condensing microlens is generally formed on the photoelectric conversion element in order to compensate for the decrease in sensitivity.
  • Patent Document 2 describes a method of forming all color filter patterns by dry etching.
  • the demand for high-definition CCD image sensors with more than 8 million pixels has increased, and the demand for image sensors with a level below 1.4 ⁇ m ⁇ 1.4 ⁇ m as the pixel size of the color filter pattern associated with these high-definition CCDs. It is getting bigger.
  • the resolution of the color filter pattern formed by the photolithography process is insufficient, which may adversely affect the characteristics of the solid-state imaging device.
  • a solid-state imaging device having a side of 1.4 ⁇ m or less specifically, near 1.1 ⁇ m or 0.9 ⁇ m, lack of resolution may appear as uneven color due to a pattern shape defect.
  • the aspect ratio is increased (the thickness is increased with respect to the width of the color filter pattern).
  • a portion that should originally be removed (a non-effective portion of the pixel) is not completely removed and may become a residue and adversely affect pixels of other colors. is there. If a method such as extending the development time is performed to remove the residue, the cured pixels may be peeled off.
  • the film thickness of the color filter must be increased.
  • the resolution tends to decrease as the pixels become finer, such as the corners of the color filter pattern being rounded.
  • the pigment concentration is increased, light necessary for the photocuring reaction may not reach the bottom of the color filter pattern layer, and the color filter layer may be insufficiently cured. For this reason, the layer of the color filter may be peeled off during the development process in photolithography, and pixel defects may occur.
  • the photocuring component is relatively reduced. For this reason, the photocuring of the layer of the color filter becomes insufficient, and the shape is deteriorated, the shape is not uniform in the surface, or the shape is easily broken.
  • increasing the amount of exposure during curing may reduce the throughput.
  • the film thickness of the color filter pattern may affect not only the problems in the manufacturing process but also the characteristics as a solid-state imaging device.
  • the color filter pattern is thick, light incident from an oblique direction may be split by a specific color filter and then incident on another adjacent color filter pattern portion and photoelectric conversion element. In this case, color mixing may occur.
  • This problem of color mixture becomes more prominent as the pixel size of the color filter pattern decreases and the aspect ratio between the pixel size and the film thickness increases.
  • the problem of color mixing of incident light is conspicuous even when the distance between the color filter pattern and the photoelectric conversion element is increased by forming a planarization layer or the like on the substrate on which the photoelectric conversion element is formed. For this reason, it is important to reduce the thickness of the color filter pattern and the flattening layer formed below the color filter pattern.
  • a method in which light is reflected or refracted between color filters of each color and a partition that blocks light incident on other pixels is formed.
  • a partition having a black matrix structure (BM) made of a black material is generally known.
  • BM black matrix structure
  • the size of each color filter pattern is several ⁇ m or less. For this reason, when the partition walls are formed using a general black matrix forming method, the pattern size is large, so that a part of the pattern is filled with BM like a pixel defect and resolution may be deteriorated. .
  • the required partition wall size is several hundred nm, more preferably about 200 nm or less, and the pixel size is increased until one pixel size is about 1 ⁇ m. Is progressing. For this reason, if the partition has a light shielding performance capable of suppressing color mixing, a film thickness of 100 nm or less is desirable. It is difficult to form barrier ribs of this size by photolithography using BM.
  • the partition may be formed by cutting into a shape.
  • a color filter pattern formed by a photolithography process by giving photosensitivity to a conventional color filter material is required to have a thin film thickness as the dimensions become finer.
  • the photosensitive component cannot be contained in a sufficient amount, resolution cannot be obtained, residue is likely to remain, and pixel peeling is likely to occur. There is a problem of deteriorating the characteristics of the solid-state imaging device.
  • Patent Document 2 the technique of Patent Document 2 has been proposed in order to make the color filter pattern finer and thinner.
  • the color filter pattern is formed by dry etching that allows patterning without containing a photosensitive component so that the pigment concentration in the color filter material can be improved.
  • the pigment concentration can be improved, and a color filter pattern capable of obtaining sufficient spectral characteristics even when the film thickness is reduced can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

混色を低減した高精細で感度の良い固体撮像素子及びその製造方法を提供する。本実施形態に係る固体撮像素子は、複数の光電変換素子(11)が二次元的に配置された半導体基板(10)上に、各光電変換素子(11)に対応して複数色の色フィルター(14、15、16)を配置した色フィルターパターンを有する固体撮像素子であって、半導体基板(10)と色フィルター(14、15、16)の間に形成された可視光を透過する層と、隣り合う色フィルター(14、15、16)の間に形成された可視光を透過する層とが連続した隔壁層(12)が形成され、複数色の色フィルター(14、15、16)のうちの最も面積の広い色フィルター(14)のエッジ部と隔壁層(12)に含まれるエッジ部とが連続しており、最も面積の広い色フィルター(14)の側壁には、隔壁層(12)をエッチングした際の反応生成物層(40)が形成されている。

Description

固体撮像素子及び固体撮像素子の製造方法
 本発明は、固体撮像素子及び固体撮像素子の製造方法に関する。
 固体撮像素子及びその製造方法に関する技術としては、例えば特許文献1又は2に記載したものがある。
特開平11-68076号公報 特許第4905760号公報
 発明者らが、特許文献2に記載の製造方法を検討したところ、各色フィルターパターンをドライエッチングで形成する際、色フィルターを形成する材料(色フィルター材)は有機物と金属を含有した材料であることから、ドライエッチングでの形状加工は困難であり残渣が残りやすく、また、残渣がなく形状良くドライエッチングを行う場合は、光電変換素子にエッチングダメージを与えやすいという知見を得た。
 本発明は、上述の課題(知見)に鑑みてなされたものであって、混色を低減した高精細で感度の良い固体撮像素子及びその製造方法を提供することを目的とする。
