WO2018194037A1 - ズームレンズおよび撮像装置 - Google Patents

ズームレンズおよび撮像装置 Download PDF

Info

Publication number
WO2018194037A1
WO2018194037A1 PCT/JP2018/015763 JP2018015763W WO2018194037A1 WO 2018194037 A1 WO2018194037 A1 WO 2018194037A1 JP 2018015763 W JP2018015763 W JP 2018015763W WO 2018194037 A1 WO2018194037 A1 WO 2018194037A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
group
zoom lens
conditional expression
lens group
Prior art date
Application number
PCT/JP2018/015763
Other languages
English (en)
French (fr)
Inventor
大田 基在
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201890000746.4U priority Critical patent/CN210742600U/zh
Publication of WO2018194037A1 publication Critical patent/WO2018194037A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses

Definitions

  • the present invention relates to a zoom lens suitable for an electronic camera such as a movie shooting camera, a broadcast camera, a digital camera, a video camera, and a surveillance camera, and an imaging apparatus including the zoom lens.
  • zoom lenses used in electronic cameras such as movie shooting cameras, broadcast cameras, digital cameras, video cameras, and surveillance cameras
  • zoom lenses described in Patent Documents 1 to 4 below have been proposed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a zoom lens that is lightweight and has good optical performance at a high magnification, and an imaging device including the zoom lens.
  • the zoom lens of the present invention in order from the object side, the distance in the optical axis direction between the first lens group having a positive refractive power fixed to the image plane at the time of zooming and the adjacent group at the time of zooming is changed.
  • the second lens group having negative refractive power that moves and the third lens group having positive refractive power that moves by changing the distance in the optical axis direction between the adjacent lens group when zooming and an image when zooming And a fourth lens group having a positive refractive power fixed to the surface.
  • the first lens group is a first-a lens having a negative refractive power continuously in order from the most object side, and a negative refractive power.
  • conditional expressions (1-1) to (3-2) are satisfied.
  • 2 ⁇ d ⁇ 4 (1-1) 2 ⁇ d ⁇ 3.8 (1-2) 1.43 ⁇ Nd ⁇ 1.7 (2-1) 1.43 ⁇ Nd ⁇ 1.695 (2-2) ⁇ 0.9 ⁇ (R1r + R2f) / (R1r ⁇ R2f) ⁇ 0.4 (3-1) ⁇ 0.8 ⁇ (R1r + R2f) / (R1r ⁇ R2f) ⁇ 0.55 (3-2)
  • the first lens group includes, in order from the object side, a first lens group front group having a negative refractive power that is fixed with respect to the image plane at the time of focusing, and a group adjacent to the first lens group at the time of focusing.
  • the first lens group middle group having positive refractive power that moves by changing the interval in the optical axis direction
  • the first lens group rear group having positive refractive power that is fixed with respect to the image plane at the time of focusing. It is preferable to become.
  • the conditional expression (4) is satisfied, and the conditional expression (4-1) is satisfied. More preferably. 0.5 ⁇ (R1f ⁇ R1r) / (R1f + R1r) ⁇ 0.8 (4) 0.56 ⁇ (R1f ⁇ R1r) / (R1f + R1r) ⁇ 0.75 (4-1)
  • the focal length of the first lens group when focusing on an object at infinity is f1
  • the focal length of the second lens group is f2
  • the focal length of the first lens group when focusing on an object at infinity is f1
  • the focal length of the first lens group front group is f1a
  • Conditional expression (7) is satisfied, where f1 is the focal length of the first lens group when the object at infinity is in focus, and f1a_1b is the combined focal length of the first lens group front group and the first lens group middle group. It is preferable that the conditional expression (7-1) and / or (7-2) is satisfied. -0.48 ⁇ f1 / f1a_1b ⁇ -0.1 (7) -0.45 ⁇ f1 / f1a_1b ⁇ -0.22 (7-1) ⁇ 0.42 ⁇ f1 / f1a_1b ⁇ 0.34 (7-2)
  • the focal length of the first lens group when focusing on an object at infinity is f1
  • the focal length of the first lens group middle group is f1b
  • the conditional expression (9) is satisfied, and the conditional expression (9 It is more preferable to satisfy -1) and / or (9-2). 0.67 ⁇ f1 / f1c ⁇ 0.9 (9) 0.67 ⁇ f1 / f1c ⁇ 0.83 (9-1) 0.68 ⁇ f1 / f1c ⁇ 0.76 (9-2)
  • the imaging device of the present invention includes the zoom lens of the present invention described above.
  • the term “consisting of the above” means lenses other than those listed as constituent elements, lenses having substantially no power, optical elements other than lenses such as diaphragms, masks, cover glasses, filters, lens flanges, lenses It is intended that a mechanical part such as a barrel, an image sensor, a camera shake correction mechanism, and the like may be included.
  • the surface shape of the lens, the sign of refractive power, and the radius of curvature are considered in the paraxial region when an aspheric surface is included.
  • the zoom lens of the present invention in order from the object side, the distance in the optical axis direction between the first lens group having a positive refractive power fixed to the image plane at the time of zooming and the adjacent group at the time of zooming is changed.
  • the second lens group having negative refractive power that moves and the third lens group having positive refractive power that moves by changing the distance in the optical axis direction between the adjacent lens group when zooming and an image when zooming And a fourth lens group having a positive refractive power fixed to the surface.
  • the first lens group is a first-a lens having a negative refractive power continuously in order from the most object side, and a negative refractive power.
  • Each aberration diagram of the zoom lens of Example 1 of the present invention Each aberration diagram of the zoom lens of Example 2 of the present invention
  • Each aberration diagram of the zoom lens of Example 3 of the present invention Each aberration diagram of the zoom lens of Example 4 of the present invention
  • Each aberration diagram of the zoom lens of Example 5 of the present invention Each aberration diagram of the zoom lens of Example 6 of the present invention
  • Each aberration diagram of the zoom lens of Example 7 of the present invention Each aberration diagram of the zoom lens of Example 8 of the present invention
  • Each aberration diagram of the zoom lens of Example 9 of the present invention 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a zoom lens according to an embodiment of the present invention.
  • the wide-angle end state is shown, and the movement locus of the moving lens group is indicated by an arrow.
  • the example shown in FIG. 1 corresponds to a zoom lens of Example 1 described later.
  • the left side of the drawing is the object side
  • the right side of the drawing is the image side, showing a state where the object is focused on an object at infinity.
  • the illustrated aperture stop St does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • the optical member PP is arranged between the lens system and the image plane Sim.
  • the position of the optical member PP is not limited to that shown in FIG. 1, and a configuration in which the optical member PP is omitted is also possible.
  • the zoom lens according to the present embodiment in order from the object side, the distance in the optical axis direction between the first lens group G1 having a positive refractive power fixed with respect to the image plane Sim at the time of zooming and the adjacent group at the time of zooming.
  • a fourth lens group G4 having a positive refractive power which is fixed with respect to the image plane Sim at the time of zooming.
