WO2018193691A1 - 照明装置、表示装置及びテレビ受信装置 - Google Patents

照明装置、表示装置及びテレビ受信装置 Download PDF

Info

Publication number
WO2018193691A1
WO2018193691A1 PCT/JP2018/004316 JP2018004316W WO2018193691A1 WO 2018193691 A1 WO2018193691 A1 WO 2018193691A1 JP 2018004316 W JP2018004316 W JP 2018004316W WO 2018193691 A1 WO2018193691 A1 WO 2018193691A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sheet
color
wavelength conversion
emitting surface
Prior art date
Application number
PCT/JP2018/004316
Other languages
English (en)
French (fr)
Inventor
啓太朗 松井
雅 金子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017084692A external-priority patent/JP6889015B2/ja
Priority claimed from JP2017084690A external-priority patent/JP6889014B2/ja
Priority claimed from JP2017084691A external-priority patent/JP6951109B2/ja
Priority claimed from JP2017084693A external-priority patent/JP2018181813A/ja
Priority claimed from JP2017165394A external-priority patent/JP6907071B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018193691A1 publication Critical patent/WO2018193691A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • This liquid crystal display device includes a liquid crystal panel and a so-called direct type backlight device (illumination device).
  • This backlight device has a configuration in which a plurality of light sources are arranged in a matrix just below the liquid crystal panel, and supplies white light spreading in a plane toward the back surface of the liquid crystal panel.
  • the backlight device is provided with a light source that emits blue light or the like as primary light and a state apart from the light source, and converts the wavelength of a part of the primary light to emit other light (secondary light). And a wavelength conversion sheet.
  • a light source that emits blue light or the like as primary light and a state apart from the light source, and converts the wavelength of a part of the primary light to emit other light (secondary light).
  • a wavelength conversion sheet In the backlight device, primary light emitted from the light source and other light (secondary light) wavelength-converted by the wavelength conversion sheet are additively mixed to generate white light.
  • the said backlight apparatus is equipped with the various optical members distribute
  • a reflection sheet is provided in the backlight device for reflecting the light reflected by the optical member or the like and returned to the light source side.
  • the center side of the reflection sheet is arranged to face the screen center side of the liquid crystal panel, and the peripheral side thereof faces the screen peripheral side of the liquid crystal panel in a state of being inclined while rising toward the liquid crystal panel side. .
  • an extending portion extending further outward is provided outside the inclined rising portion. The extending portion is placed on the peripheral portion of the opened chassis that accommodates the light source, the reflection sheet, and the like.
  • the wavelength conversion sheet is disposed so as to face the reflection sheet in a separated state.
  • the wavelength conversion sheet on the peripheral edge side of the screen tends to reduce the amount of primary light supplied compared to the central side of the screen.
  • the wavelength conversion sheet on the peripheral edge side of the screen tends to be supplied with a lot of light (secondary light) that has already undergone wavelength conversion as compared with the central side of the screen. This is because light that has already been wavelength-converted is supplied many times to the wavelength conversion sheet on the peripheral side of the screen by repeatedly reflecting between the optical member and the reflection sheet (especially the inclined peripheral portion). Because.
  • the color of light emitted from such a backlight device toward the liquid crystal panel is not uniform between the screen center side and the screen peripheral side, and so-called color unevenness may occur.
  • the light emitted toward the peripheral edge of the screen may have a secondary light color (a color that is complementary to the primary light color) as compared to the screen center side.
  • the wavelength conversion sheet of the portion that overlaps the extended portion on the outermost side of the reflection sheet, on the outer periphery side of the screen has a smaller amount of primary light supplied than the center side of the screen and is secondary to the primary light. There is a tendency that the amount of light supplied tends to increase.
  • the display area arranged on the center side of the screen (display surface) of the liquid crystal panel is set considerably inside the extension portion of the reflection sheet. Therefore, even if the primary light supply amount is small and the secondary light supply amount is large with respect to the wavelength conversion sheet in the portion overlapping the extension portion, the light is emitted from the wavelength conversion sheet in the portion overlapping the extension portion.
  • the light that travels toward the non-display area of the liquid crystal panel suppresses the occurrence of color unevenness.
  • there is a high demand for enlargement of the display area of the liquid crystal panel and narrowing of the non-display area surrounding the display area and the light emitted from the wavelength conversion sheet in the portion overlapping the extending portion is displayed. This has a problem in that it may affect the area and cause color unevenness.
  • An object of the present invention is to provide an illumination device or the like in which the occurrence of color unevenness is suppressed.
  • the lighting device includes, as a first aspect, a light source having a light emitting surface that emits light, a bottom portion disposed on the opposite side of the light emitting surface, a side wall portion rising from a peripheral edge of the bottom portion, and the side wall And a receiving portion extending outward from the portion, the chassis accommodating the light source, and being arranged in a state of being separated from the light source while facing the light emitting surface, the wavelength of the light emitted from the light emitting surface
  • An inclined reflecting portion that rises toward the wavelength conversion sheet while being inclined toward the side wall portion from the bottom reflecting portion, and an extending portion that extends outward from the inclined reflecting portion and covers the receiving portion.
  • a reflective sheet; S is the same color and light emitted from the light emitting
  • the lighting device has, as a second aspect thereof, a light source having a light emitting surface that emits light, a chassis having a bottom portion disposed on the opposite side of the light emitting surface, and housing the light source, A wavelength conversion sheet that includes a phosphor that is disposed in a state of being separated from the light source while facing the light emitting surface and converts the wavelength of light emitted from the light emitting surface, and the wavelength of light emitted from the light emitting surface.
  • a reflection sheet reflecting toward the conversion sheet, the bottom reflection part covering the bottom while exposing the light source, and the inclined reflection rising toward the wavelength conversion sheet while being inclined outward from the bottom reflection part Each having the same color as the light emitted from the light emitting surface, or the same color as each primary color light constituting the light, and per unit area as it goes outward from the bottom side reflective portion side. Density or color As concentration increases, and a plurality of dot-shaped color former portion that is disposed on the surface of the inclined reflecting portion.
  • the illuminating device which concerns on this invention has a several light source which has the light emission surface which each emits light as a 3rd aspect, and the bottom part distribute
  • a plurality of said light sources Including a chassis that is accommodated in a state of being spaced apart from each other, and a phosphor that is disposed in a state of being separated from the light source while facing the light emitting surface, and that converts the wavelength of light emitted from the light emitting surface.
  • a reflection sheet that reflects light emitted from the light emitting surface to the wavelength conversion sheet side the reflection sheet having a bottom reflection portion that covers the bottom while exposing the plurality of light sources, and A plurality of dot-shaped color portions that are the same color as the light emitted from the light emitting surface or the same color as each primary color light that constitutes the light, and are arranged on the surface of the bottom reflective portion.
  • the illumination device has, as a fourth aspect thereof, a light source having a light emitting surface that emits light, a chassis having a bottom portion disposed on the opposite side of the light emitting surface, and housing the light source, A wrench diffusing plate disposed in a state of being opposed to the light source while being opposed to the light emitting surface and imparting a diffusing action to light emitted from the light emitting surface, and a light emitted from the light emitting surface A reflective sheet that reflects to the side, and covers the bottom while exposing the light source, and an inclined reflector that rises toward the wrench diffuser while tilting outward from the bottom reflector.
  • a plurality of dot-shaped reflection sheets each having the same color as the light emitted from the light-emitting surface, or the same color as each primary color light constituting the light, and disposed at least on the surface of the inclined reflection portion Colored part and the wrench Disposed on the light exit side of the diffusion plate, and a wavelength conversion sheet containing a phosphor for wavelength-converting the light transmitted through the wrench diffuser is emitted from the light emitting surface.
  • the illumination device has, as a fifth aspect thereof, a light source having a light emitting surface that emits light and a light source that is disposed to face the light emitting surface and imparts a diffusing action to the light emitted from the light emitting surface.
  • the invention's effect ADVANTAGE OF THE INVENTION
  • production of the color nonuniformity was suppressed can be provided.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged sectional view of the liquid crystal display device shown in FIG.
  • the top view which expanded a part of extension part of the reflective sheet in which the coloring part with which the illuminating device of Embodiment 2 is provided was formed.
  • the top view which expanded a part of extension part of the reflective sheet in which the coloring part with which the illuminating device of Embodiment 3 is provided was formed.
  • the top view which expanded a part of extension part of the reflective sheet in which the coloring part with which the illuminating device of Embodiment 5 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 7 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 8 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 9 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 10 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 11 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 13 is provided was formed.
  • the top view which expanded a part of reflective sheet in which the coloring part with which the illuminating device of Embodiment 14 is provided was formed.
  • Sectional drawing which expanded a part of illuminating device of Embodiment 15. Sectional drawing of a liquid crystal display device provided with the illuminating device of Embodiment 16.
  • FIG. 24 is an enlarged cross-sectional view of the vicinity of the end of the liquid crystal display device in FIG. Partially cutaway perspective view of first diffusion plate, second diffusion plate and wavelength conversion sheet The partial notch perspective view of the 1st diffuser plate, the 2nd diffuser plate, and wavelength conversion sheet which concern on Embodiment 19
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • a television receiver 10TV liquid crystal display device 10) including a lighting device (backlight device) 12 is illustrated.
  • a lighting device backlight device 12
  • an X axis, a Y axis, and a Z axis are shown.
  • the television receiver 10TV mainly includes a liquid crystal display device (an example of a display device) 10 and both front and back cabinets 10Ca and 10Cb that hold the liquid crystal display device 10 so as to be sandwiched from both front and rear (front and back) sides.
  • a power source 10P a tuner (reception unit) 10T that receives a television signal, and a stand 10S.
  • the liquid crystal display device 10 generally has a horizontally long rectangular shape that extends long in the left-right direction (X-axis direction).
  • the liquid crystal display device 10 mainly includes a liquid crystal panel 11 used as a display panel, and an illumination device (backlight device) 12 as an external light source that supplies light to the liquid crystal panel 11.
  • a frame-shaped bezel 13 for holding the liquid crystal panel 11 and the lighting device 12 is provided.
  • the liquid crystal panel 11 mainly comprises a pair of transparent substrates and a liquid crystal layer sealed between them, and utilizes the light emitted from the illumination device 12 to provide a panel. An image is displayed in a state that is visible on the surface.
  • the display surface 11a on the front side of the liquid crystal panel 11 is shown on the upper side
  • the back surface 11b on the back side is shown on the lower side.
  • the liquid crystal panel 11 generally has a horizontally long rectangular shape in plan view.
  • one substrate is an array substrate, and TFTs (Thin Film Transistors), pixel electrodes, etc., which are switching elements, are arranged in a matrix on a transparent glass substrate. Made up of.
  • the other substrate is a color filter (hereinafter referred to as CF) substrate, which is formed by arranging color filters of red, green, and blue in a matrix on a transparent glass substrate.
  • CF color filter
  • a black matrix for partitioning the color filter in a grid pattern, a frame-shaped light shielding portion 11c arranged along the periphery of the liquid crystal panel 11, an alignment film, and the like are formed on the inner side (liquid crystal layer side) of the CF substrate.
  • polarizing plates are arranged on the outer sides of the TFT substrate and the CF substrate, respectively.
  • a portion inside the frame-shaped light shielding portion 11c is a display area AA in which an image is displayed.
  • the frame-shaped area outside the display area AA is a non-display area NAA in which no image is displayed.
  • the display area AA has a horizontally long rectangular shape in plan view.
  • the light shielding portion 11c has a frame shape surrounding the display area AA in plan view.
  • the illumination device 12 is arranged on the back side of the liquid crystal panel 11 and supplies light toward the liquid crystal panel 11.
  • the illuminating device 12 is configured to emit white light.
  • the illuminating device 12 of this embodiment is what is called a direct type.
  • the illuminating device 12 mainly includes a chassis 14, an optical member 15, a frame 16, an LED board (light source board) 18 on which an LED (light source) 17 is mounted, and a coloring portion (magenta coloration). Part) 40, a reflection sheet 19, provided with a wavelength conversion sheet 21, and the like.
  • the chassis 14 generally has a shallow, substantially box shape that opens to the front side (light emission side, liquid crystal panel 11 side), and is made of, for example, a metal plate such as an aluminum plate or an electrogalvanized steel plate (SECC). Is done.
  • the opening of the chassis 14 is a light emitting portion 14b.
  • the chassis 14 has a plate-like bottom portion 14a having a substantially rectangular shape in plan view, and a front side (light emitting side) while being inclined outward from four sides (peripheries) of the bottom portion 14a.
  • the light emission part 14b consists of an inner part enclosed by the standing wall part 14e.
  • Various members such as an LED board 18 on which the LEDs 17 are mounted, a reflection sheet 19, an optical member 15, and a wavelength conversion sheet 21 are accommodated inside the chassis 14.
  • the LED board 18 is accommodated in such a manner that the back side faces the bottom 14a. That is, the bottom portion 14 a is disposed on the side opposite to the light emitting surface 17 a side of the LED 17.
  • the receiving portion 14d of the chassis 14 has a frame shape as a whole, and the peripheral end portions of the optical member 15 and the wavelength conversion sheet 21 are placed on the receiving portion 14d from the front side.
  • the standing wall portion 14e generally has a frame shape (cylindrical shape) rising from the outer peripheral edge of the receiving portion 14d, and surrounds the optical member 15 and the wavelength conversion sheet 21 placed on the receiving portion 14d.
  • a frame-like frame 16 is assembled to the standing wall portion 14e.
  • a board such as a control board and an LED driving board (not shown) is attached to the outside of the chassis 14. In each figure, the chassis 14 is shown such that the long side direction coincides with the X-axis direction and the short side direction coincides with the Y-axis direction.
  • the optical member 15 has a substantially rectangular shape in plan view like the liquid crystal panel 11 and the like, and is set larger than the display area AA of the liquid crystal panel 11. Further, the optical member 15 has a peripheral portion placed on the receiving portion 14 d of the chassis 14 to cover the light emitting portion 14 b of the chassis 14, and is disposed between the liquid crystal panel 11 and the LED 17. Such an optical member 15 is opposed to the light emitting surface 17a in a state of being separated from the LED 17.
  • the optical member 15 is disposed on the back side (LED 17 side) and is placed on the diffusion plate 15a placed on the receiving portion 14d of the chassis 14 and the frame 16 disposed on the front side (liquid crystal panel 11 side) and fixed to the receiving portion 14d. It is roughly divided into the optical sheet 15b to be mounted.
  • the diffusion plate 15a has a configuration in which a large number of diffusion particles are dispersed in a substantially transparent resin plate having a predetermined thickness.
  • the diffusion plate 15a of this embodiment includes a first diffusion plate 15a1 disposed on the back side and a second diffusion plate 15a2 disposed on the front side.
  • a plurality of lenticular lenses are formed on the surface of the first diffusion plate 15a1, extending along the long side direction (X-axis direction) and arranged in the short side direction (Y-axis direction), and are formed on the surface of the second diffusion plate 15a2.
  • the first diffusion plate 15a1 and the second diffusion plate 15a2 are overlapped so that the lenticular lenses intersect each other.
  • the wavelength conversion sheet 21 is stacked on the front side of the diffusion plate 15a.
  • the optical sheet 15b has a sheet shape with a smaller thickness than the diffusion plate 15a, and is composed of two sheets.
  • the lens sheet 22 includes a lens sheet 22 and a reflective polarizing sheet 23 that is superimposed on the front side of the lens sheet 22.
  • the lens sheet 22 includes a sheet-like base material and a prism portion provided on the front surface of the base material.
  • the prism portion is composed of a plurality of unit prisms extending in the long side direction (X-axis direction) and arranged in the short side direction (Y-axis direction).
  • the lens sheet 22 selectively concentrates light on the light from the diffusion plate 15a side (wavelength conversion sheet 21 side) in the unit prism arrangement direction (Y-axis direction). Can be imparted).
  • the reflective polarizing sheet 23 includes a reflective polarizing film and a pair of diffusion films that sandwich the reflective polarizing film from the front and back.
  • the reflective polarizing film has, for example, a multilayer structure in which layers having different refractive indexes are alternately stacked, and transmits p-waves of light from the lens sheet 22 and reflects s-waves to the back side.
  • the s wave reflected by the reflective polarizing film is reflected again to the front side by a reflection sheet 19 or the like described later, and at that time, separated into an s wave and a p wave.
  • the reflective polarizing sheet 23 includes the reflective polarizing film, so that the s-wave absorbed by the polarizing plate of the liquid crystal panel 11 is reflected to the back side (the reflective sheet 19 side). It can be used effectively and the light use efficiency (luminance) can be increased.
  • the pair of diffusing films are made of a transparent synthetic resin material such as polycarbonate resin, and an embossing process for imparting a diffusing action to light is performed on the surface opposite to the reflective polarizing film side.
  • the frame (frame-like member) 16 is a frame-like member having an open inner side that covers the front side of the chassis 14.
  • the frame 16 is made of, for example, a synthetic resin and is painted white so as to have light reflectivity.
  • the frame 16 has a frame shape in plan view, and an inner peripheral side thereof covers a peripheral end portion of the wavelength conversion sheet 21 accommodated in the chassis 14 from the front side, and the cover portion 16a to the chassis 14 And an outer wall portion 16b attached to the standing wall portion 14e of the chassis 14 from the outside while extending toward the bottom portion 14a side.
  • the covering portion 16a of the frame 16 sandwiches the peripheral end portion of the laminate composed of the diffusion plate 15a and the wavelength conversion sheet 21 accommodated in the chassis 14 with the receiving portion 14d.
  • the covering portion 16a is in contact with the peripheral end portion of the wavelength conversion sheet 21 placed on the diffusion plate 15a from the front side.
  • the covering portion 16a of the frame 16 is configured to receive the optical sheet 15b and the liquid crystal panel 11 from the back side.
  • the liquid crystal panel 11 is placed on the covering portion 16a of the frame 16 in a state of being overlapped on the front side of the optical sheet 15b.
  • the laminate composed of the optical sheet 15b and the liquid crystal panel 11 is positioned by sandwiching the peripheral end portion between the covering portion 16a of the frame 16 and the bezel 13 disposed on the front side.
  • the covering portion 16 a of the frame 16 is disposed in the non-display area NAA of the liquid crystal panel 11, the end portion on the inner peripheral side of the covering portion 16 a enters the display area AA of the liquid crystal panel 11. That is, the covering portion 16a is arranged from the non-display area NAA to the display area AA. The covering portion 16a protrudes further toward the display area AA than the receiving portion 14d of the chassis 14.
  • the laminate composed of the liquid crystal panel 11 and the optical sheet 15b is attached to the chassis 14 with the periphery sandwiched between the frame 16 and the frame-shaped bezel 13 that covers the front side of the frame.
  • the bezel 13 has a frame shape that covers the periphery (non-display area NAA) of the liquid crystal panel 11 from the display surface 11a side (front side) so that the display surface 11a is exposed from the inside when viewed from the front side.
  • a bezel main body portion 13a and a bezel side wall plate 13b extending downward from the outer edge of the bezel main body portion 13a are provided. When viewed from the front side, the bezel body 13a has a rectangular appearance.
  • the bezel 13 is attached to the chassis 14 side by fixing the bezel side wall plate 13b to the outer wall portion 16b of the frame 16 using a fixing means such as a screw.
  • the frame-shaped bezel main body 13a is set so as not to protrude to the display area AA side of the liquid crystal panel 11 and to fit within the non-display area NAA. Note that the inner peripheral edge of the bezel main body portion 13 a is arranged on the outer side of the covering portion 16 a of the frame 16. The covering portion 16a of the frame 16 protrudes inside the liquid crystal panel 11 from the bezel main body portion 13a, and a part of the covering portion 16a enters the display area AA of the liquid crystal panel 11.
  • the LED 17 is surface-mounted on the LED substrate 18 so that the light emitting surface 17a faces the liquid crystal panel 11 side (optical member 15 side).
  • the LED 17 is a so-called top surface light emitting type in which the light emitting surface 17a faces the side opposite to the LED substrate 18 side.
  • the optical axis of the light emitted from the light emitting surface 17 a of the LED 17 coincides with the normal direction of the display surface of the liquid crystal panel 11.
  • the “optical axis” is an axis that coincides with the direction of light having the highest emission intensity among the light emitted from the light emitting surface 17a of the LED 17.
  • the LED 17 emits magenta light (magenta light) as primary light from the light emitting surface 17a.
  • the LED 17 has a blue LED chip (blue light emitting element) that emits blue light (wavelength range of about 420 nm to about 500 nm) as a light source.
  • the LED 17 is formed by sealing a blue LED chip in a predetermined case with a sealing material containing a red phosphor.
  • the blue LED chip is made of a semiconductor material such as InGaN, and emits blue light when a voltage is applied in the forward direction.
  • the blue LED chip is connected to the wiring pattern of the LED substrate 18 arranged outside the case by a lead frame (not shown).
  • the sealing material is formed by dispersing a red phosphor in a transparent resin.
  • the red phosphor absorbs and excites light (blue light) from the blue LED chip, and emits red light (wavelength range of about 600 nm to about 780 nm).
  • magenta light magenta light in which blue light from the blue LED chip and red light from the red phosphor are additively mixed is emitted from the light emitting surface 17a of the LED 17.
  • a plurality of LEDs 17 are used.
  • the LED board 18 has a square shape in plan view, and a plurality of LED boards 18 are used in this embodiment.