 課題を解決するために、本発明の一態様である固体撮像素子は、複数の光電変換素子が二次元的に配置された半導体基板上に、各光電変換素子に対応して複数色の色フィルターを配置した色フィルターパターンを有する固体撮像素子であって、前記半導体基板と前記色フィルターパターンの間に形成された第一の可視光を透過する層と、隣り合う前記色フィルターの間に形成された第二の可視光を透過する層とが連続しており、前記第一の可視光を透過する層と前記第二の可視光を透過する層は同じ材料からなり、前記複数色の色フィルターのうちの最も面積の広い色フィルターのエッジと前記第二の可視光を透過する層のエッジ部が連続しており、前記最も面積の広い色フィルターの側壁には、前記第一の可視光を透過する層を構成する成分を含む反応生成物層が形成されていることを特徴とする。
 また本発明の一態様である固体撮像素子の製造方法は、複数の光電変換素子が二次元的に配置された半導体基板上に、各光電変換素子に対応して複数色の色フィルターを配置した色フィルターパターンを有し、前記各色フィルターの間及び前記各色フィルターの下層に可視光を透過する層が形成された固体撮像素子の製造方法であって、前記複数の光電変換素子が二次元的に配置された半導体基板上全面に、可視光を透過する層を形成する工程と、前記可視光を透過する層に前記複数の色フィルターパターンのうち一色目の色フィルターパターンの形成箇所を、ドライエッチングによって開口してパターニングする工程と、前記パターニングする工程後、開口している箇所に一色目の色フィルター材を塗布及び硬化することで、第一の色フィルターからなる第一の色フィルターパターンを形成する工程と、他の色フィルターパターンの形成箇所を、ドライエッチングで可視光を透過する層及び、その上の前記一色目の色フィルターを開口する工程と、前記他の色フィルターをフォトリソグラフィによってパターニングする工程と、を有することを特徴とする。
 本発明の一態様によれば、混色を低減した高精細で感度の良い固体撮像素子及びその製造方法を提供することができる。
 例えば、本発明の一態様によれば、ドライエッチングで形状を加工しやすい可視光を透過する層をドライエッチングで加工し、一色目の色フィルターを形成する材料を塗布及び硬化するだけで一色目の色フィルターを形成するため、一色目の色フィルターの薄膜化が容易であり、且つ一色目の色フィルターを矩形性良く形成できる。このため、マイクロレンズトップからデバイスまでの総距離を短くすることで混色を低減でき、高感度化した高精細な固体撮像素子を得ることができる。
本発明の第一の実施形態に係る固体撮像素子の断面図である。 本発明の第一の実施形態に係る色フィルター配列の部分断面図で、(a)は図1のA-A′断面図、(b)は図1のB-B′断面図である。 本発明の第一の実施形態に係る、可視光を透過する表面保護層及び隔壁層の形成工程及び、感光性樹脂パターン材料を用いて第一の色フィルターを形成する箇所をドライエッチング法により開口させる工程順を示す断面図である。 本発明の第一の実施形態に係る、第一の色フィルターパターン塗布、硬化工程及び、感光性樹脂パターン材料を用いて第二以降の色フィルターを形成する箇所をドライエッチング法により開口させる工程順を示す断面図である。 本発明の第一の実施形態に係る、第二、第三の色フィルターパターンをフォトリソグラフィにより作製する工程を工程順に示す断面図である。 本発明の第一の実施形態に係る、マイクロレンズの作製工程を工程順に示す断面図である。 本発明の第一の実施形態に係る、マイクロレンズをエッチバックによる転写方法で作製する場合を工程順に示す断面図である。 本発明の第一の実施形態に係る、第二、第三の色フィルターパターンをドライエッチングにより作製する工程を工程順に示す断面図である。 本発明の第一の実施形態に係る、第二、第三の色フィルターパターンを、隔壁層をドライエッチングにより開口することで、塗布及び硬化で作製する工程を工程順に示す断面図である。 本発明の第一の実施形態に係る、第二、第三の色フィルターパターンを、隔壁層をドライエッチングにより開口することで、塗布及び硬化で作製する工程を工程順に示す断面図である。 本発明の第二の実施形態に係る、第一の色フィルターパターン形成箇所を開口する工程を工程順に示す断面図である。 本発明の第二の実施形態に係る、第一の色フィルターパターンを作製する工程を工程順に示す断面図である。 本発明の第二の実施形態に係る、第二、第三の色フィルターパターンをフォトリソグラフィにより作製する工程を工程順に示す断面図である。
 以下、本発明に係る実施形態について、図面を参照しながら説明する。
1.第一の実施形態
(1-1)固体撮像素子の構成
 本発明の第一の実施形態に係る固体撮像素子は、図1に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、半導体基板10の上に配置された複数のマイクロレンズ18と、半導体基板10とマイクロレンズ18との間に設けられた複数色フィルター14、15、16とを備えている。複数色の色フィルター14、15、16は、各光電変換素子11に対応して配置される。
 また、第一の実施形態に係る固体撮像素子は、半導体基板10の表面に形成された可視光を透過する表面保護層及び隔壁層12が一体に形成されていると共に、色フィルター14、15、16の上面に上層平坦化層13が設けられている。第一の実施形態に係る固体撮像素子は、色フィルター14、15、16の各色フィルター間に位置する可視光を透過する隔壁層12内に格子形状の金属含有格子形状隔壁層30を含んでいる。
 以下、第一の実施形態に係る固体撮像素子の説明にあたり、製造工程上、最初に形成する色フィルター14を第一の色フィルターと定義する。また、製造工程上、二番目に形成する色フィルター15を第二の色フィルター、製造工程上、三番目に形成する色フィルター16を第三の色フィルターと定義する。本実施形態では、最初に形成する色フィルター14が、最も面積が広い色フィルターの場合として説明する。
 また、最も面積の広い色フィルターの側壁には、前述の可視光を透過する層をエッチングした際の反応生成物層40が形成されていることが好ましい。
 以下、固体撮像素子の各部について詳細に説明する。
(光電変換素子及び半導体基板)
 光電変換素子11は、光を電気信号に変換する機能を有している。
 光電変換素子11が形成されている半導体基板10は、一般的に表面の保護及び平坦化を目的として、最表面が保護膜で形成されている。半導体基板10は、可視光を透過して、少なくとも300℃程度の温度に耐えられる材料で形成されている。このような材料としては、例えば、Si、SiO等の酸化物及びSiN等の窒化物、並びにこれらの混合物等、Siを含む材料等が挙げられる。
(マイクロレンズ)
 マイクロレンズ18は、半導体基板10の上方に配置され、半導体基板10に二次元配置された複数の光電変換素子11毎に設けられる。マイクロレンズ18は、マイクロレンズ18に入射した入射光を対応する光電変換素子11に集光させることにより、光電変換素子11の感度低下を補うことができる。
(可視光を透過する表面保護層及び隔壁層)
 可視光を透過する表面保護層及び隔壁層12(以下、単に隔壁層12とも呼ぶ)は、半導体基板10の表面保護及び平坦化及び混色防止のために、隔壁として設けられた層である。隔壁層12のうち表面保護層は、光電変換素子11の作製による半導体基板10の上面の凹凸を低減し、混色を低減して感度を向上させる。
 隔壁層12は、例えば、SiO、ITO、SnO、ZnOなどの波長が400nmから700nmの可視光を透過し、色フィルター14、15、16のパターン形成や密着性を阻害しない材料であれば、いずれも用いることができる。また、ドライエッチングで加工が容易なものが好ましく、より好ましくはSiOである。
(上層平坦化層)
 上層平坦化層13は、色フィルター14、15、16の上面を平坦化するために設けられた層である。
 上層平坦化層13は、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂、スチレン系樹脂等の樹脂を一又は複数含んだ樹脂により形成される。なお、上層平坦化層13は、マイクロレンズ18と一体化していても問題ない。
(色フィルター)
 色フィルター14、15、16は、入射光を色分解するためのフィルターであって、各色に対応するフィルターである。色フィルター14、15、16は、半導体基板10とマイクロレンズ18との間に設けられ、複数の光電変換素子11のそれぞれに対応するように予め設定された規則パターンで配置されている。
 図2に、各色フィルター14、15、16の配列を平面的に示す。図2に示す配列は、いわゆるベイヤー配列である。なお、図2(a)は、図1に示すA-A′断面を平面的に示す図であり、金属含有格子形状隔壁層30を含まない断面図である。また、図2(b)は、図1に示すB-B′断面を平面的に示す図であり、金属含有格子形状隔壁層30を含む断面図である。
 色フィルター14、15、16は、所定の色の顔料と、熱硬化成分や光硬化成分を含んでいる。例えば、色フィルター14はグリーン顔料を含み、色フィルター15はブルー顔料を含み、色フィルター16はレッド顔料を含んでいる。
 本実施形態では、図2に示す、ベイヤー配列の色フィルターを有する固体撮像素子について説明する。しかしながら、固体撮像素子の色フィルターは、必ずしもベイヤー配列に限定されず、また、色フィルターの色もRGBの三色にも限定されない。例えば、ベイヤー配列で面積の多いグリーンフィルターの配列の一部を、可視光が透過する材料で屈折率を調整した透明層に置き換えても良いし、IR光をカットする材料を含有する透明層に置き換えても良い。
(1-2)固体撮像素子の製造方法
 次に、図3、図4、図5及び図6を参照して、本発明の第一の実施形態の固体撮像素子の製造方法について説明する。
(可視光を透過する表面保護層及び隔壁層内の格子形状金属隔壁形成工程)
 図3(a)に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10を準備し、その表面に光電変換素子11に対応し、各色フィルター形成箇所の間に位置するように金属含有格子形状隔壁層30を形成する。色フィルターを通過した光が隣接する光電変換素子11に入光しないように、金属含有格子形状隔壁層30は、例えば、Al、W、Ti、Cu、Agなどの金属材料を一つもしくは複数含んだ金属や、それら金属の酸化化合物、窒化化合物等の化合物により形成される。
 金属含有格子形状隔壁層30の形成方法は公知の方法を用いることができる。例えば、半導体基板10上に金属層を形成し、フォトリソグラフィでエッチングマスクとして用いるマスクパターンを金属層上に形成し、エッチングにより格子形状に金属層を形成する方法や、半導体基板上にフォトリソグラフィでマスクパターンを形成後、蒸着、スパッタリング、CVD等の各種成膜方法で金属層を形成し、リフトオフで所望の格子形状に金属層をパターニングするなど公知の方法を用いて金属含有格子形状隔壁層30を形成する。格子形状は、各光電変換素子11を囲うように設定する。
 金属含有格子形状隔壁層30の膜厚(高さ)は、100nm以上500nm以下程度が好ましい。また、色フィルターの膜厚(高さ)よりも金属含有格子形状隔壁層30の膜厚が厚い場合、金属含有格子形状隔壁層30で、光の吸収、反射の成分が多くなる。このため、金属含有格子形状隔壁層30は、色フィルターの膜厚以下の膜厚で形成されていることが好ましい。また、格子形状の幅は100nm以下程度が望ましい。幅が厚くなると、金属含有格子形状隔壁層30の面積が大きくなり、光電変換素子11への光の入射を遮るため、斜め入射する光の混色を低減できれば、格子形状の幅を薄くすることが望ましい。
 次に図3(b)に示すように、金属含有格子形状隔壁層30を覆うように、半導体基板10の上部に可視光を透過する隔壁層12を形成する。隔壁層12は使用する材料組成によって形成方法は異なるが、例えば、蒸着、スパッタリング、CVDなどの公知の成膜方法で形成することができる。また、SiOを含む層を形成する場合等は、SOG(Spin on Glass)を用いてSiOを含む塗液を塗布し、その塗液を加熱硬化して形成するなどの簡便な方法も用いられる。これらの成膜方法により、内部に金属含有格子形状隔壁層30を内包する可視光を透過する隔壁層12を半導体基板10上に形成する。
 隔壁層12の膜厚は、金属含有格子形状隔壁層30の膜厚より厚く形成する。本実施形態では、150nm以上700nm以下程度の膜厚が望ましい。また、色フィルター14、15、16の膜厚よりも隔壁層12の膜厚が厚い場合は、隔壁層12を上部から透過する光が光電変換素子11に入射する可能性があるため、隔壁層12の膜厚は、色フィルター14、15、16の膜厚よりも薄いことが好ましく、例えば、400nm以下程度が望ましい。
(第一の色フィルター形成箇所の開口工程)
 次に、図3(c)~(g)に示す、半導体基板10上に形成した隔壁層12に、第一の色フィルター14を形成する箇所を開口する工程について説明する。上述の通り、本実施形態では、第一の色フィルター14が固体撮像素子中で最も広い形成面積を有しているとする。
(エッチングマスクパターン形成工程)
 図3(c)~図3(g)に示すように、前工程で形成した隔壁層12上に開口部を有するエッチングマスクパターンを形成する。
 まず、図3(c)に示すように、隔壁層12上に感光性樹脂マスク材料を塗布して乾燥し、感光性樹脂層からなるエッチングマスク20を形成する。
 次に、図3(d)に示すように、エッチングマスク20に対してフォトマスク(図示せず)を用いて露光し、必要なパターン以外が現像液に可溶となる化学反応を起こす。
 次に、図3(e)に示すように、現像によりエッチングマスク20の不要部(露光部)を除去する。これにより、開口部20bを有するエッチングマスクパターンとしての感光性樹脂マスク層20aが形成される。開口部20bには、後の工程で第一の色フィルター14が形成される。
 エッチングマスク20を構成する感光性樹脂マスク材料としては、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、その他の感光性を有する樹脂を単独でもしくは複数混合あるいは共重合して用いることができる。また、エッチングマスク20をパターニングするフォトリソグラフィプロセスに用いる露光機は、例えば、スキャナー、ステッパー、アライナー、ミラープロジェクションアライナーが挙げられる。また、電子線での直接描画、レーザでの描画等によりエッチングマスク20の露光を行っても良い。なかでも、微細化の必要な固体撮像素子の第一の色フィルター14を形成するためには、ステッパーやスキャナーが一般的に用いられる。