  • the first lens group G1 includes, in order from the most object side, a first a lens L1a having a negative refractive power, a first b lens L1b having a negative refractive power, and a first c lens L1c having a negative refractive power. And have. Thus, by arranging three negative lenses in order from the most object side, negative power can be shared and the occurrence of spherical aberration can be suppressed.
  • conditional expression (1) By making it not to be below the lower limit of conditional expression (1), it is possible to suppress the material from becoming soft and easily damaged. By making it not exceed the upper limit of conditional expression (1), an increase in mass can be suppressed. If the following conditional expressions (1-1) and / or (1-2) are satisfied, better characteristics can be obtained. 2 ⁇ d ⁇ 4 (1-1) 2 ⁇ d ⁇ 3.8 (1-2)
  • conditional expression (2) By preventing the conditional expression (2) from being below the lower limit, distortion at the wide-angle end can be suppressed. By making it not exceed the upper limit of conditional expression (2), it is possible to select a material with a large Abbe number, and to suppress the occurrence of lateral chromatic aberration at the wide-angle end. If the following conditional expression (2-1) and / or (2-2) is satisfied, better characteristics can be obtained. 1.43 ⁇ Nd ⁇ 1.7 (2-1) 1.43 ⁇ Nd ⁇ 1.695 (2-2)
  • conditional expression (3) By preventing the conditional expression (3) from being lower than the lower limit, spherical aberration at the telephoto end can be reduced. By avoiding the upper limit of conditional expression (3) from being exceeded, distortion at the wide-angle end can be reduced. If the following conditional expressions (3-1) and / or (3-2) are satisfied, better characteristics can be obtained. ⁇ 0.9 ⁇ (R1r + R2f) / (R1r ⁇ R2f) ⁇ 0.4 (3-1) ⁇ 0.8 ⁇ (R1r + R2f) / (R1r ⁇ R2f) ⁇ 0.55 (3-2)
  • the first lens group G1 includes, in order from the object side, the first lens group front group G1a having a negative refractive power that is fixed with respect to the image plane Sim at the time of focusing, and the first lens group G1 at the time of focusing.
  • the lens unit includes a rear lens group G1c.
  • conditional expression (4) is satisfied.
  • the conditional expression (4) is satisfied, better characteristics can be obtained. 0.5 ⁇ (R1f ⁇ R1r) / (R1f + R1r) ⁇ 0.8 (4) 0.56 ⁇ (R1f ⁇ R1r) / (R1f + R1r) ⁇ 0.75 (4-1)
  • conditional expression (5) is satisfied when the focal length of the first lens group G1 at the time of focusing on an object at infinity is f1, and the focal length of the second lens group G2 is f2.
  • conditional expression (5) By preventing the conditional expression (5) from being below the lower limit, it is possible to suppress spherical aberration fluctuation, astigmatism fluctuation, and distortion fluctuation during zooming. High magnification can be achieved by avoiding exceeding the upper limit of conditional expression (5).
  • conditional expression (5-1) and / or (5-2) is satisfied, better characteristics can be obtained. ⁇ 4.4 ⁇ f1 / f2 ⁇ 1.5 (5) ⁇ 3.7 ⁇ f1 / f2 ⁇ 2.3 (5-1) ⁇ 3.2 ⁇ f1 / f2 ⁇ 2.9 (5-2)
  • conditional expression (6) is satisfied when the focal length of the first lens group G1 when focusing on an object at infinity is f1, and the focal length of the first lens group front group G1a is f1a.
  • the focal length of the first lens group front group G1a is f1a.
  • the conditional expression (7) Is preferably satisfied.
  • the conditional expression (7) By preventing the conditional expression (7) from being lower than the lower limit, it is possible to suppress distortion fluctuation at the time of focusing on the maximum field angle at the wide angle end.
  • the conditional expression (7) By preventing the conditional expression (7) from exceeding the upper limit, it is possible to prevent the effective diameter of the first-a lens L1a at the wide-angle end from increasing. If the following conditional expressions (7-1) and / or (7-2) are satisfied, better characteristics can be obtained.
  • conditional expression (8) is satisfied, where f1 is the focal length of the first lens group G1 when focusing on an object at infinity and f1b is the focal length of the first lens group middle group G1b.
  • f1 is the focal length of the first lens group G1 when focusing on an object at infinity
  • f1b is the focal length of the first lens group middle group G1b.
  • conditional expression (9) is satisfied, where f1 is the focal length of the first lens group G1 when an object at infinity is in focus, and f1c is the focal length of the first lens group rear group G1c.
  • f1 is the focal length of the first lens group G1 when an object at infinity is in focus
  • f1c is the focal length of the first lens group rear group G1c.
  • the optical member PP is disposed between the lens system and the image plane Sim.
  • a low-pass filter various filters that cut a specific wavelength range, and the like are used as the lens system.
  • These various filters may be arranged between the lenses instead of being arranged between the image plane Sim, or the lens surface of any lens is coated with a coating having the same action as the various filters. May be.
  • FIG. 1 is a cross-sectional view showing the lens configuration of the zoom lens of Example 1.
  • FIG. 2 and 9 corresponding to Examples 2 to 9 described later the wide-angle end state is shown, and the movement locus of the moving lens group is indicated by an arrow.
  • the left side of the drawing is the object side
  • the right side of the drawing is the image side, which shows a state in which the object at infinity is focused.
  • the illustrated aperture stop St does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
  • the zoom lens according to the first exemplary embodiment includes, in order from the object side, a first lens group G1 including twelve lenses L1a to L1l and a second lens including five lenses L2a to L2e.
  • a lens group G2 a third lens group G3 including six lenses L3a to L3f, and a fourth lens group G4 including eleven lenses including an aperture stop St and lenses L4a to L4k. It is composed of
  • the first lens group G1 includes, in order from the object side, a first lens group front group G1a including four lenses L1a to L1d and three lenses including a lens L1e to a lens L1g.
  • the lens group G1b is composed of one lens group middle group G1b and a first lens group rear group G1c including five lenses L1h to L1l.
  • Table 1 shows basic lens data of the zoom lens of Example 1
  • Table 2 shows data on specifications
  • Table 3 shows data on changing surface distance.
  • the meaning of the symbols in the table will be described by taking the example of Example 1 as an example, but the same applies to Examples 2 to 9.
  • the surface number column indicates the surface number that increases sequentially toward the image surface side with the surface of the component closest to the object side as the first
  • the curvature radius column indicates the curvature radius of each surface.
  • the surface interval column an interval on the optical axis Z between each surface and the next surface is shown.
  • the column of n shows the refractive index of each optical element at the d-line (wavelength 587.6 nm (nanometer)), and the column of ⁇ shows the d-line of each optical element (wavelength 587.6 nm (nanometer)). Indicates the Abbe number at.
  • the basic lens data includes the aperture stop St and the optical member PP.
  • the phrase (aperture) is written together with the surface number.
  • DD [surface number] is described in the column of the surface interval in which the interval changes at the time of zooming and focusing.
  • Table 3 shows numerical values corresponding to the DD [surface number].
