WO2018193921A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2018193921A1
WO2018193921A1 PCT/JP2018/015124 JP2018015124W WO2018193921A1 WO 2018193921 A1 WO2018193921 A1 WO 2018193921A1 JP 2018015124 W JP2018015124 W JP 2018015124W WO 2018193921 A1 WO2018193921 A1 WO 2018193921A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
tank
liquid
substrate
upstream
Prior art date
Application number
PCT/JP2018/015124
Other languages
French (fr)
Japanese (ja)
Inventor
隼 澤島
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2018193921A1 publication Critical patent/WO2018193921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates.
  • substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates.
  • Substrates, ceramic substrates, solar cell substrates and the like are included.
  • a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used.
  • Patent Document 1 discloses a single-wafer type substrate processing apparatus that processes substrates one by one.
  • the substrate processing apparatus includes a chemical liquid tank that stores chemical liquid discharged from a plurality of discharge ports, an upstream heater that adjusts the temperature of the chemical liquid in the chemical liquid tank by heating the chemical liquid, and a chemical liquid heated by the upstream heater. And a supply flow path for guiding toward a plurality of discharge ports.
  • the substrate processing apparatus further includes a plurality of upstream flow paths branched from the supply flow path, a plurality of downstream heaters for heating the chemical liquid flowing through the plurality of upstream flow paths, and a chemical tank heated by the plurality of downstream heaters. And a plurality of return flow paths for guiding the liquid and a cooler for cooling the chemical solution supplied from the plurality of return flow paths.
  • the chemical liquid heated by the upstream heater is further heated by the downstream heater, and then guided toward the chemical liquid tank by a plurality of return channels. Since the temperature of the chemical solution guided by the plurality of return channels is higher than the temperature of the chemical solution in the chemical solution tank, the chemical solution returns to the chemical solution tank after being cooled by the cooler. However, if a cooler is provided in the substrate processing apparatus, the substrate processing apparatus becomes large.
  • the chemical solution returning to the chemical solution tank is heated only by the upstream heater or by both the upstream heater and the downstream heater, no matter how the flow rate of the chemical solution returning to the chemical solution tank is adjusted, the heat loss is not very large. As long as the chemical solution is hotter than the chemical solution in the chemical tank, it returns to the tank. Since the upstream heater cannot cool the chemical solution, if the temperature of the chemical solution in the tank rises above the set temperature, it must wait until the temperature drops to the set temperature. Therefore, during that time, the chemical solution in the tank cannot be supplied to the substrate, and the throughput (the number of substrates processed per unit time) is reduced.
  • one of the objects of the present invention is to provide a substrate processing apparatus and a substrate processing method that can return the processing liquid that returns to the tank after the temperature is adjusted in two stages without cooling.
  • a substrate holding unit that rotates around a vertical rotation axis passing through a central portion of a substrate while holding the substrate horizontally, and a processing liquid toward the substrate held by the substrate holding unit.
  • a plurality of discharge ports for discharging, a tank for storing processing liquid discharged from the plurality of discharge ports, a circulation channel for circulating the processing solution in the tank, and a processing channel in the tank for circulating the processing solution in the tank A liquid feeding device to be sent to the apparatus, an upstream heater for heating the processing liquid flowing in the circulation flow path, a supply flow path for guiding the processing liquid in the circulation flow path toward the plurality of discharge ports, and the supply flow path
  • a plurality of upstream flow paths that guide the processing liquid in the supply flow path toward the plurality of discharge ports, and a cooler that cools the processing liquid or a cooling / heating unit that heats and cools the processing liquid.
  • the plurality of upstream flow paths A plurality of temperature regulators that change the temperature of the treatment liquid flowing through the plurality of upstream flow paths by at least one of heating and cooling, respectively, and a plurality of temperature controllers respectively provided in the plurality of upstream flow paths.
  • a plurality of return flow paths for guiding the processing liquid whose temperature has been changed toward the tank, and a discharge in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of discharge ports.
  • a switching unit that switches between a plurality of states including a state and a discharge stop state in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of return flow paths
  • the temperature of the processing liquid that has passed through the plurality of temperature regulators and the temperature control unit in the tank that controls the upstream heater are set such that the temperature of the processing liquid in the tank becomes the tank temperature setting value. It becomes a pipe temperature setting value, the maximum value of the plurality of pipe temperature setting values is equal to or higher than the tank temperature setting value, and the minimum value of the plurality of pipe temperature setting values is smaller than the tank temperature setting value.
  • the expected return temperature which is a value divided by the calculated value of the volume of all treatment liquids returning to the tank, is equal to or lower than the tank temperature setting value, the tank temperature setting value, a plurality of piping temperature setting values, And a return temperature control unit for setting a plurality of flow rate setting values.
  • the temperature of the processing liquid may greatly affect the processing of the substrate. If the temperature controller is stopped while discharging is stopped, it takes time for the temperature of the processing liquid heated or cooled by the temperature controller to stabilize at the intended temperature when the temperature controller starts or restarts. . For this reason, the discharge of the treatment liquid cannot be started or restarted immediately, and the throughput is reduced. Therefore, it is preferable to cause the temperature controller to heat or cool the liquid even when the discharge is stopped.
  • the processing liquid is supplied to the upstream flow path even when the discharge is stopped, and the temperature controller is heated or cooled. Therefore, even when the discharge is stopped, the temperature of the temperature controller can be kept stable. Therefore, the discharge of the processing liquid can be resumed immediately. Furthermore, while the discharge is stopped, the processing liquid heated or cooled by the temperature controller is returned to the tank via the return flow path, so that the consumption of the processing liquid can be reduced. In addition, since the treatment liquid having a temperature equal to or lower than the treatment liquid in the tank returns to the tank, it is not necessary to provide a cooler for cooling the treatment liquid returning to the tank. Thereby, the enlargement of the substrate processing apparatus can be prevented.
  • the calculated value of the amount of heat of all the processing liquids returning from the plurality of return flow paths to the tank in a unit time is the total value of the product of the pipe temperature setting value and the flow rate setting value in the plurality of upstream flow paths.
  • the calculated value of the volume of all treatment liquids returning from the plurality of return flow paths to the tank in the unit time is a total value of a plurality of flow rate setting values. Therefore, if the in-pipe temperature setting value and the flow rate setting value in each upstream flow path are known, the expected return temperature can be obtained.
  • At least one of the following features may be added to the substrate processing apparatus.
  • the plurality of temperature controllers are all the cooling unit.
  • the processing liquid can be heated and cooled in any upstream flow path. Therefore, the temperature of the processing liquid discharged from the plurality of discharge ports can be set more freely than when the plurality of temperature controllers include heaters. Furthermore, since the cooling / heating unit can also cool the processing liquid, the temperature of the processing liquid returning to the tank can be made equal to or lower than the temperature of the processing liquid in the tank. Thereby, the cooler which cools the process liquid which returns to a tank can be omitted.
  • the value obtained by subtracting the predicted return temperature from the tank temperature setting value is smaller than the minimum value of the difference between the plurality of piping temperature setting values.
  • the value obtained by subtracting the expected return temperature from the tank temperature setting value is smaller than the minimum difference between the plurality of pipe temperature setting values. That is, even if the expected return temperature is less than the tank internal temperature set value, the difference between the two is small. If the difference between the two is large, the treatment liquid having a temperature much lower than the actual temperature of the treatment liquid in the tank will return to the tank. Therefore, by reducing the difference between the tank internal temperature setting value and the expected return temperature, it is possible to suppress fluctuations in the temperature of the processing liquid in the tank.
  • the substrate processing apparatus further includes a new liquid flow path for guiding a new processing liquid having a liquid temperature equal to or lower than the tank internal temperature set value into the tank.
  • the quantity of the processing liquid in a tank is maintained more than a regulation quantity.
  • the temperature of the new treatment liquid is not more than the tank temperature set value (for example, room temperature (20 to 30 ° C.)). Therefore, even if a new treatment liquid is replenished to the tank, the temperature of the treatment liquid in the tank does not exceed the tank temperature setting value. Thereby, it is not necessary to stop the supply of the processing liquid to the substrate until the temperature of the processing liquid in the tank decreases to the tank temperature setting value.
  • the substrate processing apparatus is further connected to each of the plurality of return flow paths, and further includes a collective return flow path for guiding the processing liquid from the plurality of return flow paths to the tank.
  • the processing liquid that has flowed from the plurality of upstream flow paths to the plurality of return flow paths flows to the collective return flow path.
  • the processing liquid supplied to the collective return channel flows toward the tank while being mixed in the collective return channel. That is, the processing liquids having different temperatures are mixed in the collective return flow path, and a liquid mixture having a temperature substantially equal to the tank temperature setting value is formed. Therefore, the variation in the temperature of the processing liquid in the tank can be suppressed as compared with the case where the processing liquids having different temperatures are separately supplied to the tank.
  • the plurality of discharge ports are respectively arranged at a plurality of positions having different horizontal distances from the rotation axis.
  • the processing liquid ejected from the plurality of ejection ports is deposited on a plurality of liquid deposition positions in the upper surface of the substrate.
  • the plurality of liquid landing positions have different horizontal distances from the rotation axis of the substrate. Therefore, the processing uniformity can be improved as compared with the case where the processing liquid is discharged only toward the central portion of the substrate.
  • the temperature of the processing liquid when discharged from the plurality of discharge ports is changed by the plurality of temperature controllers. Therefore, the temperature of the processing liquid at the time of landing on the upper surface of the substrate can be intentionally made non-uniform, and the processing quality can be controlled.
  • a substrate rotating step of rotating the substrate around a vertical rotation axis passing through the central portion of the substrate while holding the substrate horizontally by the substrate holding unit; and a plurality of discharge ports toward the substrate held by the substrate holding unit A processing liquid discharge step for discharging the processing liquid to the tank, a processing liquid storage step for storing the processing liquid discharged from the plurality of discharge ports in the tank, and a circulation step for circulating the processing liquid in the tank to the circulation channel;
  • a liquid feeding step for sending the processing liquid from the tank to the circulation passage to the liquid feeding device, an upstream temperature adjustment step for heating the processing liquid flowing in the circulation passage to an upstream heater, and the circulation flow in the supply passage.
  • Upstream plan to guide A cooling unit for cooling the processing liquid or a cooling unit for heating and cooling the processing liquid, and a plurality of temperature controllers respectively provided in the plurality of upstream flow paths, wherein the plurality of temperature controllers are provided by at least one of heating and cooling.
  • a return process that guides the liquid to the plurality of upstream flow paths from the supply flow path, a discharge state in which the treatment liquid is supplied to the multiple discharge ports, and the supply A discharge switching step of switching a switching unit between a plurality of states, including a discharge stop state in which the processing liquid supplied from the flow path to the plurality of upstream flow paths is supplied to the plurality of return flow paths, and the tank
  • a tank internal temperature control step for controlling the upstream heater so that the temperature of the processing liquid in the tank becomes a tank internal temperature set value, and the temperature of the processing liquid that has passed through the plurality of temperature regulators.
  • Each of the plurality of piping temperature setting values is set, the maximum value of the plurality of piping temperature setting values is equal to or greater than the tank temperature setting value, and the minimum value of the plurality of piping temperature setting values is the tank temperature setting.
  • a temperature control step in the pipe for controlling the temperature controllers in the pipe temperature controller so that the flow rate of the processing liquid that has passed through the plurality of flow rate adjustment valves is a plurality of flow rate setting values.
  • a flow rate control step for controlling the plurality of flow rate adjustment valves by the flow rate control unit, and calculated unit values of calorific values of all processing liquids returning from the plurality of return flow paths to the tank in the unit time.
  • the expected return temperature which is a value divided by the calculated values of the volumes of all treatment liquids returning from the plurality of return flow paths to the tank, is equal to or lower than the tank internal temperature setting value.
  • a substrate processing method including a tank temperature setting value, a plurality of piping temperature setting values, and a return temperature control step for setting a plurality of flow rate setting values. According to this configuration, the same effect as described above can be obtained.
  • FIG. 1 and 2 are schematic views showing a processing liquid supply system of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 1 shows a processing liquid supply system in a discharge state
  • FIG. 2 shows a processing liquid supply system in a discharge stop state.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a processing unit 2 that processes a substrate W with a processing liquid, a transfer robot (not shown) that transfers the substrate W to the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1.
  • the control device 3 is a computer that includes a storage unit 3b that stores information such as a program, and an arithmetic unit 3a that controls the substrate processing apparatus 1 according to the information stored in the storage unit 3b.
  • the substrate processing apparatus 1 includes a plurality of fluid boxes 5 that contain a fluid device such as a valve 51 that controls supply and stop of supply of the processing liquid to the processing unit 2, and processing supplied to the processing unit 2 via the fluid box 5. And a storage box 6 for storing a tank 41 for storing liquid.
  • the processing unit 2 and the fluid box 5 are disposed in the frame 4 of the substrate processing apparatus 1.
  • the chamber 7 and the fluid box 5 of the processing unit 2 are arranged in the horizontal direction.
  • the storage box 6 is disposed outside the frame 4.
  • the storage box 6 may be disposed in the frame 4.
  • FIG. 3 is a schematic front view showing the inside of the processing unit 2.
  • FIG. 4 is a schematic plan view showing the inside of the processing unit 2.
  • the processing unit 2 rotates the substrate W around a vertical rotation axis A ⁇ b> 1 passing through the central portion of the substrate W while holding the substrate W horizontally in the chamber 7 and the chamber 7.
  • a spin chuck 11 and a cylindrical cup 15 that receives the processing liquid discharged from the substrate W are included.
  • the spin chuck 11 is an example of a substrate holding unit.
  • the chamber 7 includes a box-shaped partition wall 8 provided with a loading / unloading port 8a through which the substrate W passes, and a shutter 9 for opening and closing the loading / unloading port 8a.
  • the shutter 9 is movable with respect to the partition wall 8 between an open position where the carry-in / out port 8a is opened and a closed position (a position shown in FIG. 4) where the carry-in / out port 8a is closed.
  • a transfer robot (not shown) loads the substrate W into the chamber 7 through the loading / unloading port 8a and unloads the substrate W from the chamber 7 through the loading / unloading port 8a.
  • the spin chuck 11 includes a disk-shaped spin base 12 held in a horizontal posture, a plurality of chuck pins 13 that hold the substrate W in a horizontal posture above the spin base 12, and And a spin motor 14 that rotates the substrate W around the rotation axis A1 by rotating the plurality of chuck pins 13.
  • the spin chuck 11 is not limited to a clamping chuck in which a plurality of chuck pins 13 are brought into contact with the peripheral end surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is adsorbed to the upper surface of the spin base 12.
  • a vacuum chuck that holds the substrate W horizontally may be used.
  • the cup 15 includes a cylindrical splash guard 17 that surrounds the spin chuck 11 around the rotation axis A1, and a cylindrical outer wall 16 that surrounds the splash guard 17 around the rotation axis A1.
  • the upper position of the splash guard 17 is positioned above the position where the spin chuck 11 holds the substrate W (the position shown in FIG. 3), and the upper end of the splash guard 17 is positioned on the substrate W by the spin chuck 11.
  • a guard lifting / lowering unit 18 that vertically moves the splash guard 17 between a lower position and a lower position than the holding position is included.
  • the processing unit 2 includes a rinsing liquid nozzle 21 that discharges a rinsing liquid downward toward the upper surface of the substrate W held by the spin chuck 11.
  • the rinse liquid nozzle 21 is connected to a rinse liquid pipe 22 in which a rinse liquid valve 23 is interposed.
  • the processing unit 2 may include a nozzle moving unit that moves the rinse liquid nozzle 21 between the processing position and the standby position.
  • the rinse liquid is supplied from the rinse liquid pipe 22 to the rinse liquid nozzle 21 and discharged from the rinse liquid nozzle 21.
  • the rinse liquid is, for example, pure water (deionized water).
  • the rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm).
  • the processing unit 2 includes a plurality of nozzles 26 (first nozzle 26 ⁇ / b> A, second nozzle 26 ⁇ / b> B, third nozzle 26 ⁇ / b> C, and fourth nozzle 26 ⁇ / b> D) that discharge a chemical solution downward, and a plurality of nozzles 26. And a plurality of nozzles 26 between a processing position (a position indicated by a two-dot chain line in FIG. 4) and a standby position (a position indicated by a solid line in FIG. 4) by moving the holder 25. And a nozzle moving unit 24 for moving the.
  • Typical examples of the chemical solution are an etching solution such as TMAH (tetramethylammonium hydroxide) and a resist stripping solution such as SPM (mixed solution containing sulfuric acid and hydrogen peroxide solution).
  • TMAH tetramethylammonium hydroxide
  • SPM mixed solution containing sulfuric acid and hydrogen peroxide solution.
  • the chemical solution is not limited to TMAH and SPM, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (such as citric acid and oxalic acid), organic alkalis other than TMAH, surfactants, It may be a liquid containing at least one of the corrosion inhibitors.
  • each nozzle 26 includes a nozzle body 27 that is cantilevered by a holder 25.
  • the nozzle body 27 includes an arm portion 28 extending from the holder 25 in the horizontal longitudinal direction D1 and a tip portion 29 extending downward from the tip 28a of the arm portion 28.
  • the tip 28a of the arm portion 28 means a portion farthest in the longitudinal direction D1 from the holder 25 in plan view.
  • the plurality of arm portions 28 are arranged in the horizontal arrangement direction D2 orthogonal to the longitudinal direction D1 in the order of the first nozzle 26A to the fourth nozzle 26D.
  • the plurality of arm portions 28 are arranged at the same height.
  • the interval between the two arm portions 28 adjacent in the arrangement direction D2 may be the same as any other interval, or may be different from at least one of the other intervals.
  • FIG. 4 shows an example in which a plurality of arm portions 28 are arranged at equal intervals.
  • the length of the plurality of arm portions 28 in the longitudinal direction D1 is shorter in the order of the first nozzle 26A to the fourth nozzle 26D.
  • the tips of the plurality of nozzles 26 are shifted in the longitudinal direction D1 so as to be arranged in the order of the first nozzle 26A to the fourth nozzle 26D in the longitudinal direction D1.
  • the tips of the plurality of nozzles 26 are arranged linearly in plan view.
  • the nozzle moving unit 24 moves the plurality of nozzles 26 along an arcuate path passing through the substrate W in plan view by rotating the holder 25 about the nozzle rotation axis A2 extending vertically around the cup 15. Let As a result, the plurality of nozzles 26 move horizontally between the processing position and the standby position.
  • the processing unit 2 includes a bottomed cylindrical standby pot 35 disposed below the standby positions of the plurality of nozzles 26.
  • the standby pot 35 is disposed around the cup 15 in plan view.
  • the processing position is a position where the chemicals discharged from the plurality of nozzles 26 are deposited on the upper surface of the substrate W.
  • the plurality of nozzles 26 and the substrate W are overlapped in plan view, and the tips of the plurality of nozzles 26 are in the radial direction Dr in the order of the first nozzle 26A to the fourth nozzle 26D from the rotation axis A1 side in plan view. Lined up.
  • the tip of the first nozzle 26A overlaps the central portion of the substrate W in plan view
  • the tip of the fourth nozzle 26D overlaps the peripheral portion of the substrate W in plan view.
  • the standby position is a position where the plurality of nozzles 26 are retracted so that the plurality of nozzles 26 and the substrate W do not overlap in plan view.
  • the tips of the plurality of nozzles 26 are positioned outside the cup 15 so as to be along the outer peripheral surface of the cup 15 (the outer peripheral surface of the outer wall 16) in plan view, and the order of the first nozzle 26A to the fourth nozzle 26D.
  • the plurality of nozzles 26 are arranged in the order of the first nozzle 26A to the fourth nozzle 26D and away from the rotation axis A1.
  • first and “A” may be added to the beginning and the end of the configuration corresponding to the first nozzle 26A, respectively.
  • the upstream flow path 48 corresponding to the first nozzle 26A may be referred to as “first upstream flow path 48A”.
  • first upstream flow path 48A The same applies to the configuration corresponding to the second nozzle 26B to the fourth nozzle 26D.
  • the upstream flow path 48 corresponding to the second nozzle 26B may be referred to as a “second upstream flow path 48B”.
  • the set temperature of the upstream heater 43 may be referred to as upstream temperature, and the set temperature of the temperature controller 53 may be referred to as downstream temperature.
  • the set temperatures of the first temperature controller 53 to the fourth temperature controller 53 may be referred to as a first downstream temperature to a fourth downstream temperature, respectively.
  • the nozzle body 27 includes a resin tube 30 that guides the processing liquid, a cross-section cylindrical core metal 31 that surrounds the resin tube 30, and a cross-section cylindrical resin coating 32 that covers the outer surface of the core metal 31.
  • a resin tube 30 that guides the processing liquid
  • a cross-section cylindrical core metal 31 that surrounds the resin tube 30
  • a cross-section cylindrical resin coating 32 that covers the outer surface of the core metal 31.
  • Each nozzle 26 other than the first nozzle 26 ⁇ / b> A further includes a nozzle head 33 attached to the tip end portion 29 of the nozzle body 27.
  • the nozzle body 27 forms one flow path that extends along the nozzle body 27.
  • the nozzle head 33 forms a plurality of flow paths for guiding the processing liquid supplied from the nozzle body 27.
  • the flow path of the nozzle body 27 forms a discharge port 34 that opens on the outer surface of the nozzle body 27.
  • the plurality of flow paths of the nozzle head 33 form a plurality of discharge ports 34 that open at the outer surface of the nozzle head 33.
  • the flow path of the nozzle body 27 corresponds to a part of the upstream flow path 48 described later.
  • Each flow path of the nozzle head 33 corresponds to a downstream flow path 52 described later.
  • the downstream ends of the first upstream channel 48A to the fourth upstream channel 48D are arranged at a plurality of positions having different distances from the rotation axis A1.
  • the first nozzle 26 ⁇ / b> A includes one discharge port 34 provided in the nozzle body 27.
  • Each nozzle 26 other than the first nozzle 26 ⁇ / b> A includes three discharge ports 34 provided in the nozzle head 33.
  • the three discharge ports 34 provided in the same nozzle head 33 are the inner discharge port closest to the rotation axis A1 among the three discharge ports 34 and the outermost side of the three discharge ports 34 farthest from the rotation axis A1.