 感光性樹脂マスク材料としては、高解像で高精度なパターンを作製するために、一般的なフォトレジストを用いることが望ましい。フォトレジストを用いることで、感光性を持たせた色フィルター用材料でパターンを形成する場合と異なり、形状制御が容易で、寸法精度の良いパターンを形成することができる。
 この際用いるフォトレジストは、ドライエッチング耐性の高いものが望ましい。ドライエッチング時のエッチングマスク材として用いる場合は、エッチング部材とのエッチング速度である選択比を向上させるために、現像後にポストベークと呼ばれる熱硬化工程が用いられることが多い。しかし、熱硬化工程が含まれると、ドライエッチング後に、エッチングマスクとして用いた残留レジストの除去工程での除去が困難となることがある。このため、フォトレジストとしては、熱硬化工程を用いなくてもエッチング部材との間で選択比が得られるものが好ましい。また、良好な選択比が得られない場合、フォトレジスト材料の膜厚を厚く形成する必要があるが、厚膜化すると微細パターン形成が困難となることがある。このため、フォトレジストとしては、ドライエッチング耐性が高い材料が好ましい。
 具体的には、エッチングマスク20の材料である感光性樹脂マスク材料と、ドライエッチングの対象である第一の色フィルター用材料とのエッチング速度比(選択比)は、0.5以上が好ましく、0.8以上がより好ましい。この選択比があれば、感光性樹脂マスク層20aを全て消滅させることなく、隔壁層12をエッチングすることが可能である。隔壁層12の膜厚が0.2μm以上0.8μm以下程度の場合、感光性樹脂マスク層20aの膜厚は、0.5μm以上2.0μm以下程度であることが望ましい。
 またこの際に用いるフォトレジストとしては、ポジ型レジスト又はネガ型レジストのどちらでも問題ない。しかしながら、エッチング後のフォトレジスト除去を考えると、外部要因により、化学反応が進み硬化する方向に変化するネガ型レジストよりも、化学反応が進み溶解する方向に化学反応が起こりやすいポジ型レジストが望ましい。
 以上のようにして、エッチングマスクパターンが形成される。
(ドライエッチング工程)
 図3(f)に示すように、感光性樹脂マスク層20a及びドライエッチングガスを用いたドライエッチングにより、開口部20bから露出する可視光を透過する表面保護層及び隔壁層12の一部分を除去する。
 ドライエッチングの手法としては、例えば、ECR(Electron Cyclotron Resonance)、平行平板マグネトロン、DRM、ICP(Inductively Coupled Plasma)、あるいは2周波タイプのRIE(Reactive Ion Etching)等が挙げられる。エッチング方式については特に制限されないが、幅数mm以上の大面積パターンや数百nmの微小パターン等の線幅や面積が異なってもエッチングレートや、エッチング形状が変わらないように制御できる方式のものが望ましい。また100mmから450mm程度のサイズのウエハ全面で、面内均一にドライエッチングできる制御機構のドライエッチング手法を用いることが望ましい。
 ドライエッチングガスは、反応性(酸化性・還元性)を有する、すなわちエッチング性のあるガスであれば良い。反応性を有するガスとしては、例えば、フッ素、酸素、臭素、硫黄及び塩素等を含むガスを挙げることができる。また、アルゴンやヘリウム等の反応性が少なくイオンでの物理的衝撃によるエッチングを行う元素を含む希ガスを単体又は混合させて使用することができる。また、ガスを用いてのプラズマ環境下でのドライエッチング工程で、所望のパターンを形成する反応を起こすガスであれば、これらには限定されなくても問題なく、水素や窒素などのガスも使用しても問題ない。
 隔壁層12の材料によって、エッチングガスを変更する必要があるが、本実施形態で好ましいとしているSiOを用いた場合は、エッチングガスとして、フッ素系ガス及び酸素系ガスやこれらを混合させて用いてエッチングを行う。また、エッチングレートのコントロール及び、垂直性の良い加工のために、希ガスを混合させてエッチングを行うことが望ましい。ITOなどの材料を隔壁層12に用いる場合は、例えば、塩素やメタン、水素などのガスを混合させてエッチングを行うことが望ましい。
 いずれのエッチング条件においても、隔壁層12の下部には、半導体基板10があるため、隔壁層12はエッチングを行い、半導体基板10はエッチングしない条件が好ましい。
 隔壁層12は、可視光を透過する材料のため、第一の色フィルター14を形成する箇所の下部に隔壁層12が残っている状態が望ましい。具体的には、隔壁層12のドライエッチングを行う際に、多段階でエッチングを行うことが望ましい、例えば、隔壁層12の膜厚の90%程度までエッチングした段階で、反応性ガス流量を少なくして、エッチングレートを小さくして、隔壁層12の膜厚のうちの95%以上100%未満までエッチングをした段階でエッチングを止めることが望ましい。
 上述した条件で図3(f)に示すように、半導体基板10表面に達する又は近づくまで隔壁層12のドライエッチングを行った後、感光性樹脂マスク層20aを除去することで、第一の色フィルターパターンを形成する箇所を開口させることができる。
 隔壁層12の材質によっては、前述したドライエッチング工程では、表面の平坦性が悪い場合は、ドライエッチングとウェットエッチング工程を組み合わせて、エッチングを行っても良い。具体的には、隔壁層12の膜厚の80%以上までドライエッチングでエッチングを行い、残りの膜厚をウェットエッチングでエッチングを行うなどの工程を経ても良い。ただし、ウェットエッチングの場合、等方的にエッチングが進行するため、最後にエッチングダメージのある最表面を、制御性が良く、異方的なエッチングが可能なドライエッチングするのが望ましい。
 次に、図3(g)に示すように、残存している感光性樹脂マスク層20aの除去を行う。感光性樹脂マスク層20aの除去方法としては、例えば、薬液や溶剤を用いることで感光性樹脂マスク層20aを溶解、剥離する方法が挙げられる。感光性樹脂マスク層20aを除去する溶剤としては、例えば、N-メチル-2-ピロリドン、シクロヘキサノン、ジエチレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸ブチル、ジメチルスルホキシド、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の有機溶剤を単独もしくは、複数を混合した混合溶剤が用いられる。また、この際用いる溶剤は、色フィルター用材料に影響を与えないものであることが望ましい。色フィルター用材料に影響を与えないのであれば、酸系の薬品を用いた剥離方法でも問題ない。
 また、感光性樹脂マスク層20aの除去方法としては、前述した溶剤等のウェットプロセス以外の方法も用いることができる。例えば、光励起や酸素プラズマを用いたレジストの灰化技術であるアッシング技術を用いる方法により、感光性樹脂マスク層20aを除去することができる。また、これらの方法を組み合わせて用いることもできる。例えば、始めに、光励起や酸素プラズマによる灰化技術であるアッシング技術を用いて、感光性樹脂マスク層20aの表層のドライエッチングによる変質層を除去した後、溶剤等を用いたウェットエッチングにより残りの層を除去しても良い。また、半導体基板10及び隔壁層12にダメージを与えない範囲であれば、アッシングのみで感光性樹脂マスク層20aを除去しても構わない。また、アッシング等のドライプロセスだけでなく、例えば、CMPによる研磨工程等を用いても良い。
 これらの方法を用いることで感光性樹脂マスク層20aを除去することで、半導体基板10上に格子形状の金属含有格子形状隔壁層30が形成されており、その金属含有格子形状隔壁層30を覆うように可視光を透過する表面保護層及び隔壁層12が形成されており、第一の色フィルター形成箇所の隔壁層12がエッチングで除去されて開口している形状が完成する。
(第一の色フィルター形成工程(第1の工程))
 まず、図4を参照して、半導体基板10上に形成した隔壁層12の表面に、第一の色フィルター14を形成する工程について説明する。
 複数の光電変換素子11が二次元的に配置された半導体基板10上に形成した隔壁層12の表面に、図4(a)のように、樹脂材料を主成分とし第一の顔料(着色剤)を分散させた第一の樹脂分散液からなる第一の色フィルター用材料を塗布して第一の色フィルター14の層を形成する。本実施形態に係る固体撮像素子は、図2に示すようにベイヤー配列の色フィルターを用いることを想定している。このため、第一の色は、グリーン(G)であることが好ましい。
 第一の色フィルター用材料の樹脂材料としては、エポキシ樹脂等の熱硬化性樹脂及び紫外線硬化樹脂等の光硬化性樹脂を含有する混合樹脂を用いる。なお、光硬化性樹脂の配合量を熱硬化性樹脂の配合量よりも少なくすることが好ましい。樹脂材料として熱硬化性樹脂を多く用いることで、硬化性樹脂として光硬化性樹脂を多く用いる場合と異なり、第一の色フィルター14の層の顔料含有率を高くすることが可能となり、薄膜で且つ所望の分光特性を得られる第一の色フィルター14を形成し易くなる。
 ただし、本実施形態では、熱硬化性樹脂及び光硬化性樹脂の両方を含有する混合樹脂で説明するが、必ずしも混合樹脂に限定されず、いずれか一方の硬化性樹脂のみを含有する樹脂でも良い。
 第一の色フィルター14の層の膜厚は400nmから800nm程度の膜厚が好ましい。本実施形態では、従来手法の感光性カラーレジストでは着色成分の含有量を増やすことが困難な色フィルターを第一の色フィルターとして用いることが好ましい。具体的には、ベイヤー配列における緑色フィルターである。
 次に、第一の色フィルター14の層の全面に紫外線を照射して、第一の色フィルター14の層を光硬化する。本実施形態では、従来手法のように色フィルター用材料に感光性を持たせて露光することで所望のパターンを直接形成する場合と異なり、第一の色フィルター14の層の全面を硬化するため、感光性成分の含有量を低下させても硬化が可能となる。また、紫外線照射を行わず、次の工程の加熱硬化工程で行っても良い。
 次に、第一の色フィルター14の層を200℃以上300℃以下で熱硬化する。より具体的には、230℃以上270℃以下の温度で加熱することが好ましい。固体撮像素子の製造においては、マイクロレンズ18の形成時に200℃以上300℃以下の高温加熱工程が用いられることが多いため、第一の色フィルター用材料は、高温耐性があることが望ましい。このため、樹脂材料として、高温耐性のある熱硬化性樹脂を用いることがより好ましい。
 (エッチングマスクパターン形成工程)
 次に、図4(b)~図4(f)に示すように、前工程で形成した第一の色フィルター14の層及び、隔壁層12上に開口部を有するエッチングマスクパターンを形成する。
 まず、図4(b)に示すように、第一の色フィルター14の層の表面に、感光性樹脂マスク材料を塗布して乾燥し、エッチングマスク20を形成する。
 次に、図4(c)に示すように、エッチングマスク20に対してフォトマスク(図示せず)を用いて露光し、必要なパターン以外が現像液に可溶となる化学反応を起こす。
 次に、図4(d)に示すように、現像によりエッチングマスク20の不要部(露光部)を除去する。これにより、開口部を有する感光性樹脂マスク層20aが形成される。開口部の位置には、後の工程で第二の色フィルター15又は第三の色フィルター16が形成される。
(第二以降の色フィルター形成箇所の開口工程)
 エッチングマスクパターン及びドライエッチングガスを用いたドライエッチングにより、図4(e)に示すように、開口部から露出する第一の色フィルター14の層の一部分及び下層の隔壁層12の一部分を除去する。
 ドライエッチングの手法としては、前述した方法と同様の方法を用いるが、所望の開口箇所は、第一の色フィルター14の層が数百nmほどあり、その下に隔壁層12がある構造のため、最初に第一の色フィルター14の層をドライエッチングで除去する工程が必要となる。
 色フィルターとなる層は、一般的に金属を含んだ有機物によって構成されており、均一な層でない。このため、色フィルター形成時には、エッチングレートのばらつきに起因した残渣が発生しやすいことを知見している。本実施形態では、第一の色フィルター14の層が数百nmほどとその下の隔壁層12をエッチングで除去する必要があるが、隔壁層12のエッチング後に底面が平滑なことが望ましい。そのため、色フィルターの材料をドライエッチングで除去する際、残渣が残らない条件が望ましい。
 ドライエッチングガスは、反応性(酸化性・還元性)を有する、すなわちエッチング性のあるガスであれば良い。反応性を有するガスとしては、例えば、フッ素、酸素、臭素、硫黄及び塩素等を含むガスを挙げることができる。また、アルゴンやヘリウム等の反応性が少なくイオンでの物理的衝撃によるエッチングを行う元素を含む希ガスを単体又は混合させて使用することができる。また、ガスを用いてのプラズマ環境下でのドライエッチング工程で、所望のパターンを形成する反応を起こすガスであれば、これらには限定されなくても問題ない。本実施形態では初期の段階では、全ガス流量の90%以上を希ガス等のイオンとするエッチングガスを用いて物理的衝撃を主体とするエッチングを行い、次にそのガスにフッ素系ガスや酸素系ガスを混合したエッチングガスを用いることで、化学反応も利用してエッチングレートを向上させたエッチングを行う。エッチングガスに希ガスを多く含有させることで、色フィルターの層が平坦となるようにエッチングを行うことができる。
 第二以降の色フィルター15、16を形成する箇所の隔壁層12上の第一の色フィルター14の層の膜厚の内95%以上がエッチングされた段階で、前述した隔壁層12をエッチングする条件を変更する。色フィルターの層をエッチングした段階で、色フィルターの層に含まれる材料の残渣が確認される場合は、隔壁層12をエッチングする条件の際、希ガス流量の割合を増やすことで、エッチングレートを低下させて、隔壁層12を平坦にエッチングすることが望ましい。