  • the data regarding the specifications in Table 2 include zoom magnification, focal length f ′, back focus Bf ′, F number FNo. The value of the total angle of view 2 ⁇ (°) is shown.
  • FIG. 10 shows aberration diagrams of the zoom lens of Example 1.
  • 10 shows spherical aberration, astigmatism, distortion, and lateral chromatic aberration at the wide-angle end in order from the upper left side in FIG. 10, and spherical aberration, astigmatism, distortion at the middle position in order from the middle left side in FIG.
  • Aberration and lateral chromatic aberration are shown, and spherical aberration, astigmatism, distortion and lateral chromatic aberration at the telephoto end are shown in order from the lower left side in FIG.
  • These aberration diagrams show states when the object distance is infinite.
  • Each aberration diagram showing spherical aberration, astigmatism, and distortion aberration shows aberration with the d-line (wavelength 587.6 nm (nanometer)) as a reference wavelength.
  • the spherical aberration diagram includes d line (wavelength 587.6 nm (nanometer)), C line (wavelength 656.3 nm (nanometer)), F line (wavelength 486.1 nm (nanometer)), and g line (wavelength 435).
  • the aberrations for .8 nm (nanometers) are indicated by solid lines, long broken lines, short broken lines, and gray solid lines, respectively.
  • the sagittal and tangential aberrations are indicated by a solid line and a short broken line, respectively.
  • the lateral chromatic aberration diagram shows the aberrations for the C-line (wavelength 656.3 nm (nanometer)), F-line (wavelength 486.1 nm (nanometer)), and g-line (wavelength 435.8 nm (nanometer)), respectively. Indicated by a dashed line, a short dashed line, and a solid gray line.
  • FNo. Means F number, and ⁇ in other aberration diagrams means half angle of view.
  • FIG. 2 is a sectional view showing the lens configuration of the zoom lens of Example 2.
  • the refractive power configuration of each group of the zoom lens of Example 2 and the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • Table 4 shows basic lens data of the zoom lens of Example 2
  • Table 5 shows data on specifications
  • Table 6 shows data on changing surface distance
  • FIG. 11 shows aberration diagrams.
  • FIG. 3 is a cross-sectional view showing the lens configuration of the zoom lens of Example 3.
  • the refractive power configuration of each group and the configuration of the number of lenses in each group of the zoom lens of Example 3 are the same as those of the zoom lens of Example 1.
  • Table 7 shows basic lens data of the zoom lens of Example 3
  • Table 8 shows data on specifications
  • Table 9 shows data on changing surface distance
  • FIG. 12 shows aberration diagrams.
  • FIG. 4 is a cross-sectional view showing the lens configuration of the zoom lens of Example 4.
  • the refractive power configuration of each group of the zoom lens of Example 4 and the configuration of the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • basic lens data of the zoom lens of Example 4 is shown in Table 10, data relating to the specifications is shown in Table 11, data relating to the changing surface distance is shown in Table 12, and each aberration diagram is shown in FIG.
  • FIG. 5 is a sectional view showing the lens configuration of the zoom lens of Example 5.
  • the refractive power configuration of each group of the zoom lens of Example 5 and the configuration of the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • basic lens data of the zoom lens of Example 5 is shown in Table 13, data relating to the specifications is shown in Table 14, data relating to the changing surface distance is shown in Table 15, and each aberration diagram is shown in FIG.
  • FIG. 6 is a cross-sectional view showing the lens configuration of the zoom lens of Example 6.
  • the refractive power configuration of each group of the zoom lens of Example 6 and the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • Table 16 shows basic lens data of the zoom lens of Example 6
  • Table 17 shows data on specifications
  • Table 18 shows data on changing surface distance
  • FIG. 15 shows aberration diagrams.
  • FIG. 7 is a cross-sectional view showing the lens configuration of the zoom lens of Example 7.
  • the refractive power configuration of each group of the zoom lens of Example 7 and the number of lenses of each group are the same as those of the zoom lens of Example 1.
  • basic lens data of the zoom lens of Example 7 is shown in Table 19, data on specifications is shown in Table 20, data on changing surface distance is shown in Table 21, and each aberration diagram is shown in FIG.
  • FIG. 8 is a sectional view showing the lens configuration of the zoom lens of Example 8.
  • the refractive power configuration of each group of the zoom lens of Example 8 and the configuration of the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • Table 22 shows basic lens data of the zoom lens of Example 8
  • Table 23 shows data on specifications
  • Table 24 shows data on changing surface distance
  • FIG. 17 shows aberration diagrams.
  • FIG. 9 is a sectional view showing the lens configuration of the zoom lens of Example 9.
  • the refractive power configuration of each group of the zoom lens of Example 9 and the number of lenses in each group are the same as those of the zoom lens of Example 1.
  • basic lens data of the zoom lens of Example 9 is shown in Table 25, data relating to the specifications is shown in Table 26, data relating to the changing surface distance is shown in Table 27, and each aberration diagram is shown in FIG.
  • Table 28 shows values corresponding to the conditional expressions (1) to (9) of the zoom lenses of Examples 1 to 9.
  • the d-line is used as the reference wavelength, and the values shown in Table 28 below are at this reference wavelength.
  • FIG. 19 shows a schematic configuration diagram of an imaging apparatus 10 using the zoom lens 1 according to the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
  • the imaging device 10 include a movie camera, a broadcast camera, a digital camera, a video camera, and a surveillance camera.
  • the imaging device 10 includes a zoom lens 1, a filter 2 disposed on the image side of the zoom lens 1, and an imaging element 3 disposed on the image side of the filter 2.
  • the first lens group G1 to the fourth lens group G4 included in the zoom lens 1 are schematically illustrated.
  • the first lens group G1 is divided into three sub lens groups, a first lens group front group G1a, a first lens group middle group G1b, and a first lens group rear group G1c. It is shown.
  • the image sensor 3 converts an optical image formed by the zoom lens 1 into an electrical signal, and for example, a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) can be used.
  • the image sensor 3 is arranged such that its image plane coincides with the image plane of the zoom lens 1.
  • the imaging device 10 also includes a signal processing unit 5 that performs arithmetic processing on an output signal from the imaging device 3, a display unit 6 that displays an image formed by the signal processing unit 5, and a zoom that controls zooming of the zoom lens 1.
  • a control unit 7 and a focus control unit 8 that controls focusing of the zoom lens 1 are provided.
  • the image pickup apparatus of the present invention is not limited to this, and may be a so-called three-plate type image pickup apparatus having three image pickup elements.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the radius of curvature, the surface spacing, the refractive index, and the Abbe number of each lens are not limited to the values shown in the above numerical examples, and can take other values.