  • the plurality of LED substrates 18 are arranged on the bottom portion 14a of the chassis 14 in an aligned state while aligning the directions of the respective sides.
  • Each LED board 18 is arranged so that each side coincides with the X-axis direction and the Y-axis direction.
  • the LED substrate 18 is formed, for example, by forming a wiring pattern made of a metal film such as a copper foil on the surface of a plate material made of an aluminum material via an insulating layer. Note that a white reflective layer may be formed on the outermost surface of the LED substrate 18.
  • the plurality of LEDs 17 described above are surface-mounted on the front surface of the LED substrate 18. Note that the front surface of the LED substrate 18 is referred to as a mounting surface 18a. Each LED 17 is electrically connected to a wiring pattern arranged and formed in the mounting surface 18a.
  • a plurality of LEDs 17 are arranged in a matrix on one LED substrate 18 while keeping a distance from each other. Further, all the LEDs 17 are arranged in a matrix on the bottom portion 14a of the chassis 14 while keeping a distance from each other. That is, the plurality of LEDs 17 are arranged on the bottom 14a side of the chassis 14 in a state of spreading in a planar shape. All the LEDs 17 are arranged so as to be within the display area AA of the liquid crystal panel 11 in plan view. The LEDs 17 are arranged along the long side direction (X-axis direction) and the short side direction (Y-axis direction) of the liquid crystal panel 11 so as to be arranged at equal intervals. Further, the distance (interval) between the adjacent LED substrates 18 is set to be constant.
  • Each LED board 18 is provided with a connector portion to which a wiring member (not shown) is connected, and driving power is supplied from the LED driving board through the wiring member.
  • Each LED 17 on each LED board 18 can be controlled by the LED driving board to perform partial driving (local dimming).
  • the reflective sheet (reflective member) 19 is made of a white sheet having excellent light reflectivity, and is made of, for example, a white foamable plastic sheet (foamable polyethylene terephthalate sheet).
  • the reflection sheet 19 is generally assembled in a shallow box shape opened on the front side, and is accommodated in the chassis 14 so as to cover substantially the entire inner surface of the chassis 14.
  • the reflection sheet 19 is set larger than the display area AA of the liquid crystal panel 11 in plan view.
  • the light reflectance of the surface of the reflection sheet 19 itself is substantially constant, and such a reflection sheet 19 reflects (diffuse reflection) all visible light.
  • a plurality of color portions 20, color portions 30, and color portions 40 are formed on the surface of the reflection sheet 19.
  • the reflection sheet 19 reflects the light in the chassis 14 toward the front side (the optical member 15 side).
  • the reflection sheet 19 includes a rectangular bottom side reflection part 19a covering the bottom part 14a of the chassis 14, and the liquid crystal panel 11 side (wavelength conversion) while inclining outward from each side edge corresponding to the four sides of the bottom side reflection part 19a.
  • Four inclined reflecting portions 19b rising toward the sheet 21 side) and an extending portion 19c extending outward from the inclined reflecting portion 19b and covering the receiving portion 14d of the chassis 14 are provided.
  • the bottom-side reflecting portion 19a is a portion that covers the entire surface (mounting surface) 18a of all the LED substrates 18 disposed on the bottom portion 14a.
  • the bottom-side reflecting portion 19a is provided with a plurality of opening-like insertion portions 19d, and each LED 17 on the LED board 18 is inserted into each insertion portion 19d one by one, and each insertion portion 19d The LED 17 is exposed.
  • the inclined reflecting portion 19b is formed from a pair of short side inclined reflecting portions 19b1 and 19b2 rising from two short side edges of the bottom reflecting portion 19a, and from two long side edges of the bottom reflecting portion 19a. It consists of a pair of long-side inclined reflecting portions 19b3 and 19b4 that rise (see FIG. 3).
  • the inclined reflecting portion 19b generally has a shape surrounding the bottom reflecting portion 19a.
  • the extending portion 19 c has a strip shape that extends in the short side direction and the long side direction of the chassis 14.
  • the bottom side reflection part 19a and the inclined reflection part 19b are set to a size that can be accommodated in the display area AA of the liquid crystal panel 11 in plan view.
  • the extended portion 19c generally has a frame shape that surrounds the bottom-side reflecting portion 19a and the inclined reflecting portion 19b.
  • the extending portions 19c extend to the ends of the pair of short side extending portions 19c1 and 19c2 extending at the tips of the short side inclined reflecting portions 19b1 and 19b2, and the long side inclined reflecting portions 19b3 and 19b4. It consists of a pair of long side extension portions 19c3 and 19c4.
  • the extending portion 19c overlaps with the peripheral end portion of the optical member 15 (diffusing plate 15a and optical sheet 15b) disposed on the front side and the peripheral end portion of the wavelength conversion sheet 21 in the front and back direction (Z-axis direction). As described above, it is placed on the receiving portion 14 d of the chassis 14. Further, the extended portion 19c mostly overlaps with the non-display area NAA of the liquid crystal panel 11 in plan view, but a part thereof (part on the inclined reflection portion 19b side) has a display area AA in plan view. It overlaps with. That is, the extending portion 19c is formed from the non-display area NAA to the display area AA. In addition, the coating
  • the wavelength conversion sheet 21 includes a phosphor layer containing a phosphor for wavelength-converting light from the LED 17 and a pair of transparent base material layers that sandwich the phosphor layer from the front and back.
  • the phosphor layer is made of a resin in which a large number of phosphors are dispersed in a resin.
  • a green phosphor that is excited by blue light (monochromatic light) emitted from the LED 17 and emits green light (wavelength range of about 500 nm to about 570 nm) is used.
  • a green phosphor those having a relatively sharp emission spectrum are preferable.
  • sulfide phosphors such as “SrGa 2 S 4 : Eu 2+ ” are used.
  • the wavelength conversion sheet 21 has a rectangular shape in plan view like the liquid crystal panel 11 and the like, and is approximately the same size as the diffusion plate 15a of the optical member 15. That is, the wavelength conversion sheet 21 is set larger than the display area AA of the liquid crystal panel 11.
  • the wavelength conversion sheet 21 is a sheet having a thickness smaller than that of the diffusion plate 15 a and is placed on the diffusion plate 15 a in the chassis 14. Specifically, it arrange
  • the wavelength conversion sheet 21 includes a receiving portion 14d and a receiving portion of the chassis 14 in a state where the peripheral end portion is placed on the front side of the diffusion plate 15a (second diffusion plate 15a2) in the front and back direction (Z-axis direction). It is arranged to face the extended portion 19c of the reflection sheet 19 placed on 14d so as to overlap in plan view. Further, the peripheral end portion of the wavelength conversion sheet 21 is sandwiched between the covering portion 16a of the frame 16 and the receiving portion 14d of the chassis 14 together with the peripheral end portion of the diffusion plate 15a while being placed on the diffusion plate 15a. Is done.
  • the region where the LEDs 17 are arranged is substantially the same as the region where the bottom reflection part 19 a of the reflection sheet 19 is arranged. That is, the LED 17 is not disposed in the region where the inclined reflection portion 19b and the extending portion 19c of the reflection sheet 19 are disposed.
  • the primary light (magenta light) emitted from the LED 17 is less likely to be supplied to the inclined reflection portion 19b than the bottom-side reflection portion 19a, and the amount of light associated with the primary light (magenta color light) from the LED 17 Distribution is likely to be high on the center side (bottom reflection part 19a side) of the display surface 11a (display area AA) and low on the peripheral side (tilt reflection part 19b side) of the display surface 11a (display area AA). It has become. In particular, at the periphery of the display surface 11a (display area AA), the amount of light tends to decrease as it goes outward.
  • the ratio of the light (returned light) returned to the reflection sheet 19 side after being reflected by the optical sheet 15b out of the light already converted by the wavelength conversion sheet 21 is increased. easy.
  • the distance between the inclined reflecting portion 19b and the optical member 15 is gradually shortened from the inner side (the bottom reflecting portion 19a side) to the outer side (the extending portion 19c), and the reflected light from the inclined reflecting portion 19b is inclined. The further it goes to the outside of the reflection portion 19b, the easier it is to make multiple reflections with the optical member 15. Therefore, the wavelength conversion efficiency by the wavelength conversion sheet 21 tends to be relatively higher as it goes to the outside of the inclined reflection portion 19b.
  • the primary light (magenta light) finally emitted from the illumination device 12 and the wavelength conversion sheet 21 are used.
  • the ratio of the wavelength-converted light (secondary light) differs between the center side of the display area AA and the peripheral side of the display area AA. In that case, color unevenness occurs in the light emitted from the illumination device 12 and the display image on the liquid crystal panel 11.
  • the light amount of the primary light from the LED 17 is relatively reduced on the peripheral side of the display area AA, and the portion has a green color that is complementary to the primary light color (magenta color). Become.
  • the extending portion 19c of the reflection sheet 19 is a portion arranged outside the inclined reflection portion 19b, and is completely covered by the covering portion 16a of the frame 16 when viewed from the display surface 11a side. Therefore, the light reflected by the extending portion 19c and traveling toward the liquid crystal panel 11 is blocked by the covering portion 16a, so that it does not seem to affect the display image of the liquid crystal panel 11 at first glance. . However, some of the light reflected by the extending portion 19c wraps around from the back side to the front side of the covering portion 16a, and in this embodiment, the peripheral portion of the display area AA is within the covering portion 16a.
  • the light reflected by the extending portion 19c affects the peripheral portion of the display area AA.
  • the line width (length in the X-axis direction) of the extending portion 19c is set very narrow (for example, set to about 1.5 mm), and the entire surface of the extending portion 19c is set. In this state, the light reflected on the display area AA can affect the peripheral edge of the display area AA.
  • the extending portion 19c is a portion arranged further outward than the inclined reflecting portion 19b, the primary light (magenta light) emitted from the LED 17 is less likely to be supplied than the inclined reflecting portion 19b, and wavelength conversion is performed.
  • the ratio of the return light including the light (secondary light) already converted by the sheet 21 is likely to increase. Therefore, when the light reflected by the extending portion 19c is supplied to the peripheral portion of the wavelength conversion sheet, in particular, the peripheral portion of the emitted light of the illumination device 12 and the peripheral portion of the display area AA of the liquid crystal panel 11 Color unevenness in which the portion is tinged with green will occur.
  • the dot-shaped color portion 40 is formed on the surface of the extended portion 19c in order to suppress the occurrence of the color unevenness (color correction).
  • the color rendering unit 40 has a circular shape in plan view and exhibits the same color as the light emitted from the light emitting surface 17a of the LED 17 (that is, magenta).
  • the colored portions 40 are arranged in a frame shape so as to surround the bottom-side reflecting portion 19a and the inclined reflecting portion 19b as a whole while being uniformly arranged on the surface of the extending portion 19c.
  • the size of each colored portion 40 is substantially the same. Note that the surface of the white inclined reflecting portion 19b is exposed from between the adjacent colored portions 40.
  • the coloration unit 40 is made of a coating film containing a pigment exhibiting a magenta color.
  • a coating film consists of what formed the coating material containing the said pigment using the well-known coating technique (for example, printing technique).
  • the said coating film is suitably dried as needed.
  • the color developing unit 40 has an absorption rate of light (green light) of a color complementary to the color of the light (magenta light) emitted from the light emitting surface 17a, and the light (magenta light ( Blue light, red light)) is higher than the absorption rate.
  • the color forming unit 40 has a reflectance of light emitted from the light emitting surface 17a (magenta light (blue light, red light)) having a color that has a complementary color relationship with the light emitted from the light emitting surface 17a ( It is higher than the reflectance of green light. That is, the color forming unit 40 has a function of absorbing green light and reflecting magenta light (blue light, red light). Thereby, the light (for example, white return light) reflected by the coloring part 40 is magenta compared with the case where it is reflected by the white part (reflection sheet 19) where the coloring part 40 is not provided. Will be charged.
  • concentration of the coloring part 40 formed on the surface of the extension part 19c are the quantity of the primary light supplied from LED17 with respect to the extension part 19c, or the secondary light contained in return light. It is appropriately set in consideration of the amount and the like. In addition, from the viewpoint of suppressing a decrease in luminance at the peripheral portion of the display area AA, it is preferable that the density and the density of the colored portion 40 are low. For this reason, the density, density, and the like of the color forming unit 40 on the extending portion 19c are set in consideration of suppression of a decrease in luminance while considering the ratio of secondary light to primary light. For example, the coloring part 40 on the extending part 19c may be set so that the density or density per unit area is smaller than the coloring part 20 on the inclined reflection part 19b described later.
  • a plurality of dot-like color portions 20 that exhibit the same color (that is, magenta color) as the light emitted from the light emitting surface 17a of the LED 17 is provided, as in the color portion 40. Is formed.
  • a plurality of dot-like colored portions (magenta colored portions) 20 are formed on the surface of the four inclined reflecting portions 19b arranged around the bottom reflecting portion 19a. Yes.
  • Each colored portion 20 has a circular shape in plan view, and is formed so as to be scattered over substantially the entire area of the inclined reflecting portion 19b.
  • Each coloration part 20 is set so that the size (size) increases from the bottom side reflection part 19a side toward the outside (extension part 19c).
  • a plurality of dot-like color-forming portions 30 exhibiting the same color (that is, magenta color) as the light emitted from the light emitting surface 17a of the LED 17.
  • the colored portion 30 is formed for the purpose of adjusting the ratio of the primary light and the secondary light supplied to the bottom-side reflecting portion 19a, and is distributed evenly on the surface of the bottom-side reflecting portion 19a. Are arranged in a matrix.
  • the size of each colored portion 30 is substantially the same.
  • the density (color density) of the colored portion 30 is the same as that of the colored portion 20 of the inclined reflecting portion 19b.
  • the density per unit area is the direction of the coloration part 30. However, it is set smaller than the colored portion 20.
  • positioned at the outermost side of the bottom side reflection part 19a is made small compared with the coloration part 30 arrange
  • the colored portion 20 of the inclined reflecting portion 19b and the colored portion 30 of the bottom-side reflecting portion 19a absorb green light and, similarly to the colored portion 40 of the extending portion 19c, magenta light (blue light, red light). ) Is reflected.
  • the optical action of the optical member 15 and the wavelength conversion sheet 21 in the illumination device 12 will be described in detail.
  • magenta light composed of blue light and red light is emitted as primary light.
  • the primary light from the LED 17 is diffused by the diffusion plate 15a (the first diffusion plate 15a1 and the second diffusion plate 15a2), and then a part of the light enters the wavelength conversion sheet 21 on the diffusion plate 15a.
  • part of the blue light is wavelength-converted by the green phosphor in the wavelength conversion sheet 21 and emitted as green light (secondary light).
  • blue light and red light transmitted without wavelength conversion are emitted together with green light.
  • primary light (blue light, red light) from the LED 17 and secondary light (green light) obtained after wavelength conversion are emitted, thereby forming white light. Is done.
  • the reflection sheet 19 is not directly directed to the optical member 15 side, but primary light from the LED 17 (magenta light composed of blue light and red light) or light returned to the back side by the optical member 15 or the like (primary light and secondary light). ) Is reflected toward the front side.
  • a magenta colored portion 40 is formed in the extended portion 19 c of the reflection sheet 19.
  • the extending portion 19c side even if the amount of primary light supplied to the extending portion 19c side is smaller than the amount of primary light supplied to the bottom reflecting portion 19a side (or the inclined reflecting portion 19b side), the extending portion 19c side. Then, since the colored portion 40 reflects a lot of primary light (magenta light), the reflected light on the extending portion 19c side and the reflected light on the bottom side reflecting portion 19a side (or the inclined reflecting portion 19b side) In the meantime, the occurrence of a color difference is suppressed.
  • magenta color light blue light, red light
  • green light as secondary light
  • a colored portion 20 is formed in the inclined reflective portion 19b so as to have a higher density per unit area than the bottom-side reflective portion 19a. Therefore, even if the amount of primary light supplied to the inclined reflecting portion 19b side is smaller than the amount of primary light supplied to the bottom reflecting portion 19a side, the colored portion 20 is large on the inclined reflecting portion 19b side. Since the primary light (magenta color light) is reflected, the occurrence of a color difference between the reflected light on the inclined reflecting portion 19b side and the reflected light on the bottom reflecting portion 19a side is suppressed.
  • the amount of primary light supplied to the central side and the peripheral side of the wavelength conversion sheet 21 is homogenized, and as a result, the color of the emitted light emitted from the illuminating device 12 is uniform. And color unevenness is suppressed.
  • the amount of primary light supplied to the wavelength conversion sheet in a portion overlapping the extended portion 19c of the reflection sheet 19 in a plan view is homogenized with the central side, the peripheral portion of the emitted light of the illumination device 12, and the liquid crystal Occurrence of color unevenness in which the peripheral edge of the display area AA of the panel 11 is tinged with green is suppressed.
  • the colored portions 40 are arranged in a frame shape on the frame-shaped extending portion 19c, so that color unevenness can be uniformly suppressed in the peripheral portion of the display area AA.
  • FIG. 5 is an enlarged plan view of a part of the extending portion 19c of the reflection sheet 19 on which the coloration portion 40A included in the lighting device of Embodiment 2 is formed.
  • the inclined reflecting portion 19b side when the ratio of the supply amount of the secondary light to the primary light increases from the inner side (the inclined reflecting portion 19b side) to the outer side, as in the present embodiment, the inclined reflecting portion 19b side
  • the colored portion 40A may be formed so that the density per unit area increases from the outside toward the outside.
  • a magenta colored portion 20 is formed in the inclined reflecting portion 19b. Also in the present embodiment, the occurrence of color unevenness in which the peripheral edge of the emitted light of the illumination device and the peripheral edge of the display area of the liquid crystal panel are tinged with green is suppressed.
  • FIG. 6 is an enlarged plan view of a part of the extending portion 19c of the reflection sheet 19 on which the coloration portion 40B included in the lighting device of Embodiment 3 is formed.
  • the inclined reflecting portion 19b side The colored portion 40B may be formed such that the density per unit area (color density) increases from the outside toward the outside.
  • a magenta colored portion 20 is formed in the inclined reflecting portion 19b. Also in the present embodiment, the occurrence of color unevenness in which the peripheral edge of the emitted light of the illumination device and the peripheral edge of the display area of the liquid crystal panel are tinged with green is suppressed.
  • FIG. 7 is an enlarged plan view of a part of the illumination device 12C of the fourth embodiment. In FIG. 7, a part of the extending portion 19c of the reflection sheet 19 is shown in an enlarged state.
  • the blue color portion 40C1 and the red color portion 40C2 are formed on the frame-shaped extension portion 19c so as to be alternately arranged while keeping a distance from each other.
  • blue light is reflected by the blue color portion 40C1
  • red light is reflected by the red color portion 40C2.
  • secondary light (green light) included in the return light is absorbed by the blue color portion 40C1 and the red color portion 40C2. Therefore, also in the present embodiment, it is possible to suppress the occurrence of color unevenness in which the peripheral portion of the emitted light of the illumination device and the peripheral portion of the display area of the liquid crystal panel are tinged with green.
  • FIG. 8 is an enlarged plan view of a part of the extending portion 19c of the reflection sheet 19 on which the coloration portion 40D provided in the illumination device of Embodiment 5 is formed.
  • a square colored portion 40E in plan view may be used as the todd colored portion.
  • the illumination device 112 mainly includes a chassis 114, an optical member 115, a frame 116, an LED substrate (light source substrate) 118 on which an LED (light source) 117 is mounted, and a coloring unit.
  • An LED substrate (light source substrate) provided with a reflection sheet 119 provided with a (magenta color coloring portion) 120, a wavelength conversion sheet 121, and the like, and at least a chassis 114, an optical member 115, a frame 116, and an LED (light source) 117 mounted thereon.
  • the configuration of the wavelength conversion sheet 121 is the same as that of the first embodiment.
  • the same color as the light emitted from the light emitting surface 117a of the LED 117 on the surface of the inclined reflection portion 119b of the reflection sheet 119 that is, magenta color.
  • a plurality of dot-like colored portions (magenta colored portions) 120 are formed.
  • the colored portion is composed of a coating film containing a pigment exhibiting a magenta color.
  • Such a coating film consists of what formed the coating material containing the said pigment using the well-known coating technique (for example, printing technique).
  • the said coating film is suitably dried as needed.
  • the color developing unit 120 has an absorptance of light of a color complementary to the color of light (magenta light) emitted from the light emitting surface 117a (magenta color light) (green light), and the light emitted from the light emitting surface 117a (magenta color light ( Blue light, red light)) is higher than the absorption rate.
  • the coloration unit 120 has a color of light (magenta color light (blue light, red light)) emitted from the light emitting surface 117a having a color complementary to the light emitted from the light emitting surface 117a ( It is higher than the reflectance of green light.
  • the color developing unit 120 has a function of absorbing green light and reflecting magenta light (blue light, red light). Thereby, the light (for example, white return light) reflected by the coloring unit 120 is magenta compared to the case where it is reflected by the white part (reflection sheet 119) where the coloring unit 120 is not provided. Will be charged.
  • a plurality of dot-shaped color portions 120 are formed on the surfaces of the four inclined reflection portions 119b arranged around the bottom-side reflection portion 119a.
  • Each of the colored portions 120 has a circular shape in plan view, and is formed so as to be scattered over substantially the entire area of the inclined reflecting portion 119b.