 隔壁層12をエッチングする際、希ガスを用いているため、物理的衝撃により、マスクパターン側壁に反応生成物やエッチング材料が付着しやすい状況となる。そのため、隔壁層12及び第一の色フィルター14の側壁には、反応生成物からなる反応生成物層40が形成される。この際の反応生成物層40の幅は、エッチング条件で異なるが、1nm以上50nm以下程度であることが好ましい。
 次に、残存している感光性樹脂マスク層20aの除去を行う(図4(f)参照)。感光性樹脂マスク層20aの除去には、例えば、薬液や溶剤を用いることで第一の色フィルター14に影響を与えず、感光性樹脂マスク層20aを溶解、剥離する除去方法が挙げられる。感光性樹脂マスク層20aを除去する溶剤としては、例えば、N-メチル-2-ピロリドン、シクロヘキサノン、ジエチレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸ブチル、ジメチルスルホキシド、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の有機溶剤を単独もしくは、複数を混合した混合溶剤が用いられる。また、この際用いる溶剤は、色フィルター用材料に影響を与えないものであることが望ましい。色フィルター用材料に影響を与えないのであれば、酸系の薬品を用いた剥離方法でも問題ない。
 また、感光性樹脂マスク層20aの除去方法としては、前述した溶剤等のウェットプロセス以外の方法も用いることができる。例えば、光励起や酸素プラズマを用いたレジストの灰化技術であるアッシング技術を用いる方法により、感光性樹脂マスク層20aを除去することができる。また、これらの方法を組み合わせて用いることもできる。例えば、始めに、光励起や酸素プラズマによる灰化技術であるアッシング技術を用いて、感光性樹脂マスク層20aの表層のドライエッチングによる変質層を除去した後、溶剤等を用いたウェットエッチングにより残りの層を除去しても良い。また、第一の色フィルター用材料にダメージを与えない範囲であれば、アッシングのみで感光性樹脂マスク層20aを除去しても構わない。また、アッシング等のドライプロセスだけでなく、例えば、CMPによる研磨工程等を用いても良い。
 上記の工程により、第二以降の色フィルター15、16の形成箇所の開口工程の形成が完了する。上記の工程で隔壁層12をエッチングすることで、金属含有格子形状隔壁層30及び隔壁層12上に第一の色フィルター14が形成されている。また、第一の色フィルター14と可視光を透過する隔壁層12を一度にエッチングするため、図4(e)に示すように第一の色フィルター14のエッチングで除去され端となるエッジ部の面と、可視光を透過する隔壁層12のエッチングで除去され端となるエッジ部の面とが段差なく連続して繋がっており、更にその連続して繋がっているエッジ部の面の外側に、隔壁層12をエッチングした際の反応生成物からなる反応生成物層40が付着している構造が得られる。
(第二以降の色フィルターのパターンの形成について)
 次に、図5(a)~図5(f)に示すように、第一の色フィルター14とは異なる色の顔料を含む第二、第三の色フィルター15、16を形成する。第二、第三の色フィルター15、16のパターンの作製方法は、大きく分けて2つの手法を用いることができる。
 第一の手法は、隔壁層12及び第一の色フィルターパターンをガイドパターンとすると共に、第二、第三の色フィルター15、16は光硬化性樹脂を含んだ感光性色フィルター用材料を用いて形成し、従来手法で選択的に露光してパターンを形成する手法である。
 第二の手法は、前述した第二以降の色フィルター形成箇所を開口させた工程を複数回繰り返す方法である。第一の色フィルター14及び隔壁層12をパターン形成した半導体基板10の表面全面に、第二の色フィルター用材料を塗布する。続いて、パターニングを行った感光性樹脂マスク材料層をエッチングマスクとしてドライエッチングを行い、第三の色フィルター16形成箇所に開口部を設ける。最後に、その場所に第三の色フィルター用材料を塗布して、余分な色フィルターを研磨等で除去することで、開口部内に第三の色フィルター16を形成する手法である。この第二の手法を用いる場合は、前述した第二以降の色フィルター形成箇所を開口する工程の際に、第二、第三の色フィルター形成箇所の隔壁層12をエッチングで除去したが、第二の色フィルター形成箇所のみを開口し、第二の色フィルター15を塗布、硬化を行い、パターニングした感光性樹脂マスク材料を用いて、第三の色フィルター形成箇所を開口させる手法を用いても良い。この手法の場合、残渣が生じやすい色フィルターの材料のエッチング量が低減できるため、隔壁層12を平坦に形成することができる利点がある。なお、第一の手法で、第二以降の色フィルター15、16を所望の形状に加工できる場合には工程数が削減できるため、第二の手法と比較して第一の手法が好ましい。
(第二以降の色フィルターのパターンを形成する第一の手法)
 はじめに、第二以降の色フィルター15、16のパターンを形成する第一の手法について、図5(a)~図5(f)を用いて説明する。第一の手法は、第二の色フィルター15に感光性成分を有した色フィルターの材料(カラーレジスト)を用いることに特徴がある。
 図5(a)に示すように、第一の色フィルター14及び隔壁層12をパターン形成した半導体基板10の表面全面に、第二の色フィルター用材料として感光性色フィルター用材料を塗布し、すなわち開口部20b全面に感光性色フィルター用材料を塗布し乾燥させて第二の色フィルター15の層を形成する。この際用いる感光性色フィルター用材料は、光を当てることで硬化するネガ型の感光性成分を含有する。第二の色フィルター15の膜厚は、400nmから1000nmの膜厚で形成することが好ましい。膜厚を厚く形成する場合、着色顔料の濃度を低下させることができるため、感光性硬化成分の含有量を多くすることができ、形状制御性が向上する。
 次に、図5(b)に示すように、第二の色フィルター15を形成する部分に対して、フォトマスクを用いて露光を行い、第二の色フィルター15の層の一部を光硬化させる。
 次に、図5(c)のように、現像工程で選択的に露光されていない第二の色フィルター15の層の一部を除去する。次に露光を行った第二の色フィルター15の層の一部と半導体基板10との密着性向上、及び実デバイス利用での耐熱性を向上させるために、高温加熱での硬化処理を行うことで残存した第二の色フィルター15の層を硬化させる。これにより、第二の色フィルター15を形成する。この際、硬化に用いる温度は、200℃以上が好ましい。
 次に、図5(d)に示すように、第三の色フィルター用材料を半導体基板10の全面に塗布して第三の色フィルター16の層を形成する。第三の色フィルター16の膜厚は、400nmから1000nmの膜厚で形成することが好ましい。膜厚が厚く形成する場合、着色顔料の濃度を低下させることができるため、感光性硬化成分の含有量を多くすることができ、形状制御性が向上する。
 次に、図5(e)に示すように、第三の色フィルター16の層のうちの第三の色フィルター16を形成する箇所を選択的に露光し、第三の色フィルター16の層の一部を光硬化させる。
 次に、図5(f)のように、感光性の第三の色フィルター16の層を現像し、露光されていない第三の色フィルター16の層の一部を除去する。次に、露光を行った第三の色フィルター16の層の一部と半導体基板10との密着性向上及び実デバイス利用での耐熱性を向上させるために、高温加熱での硬化処理を行うことで残存した第三の色フィルター16の層を硬化させる。これにより、第三の色フィルター16が形成される。
 なお、この第二の色フィルター15以降のパターン形成工程を繰り返すことで、所望の色数の色フィルターを形成することができる。
 次いて、図6(a)に示すように、形成された色フィルター14、15、16上に上層平坦化層13を形成する。上層平坦化層13は、例えば、アクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、フェノールノボラック系樹脂、ポリエステル系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素系樹脂及びスチレン系樹脂等の樹脂を一又は複数含んだ樹脂により形成される。また、上層平坦化層13は、これらの樹脂に限らず、波長が400nmから700nmの可視光を透過し、色フィルター14、15、16のパターン形成や密着性を阻害しない材料であれば、いずれも用いることができる。上層平坦化層13は、色フィルター14、15、16の分光特性に影響を与えない樹脂により形成されることが好ましい。例えば、波長が400nmから700nmの可視光に対して透過率90%以上となるように形成されることが好ましい。例えば上述したアクリル系樹脂等の樹脂材料を一つもしくは複数含んだ樹脂を用いて形成することができる。この場合、上層平坦化層13は、樹脂材料を半導体基板10の表面に塗布して加熱を行って硬化することにより形成することができる。また、上層平坦化層13は、例えば、酸化物又は窒化物等の化合物を用いて形成することもできる。この場合、上層平坦化層13は、例えば、蒸着、スパッタ、CVD等の各種の成膜方法により形成することができる。
 最後に、図6(b)に示すように、上層平坦化層13上に、マイクロレンズ18を形成する。マイクロレンズ18は、例えば、熱フローを用いた作製方法、グレートーンマスクによるマクロレンズ作製方法、ドライエッチングを用いた上層平坦化層13へのマイクロレンズ転写方法等の公知の技術により形成される。
 形状制御性に優れるドライエッチングによるパターニング技術を用いてマイクロレンズを形成する方法は、図7(a)に示すように、先ず最終的にマイクロレンズとなる透明樹脂層(上層平坦化層13を兼ねても良い。図7(a)では上層平坦化層13を兼ねる場合を図示している。)を色フィルター14、15、16上に形成する。次に、図7(b)に示すようにその透明樹脂層の上に熱フロー法によってマイクロレンズ18の母型(レンズ母型)を形成する。次に図7(c)に示すように、そのレンズ母型をマスクとして、ドライエッチングの手法によってレンズ母型形状を透明樹脂層に転写するという方法である。レンズ母型の高さや材料を選択し、エッチングの条件を調整することで、適正なレンズ形状を透明樹脂層に転写することができる。
 上記の方法を用いることで、制御性良くマイクロレンズ18を形成することが可能となる。この手法を用いて、マイクロレンズ18のレンズトップからレンズボトムまでの高さが400~800nmとなるようにマイクロレンズ18を作製することが望ましい。
 以上の工程により、本実施形態の固体撮像素子が完成する。
 本実施形態では、最初に、第一の色フィルター14として最も面積の広い色フィルターを形成することが望ましい。そして、第二の色フィルター15及び第三の色フィルター16は、感光性を有したカラーレジストを用いてフォトリソグラフィによりそれぞれ形成する。
 感光性を有したカラーレジストを用いる技術は、従来の色フィルターパターンの製造技術である。第一の色フィルター用材料及び隔壁層12は、矩形性良く形成されており、このパターンをガイドパターンとして、四辺が囲われた場所を埋めるように第二、第三の色フィルター15、16を形成することができる。そのため第二以降の色フィルターに感光性を持たせたカラーレジストを用いた場合でも、従来のように解像性を重視したカラーレジストとする必要はない。このため、光硬化性樹脂中の光硬化成分を少なくすることができるため、色フィルター用材料中の着色成分の割合を多くでき、色フィルター15、16の薄膜化に対応できる。
 第二以降の色フィルター15、16を形成する箇所は、第一の色フィルター14のエッチング時に隔壁層12がエッチング工程で除去されており、半導体基板10もしくは隔壁層12が表面に露出する工程となっている。この場合、半導体基板10もしくは隔壁層12の表面が酸化しており、親水性となっていることが考えられる。このような半導体基板10もしくは隔壁層12の表面に、第二以降の色フィルターをフォトリソグラフィ工程で形成すると、親水性を有する半導体基板10もしくは隔壁層12と、第二以降の色フィルターとが接触している部分に現像液が回り込むことがある。このため、第二以降の色フィルターパターン(第二、第三の色フィルター15、16のパターン)が剥がれることが想定される。そのため、表面状態によっては、既存の手法、例えばHDMS(ヘキサメチルジシラザン)処理等の方法により露出している表面を疎水性とすることで、第二以降の色フィルターパターンが剥がれる可能性を低減できる。
 また、本実施形態では、第一の色フィルター14は、光硬化に関与する樹脂成分等の含有率が少なく、かつ顔料含有率の高い色フィルター用材料で形成することが望ましい。特に、一色目の色フィルター用材料における顔料の含有率を70質量%以上に構成することが望ましい。それにより、第一の色フィルター用材料に、従来の感光性カラーレジストを用いたフォトリソグラフィプロセスでは硬化不十分になってしまう濃度の顔料が含まれていても、第一の色フィルター14を精度良く、残渣や剥がれもなく形成することができる。具体的には、第一の色フィルター14としてグリーンフィルターを用いた場合、レッドフィルターあるいはブルーフィルターの光硬化成分を減らすことができる。このため、顔料含有率を高くにしても、フォトリソグラフィで各色フィルターパターンを容易に形成できる。
 いずれの理由によっても、最初の第一の色フィルター14を、パターン形成ではなく光硬化に重点を置き感光性成分を少なくし、更に熱硬化成分で硬化させることを主体とした第一の色フィルター用材料を用いて形成することが好ましい。そうすることで、第一の色フィルター14は、半導体基板10および隔壁層12に密着し、他の色フィルター形成時に生じる残渣や剥がれがなく、また高い解像度とすることができる。そして、第二、第三の色フィルター15、16は、感光性の第二、第三の色フィルター用材料を用いて、工程が少なく効率の良いフォトリソグラフィの形成工法で形成される。そうすることで、最初に形成した第一の色フィルター14のパターンが、正確なパターンとなり、第二、第三の色フィルター15、16のパターンをフォトリソグラフィで形状良く形成することができる。