Abstract

軽量でありながら、高倍率で良好な光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供する。 物体側から順に、変倍時に固定の正の第1レンズ群G1と、変倍時に移動する負の第2レンズ群G2と、変倍時に移動する正の第3レンズ群G3と、変倍時に固定の正の第4レンズ群G4とからなり、第1レンズ群G1は、最も物体側から順に連続して、負の第1aレンズL1aと、負の第1bレンズL1bと、負の第1cレンズL1cとを有し、所定の条件式を満足するものとする。

Description

ズームレンズおよび撮像装置
 本発明は、映画撮影用カメラ、放送用カメラ、デジタルカメラ、ビデオカメラ、および監視用カメラ等の電子カメラに好適なズームレンズ、ならびにこのズームレンズを備えた撮像装置に関するものである。
 映画撮影用カメラ、放送用カメラ、デジタルカメラ、ビデオカメラ、および監視用カメラ等の電子カメラに用いられるズームレンズとして、下記特許文献1~4のズームレンズが提案されている。
特開2016-14816号公報 特開2013-221999号公報 特開2013-221976号公報 特開平6-59191号公報
 映画撮影用カメラおよび放送用カメラ等の撮像装置では、軽量でありながら、高倍率で良好な光学性能を有するズームレンズが要望されている。特に、機動性および操作性を重視した撮影形態に対して軽量化が強く要望されている。
 しかしながら、軽量化に伴い、諸収差が大きくなって十分な光学性能を達成することが難しくなり、また高倍率化を達成することも難しくなる傾向がある。特許文献1~3に記載のレンズ系は、近年要望されている水準に対して倍率色収差が十分小さくない。また、特許文献1~4に記載のレンズ系は、近年要望されている水準に対して十分な倍率ではない。
 本発明は、上記事情に鑑みなされたものであり、軽量でありながら、高倍率で良好な光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供することを目的とする。
 本発明のズームレンズは、物体側から順に、変倍時に像面に対し固定される正の屈折力を有する第1レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する負の屈折力を有する第2レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第3レンズ群と、変倍時に像面に対し固定される正の屈折力を有する第4レンズ群とからなり、第1レンズ群は、最も物体側から順に連続して、負の屈折力を有する第1aレンズと、負の屈折力を有する第1bレンズと、負の屈折力を有する第1cレンズとを有し、第1aレンズの比重をd、第1aレンズの屈折率をNd、第1aレンズの像側面の曲率半径をR1r、第1bレンズの物体側面の曲率半径をR2fとしたとき、条件式(1)~(3)を満足することを特徴とする。
  2<d<4.2 …(1)
  1.43<Nd<1.75 …(2)
  -1<(R1r+R2f)/(R1r-R2f)<-0.1 …(3)
 なお、条件式(1-1)~(3-2)の1つもしくは複数の組合せを満足することが好ましい。
  2<d<4 …(1-1)
  2<d<3.8 …(1-2)
  1.43<Nd<1.7 …(2-1)
  1.43<Nd<1.695 …(2-2)
  -0.9<(R1r+R2f)/(R1r-R2f)<-0.4 …(3-1)
  -0.8<(R1r+R2f)/(R1r-R2f)<-0.55 …(3-2)
 本発明のズームレンズにおいては、第1レンズ群は、物体側から順に、合焦時に像面に対し固定される負の屈折力を有する第1レンズ群前群と、合焦時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第1レンズ群中群と、合焦時に像面に対し固定される正の屈折力を有する第1レンズ群後群とからなることが好ましい。
 また、第1aレンズの物体側面の曲率半径をR1f、第1aレンズの像側面の曲率半径をR1rとしたとき、条件式(4)を満足することが好ましく、条件式(4-1)を満足することがより好ましい。
  0.5<(R1f-R1r)/(R1f+R1r)<0.8 …(4)
  0.56<(R1f-R1r)/(R1f+R1r)<0.75 …(4-1)
 また、第1レンズ群の無限遠物体合焦時の焦点距離をf1、第2レンズ群の焦点距離をf2としたとき、条件式(5)を満足することが好ましく、条件式(5-1)および/または(5-2)を満足することがより好ましい。
  -4.4<f1/f2<-1.5 …(5)
  -3.7<f1/f2<-2.3 …(5-1)
  -3.2<f1/f2<-2.9 …(5-2)
 また、第1レンズ群の無限遠物体合焦時の焦点距離をf1、第1レンズ群前群の焦点距離をf1aとしたとき、条件式(6)を満足することが好ましく、条件式(6-1)および/または(6-2)を満足することがより好ましい。
  -0.92<f1/f1a<-0.1 …(6)
  -0.82<f1/f1a<-0.4 …(6-1)
  -0.73<f1/f1a<-0.65 …(6-2)
 また、第1レンズ群の無限遠物体合焦時の焦点距離をf1、第1レンズ群前群と第1レンズ群中群の合成焦点距離をf1a_1bとしたとき、条件式(7)を満足することが好ましく、条件式(7-1)および/または(7-2)を満足することがより好ましい。
  -0.48<f1/f1a_1b<-0.1 …(7)
  -0.45<f1/f1a_1b<-0.22 …(7-1)
  -0.42<f1/f1a_1b<-0.34 …(7-2)
 また、第1レンズ群の無限遠物体合焦時の焦点距離をf1、第1レンズ群中群の焦点距離をf1bとしたとき、条件式(8)を満足することが好ましく、条件式(8-1)を満足することがより好ましい。
  0.17<f1/f1b<0.21 …(8)
  0.17<f1/f1b<0.2 …(8-1)
 また、第1レンズ群の無限遠物体合焦時の焦点距離をf1、第1レンズ群後群の焦点距離をf1cとしたとき、条件式(9)を満足することが好ましく、条件式(9-1)および/または(9-2)を満足することがより好ましい。
  0.67<f1/f1c<0.9 …(9)
  0.67<f1/f1c<0.83 …(9-1)
  0.68<f1/f1c<0.76 …(9-2)
 本発明の撮像装置は、上記記載の本発明のズームレンズを備えたものである。
 なお、上記「~からなる」とは、構成要素として挙げたもの以外に、実質的にパワーを有さないレンズ、絞りやマスクやカバーガラスやフィルタ等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分、等を含んでもよいことを意図するものである。
 また、上記のレンズの面形状、屈折力の符号、および曲率半径は、非球面が含まれている場合は近軸領域で考えるものとする。
 本発明のズームレンズは、物体側から順に、変倍時に像面に対し固定される正の屈折力を有する第1レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する負の屈折力を有する第2レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第3レンズ群と、変倍時に像面に対し固定される正の屈折力を有する第4レンズ群とからなり、第1レンズ群は、最も物体側から順に連続して、負の屈折力を有する第1aレンズと、負の屈折力を有する第1bレンズと、負の屈折力を有する第1cレンズとを有し、第1aレンズの比重をd、第1aレンズの屈折率をNd、第1aレンズの像側面の曲率半径をR1r、第1bレンズの物体側面の曲率半径をR2fとしたとき、条件式(1)~(3)を満足するものとしたので、軽量でありながら、高倍率で良好な光学性能を有するズームレンズ、およびこのズームレンズを備えた撮像装置を提供することができる。