  • the discharge port and an intermediate discharge port disposed between the inner discharge port and the outer discharge port are configured.
  • the plurality of discharge ports 34 are arranged in a straight line in a plan view.
  • the distance between the two discharge ports 34 at both ends is equal to or less than the radius of the substrate W.
  • the interval between two adjacent discharge ports 34 may be the same as any other interval, or may be different from at least one of the other intervals.
  • the plurality of discharge ports 34 may be arranged at the same height, or may be arranged at two or more different heights.
  • the plurality of discharge ports 34 are respectively disposed at a plurality of positions having different distances from the rotation axis A1 (shortest distance in plan view).
  • the innermost discharge port (first discharge port 34 ⁇ / b> A) closest to the rotation axis A ⁇ b> 1 among the plurality of discharge ports 34 is disposed above the central portion of the substrate W and rotates among the plurality of discharge ports 34.
  • the outermost discharge port (fourth discharge port 34 ⁇ / b> D) farthest from the axis A ⁇ b> 1 is disposed above the peripheral edge of the substrate W.
  • the plurality of discharge ports 34 are arranged in the radial direction Dr in plan view.
  • the first discharge port 34A provided in the first nozzle 26A is a main discharge port that discharges the processing liquid toward the center of the upper surface of the substrate W.
  • the second discharge port 34B to the fourth discharge port 34D provided in each nozzle 26 other than the first nozzle 26A are a plurality of sub-discharge ports that discharge the processing liquid toward a part of the upper surface of the substrate W other than the central portion. It is.
  • the first upstream flow channel 48A connected to the first discharge port 34A is a main upstream flow channel, and the second upstream flow channel 48B to the fourth upstream flow connected to the second discharge port 34B to the fourth discharge port 34D.
  • the channel 48D is a plurality of sub-upstream channels.
  • each discharge port 34 discharges a chemical solution in a discharge direction perpendicular to the upper surface of the substrate W.
  • the plurality of discharge ports 34 discharge the chemical liquid toward a plurality of liquid landing positions in the upper surface of the substrate W.
  • the plurality of liquid landing positions are different positions with different distances from the rotation axis A1.
  • the liquid landing position closest to the rotation axis A1 among the plurality of liquid landing positions is referred to as a first liquid landing position, and the liquid landing position second closest to the rotation axis A1 among the plurality of liquid landing positions.
  • the chemical liquid discharged from the first discharge port 34A reaches the first landing position
  • the chemical liquid discharged from the second discharge port 34B reaches the second landing position.
  • the treatment liquid supply system includes a chemical liquid tank 41 that stores chemical liquid, a circulation channel 42 that circulates the chemical liquid in the chemical liquid tank 41, and a chemical liquid that heats the chemical liquid flowing in the circulation channel 42 at an upstream temperature higher than room temperature.
  • An upstream heater 43 that adjusts the temperature of the chemical solution in the tank 41 and a pump 44 that sends the chemical solution in the chemical solution tank 41 to the circulation passage 42 are included.
  • the processing liquid supply system further includes a supply channel 47 connected to the circulation channel 42, a supply valve 45 that opens and closes the supply channel 47, and a circulation valve 46 that opens and closes the circulation channel 40.
  • the processing liquid supply system includes a plurality of upstream flow paths 48 that guide the liquid supplied from the supply flow path 47 toward the plurality of discharge ports 34, and a plurality of flow rates that detect the flow rates of the liquid flowing in the plurality of upstream flow paths 48.
  • the flow rate adjusting valve 50 includes a valve body that opens and closes the flow path and an actuator that changes the opening degree of the valve body.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be an actuator other than these.
  • the treatment liquid supply system includes a plurality of downstream channels 52 that guide the liquid supplied from the upstream channel 48 toward the plurality of discharge ports 34.
  • the downstream ends of the upstream channels 48 other than the first upstream channel 48 ⁇ / b> A are branched into a plurality of downstream channels 52. That is, each upstream flow channel 48 other than the first upstream flow channel 48 ⁇ / b> A is a branched upstream flow channel branched into a plurality of downstream flow channels 52.
  • FIG. 1 and FIG. 2 show an example in which the branch upstream channel is branched into two downstream channels 52.
  • FIG. 5 shows an example in which the branch upstream channel branches into three downstream channels 52.
  • the three downstream flow paths 52 branched from the second upstream flow path 48B are connected to three discharge ports 34 (an inner discharge port, an intermediate discharge port, and an outer discharge port) provided in the same nozzle head 33, respectively. Yes.
  • the third upstream channel 48C and the fourth upstream channel 48D are the same as the second upstream channel 48B.
  • the first upstream flow path 48A is connected to a first discharge port 34A provided in the first nozzle 26A.
  • the treatment liquid supply system includes a plurality of temperature regulators 53 that heat or cool the liquid flowing in the plurality of upstream flow paths 48.
  • Each temperature controller 53 is a heating-cooling unit that not only heats the liquid but also cools it.
  • the processing liquid supply system further includes a plurality of return channels 54 connected to the plurality of upstream channels 48 at positions downstream from the plurality of temperature controllers 53 and a plurality of return channels 54 that open and close the plurality of return channels 54, respectively.
  • Return valve 55 and a collective return channel 56 extending from each return channel 54 to the chemical tank 41.
  • the switching unit includes a plurality of discharge valves 51 and a plurality of return valves 55.
  • the processing liquid supply system includes a liquid amount sensor 57 that detects the amount of the chemical liquid in the chemical liquid tank 41, a new liquid flow path 58 that guides a new chemical liquid into the chemical liquid tank 41, and a new liquid that opens and closes the new liquid flow path 58. And a valve 59.
  • the control device 3 opens the new liquid valve 59 and replenishes the chemical liquid tank 41 with the new chemical liquid. Thereby, the quantity of the chemical
  • the new chemical solution is, for example, an unused chemical solution at room temperature.
  • FIG. 1 a processing liquid supply system in a discharge state in which a plurality of discharge ports 34 discharge a chemical liquid will be described with reference to FIG.
  • the open valve is shown in black and the closed valve is shown in white.
  • the chemical solution in the chemical solution tank 41 is sent to the circulation channel 42 by the pump 44.
  • the chemical solution sent by the pump 44 is heated by the upstream heater 43, then flows from the circulation channel 42 to the supply channel 47, and flows from the supply channel 47 to the plurality of upstream channels 48.
  • the chemical solution supplied to the plurality of upstream flow paths 48 is heated or cooled by the plurality of temperature controllers 53.
  • the chemical solution in the first upstream channel 48A is supplied to one first discharge port 34A provided in the first nozzle 26A.
  • the chemical solution in the second upstream channel 48B is supplied to the plurality of second discharge ports 34B provided in the second nozzle 26B via the plurality of downstream channels 52.
  • the third upstream channel 48C and the fourth upstream channel 48D are the same as the second upstream channel 48B. Thereby, the chemical liquid is discharged from all the discharge ports 34.
  • the first to fourth downstream temperatures T 1 to T 4 increase in the order of the first to fourth downstream temperatures T 1 to T 4 .
  • the first discharge port 34A ejects the first downstream temperature T 1 of the chemical solution.
  • Each second discharge port 34B ejects the second downstream temperature T 2 chemicals.
  • Each third discharge port 34C ejects the third liquid chemical downstream temperature T 3, the fourth discharge port 34D ejects a chemical fourth downstream temperature T 4. Therefore, the temperature of the chemical liquid discharged from the plurality of discharge ports 34 increases stepwise as the distance from the rotation axis A1 increases.
  • the first to fourth downstream temperatures T 1 to T 4 correspond to first to fourth in-pipe temperature setting values, respectively.
  • the set temperature T tank of the upstream heater 43 corresponds to the tank internal temperature set value.
  • the first downstream temperature T 1 is lower than the set temperature T tank of the upstream heater 43.
  • the fourth downstream temperature T 4 may be equal to the set temperature T tank of the upstream heater 43 or may be lower than the set temperature T tank of the upstream heater 43. If the fourth downstream temperature T 4 is equal to the set temperature T tank of the upstream heater 43, a fourth temperature regulator 53 is not a cold unit, or may be a heater.
  • FIG. 2 a processing liquid supply system in a discharge stopped state in which the discharge of the chemical liquid from the plurality of discharge ports 34 is stopped will be described.
  • open valves are shown in black and closed valves are shown in white.
  • the chemical solution in the chemical solution tank 41 is sent to the circulation channel 42 by the pump 44.
  • a part of the chemical solution sent by the pump 44 is heated by the upstream heater 43 and then returns to the chemical solution tank 41 through the circulation channel 40.
  • the remaining chemical solution sent by the pump 44 flows from the circulation channel 42 to the supply channel 47 and from the supply channel 47 to the plurality of upstream channels 48.
  • the chemical in the first upstream channel 48A is heated or cooled by the temperature controller 53 corresponding to the first upstream channel 48A, and then flows into the return channel 54.
  • the second upstream channel 48B, the third upstream channel 48C, and the fourth upstream channel 48D are the same as the first upstream channel 48A.
  • the chemical solutions having different temperatures flow from the plurality of return channels 54 to the collective return channel 56 and are mixed in the collective return channel 56. Thereafter, the mixed chemical liquid returns from the collective return channel 56 to the chemical tank 41. As a result, all the chemical liquid sent to the circulation flow path 42 by the pump 44 returns to the chemical liquid tank 41.
  • FIG. 7 is a process diagram for explaining an example of the processing of the substrate W performed by the substrate processing apparatus 1.
  • the following operations are executed by the control device 3 controlling the substrate processing apparatus 1.
  • the control device 3 is programmed to execute the following steps.
  • FIG. 3 and FIG. 7 will be referred to as appropriate.
  • a plurality of nozzles 26 are retracted from above the spin chuck 11 and the splash guard 17 is positioned at the lower position (not shown). ), The substrate W is carried into the chamber 7. As a result, the substrate W is placed on the plurality of chuck pins 13 with the surface facing upward. Thereafter, the hand of the transfer robot is retracted from the inside of the chamber 7, and the loading / unloading port 8 a of the chamber 7 is closed by the shutter 9.
  • the plurality of chuck pins 13 are pressed against the peripheral edge of the substrate W, and the substrate W is gripped by the plurality of chuck pins 13. Further, the guard lifting / lowering unit 18 moves the splash guard 17 from the lower position to the upper position. Thereby, the upper end of the splash guard 17 is disposed above the substrate W. Thereafter, the spin motor 14 is driven, and the rotation of the substrate W is started. Thereby, the substrate W is rotated at a predetermined liquid processing speed (for example, several hundred rpm).
  • a predetermined liquid processing speed for example, several hundred rpm
  • the nozzle moving unit 24 moves the plurality of nozzles 26 from the standby position to the processing position.
  • the plurality of ejection ports 34 overlap the substrate W in plan view.
  • the plurality of discharge valves 51 and the like are controlled, and the chemical liquid is simultaneously discharged from the plurality of nozzles 26 (step S1 in FIG. 7).
  • the plurality of nozzles 26 discharge the chemical liquid in a state where the nozzle moving unit 24 stops the plurality of nozzles 26.
  • the nozzle moving unit 24 moves the plurality of nozzles 26 from the processing position to the standby position.
  • the chemical liquid discharged from the plurality of nozzles 26 lands on the upper surface of the rotating substrate W, and then flows outward (in the direction away from the rotation axis A1) along the upper surface of the substrate W by centrifugal force.
  • the chemical solution that has reached the peripheral edge of the upper surface of the substrate W scatters around the substrate W and is received by the inner peripheral surface of the splash guard 17. In this way, the chemical liquid is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical liquid covering the entire upper surface of the substrate W is formed on the substrate W. Thereby, the entire upper surface of the substrate W is treated with the chemical solution.
  • the rinse liquid valve 23 is opened, and the discharge of the rinse liquid (pure water) from the rinse liquid nozzle 21 is started (step S3 in FIG. 7). Thereby, the chemical liquid on the substrate W is washed away by the rinse liquid, and a liquid film of the rinse liquid covering the entire upper surface of the substrate W is formed.
  • the rinsing liquid valve 23 is closed and the discharge of the rinsing liquid from the rinsing liquid nozzle 21 is stopped (step S4 in FIG. 7).
  • Step S5 in FIG. 7 After the discharge of the rinsing liquid from the rinsing liquid nozzle 21 is stopped, the substrate W is accelerated in the rotation direction by the spin motor 14, and the substrate W rotates at a drying speed (for example, several thousand rpm) higher than the liquid processing speed. (Step S5 in FIG. 7). Thereby, the rinse liquid adhering to the substrate W is shaken off around the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the rotation of the spin motor 14 and the substrate W is stopped.
  • the guard lifting / lowering unit 18 moves the splash guard 17 from the upper position to the lower position. Further, the holding of the substrate W by the plurality of chuck pins 13 is released.
  • the transfer robot causes the hand to enter the chamber 7 with the plurality of nozzles 26 retracted from above the spin chuck 11 and the splash guard 17 is positioned at the lower position. Thereafter, the transfer robot takes the substrate W on the spin chuck 11 with the hand and carries the substrate W out of the chamber 7.
  • FIG. 8 is a block diagram showing functional blocks of the control device 3.
  • the control device 3 includes an in-tank temperature control unit 61, an in-pipe temperature control unit 62, a flow rate control unit 63, and a return temperature control unit 64. These are functional blocks that are realized when a calculation unit 3a (see FIG. 1) such as a CPU executes a program installed in the control device 3.
  • the tank internal temperature control unit 61 controls the upstream heater 43 so that the temperature of the chemical solution in the chemical solution tank 41 becomes the tank internal temperature set value.
  • the in-pipe temperature controller 62 controls the plurality of temperature controllers 53 so that the temperature of the chemical solution that has passed through the plurality of temperature controllers 53 becomes a plurality of in-pipe temperature settings, respectively.
  • the maximum value of the plurality of piping temperature setting values is equal to or higher than the tank temperature setting value, and the minimum value of the plurality of piping temperature setting values is less than the tank temperature setting value.
  • the flow rate control unit 63 controls the plurality of flow rate adjustment valves 50 such that the flow rates of the chemicals that have passed through the plurality of flow rate adjustment valves 50 become a plurality of flow rate setting values, respectively.
  • Each flow rate set value may be the same value, or may be a value different from at least one other flow rate set value.
  • the return temperature control unit 64 sets the tank temperature setting value, the plurality of pipe temperature setting values, and the plurality of flow rate setting values so that the expected return temperature is equal to or lower than the tank temperature setting value.
  • the predicted return temperature is calculated by calculating the calorific value of all the chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in unit time, and the volume of all chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in unit time. The value divided by the calculated value.
  • the calculated value of the calorific value of all the chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in a unit time is the sum of products of the temperature setting values and the flow rate setting values in the plurality of upstream flow paths 48.
  • the calculated value of the volume of all the chemical solutions that return to the chemical solution tank 41 from the plurality of return channels 54 in a unit time is the total value of the plurality of flow rate setting values. Therefore, if the in-pipe temperature setting value and the flow rate setting value in each upstream flow path 48 are known, the expected return temperature can be obtained.
  • FIG. 9 is a table showing specific examples of tank temperature setting values, a plurality of piping temperature setting values, a plurality of flow rate setting values, and an expected return temperature. In the following, reference is made to FIGS.
  • the controller 3 sets the tank temperature setting value, the plurality of pipe temperature setting values, and the temperature of the chemical solution returning from the plurality of return channels 54 to the chemical solution tank 41 to be equal to or lower than the temperature of the chemical solution in the chemical solution tank 41.
  • Set multiple flow rate settings FIG. 9 shows a specific example of the tank temperature setting value, the plurality of pipe temperature setting values, the plurality of flow rate setting values, and the expected return temperature when the expected return temperature is equal to the tank temperature setting value.
  • the set temperature of the temperature regulator 53 corresponding to the first upstream passage 48A that is, first downstream temperature T 1 of is 60 ° C..
  • the second downstream temperature T 2 is 65 ° C.
  • the third downstream temperature T 3 is 75 ° C.
  • the fourth downstream temperature T 4 is 80 ° C.
  • the upstream temperature T tank that is the set temperature of the upstream heater 43 is 70 ° C. Accordingly, the first downstream temperature T 1 and the second downstream temperature T 2 are lower than the upstream temperature T tank , and the third downstream temperature T 3 and the fourth downstream temperature T 4 are higher than the upstream temperature T tank .
  • Flow rate setting of the chemical liquid through the flow rate adjustment valve 50 corresponding to the first upstream passage 48A was a x (mL / min).
  • a set value (second flow rate set value V 2 ) of the flow rate of the chemical liquid passing through the flow rate adjustment valve 50 corresponding to the second upstream flow path 48B is also x.
  • the set value (third flow rate set value V 3 ) of the chemical liquid passing through the flow rate adjustment valve 50 corresponding to the third upstream flow channel 48C is x
  • the flow rate adjustment corresponding to the fourth upstream flow channel 48D The set value (fourth flow rate set value V 4 ) of the flow rate of the chemical liquid passing through the valve 50 is x. That is, in this example, the first flow rate setting value V 1 , the second flow rate setting value V 2 , the third flow rate setting value V 3 , and the fourth flow rate setting value V 4 are equal to each other.
  • the calorific values of all the chemical solutions that return to the chemical solution tank 41 from the plurality of return channels 54 in a unit time are obtained from the first to fourth downstream temperatures T 1 to T 4 and the first to fourth flow rate setting values V 1 to V 4. It is done.
  • the temperature of the chemical solution may greatly affect the processing of the substrate W. If the temperature controller 53 is stopped while the discharge is stopped, it takes time until the temperature of the chemical heated or cooled by the temperature controller 53 is stabilized at the intended temperature when the operation of the temperature controller 53 is started or restarted. It takes. Therefore, the discharge of the chemical solution cannot be started or restarted immediately, and the throughput is reduced. Therefore, it is preferable to cause the temperature controller 53 to heat or cool the liquid even when the discharge is stopped.
  • the chemical solution is supplied to the upstream flow path 48 and the temperature controller 53 is heated or cooled even during discharge stop. Therefore, even when the discharge is stopped, the temperature of the temperature controller 53 can be kept stable. Therefore, the discharge of the chemical liquid can be resumed immediately. Furthermore, since the chemical liquid heated or cooled by the temperature controller 53 is returned to the chemical liquid tank 41 via the return channel 54 while the discharge is stopped, the consumption of the chemical liquid can be reduced. In addition, since the chemical liquid having a temperature equal to or lower than the temperature of the chemical liquid in the chemical liquid tank 41 returns to the chemical liquid tank 41, it is not necessary to provide a cooler for cooling the chemical liquid returning to the chemical liquid tank 41. Thereby, the enlargement of the substrate processing apparatus 1 can be prevented.
  • the chemical solution can be heated and cooled in any upstream channel 48. Therefore, the temperature of the chemical solution discharged from the plurality of discharge ports 34 can be set more freely than when the plurality of temperature controllers 53 include heaters. Furthermore, since the cooling unit can also cool the chemical solution, the temperature of the chemical solution returning to the chemical solution tank 41 can be made equal to or lower than the temperature of the chemical solution in the chemical solution tank 41. Thereby, the cooler which cools the chemical
  • the amount of the chemical liquid in the chemical liquid tank 41 falls below the specified amount, a new chemical liquid is supplied from the new liquid flow path 58 to the chemical liquid tank 41.
  • medical solution tank 41 is maintained more than regulation amount.
  • the temperature of the new chemical is below the tank temperature set value (for example, room temperature). Therefore, even when a new chemical solution is replenished to the chemical solution tank 41, the temperature of the chemical solution in the chemical solution tank 41 does not exceed the tank temperature setting value. Thereby, the supply of the chemical liquid to the substrate W may not be stopped until the temperature of the chemical liquid in the chemical liquid tank 41 is lowered to the tank temperature setting value.
  • the chemicals that have flowed from the plurality of upstream channels 48 to the plurality of return channels 54 flow to the collective return channel 54.
  • the chemical solution supplied to the collective return channel 54 flows toward the chemical solution tank 41 while being mixed in the collective return channel 54. That is, the chemical solutions having different temperatures are mixed in the collective return channel 54, and a mixed solution having a temperature substantially equal to the tank temperature setting value is formed. Therefore, the variation in the temperature of the chemical solution in the chemical solution tank 41 can be suppressed as compared with the case where the chemical solutions having different temperatures are separately supplied to the chemical solution tank 41.
  • the chemical liquid discharged from the plurality of discharge ports 34 is deposited at a plurality of liquid deposition positions in the upper surface of the substrate W.
  • the plurality of liquid landing positions have different horizontal distances from the rotation axis A1 of the substrate W. Therefore, the uniformity of processing can be improved as compared with the case where the chemical solution is discharged only toward the central portion of the substrate W.
  • the temperature of the chemical liquid when discharged from the plurality of discharge ports 34 is changed by the plurality of temperature regulators 53. Therefore, the temperature of the chemical solution at the time of landing on the upper surface of the substrate W can be intentionally made non-uniform, and the processing quality can be controlled.
  • the number of nozzles 26 may be two or three, or may be five or more.
  • the nozzle head 33 may be provided in all the nozzles 26 including the first nozzle 26A. On the contrary, the nozzle heads 33 may not be provided for all the nozzles 26.
  • the number of the downstream flow paths 52 and the discharge ports 34 formed in one nozzle head 33 may be two, or four or more.
  • the branch upstream channel (upstream channel 48 other than the first upstream channel 48A) may be branched outside the chamber 7.
  • the plurality of discharge ports 34 are respectively arranged at a plurality of positions having different distances from the rotation axis A1, the plurality of discharge ports 34 may not be arranged in the radial direction Dr in plan view.
  • the plurality of discharge ports 34 may include oblique discharge ports that discharge the processing liquid in a discharge direction inclined with respect to the upper surface of the substrate W so as to approach the rotation axis A1 as it approaches the upper surface of the substrate W.
  • the chemical solution may be discharged to the plurality of nozzles 26 while rotating the plurality of nozzles 26 around the nozzle rotation axis A2.
  • the control device 3 determines that the time during which the outer discharge port 34 is discharging the processing liquid is the time.
  • the plurality of discharge valves 51 may be controlled so that the inner discharge port 34 is longer than the time during which the processing liquid is discharged.
  • the expected return temperature may be a value lower than the tank temperature setting value.
  • the value obtained by subtracting the expected return temperature from the tank internal temperature setting value is preferably smaller than the minimum value of the difference between the first to fourth downstream temperatures T 1 to T 4 .
  • the minimum value of the difference between the first to fourth downstream temperatures T 1 to T 4 is 5 ° C.
  • the value obtained by subtracting the expected return temperature from the tank internal temperature setting value is 5 ° C. Is preferably smaller.