  • a white bottom-side reflecting portion 119a is exposed from between the adjacent color portions 120.
  • Each of the colored portions 120 is set so that the size (size) increases from the bottom reflecting portion 119a side toward the outside (extending portion 119c). That is, each of the colored portions 120 is set so that the density per unit area S1 increases from the bottom-side reflecting portion 119a side toward the outside (extending portion 119c).
  • the “unit area S1” here is defined as, for example, a square area S in which the largest colored portion 120 fits inside.
  • the surface of the inclined reflection portion 119b is divided into a plurality of regions corresponding to the unit area S1 from the bottom reflection portion 119a side to the outside (extension portion 119c).
  • the surface of the short-side inclined reflecting portion 119b1 is formed from the boundary line L1 between the bottom-side reflecting portion 119a and the short-side inclined reflecting portion 119b1 and the short-side extending portion 119c1.
  • the unit area S1 is determined based on the largest colored portion 120a (see FIG. 10) arranged on the outermost side. Thus, in each area
  • One unit area S1 may include only one color portion 120 or may include a plurality of color portions 120. Moreover, a part of the colored portion 120 may be included in one unit area S1.
  • the density of the colored portion 120 per unit area S1 is based on all the colored portions 120 included in the unit area S1.
  • the density (color density) of each of the colored portions 120 is set to be the same.
  • the color portions 120 are arranged at equal intervals in the direction in which the boundary line between the inclined reflection portion 119b and the bottom-side reflection portion 119a extends. Each of the colored portions 120 is formed so as to spread over the entire surface of the inclined reflecting portion 119b as a whole.
  • the bottom-side reflecting portion 119a is provided with a plurality of coloring portions 130 having the same color (magenta color) as the light emitted from the light emitting surface 117a of the LED 117, like the coloring portion 120 of the inclined reflecting portion 119b described above. Yes.
  • the colored portions 130 of the present embodiment are arranged in a matrix so as to be evenly distributed on the surface of the bottom reflecting portion 119a.
  • the size of each colored portion 130 is substantially the same.
  • the density (color density) of the colored portion 130 is the same as that of the colored portion 120 of the inclined reflecting portion 119b.
  • the density per unit area is the direction of the colored portion 130. However, it is set smaller than the colored portion 120.
  • positioned at the outermost side of the bottom side reflection part 119a is made small compared with the coloration part 130 arrange
  • the extended portion 119c is also provided with a plurality of color portions 140 having the same color (magenta) as the light emitted from the light emitting surface 117a of the LED 117, similarly to the color portion 120 of the inclined reflection portion 119b described above.
  • the colored portions 140 of the present embodiment are arranged in a frame shape that surrounds the bottom-side reflecting portion 119a and the inclined reflecting portion 119b as a whole while being evenly arranged on the surface of the extending portion 119c. ing.
  • the size of each colored portion 140 is substantially the same. Similar to the colored portion 120 of the inclined reflecting portion 119b, the colored portion 130 of the bottom reflecting portion 119a and the colored portion 140 of the extending portion 119c absorb magenta light (blue light, red light). ) Is reflected.
  • the liquid crystal display device 110 having the illumination device 112 as described above When the liquid crystal display device 110 having the illumination device 112 as described above is turned on, various signals output from a control board (not shown) are transmitted to the liquid crystal panel 111, and the display of the liquid crystal panel 111 is controlled.
  • the lighting drive of the LED 117 on the LED board 118 is controlled by an LED drive board (not shown).
  • the light emitted from the light emitting surface 117a of the LED 117 is finally directed toward the liquid crystal panel 111 after being subjected to a predetermined optical action by the optical member 115 and the wavelength conversion sheet 121. By using such light, a visible image is displayed in the display area AA of the liquid crystal panel 111.
  • the optical action of the optical member 115 and the wavelength conversion sheet 121 in the illumination device 112 will be described in detail.
  • magenta light composed of blue light and red light is emitted as primary light.
  • the primary light from the LED 117 is diffused by the diffusion plate 115a (the first diffusion plate 115a1 and the second diffusion plate 115a2), and then a part of the light enters the wavelength conversion sheet 121 on the diffusion plate 115a.
  • a part of the blue light is wavelength-converted by the green phosphor in the wavelength conversion sheet 121 and emitted as green light (secondary light).
  • the wavelength conversion sheet 121 emits blue light and red light that are transmitted without being wavelength-converted together with green light. Thus, the wavelength conversion sheet 121 emits primary light (blue light, red light) from the LED 117 and secondary light (green light) obtained after wavelength conversion, thereby forming white light. Is done.
  • the primary light (blue light, red light) and the secondary light (green light) emitted from the wavelength conversion sheet 121 are incident on the lens sheet 122 and are given a condensing function, and then reflected polarized light.
  • specific polarized light (p wave) is selectively transmitted to the liquid crystal panel 111, and specific polarized light (s wave) different from the specific polarized light (s wave) is selectively reflected to the back side.
  • the reflection sheet 119 directly emits primary light (magenta light composed of blue light and red light) from the LED 117 not directed toward the optical member 115 side, or light (primary light and secondary light) returned to the back side by the optical member 115 or the like. ) Is reflected toward the front side.
  • the color reflection part 120 is formed in the inclined reflection part 119b so that the density per unit area is higher than that of the bottom reflection part 119a.
  • the colored portion 120 is large on the inclined reflecting portion 119b side. Since the primary light (magenta color light) is reflected, the occurrence of a color difference between the reflected light on the inclined reflecting portion 119b side and the reflected light on the bottom side reflecting portion 119a side is suppressed.
  • magenta color light blue light, red light
  • green light as secondary light
  • the density of the colored portion 120 per unit area S1 is set so as to increase from the inner side (the bottom reflecting portion 119a side) to the outer side (the extended portion 119c side). Therefore, a color difference is suppressed from occurring between the reflected light in the portion closer to the inner side of the inclined reflecting portion 119b and the reflected light in the portion closer to the outer side of the inclined reflecting portion 119b. That is, more primary light (magenta light) is reflected and more secondary light (green light) is absorbed in the portion closer to the outside of the inclined reflection portion 119b.
  • the amount of primary light supplied to the screen center side and the screen peripheral side of the wavelength conversion sheet 121 is homogenized, and as a result, the color of the emitted light emitted from the illuminating device 112. Is homogenized and color unevenness is suppressed.
  • the colored portion 120 of the present embodiment has a dot shape, for example, so as to increase the reflection efficiency of light (primary light) from the LED 117 on the surface of the inclined reflecting portion 119b, for example, a so-called solid colored portion.
  • the density of the colored portion 120 can be easily changed stepwise.
  • the usage-amount of materials, such as a coating material which forms the colored part 120 can be suppressed as the colored part 120 is dot shape.
  • the color forming portion 120 is in the form of dots, the inclined reflection portion 119b is exposed from between the adjacent color forming portions 120. Therefore, for example, when the lighting device 112 is assembled, the reflection reflection of the reflection sheet 119 is performed.
  • the coloring portion 120 in the portion 119b is prevented from unnecessarily adhering to other members.
  • FIG. 11 is an enlarged plan view of a part of the reflection sheet 119 on which the coloration portion 120 ⁇ / b> A included in the illumination device of the seventh embodiment is formed.
  • FIG. 11 shows a part of the reflection sheet 119 developed in a planar shape.
  • the inclined reflection portion 119b of the reflection sheet 119 is formed with a magenta dot-like colored portion (magenta colored portion) 120A that is the same as the light (magenta light) from the LED 117.
  • a plurality of the colored portions 120A are set so that the density of the magenta color per unit area S2 gradually increases from the inner side (the bottom reflecting portion 119a side) to the outer side (the extended portion 119c side).
  • each color portion 120A has the same shape (circular shape), and the size of each color portion 120A is also set to be the same.
  • the “unit area S2” is defined as a square area S2 in which the largest colored portion 120A is accommodated inside, similarly to the unit area S1, and the surface of the inclined reflection portion 119b (short-side inclined reflection portion 119b1) is the bottom.
  • a square corresponding to S2 is divided into a plurality of regions. Thus, in each region divided for each unit area S2, the density of the colored portion 120A in each region (unit area S2) increases from the bottom reflecting portion 119a side to the outside (extending portion 119c side). It is high.
  • each coloration part 120A is arrange
  • the density of each colored portion 120A is adjusted by appropriately changing the amount of a colorant (for example, a pigment or the like) added to the paint for the colored portion 120A.
  • a colorant for example, a pigment or the like
  • Each of the colored portions 120A is formed so as to spread over the entire surface of the inclined reflecting portion 119b as a whole.
  • the bottom-side reflecting portion 119a is formed with a magenta colored portion 130, and the extending portion 119c is also formed with a magenta colored portion 140A.
  • the reflection sheet 119 provided with the coloration portion 120A as in the present embodiment is used, the amount of primary light supplied to the screen center side and the screen peripheral side of the wavelength conversion sheet, respectively, as in the sixth embodiment.
  • the color of the emitted light emitted from the illumination device is homogenized, and color unevenness is suppressed.
  • FIG. 12 is an enlarged plan view of a part of the reflection sheet 119 on which the coloration portion 120B included in the lighting device of the eighth embodiment is formed.
  • FIG. 12 shows a part of the reflection sheet 119 developed in a planar shape.
  • a magenta dot-like colored portion (magenta colored portion) 120B having the same magenta color as the light from the LED 117 (magenta colored light) is formed.
  • a plurality of the colored portions 120B are set so that the number per unit area S3 increases from the inner side (the bottom reflecting portion 119a side) to the outer side (the extended portion 119c side). That is, also in the present embodiment, the colored portion 120B is formed on the inclined reflecting portion 119b so that the density per unit area S3 increases from the inside toward the outside.
  • the size of each color portion 120B is set to be the same, a plurality of color portions 120B are gathered to form one color portion group in each color portion 120B. There is something. For example, in FIG. 12, the colored portion group arranged on the outermost side (extension portion 119c side) is configured by seven colored portions 120B gathered, and further on the inner side (bottom side reflection).
  • each coloration part 120B (coloration part group) is arrange
  • Each of the colored portions 120B is formed so as to be entirely expanded on the surface of the inclined reflecting portion 119b. Note that, similarly to the sixth embodiment, a magenta colored portion 130 and a colored portion 140 are also formed in the bottom-side reflecting portion 119a and the extending portion 119c.
  • the reflective sheet 119 provided with the color forming portion 120B (colored portion group) as in the present embodiment is used, it is supplied to the screen center side and the screen peripheral side of the wavelength conversion sheet, respectively, as in the sixth embodiment. As a result, the color of the emitted light emitted from the illumination device is homogenized, and color unevenness is suppressed. Also in the present embodiment, there is a color difference between the reflected light at the inner portion of the inclined reflection portion 119b of the reflection sheet 119 and the reflected light at the outer portion of the inclined reflection portion 119b. It is suppressed.
  • FIG. 13 is an enlarged plan view of a part of the reflection sheet 119 on which the color portions 120C1 and 120C2 included in the illumination device of the ninth embodiment are formed.
  • FIG. 13 shows a part of the reflection sheet 119 developed in a planar shape.
  • the inclined reflecting portion 119b has a dot-like blue coloring portion having the same color as each primary color light (that is, blue light and red light) constituting the light (magenta light) from the LED 117.
  • a (blue color portion) 120C1 and a dot-like red color portion (red color portion) 120C2 are formed.
  • a plurality of blue color portions 120C1 are arranged so that the density per unit area S4 increases from the inner side (bottom reflection portion 119a side) to the outer side (extension portion 119c side).
  • a plurality of red color portions 120C2 are also arranged so that the density per unit area S4 increases from the inner side (bottom side reflection portion 119a side) to the outer side (extension portion 119c side).
  • the “unit area S4” is defined as a square area S4 in which the largest colored portion is accommodated inside, and the surface of the inclined reflecting portion 119b (short-side inclined reflecting portion 119b1) is from the boundary line L1 to the boundary line L2. It is divided into a plurality of square areas corresponding to the unit area S4.
  • the same number of blue color portions 120C1 and red color portions 120C2 are arranged, and both have the same size. They are arranged in a line in the extending direction. Further, in the direction in which the boundary line L1 extends, the blue color portions 120C1 and the red color portions 120C2 are alternately arranged at equal intervals.
  • Each of the colored portions 120C1 and 120C2 is formed so as to be entirely expanded on the surface of the inclined reflection portion 119b.
  • a magenta colored portion 130 is formed on the bottom reflecting portion 119a as in the sixth embodiment.
  • a blue color portion 140C1 and a red color portion 140C2 are arranged in an alternating manner along the direction in which the boundary line L2 extends.
  • the wavelength conversion sheet is supplied to the screen center side and the screen peripheral side, respectively.
  • the amount of the emitted primary light is homogenized, and as a result, the color of the emitted light emitted from the illumination device is homogenized, and color unevenness is suppressed.
  • FIG. 14 is an enlarged plan view of a part of the reflection sheet 119 on which the color portions 120D1 and 120D2 included in the lighting apparatus of the tenth embodiment are formed.
  • FIG. 14 shows a part of the reflection sheet 119 developed in a planar shape.
  • the inclined reflecting portion 119b has a dot-like blue coloring portion having the same color as each primary color light (that is, blue light and red light) constituting the light (magenta light) from the LED 117.
  • a (blue color portion) 120D1 and a dot-like red color portion (red color portion) 120D2 are formed.
  • the blue color portion 120D1 and the red color portion 120D2 are arranged alternately between the boundary line L1 and the boundary line L2.
  • the blue color portion 120D1 and the red color portion 120D2 are arranged so that the density per unit area S5 increases from the inner side (bottom side reflection portion 119a side) to the outer side (extension portion 119c side). It is installed.
  • the “unit area S5” is defined as a square area S5 in which the largest colored portion 120D1 can be accommodated, and the surface of the inclined reflecting portion 119b (short-side inclined reflecting portion 119b1) is separated from the boundary line L1 to the boundary line L2. Are divided into a plurality of square regions corresponding to the unit area S5. Further, in the direction in which the boundary line L1 extends, the blue color portions 120D1 and the red color portions 120D2 are alternately arranged at equal intervals. Each of the colored portions 120D1 and 120D2 is formed so as to spread over the entire surface of the inclined reflecting portion 119b as a whole. Note that a magenta colored portion 130 is formed on the bottom reflecting portion 119a as in the sixth embodiment. In addition, in the extended portion 119c, a blue color portion 140D1 and a red color portion 140D2 are arranged in an alternating manner along the direction in which the boundary line L2 extends.
  • the wavelength conversion sheet is supplied to the screen center side and the screen peripheral side as in the sixth embodiment.
  • the amount of the emitted primary light is homogenized, and as a result, the color of the emitted light emitted from the illumination device is homogenized, and color unevenness is suppressed.
  • FIG. 15 is an enlarged plan view of a part of the reflection sheet 119 on which the coloration portion 120E included in the illumination device of Embodiment 11 is formed.
  • Each of the colored portions 120E is set so that the density per unit area S6 increases from the inner side (bottom-side reflecting portion 119a side) toward the outer side (extending portion 119c side).
  • the “unit area S6” is defined as a square area S6 in which the largest colored portion 120E fits inside, and the surface of the inclined reflection portion 119b (short-side inclined reflection portion 119b1) is separated from the boundary line L1 to the boundary line L2. Are divided into a plurality of square regions corresponding to the unit area S6. Note that the colored portions 120E are arranged at equal intervals in the direction in which the boundary line L1 extends. Each of the colored portions 120E is formed so as to spread over the entire surface of the inclined reflecting portion 119b as a whole. A square magenta colored portion 130 is formed on the bottom reflecting portion 119a, and a rectangular magenta colored portion 140E is formed on the extended portion 119c.
  • the reflective sheet 119 provided with the rectangular color portion 120E as in the present embodiment is used, the primary light supplied to the screen center side and the screen peripheral side of the wavelength conversion sheet, respectively, as in the sixth embodiment.
  • the color of the emitted light emitted from the illumination device is homogenized, and color unevenness is suppressed.
  • the lighting device 212 mainly includes a chassis 214, an optical member 215, a frame 216, an LED substrate (light source substrate) 218 on which an LED (light source) 217 is mounted, and a coloring portion (magenta coloration). Part) 230, a wavelength conversion sheet 221 and the like.
  • the chassis 214, the optical member 215, the frame 216, the LED substrate (light source substrate) 218 on which the LED (light source) 217 is mounted, and the wavelength conversion sheet 221 have the same configurations as those in the first and sixth embodiments.
  • a board such as a control board or an LED driving board (an example of a control means) 250 is attached to the outside of the chassis 214.
  • Each LED board 18 is provided with a connector portion to which a wiring member (not shown) is connected, and driving power is supplied from the LED driving board 250 through the wiring member.
  • Each LED 217 on each LED board 218 can be controlled by the LED driving board 250 to perform partial driving (local dimming).
  • the reflection sheet (reflection member) 219 reflects the light in the chassis 214 toward the front side (optical member 215 side).
  • the reflection sheet 219 includes a rectangular bottom-side reflection portion 219a that covers the bottom portion 214a of the chassis 214, and the liquid crystal panel 211 side (wavelength conversion) while inclining outward from each side edge corresponding to the four sides of the bottom-side reflection portion 219a.
  • Four inclined reflecting portions 219b rising toward the sheet 221 side, and an extending portion 219c extending outward from the inclined reflecting portion 219b and covering the receiving portion 214d of the chassis 214 are provided.
  • the bottom-side reflecting portion 219a is a portion that covers the entire surface (mounting surface) 218a of all the LED substrates 218 disposed on the bottom portion 214a.
  • the bottom reflecting portion 219a is provided with a plurality of opening-like insertion portions 219d, and the LEDs 217 on the LED substrate 218 are inserted into the insertion portions 219d one by one, and the insertion portions 219d The LED 217 is exposed.
  • the region where the LED 217 is disposed is substantially the same as the region where the bottom-side reflecting portion 219a of the reflecting sheet 219 is disposed.
  • LED217 is not arrange
  • a plurality of colored portions (magenta colored portion) 230 having the same color (magenta color) as the light emitted from the light emitting surface 217a of the LED 217 is provided.
  • the colored portions 230 are uniformly distributed in a matrix on the surface of the bottom reflecting portion 219a.
  • Each of the colored portions 230 has a circular shape in plan view, and is formed so as to be scattered over substantially the entire area of the bottom-side reflecting portion 219a.
  • a white bottom-side reflecting portion 219a is exposed from between the adjacent color portions 230.
  • a space larger than the size of one coloration portion 230 is provided between the coloration portions 230 adjacent to each other.
  • the colored portion 230 is formed of a coating film containing a pigment exhibiting a magenta color.
  • a coating film consists of what formed the coating material containing the said pigment using the well-known coating technique (for example, printing technique).
  • the said coating film is suitably dried as needed.
  • the color changing unit 230 has an absorptance of light of a color complementary to the color of light (magenta light) emitted from the light emitting surface 217a (magenta color light) (green light), and the light emitted from the light emitting surface 217a (magenta light ( Blue light, red light)) is higher than the absorption rate.
  • the coloration unit 230 has a color of light (magenta color light (blue light, red light)) emitted from the light emitting surface 217a having a color complementary to that of the light emitted from the light emitting surface 217a ( It is higher than the reflectance of green light. That is, the color forming unit 230 has a function of absorbing green light and reflecting magenta light (blue light, red light). Thereby, the light (for example, white return light) reflected by the coloring part 230 is compared with the case where it is reflected by a white part (such as the bottom reflecting part 219a) where the coloring part 230 is not provided. , Will be magenta.
  • each colored portion 230 is substantially the same, and the density (color density) is also substantially the same.
  • positioned at the outermost side of the bottom side reflection part 219a is made small compared with the coloration part 230 arrange
  • the colored portion 230 is set so that the density per unit area is uniform on the surface of the bottom-side reflecting portion 219a.
  • the coloring portion 230 is set so that the density (color density) per unit area is uniform on the surface of the bottom-side reflecting portion 219a.
  • the coloration part 230 has a higher density per unit area. It is set to be smaller than the coloring portion 220 described later.
  • the primary light (magenta color light) emitted from the LED 217 is less likely to be supplied to the inclined reflection part 219b than the bottom side reflection part 219a, and the light quantity distribution related to the primary light (magenta color light) from the LED 217.
  • it tends to be high on the center side (bottom side reflection part 219a side) of the display surface 211a (display area AA) and low on the peripheral side (tilt reflection part 219b side) of the display surface 211a (display area AA).
  • the amount of light tends to decrease as it goes outward.
  • the ratio of the light (returned light) returned to the reflection sheet 219 side after being reflected by the optical sheet 215b out of the light already converted by the wavelength conversion sheet 221 is increased. easy.
  • the distance between the inclined reflecting portion 219b and the optical member 215 is gradually shortened from the inner side (bottom side reflecting portion 219a side) to the outer side (extending portion 219c), and the reflected light from the inclined reflecting portion 219b is inclined.
  • the further to the outside of the reflecting portion 219b the easier it is to make multiple reflections with the optical member 215. Therefore, the wavelength conversion efficiency by the wavelength conversion sheet 221 tends to be relatively higher as it goes to the outside of the inclined reflection portion 219b.
  • the display of the liquid crystal panel 211 is controlled.