  2<d<4.2 …(1)
  1.43<Nd<1.75 …(2)
  -1<(R1r+R2f)/(R1r-R2f)<-0.1 …(3)
本発明の一実施形態にかかるズームレンズ(実施例1と共通)のレンズ構成を示す断面図 本発明の実施例2のズームレンズのレンズ構成を示す断面図 本発明の実施例3のズームレンズのレンズ構成を示す断面図 本発明の実施例4のズームレンズのレンズ構成を示す断面図 本発明の実施例5のズームレンズのレンズ構成を示す断面図 本発明の実施例6のズームレンズのレンズ構成を示す断面図 本発明の実施例7のズームレンズのレンズ構成を示す断面図 本発明の実施例8のズームレンズのレンズ構成を示す断面図 本発明の実施例9のズームレンズのレンズ構成を示す断面図 本発明の実施例1のズームレンズの各収差図 本発明の実施例2のズームレンズの各収差図 本発明の実施例3のズームレンズの各収差図 本発明の実施例4のズームレンズの各収差図 本発明の実施例5のズームレンズの各収差図 本発明の実施例6のズームレンズの各収差図 本発明の実施例7のズームレンズの各収差図 本発明の実施例8のズームレンズの各収差図 本発明の実施例9のズームレンズの各収差図 本発明の実施形態にかかる撮像装置の概略構成図
 以下、本発明の実施形態について図面を参照して詳細に説明する。図1に、本発明の一実施形態に係るズームレンズのレンズ構成を示す断面図を示す。図1では、広角端状態を示し、さらに移動レンズ群の移動軌跡を矢印で示している。なお、図1に示す例は後述の実施例1のズームレンズに対応している。図1では紙面左側が物体側、紙面右側が像側であり、無限遠物体に合焦した状態を示している。また、図示されている開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 なお、ズームレンズが撮像装置に搭載される際には、撮像装置の仕様に応じた各種フィルタおよび/または保護用のカバーガラスを備えることが好ましいため、図1ではこれらを想定した平行平面板状の光学部材PPをレンズ系と像面Simとの間に配置した例を示している。しかし、光学部材PPの位置は図1に示すものに限定されないし、光学部材PPを省略した構成も可能である。
 本実施形態のズームレンズは、物体側から順に、変倍時に像面Simに対し固定される正の屈折力を有する第1レンズ群G1と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する負の屈折力を有する第2レンズ群G2と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第3レンズ群G3と、変倍時に像面Simに対し固定される正の屈折力を有する第4レンズ群G4とからなる。
 第1レンズ群G1は、最も物体側から順に連続して、負の屈折力を有する第1aレンズL1aと、負の屈折力を有する第1bレンズL1bと、負の屈折力を有する第1cレンズL1cとを有する。このように最も物体側から順に連続して3枚の負レンズを配置することによって、負のパワーを分担させ、球面収差の発生を抑制できる。
 また、第1aレンズL1aの比重をd、第1aレンズL1aの屈折率をNd、第1aレンズL1aの像側面の曲率半径をR1r、第1bレンズL1bの物体側面の曲率半径をR2fとしたとき、条件式(1)~(3)を満足するように構成されている。
  2<d<4.2 …(1)
  1.43<Nd<1.75 …(2)
  -1<(R1r+R2f)/(R1r-R2f)<-0.1 …(3)
 条件式(1)の下限以下とならないようにすることによって、材料が柔らかくなり、傷がつきやすくなるのを抑制することができる。条件式(1)の上限以上とならないようにすることによって、質量の増加を抑制することができる。なお、下記条件式(1-1)および/または(1-2)を満足するものとすれば、より良好な特性とすることができる。
  2<d<4 …(1-1)
  2<d<3.8 …(1-2)
 条件式(2)の下限以下とならないようにすることによって、広角端における歪曲収差を抑制することができる。条件式(2)の上限以上とならないようにすることによって、アッベ数の大きな材料を選択することが可能となり、広角端における倍率色収差の発生を抑制することができる。なお、下記条件式(2-1)および/または(2-2)を満足するものとすれば、より良好な特性とすることができる。
  1.43<Nd<1.7 …(2-1)
  1.43<Nd<1.695 …(2-2)
 条件式(3)の下限以下とならないようにすることによって、望遠端における球面収差を低減することができる。条件式(3)の上限以上とならないようにすることによって、広角端における歪曲収差を低減することができる。なお、下記条件式(3-1)および/または(3-2)を満足するものとすれば、より良好な特性とすることができる。
  -0.9<(R1r+R2f)/(R1r-R2f)<-0.4 …(3-1)
  -0.8<(R1r+R2f)/(R1r-R2f)<-0.55 …(3-2)
 本実施形態のズームレンズにおいては、第1レンズ群G1は、物体側から順に、合焦時に像面Simに対し固定される負の屈折力を有する第1レンズ群前群G1aと、合焦時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第1レンズ群中群G1bと、合焦時に像面Simに対し固定される正の屈折力を有する第1レンズ群後群G1cとからなることが好ましい。このような構成とすることによって、望遠端における合焦時の球面収差変動を低減できる。
 また、第1aレンズL1aの物体側面の曲率半径をR1f、第1aレンズL1aの像側面の曲率半径をR1rとしたとき、条件式(4)を満足することが好ましい。条件式(4)の下限以下とならないようにすることによって、広角端における歪曲収差を低減することができる。条件式(4)の上限以上とならないようにすることによって、望遠端における球面収差を低減することができる。なお、下記条件式(4-1)を満足するものとすれば、より良好な特性とすることができる。
  0.5<(R1f-R1r)/(R1f+R1r)<0.8 …(4)
  0.56<(R1f-R1r)/(R1f+R1r)<0.75 …(4-1)
 また、第1レンズ群G1の無限遠物体合焦時の焦点距離をf1、第2レンズ群G2の焦点距離をf2としたとき、条件式(5)を満足することが好ましい。条件式(5)の下限以下とならないようにすることによって、変倍時の球面収差変動、非点収差変動、およびディストーション変動を抑制することができる。条件式(5)の上限以上とならないようにすることによって、高倍率とすることができる。なお、下記条件式(5-1)および/または(5-2)を満足するものとすれば、より良好な特性とすることができる。
  -4.4<f1/f2<-1.5 …(5)
  -3.7<f1/f2<-2.3 …(5-1)
  -3.2<f1/f2<-2.9 …(5-2)