Abstract

This substrate treatment device includes: an upstream heater that heats a treatment liquid flowing in a circulation flow channel; a plurality of temperature regulators that change the temperature of the treatment liquid flowing in a plurality of upstream flow channels; and a plurality of flow rate regulation valves that change the flow rate of the treatment liquid flowing in the upstream flow channels. Each of the temperature regulators includes a cooler that cools the treatment liquid, or a cooling/heating unit that heats and cools the treatment liquid. The setting temperature of each of the temperature regulators and the setting flow rate of each of the flow rate regulation valves are set such that the temperature of the treatment liquid returning to a tank is equal or lower than the temperature of the treatment liquid in the tank.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板を処理する基板処理装置および基板処理方法に関する。処理対象の基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. Substrates, ceramic substrates, solar cell substrates and the like are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。 In a manufacturing process of a semiconductor device or a liquid crystal display device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used.
 特許文献1には、基板を一枚ずつ処理する枚葉式の基板処理装置が開示されている。この基板処理装置は、複数の吐出口から吐出される薬液を貯留する薬液タンクと、薬液を加熱することにより薬液タンク内の薬液の温度を調節する上流ヒータと、上流ヒータによって加熱された薬液を複数の吐出口に向けて案内する供給流路とを含む。この基板処理装置は、さらに、供給流路から分岐した複数の上流流路と、複数の上流流路を流れる薬液を加熱する複数の下流ヒータと、複数の下流ヒータによって加熱された薬液を薬液タンクに向けて案内する複数のリターン流路と、複数のリターン流路から供給された薬液を冷却するクーラーとを含む。 Patent Document 1 discloses a single-wafer type substrate processing apparatus that processes substrates one by one. The substrate processing apparatus includes a chemical liquid tank that stores chemical liquid discharged from a plurality of discharge ports, an upstream heater that adjusts the temperature of the chemical liquid in the chemical liquid tank by heating the chemical liquid, and a chemical liquid heated by the upstream heater. And a supply flow path for guiding toward a plurality of discharge ports. The substrate processing apparatus further includes a plurality of upstream flow paths branched from the supply flow path, a plurality of downstream heaters for heating the chemical liquid flowing through the plurality of upstream flow paths, and a chemical tank heated by the plurality of downstream heaters. And a plurality of return flow paths for guiding the liquid and a cooler for cooling the chemical solution supplied from the plurality of return flow paths.
特開2016-157852号公報Japanese Unexamined Patent Publication No. 2016-157852
 特許文献1では、上流ヒータによって加熱された薬液が下流ヒータによってさらに加熱され、その後、複数のリターン流路によって薬液タンクの方に案内される。複数のリターン流路によって案内される薬液の温度は、薬液タンク内の薬液の温度よりも高いので、この薬液は、クーラーによって冷却された後、薬液タンクに戻る。しかしながら、基板処理装置にクーラーを設けると、基板処理装置が大型化する。 In Patent Document 1, the chemical liquid heated by the upstream heater is further heated by the downstream heater, and then guided toward the chemical liquid tank by a plurality of return channels. Since the temperature of the chemical solution guided by the plurality of return channels is higher than the temperature of the chemical solution in the chemical solution tank, the chemical solution returns to the chemical solution tank after being cooled by the cooler. However, if a cooler is provided in the substrate processing apparatus, the substrate processing apparatus becomes large.
 特許文献1の段落0077には「リターン流路54を介して薬液タンク41に戻る薬液の流量の調整によって、薬液タンク41内の薬液を設定温度付近に維持できるのであれば、クーラー56を省略してもよい。つまり、リターン流路54を流れる薬液をクーラー56で冷却せずに薬液タンク41に戻してもよい。」と記載されている。 In paragraph 0077 of Patent Document 1, “If the chemical liquid in the chemical liquid tank 41 can be maintained near the set temperature by adjusting the flow rate of the chemical liquid returning to the chemical liquid tank 41 via the return channel 54, the cooler 56 is omitted. That is, the chemical liquid flowing through the return channel 54 may be returned to the chemical liquid tank 41 without being cooled by the cooler 56.
 しかしながら、薬液タンクに戻る薬液は、上流ヒータだけ、または、上流ヒータおよび下流ヒータの両方によって加熱されるので、薬液タンクに戻る薬液の流量をどのように調節したとしても、熱損失が極めて大きくない限り、薬液タンク内の薬液よりも高温の薬液がタンク内に戻る。上流ヒータは薬液を冷却することできないので、タンク内の薬液の温度が設定温度よりも上がると、設定温度まで低下するまで待つしかない。したがって、その間、タンク内の薬液を基板に供給することができず、スループット(単位時間あたりの基板の処理枚数)が低下する。 However, since the chemical solution returning to the chemical solution tank is heated only by the upstream heater or by both the upstream heater and the downstream heater, no matter how the flow rate of the chemical solution returning to the chemical solution tank is adjusted, the heat loss is not very large. As long as the chemical solution is hotter than the chemical solution in the chemical tank, it returns to the tank. Since the upstream heater cannot cool the chemical solution, if the temperature of the chemical solution in the tank rises above the set temperature, it must wait until the temperature drops to the set temperature. Therefore, during that time, the chemical solution in the tank cannot be supplied to the substrate, and the throughput (the number of substrates processed per unit time) is reduced.
 そこで、本発明の目的の一つは、2段階で温度調節された後にタンクに戻る処理液を冷却せずにタンクに戻すことができる基板処理装置および基板処理方法を提供することである。 Therefore, one of the objects of the present invention is to provide a substrate processing apparatus and a substrate processing method that can return the processing liquid that returns to the tank after the temperature is adjusted in two stages without cooling.
 本発明の一実施形態は、基板を水平に保持しながら基板の中央部を通る鉛直な回転軸線まわりに回転させる基板保持ユニットと、前記基板保持ユニットに保持されている基板に向けて処理液を吐出する複数の吐出口と、前記複数の吐出口から吐出される処理液を貯留するタンクと、前記タンク内の処理液を循環させる循環流路と、前記タンク内の処理液を前記循環流路に送る送液装置と、前記循環流路を流れる処理液を加熱する上流ヒータと、前記循環流路内の処理液を前記複数の吐出口に向けて案内する供給流路と、前記供給流路から分岐しており、前記供給流路内の処理液を前記複数の吐出口に向けて案内する複数の上流流路と、処理液を冷却するクーラーまたは処理液を加熱および冷却する冷熱ユニットを含み、前記複数の上流流路にそれぞれ設けられており、加熱および冷却の少なくとも一方によって前記複数の上流流路を流れる処理液の温度を変更する複数の温度調節器と、前記複数の上流流路にそれぞれ設けられており、前記複数の温度調節器に送られる処理液の流量を変更する複数の流量調整バルブと、前記複数の温度調節器の下流で前記複数の上流流路にそれぞれ接続されており、前記複数の温度調節器によって温度が変更された処理液を前記タンクに向けて案内する複数のリターン流路と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数の吐出口に供給される吐出状態と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数のリターン流路に供給される吐出停止状態と、を含む複数の状態の間で切り替わる切替ユニットと、前記タンク内の処理液の温度がタンク内温度設定値になるように、前記上流ヒータを制御するタンク内温度制御部と、前記複数の温度調節器を通過した処理液の温度がそれぞれ複数の配管内温度設定値になり、前記複数の配管内温度設定値の最大値が前記タンク内温度設定値以上になり、前記複数の配管内温度設定値の最小値が前記タンク内温度設定値よりも小さくなるように、前記複数の温度調節器を制御する配管内温度制御部と、前記複数の流量調整バルブを通過した処理液の流量がそれぞれ複数の流量設定値になるように、前記複数の流量調整バルブを制御する流量制御部と、単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の熱量の計算値を前記単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の体積の計算値で割った値である予想リターン温度が、前記タンク内温度設定値以下になるように、前記タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定するリターン温度制御部とを備える、基板処理装置を提供する。 In one embodiment of the present invention, a substrate holding unit that rotates around a vertical rotation axis passing through a central portion of a substrate while holding the substrate horizontally, and a processing liquid toward the substrate held by the substrate holding unit. A plurality of discharge ports for discharging, a tank for storing processing liquid discharged from the plurality of discharge ports, a circulation channel for circulating the processing solution in the tank, and a processing channel in the tank for circulating the processing solution in the tank A liquid feeding device to be sent to the apparatus, an upstream heater for heating the processing liquid flowing in the circulation flow path, a supply flow path for guiding the processing liquid in the circulation flow path toward the plurality of discharge ports, and the supply flow path A plurality of upstream flow paths that guide the processing liquid in the supply flow path toward the plurality of discharge ports, and a cooler that cools the processing liquid or a cooling / heating unit that heats and cools the processing liquid. The plurality of upstream flow paths A plurality of temperature regulators that change the temperature of the treatment liquid flowing through the plurality of upstream flow paths by at least one of heating and cooling, respectively, and a plurality of temperature controllers respectively provided in the plurality of upstream flow paths. A plurality of flow rate adjustment valves for changing the flow rate of the processing liquid sent to the temperature controller, and the plurality of upstream flow paths downstream of the plurality of temperature controllers, respectively, and connected by the plurality of temperature controllers. A plurality of return flow paths for guiding the processing liquid whose temperature has been changed toward the tank, and a discharge in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of discharge ports. A switching unit that switches between a plurality of states including a state and a discharge stop state in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of return flow paths The temperature of the processing liquid that has passed through the plurality of temperature regulators and the temperature control unit in the tank that controls the upstream heater are set such that the temperature of the processing liquid in the tank becomes the tank temperature setting value. It becomes a pipe temperature setting value, the maximum value of the plurality of pipe temperature setting values is equal to or higher than the tank temperature setting value, and the minimum value of the plurality of pipe temperature setting values is smaller than the tank temperature setting value. The plurality of flow rates so that the flow rate of the processing liquid that has passed through the plurality of flow rate adjustment valves and the in-pipe temperature control unit that controls the plurality of temperature controllers become a plurality of flow rate setting values, respectively, A flow rate controller for controlling the regulating valve; and calculated values of heat amounts of all the processing liquids returning from the plurality of return flow paths to the tank in a unit time, from the plurality of return flow paths in the unit time. So that the expected return temperature, which is a value divided by the calculated value of the volume of all treatment liquids returning to the tank, is equal to or lower than the tank temperature setting value, the tank temperature setting value, a plurality of piping temperature setting values, And a return temperature control unit for setting a plurality of flow rate setting values.
 処理液の温度は、基板の処理に大きな影響を及ぼす場合がある。吐出停止中に温度調節器を停止させると、温度調節器の運転を開始または再開したときに、温度調節器によって加熱または冷却された処理液の温度が意図する温度で安定するまでに時間がかかる。そのため、直ぐに処理液の吐出を開始または再開することができず、スループットが低下する。したがって、吐出停止中であっても、温度調節器に液体を加熱または冷却させることが好ましい。 The temperature of the processing liquid may greatly affect the processing of the substrate. If the temperature controller is stopped while discharging is stopped, it takes time for the temperature of the processing liquid heated or cooled by the temperature controller to stabilize at the intended temperature when the temperature controller starts or restarts. . For this reason, the discharge of the treatment liquid cannot be started or restarted immediately, and the throughput is reduced. Therefore, it is preferable to cause the temperature controller to heat or cool the liquid even when the discharge is stopped.
 この構成によれば、吐出停止中にも、処理液を上流流路に供給し、温度調節器に加熱または冷却させる。したがって、吐出停止中であっても、温度調節器の温度が安定した状態を維持できる。そのため、直ぐに処理液の吐出を再開できる。さらに、吐出停止中は、温度調節器によって加熱または冷却された処理液をリターン流路を介してタンクに戻すので、処理液の消費量を低減できる。しかも、タンク内の処理液の温度以下の温度の処理液がタンクに戻るので、タンクに戻る処理液を冷却するクーラーを設けなくてもよい。これにより、基板処理装置の大型化を防止できる。 According to this configuration, the processing liquid is supplied to the upstream flow path even when the discharge is stopped, and the temperature controller is heated or cooled. Therefore, even when the discharge is stopped, the temperature of the temperature controller can be kept stable. Therefore, the discharge of the processing liquid can be resumed immediately. Furthermore, while the discharge is stopped, the processing liquid heated or cooled by the temperature controller is returned to the tank via the return flow path, so that the consumption of the processing liquid can be reduced. In addition, since the treatment liquid having a temperature equal to or lower than the treatment liquid in the tank returns to the tank, it is not necessary to provide a cooler for cooling the treatment liquid returning to the tank. Thereby, the enlargement of the substrate processing apparatus can be prevented.
 単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の熱量の計算値は、複数の上流流路における配管内温度設定値および流量設定値の積の合計値である。前記単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の体積の計算値は、複数の流量設定値の合計値である。したがって、各上流流路における配管内温度設定値および流量設定値が分かれば、予想リターン温度を求めることができる。 The calculated value of the amount of heat of all the processing liquids returning from the plurality of return flow paths to the tank in a unit time is the total value of the product of the pipe temperature setting value and the flow rate setting value in the plurality of upstream flow paths. The calculated value of the volume of all treatment liquids returning from the plurality of return flow paths to the tank in the unit time is a total value of a plurality of flow rate setting values. Therefore, if the in-pipe temperature setting value and the flow rate setting value in each upstream flow path are known, the expected return temperature can be obtained.
 本実施形態において、以下の少なくとも一つの特徴が、前記基板処理装置に加えられてもよい。 In the present embodiment, at least one of the following features may be added to the substrate processing apparatus.
 前記複数の温度調節器は、いずれも、前記冷熱ユニットである。 The plurality of temperature controllers are all the cooling unit.
 この構成によれば、全ての温度調節器が冷熱ユニットであるので、いずれの上流流路でも処理液を加熱および冷却できる。したがって、複数の温度調節器にヒータが含まれる場合に比べて、複数の吐出口から吐出される処理液の温度をより自由に設定できる。さらに、冷熱ユニットは、処理液を冷却することもできるので、タンクに戻る処理液の温度をタンク内の処理液の温度以下にすることができる。これにより、タンクに戻る処理液を冷却するクーラーを省略できる。 According to this configuration, since all the temperature controllers are cooling units, the processing liquid can be heated and cooled in any upstream flow path. Therefore, the temperature of the processing liquid discharged from the plurality of discharge ports can be set more freely than when the plurality of temperature controllers include heaters. Furthermore, since the cooling / heating unit can also cool the processing liquid, the temperature of the processing liquid returning to the tank can be made equal to or lower than the temperature of the processing liquid in the tank. Thereby, the cooler which cools the process liquid which returns to a tank can be omitted.
 前記タンク内温度設定値から前記予想リターン温度を引いた値は、前記複数の配管内温度設定値の間の差の最小値よりも小さい。 The value obtained by subtracting the predicted return temperature from the tank temperature setting value is smaller than the minimum value of the difference between the plurality of piping temperature setting values.
 予想リターン温度がタンク内温度設定値に等しくても、熱損失が必ず発生するので、タンク内温度設定値よりもわずかに低い温度の処理液がタンクに戻る。タンクに戻った処理液の実際の温度がタンク内の処理液の実際の温度より低くても、上流ヒータで処理液を加熱すれば、タンク内の処理液の温度をタンク内温度設定値に戻すことができる。しかしながら、タンクに戻った処理液の実際の温度がタンク内の処理液の実際の温度よりも低すぎると、タンク内の処理液の温度がタンク内温度設定値に戻るまでの時間が増加してしまう。 ¡Even if the expected return temperature is equal to the tank temperature set value, heat loss always occurs, so the processing liquid with a temperature slightly lower than the tank temperature set value returns to the tank. Even if the actual temperature of the processing liquid returned to the tank is lower than the actual temperature of the processing liquid in the tank, if the processing liquid is heated by the upstream heater, the temperature of the processing liquid in the tank is returned to the tank temperature setting value. be able to. However, if the actual temperature of the processing liquid returned to the tank is too lower than the actual temperature of the processing liquid in the tank, the time until the temperature of the processing liquid in the tank returns to the tank temperature set value increases. End up.
 この構成によれば、タンク内温度設定値から予想リターン温度を引いた値が、複数の配管内温度設定値の間の差の最小値よりも小さい。つまり、予想リターン温度がタンク内温度設定値未満の値であったとしても、両者の差は小さい。両者の差が大きいと、タンク内の処理液の実際の温度よりも大幅に低温の処理液がタンクに戻ることになる。したがって、タンク内温度設定値と予想リターン温度との差を小さくすることにより、タンク内の処理液の温度の変動を抑えることができる。 According to this configuration, the value obtained by subtracting the expected return temperature from the tank temperature setting value is smaller than the minimum difference between the plurality of pipe temperature setting values. That is, even if the expected return temperature is less than the tank internal temperature set value, the difference between the two is small. If the difference between the two is large, the treatment liquid having a temperature much lower than the actual temperature of the treatment liquid in the tank will return to the tank. Therefore, by reducing the difference between the tank internal temperature setting value and the expected return temperature, it is possible to suppress fluctuations in the temperature of the processing liquid in the tank.
 前記基板処理装置は、前記タンク内温度設定値以下の液温の新しい処理液を前記タンク内に案内する新液流路をさらに備える。 The substrate processing apparatus further includes a new liquid flow path for guiding a new processing liquid having a liquid temperature equal to or lower than the tank internal temperature set value into the tank.
 この構成によれば、タンク内の処理液の量が規定量を下回ると、新しい処理液が新液流路からタンクに供給される。これにより、タンク内の処理液の量が規定量以上に維持される。新しい処理液の温度は、タンク内温度設定値以下(たとえば、室温(20~30℃))である。したがって、新しい処理液をタンクに補充したとしても、タンク内の処理液の温度がタンク内温度設定値を超えることはない。これにより、タンク内の処理液の温度がタンク内温度設定値に低下するまで、基板への処理液の供給を停止しなくてもよい。 According to this configuration, when the amount of processing liquid in the tank falls below the specified amount, new processing liquid is supplied from the new liquid flow path to the tank. Thereby, the quantity of the processing liquid in a tank is maintained more than a regulation quantity. The temperature of the new treatment liquid is not more than the tank temperature set value (for example, room temperature (20 to 30 ° C.)). Therefore, even if a new treatment liquid is replenished to the tank, the temperature of the treatment liquid in the tank does not exceed the tank temperature setting value. Thereby, it is not necessary to stop the supply of the processing liquid to the substrate until the temperature of the processing liquid in the tank decreases to the tank temperature setting value.
 前記基板処理装置は、前記複数のリターン流路のそれぞれに接続されており、前記複数のリターン流路から前記タンクに処理液を案内する集合リターン流路をさらに含む。 The substrate processing apparatus is further connected to each of the plurality of return flow paths, and further includes a collective return flow path for guiding the processing liquid from the plurality of return flow paths to the tank.
 この構成によれば、複数の上流流路から複数のリターン流路に流れた処理液が、集合リターン流路に流れる。集合リターン流路に供給された処理液は、集合リターン流路で混ざり合いながら、タンクに向かって流れる。つまり、温度の異なる処理液が集合リターン流路で混ざり合い、タンク内温度設定値に概ね等しい温度の混合液が形成される。したがって、温度の異なる処理液が別々にタンクに供給される場合に比べて、タンク内の処理液の温度の変動を抑えることができる。 According to this configuration, the processing liquid that has flowed from the plurality of upstream flow paths to the plurality of return flow paths flows to the collective return flow path. The processing liquid supplied to the collective return channel flows toward the tank while being mixed in the collective return channel. That is, the processing liquids having different temperatures are mixed in the collective return flow path, and a liquid mixture having a temperature substantially equal to the tank temperature setting value is formed. Therefore, the variation in the temperature of the processing liquid in the tank can be suppressed as compared with the case where the processing liquids having different temperatures are separately supplied to the tank.
 前記複数の吐出口は、前記回転軸線からの水平方向の距離が異なる複数の位置にそれぞれ配置されている。 The plurality of discharge ports are respectively arranged at a plurality of positions having different horizontal distances from the rotation axis.
 この構成によれば、複数の吐出口から吐出された処理液が、基板の上面内の複数の着液位置に着液する。複数の着液位置は、基板の回転軸線からの水平方向の距離が互いに異なっている。したがって、基板の中央部だけに向けて処理液を吐出する場合と比較して、処理の均一性を高めることができる。さらに、複数の吐出口から吐出されたときの処理液の温度は、複数の温度調節器によって変更される。したがって、基板の上面に着液した時点での処理液の温度を意図的に不均一にすることができ、処理品質をコントロールすることができる。 According to this configuration, the processing liquid ejected from the plurality of ejection ports is deposited on a plurality of liquid deposition positions in the upper surface of the substrate. The plurality of liquid landing positions have different horizontal distances from the rotation axis of the substrate. Therefore, the processing uniformity can be improved as compared with the case where the processing liquid is discharged only toward the central portion of the substrate. Further, the temperature of the processing liquid when discharged from the plurality of discharge ports is changed by the plurality of temperature controllers. Therefore, the temperature of the processing liquid at the time of landing on the upper surface of the substrate can be intentionally made non-uniform, and the processing quality can be controlled.