  • the LED drive board 250 controls the lighting drive of the LED 217 on the LED board 218.
  • the light emitted from the light emitting surface 217a of the LED 217 is finally directed toward the liquid crystal panel 211 after being subjected to a predetermined optical action by the optical member 215 and the wavelength conversion sheet 221. By using such light, a visible image is displayed in the display area AA of the liquid crystal panel 211.
  • the reflection sheet 219 directly receives primary light (magenta light composed of blue light and red light) from the LED 217 that does not go directly to the optical member 215 side, or light (primary light and secondary light) that is returned to the back side by the optical member 215 or the like. ) Is reflected toward the front side.
  • primary light magenta light composed of blue light and red light
  • each LED 217 can be partially driven (local dimming).
  • FIG. 17 shows a lighting region S1 and a light-off region S2 of the LED 217 in the lighting device 212.
  • a total of eight LED boards 218 are aligned and arranged in the lighting device 212 such that two in the vertical direction (Y-axis direction) and four in the horizontal direction (X-axis direction). ing.
  • a total of 20 LEDs 217 are mounted in a form of five in the vertical direction (Y-axis direction) and four in the horizontal direction (X-axis direction).
  • the LED groups on the two LED boards 218 arranged on the left side are driven to light, and the remaining six LED groups on the right LED board 218 are arranged on the right side.
  • a state in which the light is turned off is shown.
  • a region where a group of LEDs to be lit is arranged (a specific region where a lit light source is arranged, a lighting region) is denoted by reference numeral S ⁇ b> 1, and a region where a group of LEDs to be turned off is arranged (light-out region). Is denoted by S2.
  • the amount of light (primary light) supplied from the LED 217 tends to be large on the center side and small on the peripheral side.
  • the amount of light (primary light) supplied from the LED 217 is smaller than that at the center side. For this reason, the ratio of the secondary light to the primary light tends to be high in such a place.
  • the colored portions 230 are uniformly distributed on the surface of the bottom-side reflecting portion 219a.
  • the magenta colored portion 230 Since the magenta colored portion 230 is arranged, the primary light (magenta color light (blue light, red light)) included in the return light is reflected by the color portion 230 and included in the return light. Light (green light) is absorbed by the coloring unit 230. As a result, an increase in the ratio of the secondary light to the primary light at the peripheral edge R is suppressed, and the color of the light emitted from the center side of the lighting region S1 and the color of the light emitted from the peripheral edge R The difference is suppressed. In this way, the occurrence of color unevenness in the light emitted from the lighting region S1 is suppressed.
  • the coloration unit 230 is supplied with more light that has been wavelength-converted by the wavelength conversion sheet 221 (phosphor) than the light emitted from the LED (light source) 217 in the bottom-side reflection unit 219a of the reflection sheet 219. It can be said that it is arranged in the place.
  • the amount of primary light supplied to the wavelength conversion sheet 221 corresponding to the lighting region S1 is homogenized, and as a result, the color of the emitted light emitted from the illumination device 212 is changed. Homogenization and color unevenness are suppressed.
  • the color reflection part 220 is formed in the inclined reflection part 219b so that the density per unit area is higher than that of the bottom reflection part 219a. Therefore, even if the amount of primary light supplied to the inclined reflecting portion 219b side is smaller than the amount of primary light supplied to the bottom reflecting portion 219a side, the colored portion 220 is large on the inclined reflecting portion 219b side. Since the primary light (magenta color light) is reflected, it is possible to suppress a color difference between the reflected light on the inclined reflecting portion 219b side and the reflected light on the bottom side reflecting portion 219a side.
  • the density of the color forming section 230 is easily increased in order to increase the reflection efficiency (and secondary light absorption efficiency) of the light (primary light) from the LED 217. Can be changed step by step.
  • the colored portion 230 is dot-shaped, the amount of a material such as a paint that forms the colored portion 230 can be suppressed.
  • the color forming section 230 is dot-shaped, the inclined reflection section 219b is exposed from between the adjacent color forming sections 230. For example, when the lighting device 212 is assembled, the bottom side of the reflection sheet 219 is exposed. Unnecessarily adhering the coloring portion 230 in the reflection portion 219a to another member is suppressed.
  • FIG. 19 is an enlarged plan view of a part of the reflection sheet 219 on which the color portions 230A1 and 230A2 included in the illumination device of Embodiment 13 are formed.
  • the bottom-side reflecting portion 219a of the reflecting sheet 219 has a dot-like shape that has the same color as each primary color light (that is, blue light and red light) constituting the light (magenta light) from the LED 217.
  • a blue colored portion (blue colored portion) 230A1 and a dot-like red colored portion (red colored portion) 230A2 are formed.
  • the colored portion 230A1 and the colored portion 230A2 are uniformly distributed in a matrix on the surface of the bottom reflecting portion 219a.
  • the blue color portion 230A1 and the red color portion 230A2 are arranged alternately in the vertical direction (Y-axis direction) and the horizontal direction (X-axis direction). Note that each of the colored portions 230A1 and 230A2 has a circular shape in plan view, as in the twelfth embodiment. Note that a magenta colored portion 220 is formed in the inclined reflecting portion 219b.
  • the blue light is reflected by the blue color portion 230A1, and the red light is reflected by the red color portion 230A2.
  • the secondary light (green light) included in the return light is absorbed by the blue color portion 230A1 and the red color portion 230A2. Therefore, in the present embodiment, as in the twelfth embodiment, even when each LED 217 is partially driven (local dimming) and light is emitted only from a specific lighting region, the secondary light with respect to the primary light is emitted at the peripheral portion of the lighting region.
  • FIG. 20 is an enlarged plan view of a part of the reflection sheet 219 on which the coloration portion 230B provided in the illumination device of Embodiment 14 is formed.
  • FIG. 20 shows a part of the reflection sheet 219 developed in a planar shape.
  • the colored portions 230B are uniformly distributed in a matrix on the surface of the bottom reflecting portion 219a.
  • a magenta color coloring portion 220B having a quadrangular shape in a plan view is formed similarly to the color coloring portion 230B.
  • each LED 217 is partially driven (local dimming) and light is emitted only from a specific lighting area, as in the twelfth embodiment. Even when the light is emitted, the ratio of the secondary light to the primary light is suppressed from increasing at the peripheral portion of the lighting region, and the color of the light emitted from the center side of the lighting region and the peripheral portion are emitted. The difference in light color is suppressed. As a result, the amount of primary light supplied to the wavelength conversion sheet corresponding to the lighting region is homogenized, the color of the emitted light emitted from the illumination device 212 is homogenized, and color unevenness is suppressed. Is done.
  • FIG. 21 is an enlarged cross-sectional view of a part of the illumination device 212C of the fifteenth embodiment.
  • FIG. 21 shows a cross-sectional view of the LED substrate 218C and the reflection sheet 219C disposed on the bottom 214a of the chassis 214.
  • the LED 217 similar to that of the twelfth embodiment is mounted on each LED board 218C of the present embodiment. However, the interval between adjacent LEDs 217 is set to be longer than in the case of the twelfth embodiment.
  • a magenta colored portion 230C is also formed on the bottom reflective portion 219Ca of the reflective sheet 219 of the present embodiment.
  • the colored portions 230C are generally distributed in a substantially matrix manner on the surface of the bottom-side reflecting portion 219Ca.
  • the color portion 230 ⁇ / b> C disposed between the adjacent LEDs 217 is set so that the density (or density) of the color portion 230 ⁇ / b> C is higher on the center side than in the vicinity of the LED 217.
  • a color portion 230C disposed on the center side of adjacent LEDs 217 is represented as a color portion 230C1
  • a color portion 230C near the LED 217 is represented as a color portion 230C2.
  • the amount of primary light is smaller in the central portion than in the vicinity of the LED 217, and even in such a place, the primary light is reduced.
  • the proportion of secondary light tends to increase. Therefore, by arranging the color portion 230 ⁇ / b> C ⁇ b> 1 having a relatively high density or concentration at such a location, the proportion of the secondary light to the primary light is suppressed at that location, and the distance from the LED 217. The difference between the color of light emitted from a location far from the LED and the color of light emitted from the vicinity of the LED 217 is suppressed.
  • the illumination device 312 mainly includes a chassis 314, an optical member 315, a frame 316, an LED substrate (light source substrate) 318 on which an LED (light source) 317 is mounted, and a coloring portion (magenta color coloring). Part) 320, a reflection sheet 319 provided with 320, a wavelength conversion sheet 321 and the like.
  • the configurations of the chassis 314, the frame 316, the LED substrate (light source substrate) 318 on which the LED (light source) 317 is mounted, and the reflection sheet 319 are the same as those in the above embodiment.
  • the optical member 315 and the wavelength There is a feature in the configuration (arrangement) of the conversion sheet 321.
  • the optical member 315 is largely divided into a wrench diffusion plate 315a placed on the receiving portion 314d of the chassis 314 and an optical sheet 315b placed on the front side (the liquid crystal panel 11 side) and placed on the frame 316 fixed to the receiving portion 314d. Separated.
  • the wrench diffusion plate 315a has a configuration in which a large number of diffusion particles are dispersed in a substantially transparent resin plate having a predetermined thickness.
  • the wrench diffusion plate 315a of the present embodiment includes a first wrench diffusion plate 315a1 disposed on the back side and a second wrench diffusion plate 315a2 disposed on the front side.
  • a plurality of lenticular lenses (lens portions) are formed on the surface of the first wrench diffusion plate 315a1 so as to extend along the long side direction (X-axis direction) and line up in the short side direction (Y-axis direction).
  • a plurality of lenticular lenses (lens portions) are formed that extend along the short side direction (Y-axis direction) and are arranged in the long side direction (X-axis direction).
  • the lenticular lens (lens portion) of the first wrench diffusing plate 315a1 and the lenticular lens (lens portion) of the second wrench diffusing plate 315a2 are each formed on a transparent plate-like base material portion.
  • the first wrench diffusing plate 315a1 and the second wrench diffusing plate 315a2 are overlapped so that their lenticular lenses intersect each other. As will be described later, a wavelength conversion sheet 321 is overlaid on the front side of the wrench diffusion plate 315a.
  • the optical sheet 315b has a sheet shape with a smaller thickness than the wrench diffusion plate 315a, and is composed of two sheets. Specifically, it includes a lens sheet (a plasm sheet) 322 and a reflective polarizing sheet 323 that is superimposed on the front side of the lens sheet 322.
  • the optical sheet 315b is disposed in the chassis 314 so as to face the wavelength conversion sheet 321 on the wrench diffusion plate 315a in a state of being separated from the front side.
  • the lens sheet 322 includes a sheet-like base material and a prism portion provided on the front surface of the base material.
  • the prism portion is composed of a plurality of unit prisms extending in the long side direction (X-axis direction) and arranged in the short side direction (Y-axis direction). Since the lens sheet 322 includes such a prism portion, the lens sheet 322 selectively collects light from the wrench diffusion plate 315a side (wavelength conversion sheet 321 side) in the unit prism arrangement direction (Y-axis direction) ( (Anisotropic light condensing action).
  • the covering portion 316a of the frame 316 sandwiches the peripheral end portion of the laminate composed of the wrench diffusion plate 315a and the wavelength conversion sheet 321 housed in the chassis 314 with the receiving portion 314d.
  • the covering portion 316a is in contact with the peripheral end portion of the wavelength conversion sheet 321 placed on the wrench diffusion plate 315a from the front side.
  • the covering portion 316a of the frame 316 is configured to receive the optical sheet 315b and the liquid crystal panel 311 from the back side.
  • the covering portion 316a is configured to receive the peripheral end portion of the optical sheet 315b on the front side.
  • the liquid crystal panel 311 is placed on the covering portion 316a of the frame 316 in a state where the liquid crystal panel 311 is overlaid on the front side of the optical sheet 315b.
  • the laminate composed of the optical sheet 315b and the liquid crystal panel 311 is positioned by sandwiching the peripheral end portion between the covering portion 316a of the frame 316 and the bezel 313 disposed on the front side.
  • the wavelength conversion sheet 321 includes a phosphor layer containing a phosphor for wavelength-converting light from the LED 317 and a pair of transparent base material layers sandwiching the phosphor layer from the front and back.
  • the phosphor layer is made of a resin in which a large number of phosphors are dispersed in a resin.
  • a green phosphor that is excited by blue light (monochromatic light) emitted from the LED 317 and emits green light (wavelength range of about 500 nm to about 570 nm) is used.
  • a green phosphor those having a relatively sharp emission spectrum are preferable.
  • sulfide phosphors such as “SrGa2S4: Eu2 +” are used.
  • the wavelength conversion sheet 321 has a rectangular shape in plan view like the liquid crystal panel 311 and the like, and is approximately the same size as the wrench diffusion plate 315a of the optical member 315. That is, the wavelength conversion sheet 321 is set larger than the display area AA of the liquid crystal panel 311.
  • the wavelength conversion sheet 321 has a sheet shape smaller than the wrench diffusion plate 315a and is placed on the wrench diffusion plate 315a in the chassis 314. Specifically, the two wrench diffusion plates 315a in a stacked state are arranged so as to cover the surface of the second wrench diffusion plate 315a2 arranged on the front side.
  • the peripheral end portion of the wavelength conversion sheet 321 is placed on the front side of the wrench diffusion plate 315a (second wrench diffusion plate 315a2) in the front and back direction (Z-axis direction), and the receiving portion 314d and the receiving portion of the chassis 14 It faces the extended portion 319c of the reflection sheet 319 placed on 314d. Further, the peripheral end portion of the wavelength conversion sheet 321 is placed between the covering portion 316a of the frame 316 and the receiving portion 314d of the chassis 314 together with the peripheral end portion of the wrench diffusion plate 315a while being placed on the wrench diffusion plate 315a. It is pinched by.
  • the ratio tends to be high.
  • the distance between the inclined reflecting portion 319b and the optical member 315 gradually decreases from the inner side (bottom side reflecting portion 319a side) to the outer side (extending portion 319c), and the reflected light from the inclined reflecting portion 319b is inclined. As it goes outside the reflecting portion 319b, multiple reflection with the optical member 315 becomes easier. Therefore, the wavelength conversion efficiency by the wavelength conversion sheet 321 tends to be relatively higher as it goes to the outside of the inclined reflection portion 319b.
  • the wrench diffusion plate 315a of the present embodiment includes two sheets (a plurality of sheets) of the first wrench diffusion plate 315a1 disposed on the back side (LED 317 side) and the second wrench diffusion plate 315a2 disposed on the front side. 2 or more).
  • Lenticular lenses are arranged on the light-emitting side surfaces of the wrench diffusion plates 315a1 and 315a2 so as to cross each other.
  • the light supplied from the reflection sheet 319 side is supplied with the wrench diffusion plates 315a1 and 315a2. It is easy for multiple reflection.
  • the primary light (magenta light) finally emitted from the illumination device 312 and the wavelength conversion sheet 321 are used.
  • the ratio of the wavelength-converted light (secondary light) differs between the center side of the display area AA and the peripheral side of the display area AA. In that case, color unevenness occurs in the light emitted from the illumination device 312 and the display image on the liquid crystal panel 311. Specifically, the light quantity of the primary light from the LED 317 is relatively reduced on the peripheral side of the display area AA (particularly, the part adjacent to the non-display area NAA), and this part is the secondary light color (green). ).
  • the wavelength conversion sheet 321 is arranged on the front side (light emission side) of the wrench diffusion plate 315a in order to suppress the occurrence of such color unevenness.
  • the wrench diffusion plate 315a easily reflects light from the reflection sheet 319 side toward the reflection sheet 319 again. Therefore, by disposing the wavelength conversion sheet 321 closer to the liquid crystal panel 311 than the wrench diffusion plate 315a, light including light (secondary light) already converted by the wavelength conversion sheet 321 can be diffused by wrench diffusion. It is suppressed from being reflected by the plate 315a and entering the wavelength conversion sheet 321 again.
  • the wavelength conversion sheet 321 is disposed on the light output side of the front-side second wrench diffusing plate 315a2.
  • the same color as the light emitted from the light emitting surface 317a of the LED 317 on the surface of the inclined reflection portion 319b of the reflection sheet 319 (that is, A plurality of dot-like colored portions (magenta colored portions) 320 exhibiting (magenta color) are also formed.
  • the colored portion 320 is made of a coating film containing a pigment exhibiting a magenta color.
  • Such a coating film consists of what formed the coating material containing the said pigment using the well-known coating technique (for example, printing technique). The said coating film is suitably dried as needed.
  • the color developing unit 320 has an absorptance of light of a color complementary to the color of light (magenta color light) emitted from the light emitting surface 317a (green light), and the light emitted from the light emitting surface 317a (magenta color light ( Blue light, red light)) is higher than the absorption rate.
  • the color changing unit 320 has a reflectance of light emitted from the light emitting surface 317a (magenta light (blue light, red light)) having a color complementary to that of the light emitted from the light emitting surface 317a ( It is higher than the reflectance of green light.
  • the color forming unit 320 has a function of absorbing green light and reflecting magenta light (blue light, red light). Thereby, the light (for example, white return light) reflected by the coloring part 320 is magenta compared to the case where it is reflected by the white part (reflection sheet 319) where the coloring part 320 is not provided. Will be charged.
  • a plurality of dot-shaped color portions 320 are formed on the surfaces of the four inclined reflection portions 319b disposed around the bottom-side reflection portion 319a.
  • Each of the colored portions 320 has a circular shape in plan view, and is formed so as to be scattered over substantially the entire area of the inclined reflecting portion 319b.
  • a white bottom-side reflecting portion 319a is exposed from between the adjacent color portions 320.
  • Each of the colored portions 320 is set so that the size (size) increases from the bottom reflecting portion 319a side toward the outside (extending portion 319c).
  • the bottom-side reflecting portion 319a is provided with a plurality of coloring portions 330 having the same color (magenta color) as the light emitted from the light emitting surface 317a of the LED 317, similar to the coloring portion 320 of the inclined reflecting portion 319b described above.
  • the extended portion 319c is provided with a plurality of color portions 340 having the same color (magenta color) as the light emitted from the light emitting surface 317a of the LED 317, similar to the color portion 320 of the inclined reflection portion 319b described above. .
  • magenta light composed of blue light and red light is emitted as primary light.
  • the primary light from the LED 317 is diffused by the wrench diffusion plate 315a (the first wrench diffusion plate 315a1 and the second wrench diffusion plate 315a2), and then a part of the wavelength conversion sheet 321 on the wrench diffusion plate 315a. Is incident on. Of the primary light incident on the wavelength conversion sheet 321, part of the blue light is wavelength-converted by the green phosphor in the wavelength conversion sheet 321 and emitted as green light (secondary light).
  • the wavelength conversion sheet 321 From the wavelength conversion sheet 321, blue light and red light transmitted without wavelength conversion are emitted together with green light.
  • the wavelength conversion sheet 321 emits primary light (blue light, red light) from the LED 317 and secondary light (green light) obtained after wavelength conversion, thereby forming white light. Is done.
  • the reflection sheet 319 directly emits primary light (magenta light composed of blue light and red light) from the LED 317 not directed to the optical member 315 side, or light (primary light and secondary light) returned to the back side by the optical member 315 or the like. ) Is reflected toward the front side.
  • the color reflection part 320 is formed in the inclined reflection part 319b so that the density per unit area is higher than that of the bottom reflection part 319a.
  • the colored portion 320 is large on the inclined reflecting portion 319b side. Since the primary light (magenta color light) is reflected, the occurrence of a color difference between the reflected light on the inclined reflecting portion 319b side and the reflected light on the bottom side reflecting portion 319a side is suppressed.
  • the magenta light (blue light, red light) that is the primary light is reflected by the coloring portion 320, It is supplied to the wrench diffusion plate 315a side (wavelength conversion sheet 321 side).
  • the secondary light (green light) included in the white light L1 is absorbed by the coloring unit 320.
  • the greenish light R1 is suppressed from being emitted from the illumination device 312 at a location corresponding to the periphery of the display area AA of the liquid crystal panel 311.
  • the wavelength conversion sheet 321 is disposed on the front side (light emission side) of the wrench diffuser plate 315a, and light already converted by the wavelength conversion sheet 321 (secondary) Light (white light) including light) is reflected by the wrench diffusion plate 315a and is prevented from entering the wavelength conversion sheet 321 again.
  • the ratio of white light (including secondary light) supplied to the inclined reflection portion 319b side of the reflection sheet 319 is reduced, and the illumination device 312 at a location corresponding to the periphery of the display area AA of the liquid crystal panel 311 The emission of the greenish light R1 is further suppressed.
  • the amount of primary light supplied to the screen center side (center side of the display area AA) and the screen periphery side (periphery side of the display area AA) of the wavelength conversion sheet 321 are homogenized.
  • the color of the emitted light emitted from the illumination device 312 is homogenized, and color unevenness is suppressed.
  • the wrench diffusion plate 315a (first wrench 315a) is converted before wavelength conversion by the wavelength conversion sheet 321.
  • a part of the light L3 is reflected by the color forming unit 320 on the inclined reflection unit 319b and then travels toward the peripheral side of the display area AA.
  • the color forming unit 320 is included.
  • the light L4 travels toward the center side of the display area AA (inner side than the peripheral side of the display area AA).
  • the LED 317 is arranged directly below the center side of the display area AA, primary light is sufficiently supplied.
  • the light L4 is magenta light (primary light), similar to the light emitted from the LED 317.