(第二以降の色フィルターのパターンを形成する第二の手法)
 次に、第二以降の色フィルター15、16のパターンを形成する第二の手法について、図8(a)~図8(h)を用いて説明する。第二の手法は、感光性を持たせない色フィルター用材料で第二、第三の色フィルター15、16の各層を形成することに特徴がある。以下、この場合について、図を用いて説明する。
 図8(a)に示すように前述した第一の色フィルター14及び隔壁層12が、第二以降の色フィルター形成箇所が開口した基板を準備し、第二の色フィルター用材料の塗布を行う。この際用いる第二の色フィルター用材料は、感光性を持たせず、加熱により硬化する熱硬化型の樹脂材料を用いる。第二の色フィルター用材料は感光性を持たないため、前述しているように、感光性成分の添加が不要となり顔料濃度を濃くすることが容易となる。このため、第二の色フィルター15の膜厚の薄膜化が可能となる。この後、第二の色フィルター用材料を硬化して第二の色フィルター15の層を形成するため、高温での加熱を行う。加熱温度はデバイスに影響の出ない範囲での加熱が好ましく、具体的には300℃以下であり、更に240℃以下が好ましい。
 次に図8(b)に示すように、第二の色フィルター15の層の上部に感光性樹脂マスク材料を塗布してエッチングマスク20を形成する。
 続いて、図8(c)、(d)に示すように、第三の色フィルター16を配置する場所が開口するように露光、現像を行い、開口部を設けた感光性樹脂マスク層20aを形成する。
 続いて、図8(e)に示すように、開口部を設けた感光性樹脂マスク層20aを用いたドライエッチング技術を用いて、第二の色フィルター15の層の領域の中で、第三の色フィルター16を配置するために不要となる部分を除去して開口部を形成する。この際、感光性樹脂マスク層20aに対しては、加熱や紫外線照射等の硬化処理を行っても良い。図8(f)に示すように、感光性樹脂マスク層20aを、溶剤による剥離、洗浄や光励起又は酸素プラズマによる灰化処理であるアッシング等の公知の除去方法により除去する。これにより、第三の色フィルター16が形成される位置に開口部が設けられており、それ以外の位置に、第一の色フィルター14と第二の色フィルター15とが形成されている。
 次に、図8(g)に示すように、第一の色フィルター14と第二の色フィルター15とが形成された半導体基板10の全面に対して、開口部を埋めるように第三の色フィルター用材料を塗布して、加熱硬化し第三の色フィルター16の層を形成する。この後、図8(h)に示すように、第一、第二の色フィルター14、15上の余分な第三の色フィルター16の層を所定の膜厚まで、例えば、CMP等の研磨工程又はドライエッチング技術を用いてエッチバック工程を行う。最後に、平坦化や所望の膜厚を除去する等の公知の技術を用いた工程により余分な第三の色フィルター16の層を除去して、第三の色フィルター16とする。
 第四以降の色フィルターを形成する場合、第二、第三の色フィルター15、16と同様に色フィルター用材料の塗布、硬化処理を行う。この後で、パターニングを行って開口部を設けた感光性樹脂材料を感光性樹脂マスク層20aとしてドライエッチングを行い、その後余分な感光性樹脂マスク層20aを除去することで、複数色の色フィルターを形成することができる。
 形成した複数色の色フィルター上に前述した上層平坦化層13およびマイクロレンズ18を形成することで、本実施形態の固体撮像素子が完成する。
 前述した全色をドライエッチングで形成する第二の手法は、第三の色フィルター形成箇所を開口するために、第二の色フィルターの全膜厚分ドライエッチングをする必要がある。しかし、色フィルターの材料はドライエッチングの際に残渣が発生しやすい。このため、図9(a)~(n)に示すように、第二、第三の色フィルター形成箇所の隔壁層12を別々にドライエッチングで形成しても良い。そこで、第二、第三の色フィルター形成箇所の隔壁層12を別々に形成する場合を、図9を用いて説明する。
 図9(a)~図9(d)に示すように、前工程で形成した第一の色フィルター14の層及び、隔壁層12上に第二の色フィルター形成箇所に開口部を有するエッチングマスクパターンを形成する。
 まず、図9(a)に示すように、第一の色フィルター14の層と隔壁層12とが形成された半導体基板10を準備する。
 次に、図9(b)に示すように、第一の色フィルター14の層の表面に、感光性樹脂マスク材料を塗布して乾燥し、エッチングマスク20を形成する。
 次に、図9(c)に示すように、エッチングマスク20に対してフォトマスク(図示せず)を用いて露光し、必要なパターン以外が現像液に可溶となる化学反応を起こす。
 次に、図9(d)に示すように、現像によりエッチングマスク20の不要部(露光部)を除去する。これにより、開口部を有する感光性樹脂マスク層20aが形成される。開口部には、後の工程で第二の色フィルターが形成される。
 続いて、図9(e)に示すように、前述した開口部を有する感光性樹脂マスク層20aを用いたドライエッチング技術により、第一の色フィルター14の層及び隔壁層12の領域の中で、第二の色フィルター16を配置するために不要となる部分を除去して開口部を形成する。この際、感光性樹脂マスク層20aに対しては、加熱や紫外線照射等の硬化処理を行っても良い。
 次に、図9(f)に示すように、感光性樹脂マスク層20aを、溶剤による剥離、洗浄や光励起又は酸素プラズマによる灰化処理であるアッシング等の公知の除去方法により除去する。これにより、第二の色フィルター15が形成される位置に開口部が設けられており、それ以外の位置に、第一の色フィルター14と隔壁層12とが形成される。
 次に、図10(g)に示すように、第一の色フィルター14と隔壁層12とが形成された半導体基板10の全面に対して、開口を埋めるように第二の色フィルター用材料を塗布して、加熱硬化し第二の色フィルター15の層を形成する。
 図10(h)~図10(k)に示すように、前工程で形成した第一の色フィルター14の層、第二の色フィルター15の層及び隔壁層12上に第三の色フィルター形成箇所に開口部を有するエッチングマスクパターンを形成する。
 まず、図10(h)に示すように、感光性樹脂マスク材料を塗布して乾燥し、エッチングマスク20を形成する。
 次に、図10(i)に示すように、エッチングマスク20に対してフォトマスク(図示せず)を用いて露光し、必要なパターン以外が現像液に可溶となる化学反応を起こす。
 次に、図10(j)に示すように、現像によりエッチングマスク20の不要部(露光部)を除去する。これにより、開口部を有する感光性樹脂マスク層20aが形成される。開口部20bには、後の工程で第三の色フィルターが形成される。
 続いて、図10(k)に示すように、前述した開口部を有する感光性樹脂マスク層20aを用いたドライエッチング技術により、第一の色フィルター14の層、第二の色フィルター15及び隔壁層12の領域の中で、第三の色フィルター16を配置するために不要となる部分を除去して開口部を形成する。この際、感光性樹脂マスク層20aに対しては、加熱や紫外線照射等の硬化処理を行っても良い。
 次に、図10(l)に示すように、感光性樹脂マスク層20aを、溶剤による剥離、洗浄や光励起又は酸素プラズマによる灰化処理であるアッシング等の公知の除去方法により除去する。これにより、第三の色フィルター15が形成される位置に開口部が設けられており、それ以外の位置に、第一の色フィルター14と第二の色フィルター15と隔壁層12とが形成される。
 次に、図10(m)に示すように、第一の色フィルター14と第二の色フィルター15と隔壁層12とが形成された半導体基板10の全面に対して、開口部を埋めるように第三の色フィルター用材料を塗布して、加熱硬化し第三の色フィルター16の層を形成する。
 このあと、図10(n)に示すように、第一、第二の色フィルター14、15上の余分な第三の色フィルター16の層を所定の膜厚まで、例えば、CMP等の研磨工程又はドライエッチング技術を用いてエッチバック工程を行う。最後に、平坦化や所望の膜厚を除去する等の公知の技術を用いた工程により余分な第三の色フィルター16の層を除去して、第三の色フィルター16とする。
 全色フィルターをドライエッチングで形成する場合は、図9及び図10に示す手法を用いることで、残渣の発生しやすい色フィルターの材料を色フィルターの膜厚分エッチングする必要がなく、隔壁層12の材料を色フィルターの膜厚分エッチングする構成となる。隔壁層12の材料として、SiOやITOなどを用いている場合は、エッチング条件により、容易に形状制御しやすいため、所望の形状にエッチングしやすい利点がある。
 上述した第一の手法は、第二の色フィルター15以降の色フィルターをフォトリソグラフィで形成する手法である。つまり、第一の手法では、第二の色フィルター15以降の色フィルター用材料に光硬化性を持たせて、選択的に露光、現像を行い第二の色フィルター15以降を形成している。
 また、上述した第二の手法は、ドライエッチングを複数回繰り返す形成方法である。第二の手法では、第二の色フィルター15以降の色フィルター用材料に感光性成分を持たせず熱硬化成分を持たせ、全面に塗布して熱硬化を行う。そして、感光性樹脂マスク材料を、残存させたい第一及び第二の色フィルター14、15の上にエッチングマスクとして形成して、第二の色フィルター15以降もドライエッチングで作製する。これらの2つの手法は、同じ工程を繰り返すことで、第二、第三の色フィルター15、16を形成しているが、所望の分光特性が得られるならば、これらの工程を組み合わせて用いても良い。
 第一の実施形態では、第一の色フィルター14に熱硬化性樹脂と光硬化性樹脂の両方を用いている。なお、第一の色フィルター14に熱硬化性樹脂又は光硬化性樹脂のいずれかを用いても良い。また、第一の色フィルター14の硬化工程では、露光による光硬化及び熱による加熱硬化を用いている。色フィルターを薄膜化するためには、顔料濃度を高くする必要があるが、顔料含有率が高いと溶剤耐性の低下が起こりやすくなる。このため、現像工程や、エッチングマスク除去工程、第二以降の色フィルター15、16の塗布、現像工程などで溶剤と触れた際、第一の色フィルター14の成分が溶け出すことで分光特性に影響を与える可能性が考えられる。感光性の光硬化性樹脂を混在させ露光することで、色フィルターの表面を硬化し、熱硬化性樹脂を混在させ、高温で加熱硬化することで、色フィルターの内部及び表面を硬化させて、溶剤耐性を向上させる効果がある。本実施形態では、ドライエッチングで形状制御が容易な可視光を透過する隔壁層12を用いるため、寸法制御の自由度が高い構成である。そのため、色フィルター間の隔壁の幅を薄く形成しやすい。この特性を用いることで、画素サイズとして1.4μm×1.4μmを下回るレベルの撮像素子で形状が作製することが容易な効果がある。
2.第二の実施形態
 以下、図11を参照して、本発明の第二の実施形態に係る固体撮像素子及び固体撮像素子の製造方法について説明する。本発明の第二の実施形態に係る固体撮像素子は、構造は第一の実施形態の金属含有格子形状隔壁層30がない構造である。
(2-1)固体撮像素子の構成
 第二の実施形態に係る固体撮像素子は、隔壁層12内に金属含有格子形状隔壁層30が含まれていないため、隔壁層12の幅を狭く形成することが可能となる。また、隔壁層12の屈折率を色フィルターの材料の屈折率と変えることで、混色を低減することが可能となる。そのため、金属含有格子形状隔壁層30及び隔壁層12が無い従来構造と比較して、混色を抑制でき、色フィルターをドライエッチングで除去する際、残渣が低減でき、矩形性良く各色フィルター14、15、16を形成でき、色フィルターの膜厚を低下させることが可能となる。
 本発明の第二の実施形態に係る固体撮像素子は、二次元的に配置された複数の光電変換素子11を有する半導体基板10と、マイクロレンズ18とを備えている。また、第二の実施形態に係る固体撮像素子は、半導体基板10とマイクロレンズ18との間に設けられた複数色の色フィルター14、15、16と半導体基板10上に設けられた隔壁層12と、色フィルター14、15、16表面上に設けられた上層平坦化層13と、を備えている。
 なお、第二の実施形態に係る固体撮像素子において、第一の実施形態に係る固体撮像素子の各部と同様の構成である場合には、第一の実施形態に用いた参照符号と同じ参照符号を付すものとする。すなわち、光電変換素子11を有する半導体基板10、隔壁層12、色フィルター14、15、16、上層平坦化層13及びマイクロレンズ18のそれぞれは、第一の実施形態に係る固体撮像素子の各部と同様の構成である。このため、第一の実施形態に係る固体撮像素子の各部と共通する部分についての詳細な説明については省略する。
(2-2)固体撮像素子の製造方法
 次に、図11を参照して、本発明の第二の実施形態の固体撮像素子の製造方法について説明する。
 図11(a)に示すように、二次元的に配置された複数の光電変換素子11を有する半導体基板10の上に隔壁層12を形成する。
 次に、図11(b)~図11(d)に示すように、隔壁層12の上にエッチングマスク20を形成し、感光性樹脂マスク層20aを形成する。
 すなわち、フォトマスクを用いて、第一の色フィルター形成箇所が開口するように露光し、現像することで、感光性樹脂マスク層20aを形成する。この感光性樹脂マスク層20aを形成する際に、第一の実施形態と異なり、第一の色フィルター形成箇所の寸法を大きく形成することが可能となる。また、第二、三の色フィルター形成箇所開口させる際にも、同様に寸法を大きくすることが可能となる。各色フィルター間の隔壁層12の幅は、1nmから200nm程度の幅が好ましく、より好ましくは、5nmから50nmの幅となるように、隔壁層12をドライエッチングで加工する際に用いるエッチングマスクを形成する。
 この後の工程は、前述した第一の実施形態の工程と同様である(図11(e)(f)、図12、図13参照)。このため、説明を省略する。