 基板保持ユニットに基板を水平に保持させながら、基板の中央部を通る鉛直な回転軸線まわりに基板を回転させる基板回転工程と、前記基板保持ユニットに保持されている基板に向けて複数の吐出口に処理液を吐出させる処理液吐出工程と、前記複数の吐出口から吐出される処理液をタンクに貯留させる処理液貯留工程と、前記タンク内の処理液を循環流路に循環させる循環工程と、前記タンクから前記循環流路に処理液を送液装置に送らせる送液工程と、前記循環流路を流れる処理液を上流ヒータに加熱させる上流温度調節工程と、供給流路に前記循環流路内の処理液を前記複数の吐出口に向けて案内させる供給工程と、前記供給流路から分岐した複数の上流流路に前記供給流路内の処理液を前記複数の吐出口に向けて案内させる上流案内工程と、処理液を冷却するクーラーまたは処理液を加熱および冷却する冷熱ユニットを含み、前記複数の上流流路にそれぞれ設けられた複数の温度調節器に、加熱および冷却の少なくとも一方によって前記複数の上流流路を流れる処理液の温度を変更させる下流温度調節工程と、前記複数の上流流路にそれぞれ設けられた複数の流量調整バルブに前記複数の温度調節器に送られる処理液の流量を変更させる流量変更工程と、前記複数の温度調節器の下流で前記複数の上流流路にそれぞれ接続された複数のリターン流路に、前記複数の温度調節器によって温度が変更された処理液を前記タンクに向けて案内させるリターン工程と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数の吐出口に供給される吐出状態と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数のリターン流路に供給される吐出停止状態と、を含む複数の状態の間で切替ユニットを切り替える吐出切替工程と、前記タンク内の処理液の温度がタンク内温度設定値になるように、タンク内温度制御部に前記上流ヒータを制御させるタンク内温度制御工程と、前記複数の温度調節器を通過した処理液の温度がそれぞれ複数の配管内温度設定値になり、前記複数の配管内温度設定値の最大値が前記タンク内温度設定値以上になり、前記複数の配管内温度設定値の最小値が前記タンク内温度設定値よりも小さくなるように、配管内温度制御部に前記複数の温度調節器を制御させる配管内温度制御工程と、前記複数の流量調整バルブを通過した処理液の流量がそれぞれ複数の流量設定値になるように、流量制御部に前記複数の流量調整バルブを制御させる流量制御工程と、単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の熱量の計算値を前記単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の体積の計算値で割った値である予想リターン温度が、前記タンク内温度設定値以下になるように、リターン温度制御部に前記タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定させるリターン温度制御工程とを含む、基板処理方法である。この構成によれば、前述の効果と同様な効果を奏することができる。 A substrate rotating step of rotating the substrate around a vertical rotation axis passing through the central portion of the substrate while holding the substrate horizontally by the substrate holding unit; and a plurality of discharge ports toward the substrate held by the substrate holding unit A processing liquid discharge step for discharging the processing liquid to the tank, a processing liquid storage step for storing the processing liquid discharged from the plurality of discharge ports in the tank, and a circulation step for circulating the processing liquid in the tank to the circulation channel; A liquid feeding step for sending the processing liquid from the tank to the circulation passage to the liquid feeding device, an upstream temperature adjustment step for heating the processing liquid flowing in the circulation passage to an upstream heater, and the circulation flow in the supply passage. A supply step for guiding the processing liquid in the channel toward the plurality of discharge ports, and a processing liquid in the supply flow path toward the plurality of discharge ports to a plurality of upstream flow paths branched from the supply flow path. Upstream plan to guide A cooling unit for cooling the processing liquid or a cooling unit for heating and cooling the processing liquid, and a plurality of temperature controllers respectively provided in the plurality of upstream flow paths, wherein the plurality of temperature controllers are provided by at least one of heating and cooling. A downstream temperature adjusting step for changing the temperature of the processing liquid flowing in the upstream flow path, and a change in the flow rate of the processing liquid sent to the plurality of temperature controllers in the plurality of flow rate adjusting valves respectively provided in the plurality of upstream flow paths. A flow rate changing step, and a plurality of return flow paths respectively connected to the plurality of upstream flow paths downstream of the plurality of temperature controllers, and the treatment liquid whose temperature has been changed by the plurality of temperature controllers is the tank. A return process that guides the liquid to the plurality of upstream flow paths from the supply flow path, a discharge state in which the treatment liquid is supplied to the multiple discharge ports, and the supply A discharge switching step of switching a switching unit between a plurality of states, including a discharge stop state in which the processing liquid supplied from the flow path to the plurality of upstream flow paths is supplied to the plurality of return flow paths, and the tank A tank internal temperature control step for controlling the upstream heater so that the temperature of the processing liquid in the tank becomes a tank internal temperature set value, and the temperature of the processing liquid that has passed through the plurality of temperature regulators. Each of the plurality of piping temperature setting values is set, the maximum value of the plurality of piping temperature setting values is equal to or greater than the tank temperature setting value, and the minimum value of the plurality of piping temperature setting values is the tank temperature setting. A temperature control step in the pipe for controlling the temperature controllers in the pipe temperature controller so that the flow rate of the processing liquid that has passed through the plurality of flow rate adjustment valves is a plurality of flow rate setting values. And a flow rate control step for controlling the plurality of flow rate adjustment valves by the flow rate control unit, and calculated unit values of calorific values of all processing liquids returning from the plurality of return flow paths to the tank in the unit time. In the return temperature control unit, the expected return temperature, which is a value divided by the calculated values of the volumes of all treatment liquids returning from the plurality of return flow paths to the tank, is equal to or lower than the tank internal temperature setting value. A substrate processing method including a tank temperature setting value, a plurality of piping temperature setting values, and a return temperature control step for setting a plurality of flow rate setting values. According to this configuration, the same effect as described above can be obtained.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
本発明の一実施形態に係る基板処理装置の処理液供給システムを示す模式図であり、吐出状態の処理液供給システムを示している。It is a mimetic diagram showing a processing liquid supply system of a substrate processing apparatus concerning one embodiment of the present invention, and shows a processing liquid supply system in a discharge state. 本発明の一実施形態に係る基板処理装置の処理液供給システムを示す模式図であり、吐出停止状態の処理液供給システムを示している。It is a mimetic diagram showing a processing liquid supply system of a substrate processing apparatus concerning one embodiment of the present invention, and shows a processing liquid supply system in a discharge stop state. 基板処理装置に備えられた処理ユニットの内部を示す模式的な正面図である。It is a typical front view which shows the inside of the processing unit with which the substrate processing apparatus was equipped. 基板処理装置に備えられた処理ユニットの内部を示す模式的な平面図である。It is a typical top view which shows the inside of the processing unit with which the substrate processing apparatus was equipped. 複数のノズルを示す模式的な正面図である。It is a typical front view showing a plurality of nozzles. 複数のノズルを示す模式的な平面図である。It is a typical top view showing a plurality of nozzles. 基板処理装置によって実行される基板の処理の一例を説明するための工程図である。It is process drawing for demonstrating an example of the process of the board | substrate performed with a substrate processing apparatus. 制御装置の機能ブロックを示すブロック図である。It is a block diagram which shows the functional block of a control apparatus. タンク内温度設定値、複数の配管内温度設定値、複数の流量設定値、および予想リターン温度の具体例を示す表である。It is a table | surface which shows the specific example of a tank internal temperature setting value, several piping internal temperature setting value, several flow rate setting value, and estimated return temperature.
 図1および図2は、本発明の一実施形態に係る基板処理装置1の処理液供給システムを示す模式図である。図1は、吐出状態の処理液供給システムを示しており、図2は、吐出停止状態の処理液供給システムを示している。 1 and 2 are schematic views showing a processing liquid supply system of a substrate processing apparatus 1 according to an embodiment of the present invention. FIG. 1 shows a processing liquid supply system in a discharge state, and FIG. 2 shows a processing liquid supply system in a discharge stop state.
 基板処理装置1は、半導体ウエハなどの円板状の基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置1は、処理液で基板Wを処理する処理ユニット2と、処理ユニット2に基板Wを搬送する搬送ロボット(図示せず)と、基板処理装置1を制御する制御装置3とを含む。制御装置3は、プログラム等の情報を記憶する記憶部3bと、記憶部3bに記憶された情報にしたがって基板処理装置1を制御する演算部3aと、を含むコンピュータである。 The substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a processing unit 2 that processes a substrate W with a processing liquid, a transfer robot (not shown) that transfers the substrate W to the processing unit 2, and a control device 3 that controls the substrate processing apparatus 1. . The control device 3 is a computer that includes a storage unit 3b that stores information such as a program, and an arithmetic unit 3a that controls the substrate processing apparatus 1 according to the information stored in the storage unit 3b.
 基板処理装置1は、処理ユニット2に対する処理液の供給および供給停止を制御するバルブ51等の流体機器を収容する複数の流体ボックス5と、流体ボックス5を介して処理ユニット2に供給される処理液を貯留するタンク41を収容する貯留ボックス6とを含む。処理ユニット2および流体ボックス5は、基板処理装置1のフレーム4の中に配置されている。処理ユニット2のチャンバー7と流体ボックス5とは、水平方向に並んでいる。貯留ボックス6は、フレーム4の外に配置されている。貯留ボックス6は、フレーム4の中に配置されていてもよい。 The substrate processing apparatus 1 includes a plurality of fluid boxes 5 that contain a fluid device such as a valve 51 that controls supply and stop of supply of the processing liquid to the processing unit 2, and processing supplied to the processing unit 2 via the fluid box 5. And a storage box 6 for storing a tank 41 for storing liquid. The processing unit 2 and the fluid box 5 are disposed in the frame 4 of the substrate processing apparatus 1. The chamber 7 and the fluid box 5 of the processing unit 2 are arranged in the horizontal direction. The storage box 6 is disposed outside the frame 4. The storage box 6 may be disposed in the frame 4.
 図3は、処理ユニット2の内部を示す模式的な正面図である。図4は、処理ユニット2の内部を示す模式的な平面図である。 FIG. 3 is a schematic front view showing the inside of the processing unit 2. FIG. 4 is a schematic plan view showing the inside of the processing unit 2.
 図3に示すように、処理ユニット2は、箱型のチャンバー7と、チャンバー7内で基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック11と、基板Wから排出された処理液を受け止める筒状のカップ15と含む。スピンチャック11は、基板保持ユニットの一例である。 As shown in FIG. 3, the processing unit 2 rotates the substrate W around a vertical rotation axis A <b> 1 passing through the central portion of the substrate W while holding the substrate W horizontally in the chamber 7 and the chamber 7. A spin chuck 11 and a cylindrical cup 15 that receives the processing liquid discharged from the substrate W are included. The spin chuck 11 is an example of a substrate holding unit.
 図4に示すように、チャンバー7は、基板Wが通過する搬入搬出口8aが設けられた箱型の隔壁8と、搬入搬出口8aを開閉するシャッター9とを含む。シャッター9は、搬入搬出口8aが開く開位置と、搬入搬出口8aが閉じられる閉位置(図4に示す位置)との間で、隔壁8に対して移動可能である。図示しない搬送ロボットは、搬入搬出口8aを通じてチャンバー7に基板Wを搬入し、搬入搬出口8aを通じてチャンバー7から基板Wを搬出する。 As shown in FIG. 4, the chamber 7 includes a box-shaped partition wall 8 provided with a loading / unloading port 8a through which the substrate W passes, and a shutter 9 for opening and closing the loading / unloading port 8a. The shutter 9 is movable with respect to the partition wall 8 between an open position where the carry-in / out port 8a is opened and a closed position (a position shown in FIG. 4) where the carry-in / out port 8a is closed. A transfer robot (not shown) loads the substrate W into the chamber 7 through the loading / unloading port 8a and unloads the substrate W from the chamber 7 through the loading / unloading port 8a.
 図3に示すように、スピンチャック11は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン13と、複数のチャックピン13を回転させることにより回転軸線A1まわりに基板Wを回転させるスピンモータ14とを含む。スピンチャック11は、複数のチャックピン13を基板Wの周端面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面に吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 As shown in FIG. 3, the spin chuck 11 includes a disk-shaped spin base 12 held in a horizontal posture, a plurality of chuck pins 13 that hold the substrate W in a horizontal posture above the spin base 12, and And a spin motor 14 that rotates the substrate W around the rotation axis A1 by rotating the plurality of chuck pins 13. The spin chuck 11 is not limited to a clamping chuck in which a plurality of chuck pins 13 are brought into contact with the peripheral end surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is adsorbed to the upper surface of the spin base 12. Thus, a vacuum chuck that holds the substrate W horizontally may be used.
 図3に示すように、カップ15は、スピンチャック11を回転軸線A1まわりに取り囲む筒状のスプラッシュガード17と、スプラッシュガード17を回転軸線A1まわりに取り囲む円筒状の外壁16とを含む。処理ユニット2は、スプラッシュガード17の上端がスピンチャック11による基板Wの保持位置よりも上方に位置する上位置(図3に示す位置)と、スプラッシュガード17の上端がスピンチャック11による基板Wの保持位置よりも下方に位置する下位置との間で、スプラッシュガード17を鉛直に昇降させるガード昇降ユニット18を含む。 3, the cup 15 includes a cylindrical splash guard 17 that surrounds the spin chuck 11 around the rotation axis A1, and a cylindrical outer wall 16 that surrounds the splash guard 17 around the rotation axis A1. In the processing unit 2, the upper position of the splash guard 17 is positioned above the position where the spin chuck 11 holds the substrate W (the position shown in FIG. 3), and the upper end of the splash guard 17 is positioned on the substrate W by the spin chuck 11. A guard lifting / lowering unit 18 that vertically moves the splash guard 17 between a lower position and a lower position than the holding position is included.
 図3に示すように、処理ユニット2は、スピンチャック11に保持されている基板Wの上面に向けてリンス液を下方に吐出するリンス液ノズル21を含む。リンス液ノズル21は、リンス液バルブ23が介装されたリンス液配管22に接続されている。処理ユニット2は、処理位置と待機位置との間でリンス液ノズル21を移動させるノズル移動ユニットを備えていてもよい。 As shown in FIG. 3, the processing unit 2 includes a rinsing liquid nozzle 21 that discharges a rinsing liquid downward toward the upper surface of the substrate W held by the spin chuck 11. The rinse liquid nozzle 21 is connected to a rinse liquid pipe 22 in which a rinse liquid valve 23 is interposed. The processing unit 2 may include a nozzle moving unit that moves the rinse liquid nozzle 21 between the processing position and the standby position.
 リンス液バルブ23が開かれると、リンス液が、リンス液配管22からリンス液ノズル21に供給され、リンス液ノズル21から吐出される。リンス液は、たとえば、純水(脱イオン水:Deionized water)である。リンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)の塩酸水のいずれかであってもよい。 When the rinse liquid valve 23 is opened, the rinse liquid is supplied from the rinse liquid pipe 22 to the rinse liquid nozzle 21 and discharged from the rinse liquid nozzle 21. The rinse liquid is, for example, pure water (deionized water). The rinse liquid is not limited to pure water, but may be any of carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm).
 図4に示すように、処理ユニット2は、薬液を下方に吐出する複数のノズル26(第1ノズル26A、第2ノズル26B、第3ノズル26C、および第4ノズル26D)と、複数のノズル26のそれぞれを保持するホルダ25と、ホルダ25を移動させることにより、処理位置(図4で二点鎖線で示す位置)と待機位置(図4で実線で示す位置)との間で複数のノズル26を移動させるノズル移動ユニット24とを含む。 As shown in FIG. 4, the processing unit 2 includes a plurality of nozzles 26 (first nozzle 26 </ b> A, second nozzle 26 </ b> B, third nozzle 26 </ b> C, and fourth nozzle 26 </ b> D) that discharge a chemical solution downward, and a plurality of nozzles 26. And a plurality of nozzles 26 between a processing position (a position indicated by a two-dot chain line in FIG. 4) and a standby position (a position indicated by a solid line in FIG. 4) by moving the holder 25. And a nozzle moving unit 24 for moving the.
 薬液の代表例は、TMAH(テトラメチルアンモニウムハイドロオキサイド)などのエッチング液や、SPM(硫酸および過酸化水素水を含む混合液)などのレジスト剥離液である。薬液は、TMAHおよびSPMに限らず、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、TMAH以外の有機アルカリ、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。 Typical examples of the chemical solution are an etching solution such as TMAH (tetramethylammonium hydroxide) and a resist stripping solution such as SPM (mixed solution containing sulfuric acid and hydrogen peroxide solution). The chemical solution is not limited to TMAH and SPM, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, aqueous hydrogen peroxide, organic acids (such as citric acid and oxalic acid), organic alkalis other than TMAH, surfactants, It may be a liquid containing at least one of the corrosion inhibitors.
 図3に示すように、各ノズル26は、ホルダ25によって片持ち支持されたノズル本体27を含む。ノズル本体27は、ホルダ25から水平な長手方向D1に延びるアーム部28と、アーム部28の先端28aから下方に延びる先端部29とを含む。アーム部28の先端28aは、平面視においてホルダ25から長手方向D1に最も遠い部分を意味する。 As shown in FIG. 3, each nozzle 26 includes a nozzle body 27 that is cantilevered by a holder 25. The nozzle body 27 includes an arm portion 28 extending from the holder 25 in the horizontal longitudinal direction D1 and a tip portion 29 extending downward from the tip 28a of the arm portion 28. The tip 28a of the arm portion 28 means a portion farthest in the longitudinal direction D1 from the holder 25 in plan view.
 図4に示すように、複数のアーム部28は、第1ノズル26A~第4ノズル26Dの順番で、長手方向D1に直交する水平な配列方向D2に並んでいる。複数のアーム部28は、同じ高さに配置されている。配列方向D2に隣接する2つのアーム部28の間隔は、他のいずれの間隔と同じであってもよいし、他の間隔の少なくとも一つと異なっていてもよい。図4は、複数のアーム部28が等間隔で配置されている例を示している。 As shown in FIG. 4, the plurality of arm portions 28 are arranged in the horizontal arrangement direction D2 orthogonal to the longitudinal direction D1 in the order of the first nozzle 26A to the fourth nozzle 26D. The plurality of arm portions 28 are arranged at the same height. The interval between the two arm portions 28 adjacent in the arrangement direction D2 may be the same as any other interval, or may be different from at least one of the other intervals. FIG. 4 shows an example in which a plurality of arm portions 28 are arranged at equal intervals.
 長手方向D1への複数のアーム部28の長さは、第1ノズル26A~第4ノズル26Dの順番で短くなっている。複数のノズル26の先端(複数のアーム部28の先端28a)は、長手方向D1に関して第1ノズル26A~第4ノズル26Dの順番で並ぶように長手方向D1にずれている。複数のノズル26の先端は、平面視で直線状に並んでいる。 The length of the plurality of arm portions 28 in the longitudinal direction D1 is shorter in the order of the first nozzle 26A to the fourth nozzle 26D. The tips of the plurality of nozzles 26 (tips 28a of the plurality of arm portions 28) are shifted in the longitudinal direction D1 so as to be arranged in the order of the first nozzle 26A to the fourth nozzle 26D in the longitudinal direction D1. The tips of the plurality of nozzles 26 are arranged linearly in plan view.
 ノズル移動ユニット24は、カップ15のまわりで鉛直に延びるノズル回動軸線A2まわりにホルダ25を回動させることにより、平面視で基板Wを通る円弧状の経路に沿って複数のノズル26を移動させる。これにより、処理位置と待機位置との間で複数のノズル26が水平に移動する。処理ユニット2は、複数のノズル26の待機位置の下方に配置された有底筒状の待機ポット35を含む。待機ポット35は、平面視でカップ15のまわりに配置されている。 The nozzle moving unit 24 moves the plurality of nozzles 26 along an arcuate path passing through the substrate W in plan view by rotating the holder 25 about the nozzle rotation axis A2 extending vertically around the cup 15. Let As a result, the plurality of nozzles 26 move horizontally between the processing position and the standby position. The processing unit 2 includes a bottomed cylindrical standby pot 35 disposed below the standby positions of the plurality of nozzles 26. The standby pot 35 is disposed around the cup 15 in plan view.
 処理位置は、複数のノズル26から吐出された薬液が基板Wの上面に着液する位置である。処理位置では、複数のノズル26と基板Wとが平面視で重なり、複数のノズル26の先端が、平面視において、回転軸線A1側から第1ノズル26A~第4ノズル26Dの順番で径方向Drに並ぶ。このとき、第1ノズル26Aの先端は、平面視で基板Wの中央部に重なり、第4ノズル26Dの先端は、平面視で基板Wの周縁部に重なる。 The processing position is a position where the chemicals discharged from the plurality of nozzles 26 are deposited on the upper surface of the substrate W. At the processing position, the plurality of nozzles 26 and the substrate W are overlapped in plan view, and the tips of the plurality of nozzles 26 are in the radial direction Dr in the order of the first nozzle 26A to the fourth nozzle 26D from the rotation axis A1 side in plan view. Lined up. At this time, the tip of the first nozzle 26A overlaps the central portion of the substrate W in plan view, and the tip of the fourth nozzle 26D overlaps the peripheral portion of the substrate W in plan view.
 待機位置は、複数のノズル26と基板Wとが平面視で重ならないように、複数のノズル26が退避した位置である。待機位置では、複数のノズル26の先端が、平面視でカップ15の外周面(外壁16の外周面)に沿うようにカップ15の外側に位置し、第1ノズル26A~第4ノズル26Dの順番で周方向(回転軸線A1まわりの方向)に並ぶ。複数のノズル26は、第1ノズル26A~第4ノズル26Dの順番で、回転軸線A1から遠ざかるように配置される。 The standby position is a position where the plurality of nozzles 26 are retracted so that the plurality of nozzles 26 and the substrate W do not overlap in plan view. At the standby position, the tips of the plurality of nozzles 26 are positioned outside the cup 15 so as to be along the outer peripheral surface of the cup 15 (the outer peripheral surface of the outer wall 16) in plan view, and the order of the first nozzle 26A to the fourth nozzle 26D. Are arranged in the circumferential direction (direction around the rotation axis A1). The plurality of nozzles 26 are arranged in the order of the first nozzle 26A to the fourth nozzle 26D and away from the rotation axis A1.
 次に、図5および図6を参照して、複数のノズル26について説明する。その後、処理液供給システムについて説明する。 Next, the plurality of nozzles 26 will be described with reference to FIGS. Thereafter, the processing liquid supply system will be described.
 以下の説明では、第1ノズル26Aに対応する構成の先頭および末尾に、それぞれ「第1」および「A」を付ける場合がある。たとえば、第1ノズル26Aに対応する上流流路48を、「第1上流流路48A」という場合がある。第2ノズル26B~第4ノズル26Dに対応する構成についても同様である。たとえば、第2ノズル26Bに対応する上流流路48を、「第2上流流路48B」という場合がある。 In the following description, “first” and “A” may be added to the beginning and the end of the configuration corresponding to the first nozzle 26A, respectively. For example, the upstream flow path 48 corresponding to the first nozzle 26A may be referred to as “first upstream flow path 48A”. The same applies to the configuration corresponding to the second nozzle 26B to the fourth nozzle 26D. For example, the upstream flow path 48 corresponding to the second nozzle 26B may be referred to as a “second upstream flow path 48B”.
 また、以下の説明では、上流ヒータ43の設定温度を上流温度といい、温度調節器53の設定温度を下流温度という場合がある。第1温度調節器53~第4温度調節器53の設定温度を、それぞれ、第1下流温度~第4下流温度という場合もある。 In the following description, the set temperature of the upstream heater 43 may be referred to as upstream temperature, and the set temperature of the temperature controller 53 may be referred to as downstream temperature. The set temperatures of the first temperature controller 53 to the fourth temperature controller 53 may be referred to as a first downstream temperature to a fourth downstream temperature, respectively.
 図5に示すように、ノズル本体27は、処理液を案内する樹脂チューブ30と、樹脂チューブ30を取り囲む断面筒状の芯金31と、芯金31の外面を覆う断面筒状の樹脂コーティング32とを含む。第1ノズル26A以外の各ノズル26は、さらに、ノズル本体27の先端部29に取り付けられたノズルヘッド33を含む。 As shown in FIG. 5, the nozzle body 27 includes a resin tube 30 that guides the processing liquid, a cross-section cylindrical core metal 31 that surrounds the resin tube 30, and a cross-section cylindrical resin coating 32 that covers the outer surface of the core metal 31. Including. Each nozzle 26 other than the first nozzle 26 </ b> A further includes a nozzle head 33 attached to the tip end portion 29 of the nozzle body 27.