  • a location where the amount of primary light (particularly red light) is excessively large is formed on the center side of the display area AA (inside the peripheral side of the display area AA), As a result, there is a possibility that the reddish light R2 is emitted from the lighting device 312 as color unevenness corresponding to the location (see FIG. 22).
  • the wavelength conversion sheet 321 is disposed on the front side (light-emitting side) of the wrench diffusion plate 315a, and thus the light L4 is reflected by the wrench diffusion plate 315a.
  • the liquid crystal display device 310A of this embodiment includes an illumination device 312A in which the position of the wavelength conversion sheet 321A is changed to the front side (light emission side) of the lens sheet 322 (optical sheet 315b).
  • FIG. 23 is a cross-sectional view of a liquid crystal display device 310A according to the seventeenth embodiment.
  • symbol is attached
  • the wavelength conversion sheet 321A By arranging the wavelength conversion sheet 321A in the form of being laminated on the front side (light emission side) of the lens sheet 322, light (white light) including light (secondary light) that has already been wavelength converted by the wavelength conversion sheet 321A, Reflected by the wrench diffusing plate 315a (315a1, 315a2) or the lens sheet 322 and re-entering the wavelength conversion sheet 321A, and further reflected by the colored portion 320 on the inclined reflecting portion 319b1 of the reflecting sheet 319.
  • the collected primary light is suppressed from collecting on the center side of the display area AA (inner side than the peripheral side of the display area AA).
  • the wavelength conversion sheet 321A of the present embodiment is held together with the lens sheet 322 and the reflective polarizing sheet 323 between the frame 316A and the bezel 313A while being interposed between the lens sheet 322 and the reflective polarizing sheet 323. Has been.
  • the optical path length is long. Therefore, in the case of the present embodiment, the amount (energy) of primary light (magenta light composed of blue light and red light) emitted from the LED 317 irradiated to the wavelength conversion sheet 321A is reduced as compared with the sixteenth embodiment. Therefore, in the present embodiment, it is preferable to increase the phosphor content in the wavelength conversion sheet 321 ⁇ / b> A compared to the sixteenth embodiment.
  • the lens sheet 322 is exemplified as the optical sheet 315b on which the wavelength conversion sheet 321A is placed.
  • the wavelength conversion sheet 321A may be placed on the front side (light emission side) of another optical sheet.
  • the backlight device 412 that is an illumination device includes a chassis 414 that has a light emitting portion 414B that opens on the front side (light emitting side, liquid crystal panel 411 side) and has a substantially box shape, and a chassis 414.
  • An optical member 415 disposed so as to cover the light emitting portion 414B, and a frame (diffusion plate holder) disposed along the outer edge portion of the chassis 414 and sandwiching the outer edge portion of the optical member 415 with the chassis 414. Member) 416.
  • an LED (light source) 417 an LED substrate 418 on which the LED 417 is mounted, and a reflection sheet (reflection member) 419 that reflects the light in the chassis 414 are provided.
  • the chassis 414, the frame 416, the LED 417, the LED substrate 418, and the reflection sheet 419 have the same configuration as the above embodiment, and the configuration of the optical member 415 is different from the above embodiment.
  • the optical member 415 has a horizontally long rectangular shape when seen in a plan view like the liquid crystal panel 411 and the chassis 414, and the outer end thereof is placed on the receiving plate 414D as shown in FIG.
  • the light emitting portion 414B of 414 is covered and disposed between the liquid crystal panel 411 and the LED 417.
  • the optical member 415 is opposed to the light emitting surface 417A of the LED 417 with a predetermined interval on the front side, that is, on the light emitting side.
  • the optical member 415 has a first optical member 415A arranged on the relatively back side (the LED 417 side and the side opposite to the light emitting side), and is relatively on the front side with the frame 416 sandwiched from the first optical member 415A.
  • the first optical member 415A is placed such that the outer end portion thereof overlaps the front side with respect to the receiving plate portion 414D of the chassis 414.
  • the first optical member 415A includes a first diffusion plate 420, a second diffusion plate 421, and a wavelength conversion sheet 422.
  • the first diffusion plate 420 and the second diffusion plate 421 are configured to have a large number of diffusion particles dispersed in a substantially transparent resin base material having a predetermined thickness, and diffuse the transmitted light. It has a function.
  • the second optical member 415B is placed so that the outer end portion of the second optical member 415B overlaps the front side with respect to the frame 416, and an interval corresponding to the thickness of the frame 416 is provided between the second optical member 415B and the first optical member 415A.
  • the second optical member 415B includes a prism sheet (lens sheet) 423 and a reflective polarizing sheet 424 that is stacked on the front side of the prism sheet 423.
  • the prism sheet 423 includes a sheet-like base material and a prism portion provided on the front surface of the base material.
  • the prism portion is composed of a plurality of unit prisms extending in the long side direction (X-axis direction) and arranged in the short side direction (Y-axis direction).
  • the reflective polarizing sheet 424 includes a reflective polarizing film and a pair of diffusion films that sandwich the reflective polarizing film from the front and back.
  • the reflective polarizing film has, for example, a multilayer structure in which layers having different refractive indexes are alternately stacked, and transmits p-waves of light from the prism sheet 423 and reflects s-waves to the back side.
  • the s wave reflected by the reflective polarizing film is reflected again to the front side by a reflection sheet 419 or the like, which will be described later, and at that time, separated into an s wave and a p wave.
  • the reflective polarizing sheet 424 includes the reflective polarizing film, so that the s-wave absorbed by the polarizing plate of the liquid crystal panel 411 is reflected to the back side (the reflective sheet 419 side). It can be used effectively and the light use efficiency (luminance) can be increased.
  • the pair of diffusing films are made of a transparent synthetic resin material such as polycarbonate resin, and an embossing process for imparting a diffusing action to light is performed on the surface opposite to the reflective polarizing film side.
  • the frame 416 is made of a synthetic resin and is painted white so as to have light reflectivity. As shown in FIG. 24, the frame 416 has a frame shape along the outer peripheral edge portions of the liquid crystal panel 411 and the optical member 415 as a whole. .
  • the frame 416 is opposed to each receiving plate portion 414D and has an inner frame portion 416A that sandwiches the outer end portion of the first optical member 415A between each receiving plate portion 414D, and an outer end of the inner frame portion 416A. And an outer frame portion 416B that protrudes toward the back side and faces the outer surface of the upright plate portion 414E.
  • the inner frame portion 416A presses the outer end portion of the second diffusion plate 421 constituting the first optical member 415A from the side opposite to the plate portion 414D side.
  • the inner frame portion 416A sandwiches the outer end portions of the liquid crystal panel 411 and the second optical member 415B with the bezel 413.
  • the inner frame portion 416A is disposed in the non-display area NAA of the liquid crystal panel 411, the end on the inner peripheral edge side of the inner frame portion 416A enters the display area AA of the liquid crystal panel 411. That is, the inner frame portion 416A is arranged across the non-display area NAA and the display area AA.
  • the inner frame portion 416A protrudes from the receiving plate portion 414D of the chassis 414 toward the display area AA.
  • the wavelength conversion sheet 422 has a rectangular shape in plan view, and is approximately the same size as each of the diffusion plates 420 and 421 of the first optical member 415. That is, the wavelength conversion sheet 422 is set to have a larger size in a plan view than the display area AA of the liquid crystal panel 411.
  • the wavelength conversion sheet 422 is formed into a sheet (thin) having a smaller thickness than each of the diffusion plates 420 and 421. Specifically, the thickness of each of the diffusion plates 420 and 421 is, for example, about 1.5 mm to 2 mm, whereas the thickness of the wavelength conversion sheet 422 is, for example, about 200 ⁇ m to 400 ⁇ m.
  • the wavelength conversion sheet 422 is lower in mechanical rigidity and strength than the diffusion plates 420 and 421.
  • the wavelength conversion sheet 422 includes a phosphor layer (wavelength conversion layer) containing a phosphor for converting the wavelength of light from the LED 417 (wavelength conversion material), and a pair of the phosphor layer sandwiched from the front and back to protect it. And a protective layer.
  • a green phosphor that emits green light (wavelength range of about 500 nm to about 570 nm) using blue light contained in magenta light from the LED 417 as excitation light is dispersed and blended.
  • the emitted light of the backlight device 412 includes blue light and red light emitted from the LED 417, and green light that is wavelength-converted by the green phosphor included in the wavelength conversion sheet 422, as a whole. It becomes white light.
  • a green phosphor those having a relatively sharp emission spectrum are preferable.
  • sulfide phosphors such as “SrGa 2 S 4 : Eu 2+ ” are used.
  • the wavelength conversion sheet 422 Since the above-described wavelength conversion sheet 422 has low rigidity compared to the diffusion plates 420 and 421, for example, when an external force is applied, local deformation such as distortion or wrinkles may occur. In addition, similar local deformation may occur even if the light is expanded or contracted by the heat generated from the LED 417 or the like due to light emission.
  • the wavelength conversion sheet 422 color unevenness or the like occurs in the emitted light, and there is a concern that display defects may occur in the liquid crystal panel 411.
  • the wavelength conversion sheet 422 is easier to absorb moisture than other optical sheets, and the phosphor (sulfide phosphor) contained in the wavelength conversion sheet 422 is denatured due to moisture absorption, thereby converting the wavelength. There is concern about the deterioration of performance. When the wavelength conversion performance of the wavelength conversion sheet 422 deteriorates, color unevenness or the like occurs in the emitted light, and as a result, a display defect may occur in the liquid crystal panel 411.
  • the wavelength conversion sheet 422 is sandwiched between the first diffusion plate 420 and the second diffusion plate 421 as shown in FIG. Since the wavelength conversion sheet 422 is sandwiched between the first diffusion plate 420 and the second diffusion plate 421 having relatively high rigidity, even when an external force is applied, the wavelength conversion sheet 422 is subjected to distortion or wrinkles. Local deformation is less likely to occur, and local deformation associated with thermal expansion and contraction is less likely to occur. Furthermore, the wavelength conversion sheet 422 sandwiched between the first diffusion plate 420 and the second diffusion plate 421 has a very small area exposed to the outside, and therefore, it is difficult for a situation to absorb moisture contained in the outside air. Become.
  • the first diffusion plate 420 that overlaps the back side (the LED 417 side) with respect to the wavelength conversion sheet 422 extends along the X-axis direction (first direction) along the plate surface.
  • the first lenticular lens 425 is provided on the front plate surface of the flat first base material 420 ⁇ / b> A constituting the first diffusion plate 420.
  • the first cylindrical lens 425A has a substantially semi-cylindrical shape whose axial direction coincides with the X-axis direction, and a convex first circular arc shape whose surface facing the front side (the wavelength conversion sheet 422 side) forms an arc shape.
  • the surface is 425A1.
  • the first cylindrical lens 425A has a substantially semicircular cross-sectional shape cut along an alignment direction (second direction) orthogonal to the axial direction (extending direction, first direction).
  • the multiple first cylindrical lenses 425A arranged in parallel along the Y-axis direction have the same bottom surface width and height dimensions, and the arrangement interval between the adjacent first cylindrical lenses 425A is also substantially constant. They are arranged at equal intervals.
  • the light incident on the first diffusion plate 420 is given a diffusing action by the diffusing particles, and in addition, the first lenticular lens 425 is in the direction in which the plurality of first cylindrical lenses 425A are arranged.
  • a condensing action is selectively given in the Y-axis direction.
  • the first arcuate surface 425A1 which is the surface of the first cylindrical lens 425A constituting the first lenticular lens 425, the light is reflected by the first arcuate surface 425A1.
  • the reflected light is returned to the LED 417 side, and the reflected light is reflected by the reflective sheet 419 or the like on the LED 417 side and is incident on the first diffusion plate 420 again.
  • the wavelength conversion sheet is disposed on the LED 417 side with respect to the first diffusion plate 420, the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422, so that the light has an excessive wavelength. There is a risk of color unevenness due to conversion. In that respect, since the wavelength conversion sheet 422 is arranged on the opposite side of the LED 417 side with respect to the first diffusion plate 420, it is avoided that the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422.
  • each first cylindrical lens 425A is in line contact with the back plate surface of the wavelength conversion sheet 422.
  • the second diffusion plate 421 that overlaps the front side (the side opposite to the LED 417 side) with respect to the wavelength conversion sheet 422 extends along the Y-axis direction (second direction) as shown in FIG. It has the 2nd lenticular lens 426 which consists of a plurality of 2nd cylindrical lenses 426A arranged along with (the 1st direction).
  • the second lenticular lens 426 is provided on the front plate surface of the flat plate-like second base material 421 ⁇ / b> A constituting the second diffusion plate 421.
  • the second cylindrical lens 426A has a substantially semi-cylindrical shape whose axial direction coincides with the Y-axis direction, and has a convex shape whose surface facing the front side (the side opposite to the wavelength conversion sheet 422 side) forms an arc shape.
  • the second arcuate surface 426A1 is used.
  • the second cylindrical lens 426A has a substantially semicircular cross section cut along an alignment direction (first direction) orthogonal to the axial direction (extending direction, second direction).
  • the multiple second cylindrical lenses 426A arranged in parallel along the X-axis direction have the same bottom surface width and height dimensions, and the arrangement interval between adjacent second cylindrical lenses 426A is also substantially constant. They are arranged at equal intervals.
  • the light incident on the second diffuser plate 421 is given a diffusing action by the diffusing particles, and in addition, the second lenticular lens 426 is in the arrangement direction of the plurality of second cylindrical lenses 426A.
  • a condensing action is selectively given in the X-axis direction.
  • the light emitted from the backlight device 412 is selectively focused in the Y-axis direction by the first diffusion plate 420, and is selectively selected in the X-axis direction by the second diffusion plate 421. Since the light condensing action is given to the light, the front luminance relating to the light emitted from the backlight device 412 becomes high.
  • board surface of the back side in 421A of 2nd base materials is in surface contact with the plate
  • the wavelength conversion sheet 422 has outer end portions between the receiving plate portion 414D of the chassis 414 and the frame 416, and the outer end portions of the first diffusion plate 420 and the second diffusion plate 421. Is sandwiched between. Specifically, as described above, the wavelength conversion sheet 422 has the same size in plan view as that of the first diffusion plate 420 and the second diffusion plate 421, and the outer peripheral end surface thereof is the first diffusion plate. 420 and the outer peripheral end surfaces of the second diffuser plate 421 are substantially flush with the outer peripheral end surfaces of the first diffuser plate 420 and the second diffuser plate 421.
  • the outer end portion of the wavelength conversion sheet 422 is sandwiched between the receiving plate portion 414D and the frame 416 via the outer end portions of the first diffusion plate 420 and the second diffusion plate 421. Accordingly, since the light emitted from the outer end portion of the first diffusion plate 420 is transmitted through the outer end portion of the wavelength conversion sheet 422 and the wavelength is converted, the outer end portion of the wavelength conversion sheet is assumed to be the first end. Compared with the case where the diffuser plate 420 and the second diffuser plate 421 are arranged to be retracted from the outer end portions, the light of the LED 417 is emitted to the outside without being wavelength-converted near the outer end portion of the backlight device 412. It becomes difficult to happen. This makes it difficult for color unevenness to occur in the emitted light near the outer end of the backlight device 412.
  • magenta light composed of blue light and red light is emitted from the light emitting surface 417A of the LED 417 as primary light.
  • the primary light from the LED 417 is selectively diffused in the Y-axis direction by the first lenticular lens 425 in addition to being given a diffusing action by the diffusing particles contained in the first diffusion plate 420 constituting the first optical member 415A. After the light condensing action is given, a part of the light enters the wavelength conversion sheet 422 on the first diffusion plate 420.
  • the wavelength conversion sheet 422 Of the primary light incident on the wavelength conversion sheet 422, part of the blue light is wavelength-converted by the green phosphor in the wavelength conversion sheet 422 and emitted as green light (secondary light).
  • the wavelength conversion sheet 422 emits blue light and red light that are transmitted without being wavelength-converted together with green light.
  • the primary light (blue light, red light) from the LED 417 and the secondary light (green light) obtained after wavelength conversion are emitted from the wavelength conversion sheet 422, so that white light is emitted. It is formed.
  • the light emitted from the wavelength conversion sheet 422 enters the second diffusion plate 421 and is given a diffusing action by the diffusing particles contained in the second diffusion plate 421, and in addition to the X axis direction by the second lenticular lens 426. A condensing effect is selectively given.
  • the primary light (blue light, red light) and secondary light (green light) emitted from the wavelength conversion sheet 422 are, as shown in FIG. 26, a prism sheet 423 that constitutes the second optical member 415B.
  • a prism sheet 423 that constitutes the second optical member 415B.
  • specific polarized light (p-wave) is selectively transmitted to the liquid crystal panel 411 and different from the specific polarized light (s Wave) is selectively reflected to the back side.
  • the reflected light or the like is reflected by the reflection sheet 419 and travels again toward the front side.
  • the reflection sheet 419 is not directly directed to the optical member 415 side, but primary light (magenta light composed of blue light and red light) from the LED 417, or light returned to the back side by the optical member 415 or the like. (Primary light and secondary light) are reflected toward the front side.
  • a colored portion 427 is formed in the inclined reflective portion 419B so as to have a higher density per unit area than the bottom-side reflective portion 419A.
  • the colored portion 427 is large on the inclined reflecting portion 419B side. Since the primary light (magenta color light) is reflected, the occurrence of a color difference between the reflected light on the inclined reflecting portion 419B side and the reflected light on the bottom side reflecting portion 419A side is suppressed.
  • the inclined reflecting portion 419B has a shorter distance from the first optical member 415A constituting the optical member 415 than the bottom-side reflecting portion 419A. Since multiple reflection is likely to occur between the reflecting portion 419B and the first optical member 415A, the wavelength conversion efficiency of light by the wavelength conversion sheet 422 included in the first optical member 415A may locally increase. Concerned. In particular, since the distance between the inclined reflection portion 419B and the first optical member 415A tends to be shorter toward the outside (away from) the bottom-side reflection portion 419A, the multiple reflected light passes through the wavelength conversion sheet 422. The number of times increases with increasing distance from the bottom-side reflecting portion 419A.
  • the color changing portion 427 provided in the inclined reflecting portion 419B has a higher density per unit area than the color changing portion 427 provided in the bottom reflecting portion 419A, and therefore the wavelength conversion sheet on the inclined reflecting portion 419B side. Even if a large amount of secondary light (green light) having been wavelength-converted by 422 is supplied, the color reflecting section 427 absorbs a lot of secondary light (green light) on the inclined reflection section 419B side, and therefore the inclined reflection section 419B. The difference in color between the reflected light on the side and the reflected light on the bottom-side reflecting portion 419A side is suppressed.
  • the colored portion 427 in the inclined reflecting portion 419B has a higher density per unit area from the bottom-side reflecting portion 419A toward the outside, the more the multiple reflected light that passes through the wavelength conversion sheet 422, the more A strong coloring action is imparted and the amount of secondary light absorbed is increased. As a result, color unevenness is less likely to occur in the multiple reflected light.
  • the light incident on the first diffusion plate 420 reaches the surface of the first cylindrical lens 425A constituting the first lenticular lens 425, it is reflected on the surface and returned to the LED 417 side. In some cases, the reflected light is reflected on the LED 417 side and enters the first diffusion plate 420 again.
  • the wavelength conversion sheet is disposed on the LED 417 side with respect to the first diffusion plate 420, the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422, so that the light has an excessive wavelength. There is a risk of color unevenness due to conversion.
  • the wavelength conversion sheet 422 is arranged on the opposite side of the LED 417 side with respect to the first diffusion plate 420, it is avoided that the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422. Therefore, the occurrence of color unevenness due to excessive wavelength conversion of the light of the LED 417 by the wavelength conversion sheet 422 is less likely to occur.
  • the amount of primary light supplied to the screen center side (the center side of the display area AA) and the screen edge side (the edge side of the display area AA) of the wavelength conversion sheet 422 is uniform.
  • the color of the emitted light emitted from the backlight device 412 is homogenized, and color unevenness is suppressed.
  • the backlight device (illumination device) 412 of the present embodiment is arranged to face the light emitting surface 417A and the LED (light source) 417 having the light emitting surface 417A that emits light, and is emitted from the light emitting surface 417A.
  • a wavelength conversion sheet 422 including a second diffusion plate 421 and a phosphor that converts the wavelength of light emitted from the light emitting surface 417A, and wavelength conversion sandwiched between the first diffusion plate 420 and the second diffusion plate 421 A sheet 422.
  • the light emitted from the light emitting surface 417A of the LED 417 is given at least a diffusion action when passing through the first diffusion plate 420, and then wavelength-converted when passing through the wavelength conversion sheet 422. Thereafter, at least the diffusing action is given again when passing through the second diffusion plate 421. Since the wavelength conversion sheet 422 is sandwiched between the first diffusion plate 420 and the second diffusion plate 421 having relatively high rigidity, even when an external force is applied, the wavelength conversion sheet 422 is subjected to distortion or wrinkles. Local deformation is less likely to occur, and local deformation associated with thermal expansion and contraction is less likely to occur.
  • the wavelength conversion sheet 422 sandwiched between the first diffusion plate 420 and the second diffusion plate 421 has a very small area exposed to the outside, and therefore, it is difficult for a situation to absorb moisture contained in the outside air. Become. As described above, deformation of the wavelength conversion sheet 422 and generation of moisture absorption are suitably suppressed.