 なお、上記各実施形態では、第一の色フィルター14としてグリーンフィルターを用いた場合について説明したが、本発明はこれに限定されるものではない。例えば、第一の色フィルター14としてブルーフィルターを用いてもよいし、レッドフィルターを用いてもよい。つまり、本実施形態に係る固体撮像素子の製造方法は、固体撮像素子に備わる複数色の色フィルター14、15、16を構成する樹脂と、色フィルター14、15、16に色を付与する顔料と、を含んだものとし、色フィルター14、15、16に含まれる顔料の濃度を50質量%以上にした際に、色フィルター14、15、16のうち、色フィルターを構成する樹脂に含まれる感光性成分により硬化して形状を形成する際にエッジ部における曲率半径が最も大きくなる色フィルターを一色目の色フィルターとして選択するものであればよく、一色目の色フィルターの色を限定するものではない。
[実施例]
 以下、本発明の固体撮像素子及び固体撮像素子について、実施例により具体的に説明する。
<実施例1>
 二次元的に配置された光電変換素子を備える半導体基板上に、CVDによりタングステン膜を200nmの膜厚分成膜した。次に、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、感光性樹脂マスク材料層(エッチングマスク)であるフォトレジストを膜厚1.5μmで塗布したサンプルを作製した。
 この、感光性樹脂マスク材料層であるポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
 このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を使用した。
 次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、第二、三の色フィルターを形成する場所に開口部を有する感光性樹脂マスク層を形成した。ポジ型レジストを用いる際には、現像後脱水ベークを行い、感光性樹脂マスク材料層であるフォトレジストの硬化を行うことが多い。今回は120度の温度で脱水ベークを実施した。レジストの膜厚をグリーンフィルターである第一の色フィルターの膜厚の2倍以上である、1.5μmの膜厚で形成した。
 次に、形成した感光性樹脂マスク層を用いて、ドライエッチングを行った。この際、用いたドライエッチング装置は、並行平板方式のドライエッチング装置である。また、下地の半導体基板に影響を与えないように、途中でエッチング条件の変更を行い、ドライエッチングを多段階で実施した。
 始めに、SF、Arガスの二種を混合したガス種を用いてエッチングを実施した。SFのガス流量を50ml/min、Arのガス流量を100ml/minとした。また、この際のチャンバー内の圧力を2Paの圧力とし、RFパワーを1000Wとして実施した。この条件を用いて、タングステン層の総膜厚の200nmのうちの90%に当たる180nm程度までエッチングした段階で、次のエッチング条件に変更した。
 次に、SF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。SFのガス流量を5ml/min、Oのガス流量を50ml/min、Arのガス流量を100ml/minとし、タングステン層の膜厚全てをエッチングで除去した。
 次に、エッチングマスクとして用いた感光性樹脂マスク材料の除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でレジストの除去を行った。その後、酸素プラズマによるアッシングを行い、残留しているレジストの除去を行った。これらの工程により、半導体基板上に格子形状にタングステン隔壁構造を膜厚200nm、幅80nmで形成した。
 次に、SOGを回転数1000rpmでスピンコートし、ホットプレートによって250℃で30分間の加熱処理を行うことで、格子形状のタングステン隔壁構造を埋めるかたちで、SiOを膜厚350nmで形成した。
 次に、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、感光性樹脂マスク材料層あるフォトレジストを膜厚1.5μmで塗布したサンプルを作製した。
 この感光性樹脂マスク材料層であるポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
 このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を使用した。
 次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、第二、三の色フィルターを形成する場所に開口部を有する感光性樹脂マスク層を形成した。ポジ型レジストを用いる際には、現像後脱水ベークを行い、感光性樹脂マスク材料層であるフォトレジストの硬化を行うことが多い。今回は120度の温度で脱水ベークを実施した。レジストの膜厚をグリーンフィルターである第一の色フィルターの膜厚の2倍以上である、1.5μmの膜厚で形成した。この際の開口部パターンは、0.9μm×0.9μmであった。
 次に、形成した感光性樹脂マスク層を用いて、ドライエッチングを行った。この際、用いたドライエッチング装置は、並行平板方式のドライエッチング装置である。また、下地の半導体基板に影響を与えないように、途中でエッチング条件の変更を行い、ドライエッチングを多段階で実施した。
 始めに、CF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。CFガス流量を50ml/min、Oのガス流量10ml/min、Arのガス流量を100ml/minとした。また、この際のチャンバー内の圧力を2Paの圧力とし、RFパワーを1000Wとして実施した。この条件を用いて、SiO層の総膜厚の350nmのうちの80%に当たる280nm程度までエッチングした段階で、次のエッチング条件に変更した。
 次に、CF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。CFガス流量を25ml/min、Oのガス流量10ml/min、Arのガス流量を200ml/minとした。また、この際のチャンバー内の圧力を5Paの圧力とし、RFパワーを300Wとして実施した。
 次に、OガスとArガスとを混合させて、Oのガス流量を200ml/min、Arのガス流量を10ml/minとした。チャンバー内圧力を1.5Pa、RFパワーを400Wの条件でエッチングを行った。この条件でエッチングを行うことで、エッチング部のSiO表面を平坦にした。
 次に、エッチングマスクとして用いた感光性樹脂マスク材料の除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でレジストの除去を行った。
 次に、一色目であるグリーンの顔料を含む第一の色フィルター用材料として、感光性硬化樹脂と熱硬化性樹脂とを含ませたグリーン顔料分散液を1000rpmの回転数でスピンコートした。この一色目の色フィルター用材料のグリーンの顔料には、カラーインデックスにてC.I.PG58を用いており、その顔料濃度は70質量%、層厚は500nmであった。
 次に、第一の色フィルターの材料の硬化を実施するため、i線の露光装置であるステッパーを用いて全面の露光を行い、感光性成分の硬化を実施した。この感光性の硬化成分により、色フィルターの表面の硬化を実施した。続いて、230℃で6分間ベークを行い、グリーンフィルター層の熱硬化を行った。
 次に、ポジ型レジスト(OFPR-800:東京応化工業株式会社製)を、スピンコーターを用いて1000rpmの回転数でスピンコートした後、90℃で1分間プリベークを行った。これにより、感光性樹脂マスク材料層あるフォトレジストを膜厚1.5μmで塗布したサンプルを作製した。
 この感光性樹脂マスク層であるポジ型レジストは、紫外線照射により、化学反応を起こして現像液に溶解するようになった。
 このサンプルに対して、フォトマスクを介して露光するフォトリゾグラフィーを行った。露光装置は光源にi線の波長を用いた露光装置を使用した。
 次に、2.38質量%のTMAH(テトラメチルアンモニウムハイドライド)を現像液として用いて現像工程を行い、第二、三の色フィルターを形成する場所に開口部を有する感光性樹脂マスク層を形成した。ポジ型レジストを用いる際には、現像後脱水ベークを行い、感光性樹脂マスク材料層であるフォトレジストの硬化を行うことが多い。今回は120度の温度で脱水ベークを実施した。レジストの膜厚を1.5μmの膜厚で形成した。この際の開口部パターンは、0.9μm×0.9μmであった。この工程により、第二以降の色フィルター形成箇所が開口しているマスクパターンを形成した。
 次に、形成した感光性樹脂マスク層を用いて、ドライエッチングを行った。初めにSiO層からなる隔壁層350nmの上に第一の色フィルターであるGreen材料が150nmあるため、このGreen材料を残渣が少なくドライエッチングで除去する必要がある。そこで、ドライエッチングを多段階で実施した。
 始めに、CF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。CFガス流量を5ml/min、Oのガス流量5ml/min、Arのガス流量を100ml/minとした。また、この際のチャンバー内の圧力を2Paの圧力とし、RFパワーを1000Wとして実施した。この条件を用いてGreen層の膜厚150nmの内90%にあたる135nm分エッチングを行い、次のエッチング条件に変更した。
 次に、CF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。CFガス流量を50ml/min、Oのガス流量10ml/min、Arのガス流量を100ml/minとした。また、この際のチャンバー内の圧力を2Paの圧力とし、RFパワーを1000Wとして実施した。この条件を用いて、第一の色フィルター膜厚15nm分とSiO層の総膜厚の350nmのうちの80%に当たる280nm程度までエッチングした段階で、次のエッチング条件に変更した。
 次に、CF、O、Arガスの三種を混合したガス種を用いてエッチングを実施した。CFガス流量を25ml/min、Oのガス流量10ml/min、Arのガス流量を200ml/minとした。また、この際のチャンバー内の圧力を5Paの圧力とし、RFパワーを300Wとして実施した。この条件により、エッチングマスクであるフォトレジストの側面に付着している反応生成物の除去が進むようにエッチングを行った。
 次に、OガスとArガスとを混合させて、Oのガス流量を200ml/min、Arのガス流量を10ml/minとした。チャンバー内圧力を1.5Pa、RFパワーを400Wの条件でエッチングを行った。この条件でエッチングを行うことで、エッチング部のSiO表面を平坦にした。このSiOをエッチングした際に、SiOとドライエッチングガスとの反応生成物が、Green層の側壁に付着した。その際の反応生成物は主に、Arガスの物理的衝撃で付着したSiOであり、横(幅)方向に10nm程度が側壁に付着していた。
 次に、エッチングマスクとして用いた感光性樹脂マスク材料の除去を行った。この際用いた方法は溶剤を用いた方法であり、剥離液104(東京応化工業株式会社製)を用いてスプレー洗浄装置でレジストの除去を行った。
(第二の色フィルターの作製)
 次に、第二の色フィルター形成工程を行った。第二、及び第三の色フィルター形成箇所は、第一の色フィルター形成工程で隔壁層であるSiO層が露出している。そのため、表面が親水性となっており、現像工程で現像液の回り込みにより、第二の色フィルターが剥がれる可能性が考えられる。そのため、露出しているSiO層を疎水性にするため、HMDS処理を実施した。
 次に、第二の色フィルターを設けるべく、顔料分散ブルーを含有している感光性の第二の色フィルター用材料を半導体基板上全面に塗布した。
 次に、フォトリソグラフィにより感光性の第二の色フィルター用材料にフォトマスクのパターンを用いて選択的に露光した。
 次に、感光性の色フィルター用材料を現像して、ブルーの第二の色フィルターを形成した。
 このとき、ブルーレジストの感光性の色フィルター用材料に用いた顔料は、それぞれカラーインデックスにてC.I.PB156、C.I.PV23であり、顔料濃度は50質量%であった。また、ブルーである第二の色フィルターの層厚は0.70μmであった。また、ブルーレジストの主成分である樹脂としては、感光性を持たせたアクリル系の樹脂を用いた。
 次に、第二の色フィルター(ブルーフィルター)となる感光性の第二の色フィルター用材料を強固に硬化させるため、230度のオーブンに30分間入れて硬化を行った。この加熱工程を経た後は、第三の色フィルター形成工程等の工程を経ても、剥がれやパターンの崩れ等が確認されなかった。第二の色フィルターは周囲を矩形性の良い第一の色フィルターに覆われており、矩形性良く形成されているため、底面及び周囲との間で密着性良く硬化することが確認された。
(第三の色フィルターの作製)
 次に、第三の色フィルターを設けるべく、顔料分散レッドを含有している感光性の第三の色フィルター用材料を半導体基板上全面に塗布した。
 次に、フォトリソグラフィにより、感光性の第三の色フィルター用材料にフォトマスクのパターンを用いて選択的露光した。
 次に、感光性の第三の色フィルター用材料を現像して、レッドの第三の色フィルターを形成した。
 このとき、レッドレジストの感光性の色フィルター用材料に用いた顔料は、それぞれカラーインデックスにてC.I.PR254、C.I.PY139であり、顔料濃度は60質量%であった。また、レッドである第三の色フィルターの層厚は0.80μmであった。
 次に、第三の色フィルター(レッドフィルター)となる感光性の第三の色フィルター用材料を強固に硬化させるため、230度のオーブンに20分間入れて硬化を行った。この際、第三の色フィルターは周囲を矩形性の良い第一の色フィルターに覆われており、矩形性良く形成されているため、底面及び周囲との間で、密着性良く硬化することが確認された。
 次に、上記の流れで形成された色フィルター上にアクリル樹脂を含む塗布液を回転数1000rpmでスピンコートし、ホットプレートにて200℃で30分間の加熱処理を施して、樹脂を硬化し、上層平坦化層を形成した。