 ノズル本体27は、ノズル本体27に沿って延びる1つの流路を形成している。ノズルヘッド33は、ノズル本体27から供給された処理液を案内する複数の流路を形成している。ノズル本体27の流路は、ノズル本体27の外面で開口する吐出口34を形成している。ノズルヘッド33の複数の流路は、ノズルヘッド33の外面で開口する複数の吐出口34を形成している。ノズル本体27の流路は、後述する上流流路48の一部に相当する。ノズルヘッド33の各流路は、後述する下流流路52に相当する。第1上流流路48A~第4上流流路48Dの下流端は、回転軸線A1からの距離が異なる複数の位置にそれぞれ配置されている。 The nozzle body 27 forms one flow path that extends along the nozzle body 27. The nozzle head 33 forms a plurality of flow paths for guiding the processing liquid supplied from the nozzle body 27. The flow path of the nozzle body 27 forms a discharge port 34 that opens on the outer surface of the nozzle body 27. The plurality of flow paths of the nozzle head 33 form a plurality of discharge ports 34 that open at the outer surface of the nozzle head 33. The flow path of the nozzle body 27 corresponds to a part of the upstream flow path 48 described later. Each flow path of the nozzle head 33 corresponds to a downstream flow path 52 described later. The downstream ends of the first upstream channel 48A to the fourth upstream channel 48D are arranged at a plurality of positions having different distances from the rotation axis A1.
 図5および図6は、複数のノズル26に設けられた吐出口34の総数が、10個である例を示している。第1ノズル26Aは、ノズル本体27に設けられた1つの吐出口34を含む。第1ノズル26A以外の各ノズル26は、ノズルヘッド33に設けられた3つの吐出口34を含む。同一のノズルヘッド33に設けられた3つの吐出口34は、3つの吐出口34のうちで回転軸線A1に最も近い内側吐出口と、3つの吐出口34のうちで回転軸線A1から最も遠い外側吐出口と、内側吐出口と外側吐出口との間に配置された中間吐出口とによって構成されている。 5 and 6 show an example in which the total number of discharge ports 34 provided in the plurality of nozzles 26 is ten. The first nozzle 26 </ b> A includes one discharge port 34 provided in the nozzle body 27. Each nozzle 26 other than the first nozzle 26 </ b> A includes three discharge ports 34 provided in the nozzle head 33. The three discharge ports 34 provided in the same nozzle head 33 are the inner discharge port closest to the rotation axis A1 among the three discharge ports 34 and the outermost side of the three discharge ports 34 farthest from the rotation axis A1. The discharge port and an intermediate discharge port disposed between the inner discharge port and the outer discharge port are configured.
 図6に示すように、複数の吐出口34は、平面視で直線状に並んでいる。両端の2つの吐出口34の間隔は、基板Wの半径以下である。隣接する2つの吐出口34の間隔は、他のいずれの間隔と同じであってもよいし、他の間隔の少なくとも一つと異なっていてもよい。また、複数の吐出口34は、同じ高さに配置されていてもよいし、2つ以上の異なる高さに配置されていてもよい。 As shown in FIG. 6, the plurality of discharge ports 34 are arranged in a straight line in a plan view. The distance between the two discharge ports 34 at both ends is equal to or less than the radius of the substrate W. The interval between two adjacent discharge ports 34 may be the same as any other interval, or may be different from at least one of the other intervals. Further, the plurality of discharge ports 34 may be arranged at the same height, or may be arranged at two or more different heights.
 複数のノズル26が処理位置に配置されると、複数の吐出口34は、回転軸線A1からの距離(平面視での最短距離)が異なる複数の位置にそれぞれ配置される。このとき、複数の吐出口34のうちで回転軸線A1に最も近い最内吐出口(第1吐出口34A)は、基板Wの中央部の上方に配置され、複数の吐出口34のうちで回転軸線A1から最も遠い最外吐出口(第4吐出口34D)は、基板Wの周縁部の上方に配置される。複数の吐出口34は、平面視で径方向Drに並ぶ。 When the plurality of nozzles 26 are disposed at the processing position, the plurality of discharge ports 34 are respectively disposed at a plurality of positions having different distances from the rotation axis A1 (shortest distance in plan view). At this time, the innermost discharge port (first discharge port 34 </ b> A) closest to the rotation axis A <b> 1 among the plurality of discharge ports 34 is disposed above the central portion of the substrate W and rotates among the plurality of discharge ports 34. The outermost discharge port (fourth discharge port 34 </ b> D) farthest from the axis A <b> 1 is disposed above the peripheral edge of the substrate W. The plurality of discharge ports 34 are arranged in the radial direction Dr in plan view.
 第1ノズル26Aに設けられた第1吐出口34Aは、基板Wの上面中央部に向けて処理液を吐出する主吐出口である。第1ノズル26A以外の各ノズル26に設けられた第2吐出口34B~第4吐出口34Dは、中央部以外の基板Wの上面の一部に向けて処理液を吐出する複数の副吐出口である。第1吐出口34Aに接続された第1上流流路48Aは、主上流流路であり、第2吐出口34B~第4吐出口34Dに接続された第2上流流路48B~第4上流流路48Dは、複数の副上流流路である。 The first discharge port 34A provided in the first nozzle 26A is a main discharge port that discharges the processing liquid toward the center of the upper surface of the substrate W. The second discharge port 34B to the fourth discharge port 34D provided in each nozzle 26 other than the first nozzle 26A are a plurality of sub-discharge ports that discharge the processing liquid toward a part of the upper surface of the substrate W other than the central portion. It is. The first upstream flow channel 48A connected to the first discharge port 34A is a main upstream flow channel, and the second upstream flow channel 48B to the fourth upstream flow connected to the second discharge port 34B to the fourth discharge port 34D. The channel 48D is a plurality of sub-upstream channels.
 図5に示すように、各吐出口34は、基板Wの上面に対して垂直な吐出方向に薬液を吐出する。複数の吐出口34は、基板Wの上面内の複数の着液位置に向けて薬液を吐出する。複数の着液位置は、回転軸線A1からの距離が異なる別々の位置である。複数の着液位置のうちで回転軸線A1に最も近い着液位置を第1着液位置といい、複数の着液位置のうちで2番目に回転軸線A1に近い着液位置を第2着液位置というと、第1吐出口34Aから吐出された薬液は、第1着液位置に着液し、第2吐出口34Bから吐出された薬液は、第2着液位置に着液する。 As shown in FIG. 5, each discharge port 34 discharges a chemical solution in a discharge direction perpendicular to the upper surface of the substrate W. The plurality of discharge ports 34 discharge the chemical liquid toward a plurality of liquid landing positions in the upper surface of the substrate W. The plurality of liquid landing positions are different positions with different distances from the rotation axis A1. The liquid landing position closest to the rotation axis A1 among the plurality of liquid landing positions is referred to as a first liquid landing position, and the liquid landing position second closest to the rotation axis A1 among the plurality of liquid landing positions. In terms of the position, the chemical liquid discharged from the first discharge port 34A reaches the first landing position, and the chemical liquid discharged from the second discharge port 34B reaches the second landing position.
 次に、図1および図2を参照して、処理液供給システムについて詳細に説明する。 Next, the processing liquid supply system will be described in detail with reference to FIG. 1 and FIG.
 処理液供給システムは、薬液を貯留する薬液タンク41と、薬液タンク41の薬液を循環させる循環流路42と、循環流路42内を流れる薬液を室温よりも高い上流温度で加熱することにより薬液タンク41内の薬液の温度を調整する上流ヒータ43と、薬液タンク41内の薬液を循環流路42に送るポンプ44とを含む。処理液供給システムは、さらに、循環流路42に接続された供給流路47と、供給流路47を開閉する供給バルブ45と、循環流路40を開閉する循環バルブ46とを含む。 The treatment liquid supply system includes a chemical liquid tank 41 that stores chemical liquid, a circulation channel 42 that circulates the chemical liquid in the chemical liquid tank 41, and a chemical liquid that heats the chemical liquid flowing in the circulation channel 42 at an upstream temperature higher than room temperature. An upstream heater 43 that adjusts the temperature of the chemical solution in the tank 41 and a pump 44 that sends the chemical solution in the chemical solution tank 41 to the circulation passage 42 are included. The processing liquid supply system further includes a supply channel 47 connected to the circulation channel 42, a supply valve 45 that opens and closes the supply channel 47, and a circulation valve 46 that opens and closes the circulation channel 40.
 処理液供給システムは、供給流路47から供給された液体を複数の吐出口34に向けて案内する複数の上流流路48と、複数の上流流路48内を流れる液体の流量を検出する複数の流量計49と、複数の上流流路48内を流れる液体の流量を変更する複数の流量調整バルブ50と、複数の上流流路48をそれぞれ開閉する複数の吐出バルブ51とを含む。図示はしないが、流量調整バルブ50は、流路を開閉するバルブ本体と、バルブ本体の開度を変更するアクチュエータとを含む。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。 The processing liquid supply system includes a plurality of upstream flow paths 48 that guide the liquid supplied from the supply flow path 47 toward the plurality of discharge ports 34, and a plurality of flow rates that detect the flow rates of the liquid flowing in the plurality of upstream flow paths 48. A plurality of flowmeters 49, a plurality of flow rate adjusting valves 50 that change the flow rate of the liquid flowing in the plurality of upstream flow paths 48, and a plurality of discharge valves 51 that respectively open and close the plurality of upstream flow paths 48. Although not shown, the flow rate adjusting valve 50 includes a valve body that opens and closes the flow path and an actuator that changes the opening degree of the valve body. The actuator may be a pneumatic actuator or an electric actuator, or may be an actuator other than these.
 処理液供給システムは、上流流路48から供給された液体を複数の吐出口34に向けて案内する複数の下流流路52を含む。第1上流流路48A以外の各上流流路48の下流端は、複数の下流流路52に分岐している。つまり、第1上流流路48A以外の各上流流路48は、複数の下流流路52に分岐した分岐上流流路である。 The treatment liquid supply system includes a plurality of downstream channels 52 that guide the liquid supplied from the upstream channel 48 toward the plurality of discharge ports 34. The downstream ends of the upstream channels 48 other than the first upstream channel 48 </ b> A are branched into a plurality of downstream channels 52. That is, each upstream flow channel 48 other than the first upstream flow channel 48 </ b> A is a branched upstream flow channel branched into a plurality of downstream flow channels 52.
 図1および図2では、分岐上流流路が2つの下流流路52に分岐している例を示している。図5では、分岐上流流路が3つの下流流路52に分岐している例を示している。第2上流流路48Bから分岐した3つの下流流路52は、それぞれ、同じノズルヘッド33に設けられた3つの吐出口34(内側吐出口、中間吐出口、および外側吐出口)に接続されている。第3上流流路48Cおよび第4上流流路48Dについても、第2上流流路48Bと同様である。第1上流流路48Aは、第1ノズル26Aに設けられた第1吐出口34Aに接続されている。 FIG. 1 and FIG. 2 show an example in which the branch upstream channel is branched into two downstream channels 52. FIG. 5 shows an example in which the branch upstream channel branches into three downstream channels 52. The three downstream flow paths 52 branched from the second upstream flow path 48B are connected to three discharge ports 34 (an inner discharge port, an intermediate discharge port, and an outer discharge port) provided in the same nozzle head 33, respectively. Yes. The third upstream channel 48C and the fourth upstream channel 48D are the same as the second upstream channel 48B. The first upstream flow path 48A is connected to a first discharge port 34A provided in the first nozzle 26A.
 処理液供給システムは、複数の上流流路48内を流れる液体を加熱または冷却する複数の温度調節器53を含む。各温度調節器53は、液体を加熱するだけでなく、冷却する冷熱ユニット(heating-cooling unit)である。処理液供給システムは、さらに、複数の温度調節器53よりも下流の位置で複数の上流流路48にそれぞれ接続された複数のリターン流路54と、複数のリターン流路54をそれぞれ開閉する複数のリターンバルブ55と、各リターン流路54から薬液タンク41に延びる集合リターン流路56とを含む。切替ユニットは、複数の吐出バルブ51と、複数のリターンバルブ55とを含む。 The treatment liquid supply system includes a plurality of temperature regulators 53 that heat or cool the liquid flowing in the plurality of upstream flow paths 48. Each temperature controller 53 is a heating-cooling unit that not only heats the liquid but also cools it. The processing liquid supply system further includes a plurality of return channels 54 connected to the plurality of upstream channels 48 at positions downstream from the plurality of temperature controllers 53 and a plurality of return channels 54 that open and close the plurality of return channels 54, respectively. Return valve 55 and a collective return channel 56 extending from each return channel 54 to the chemical tank 41. The switching unit includes a plurality of discharge valves 51 and a plurality of return valves 55.
 処理液供給システムは、薬液タンク41内の薬液の量を検出する液量センサー57と、薬液タンク41内に新しい薬液を案内する新液流路58と、新液流路58を開閉する新液バルブ59とを含む。薬液タンク41内の薬液の量が規定量を下回ると、制御装置3は、新液バルブ59を開き、新しい薬液を薬液タンク41に補充する。これにより、薬液タンク41内の薬液の量が規定量以上に維持される。新しい薬液は、たとえば室温の未使用の薬液である。 The processing liquid supply system includes a liquid amount sensor 57 that detects the amount of the chemical liquid in the chemical liquid tank 41, a new liquid flow path 58 that guides a new chemical liquid into the chemical liquid tank 41, and a new liquid that opens and closes the new liquid flow path 58. And a valve 59. When the amount of the chemical liquid in the chemical liquid tank 41 falls below the specified amount, the control device 3 opens the new liquid valve 59 and replenishes the chemical liquid tank 41 with the new chemical liquid. Thereby, the quantity of the chemical | medical solution in the chemical | medical solution tank 41 is maintained more than a regulation amount. The new chemical solution is, for example, an unused chemical solution at room temperature.
 次に、図1を参照して、複数の吐出口34が薬液を吐出する吐出状態の処理液供給システムについて説明する。図1では、開いているバルブを黒色で示しており、閉じているバルブを白色で示している。 Next, a processing liquid supply system in a discharge state in which a plurality of discharge ports 34 discharge a chemical liquid will be described with reference to FIG. In FIG. 1, the open valve is shown in black and the closed valve is shown in white.
 薬液タンク41内の薬液は、ポンプ44によって循環流路42に送られる。ポンプ44によって送られた薬液は、上流ヒータ43によって加熱された後、循環流路42から供給流路47に流れ、供給流路47から複数の上流流路48に流れる。複数の上流流路48に供給された薬液は、複数の温度調節器53によって加熱または冷却される。 The chemical solution in the chemical solution tank 41 is sent to the circulation channel 42 by the pump 44. The chemical solution sent by the pump 44 is heated by the upstream heater 43, then flows from the circulation channel 42 to the supply channel 47, and flows from the supply channel 47 to the plurality of upstream channels 48. The chemical solution supplied to the plurality of upstream flow paths 48 is heated or cooled by the plurality of temperature controllers 53.
 第1上流流路48A内の薬液は、第1ノズル26Aに設けられた1つの第1吐出口34Aに供給される。第2上流流路48B内の薬液は、複数の下流流路52を介して、第2ノズル26Bに設けられた複数の第2吐出口34Bに供給される。第3上流流路48Cおよび第4上流流路48Dについても、第2上流流路48Bと同様である。これにより、全ての吐出口34から薬液が吐出される。 The chemical solution in the first upstream channel 48A is supplied to one first discharge port 34A provided in the first nozzle 26A. The chemical solution in the second upstream channel 48B is supplied to the plurality of second discharge ports 34B provided in the second nozzle 26B via the plurality of downstream channels 52. The third upstream channel 48C and the fourth upstream channel 48D are the same as the second upstream channel 48B. Thereby, the chemical liquid is discharged from all the discharge ports 34.
 第1~第4下流温度T~Tは、第1~第4下流温度T~Tの順番で高くなっている。第1吐出口34Aは、第1下流温度Tの薬液を吐出する。各第2吐出口34Bは、第2下流温度Tの薬液を吐出する。各第3吐出口34Cは、第3下流温度Tの薬液を吐出し、各第4吐出口34Dは、第4下流温度Tの薬液を吐出する。したがって、複数の吐出口34から吐出される薬液の温度は、回転軸線A1から離れるにしたがって段階的に増加する。 The first to fourth downstream temperatures T 1 to T 4 increase in the order of the first to fourth downstream temperatures T 1 to T 4 . The first discharge port 34A ejects the first downstream temperature T 1 of the chemical solution. Each second discharge port 34B ejects the second downstream temperature T 2 chemicals. Each third discharge port 34C ejects the third liquid chemical downstream temperature T 3, the fourth discharge port 34D ejects a chemical fourth downstream temperature T 4. Therefore, the temperature of the chemical liquid discharged from the plurality of discharge ports 34 increases stepwise as the distance from the rotation axis A1 increases.
 第1~第4下流温度T~Tは、それぞれ、第1~第4配管内温度設定値に相当する。上流ヒータ43の設定温度Ttankは、タンク内温度設定値に相当する。第1下流温度Tは、上流ヒータ43の設定温度Ttankよりも低い。第4下流温度Tは、上流ヒータ43の設定温度Ttankと等しくてもよいし、上流ヒータ43の設定温度Ttank未満であってもよい。第4下流温度Tが上流ヒータ43の設定温度Ttankと等しい場合、第4温度調節器53は、冷熱ユニットではなく、ヒータであってもよい。 The first to fourth downstream temperatures T 1 to T 4 correspond to first to fourth in-pipe temperature setting values, respectively. The set temperature T tank of the upstream heater 43 corresponds to the tank internal temperature set value. The first downstream temperature T 1 is lower than the set temperature T tank of the upstream heater 43. The fourth downstream temperature T 4 may be equal to the set temperature T tank of the upstream heater 43 or may be lower than the set temperature T tank of the upstream heater 43. If the fourth downstream temperature T 4 is equal to the set temperature T tank of the upstream heater 43, a fourth temperature regulator 53 is not a cold unit, or may be a heater.
 次に、図2を参照して、複数の吐出口34からの薬液の吐出が停止された吐出停止状態の処理液供給システムについて説明する。図2では、開いているバルブを黒色で示しており、閉じているバルブを白色で示している。 Next, with reference to FIG. 2, a processing liquid supply system in a discharge stopped state in which the discharge of the chemical liquid from the plurality of discharge ports 34 is stopped will be described. In FIG. 2, open valves are shown in black and closed valves are shown in white.
 薬液タンク41内の薬液は、ポンプ44によって循環流路42に送られる。ポンプ44によって送られた薬液の一部は、上流ヒータ43によって加熱された後、循環流路40を介して薬液タンク41に戻る。ポンプ44によって送られた残りの薬液は、循環流路42から供給流路47に流れ、供給流路47から複数の上流流路48に流れる。 The chemical solution in the chemical solution tank 41 is sent to the circulation channel 42 by the pump 44. A part of the chemical solution sent by the pump 44 is heated by the upstream heater 43 and then returns to the chemical solution tank 41 through the circulation channel 40. The remaining chemical solution sent by the pump 44 flows from the circulation channel 42 to the supply channel 47 and from the supply channel 47 to the plurality of upstream channels 48.
 第1上流流路48A内の薬液は、第1上流流路48Aに対応する温度調節器53によって加熱または冷却された後、リターン流路54に流れる。第2上流流路48B、第3上流流路48C、および第4上流流路48Dについても、第1上流流路48Aと同様である。温度が互いに異なる薬液は、複数のリターン流路54から集合リターン流路56に流れ、集合リターン流路56で混ざり合う。その後、混ざり合った薬液が集合リターン流路56から薬液タンク41に戻る。これにより、ポンプ44によって循環流路42に送られた全ての薬液が、薬液タンク41に戻る。 The chemical in the first upstream channel 48A is heated or cooled by the temperature controller 53 corresponding to the first upstream channel 48A, and then flows into the return channel 54. The second upstream channel 48B, the third upstream channel 48C, and the fourth upstream channel 48D are the same as the first upstream channel 48A. The chemical solutions having different temperatures flow from the plurality of return channels 54 to the collective return channel 56 and are mixed in the collective return channel 56. Thereafter, the mixed chemical liquid returns from the collective return channel 56 to the chemical tank 41. As a result, all the chemical liquid sent to the circulation flow path 42 by the pump 44 returns to the chemical liquid tank 41.
 図7は、基板処理装置1によって実行される基板Wの処理の一例を説明するための工程図である。以下の各動作は、制御装置3が基板処理装置1を制御することにより実行される。言い換えると、制御装置3は、以下の各工程を実行するようにプログラムされている。以下では図3および図4を参照する。図7については適宜参照する。 FIG. 7 is a process diagram for explaining an example of the processing of the substrate W performed by the substrate processing apparatus 1. The following operations are executed by the control device 3 controlling the substrate processing apparatus 1. In other words, the control device 3 is programmed to execute the following steps. In the following, reference is made to FIG. 3 and FIG. 7 will be referred to as appropriate.
 処理ユニット2によって基板Wが処理されるときには、複数のノズル26がスピンチャック11の上方から退避しており、スプラッシュガード17が下位置に位置している状態で、搬送ロボットのハンド(図示せず)によって、基板Wがチャンバー7内に搬入される。これにより、表面が上に向けられた状態で基板Wが複数のチャックピン13の上に置かれる。その後、搬送ロボットのハンドがチャンバー7の内部から退避し、チャンバー7の搬入搬出口8aがシャッター9で閉じられる。 When the substrate W is processed by the processing unit 2, a plurality of nozzles 26 are retracted from above the spin chuck 11 and the splash guard 17 is positioned at the lower position (not shown). ), The substrate W is carried into the chamber 7. As a result, the substrate W is placed on the plurality of chuck pins 13 with the surface facing upward. Thereafter, the hand of the transfer robot is retracted from the inside of the chamber 7, and the loading / unloading port 8 a of the chamber 7 is closed by the shutter 9.
 基板Wが複数のチャックピン13の上に置かれた後は、複数のチャックピン13が基板Wの周縁部に押し付けられ、基板Wが複数のチャックピン13によって把持される。また、ガード昇降ユニット18が、スプラッシュガード17を下位置から上位置に移動させる。これにより、スプラッシュガード17の上端が基板Wよりも上方に配置される。その後、スピンモータ14が駆動され、基板Wの回転が開始される。これにより、基板Wが所定の液処理速度(たとえば数百rpm)で回転する。 After the substrate W is placed on the plurality of chuck pins 13, the plurality of chuck pins 13 are pressed against the peripheral edge of the substrate W, and the substrate W is gripped by the plurality of chuck pins 13. Further, the guard lifting / lowering unit 18 moves the splash guard 17 from the lower position to the upper position. Thereby, the upper end of the splash guard 17 is disposed above the substrate W. Thereafter, the spin motor 14 is driven, and the rotation of the substrate W is started. Thereby, the substrate W is rotated at a predetermined liquid processing speed (for example, several hundred rpm).
 次に、ノズル移動ユニット24が、複数のノズル26を待機位置から処理位置に移動させる。これにより、複数の吐出口34が平面視で基板Wに重なる。その後、複数の吐出バルブ51等が制御され、薬液が複数のノズル26から同時に吐出される(図7のステップS1)。複数のノズル26は、ノズル移動ユニット24が複数のノズル26を静止させている状態で薬液を吐出する。複数の吐出バルブ51が開かれてから所定時間が経過すると、複数のノズル26からの薬液の吐出が同時に停止される(図7のステップS2)。その後、ノズル移動ユニット24が、複数のノズル26を処理位置から待機位置に移動させる。 Next, the nozzle moving unit 24 moves the plurality of nozzles 26 from the standby position to the processing position. As a result, the plurality of ejection ports 34 overlap the substrate W in plan view. Thereafter, the plurality of discharge valves 51 and the like are controlled, and the chemical liquid is simultaneously discharged from the plurality of nozzles 26 (step S1 in FIG. 7). The plurality of nozzles 26 discharge the chemical liquid in a state where the nozzle moving unit 24 stops the plurality of nozzles 26. When a predetermined time elapses after the plurality of discharge valves 51 are opened, the discharge of the chemical solution from the plurality of nozzles 26 is stopped simultaneously (step S2 in FIG. 7). Thereafter, the nozzle moving unit 24 moves the plurality of nozzles 26 from the processing position to the standby position.