  • the first diffusion plate 420 extends along a first direction along the plate surface, and is arranged in a plurality along the second direction perpendicular to the first direction along the plate surface.
  • a first lenticular lens 425 including a cylindrical lens 425A is included.
  • the light incident on the first diffusion plate 420 is selectively given a condensing action by the first lenticular lens 425 in the second direction, which is the arrangement direction of the plurality of first cylindrical lenses 425A.
  • the light incident on the first diffusion plate 420 reaches the surface of the first cylindrical lens 425A constituting the first lenticular lens 425, it may be reflected on the surface and returned to the LED 417 side.
  • the light is reflected on the LED 417 side and enters the first diffusion plate 420 again.
  • the wavelength conversion sheet is disposed on the LED 417 side with respect to the first diffusion plate 420, the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422, so that the light has an excessive wavelength.
  • the wavelength conversion sheet 422 is arranged on the opposite side of the LED 417 side with respect to the first diffusion plate 420, it is avoided that the light reflected by the first diffusion plate 420 is repeatedly transmitted through the wavelength conversion sheet 422. Therefore, the occurrence of color unevenness due to excessive wavelength conversion of the light of the LED 417 by the wavelength conversion sheet 422 is less likely to occur.
  • the second diffuser plate 421 includes a second lenticular lens 426 including a plurality of second cylindrical lenses 426A extending along the second direction and arranged side by side along the first direction.
  • the light incident on the second diffuser plate 421 is selectively given a condensing action by the second lenticular lens 426 in the first direction that is the arrangement direction of the plurality of second cylindrical lenses 426A.
  • the light emitted from the backlight device 412 is selectively focused in the second direction by the first diffusion plate 420, and is selectively selected in the first direction by the second diffusion plate 421. Since the light condensing action is given to the light, the front luminance relating to the emitted light of the backlight device 412 becomes high.
  • the LED 417 is connected to the bottom plate (bottom) 414A disposed on the opposite side of the light emitting surface 417A and the outer end of the bottom plate 414A to support the outer end of the first diffusion plate 420.
  • a frame (diffusion plate holding member) that holds the outer end of the second diffusion plate 421 from the side opposite to the receiving plate portion 414D side. Member) 416, and the wavelength conversion sheet 422 has the outer end portions of the first diffusion plate 420 and the second diffusion plate 421 between the receiving plate portion 414D and the frame 416. Sandwiched between.
  • the receiving plate portion 414 ⁇ / b> D connected to the outer end portion of the bottom plate portion 414 ⁇ / b> A supports the outer end portion of the first diffusion plate 420.
  • the frame 416 receives the outer end portion of the second diffusion plate 421 from the side opposite to the plate portion 414D side.
  • the outer end portion of the wavelength conversion sheet 422 is sandwiched between the receiving plate portion 414D and the frame 416 via the outer end portions of the first diffusion plate 420 and the second diffusion plate 421.
  • the outer end portion of the wavelength conversion sheet is assumed to be the first end.
  • the light of the LED 417 is not wavelength-converted to the outside near the outer end portion of the backlight device 412. A situation where the light is emitted is less likely to occur, and color unevenness is less likely to occur in the emitted light near the outer end.
  • the LED 417 has a bottom plate portion 414A disposed on the opposite side of the light emitting surface 417A side, the chassis 414 for housing the LED 417, and the light emitted from the light emitting surface 417A to the first diffusion plate 420 side.
  • a reflecting sheet 419 that reflects, a bottom reflecting portion 419A that covers the bottom plate portion 414A while exposing the LED 417, and an inclined reflecting portion that rises toward the first diffusion plate 420 while being inclined outward from the bottom reflecting portion 419A.
  • 419B at least on the surface of the inclined reflecting portion 419B, each having the same color as the light emitted from the light emitting surface 417A or the same color as each primary color light constituting the light.
  • a plurality of dot-shaped color portions 427 In this way, the light emitted from the light emitting surface 417A of the LED 417 accommodated in the chassis 414 is reflected to the first diffusion plate 420 side by the bottom reflection part 419A and the inclined reflection part 419B of the reflection sheet 419. .
  • the light that has reached the first diffuser plate 420 and the second diffuser plate 421 includes a considerable amount of light that is reflected toward the reflection sheet 419 side.
  • the inclined reflection part 419B has a shorter distance from each diffusion plate 420, 421 than the bottom reflection part 419A, and therefore, light is transmitted between each diffusion plate 420, 421. Multiple reflection tends to occur.
  • a color-forming portion 427 that has the same color as the light emitted from the light-emitting surface 417A of the LED 417 or the same color as each primary color light that constitutes the light is disposed on the surface of the inclined reflection portion 419B of the reflection sheet 419. Therefore, as described above, the light that is multiple-reflected between each of the diffusion plates 420 and 421 and the inclined reflection portion 419B is given a coloration effect by the coloration portion 427, and is not subjected to the coloration effect. In comparison, the color of the LED 417 is close to that of light.
  • the colored portion 427 has a plurality of dots, it is possible to finely adjust the distribution density, color density, and the like in the inclined reflection portion 419B, which is suitable for suppressing color unevenness. Yes.
  • the coloration portion 427 has a higher density per unit area or color density as it goes outward from the bottom-side reflection portion 419A side. Since the distance between the inclined reflection portion 419B and each of the diffusion plates 420 and 421 decreases from the bottom-side reflection portion 419A toward the outside, the number of times that the multiple reflected light passes through the wavelength conversion sheet 422 is determined by bottom-side reflection. Increasing from the portion 419A side toward the outside. On the other hand, the colored portion 427 has a higher density per unit area or color density from the bottom-side reflecting portion 419A toward the outside, and therefore, the multiple reflected light having a large number of transmissions through the wavelength conversion sheet 422. As a result, a strong coloring action is provided. Thereby, color unevenness is less likely to occur in the multiple reflected light.
  • the LED 417 emits magenta light including blue light and red light from the light emitting surface 417A
  • the wavelength conversion sheet 422 includes a green phosphor that converts the wavelength of blue light into green light as the phosphor.
  • the magenta color light emitted from the light emitting surface 417A of the LED 417 includes blue light and red light
  • the blue color included in the magenta color light is transmitted through the wavelength conversion sheet 422.
  • the light is wavelength converted to green light.
  • the emitted light of the backlight device 412 includes blue light, green light, and red light, and becomes white light as a whole.
  • FIG. 19 A nineteenth embodiment of the present invention will be described with reference to FIG.
  • the first diffusion plate 4120 and the second diffusion plate 4121 according to the present embodiment are both flat as shown in FIG. That is, the first diffusion plate 4120 and the second diffusion plate 4121 are configured not to have the lenticular lenses 425 and 426 (see FIG. 27) as described in the eighteenth embodiment. Since the first diffusion plate 4120 and the second diffusion plate 4121 having such a configuration sandwich the wavelength conversion sheet 4122 in a surface-contact manner from both the front and back sides, local deformation is less likely to occur in the wavelength conversion sheet 4122. Become.
  • an LED that emits magenta light (blue light, red light)
  • a light source that emits blue light as primary light
  • a phosphor wavelength conversion including a green phosphor that converts blue light into green light and a red phosphor that converts blue light into red light.
  • a sheet may be used.
  • green light and red light are emitted from the wavelength conversion sheet as secondary light that has been wavelength-converted by the phosphor, and a blue color portion (blue coloration) is provided on the extended portion of the reflection sheet. Part) is formed.
  • SrGa 2 S 4 : Eu 2+ may be used as the green phosphor
  • (Ca, Sr, Ba) S: Eu 2+ may be used as the red phosphor, for example.
  • a light source that emits blue light as primary light may be used, and a wavelength conversion sheet that includes a yellow phosphor that converts blue light into yellow light may be used as the phosphor. Good. In this case, yellow light is emitted from the wavelength conversion sheet as secondary light that has been wavelength-converted by the phosphor, and a blue color portion (blue color portion) is provided on the extended portion of the reflection sheet. It is formed.
  • a light source that emits purple light may be used, and a wavelength conversion sheet including a yellow phosphor and a green phosphor may be used as the phosphor. In this case, a purple color part is used as the color part.
  • a light source that emits cyan light may be used, and a wavelength conversion sheet including a red phosphor may be used as the phosphor. In this case, a cyan colored portion is used as the colored portion.
  • the sulfurated phosphor is used as the phosphor of the wavelength conversion sheet.
  • the present invention is not limited to this, and for example, a quantum dot phosphor (Quantum Dot Phosphor) may be used.
  • Quantum dot phosphors have discrete energy levels by confining electrons, holes, and excitons in a three-dimensional spatial orientation in a nano-sized semiconductor crystal (for example, about 2 nm to 10 nm in diameter) By changing the dot size, the peak wavelength (emission color) of the emitted light can be selected as appropriate.
  • the quantum dot phosphor easily reacts with oxygen and moisture in the air and deteriorates and uses cadmium or the like as an environmental load substance, the above-described sulfide phosphor is used as the phosphor of the wavelength conversion sheet. Is preferred.
  • the sulfide phosphor is covered with a silicon dioxide film, and it can be said that the reliability is high even in a high-temperature and high-humidity environment by adding a gas absorbing material to the wavelength conversion sheet.
  • a circular or quadrangular shape is used as the dot-shaped color portion.
  • the dot-shaped color portion of the present invention is not limited to these shapes, for example, a triangular shape. There is no particular limitation as long as the object of the present invention is not impaired, such as a polygonal shape such as a polygonal shape, an elliptical shape, and an irregular shape.
  • the transmissive liquid crystal display device has been exemplified in the above embodiment, the present invention can also be applied to a transflective liquid crystal display device.
  • a liquid crystal display device using a liquid crystal panel as the display panel has been illustrated, but the present invention is also applicable to a display device using another type of display panel.
  • a television receiver provided with a tuner has been exemplified.
  • the present invention is also applicable to a display device (eg, an electronic signboard, an electronic blackboard, etc.) that does not include a tuner.
  • the extending direction of the first cylindrical lens constituting the first lenticular lens of the first diffusing plate coincides with the Y-axis direction, and the arrangement direction coincides with the X-axis direction
  • the extending direction of the second cylindrical lens constituting the second lenticular lens of the second diffusing plate may be configured such that the extending direction is coincident with the X-axis direction and the arranging direction is coincident with the Y-axis direction.
  • the specific type, number, stacking order, and the like of the optical sheets included in the second optical member can be changed as appropriate.
  • the first optical member may have a configuration having three or more diffusion plates.