 最後に、上層平坦化層上に、上述した公知の技術であるエッチバックによる転写方法を用いてレンズトップからレンズボトムまでの高さを500nmとなるマイクロレンズを形成し、実施例1の固体撮像素子を完成した。
 以上のようにして得た固体撮像素子は、格子形状にタングステンの隔壁が形成されており、その周辺をSiOからなる隔壁が形成されており、グリーンフィルターがドライエッチングで矩形性良く形成されている。またSiOからなる隔壁の側壁及びグリーンフィルターの側壁に、SiO隔壁をドライエッチングでパターニングした際の反応生成物(SiOが主な成分)が10nm程度付着している。また、1色目であるグリーンフィルターは、熱硬化性樹脂と少量の感光性硬化樹脂とを用いているため、固形分中の顔料の濃度を上げることができ、色フィルターを薄く形成することができた。そのため、固体撮像素子は、マイクロレンズ下の半導体基板までの距離が短く、グリーンフィルターが矩形性良く形成されており、各色フィルター間に隔壁構造があることで、混色を低減でき良好な感度を有するものであった。
 更に、グリーンフィルターである第一の色フィルターの色フィルター用材料は、熱硬化で内部を固めており、さらに少量の感光性樹脂を用いて露光で表面を固めているため、溶剤耐性が向上している。顔料含有率の高いグリーンフィルターの材料を用いた場合、溶剤や他の色フィルターの材料と反応して分光特性が変化することがある。そのため、上記の熱硬化及び光硬化を併用することで、硬度を向上することができ、分光特性の変化を抑制する効果がある。
<実施例2>
 実施例2では、初めに半導体基板上に隔壁層を形成せず、実施例1と同様の方法で作製した。なお、各色フィルター形成箇所をドライエッチングで作製する際に、エッチングマスクの開口部のサイズを、実施例1では0.9μm×0.9μmとして作製していたが、実施例2では、1.0μm×1.0μmとして作製した。
<従来法>
 特許文献1に記載の従来法に基づき、フォトリソグラフィプロセスによって各色の色フィルターをパターン形成した。以下、詳しく説明する。
 まず、実施例1で用いた、半導体基板10上に実施例1の上層平坦化層13と同様の材料を用いて、下層平坦化層を60nm形成し、230℃で加熱硬化を行った。
 次に、実施例1のブルー、レッドの形成方法と同様のフォトリソグラフィプロセスを用いて、グリーン、ブルー、レッドの三色の膜厚を700nmの膜厚で形成した。
 その後、実施例1と同様の方法で、マイクロレンズを形成して作製した。
 以上の工程により、従来法に係る固体撮像素子を作製した。
 つまり、従来法で形成した固体撮像素子は、半導体基板10上に隔壁層12がなく、グリーン、ブルー、レッドの各色フィルターをフォトリソグラフィプロセスで作製した構造である。
(評価)
 以上の各実施例において、隔壁の構造が異なるサンプルが完成した。
 このような各実施例の固体撮像素子の赤色信号、緑色信号及び青色信号の強度について、従来手法のフォトリソグラフィでグリーン、ブルー、レッドの三色の膜厚を700nmで分光特性を合わせた構造で作製した固体撮像素子の赤色信号、緑色信号及び青色信号の強度を評価した。
 以下の表1に、各色の信号強度の評価結果を示す。従来法で形成した場合の信号強度を100%とした場合の比で結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ドライエッチング法を用いて、各色フィルター間に隔壁構造を形成し、グリーンフィルターを薄膜化及び矩形性良く形成した実施例1及び実施例2の固体撮像素子では、従来手法のフォトリソグラフィで形成した場合と比較して、各色の信号強度が増加した。
 また、本実施例2の作製方法では、金属を含む隔壁層が含まれていないため、実施例1よりは混色による感度の低下が見られた。しかし、金属隔壁構造が無いため、隔壁部の幅を薄く形成できており、各色フィルターのサイズを大きくできている効果があり、色フィルターの屈折率が高いレッドの信号強度が高い結果となった。また、実施例2におけるグリーン及びブルーについては、実施例1よりも多少低下する傾向ではあったが、既存リソグラフィ構造よりは大きく信号強度が増加した。
 この結果より、隔壁構造があることにより、リソグラフィ形成による既存方法よりも膜厚が高いブルー及びレッドでも信号強度が増加した。
 以上、各実施形態により本発明を説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
(参考技術)
 以下、本発明に係る固体撮像素子及び固体撮像素子の製造方法に関連する技術について、簡単に説明する。
 デジタルカメラ等に搭載されるCCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)等の固体撮像素子は、近年、高画素化、微細化が進んでおり、その画素は、特に微細なものでは1.4μm×1.4μmを下回るレベルの画素サイズとなっている。
 固体撮像素子は、光電変換素子と一対の色フィルターパターンを有し、カラー化を図っている。また、固体撮像素子の光電変換素子が光電変換に寄与する領域(開口部)は、固体撮像素子のサイズや画素数に依存する。その開口部は、固体撮像素子の全面積に対し、20~50%程度に限られている。開口部が小さいことはそのまま光電変換素子の感度低下につながることから、固体撮像素子では感度低下を補うために光電変換素子上に集光用のマイクロレンズを形成することが一般的である。
 また、近年裏面照射の技術を用いたイメージセンサが開発されており、光電変換素子の開口部を固体撮像素子の全面積の50%以上にすることができるようになっている。しかしながら、この場合、色フィルターに隣接する色フィルターの漏れ光が入る可能性があるため、適切なサイズ、形状のマイクロレンズを形成することが必要となっている。
 このような色フィルターパターンを固体撮像素子上に形成する方法としては、通常は特許文献1のようにフォトリソグラフィプロセスによりパターンを形成する手法が用いられる。
 また、他の方法としては、特許文献2には、全ての色フィルターパターンをドライエッチングによって形成する方法が記載されている。
 近年、800万画素を超える高精細CCD撮像素子への要求が大きくなり、これら高精細CCDにおいて付随する色フィルターパターンの画素サイズとして1.4μm×1.4μmを下回るレベルの撮像素子への要求が大きくなっている。しかしながら、画素サイズを小さくすることにより、フォトリソグラフィプロセスにより形成された色フィルターパターンの解像性が不足し、固体撮像素子の特性に悪影響を及ぼすことがある。例えば、一辺が1.4μm以下、具体的には1.1μmや0.9μm近傍の固体撮像素子では、解像性の不足がパターンの形状不良に起因する色むらとなって現れることがある。
 色フィルターパターンの画素サイズが小さくなると、アスペクト比が大きくなる(色フィルターパターンの幅に対して厚みが大きくなる)。このような色フィルターパターンをフォトリソグラフィプロセスで形成する場合、本来除去されるべき部分(画素の有効外部分)が完全に除去されず、残渣となって他の色の画素に悪影響を及ぼすことがある。残渣を除去するために現像時間を延長する等の方法を行った場合、硬化させた必要な画素まで剥がれてしまうことがある。
 また、満足する分光特性を得ようとすると、色フィルターの膜厚を厚くせざるを得ない。しかしながら、色フィルターの膜厚が厚くなると、画素の微細化が進むに従って、色フィルターパターンの角が丸まる等、解像度が低下する傾向となる。色フィルターパターンの膜厚を厚くし且つ分光特性を得ようとすると、色フィルターパターン材料に含まれる顔料濃度を上げる必要がある。しかしながら、顔料濃度を上げると光硬化反応に必要な光が色フィルターパターン層の底部まで届かず、色フィルター層の硬化が不十分となることがある。このため、フォトリソグラフィにおける現像工程で色フィルターの層が剥離し、画素欠陥が発生することがある。
 また、色フィルターの膜厚を薄くし且つ分光特性を得るために、色フィルター用材料に含まれる顔料濃度を上げた場合、相対的に光硬化成分を低減させることになる。このため、色フィルターの層の光硬化が不十分となり、形状の悪化や、面内での形状不均一、あるいは形状崩れ等が発生しやすくなる。また、色フィルターの層を十分に光硬化させるために硬化時の露光量を多くすることで、スループットが低下することがある。
 色フィルターパターンの高精細化により、色フィルターパターンの膜厚は、製造工程上の課題だけではなく、固体撮像素子としての特性にも影響することがある。色フィルターパターンの膜厚が厚い場合、斜め方向から入射した光が特定の色フィルターによって分光されたのち、隣接する他の色フィルターパターン部及び光電変換素子に入光する場合がある。この場合、混色が生じてしまうことがある。この混色の問題は、色フィルターパターンの画素サイズが小さくなり、画素サイズと膜厚とのアスペクト比が大きくなるにつれて顕著になる。また、入射光の混色という問題は、光電変換素子が形成された基板上に平坦化層等を形成することで、色フィルターパターンと光電変換素子との距離が長くなる場合にも顕著に生じる。このため、色フィルターパターンやその下部に形成される平坦化層等の膜厚の薄膜化が重要となる。
 斜め方向からの入射等による混色防止のために、各色のカラーフィルタの間に光を反射又は屈折させ、他の画素に入射する光を遮る隔壁を形成する方法が知られている。液晶ディスプレイ等の光学表示デバイスに用いられるカラーフィルタでは、黒色の材料によるブラックマトリクス構造(BM)による隔壁が一般的に知られている。しかし、固体撮像素子の場合、各カラーフィルタパターンのサイズが数μm以下である。このため、一般的なブラックマトリクスの形成方法を用いて隔壁を形成した場合、パターンサイズが大きいため、画素欠陥のように一部BMで塗りつぶされてしまい解像性が低下してしまうことがある。
 高精細化が進んでいる固体撮像素子の場合、求められる隔壁のサイズは数百nmサイズ、より好ましくは幅200nm以下程度であり、一つの画素サイズが1μm程度となるまで画素サイズの高精細化が進んでいる。このため、隔壁に、混色を抑制できる遮光性能を持たせるのであれば、100nm以下の膜厚が望ましい。このサイズの隔壁形成には、BMを用いたフォトリソグラフィ法では困難である。このため、例えば、アルミニウム、タングステン、チタンなどの金属やSiO等の無機物やこれらを複合させた材料を蒸着、CVD、スパッタ等を用いて成膜し、その膜をエッチング技術を用いて格子パターン状に削ることによって隔壁を形成することがある。
 このような方法で形成されている隔壁構造がある固体撮像素子の場合、前述した特許文献2にあるようなドライエッチング手法では、隔壁構造部にドライエッチングで形状良く色フィルターを形成することが困難であり、隔壁構造部自体をドライエッチングしてしまうこともある。
 以上のことから、固体撮像素子の画素数を増やすためには、色フィルターパターンの高精細化が必要であり、色フィルターパターンの薄膜化や、混色防止が重要となる。
 上述のように、従来の色フィルターの材料に感光性を持たせてフォトリソグラフィプロセスにより形成される色フィルターパターンは、寸法の微細化が進むことにより、膜厚の薄膜化も求められる。この場合、色フィルターの材料中の顔料成分の含有割合が増えることから、感光性成分を十分な量含有できず、解像性が得られない、残渣が残りやすい、画素剥がれが生じやすいという問題があり、固体撮像素子の特性を低下させる課題があった。
 そこで、色フィルターパターンの微細化及び薄膜化を行うために、特許文献2の技術が提案されている。特許文献2では、色フィルター用材料中の顔料濃度を向上できるように、感光性成分を含有しなくてもパターニングが可能なドライエッチングにより色フィルターパターンを形成している。これらのドライエッチングを用いる技術により、顔料濃度を向上させることが可能となり、薄膜化を行っても十分な分光特性を得られる色フィルターパターンが作製可能となる。
 10・・・半導体基板
 11・・・光電変換素子
 12・・・隔壁層
 13・・・上層平坦化層
 14・・・第一の色フィルター
 15・・・第二の色フィルター
 16・・・第三の色フィルター
 18・・・マイクロレンズ
 20・・・エッチングマスク(感光性樹脂層)
 20a・・・感光性樹脂マスク層
 20b・・・開口部
 30・・・金属含有格子形状隔壁層
 40・・・隔壁層のドライエッチング反応生成物層

Claims (9)

  1.  複数の光電変換素子が二次元的に配置された半導体基板上に、各光電変換素子に対応して複数色の色フィルターを配置した色フィルターパターンを有する固体撮像素子であって、
     前記半導体基板と前記色フィルターパターンの間に形成された第一の可視光を透過する層と、隣り合う前記色フィルターの間に形成された第二の可視光を透過する層とが連続しており、
     前記第一の可視光を透過する層と前記第二の可視光を透過する層は同じ材料からなり、
     前記複数色の色フィルターのうちの最も面積の広い色フィルターのエッジと前記第二の可視光を透過する層のエッジ部が連続しており、
     前記最も面積の広い色フィルターの側壁には、前記第一の可視光を透過する層を構成する成分を含む反応生成物層が形成されていることを特徴とする固体撮像素子。
  2.  前記第二の可視光を透過する層の内側に金属を含んだ層があり、
     前記金属を含んだ層は、平面視で、前記各光電変換素子を囲むように格子形状に形成されていることを特徴とする請求項1に記載した固体撮像素子。
  3.  前記第二の可視光を透過する層の高さは、前記複数色の色フィルターよりも低く、
     前記複数色の色フィルターのうちの最も面積の広い色フィルターは、前記第二の可視光を透過する層上にも形成されていることを特徴とする請求項1又は請求項2に記載した固体撮像素子。
  4.  前記複数色の色フィルターのうちの最も面積の広い色フィルターは、熱硬化成分及び光硬化成分の少なくとも一方を有する樹脂で形成されていることを特徴とする請求項1~請求項3のいずれか1項に記載した固体撮像素子。
  5.  前記複数色の色フィルターのうちの最も面積の広い色フィルターは、濃度50質量%以上の着色剤を用いて形成されていることを特徴とする請求項1~請求項4のいずれか1項に記載した固体撮像素子。