 複数のノズル26から吐出された薬液は、回転している基板Wの上面に着液した後、遠心力によって基板Wの上面に沿って外方(回転軸線A1から離れる方向)に流れる。基板Wの上面周縁部に達した薬液は、基板Wの周囲に飛散し、スプラッシュガード17の内周面に受け止められる。このようにして、薬液が基板Wの上面全域に供給され、基板Wの上面全域を覆う薬液の液膜が基板W上に形成される。これにより、基板Wの上面全域が薬液で処理される。 The chemical liquid discharged from the plurality of nozzles 26 lands on the upper surface of the rotating substrate W, and then flows outward (in the direction away from the rotation axis A1) along the upper surface of the substrate W by centrifugal force. The chemical solution that has reached the peripheral edge of the upper surface of the substrate W scatters around the substrate W and is received by the inner peripheral surface of the splash guard 17. In this way, the chemical liquid is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical liquid covering the entire upper surface of the substrate W is formed on the substrate W. Thereby, the entire upper surface of the substrate W is treated with the chemical solution.
 複数のノズル26からの薬液の吐出が停止された後は、リンス液バルブ23が開かれ、リンス液ノズル21からのリンス液(純水)の吐出が開始される(図7のステップS3)。これにより、基板W上の薬液がリンス液によって洗い流され、基板Wの上面全域を覆うリンス液の液膜が形成される。リンス液バルブ23が開かれてから所定時間が経過すると、リンス液バルブ23が閉じられ、リンス液ノズル21からのリンス液の吐出が停止される(図7のステップS4)。 After the discharge of the chemical liquid from the plurality of nozzles 26 is stopped, the rinse liquid valve 23 is opened, and the discharge of the rinse liquid (pure water) from the rinse liquid nozzle 21 is started (step S3 in FIG. 7). Thereby, the chemical liquid on the substrate W is washed away by the rinse liquid, and a liquid film of the rinse liquid covering the entire upper surface of the substrate W is formed. When a predetermined time elapses after the rinsing liquid valve 23 is opened, the rinsing liquid valve 23 is closed and the discharge of the rinsing liquid from the rinsing liquid nozzle 21 is stopped (step S4 in FIG. 7).
 リンス液ノズル21からのリンス液の吐出が停止された後は、基板Wがスピンモータ14によって回転方向に加速され、液処理速度よりも大きい乾燥速度(たとえば数千rpm)で基板Wが回転する(図7のステップS5)。これにより、基板Wに付着しているリンス液が基板Wの周囲に振り切られ、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンモータ14および基板Wの回転が停止される。 After the discharge of the rinsing liquid from the rinsing liquid nozzle 21 is stopped, the substrate W is accelerated in the rotation direction by the spin motor 14, and the substrate W rotates at a drying speed (for example, several thousand rpm) higher than the liquid processing speed. (Step S5 in FIG. 7). Thereby, the rinse liquid adhering to the substrate W is shaken off around the substrate W, and the substrate W is dried. When a predetermined time elapses after the high-speed rotation of the substrate W is started, the rotation of the spin motor 14 and the substrate W is stopped.
 基板Wの回転が停止された後は、ガード昇降ユニット18が、スプラッシュガード17を上位置から下位置に移動させる。さらに、複数のチャックピン13による基板Wの保持が解除される。搬送ロボットは、複数のノズル26がスピンチャック11の上方から退避しており、スプラッシュガード17が下位置に位置している状態で、ハンドをチャンバー7の内部に進入させる。その後、搬送ロボットは、ハンドによってスピンチャック11上の基板Wを取り、この基板Wをチャンバー7から搬出する。 After the rotation of the substrate W is stopped, the guard lifting / lowering unit 18 moves the splash guard 17 from the upper position to the lower position. Further, the holding of the substrate W by the plurality of chuck pins 13 is released. The transfer robot causes the hand to enter the chamber 7 with the plurality of nozzles 26 retracted from above the spin chuck 11 and the splash guard 17 is positioned at the lower position. Thereafter, the transfer robot takes the substrate W on the spin chuck 11 with the hand and carries the substrate W out of the chamber 7.
 図8は、制御装置3の機能ブロックを示すブロック図である。制御装置3は、タンク内温度制御部61と、配管内温度制御部62と、流量制御部63と、リターン温度制御部64とを含む。これらは、制御装置3にインストールされたプログラムをCPUなどの演算部3a(図1参照)が実行することにより実現される機能ブロックである。 FIG. 8 is a block diagram showing functional blocks of the control device 3. The control device 3 includes an in-tank temperature control unit 61, an in-pipe temperature control unit 62, a flow rate control unit 63, and a return temperature control unit 64. These are functional blocks that are realized when a calculation unit 3a (see FIG. 1) such as a CPU executes a program installed in the control device 3.
 タンク内温度制御部61は、薬液タンク41内の薬液の温度がタンク内温度設定値になるように上流ヒータ43を制御する。配管内温度制御部62は、複数の温度調節器53を通過した薬液の温度がそれぞれ複数の配管内温度設定値になるように複数の温度調節器53を制御する。複数の配管内温度設定値の最大値は、タンク内温度設定値以上であり、複数の配管内温度設定値の最小値は、タンク内温度設定値未満である。流量制御部63は、複数の流量調整バルブ50を通過した薬液の流量がそれぞれ複数の流量設定値になるように複数の流量調整バルブ50を制御する。各流量設定値は、同一の値であってもよいし、少なくとも一つの他の流量設定値とは異なる値であってもよい。 The tank internal temperature control unit 61 controls the upstream heater 43 so that the temperature of the chemical solution in the chemical solution tank 41 becomes the tank internal temperature set value. The in-pipe temperature controller 62 controls the plurality of temperature controllers 53 so that the temperature of the chemical solution that has passed through the plurality of temperature controllers 53 becomes a plurality of in-pipe temperature settings, respectively. The maximum value of the plurality of piping temperature setting values is equal to or higher than the tank temperature setting value, and the minimum value of the plurality of piping temperature setting values is less than the tank temperature setting value. The flow rate control unit 63 controls the plurality of flow rate adjustment valves 50 such that the flow rates of the chemicals that have passed through the plurality of flow rate adjustment valves 50 become a plurality of flow rate setting values, respectively. Each flow rate set value may be the same value, or may be a value different from at least one other flow rate set value.
 リターン温度制御部64は、予想リターン温度がタンク内温度設定値以下になるように、タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定する。予想リターン温度は、単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の熱量の計算値を単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の体積の計算値で割った値である。 The return temperature control unit 64 sets the tank temperature setting value, the plurality of pipe temperature setting values, and the plurality of flow rate setting values so that the expected return temperature is equal to or lower than the tank temperature setting value. The predicted return temperature is calculated by calculating the calorific value of all the chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in unit time, and the volume of all chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in unit time. The value divided by the calculated value.
 単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の熱量の計算値は、複数の上流流路48における配管内温度設定値および流量設定値の積の合計値である。単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の体積の計算値は、複数の流量設定値の合計値である。したがって、各上流流路48における配管内温度設定値および流量設定値が分かれば、予想リターン温度を求めることができる。 The calculated value of the calorific value of all the chemical liquids returning from the plurality of return flow paths 54 to the chemical liquid tank 41 in a unit time is the sum of products of the temperature setting values and the flow rate setting values in the plurality of upstream flow paths 48. The calculated value of the volume of all the chemical solutions that return to the chemical solution tank 41 from the plurality of return channels 54 in a unit time is the total value of the plurality of flow rate setting values. Therefore, if the in-pipe temperature setting value and the flow rate setting value in each upstream flow path 48 are known, the expected return temperature can be obtained.
 図9は、タンク内温度設定値、複数の配管内温度設定値、複数の流量設定値、および予想リターン温度の具体例を示す表である。以下では、図2および図9を参照する。 FIG. 9 is a table showing specific examples of tank temperature setting values, a plurality of piping temperature setting values, a plurality of flow rate setting values, and an expected return temperature. In the following, reference is made to FIGS.
 制御装置3は、複数のリターン流路54から薬液タンク41に戻る薬液の温度が薬液タンク41内の薬液の温度以下になるように、タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定する。図9は、予想リターン温度がタンク内温度設定値と等しいときの、タンク内温度設定値、複数の配管内温度設定値、複数の流量設定値、および予想リターン温度の具体例を示している。 The controller 3 sets the tank temperature setting value, the plurality of pipe temperature setting values, and the temperature of the chemical solution returning from the plurality of return channels 54 to the chemical solution tank 41 to be equal to or lower than the temperature of the chemical solution in the chemical solution tank 41. Set multiple flow rate settings. FIG. 9 shows a specific example of the tank temperature setting value, the plurality of pipe temperature setting values, the plurality of flow rate setting values, and the expected return temperature when the expected return temperature is equal to the tank temperature setting value.
 図9に示すように、第1上流流路48Aに対応する温度調節器53の設定温度、つまり、第1下流温度Tは、60℃である。第2下流温度Tは65℃であり、第3下流温度Tは75℃であり、第4下流温度Tは80℃である。上流ヒータ43の設定温度である上流温度Ttankは70℃である。したがって、第1下流温度Tおよび第2下流温度Tは、上流温度Ttankよりも低く、第3下流温度Tおよび第4下流温度Tは、上流温度Ttankよりも高い。 As shown in FIG. 9, the set temperature of the temperature regulator 53 corresponding to the first upstream passage 48A, that is, first downstream temperature T 1 of is 60 ° C.. The second downstream temperature T 2 is 65 ° C., the third downstream temperature T 3 is 75 ° C., and the fourth downstream temperature T 4 is 80 ° C. The upstream temperature T tank that is the set temperature of the upstream heater 43 is 70 ° C. Accordingly, the first downstream temperature T 1 and the second downstream temperature T 2 are lower than the upstream temperature T tank , and the third downstream temperature T 3 and the fourth downstream temperature T 4 are higher than the upstream temperature T tank .
 第1上流流路48Aに対応する流量調整バルブ50を通過する薬液の流量の設定値、つまり、第1流量設定値Vはx(mL/min)である。第2上流流路48Bに対応する流量調整バルブ50を通過する薬液の流量の設定値(第2流量設定値V)もxである。同様に、第3上流流路48Cに対応する流量調整バルブ50を通過する薬液の流量の設定値(第3流量設定値V)はxであり、第4上流流路48Dに対応する流量調整バルブ50を通過する薬液の流量の設定値(第4流量設定値V)はxである。つまり、この例では、第1流量設定値V、第2流量設定値V、第3流量設定値V、および第4流量設定値Vが互いに等しい。 Flow rate setting of the chemical liquid through the flow rate adjustment valve 50 corresponding to the first upstream passage 48A, that is, the first flow rate set value V 1 was a x (mL / min). A set value (second flow rate set value V 2 ) of the flow rate of the chemical liquid passing through the flow rate adjustment valve 50 corresponding to the second upstream flow path 48B is also x. Similarly, the set value (third flow rate set value V 3 ) of the chemical liquid passing through the flow rate adjustment valve 50 corresponding to the third upstream flow channel 48C is x, and the flow rate adjustment corresponding to the fourth upstream flow channel 48D. The set value (fourth flow rate set value V 4 ) of the flow rate of the chemical liquid passing through the valve 50 is x. That is, in this example, the first flow rate setting value V 1 , the second flow rate setting value V 2 , the third flow rate setting value V 3 , and the fourth flow rate setting value V 4 are equal to each other.
 単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の熱量は、第1~第4下流温度T~Tと第1~第4流量設定値V~Vから求められる。図9に示す例では、単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の熱量は、280x(=60x+65x+75x+80x)である。単位時間において複数のリターン流路54から薬液タンク41に戻る全ての薬液の体積は、4xである。したがって、複数のリターン流路54から薬液タンク41に戻る薬液の温度は、70℃(=280x/4x)であり、上流ヒータ43の設定温度である上流温度Ttankと等しい。 The calorific values of all the chemical solutions that return to the chemical solution tank 41 from the plurality of return channels 54 in a unit time are obtained from the first to fourth downstream temperatures T 1 to T 4 and the first to fourth flow rate setting values V 1 to V 4. It is done. In the example shown in FIG. 9, the amount of heat of all the chemical liquids returning from the plurality of return channels 54 to the chemical liquid tank 41 in a unit time is 280x (= 60x + 65x + 75x + 80x). The volume of all the chemical solutions that return from the plurality of return flow paths 54 to the chemical solution tank 41 in a unit time is 4x. Therefore, the temperature of the chemical solution that returns from the plurality of return channels 54 to the chemical solution tank 41 is 70 ° C. (= 280x / 4x), which is equal to the upstream temperature T tank that is the set temperature of the upstream heater 43.
 薬液の温度は、基板Wの処理に大きな影響を及ぼす場合がある。吐出停止中に温度調節器53を停止させると、温度調節器53の運転を開始または再開したときに、温度調節器53によって加熱または冷却された薬液の温度が意図する温度で安定するまでに時間がかかる。そのため、直ぐに薬液の吐出を開始または再開することができず、スループットが低下する。したがって、吐出停止中であっても、温度調節器53に液体を加熱または冷却させることが好ましい。 The temperature of the chemical solution may greatly affect the processing of the substrate W. If the temperature controller 53 is stopped while the discharge is stopped, it takes time until the temperature of the chemical heated or cooled by the temperature controller 53 is stabilized at the intended temperature when the operation of the temperature controller 53 is started or restarted. It takes. Therefore, the discharge of the chemical solution cannot be started or restarted immediately, and the throughput is reduced. Therefore, it is preferable to cause the temperature controller 53 to heat or cool the liquid even when the discharge is stopped.
 本実施形態では、吐出停止中にも、薬液を上流流路48に供給し、温度調節器53に加熱または冷却させる。したがって、吐出停止中であっても、温度調節器53の温度が安定した状態を維持できる。そのため、直ぐに薬液の吐出を再開できる。さらに、吐出停止中は、温度調節器53によって加熱または冷却された薬液をリターン流路54を介して薬液タンク41に戻すので、薬液の消費量を低減できる。しかも、薬液タンク41内の薬液の温度以下の温度の薬液が薬液タンク41に戻るので、薬液タンク41に戻る薬液を冷却するクーラーを設けなくてもよい。これにより、基板処理装置1の大型化を防止できる。 In the present embodiment, the chemical solution is supplied to the upstream flow path 48 and the temperature controller 53 is heated or cooled even during discharge stop. Therefore, even when the discharge is stopped, the temperature of the temperature controller 53 can be kept stable. Therefore, the discharge of the chemical liquid can be resumed immediately. Furthermore, since the chemical liquid heated or cooled by the temperature controller 53 is returned to the chemical liquid tank 41 via the return channel 54 while the discharge is stopped, the consumption of the chemical liquid can be reduced. In addition, since the chemical liquid having a temperature equal to or lower than the temperature of the chemical liquid in the chemical liquid tank 41 returns to the chemical liquid tank 41, it is not necessary to provide a cooler for cooling the chemical liquid returning to the chemical liquid tank 41. Thereby, the enlargement of the substrate processing apparatus 1 can be prevented.
 本実施形態では、全ての温度調節器53が冷熱ユニットであるので、いずれの上流流路48でも薬液を加熱および冷却できる。したがって、複数の温度調節器53にヒータが含まれる場合に比べて、複数の吐出口34から吐出される薬液の温度をより自由に設定できる。さらに、冷熱ユニットは、薬液を冷却することもできるので、薬液タンク41に戻る薬液の温度を薬液タンク41内の薬液の温度以下にすることができる。これにより、薬液タンク41に戻る薬液を冷却するクーラーを省略できる。 In this embodiment, since all the temperature regulators 53 are cooling units, the chemical solution can be heated and cooled in any upstream channel 48. Therefore, the temperature of the chemical solution discharged from the plurality of discharge ports 34 can be set more freely than when the plurality of temperature controllers 53 include heaters. Furthermore, since the cooling unit can also cool the chemical solution, the temperature of the chemical solution returning to the chemical solution tank 41 can be made equal to or lower than the temperature of the chemical solution in the chemical solution tank 41. Thereby, the cooler which cools the chemical | medical solution which returns to the chemical | medical solution tank 41 is omissible.
 本実施形態では、薬液タンク41内の薬液の量が規定量を下回ると、新しい薬液が新液流路58から薬液タンク41に供給される。これにより、薬液タンク41内の薬液の量が規定量以上に維持される。新しい薬液の温度は、タンク内温度設定値以下(たとえば、室温)である。したがって、新しい薬液を薬液タンク41に補充したとしても、薬液タンク41内の薬液の温度がタンク内温度設定値を超えることはない。これにより、薬液タンク41内の薬液の温度がタンク内温度設定値に低下するまで、基板Wへの薬液の供給を停止しなくてもよい。 In the present embodiment, when the amount of the chemical liquid in the chemical liquid tank 41 falls below the specified amount, a new chemical liquid is supplied from the new liquid flow path 58 to the chemical liquid tank 41. Thereby, the quantity of the chemical | medical solution in the chemical | medical solution tank 41 is maintained more than regulation amount. The temperature of the new chemical is below the tank temperature set value (for example, room temperature). Therefore, even when a new chemical solution is replenished to the chemical solution tank 41, the temperature of the chemical solution in the chemical solution tank 41 does not exceed the tank temperature setting value. Thereby, the supply of the chemical liquid to the substrate W may not be stopped until the temperature of the chemical liquid in the chemical liquid tank 41 is lowered to the tank temperature setting value.
 本実施形態では、複数の上流流路48から複数のリターン流路54に流れた薬液が、集合リターン流路54に流れる。集合リターン流路54に供給された薬液は、集合リターン流路54で混ざり合いながら、薬液タンク41に向かって流れる。つまり、温度の異なる薬液が集合リターン流路54で混ざり合い、タンク内温度設定値に概ね等しい温度の混合液が形成される。したがって、温度の異なる薬液が別々に薬液タンク41に供給される場合に比べて、薬液タンク41内の薬液の温度の変動を抑えることができる。 In the present embodiment, the chemicals that have flowed from the plurality of upstream channels 48 to the plurality of return channels 54 flow to the collective return channel 54. The chemical solution supplied to the collective return channel 54 flows toward the chemical solution tank 41 while being mixed in the collective return channel 54. That is, the chemical solutions having different temperatures are mixed in the collective return channel 54, and a mixed solution having a temperature substantially equal to the tank temperature setting value is formed. Therefore, the variation in the temperature of the chemical solution in the chemical solution tank 41 can be suppressed as compared with the case where the chemical solutions having different temperatures are separately supplied to the chemical solution tank 41.
 本実施形態では、複数の吐出口34から吐出された薬液が、基板Wの上面内の複数の着液位置に着液する。複数の着液位置は、基板Wの回転軸線A1からの水平方向の距離が互いに異なっている。したがって、基板Wの中央部だけに向けて薬液を吐出する場合と比較して、処理の均一性を高めることができる。さらに、複数の吐出口34から吐出されたときの薬液の温度は、複数の温度調節器53によって変更される。したがって、基板Wの上面に着液した時点での薬液の温度を意図的に不均一にすることができ、処理品質をコントロールすることができる。 In the present embodiment, the chemical liquid discharged from the plurality of discharge ports 34 is deposited at a plurality of liquid deposition positions in the upper surface of the substrate W. The plurality of liquid landing positions have different horizontal distances from the rotation axis A1 of the substrate W. Therefore, the uniformity of processing can be improved as compared with the case where the chemical solution is discharged only toward the central portion of the substrate W. Further, the temperature of the chemical liquid when discharged from the plurality of discharge ports 34 is changed by the plurality of temperature regulators 53. Therefore, the temperature of the chemical solution at the time of landing on the upper surface of the substrate W can be intentionally made non-uniform, and the processing quality can be controlled.
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications can be made.
 たとえば、ノズル26の数は、2または3本であってもよいし、5本以上であってもよい。 For example, the number of nozzles 26 may be two or three, or may be five or more.
 第1ノズル26Aを含む全てのノズル26にノズルヘッド33が設けられていてもよい。これとは反対に、全てのノズル26にノズルヘッド33が設けられていなくてもよい。 The nozzle head 33 may be provided in all the nozzles 26 including the first nozzle 26A. On the contrary, the nozzle heads 33 may not be provided for all the nozzles 26.
 1つのノズルヘッド33に形成されている下流流路52および吐出口34の数は、2つであってもよいし、4つ以上であってもよい。 The number of the downstream flow paths 52 and the discharge ports 34 formed in one nozzle head 33 may be two, or four or more.
 分岐上流流路(第1上流流路48A以外の上流流路48)は、チャンバー7の外で分岐していてもよい。 The branch upstream channel (upstream channel 48 other than the first upstream channel 48A) may be branched outside the chamber 7.
 複数の吐出口34が、回転軸線A1からの距離が異なる複数の位置にそれぞれ配置されるのであれば、複数の吐出口34は、平面視で径方向Drに並んでいなくてもよい。 If the plurality of discharge ports 34 are respectively arranged at a plurality of positions having different distances from the rotation axis A1, the plurality of discharge ports 34 may not be arranged in the radial direction Dr in plan view.
 複数の吐出口34は、基板Wの上面に近づくにしたがって回転軸線A1に近づくように、基板Wの上面に対して傾いた吐出方向に処理液を吐出する斜め吐出口を含んでいてもよい。 The plurality of discharge ports 34 may include oblique discharge ports that discharge the processing liquid in a discharge direction inclined with respect to the upper surface of the substrate W so as to approach the rotation axis A1 as it approaches the upper surface of the substrate W.
 複数のノズル26をノズル回動軸線A2まわりに回動させながら、複数のノズル26に薬液を吐出させてもよい。 The chemical solution may be discharged to the plurality of nozzles 26 while rotating the plurality of nozzles 26 around the nozzle rotation axis A2.
 前記実施形態では、全ての吐出バルブ51が同時に開かれ、全ての吐出バルブ51が同時に閉じられる場合について説明したが、制御装置3は、外側の吐出口34が処理液を吐出している時間が、内側の吐出口34が処理液を吐出している時間よりも長くなるように、複数の吐出バルブ51を制御してもよい。 In the above embodiment, the case where all the discharge valves 51 are opened at the same time and all the discharge valves 51 are closed at the same time has been described. However, the control device 3 determines that the time during which the outer discharge port 34 is discharging the processing liquid is the time. The plurality of discharge valves 51 may be controlled so that the inner discharge port 34 is longer than the time during which the processing liquid is discharged.
 予想リターン温度は、タンク内温度設定値未満の値であってもよい。この場合、タンク内温度設定値から予想リターン温度を引いた値は、第1~第4下流温度T~Tの間の差の最小値よりも小さいことが好ましい。図9に示す例では、第1~第4下流温度T~Tの間の差の最小値が5℃であるので、タンク内温度設定値から予想リターン温度を引いた値は、5℃よりも小さいことが好ましい。 The expected return temperature may be a value lower than the tank temperature setting value. In this case, the value obtained by subtracting the expected return temperature from the tank internal temperature setting value is preferably smaller than the minimum value of the difference between the first to fourth downstream temperatures T 1 to T 4 . In the example shown in FIG. 9, since the minimum value of the difference between the first to fourth downstream temperatures T 1 to T 4 is 5 ° C., the value obtained by subtracting the expected return temperature from the tank internal temperature setting value is 5 ° C. Is preferably smaller.
 前述の全ての構成の2つ以上が組み合わされてもよい。前述の全ての工程の2つ以上が組み合わされてもよい。