 また、第1レンズ群G1の無限遠物体合焦時の焦点距離をf1、第1レンズ群前群G1aの焦点距離をf1aとしたとき、条件式(6)を満足することが好ましい。条件式(6)の下限以下とならないようにすることによって、第1レンズ群前群G1aで発生する、広角端における歪曲収差を低減することができる。条件式(6)の上限以上とならないようにすることによって、合焦時の最大像高の画角変動および歪曲収差変動を抑えることができる。なお、下記条件式(6-1)および/または(6-2)を満足するものとすれば、より良好な特性とすることができる。
  -0.92<f1/f1a<-0.1 …(6)
  -0.82<f1/f1a<-0.4 …(6-1)
  -0.73<f1/f1a<-0.65 …(6-2)
 また、第1レンズ群G1の無限遠物体合焦時の焦点距離をf1、第1レンズ群前群G1aと第1レンズ群中群G1bの合成焦点距離をf1a_1bとしたとき、条件式(7)を満足することが好ましい。条件式(7)の下限以下とならないようにすることによって、広角端における最大画角の合焦時のディストーション変動を抑制することができる。条件式(7)の上限以上とならないようにすることによって、広角端における第1aレンズL1aの有効径が大きくなることを抑制することができる。なお、下記条件式(7-1)および/または(7-2)を満足するものとすれば、より良好な特性とすることができる。
  -0.48<f1/f1a_1b<-0.1 …(7)
  -0.45<f1/f1a_1b<-0.22 …(7-1)
  -0.42<f1/f1a_1b<-0.34 …(7-2)
 また、第1レンズ群G1の無限遠物体合焦時の焦点距離をf1、第1レンズ群中群G1bの焦点距離をf1bとしたとき、条件式(8)を満足することが好ましい。条件式(8)の下限以下とならないようにすることによって、第1レンズ群中群G1bの合焦時の移動量を抑制することができる。条件式(8)の上限以上とならないようにすることによって、望遠端における合焦時の球面収差変動を抑制することができる。なお、下記条件式(8-1)を満足するものとすれば、より良好な特性とすることができる。
  0.17<f1/f1b<0.21 …(8)
  0.17<f1/f1b<0.2 …(8-1)
 また、第1レンズ群G1の無限遠物体合焦時の焦点距離をf1、第1レンズ群後群G1cの焦点距離をf1cとしたとき、条件式(9)を満足することが好ましい。条件式(9)の下限以下とならないようにすることによって、広角端における第1aレンズL1aの有効径が大きくなることを抑制することができる。条件式(9)の上限以上とならないようにすることによって、望遠端における球面収差を低減することができる。なお、下記条件式(9-1)および/または(9-2)を満足するものとすれば、より良好な特性とすることができる。
  0.67<f1/f1c<0.9 …(9)
  0.67<f1/f1c<0.83 …(9-1)
  0.68<f1/f1c<0.76 …(9-2)
 また、図1に示す例では、レンズ系と像面Simとの間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等をレンズ系と像面Simとの間に配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 次に、本発明のズームレンズの数値実施例について説明する。
 まず、実施例1のズームレンズについて説明する。実施例1のズームレンズのレンズ構成を示す断面図を図1に示す。図1および後述の実施例2~9に対応した図2~9においては、広角端状態を示し、さらに移動レンズ群の移動軌跡を矢印で示している。また、紙面左側が物体側、紙面右側が像側であり、無限遠物体に合焦した状態を示している。また、図示されている開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
 実施例1のズームレンズは、物体側から順に、レンズL1a~レンズL1lの12枚のレンズから構成される第1レンズ群G1と、レンズL2a~レンズL2eの5枚のレンズから構成される第2レンズ群G2と、レンズL3a~レンズL3fの6枚のレンズから構成される第3レンズ群G3と、開口絞りStおよびレンズL4a~レンズL4kの11枚のレンズから構成される第4レンズ群G4とから構成されている。
 第1レンズ群G1は、物体側から順に、レンズL1a~レンズL1dの4枚のレンズから構成される第1レンズ群前群G1aと、レンズL1e~レンズL1gの3枚のレンズから構成される第1レンズ群中群G1bと、レンズL1h~レンズL1lの5枚のレンズから構成される第1レンズ群後群G1cとから構成されている。
 実施例1のズームレンズの基本レンズデータを表1に、諸元に関するデータを表2に、変化する面間隔に関するデータを表3に示す。以下では、表中の記号の意味について、実施例1のものを例にとり説明するが、実施例2~9についても基本的に同様である。
 表1のレンズデータにおいて、面番号の欄には最も物体側の構成要素の面を1番目として像面側に向かうに従い順次増加する面番号を示し、曲率半径の欄には各面の曲率半径を示し、面間隔の欄には各面とその次の面との光軸Z上の間隔を示す。また、nの欄には各光学要素のd線(波長587.6nm(ナノメートル))における屈折率を示し、νの欄には各光学要素のd線(波長587.6nm(ナノメートル))におけるアッベ数を示す。
 ここで、曲率半径の符号は、面形状が物体側に凸の場合を正、像面側に凸の場合を負としている。基本レンズデータには、開口絞りSt、光学部材PPも含めて示している。開口絞りStに相当する面の面番号の欄には面番号とともに(絞り)という語句を記載している。また、表1のレンズデータにおいて、変倍時および合焦時に間隔が変化する面間隔の欄にはそれぞれDD[面番号]と記載している。このDD[面番号]に対応する数値は表3に示している。
 表2の諸元に関するデータに、ズーム倍率、焦点距離f´、バックフォーカスBf´、FナンバーFNo.、全画角2ω(°)の値を示す。
 基本レンズデータ、諸元に関するデータ、および変化する面間隔に関するデータにおいて、角度の単位としては度を用い、長さの単位としてはmm(ミリメートル)を用いているが、光学系は比例拡大又は比例縮小しても使用可能なため他の適当な単位を用いることもできる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1のズームレンズの各収差図を図10に示す。なお、図10中の上段左側から順に広角端での球面収差、非点収差、歪曲収差、および倍率色収差を示し、図10中の中段左側から順に中間位置での球面収差、非点収差、歪曲収差、および倍率色収差を示し、図10中の下段左側から順に望遠端での球面収差、非点収差、歪曲収差、および倍率色収差を示す。これらの収差図は、物体距離を無限遠としたときの状態を示す。球面収差、非点収差、および歪曲収差を表す各収差図には、d線(波長587.6nm(ナノメートル))を基準波長とした収差を示す。球面収差図にはd線(波長587.6nm(ナノメートル))、C線(波長656.3nm(ナノメートル))、F線(波長486.1nm(ナノメートル))、およびg線(波長435.8nm(ナノメートル))についての収差をそれぞれ実線、長破線、短破線、および灰色の実線で示す。非点収差図にはサジタル方向およびタンジェンシャル方向の収差をそれぞれ実線および短破線で示す。倍率色収差図にはC線(波長656.3nm(ナノメートル))、F線(波長486.1nm(ナノメートル))、およびg線(波長435.8nm(ナノメートル))についての収差をそれぞれ長破線、短破線、および灰色の実線で示す。なお、球面収差図のFNo.はFナンバー、その他の収差図のωは半画角を意味する。