  • two or more diffusion plates may be arranged on either the front side or the back side with respect to the wavelength conversion sheet, but two or more diffusion plates are on the front side with respect to the wavelength conversion sheet. It may be arranged on both the back side.
  • two or more diffusion plates are selectively arranged only on the back side with respect to the wavelength conversion sheet and only one diffusion plate is arranged on the front side with respect to the wavelength conversion sheet, the wavelength conversion sheet is adopted.
  • the amount of light reflected by one diffusion plate (first diffusion plate) arranged on the front side with respect to the wavelength is reflected by two or more diffusion plates (second diffusion plates) arranged on the back side of the wavelength conversion sheet. Therefore, the amount of reflected light transmitted through the wavelength conversion sheet is reduced, which is preferable for suppressing the occurrence of color unevenness.
  • SYMBOLS 10 Liquid crystal display device (display apparatus), 11 ... Liquid crystal panel, 11a ... Display surface, 11b ... Back surface, 11c ... Light-shielding part, 12 ... Illumination device, 13 ... Bezel, 14 ... Chassis, 14a ... Bottom part, 14b ... Light emission Part, 14c ... side wall part, 14d ... receiving part, 14e ... standing wall part, 15 ... optical member, 15a ... diffusion plate, 15a1 ... first diffusion plate, 15a2 ... second diffusion plate, 15b ... optical sheet, 16 ... frame ( Frame member), 16a ... covering portion, 16b ... outer wall portion, 17 ... LED (light source), 17a ...

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

照明装置(12)は、発光面を有する光源(17tp)、発光面の反対側にある底部(14a)、底部(14a)の周縁の側壁部(14c)、側壁部(14c)から外側に延びる受け部(14d)を有し、光源(17)を収容するシャーシ(14)と、光源(17)から離され、発光面からの光を波長変換する蛍光体を含む波長変換シート(21)と、光源(17)を露出させつつ底部(14a)を覆う底側反射部(19a)、底側反射部(19a)から側壁部(14c)側に傾斜しつつ波長変換シート(21)側に向かって立ち上がる傾斜反射部(19b)、傾斜反射部(19b)から外側に向かって延び、受け部(14d)を覆う延設部(19c)を有する反射シート(19)と、各々が発光面からの光と同色、又はその光を構成する各原色光と同色を呈し、延設部(19c)上に配される複数のドット状の呈色部(40)とを備える。

Description

照明装置、表示装置及びテレビ受信装置
 本発明は、照明装置、表示装置及びテレビ受信装置に関する。
 従来の液晶表示装置の一例として、特許文献1に記載のものが挙げられる。この液晶表示装置は、液晶パネルと、いわゆる直下型のバックライト装置(照明装置)を備えている。このバックライト装置は、液晶パネルの真下に複数の光源がマトリクス状に配置された構成を備えており、液晶パネルの背面に向かって面状に広がった白色の光を供給する。
 前記バックライト装置は、青色光等を一次光として出射する光源と、前記光源から離れた状態で配され、前記一次光の一部を波長変換して他の光(二次光)を放出する波長変換シートとを備えている。前記バックライト装置では、光源から出射された一次光と、波長変換シートにより波長変換された他の光(二次光)とが加法混色されることで、白色光が生成される。
 なお、前記バックライト装置は、波長変換シート以外に、前記光源と離れた状態で配される各種の光学部材を備えている。また、バックライト装置内には、光学部材等で反射されて光源側に戻された光等を反射する反射シートが設けられている。反射シートの中央側は、液晶パネルの画面中央側と対向する形で配され、その周縁側は、液晶パネル側に向かって立ち上がりつつ傾斜した状態で、液晶パネルの画面周縁側と対向している。また、傾斜した立ち上がり部分の外側には、更に外側に向かって延びる延設部が設けられている。この延設部は、光源や反射シート等を収容する開口したシャーシの周縁部に載せられる。なお、シャーシ内において、反射シートの表側に、波長変換シートが離れた状態で反射シートと対向するように配されている。
国際公開第2016/136787号
(発明が解決しようとする課題)
 前記バックライト装置では、液晶パネルの画面中央側の真下に、光源が多く配設されているものの、画面周縁側の真下には、光源は配設されていない。そのため、画面周縁側の波長変換シートでは、画面中央側と比べて、一次光の供給量が少なくなる傾向がある。また、画面周縁側の波長変換シートには、画面中央側と比べて、既に波長変換された光(二次光)が多く供給され易い傾向がある。何故ならば、既に波長変換された光は、光学部材と反射シート(特に、傾斜した周縁部分)との間で何回も反射を繰り返すことで、画面周縁側の波長変換シートに多く供給されるからである。このようなバックライト装置から液晶パネルに向けて出射される光の色は、画面中央側と画面周縁側とで不均一となり、いわゆる色ムラが発生することがあった。具体的には、画面周縁側に向けて出射される光は、画面中央側と比べて、二次光の色(一次光の色と補色の関係にある色)を帯びることがあった。
 特に、画面周縁側の中でも、反射シートの最も外側にある上記延設部と重なる部分の波長変換シートは、画面中央側と比べて、一次光の供給量が少なく、かつ一次光よりも二次光の供給量が多くなり易い傾向がある。
 ところで、従来のバックライト装置では、液晶パネルの画面(表示面)中央側に配される表示領域が、反射シートの前記延設部よりも、かなり内側に設定されていた。そのため、前記延設部と重なる部分の波長変換シートに対して、一次光の供給量が少なくかつ二次光の供給量が多くても、前記延設部と重なる部分の波長変換シートから出射される光は、液晶パネルの非表示領域に向かうことになり、色ムラの発生が抑制されていた。しかしながら、近年、液晶パネルの表示領域の大型化、及び表示領域の周りを囲む非表示領域の狭小化の要求が高く、前記延設部と重なる部分の波長変換シートから出射される光が、表示領域に影響を与えて、色ムラを発生させてしまうことがあり、問題となっていた。
 本発明の目的は、色ムラの発生が抑制された照明装置等を提供することである。
(課題を解決するための手段)
 本発明に係る照明装置は、その第1の態様として、光を発する発光面を有する光源と、前記発光面の反対側に配される底部と、前記底部の周縁から立ち上がる側壁部と、前記側壁部から外側に向かって延びる受け部とを有し、前記光源を収容するシャーシと、前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から前記側壁部側に傾斜しつつ前記波長変換シート側に向かって立ち上がる傾斜反射部と、前記傾斜反射部から外側に向かって延び、前記受け部を覆う延設部とを有する反射シートと、各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記延設部上に配される複数のドット状の呈色部とを備える。
 また、本発明に係る照明装置は、その第2の態様として、光を発する発光面を有する光源と、前記発光面の反対側に配される底部を有し、前記光源を収容するシャーシと、前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記波長変換シート側に向かって立ち上がる傾斜反射部とを有する反射シートと、各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記底側反射部側から外側に向かうにつれて単位面積当たりの密度又は色の濃度が高くなるように、前記傾斜反射部の表面上に配される複数のドット状の呈色部とを備える。
 また、本発明に係る照明装置は、その第3の態様として、各々が光を発する発光面を有する複数の光源と、前記発光面の反対側に配される底部を有し、複数の前記光源が互いに間隔を保った状態で収容されるシャーシと、前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、複数の前記光源を露出させつつ前記底部を覆う底側反射部を有する反射シートと、各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記底側反射部の表面上に配される複数のドット状の呈色部と、を備える。
 また、本発明に係る照明装置は、その第4の態様として、光を発する発光面を有する光源と、前記発光面の反対側に配される底部を有し、前記光源を収容するシャーシと、前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光に拡散作用を付与するレンチ拡散板と、前記発光面から発せられた光を前記レンチ拡散板側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記レンチ拡散板側に向かって立ち上がる傾斜反射部とを有する反射シートと、各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、少なくとも前記傾斜反射部の表面上に配される複数のドット状の呈色部と、前記レンチ拡散板の出光側に配され、前記発光面から発せられて前記レンチ拡散板を透過した光を波長変換する蛍光体を含む波長変換シートとを備える。
 また、本発明に係る照明装置は、その第5の態様として、光を発する発光面を有する光源と、前記発光面と対向するよう配され、前記発光面から発せられた光に拡散作用を付与する第1拡散板と、前記第1拡散板に対して前記光源側とは反対側に重なる状態で配され、前記発光面から発せられた光に拡散作用を付与する第2拡散板と、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートであって、前記第1拡散板と前記第2拡散板との間に挟み込まれる波長変換シートと、を備える。
(発明の効果)
 本発明によれば、色ムラの発生が抑制された照明装置等を提供することができる。
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図 図1に示される液晶表示装置のA-A線断面図 液晶表示装置が備える照明装置の平面図 図2に示される液晶表示装置の拡大断面図 実施形態2の照明装置が備える呈色部が形成された反射シートの延設部の一部を拡大した平面図 実施形態3の照明装置が備える呈色部が形成された反射シートの延設部の一部を拡大した平面図 実施形態4の照明装置の一部を拡大した平面図 実施形態5の照明装置が備える呈色部が形成された反射シートの延設部の一部を拡大した平面図 実施形態6の照明装置を備える液晶表示装置の拡大断面図 図9の照明装置が備える反射シートの拡大平面図 実施形態7の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態8の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態9の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態10の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態11の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態12の照明装置を備える液晶表示装置の断面図 図16の液晶表示装置が備える照明装置の平面図 図16に示される液晶表示装置の拡大断面図 実施形態13の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態14の照明装置が備える呈色部が形成された反射シートの一部を拡大した平面図 実施形態15の照明装置の一部を拡大した断面図 実施形態16の照明装置を備える液晶表示装置の断面図 実施形態17の照明装置を備える液晶表示装置の断面図 実施形態18の照明装置を備える液晶表示装置の断面図 図24の液晶表示装置に備わる照明装置の平面図 図24における液晶表示装置の端部付近を拡大した断面図 第1拡散板、第2拡散板及び波長変換シートの部分切り欠き斜視図 実施形態19に係る第1拡散板、第2拡散板及び波長変換シートの部分切り欠き斜視図
 <実施形態1>
 本発明の実施形態1を、図1から図4を参照しつつ説明する。本実施形態では、照明装置(バックライト装置)12を備えるテレビ受信装置10TV(液晶表示装置10)を例示する。なお、各図面には、説明の便宜上、X軸、Y軸及びZ軸が示されている。
 テレビ受信装置10TVは、図1に示されるように、主として、液晶表示装置(表示装置の一例)10と、その液晶表示装置10を前後(表裏)両側から挟むようにして収容する表裏両キャビネット10Ca,10Cbと、電源10Pと、テレビ信号を受信するチューナー(受信部)10Tと、スタンド10Sとを備えている。液晶表示装置10は、全体的には左右方向(X軸方向)に長く延びた横長の矩形状をなしている。液晶表示装置10は、図2に示されるように、主として、表示パネルとして利用される液晶パネル11と、液晶パネル11に対して光を供給する外部光源としての照明装置(バックライト装置)12と、液晶パネル11及び照明装置12等を保持する枠状のベゼル13等を備えている。
 液晶パネル11は、主として、一対の透明な基板と、それらの間で挟まれる形で封止される液晶層とを備えたものからなり、照明装置12から出射される光を利用して、パネル面上に視認可能な状態で画像を表示させる。図2において、液晶パネル11の表側にある表示面11aは上側に示され、裏側にある背面11bは下側に示されている。液晶パネル11は、全体的には、平面視で横長の矩形状をなしている。液晶パネル11を構成する一対の基板のうち、一方の基板はアレイ基板であり、透明なガラス製の基板上に、スイッチング素子であるTFT(Thin Film Transistor)や画素電極等がマトリクス状に配設されたものからなる。なお、TFT基板の内側の面(液晶層側の面)には、更に配向膜等が形成されている。また、他方の基板は、カラーフィルタ(以下、CF)基板であり、透明なガラス製の基板上に、赤色、緑色、青色の各色からなるカラーフィルタがマトリクス状に配設されたものからなる。なお、CF基板の内側(液晶層側)には、カラーフィルタを格子状に区画するブラックマトリクスや、液晶パネル11の周縁に沿って配される枠状の遮光部11c、更に配向膜等が形成されている。また、TFT基板及びCF基板の各外側には、それぞれ偏光板が配されている。
 液晶パネル11の表示面11aのうち、枠状の遮光部11cよりも内側の部分が、画像が表示される表示領域AAとなっている。そして、表示領域AAの外側の枠状の領域は、画像が表示されない非表示領域NAAとなっている。表示領域AAは、平面視で横長の矩形状である。遮光部11cは、平面視で、表示領域AAの周りを取り囲む枠状をなしている。
 照明装置12は、液晶パネル11の背面側に配され、液晶パネル11に向けて光を供給する。照明装置12は、白色光を出射するように構成されている。本実施形態の照明装置12は、所謂直下型である。照明装置12は、図2に示されるように、主として、シャーシ14、光学部材15、フレーム16、LED(光源)17が実装されたLED基板(光源基板)18、呈色部(マゼンタ色呈色部)40が設けられた反射シート19、波長変換シート21等を備えている。
 シャーシ14は、全体的には、表側(光出射側、液晶パネル11側)に開口した浅底の略箱型をなし、例えば、アルミニウム板や電気亜鉛めっき鋼板(SECC)等の金属板から構成される。シャーシ14の開口部は、光出射部14bとなっている。また、シャーシ14は、液晶パネル11等と同様、平面視略矩形状をなした板状の底部14aと、その底部14aの四辺(周縁)から、外側に傾斜しつつ表側(光出射側)に向けて立ち上がる板状の側壁部14cと、各側壁部14cの立ち上がり端から外向きに張り出した板状の受け部14dと、各受け部14dから表側に立ち上がる立壁部14eとを備えている。なお、光出射部14bは、立壁部14eで囲まれた内側の部分からなる。シャーシ14の内側には、LED17が実装されたLED基板18、反射シート19、光学部材15、波長変換シート21等の各種部材が収容される。このようなシャーシ14内において、LED基板18は裏面側が底部14aと対面する形で収容されている。つまり、底部14aはLED17の発光面17a側とは反対側に配されている。シャーシ14の受け部14dは、全体的には枠状をなしており、そのような受け部14dに対して表側から光学部材15や波長変換シート21の周端部が載置される。立壁部14eは、全体的には、受け部14dの外周縁から立ち上がる枠状(筒状)をなしており、受け部14d上に載置された光学部材15や波長変換シート21の周りを取り囲む。また、立壁部14eには、枠状のフレーム16が組み付けられる。なお、シャーシ14の外側には、図示されないコントロール基板やLED駆動基板等の基板類が取り付けられている。また、各図において、シャーシ14は、長辺方向がX軸方向と一致し、かつ短辺方向がY軸方向と一致するように示されている。
 光学部材15は、液晶パネル11等と同様、平面視略矩形状をなしており、液晶パネル11の表示領域AAよりも大きく設定されている。また、光学部材15は、その周縁部がシャーシ14の受け部14d等に載せられて、シャーシ14の光出射部14bを覆うと共に、液晶パネル11とLED17との間に配されている。このような光学部材15は、LED17から離れた状態で、その発光面17aと対向している。光学部材15は、裏側(LED17側)に配され、シャーシ14の受け部14dに載せられる拡散板15aと、表側(液晶パネル11側)に配され、受け部14dに固定されたフレーム16上に載せられる光学シート15bとに大別される。拡散板15aは、所定の厚みを有する略透明な樹脂製の板材中に多数の拡散粒子が分散された構成を備えている。本実施形態の拡散板15aは、裏側に配される第1拡散板15a1と、表側に配される第2拡散板15a2とからなる。第1拡散板15a1の表面には、長辺方向(X軸方向)に沿って延びつつ、短辺方向(Y軸方向)に並ぶ複数のレンチキュラーレンズが形成され、第2拡散板15a2の表面には、短辺方向(Y軸方向)に沿って延びつつ、長辺方向(X軸方向)に並ぶ複数のレンチキュラーレンズが形成されている。第1拡散板15a1及び第2拡散板15a2は、互いのレンチキュラーレンズが交差するように重ねられている。なお、後述するように、拡散板15aの表側には、波長変換シート21が重ねられる。
 光学シート15bは、拡散板15aと比べて、厚みが小さいシート状をなしており、2枚のシートからなる。具体的には、レンズシート(プレズムシート)22と、レンズシート22の表側に重ねられる反射型偏光シート23とからなる。
 レンズシート22は、シート状の基材と、基材の表側の表面に設けられるプリズム部とからなる。プリズム部は、長辺方向(X軸方向)に沿って延びつつ、短辺方向(Y軸方向)に並ぶ複数の単位プリズムから構成されている。レンズシート22は、このようなプリズム部を備えることにより、拡散板15a側(波長変換シート21側)からの光に、単位プリズムの並び方向(Y軸方向)について選択的に集光作用(異方性集光作用)を付与できる。
 反射型偏光シート23は、反射型偏光フィルムと、反射型偏光フィルムを表裏から挟み込む一対の拡散フィルムとからなる。反射型偏光フィルムは、例えば、屈折率の互いに異なる層を交互に積層した多層構造からなり、レンズシート22からの光のうち、p波を透過させ、s波を裏側へ反射させる。反射型偏光フィルムによって反射されたs波は、後述する反射シート19等によって、再度表側に反射され、その際に、s波とp波に分離する。このように、反射型偏光シート23は、反射型偏光フィルムを備えることで、本来ならば、液晶パネル11の偏光板によって吸収されるs波を、裏側(反射シート19側)へ反射させることで有効活用することができ、光の利用効率(輝度)を高めることができる。一対の拡散フィルムは、ポリカーボネート樹脂等の透明な合成樹脂材料からなり、反射型偏光フィルム側とは反対側の表面に、光に拡散作用を付与するためのエンボス加工が施されている。
 フレーム(枠状部材)16は、シャーシ14の表側に被せられる内側が開口した枠状の部材である。フレーム16は、例えば、合成樹脂からなり、光反射性を有するように白色塗装されている。フレーム16は、平面視で枠状をなしつつその内周縁側が、シャーシ14内に収容された波長変換シート21の周端部を、表側から覆う被覆部16aと、その被覆部16aからシャーシ14の底部14a側に向かって延びつつ、シャーシ14の立壁部14eに外側から取り付けられる外壁部16bとを備える。
 フレーム16の被覆部16aは、受け部14dとの間で、シャーシ14内に収容された拡散板15a及び波長変換シート21からなる積層物の周端部を挟持する。被覆部16aは、拡散板15a上に載せられた波長変換シート21の周端部に対して表側から当接している。また、フレーム16の被覆部16aは、光学シート15b及び液晶パネル11を裏側から受ける構成となっている。液晶パネル11は、光学シート15bの表側に重ねられた状態で、フレーム16の被覆部16aに載せられる。光学シート15b及び液晶パネル11からなる積層物は、その周端部がフレーム16の被覆部16aと表側に配されるベゼル13との間で挟持されることで、位置決めされる。
 フレーム16の被覆部16aの大部分は、液晶パネル11の非表示領域NAAに配されているものの、被覆部16aの内周縁側の端部は、液晶パネル11の表示領域AAに入り込んでいる。つまり、被覆部16aは、非表示領域NAAから表示領域AAに亘って配されている。なお、被覆部16aは、シャーシ14の受け部14dよりも表示領域AA側に突き出している。
 液晶パネル11及び光学シート15bからなる積層物は、その周縁が、フレーム16とこのフレームの表側から被せられる枠状のベゼル13とによって挟まれた状態で、シャーシ14に取り付けられている。ベゼル13は、表側から平面視した際に、表示面11aが内側から露出するように液晶パネル11の周縁(非表示領域NAA)にその表示面11a側(表側)から被せられる枠状をなしたベゼル本体部13aと、このベゼル本体部13aの外縁から下方に向かって延びたベゼル側壁板13bとを備えている。ベゼル本体部13aは、表側から平面視した際、その外観は矩形状をなしている。ベゼル13は、ベゼル側壁板13bがフレーム16の外壁部16bに対してビス等の固定手段を利用して固定されることで、シャーシ14側に取り付けられる。
 枠状をなしたベゼル本体部13aは、液晶パネル11の表示領域AA側へはみ出さず、非表示領域NAA内に収まるように、設定されている。なお、ベゼル本体部13aの内周縁は、フレーム16の被覆部16aよりも、外側に配される形となっている。フレーム16の被覆部16aは、ベゼル本体部13aよりも、液晶パネル11の内側に突出しており、その一部は、液晶パネル11の表示領域AA内に入り込んだ形となっている。
 LED17は、発光面17aが液晶パネル11側(光学部材15側)を向くようにLED基板18上に表面実装される。LED17は、発光面17aがLED基板18側とは反対側を向く、いわゆる頂面発光型である。LED17の発光面17aから出射される光の光軸は、液晶パネル11の表示面の法線方向と一致している。ここでいう「光軸」とは、LED17の発光面17aから発せられた光のうち、発光強度が最も高い光の方向と一致する軸のことである。
 LED17は、発光面17aから一次光としてマゼンタ色の光(マゼンタ色光)を出射する。LED17は、発光源として青色光(約420nm~約500nmの波長領域)を出射する青色LEDチップ(青色発光素子)を有する。LED17は、青色LEDチップを、赤色蛍光体を含む封止材によって所定のケース内に封止したものからなる。青色LEDチップは、InGaN等の半導体材料からなり、順方向に電圧が印加されることで青色光を発する。なお、青色LEDチップは、図示されないリードフレームによってケース外に配されたLED基板18の配線パターンに接続される。前記封止材は、透明な樹脂中に赤色蛍光体を分散させたものからなる。青色LEDチップから出射された光の一部は、封止材中の赤色蛍光体に吸収され、赤色の光に波長変換される。つまり、赤色蛍光体は、青色LEDチップからの光(青色光)を吸収して励起し、赤色光(約600nm~約780nmの波長領域)を放出する。その結果、LED17の発光面17aからは、青色LEDチップからの青色光と、赤色蛍光体かの赤色光とが加法混色されたマゼンタ色の光(マゼンタ色光)が出射される。本実施形態では、複数個のLED17が利用される。
 LED基板18は平面視四角形状をなし、本実施形態では複数のLED基板18が利用される。複数のLED基板18は、互いに各辺の向きを揃えつつ、整列された状態でシャーシ14の底部14a上に配設されている。各LED基板18は、各辺がX軸方向及びY軸方向に一致するように配設されている。LED基板18は、例えば、アルミ系材料からなる板材の表面に絶縁層を介して銅箔等の金属膜からなる配線パターンを形成したものからなる。なお、LED基板18の最表面には、白色の反射層が形成されてもよい。LED基板18の表側の板面には、上述した複数個のLED17が表面実装されている。なお、LED基板18の表側の板面を、実装面18aと称する。各LED17は、実装面18a内に配索形成された配線パターンに対して電気的に接続されている。
 1つのLED基板18上において、複数個のLED17が、互いに間隔を保ちつつ、行列状に並ぶ形で配置されている。また、全てのLED17は、シャーシ14の底部14a上において、互いに間隔を保ちつつ、行列状に並ぶ形となっている。つまり、複数のLED17は、シャーシ14の底部14a側に、面状に広がった状態で配設されている。なお、すべてのLED17は、平面視で液晶パネル11の表示領域AA内に収まるように配設されている。各LED17は、液晶パネル11の長辺方向(X軸方向)及び短辺方向(Y軸方向)にそれぞれ沿いつつ、互いに等間隔で並ぶ形で配置されている。また、隣り合ったLED基板18の間の距離(間隔)は、一定に設定されている。
 各LED基板18には、図示されない配線部材が接続されるコネクタ部が設けられており、前記配線部材を介してLED駆動基板から駆動電力が供給される。なお、各LED基板18上の各LED17は、前記LED駆動基板に制御されて、部分駆動(ローカルディミング)を行うことも可能である。
 反射シート(反射部材)19は、光反射性に優れる白色のシートからなり、例えば、白色の発泡性プラスチックシート(発泡性ポリエチレンテレフタレートシート)から構成される。反射シート19は、全体的には、表側に開口した浅底の箱型に組み立てられており、シャーシ14の内面の略全域を覆うように、シャーシ14内に収容されている。反射シート19は、平面視で液晶パネル11の表示領域AAよりも大きく設定されている。反射シート19自体の表面の光反射率は略一定であり、このような反射シート19は、全ての可視光を反射(乱反射)する。後述するように、反射シート19の表面には、複数の呈色部20、呈色部30、及び呈色部40が形成されている。
 反射シート19は、シャーシ14内の光を、表側(光学部材15側)に向けて反射させる。反射シート19は、シャーシ14の底部14aを覆う矩形状の底側反射部19aと、底側反射部19aの4つの辺に対応する各側縁から外側に傾斜しつつ液晶パネル11側(波長変換シート21側)に向かって立ち上がる4つの傾斜反射部19bと、傾斜反射部19bから外側に向かって延び、シャーシ14の受け部14dを覆う延設部19cとを備えている。底側反射部19aは、底部14a上に配設されている全てのLED基板18の表面(実装面)18aを、全面的にまとめて覆う部分である。なお、底側反射部19aには、複数の開口状の挿通部19dが設けられており、各挿通部19dにLED基板18上の各LED17を1つずつ挿通させて、各挿通部19dから各LED17を露出させている。