 この出願は、2017年4月21日に日本国特許庁に提出された特願2017-084831号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
Two or more of all the aforementioned configurations may be combined. Two or more of all the above steps may be combined.

This application corresponds to Japanese Patent Application No. 2017-084831 filed with the Japan Patent Office on April 21, 2017, the entire disclosure of which is incorporated herein by reference. Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. The spirit and scope of the present invention should not be limited only by the appended claims.
1   :基板処理装置
2   :処理ユニット
3   :制御装置
11  :スピンチャック(基板保持ユニット)
26A :第1ノズル
26B :第2ノズル
26C :第3ノズル
26D :第4ノズル
34A :第1吐出口
34B :第2吐出口
34C :第3吐出口
34D :第4吐出口
41  :薬液タンク(タンク)
42  :循環流路
43  :上流ヒータ
44  :ポンプ(送液装置)
45  :供給バルブ
46  :循環バルブ
47  :供給流路
48  :上流流路
48A :第1上流流路
48B :第2上流流路
48C :第3上流流路
48D :第4上流流路
49  :流量計
50  :流量調整バルブ
51  :吐出バルブ(切替ユニット)
52  :下流流路
53  :下流ヒータ
54  :リターン流路
55  :リターンバルブ(切替ユニット)
57  :液量センサー
58  :新液流路
59  :新液バルブ
61  :タンク内温度制御部
62  :配管内温度制御部
63  :流量制御部
64  :リターン温度制御部
A1  :回転軸線
W   :基板
 