 次に、実施例2のズームレンズについて説明する。実施例2のズームレンズのレンズ構成を示す断面図を図2に示す。実施例2のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例2のズームレンズの基本レンズデータを表4に、諸元に関するデータを表5に、変化する面間隔に関するデータを表6に、各収差図を図11に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 次に、実施例3のズームレンズについて説明する。実施例3のズームレンズのレンズ構成を示す断面図を図3に示す。実施例3のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例3のズームレンズの基本レンズデータを表7に、諸元に関するデータを表8に、変化する面間隔に関するデータを表9に、各収差図を図12に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 次に、実施例4のズームレンズについて説明する。実施例4のズームレンズのレンズ構成を示す断面図を図4に示す。実施例4のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例4のズームレンズの基本レンズデータを表10に、諸元に関するデータを表11に、変化する面間隔に関するデータを表12に、各収差図を図13に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 次に、実施例5のズームレンズについて説明する。実施例5のズームレンズのレンズ構成を示す断面図を図5に示す。実施例5のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例5のズームレンズの基本レンズデータを表13に、諸元に関するデータを表14に、変化する面間隔に関するデータを表15に、各収差図を図14に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 次に、実施例6のズームレンズについて説明する。実施例6のズームレンズのレンズ構成を示す断面図を図6に示す。実施例6のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例6のズームレンズの基本レンズデータを表16に、諸元に関するデータを表17に、変化する面間隔に関するデータを表18に、各収差図を図15に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 次に、実施例7のズームレンズについて説明する。実施例7のズームレンズのレンズ構成を示す断面図を図7に示す。実施例7のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例7のズームレンズの基本レンズデータを表19に、諸元に関するデータを表20に、変化する面間隔に関するデータを表21に、各収差図を図16に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 次に、実施例8のズームレンズについて説明する。実施例8のズームレンズのレンズ構成を示す断面図を図8に示す。実施例8のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例8のズームレンズの基本レンズデータを表22に、諸元に関するデータを表23に、変化する面間隔に関するデータを表24に、各収差図を図17に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 次に、実施例9のズームレンズについて説明する。実施例9のズームレンズのレンズ構成を示す断面図を図9に示す。実施例9のズームレンズの各群の屈折力構成および各群のレンズ枚数構成は、実施例1のズームレンズと同じである。また、実施例9のズームレンズの基本レンズデータを表25に、諸元に関するデータを表26に、変化する面間隔に関するデータを表27に、各収差図を図18に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 実施例1~9のズームレンズの条件式(1)~(9)に対応する値を表28に示す。なお、全実施例ともd線を基準波長としており、下記の表28に示す値はこの基準波長におけるものである。
Figure JPOXMLDOC01-appb-T000028
 以上のデータから、実施例1~9のズームレンズは全て、条件式(1)~(9)を満たしており、軽量でありながら、20倍以上の高倍率で良好な光学性能を有するズームレンズであることが分かる。
 次に、本発明の実施形態に係る撮像装置について説明する。図19に、本発明の実施形態の撮像装置の一例として、本発明の実施形態に係るズームレンズ1を用いた撮像装置10の概略構成図を示す。撮像装置10としては、例えば、映画撮影用カメラ、放送用カメラ、デジタルカメラ、ビデオカメラ、または監視用カメラ等を挙げることができる。
 撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されたフィルタ2と、フィルタ2の像側に配置された撮像素子3とを備えている。なお、図19では、ズームレンズ1が備える第1レンズ群G1~第4レンズ群G4を概略的に図示している。また、第1レンズ群G1は、第1レンズ群前群G1a、第1レンズ群中群G1b、および第1レンズ群後群G1cの3つのサブレンズ群に分かれており、これらについても概略的に図示している。
 撮像素子3はズームレンズ1により形成される光学像を電気信号に変換するものであり、例えば、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。撮像素子3は、その撮像面がズームレンズ1の像面に一致するように配置される。
 撮像装置10はまた、撮像素子3からの出力信号を演算処理する信号処理部5と、信号処理部5により形成された像を表示する表示部6と、ズームレンズ1の変倍を制御するズーム制御部7と、ズームレンズ1の合焦を制御するフォーカス制御部8とを備えている。なお、図19では1つの撮像素子3のみ図示しているが、本発明の撮像装置はこれに限定されず、3つの撮像素子を有するいわゆる3板方式の撮像装置であってもよい。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、およびアッベ数は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
  1  ズームレンズ
  2  フィルタ
  3  撮像素子
  5  信号処理部
  6  表示部
  7  ズーム制御部
  8  フォーカス制御部
  10  撮像装置
  G1  第1レンズ群
  G1a  第1レンズ群前群
  G1b  第1レンズ群中群
  G1c  第1レンズ群後群
  G2  第2レンズ群
  G3  第3レンズ群
  G4  第4レンズ群
  L1a~L4k  レンズ
  PP  光学部材
  Sim  像面
  St  開口絞り
  Z  光軸