  6.  複数の光電変換素子が二次元的に配置された半導体基板上に、各光電変換素子に対応して複数色の色フィルターを配置した色フィルターパターンを有し、前記各色フィルターの間及び前記各色フィルターの下層に可視光を透過する層が形成された固体撮像素子の製造方法であって、
     前記複数の光電変換素子が二次元的に配置された半導体基板上全面に、可視光を透過する層を形成する工程と、
     前記可視光を透過する層に前記複数の色フィルターパターンのうち一色目の色フィルターパターンの形成箇所を、ドライエッチングによって開口してパターニングする工程と、
     前記パターニングする工程後、開口している箇所に一色目の色フィルター材を塗布及び硬化することで、第一の色フィルターからなる第一の色フィルターパターンを形成する工程と、
     他の色フィルターパターンの形成箇所を、ドライエッチングで可視光を透過する層及び、その上の前記一色目の色フィルターを開口する工程と、
     前記他の色フィルターをフォトリソグラフィによってパターニングする工程と、を有することを特徴とする固体撮像素子の製造方法。
  7.  前記可視光を透過する層を形成する前に、前記光電変換素子に対応して、格子形状に金属を含んだ層を隔壁として形成し、その隔壁を覆うように前記可視光を透過する層を形成することを特徴とする請求項6に記載した固体撮像素子の製造方法。
  8.  前記一色目の色フィルターは、グリーンフィルターで構成され、
     他の色フィルターは、ブルーフィルター及びレッドフィルター及びIRカットフィルター及び可視光に対して透明な高屈折フィルターのいずれかで組み合わされることを特徴とする請求項6又は請求項7に記載した固体撮像素子の製造方法。
  9.  前記色フィルターは、前記色フィルターを構成する樹脂と、前記色フィルターに色を付与する顔料と、を含み、
     前記色フィルターに含まれる前記顔料の濃度を50質量%以上にした際に、前記複数色の色フィルターのうち、前記色フィルターを構成する樹脂に含まれる感光性成分により硬化して形状を形成する際にエッジ部における曲率半径が最も大きくなる色フィルターを前記一色目の色フィルターとすることを特徴とする請求項6~請求項8のいずれか1項に記載した固体撮像素子の製造方法。
PCT/JP2018/015907 2017-04-18 2018-04-17 固体撮像素子及び固体撮像素子の製造方法 WO2018194069A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019513658A JP7088174B2 (ja) 2017-04-18 2018-04-17 固体撮像素子及び固体撮像素子の製造方法
CN201880017465.4A CN110419105B (zh) 2017-04-18 2018-04-17 固体拍摄元件以及固体拍摄元件的制造方法
KR1020197024927A KR102468312B1 (ko) 2017-04-18 2018-04-17 고체 촬상 소자 및 고체 촬상 소자의 제조 방법
EP18788212.1A EP3614436B1 (en) 2017-04-18 2018-04-17 Solid-state imaging element and method for manufacturing solid-state imaging element
US16/655,357 US10998363B2 (en) 2017-04-18 2019-10-17 Solid-state imaging device and method of producing solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082309 2017-04-18
JP2017082309 2017-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/655,357 Continuation US10998363B2 (en) 2017-04-18 2019-10-17 Solid-state imaging device and method of producing solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2018194069A1 true WO2018194069A1 (ja) 2018-10-25

Family

ID=63855857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015907 WO2018194069A1 (ja) 2017-04-18 2018-04-17 固体撮像素子及び固体撮像素子の製造方法

Country Status (7)

Country Link
US (1) US10998363B2 (ja)
EP (1) EP3614436B1 (ja)
JP (1) JP7088174B2 (ja)
KR (1) KR102468312B1 (ja)
CN (1) CN110419105B (ja)
TW (1) TWI757472B (ja)
WO (1) WO2018194069A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021106670A1 (ja) * 2019-11-26 2021-06-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676283B (zh) * 2019-01-29 2019-11-01 同泰電子科技股份有限公司 互補式金屬氧化物半導體感光元件、其所用的防護玻璃模組及該防護玻璃模組的製法
CN111710686B (zh) * 2020-05-20 2023-12-22 吴永芬 一种图像传感器及其形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495760B1 (ja) 1963-02-04 1974-02-08
JPS6468076A (en) 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Driving method for solid-state image pickup element
JP2006163316A (ja) * 2004-12-10 2006-06-22 Sanyo Electric Co Ltd カラーフィルタアレイ製造方法
JP2008077038A (ja) * 2006-08-23 2008-04-03 Fujifilm Corp カラーフィルタの製造方法
JP2015166445A (ja) * 2014-02-14 2015-09-24 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子、および、画像表示装置
JP2016197696A (ja) * 2015-04-06 2016-11-24 キヤノン株式会社 固体撮像装置の製造方法及び固体撮像装置ならびにカメラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49760B1 (ja) 1969-04-02 1974-01-09
JPH1168076A (ja) 1997-08-14 1999-03-09 Sony Corp カラーフィルタアレイの製造方法
KR20110015473A (ko) * 2002-12-13 2011-02-15 소니 주식회사 고체 촬상 소자 및 그 제조방법
US20050116271A1 (en) * 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US20090090850A1 (en) * 2006-08-31 2009-04-09 Aptina Imaging Corporation Deep Recess Color Filter Array and Process of Forming the Same
JP4873001B2 (ja) * 2008-12-10 2012-02-08 ソニー株式会社 固体撮像装置とその製造方法、電子機器並びに半導体装置
JP2011071482A (ja) * 2009-08-28 2011-04-07 Fujifilm Corp 固体撮像装置,固体撮像装置の製造方法,デジタルスチルカメラ,デジタルビデオカメラ,携帯電話,内視鏡
JP4444371B1 (ja) * 2009-09-01 2010-03-31 富士フイルム株式会社 撮像素子及び撮像装置
US8723994B2 (en) * 2010-04-06 2014-05-13 Omnivision Technologies, Inc. Imager with variable area color filter array and pixel elements
JP5874209B2 (ja) * 2011-06-23 2016-03-02 凸版印刷株式会社 カラー固体撮像素子用オンチップカラーフィルタ
JP2013229446A (ja) * 2012-04-25 2013-11-07 Sharp Corp 固体撮像素子及び固体撮像の製造方法
US20160307942A1 (en) * 2015-04-16 2016-10-20 Taiwan Semiconductor Manufacturing Co., Ltd. Deeply buried color filter array (cfa) by stacked grid structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495760B1 (ja) 1963-02-04 1974-02-08
JPS6468076A (en) 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Driving method for solid-state image pickup element
JP2006163316A (ja) * 2004-12-10 2006-06-22 Sanyo Electric Co Ltd カラーフィルタアレイ製造方法
JP2008077038A (ja) * 2006-08-23 2008-04-03 Fujifilm Corp カラーフィルタの製造方法
JP2015166445A (ja) * 2014-02-14 2015-09-24 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子、および、画像表示装置
JP2016197696A (ja) * 2015-04-06 2016-11-24 キヤノン株式会社 固体撮像装置の製造方法及び固体撮像装置ならびにカメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614436A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021106670A1 (ja) * 2019-11-26 2021-06-03
JP7454592B2 (ja) 2019-11-26 2024-03-22 富士フイルム株式会社 固体撮像素子

Also Published As

Publication number Publication date
US10998363B2 (en) 2021-05-04
JP7088174B2 (ja) 2022-06-21
TWI757472B (zh) 2022-03-11
EP3614436A1 (en) 2020-02-26
CN110419105A (zh) 2019-11-05
TW201904045A (zh) 2019-01-16
KR102468312B1 (ko) 2022-11-17
JPWO2018194069A1 (ja) 2020-02-27
EP3614436A4 (en) 2020-04-15
KR20190139196A (ko) 2019-12-17
US20200052021A1 (en) 2020-02-13
CN110419105B (zh) 2023-12-19
EP3614436B1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
TWI716490B (zh) 固態攝影元件之製造方法及固態攝影元件、以及彩色濾光片之製造方法及彩色濾光片
US10998363B2 (en) Solid-state imaging device and method of producing solid-state imaging device
US20200258929A1 (en) Solid-state imaging device and method of manufacturing the same
US11205671B2 (en) Solid-state image sensor and method of manufacturing the same
JP7119557B2 (ja) 固体撮像素子及び固体撮像素子の製造方法
JP7310130B2 (ja) 固体撮像素子及びその製造方法
JP6809215B2 (ja) 固体撮像素子およびその製造方法
JP6838394B2 (ja) 固体撮像素子およびその製造方法
WO2019111919A1 (ja) 固体撮像素子およびその製造方法
JP2020202497A (ja) 固体撮像素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513658

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018788212

Country of ref document: EP

Effective date: 20191118