1: substrate processing device 2: processing unit 3: control device 11: spin chuck (substrate holding unit)
26A: 1st nozzle 26B: 2nd nozzle 26C: 3rd nozzle 26D: 4th nozzle 34A: 1st discharge port 34B: 2nd discharge port 34C: 3rd discharge port 34D: 4th discharge port 41: Chemical solution tank (tank )
42: Circulation channel 43: Upstream heater 44: Pump (liquid feeding device)
45: supply valve 46: circulation valve 47: supply channel 48: upstream channel 48A: first upstream channel 48B: second upstream channel 48C: third upstream channel 48D: fourth upstream channel 49: flow meter 50: Flow rate adjusting valve 51: Discharge valve (switching unit)
52: Downstream channel 53: Downstream heater 54: Return channel 55: Return valve (switching unit)
57: Liquid volume sensor 58: New liquid flow path 59: New liquid valve 61: Tank temperature control unit 62: Pipe temperature control unit 63: Flow rate control unit 64: Return temperature control unit A1: Rotation axis W: Substrate

Claims (7)

  1.  基板を水平に保持しながら基板の中央部を通る鉛直な回転軸線まわりに回転させる基板保持ユニットと、
     前記基板保持ユニットに保持されている基板に向けて処理液を吐出する複数の吐出口と、
     前記複数の吐出口から吐出される処理液を貯留するタンクと、
     前記タンク内の処理液を循環させる循環流路と、
     前記タンク内の処理液を前記循環流路に送る送液装置と、
     前記循環流路を流れる処理液を加熱する上流ヒータと、
     前記循環流路内の処理液を前記複数の吐出口に向けて案内する供給流路と、
     前記供給流路から分岐しており、前記供給流路内の処理液を前記複数の吐出口に向けて案内する複数の上流流路と、
     処理液を冷却するクーラーまたは処理液を加熱および冷却する冷熱ユニットを含み、前記複数の上流流路にそれぞれ設けられており、加熱および冷却の少なくとも一方によって前記複数の上流流路を流れる処理液の温度を変更する複数の温度調節器と、
     前記複数の上流流路にそれぞれ設けられており、前記複数の温度調節器に送られる処理液の流量を変更する複数の流量調整バルブと、
     前記複数の温度調節器の下流で前記複数の上流流路にそれぞれ接続されており、前記複数の温度調節器によって温度が変更された処理液を前記タンクに向けて案内する複数のリターン流路と、
     前記供給流路から前記複数の上流流路に供給された処理液が前記複数の吐出口に供給される吐出状態と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数のリターン流路に供給される吐出停止状態と、を含む複数の状態の間で切り替わる切替ユニットと、
     前記タンク内の処理液の温度がタンク内温度設定値になるように、前記上流ヒータを制御するタンク内温度制御部と、
     前記複数の温度調節器を通過した処理液の温度がそれぞれ複数の配管内温度設定値になり、前記複数の配管内温度設定値の最大値が前記タンク内温度設定値以上になり、前記複数の配管内温度設定値の最小値が前記タンク内温度設定値よりも小さくなるように、前記複数の温度調節器を制御する配管内温度制御部と、
     前記複数の流量調整バルブを通過した処理液の流量がそれぞれ複数の流量設定値になるように、前記複数の流量調整バルブを制御する流量制御部と、
     単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の熱量の計算値を前記単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の体積の計算値で割った値である予想リターン温度が、前記タンク内温度設定値以下になるように、前記タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定するリターン温度制御部とを備える、基板処理装置。
    A substrate holding unit that rotates around a vertical rotation axis passing through the center of the substrate while holding the substrate horizontally;
    A plurality of discharge ports for discharging the processing liquid toward the substrate held by the substrate holding unit;
    A tank for storing processing liquid discharged from the plurality of discharge ports;
    A circulation flow path for circulating the processing liquid in the tank;
    A liquid feeding device for sending the processing liquid in the tank to the circulation channel;
    An upstream heater for heating the processing liquid flowing through the circulation channel;
    A supply flow path for guiding the processing liquid in the circulation flow path toward the plurality of discharge ports;
    A plurality of upstream flow channels that branch from the supply flow channel and guide the processing liquid in the supply flow channel toward the plurality of discharge ports;
    Including a cooler for cooling the processing liquid or a cooling / heating unit for heating and cooling the processing liquid, provided in each of the plurality of upstream flow paths, and flowing through the plurality of upstream flow paths by at least one of heating and cooling. Multiple temperature regulators to change the temperature,
    A plurality of flow rate adjustment valves that are respectively provided in the plurality of upstream flow paths, and that change the flow rate of the processing liquid sent to the plurality of temperature controllers;
    A plurality of return flow paths that are respectively connected to the plurality of upstream flow paths downstream of the plurality of temperature controllers, and that guide the processing liquid whose temperature has been changed by the plurality of temperature controllers toward the tank; ,
    A discharge state in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of discharge ports, and a processing liquid supplied from the supply flow path to the plurality of upstream flow paths A switching unit that switches between a plurality of states including a discharge stop state supplied to a plurality of return flow paths, and
    A tank temperature controller that controls the upstream heater so that the temperature of the processing liquid in the tank becomes a tank temperature setting value;
    The temperature of the processing liquid that has passed through the plurality of temperature controllers becomes a plurality of piping temperature setting values, and the maximum value of the plurality of piping temperature setting values is equal to or higher than the tank temperature setting value, In-pipe temperature control unit for controlling the plurality of temperature controllers so that the minimum value of the set temperature in the pipe is smaller than the set temperature in the tank;
    A flow rate controller that controls the plurality of flow rate adjustment valves such that the flow rates of the processing liquid that have passed through the plurality of flow rate adjustment valves become a plurality of flow rate setting values, respectively;
    Divide the calculated values of the heat amounts of all treatment liquids returning from the plurality of return flow paths into the tank in unit time by the calculated values of the volumes of all treatment liquids returning from the plurality of return flow paths to the tank in the unit time. A return temperature control unit configured to set the tank temperature setting value, the plurality of pipe temperature setting values, and the plurality of flow rate setting values so that an expected return temperature that is a calculated value is equal to or lower than the tank temperature setting value. A substrate processing apparatus comprising:
  2.  前記複数の温度調節器は、いずれも、前記冷熱ユニットである、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein each of the plurality of temperature controllers is the cooling / heating unit.
  3.  前記タンク内温度設定値から前記予想リターン温度を引いた値は、前記複数の配管内温度設定値の間の差の最小値よりも小さい、請求項1または2に記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein a value obtained by subtracting the expected return temperature from the tank temperature setting value is smaller than a minimum value of a difference between the plurality of piping temperature setting values.
  4.  前記タンク内温度設定値以下の液温の新しい処理液を前記タンク内に案内する新液流路をさらに備える、請求項1~3のいずれか一項に記載の基板処理装置。 4. The substrate processing apparatus according to claim 1, further comprising a new liquid flow path for guiding a new processing liquid having a liquid temperature equal to or lower than a set temperature in the tank into the tank.
  5.  前記複数のリターン流路のそれぞれに接続されており、前記複数のリターン流路から前記タンクに処理液を案内する集合リターン流路をさらに含む、請求項1~4のいずれか一項に記載の基板処理装置。 5. The collective return flow path that is connected to each of the plurality of return flow paths and guides the processing liquid from the plurality of return flow paths to the tank. Substrate processing equipment.
  6.  前記複数の吐出口は、前記回転軸線からの水平方向の距離が異なる複数の位置にそれぞれ配置されている、請求項1~5のいずれか一項に記載の基板処理装置。 6. The substrate processing apparatus according to claim 1, wherein the plurality of discharge ports are respectively arranged at a plurality of positions having different horizontal distances from the rotation axis.
  7.  基板保持ユニットに基板を水平に保持させながら、基板の中央部を通る鉛直な回転軸線まわりに基板を回転させる基板回転工程と、
     前記基板保持ユニットに保持されている基板に向けて複数の吐出口に処理液を吐出させる処理液吐出工程と、
     前記複数の吐出口から吐出される処理液をタンクに貯留させる処理液貯留工程と、
     前記タンク内の処理液を循環流路に循環させる循環工程と、
     前記タンクから前記循環流路に処理液を送液装置に送らせる送液工程と、
     前記循環流路を流れる処理液を上流ヒータに加熱させる上流温度調節工程と、
     供給流路に前記循環流路内の処理液を前記複数の吐出口に向けて案内させる供給工程と、
     前記供給流路から分岐した複数の上流流路に前記供給流路内の処理液を前記複数の吐出口に向けて案内させる上流案内工程と、
     処理液を冷却するクーラーまたは処理液を加熱および冷却する冷熱ユニットを含み、前記複数の上流流路にそれぞれ設けられた複数の温度調節器に、加熱および冷却の少なくとも一方によって前記複数の上流流路を流れる処理液の温度を変更させる下流温度調節工程と、
     前記複数の上流流路にそれぞれ設けられた複数の流量調整バルブに前記複数の温度調節器に送られる処理液の流量を変更させる流量変更工程と、
     前記複数の温度調節器の下流で前記複数の上流流路にそれぞれ接続された複数のリターン流路に、前記複数の温度調節器によって温度が変更された処理液を前記タンクに向けて案内させるリターン工程と、
     前記供給流路から前記複数の上流流路に供給された処理液が前記複数の吐出口に供給される吐出状態と、前記供給流路から前記複数の上流流路に供給された処理液が前記複数のリターン流路に供給される吐出停止状態と、を含む複数の状態の間で切替ユニットを切り替える吐出切替工程と、
     前記タンク内の処理液の温度がタンク内温度設定値になるように、タンク内温度制御部に前記上流ヒータを制御させるタンク内温度制御工程と、
     前記複数の温度調節器を通過した処理液の温度がそれぞれ複数の配管内温度設定値になり、前記複数の配管内温度設定値の最大値が前記タンク内温度設定値以上になり、前記複数の配管内温度設定値の最小値が前記タンク内温度設定値よりも小さくなるように、配管内温度制御部に前記複数の温度調節器を制御させる配管内温度制御工程と、
     前記複数の流量調整バルブを通過した処理液の流量がそれぞれ複数の流量設定値になるように、流量制御部に前記複数の流量調整バルブを制御させる流量制御工程と、
     単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の熱量の計算値を前記単位時間において前記複数のリターン流路から前記タンクに戻る全ての処理液の体積の計算値で割った値である予想リターン温度が、前記タンク内温度設定値以下になるように、リターン温度制御部に前記タンク内温度設定値、複数の配管内温度設定値、および複数の流量設定値を設定させるリターン温度制御工程とを含む、基板処理方法。
     
    A substrate rotation step of rotating the substrate around a vertical rotation axis passing through the central portion of the substrate while holding the substrate horizontally in the substrate holding unit;
    A treatment liquid discharge step of discharging treatment liquid to a plurality of discharge ports toward the substrate held by the substrate holding unit;
    A treatment liquid storage step of storing the treatment liquid discharged from the plurality of discharge ports in a tank;
    A circulation step of circulating the treatment liquid in the tank to a circulation channel;
    A liquid feeding step for sending a processing liquid from the tank to the circulation channel to a liquid feeding device;
    An upstream temperature adjustment step of heating the treatment liquid flowing through the circulation flow path to an upstream heater;
    A supply step of guiding the treatment liquid in the circulation channel toward the supply channel toward the plurality of discharge ports;
    An upstream guide step of guiding the processing liquid in the supply channel toward the plurality of discharge ports to a plurality of upstream channels branched from the supply channel;
    Including a cooler for cooling the treatment liquid or a cooling unit for heating and cooling the treatment liquid, and a plurality of temperature controllers provided in each of the plurality of upstream flow paths, and the plurality of upstream flow paths by at least one of heating and cooling A downstream temperature adjustment step for changing the temperature of the treatment liquid flowing through
    A flow rate changing step of changing a flow rate of the processing liquid sent to the plurality of temperature regulators to a plurality of flow rate adjustment valves respectively provided in the plurality of upstream flow paths;
    Return that guides the processing liquid whose temperature has been changed by the plurality of temperature controllers toward the tank to a plurality of return channels respectively connected to the plurality of upstream channels downstream from the plurality of temperature controllers. Process,
    A discharge state in which the processing liquid supplied from the supply flow path to the plurality of upstream flow paths is supplied to the plurality of discharge ports, and a processing liquid supplied from the supply flow path to the plurality of upstream flow paths A discharge switching step of switching the switching unit between a plurality of states including a discharge stop state supplied to a plurality of return flow paths;
    A tank temperature control step for causing the tank temperature control unit to control the upstream heater so that the temperature of the processing liquid in the tank becomes a tank temperature setting value;
    The temperature of the processing liquid that has passed through the plurality of temperature controllers becomes a plurality of piping temperature setting values, and the maximum value of the plurality of piping temperature setting values is equal to or higher than the tank temperature setting value, In-pipe temperature control step of controlling the plurality of temperature regulators in the pipe temperature controller so that the minimum value of the pipe temperature set value is smaller than the tank temperature set value;
    A flow rate control step of causing the flow rate control unit to control the plurality of flow rate adjustment valves so that the flow rates of the processing liquid that have passed through the plurality of flow rate adjustment valves become a plurality of flow rate setting values, respectively;
    Divide the calculated values of the heat amounts of all treatment liquids returning from the plurality of return flow paths into the tank in unit time by the calculated values of the volumes of all treatment liquids returning from the plurality of return flow paths to the tank in the unit time. The return temperature control unit is configured to set the tank temperature setting value, the plurality of pipe temperature setting values, and the plurality of flow rate setting values so that the expected return temperature that is the calculated value is equal to or lower than the tank temperature setting value. A substrate processing method including a return temperature control step.
PCT/JP2018/015124 2017-04-21 2018-04-10 Substrate treatment device and substrate treatment method WO2018193921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084831 2017-04-21
JP2017084831A JP6865626B2 (en) 2017-04-21 2017-04-21 Substrate processing equipment and substrate processing method

Publications (1)

Publication Number Publication Date
WO2018193921A1 true WO2018193921A1 (en) 2018-10-25

Family

ID=63856719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015124 WO2018193921A1 (en) 2017-04-21 2018-04-10 Substrate treatment device and substrate treatment method

Country Status (3)

Country Link
JP (1) JP6865626B2 (en)
TW (1) TWI679065B (en)
WO (1) WO2018193921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996501A (en) * 2021-09-27 2022-02-01 普洛赛斯(苏州)软件科技有限公司 Glue solution temperature regulating system of intelligent glue dispensing robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198698B2 (en) * 2019-03-20 2023-01-04 株式会社Screenホールディングス Substrate processing equipment
JP2020155721A (en) * 2019-03-22 2020-09-24 株式会社Screenホールディングス Substrate treatment method
JP7265390B2 (en) * 2019-03-22 2023-04-26 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR102268616B1 (en) * 2019-08-06 2021-06-23 세메스 주식회사 Apparatus for supplying chemical and method for supplying chemical

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045972A (en) * 2011-08-25 2013-03-04 Tokyo Electron Ltd Liquid treatment apparatus, liquid treatment method, and storage medium
JP2016162922A (en) * 2015-03-03 2016-09-05 株式会社Screenホールディングス Substrate processing apparatus
JP2017011033A (en) * 2015-06-18 2017-01-12 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403517B2 (en) * 2015-02-18 2019-09-03 SCREEN Holdings Co., Ltd. Substrate processing apparatus
JP6361071B2 (en) * 2015-02-25 2018-07-25 株式会社Screenホールディングス Substrate processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045972A (en) * 2011-08-25 2013-03-04 Tokyo Electron Ltd Liquid treatment apparatus, liquid treatment method, and storage medium
JP2016162922A (en) * 2015-03-03 2016-09-05 株式会社Screenホールディングス Substrate processing apparatus
JP2017011033A (en) * 2015-06-18 2017-01-12 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996501A (en) * 2021-09-27 2022-02-01 普洛赛斯(苏州)软件科技有限公司 Glue solution temperature regulating system of intelligent glue dispensing robot

Also Published As

Publication number Publication date
TW201902584A (en) 2019-01-16
JP2018182271A (en) 2018-11-15
TWI679065B (en) 2019-12-11
JP6865626B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
KR102502045B1 (en) Substrate processing apparatus
WO2018193921A1 (en) Substrate treatment device and substrate treatment method
CN109037111B (en) Substrate processing apparatus
KR102035946B1 (en) Substrate processing apparatus
JP6418555B2 (en) Substrate processing apparatus and substrate processing method
JP6861553B2 (en) Board processing equipment
JP6489475B2 (en) Substrate processing equipment
JP6361071B2 (en) Substrate processing equipment
JP6478692B2 (en) Substrate processing equipment
JP6504540B2 (en) Substrate processing equipment
JP6461641B2 (en) Substrate processing equipment
JP6489479B2 (en) Substrate processing equipment
JP6432941B2 (en) Substrate processing equipment
JP6509583B2 (en) Substrate processing equipment
JP6485904B2 (en) Substrate processing equipment
JP6461636B2 (en) Substrate processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787002

Country of ref document: EP

Kind code of ref document: A1