Claims (18)

  1.  物体側から順に、変倍時に像面に対し固定される正の屈折力を有する第1レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する負の屈折力を有する第2レンズ群と、変倍時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第3レンズ群と、変倍時に像面に対し固定される正の屈折力を有する第4レンズ群とからなり、
     前記第1レンズ群は、最も物体側から順に連続して、負の屈折力を有する第1aレンズと、負の屈折力を有する第1bレンズと、負の屈折力を有する第1cレンズとを有し、
     前記第1aレンズの比重をd、
     前記第1aレンズの屈折率をNd、
     前記第1aレンズの像側面の曲率半径をR1r、
     前記第1bレンズの物体側面の曲率半径をR2fとしたとき、
      2<d<4.2 …(1)
      1.43<Nd<1.75 …(2)
      -1<(R1r+R2f)/(R1r-R2f)<-0.1 …(3)
     で表される条件式(1)~(3)を満足する
     ことを特徴とするズームレンズ。
  2.  前記第1レンズ群は、物体側から順に、合焦時に像面に対し固定される負の屈折力を有する第1レンズ群前群と、合焦時に隣接する群との光軸方向の間隔を変化させて移動する正の屈折力を有する第1レンズ群中群と、合焦時に像面に対し固定される正の屈折力を有する第1レンズ群後群とからなる
     請求項1記載のズームレンズ。
  3.  前記第1aレンズの物体側面の曲率半径をR1fとしたとき、
      0.5<(R1f-R1r)/(R1f+R1r)<0.8 …(4)
     で表される条件式(4)を満足する
     請求項1または2記載のズームレンズ。
  4.  前記第1レンズ群の無限遠物体合焦時の焦点距離をf1、
     前記第2レンズ群の焦点距離をf2としたとき、
      -4.4<f1/f2<-1.5 …(5)
     で表される条件式(5)を満足する
     請求項1から3のいずれか1項記載のズームレンズ。
  5.  前記第1レンズ群の無限遠物体合焦時の焦点距離をf1、
     前記第1レンズ群前群の焦点距離をf1aとしたとき、
      -0.92<f1/f1a<-0.1 …(6)
     で表される条件式(6)を満足する
     請求項2記載のズームレンズ。
  6.  前記第1レンズ群の無限遠物体合焦時の焦点距離をf1、
     前記第1レンズ群前群と前記第1レンズ群中群の合成焦点距離をf1a_1bとしたとき、
      -0.48<f1/f1a_1b<-0.1 …(7)
     で表される条件式(7)を満足する
     請求項2または5記載のズームレンズ。
  7.  前記第1レンズ群の無限遠物体合焦時の焦点距離をf1、
     前記第1レンズ群中群の焦点距離をf1bとしたとき、
      0.17<f1/f1b<0.21 …(8)
     で表される条件式(8)を満足する
     請求項2、5、および6のいずれか1項記載のズームレンズ。
  8.  前記第1レンズ群の無限遠物体合焦時の焦点距離をf1、
     前記第1レンズ群後群の焦点距離をf1cとしたとき、
      0.67<f1/f1c<0.9 …(9)
     で表される条件式(9)を満足する
     請求項2および5から7のいずれか1項記載のズームレンズ。
  9.   2<d<4 …(1-1)
     で表される条件式(1-1)を満足する
     請求項1記載のズームレンズ。
  10.   1.43<Nd<1.7 …(2-1)
     で表される条件式(2-1)を満足する
     請求項1記載のズームレンズ。
  11.   -0.9<(R1r+R2f)/(R1r-R2f)<-0.4 …(3-1)
     で表される条件式(3-1)を満足する
     請求項1記載のズームレンズ。
  12.   0.56<(R1f-R1r)/(R1f+R1r)<0.75 …(4-1)
     で表される条件式(4-1)を満足する
     請求項3記載のズームレンズ。
  13.   -3.7<f1/f2<-2.3 …(5-1)
     で表される条件式(5-1)を満足する
     請求項4記載のズームレンズ。
  14.   -0.82<f1/f1a<-0.4 …(6-1)
     で表される条件式(6-1)を満足する
     請求項5記載のズームレンズ。
  15.   -0.45<f1/f1a_1b<-0.22 …(7-1)
     で表される条件式(7-1)を満足する
     請求項6記載のズームレンズ。
  16.   0.17<f1/f1b<0.2 …(8-1)
     で表される条件式(8-1)を満足する
     請求項7記載のズームレンズ。
  17.   0.67<f1/f1c<0.83 …(9-1)
     で表される条件式(9-1)を満足する
     請求項8記載のズームレンズ。
  18.  請求項1から17のいずれか1項記載のズームレンズを備えた撮像装置。
PCT/JP2018/015763 2017-04-20 2018-04-16 ズームレンズおよび撮像装置 WO2018194037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000746.4U CN210742600U (zh) 2017-04-20 2018-04-16 变焦镜头及摄像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083682A JP2018180439A (ja) 2017-04-20 2017-04-20 ズームレンズおよび撮像装置
JP2017-083682 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018194037A1 true WO2018194037A1 (ja) 2018-10-25

Family

ID=63856147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015763 WO2018194037A1 (ja) 2017-04-20 2018-04-16 ズームレンズおよび撮像装置

Country Status (3)

Country Link
JP (1) JP2018180439A (ja)
CN (1) CN210742600U (ja)
WO (1) WO2018194037A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659191A (ja) * 1992-08-06 1994-03-04 Canon Inc ズームレンズ
US20120019930A1 (en) * 2010-07-26 2012-01-26 Panavision International, L.P. High-speed zoom lens
JP2014232313A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659191A (ja) * 1992-08-06 1994-03-04 Canon Inc ズームレンズ
US20120019930A1 (en) * 2010-07-26 2012-01-26 Panavision International, L.P. High-speed zoom lens
JP2014232313A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Also Published As

Publication number Publication date
JP2018180439A (ja) 2018-11-15
CN210742600U (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP6128607B2 (ja) ズームレンズおよび撮像装置
JP6128387B2 (ja) ズームレンズおよび撮像装置
JP5798255B2 (ja) ズームレンズおよび撮像装置
JP6356622B2 (ja) ズームレンズおよび撮像装置
WO2017170047A1 (ja) ズームレンズおよび撮像装置
JP6683634B2 (ja) ズームレンズおよび撮像装置
JP2016012118A (ja) ズームレンズおよび撮像装置
JP6204852B2 (ja) ズームレンズおよび撮像装置
JP6685950B2 (ja) ズームレンズおよび撮像装置
JP2018120152A (ja) ズームレンズおよび撮像装置
JP5745188B2 (ja) ズームレンズおよび撮像装置
JP2019039945A (ja) ズームレンズ及び撮像装置
JP7113795B2 (ja) ズームレンズおよび撮像装置
JP6437901B2 (ja) ズームレンズおよび撮像装置
JP6219329B2 (ja) ズームレンズおよび撮像装置
JP6493896B2 (ja) ズームレンズおよび撮像装置
JP2016164629A (ja) ズームレンズおよび撮像装置
JPWO2014038147A1 (ja) ズームレンズおよび撮像装置
JP6284893B2 (ja) ズームレンズおよび撮像装置
JP6173975B2 (ja) ズームレンズおよび撮像装置
JP6411678B2 (ja) ズームレンズおよび撮像装置
JP6422836B2 (ja) ズームレンズおよび撮像装置
JP2019040020A (ja) ズームレンズ及び撮像装置
JP6649287B2 (ja) ズームレンズおよび撮像装置
JP5785333B2 (ja) ズームレンズおよび撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787890

Country of ref document: EP

Kind code of ref document: A1