 傾斜反射部19bは、底側反射部19aの2つの短辺側の側縁から立ち上がる一対の短辺側傾斜反射部19b1,19b2と、底側反射部19aの2つの長辺側の側縁から立ち上がる一対の長辺側傾斜反射部19b3,19b4とからなる(図3参照)。傾斜反射部19bは、全体的には、底側反射部19aの周りを取り囲む形をなしている。延設部19cは、シャーシ14の短辺方向及び長辺方向に沿ってそれぞれ細長く延びた帯状をなしている。なお、底側反射部19a及び傾斜反射部19bは、平面視で、液晶パネル11の表示領域AA内に収まる大きさに設定されている。
 延設部19cは、全体的には、底側反射部19a及び傾斜反射部19bの周りを取り囲む枠状をなしている。延設部19cは、各短辺側傾斜反射部19b1,19b2の先端に延設される一対の短辺側延設部19c1,19c2と、各長辺側傾斜反射部19b3,19b4の先端に延設される一対の長辺側延設部19c3,19c4とからなる。
 なお、延設部19cは、表裏方向(Z軸方向)において、表側に配される光学部材15(拡散板15a、光学シート15b)の周端部、及び波長変換シート21の周端部と重なるように、シャーシ14の受け部14dに載せられている。また、延設部19cは、その大部分は、平面視で液晶パネル11の非表示領域NAAと重なっているものの、その一部(傾斜反射部19b側の部分)は、平面視で表示領域AAと重なっている。つまり、延設部19cは、非表示領域NAAから表示領域AAに亘って形成されている。なお、フレーム16の被覆部16aは、延設部19cよりも、内側(表示領域AA側)に突き出した形となっている。延設部19cは、平面視で、被覆部16aで完全に覆われた状態となっている。
 波長変換シート21は、LED17からの光を波長変換するための蛍光体を含有する蛍光体層と、蛍光体層を表裏から挟み込む一対の透明な基材層とを備えている。蛍光体層は、樹脂中に多数の蛍光体が分散されたものからなる。蛍光体層中の蛍光体としては、LED17から出射された青色光(単色光)によって励起されて、緑色の光(約500nm~約570nmの波長領域)を放出する緑色蛍光体が利用される。このような緑色蛍光体としては、比較的シャープな発光スペクトルを有するものが好ましく、例えば、「SrGa:Eu2+」等の硫化物蛍光体が用いられる。
 波長変換シート21は、液晶パネル11等と同様、平面視矩形状をなしており、光学部材15の拡散板15aと略同等の大きさである。つまり、波長変換シート21は、液晶パネル11の表示領域AAよりも大きく設定されている。波長変換シート21は、拡散板15aよりも厚みの小さいシート状であり、シャーシ14内において、拡散板15a上に載置される。具体的には、2枚重ねの状態の拡散板15aのうち、表側に配される第2拡散板15a2の表面を覆うように配されている。波長変換シート21は、その周端部が、表裏方向(Z軸方向)において、拡散板15a(第2拡散板15a2)の表側に載せられた状態で、シャーシ14の受け部14d、及び受け部14d上に載せられた反射シート19の延設部19cと平面視で重なるように対向配置されている。また、波長変換シート21の周端部は、拡散板15aに載せられた状態で、拡散板15aの周端部と共に、フレーム16の被覆部16aと、シャーシ14の受け部14dとの間で挟持される。
 シャーシ14内において、LED17が配置されている領域は、反射シート19の底側反射部19aが配置されている領域と略同じである。つまり、反射シート19の傾斜反射部19b、及び延設部19cが配置されている領域に、LED17は配置されていない。そのため、照明装置12内において、LED17から発せられた一次光(マゼンタ色光)は、底側反射部19aと比べて傾斜反射部19bに供給され難く、LED17からの一次光(マゼンタ色光)に係る光量の分布が、表示面11a(表示領域AA)の中央側(底側反射部19a側)で高く、表示面11a(表示領域AA)の周縁側(傾斜反射部19b側)で低くなり易い状況となっている。特に、表示面11a(表示領域AA)の周縁において、外側に行く程、前記光量が少なくなり易い状況にある。
 また、傾斜反射部19bでは、波長変換シート21で既に波長変換された光のうち、光学シート15bで反射される等した後、反射シート19側に戻される光(戻り光)の割合が高くなり易い。傾斜反射部19bと光学部材15との距離は、内側(底側反射部19a側)から外側(延設部19c)に向かうにつれて徐々に短くなっており、傾斜反射部19bによる反射光は、傾斜反射部19bの外側に行く程、光学部材15との間で多重反射し易くなっている。そのため、傾斜反射部19bの外側に行く程、波長変換シート21による波長変換効率が相対的に高くなり易い。
 照明装置12内において、波長変換シート21に供給される光(一次光)の量に偏りが生じると、最終的に照明装置12から出射される一次光(マゼンタ色光)と、波長変換シート21で波長変換された光(二次光)との比率が、表示領域AAの中央側と、表示領域AAの周縁側とで異なることになる。その場合、照明装置12からの出射光、及び液晶パネル11の表示画像に色ムラが発生する。具体的には、表示領域AAの周縁側で、LED17からの一次光の光量が相対的に少なくなり、その部分が、一次光の色(マゼンタ色)と補色の関係にある緑色を帯びることになる。
 なお、反射シート19の延設部19cは、傾斜反射部19bよりも外側に配される部分であり、しかも、表示面11a側から平面視した際に、フレーム16の被覆部16aによって完全に覆われる部分となっているため、延設部19cで反射されて液晶パネル11側に向かう光は、被覆部16aに遮られるため、一見、液晶パネル11の表示画像に影響を与えないように思われる。しかしながら、延設部19cで反射された光の中には、被覆部16aの裏側から表側に回り込むものもあり、しかも、本実施形態の場合、表示領域AAの周縁部が、被覆部16aの内周縁側と、表裏方向(Z軸方向)で重なる位置まで達しているため、延設部19cで反射された光は、表示領域AAの周縁部に影響を与える。特に、本実施形態の場合、延設部19cの線幅(X軸方向の長さ)は、非常に狭く設定(例えば、1.5mm程度に設定)されており、延設部19cの表面全体で反射された光が、表示領域AAの周縁部に影響を与え得る状態となっている。
 延設部19cは、傾斜反射部19bよりも更に外側に配される部分であるため、LED17から発せられた一次光(マゼンタ色光)が、傾斜反射部19bよりも供給され難く、しかも、波長変換シート21で既に波長変換された光(二次光)等を含む戻り光の割合も高くなり易い状況にある。そのため、このような延設部19cで反射された光が、波長変換シートの周縁部に供給されると、特に、照明装置12の出射光の周縁部、及び液晶パネル11の表示領域AAの周縁部が、緑色を帯びる色ムラが発生することになる。
 そこで、本実施形態の照明装置12では、上記色ムラの発生を抑制(色補正)するために、延設部19cの表面上にドット状の呈色部40が形成されている。呈色部40は、平面視で円形状であり、LED17の発光面17aから発せられた光と同色(つまり、マゼンタ色)を呈する。呈色部40は、延設部19cの表面上において、均等に配列しつつ、全体として、底側反射部19a及び傾斜反射部19bを取り囲むように枠状に並ぶ形で配設されている。各呈色部40の大きさは、略同じである。なお、隣り合った呈色部40の間からは、白色の傾斜反射部19bの表面が露出している。
 呈色部40は、マゼンタ色を呈する顔料を含む塗膜からなる。このような塗膜は、前記顔料を含む塗料を、公知の塗工技術(例えば、印刷技術)を利用して形成されたものからなる。前記塗膜は、必要に応じて、適宜、乾燥される。呈色部40は、発光面17aから発せられた光(マゼンタ色光)の色と補色の関係にある色の光(緑色光)の吸収率が、発光面17aから発せられた光(マゼンタ色光(青色光、赤色光))の吸収率よりも高くなっている。また、呈色部40は、発光面17aから発せられた光(マゼンタ色光(青色光、赤色光))の反射率が、発光面17aから発せられた光と補色の関係にある色の光(緑色光)の反射率よりも高くなっている。つまり、呈色部40は、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。これにより、呈色部40で反射された光(例えば、白色の戻り光)は、呈色部40が設けられていない白色の部分(反射シート19)で反射された場合と比べて、マゼンタ色を帯びることになる。
 なお、延設部19cの表面上に形成される呈色部40の密度及び濃度は、延設部19cに対してLED17から供給される一次光の量や、戻り光に含まれる二次光の量等を考慮して適宜、設定される。なお、表示領域AAの周縁部の輝度低下を抑制する観点からは、呈色部40の密度及び濃度は低い方が好ましい。そのため、延設部19c上の呈色部40は、一次光に対する二次光の割合を考慮しつつ、輝度低下の抑制を考慮して、密度、濃度等が設定される。例えば、延設部19c上の呈色部40は、後述する傾斜反射部19b上の呈色部20と比べて、単位面積当たりの密度又は濃度が小さくなるように設定されてもよい。
 また、傾斜反射部19bの表面上には、上記呈色部40と同様、LED17の発光面17aから発せられた光と同色(つまり、マゼンタ色)を呈する複数のドット状の呈色部20が形成されている。図3に示されるように、底側反射部19aの周りに配される4つの傾斜反射部19bの表面上に、複数のドット状の呈色部(マゼンタ色呈色部)20が形成されている。各呈色部20は、平面視で円形をなしており、傾斜反射部19bの略全域に散らばるように形成されている。各呈色部20は、底側反射部19a側から外側(延設部19c)に向かうにつれて、サイズ(大きさ)が大きくなるように設定されている。
 また、底側反射部19aの表面上にも、上記呈色部40と同様、LED17の発光面17aから発せられた光と同色(つまり、マゼンタ色)を呈する複数のドット状の呈色部30が形成されている。呈色部30は、底側反射部19aに供給される一次光と二次光との割合を調整等する目的で形成されており、底側反射部19aの表面上において、均等に分布するように行列状に配設されている。各呈色部30の大きさは、略同じである。呈色部30の濃度(色の濃さ)は、傾斜反射部19bの呈色部20と同様である。たたし、底側反射部19a側は、傾斜反射部19b側と比べて、LED17からの光(一次光)が十分供給されるため、単位面積当たりの密度については、呈色部30の方が、呈色部20よりも小さく設定されている。なお、底側反射部19aの最も外側に配設される呈色部30は、製造設備上の都合で、内側に配設される呈色部30と比べて、サイズが小さくされている。
 傾斜反射部19bの呈色部20、及び底側反射部19aの呈色部30は、延設部19cの呈色部40と同様、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。
 以上のような照明装置12を備えた液晶表示装置10の電源が投入されると、図示されないコントロール基板から出力される各種信号が液晶パネル11に伝送され、液晶パネル11の表示が制御されると共に、図示されないLED駆動基板によりLED基板18上のLED17の点灯駆動が制御される。LED17の発光面17aから発せられた光は、光学部材15及び波長変換シート21で所定の光学作用が付された後、最終的に、液晶パネル11側に向かう光となる。このような光を利用することで、液晶パネル11の表示領域AAに、視認可能な画像が表示される。
 ここで、照明装置12における光学部材15及び波長変換シート21での光学作用について詳細に説明する。LED17の発光面17aからは、青色光と赤色光からなるマゼンタ色光が一次光として出射される。LED17からの一次光は、拡散板15a(第1拡散板15a1、第2拡散板15a2)で拡散作用が付与され、その後、その一部は、拡散板15a上の波長変換シート21に入射する。波長変換シート21に入射した一次光のうち、青色光の一部は、波長変換シート21中の緑色蛍光体により波長変換されて緑色光(二次光)となって放出される。波長変換シート21からは、緑色光と共に、波長変換されずに透過した青色光や赤色光が出射される。このように、波長変換シート21からは、LED17からの一次光(青色光、赤色光)と、波長変換後に得られた二次光(緑色光)とが出射されることで、白色光が形成される。
 なお、波長変換シート21から出射された一次光(青色光、赤色光)と、二次光(緑色光)とは、レンズシート22に入射して集光作用が付与され、その後、反射型偏光シート23において、特定の偏光光(p波)が選択的に透過されて液晶パネル11に向かい、それとは異なる特定の偏光光(s波)が選択的に裏側へ反射される。反射型偏光シート23で反射されたs波の光、レンズシート22で集光作用を付与されずに裏側に向けて反射された光、更には拡散板15aで裏側に向けて反射された光等は、反射シート19で反射されて再び表側に向けて進行することになる。
 次いで、反射シート19及び呈色部40等の光学作用について詳細に説明する。反射シート19は、直接、光学部材15側に向かわないLED17からの一次光(青色光及び赤色光からなるマゼンタ色光)や、光学部材15等で裏側へ戻された光(一次光及び二次光)を、表側に向けて反射する。反射シート19の延設部19cには、マゼンタ色の呈色部40が形成されている。そのため、延設部19c側に供給される一次光の量が、底側反射部19a側(又は傾斜反射部19b側)に供給される一次光の量よりも少なくても、延設部19c側では、呈色部40が多くの一次光(マゼンタ色光)を反射するため、延設部19c側での反射光と、底側反射部19a側(又は傾斜反射部19b側)での反射光との間に、色の差が生じることが抑制されている。
 また、延設部19cと、光学部材15との間で多重反射が生じて波長変換シート21による光の波長変換効率が局所的に高くなり、延設部19c側に二次光(緑色光)が多く供給されても、延設部19c側では、呈色部40が多くの二次光(緑色光)を吸収するため、延設部19c側での反射光と、底側反射部19a側(又は傾斜反射部19b側)での反射光との間に、色の差が生じることが抑制されている。つまり、戻り光として延設部19c側に白色光が供給されると、一次光であるマゼンタ色光(青色光、赤色光)は呈色部40で反射され、二次光である緑色光は呈色部40で吸収される。
 また、反射シート19において、傾斜反射部19bには、底側反射部19aよりも、単位面積当たりの密度が高くなるように、呈色部20が形成されている。そのため、傾斜反射部19b側に供給される一次光の量が、底側反射部19a側に供給される一次光の量よりも少なくても、傾斜反射部19b側では、呈色部20が多くの一次光(マゼンタ色光)を反射するため、傾斜反射部19b側での反射光と、底側反射部19a側での反射光との間に、色の差が生じることが抑制されている。また、傾斜反射部19bと、光学部材15との間で多重反射が生じて波長変換シート21による光の波長変換効率が局所的に高くなり、傾斜反射部19b側に二次光(緑色光)が多く供給されても、傾斜反射部19b側では、呈色部20が多くの二次光(緑色光)を吸収するため、傾斜反射部19b側での反射光と、底側反射部19a側での反射光との間に、色の差が生じることが抑制されている。
 このような照明装置12では、波長変換シート21の中央側と周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置12から出射される出射光の色が均質化され、色ムラが抑制される。特に、反射シート19の延設部19cと平面視で重なる部分の波長変換シートに供給される一次光の量等が、中央側と均質化され、照明装置12の出射光の周縁部、及び液晶パネル11の表示領域AAの周縁部が、緑色を帯びる色ムラが発生することが抑制される。呈色部40は、枠状の延設部19c上において、枠状に並ぶことで、表示領域AAの周縁部について、万遍なく色ムラを抑制することができる。
 <実施形態2>
 次いで、本発明の実施形態2を、図5を参照しつつ説明する。本実施形態は、実施形態1の呈色部40に代えて、傾斜反射部19b側から外側に向かうにつれて単位面積当たりの密度が高くなるようにマゼンタ色の呈色部40Aを延設部19c上に形成したものからなる。なお、実施形態1と同様の構成については、説明を省略する(以降の実施形態においても同様である)。図5は、実施形態2の照明装置が備える呈色部40Aが形成された反射シート19の延設部19cの一部を拡大した平面図である。延設部19cにおいて、内側(傾斜反射部19b側)から外側に向かうにつれて、一次光に対する二次光の供給量の割合が高くなっている場合、本実施形態のように、傾斜反射部19b側から外側に向かうにつれて単位面積当たりの密度が高くなるように呈色部40Aを形成してもよい。なお、傾斜反射部19bには、実施形態1と同様、マゼンタ色の呈色部20が形成されている。本実施形態においても、照明装置の出射光の周縁部、及び液晶パネルの表示領域の周縁部が、緑色を帯びる色ムラが発生することが抑制される。
 <実施形態3>
 次いで、本発明の実施形態3を、図6を参照しつつ説明する。本実施形態は、実施形態1の呈色部40に代えて、傾斜反射部19b側から外側に向かうにつれて単位面積当たりの濃度(色の濃さ)が高くなるようにマゼンタ色の呈色部40Bを延設部19c上に形成したものからなる。図6は、実施形態3の照明装置が備える呈色部40Bが形成された反射シート19の延設部19cの一部を拡大した平面図である。延設部19cにおいて、内側(傾斜反射部19b側)から外側に向かうにつれて、一次光に対する二次光の供給量の割合が高くなっている場合、本実施形態のように、傾斜反射部19b側から外側に向かうにつれて単位面積当たりの濃度(色の濃さ)が高くなるように呈色部40Bを形成してもよい。なお、傾斜反射部19bには、実施形態1と同様、マゼンタ色の呈色部20が形成されている。本実施形態においても、照明装置の出射光の周縁部、及び液晶パネルの表示領域の周縁部が、緑色を帯びる色ムラが発生することが抑制される。
 <実施形態4>
 次いで、本発明の実施形態4を、図7を参照しつつ説明する。本実施形態は、実施形態1のマゼンタ色の呈色部40に代えて、LED17からの光(マゼンタ色光)を構成する各原色光(つまり、青色光、赤色光)と同じ色と呈するドット状の青色の呈色部(青色呈色部)40C1と、ドット状の赤色の呈色部(赤色呈色部)40C2とを延設部19c上に形成したものからなる。図7は、実施形態4の照明装置12Cの一部を拡大した平面図である。図7には、反射シート19の延設部19cの一部等が拡大された状態で示されている。青色の呈色部40C1及び赤色の呈色部40C2は、互いに間隔を保ちつつ、交互に並ぶ形で、枠状の延設部19c上に形成されている。本実施形態では、戻り光に含まれる一次光のうち、青色光は、青色の呈色部40C1で反射され、また赤色光は、赤色の呈色部40C2で反射されることになる。また、戻り光に含まれる二次光(緑色光)は、青色の呈色部40C1及び赤色の呈色部40C2で吸収される。そのため、本実施形態においても、照明装置の出射光の周縁部、及び液晶パネルの表示領域の周縁部が、緑色を帯びる色ムラが発生することが抑制される。
 <実施形態5>
 次いで、本発明の実施形態5を、図8を参照しつつ説明する。本実施形態は、実施形態1の円形状の呈色部40に代えて、四角形状のマゼンタ色の呈色部40Dを延設部19c上に形成したものからなる。図8は、実施形態5の照明装置が備える呈色部40Dが形成された反射シート19の延設部19cの一部を拡大した平面図である。本実施形態のように、トッド状の呈色部として、平面視で四角形状の呈色部40Eを用いてもよい。
 <実施形態6>
 次いで、本発明の実施形態6を、図9及び図10を参照しつつ説明する。本実施形態に係る照明装置112は、図9に示されるように、主として、シャーシ114、光学部材115、フレーム116、LED(光源)117が実装されたLED基板(光源基板)118、呈色部(マゼンタ色呈色部)120が設けられた反射シート119、波長変換シート121等を備え、少なくともシャーシ114、光学部材115、フレーム116、LED(光源)117が実装されたLED基板(光源基板)118、波長変換シート121の構成については上記実施形態1と同様である。
 本実施形態の照明装置112では、色ムラの発生を抑制するために、反射シート119の傾斜反射部119bの表面上に、LED117の発光面117aから発せられた光と同色(つまり、マゼンタ色)を呈する複数のドット状の呈色部(マゼンタ色呈色部)120が形成されている。呈色部は、マゼンタ色を呈する顔料を含む塗膜からなる。このような塗膜は、前記顔料を含む塗料を、公知の塗工技術(例えば、印刷技術)を利用して形成されたものからなる。前記塗膜は、必要に応じて、適宜、乾燥される。呈色部120は、発光面117aから発せられた光(マゼンタ色光)の色と補色の関係にある色の光(緑色光)の吸収率が、発光面117aから発せられた光(マゼンタ色光(青色光、赤色光))の吸収率よりも高くなっている。また、呈色部120は、発光面117aから発せられた光(マゼンタ色光(青色光、赤色光))の反射率が、発光面117aから発せられた光と補色の関係にある色の光(緑色光)の反射率よりも高くなっている。つまり、呈色部120は、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。これにより、呈色部120で反射された光(例えば、白色の戻り光)は、呈色部120が設けられていない白色の部分(反射シート119)で反射された場合と比べて、マゼンタ色を帯びることになる。
 底側反射部119aの周りに配される4つの傾斜反射部119bの表面上に、複数のドット状の呈色部120が形成されている。各呈色部120は、平面視で円形をなしており、傾斜反射部119bの略全域に散らばるように形成されている。なお、隣り合った呈色部120の間からは、白色の底側反射部119aが露出している。各呈色部120は、底側反射部119a側から外側(延設部119c)に向かうにつれて、サイズ(大きさ)が大きくなるように設定されている。つまり、各呈色部120は、底側反射部119a側から外側(延設部119c)に向かうにつれて、単位面積S1当たりの密度が高くなるように設定されている。なお、ここでの「単位面積S1」は、例えば、最も大きな呈色部120が内側に収まる正方形の面積Sとして定義される。本実施形態の場合、傾斜反射部119bの表面が、底側反射部119a側から外側(延設部119c)に亘って、単位面積S1に対応する複数の領域に分割される。例えば、図10に示されるように、短辺側傾斜反射部119b1の表面は、底側反射部119aと短辺側傾斜反射部119b1との間の境界線L1から、短辺側延設部119c1と短辺側傾斜反射部119b1との間の境界線L2との間において、単位面積S1に相当する正方形で、複数の領域に分割される。単位面積S1は、最も外側に配される最も大きな呈色部120a(図10参照)を基準に定められる。このように単位面積S1毎に分割された各領域では、底側反射部119a側から外側(延設部119c側)に向かうにつれて、各領域(単位面積S1)内の呈色部120が大きくなっている。1つの単位面積S1の中には、1つの呈色部120のみが含まれていれもよいし、複数の呈色部120が含まれていてもよい。また、1つの単位面積S1の中に、呈色部120の一部が含まれていてもよい。単位面積S1当たりの呈色部120の密度は、単位面積S1中に含まれるすべての呈色部120に基づくものである。なお、本実施形態の場合、各呈色部120の濃度(色の濃さ)は、同じに設定されている。また、各呈色部120は、傾斜反射部119bと底側反射部119aとの境界線が延びる方向においては、等間隔で配設されている。各呈色部120は、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。
 なお、底側反射部119aには、上述した傾斜反射部119bの呈色部120と同様、LED117の発光面117aから発せられた光と同色(マゼンタ色)の呈色部130が複数設けられている。本実施形態の呈色部130は、底側反射部119aの表面上において、均等に分布するように行列状に配設されている。各呈色部130の大きさは、略同じである。呈色部130の濃度(色の濃さ)は、傾斜反射部119bの呈色部120と同様である。たたし、底側反射部119a側は、傾斜反射部119b側と比べて、LED117からの光(一次光)が十分供給されるため、単位面積当たりの密度については、呈色部130の方が、呈色部120よりも小さく設定されている。なお、底側反射部119aの最も外側に配設される呈色部130は、製造設備上の都合で、内側に配設される呈色部130と比べて、サイズが小さくされている。
 また、延設部119cにも、上述した傾斜反射部119bの呈色部120と同様、LED117の発光面117aから発せられた光と同色(マゼンタ色)の呈色部140が複数設けられている。本実施形態の呈色部140は、延設部119cの表面上において、均等に配列しつつ、全体として、底側反射部119a及び傾斜反射部119bを取り囲む枠状をなす形で、配設されている。各呈色部140の大きさは、略同じである。底側反射部119aの呈色部130、及び延設部119cの呈色部140は、傾斜反射部119bの呈色部120と同様、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。
 以上のような照明装置112を備えた液晶表示装置110の電源が投入されると、図示されないコントロール基板から出力される各種信号が液晶パネル111に伝送され、液晶パネル111の表示が制御されると共に、図示されないLED駆動基板によりLED基板118上のLED117の点灯駆動が制御される。LED117の発光面117aから発せられた光は、光学部材115及び波長変換シート121で所定の光学作用が付された後、最終的に、液晶パネル111側に向かう光となる。このような光を利用することで、液晶パネル111の表示領域AAに、視認可能な画像が表示される。
 ここで、照明装置112における光学部材115及び波長変換シート121での光学作用について詳細に説明する。LED117の発光面117aからは、青色光と赤色光からなるマゼンタ色光が一次光として出射される。LED117からの一次光は、拡散板115a(第1拡散板115a1、第2拡散板115a2)で拡散作用が付与され、その後、その一部は、拡散板115a上の波長変換シート121に入射する。波長変換シート121に入射した一次光のうち、青色光の一部は、波長変換シート121中の緑色蛍光体により波長変換されて緑色光(二次光)となって放出される。波長変換シート121からは、緑色光と共に、波長変換されずに透過した青色光や赤色光が出射される。このように、波長変換シート121からは、LED117からの一次光(青色光、赤色光)と、波長変換後に得られた二次光(緑色光)とが出射されることで、白色光が形成される。
 なお、波長変換シート121から出射された一次光(青色光、赤色光)と、二次光(緑色光)とは、レンズシート122に入射して集光作用が付与され、その後、反射型偏光シート123において、特定の偏光光(p波)が選択的に透過されて液晶パネル111に向かい、それとは異なる特定の偏光光(s波)が選択的に裏側へ反射される。反射型偏光シート123で反射されたs波の光、レンズシート122で集光作用を付与されずに裏側に向けて反射された光、更には拡散板115aで裏側に向けて反射された光等は、反射シート119で反射されて再び表側に向けて進行することになる。
 次いで、反射シート119及び呈色部120等の光学作用について詳細に説明する。反射シート119は、直接、光学部材115側に向かわないLED117からの一次光(青色光及び赤色光からなるマゼンタ色光)や、光学部材115等で裏側へ戻された光(一次光及び二次光)を、表側に向けて反射する。反射シート119において、傾斜反射部119bには、底側反射部119aよりも、単位面積当たりの密度が高くなるように、呈色部120が形成されている。そのため、傾斜反射部119b側に供給される一次光の量が、底側反射部119a側に供給される一次光の量よりも少なくても、傾斜反射部119b側では、呈色部120が多くの一次光(マゼンタ色光)を反射するため、傾斜反射部119b側での反射光と、底側反射部119a側での反射光との間に、色の差が生じることが抑制されている。
 また、傾斜反射部119bと、光学部材115との間で多重反射が生じて波長変換シート121による光の波長変換効率が局所的に高くなり、傾斜反射部119b側に二次光(緑色光)が多く供給されても、傾斜反射部119b側では、呈色部120が多くの二次光(緑色光)を吸収するため、傾斜反射部119b側での反射光と、底側反射部119a側での反射光との間に、色の差が生じることが抑制されている。つまり、戻り光として傾斜反射部119b側に白色光が供給されると、一次光であるマゼンタ色光(青色光、赤色光)は呈色部120で反射され、二次光である緑色光は呈色部120で吸収される。
 また、傾斜反射部119bにおいても、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S1当たりの呈色部120の密度が高くなるように設定されているため、傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制されている。つまり、傾斜反射部119bの外側寄りの部分では、より多くの一次光(マゼンタ色光)が反射され、かつより多くの二次光(緑色光)が吸収される。
 このような照明装置112では、波長変換シート121の画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置112から出射される出射光の色が均質化され、色ムラが抑制される。
 本実施形態の呈色部120は、ドット状であるため、傾斜反射部119bの表面上で、LED117からの光(一次光)の反射効率を高めるために、例えば、いわゆるベタ塗りの呈色部を形成した場合と比べて、呈色部120の密度を容易に段階的に変化させることができる。また、呈色部120がドット状であると、呈色部120を形成する塗料等の材料の使用量を抑えることができる。また、呈色部120がドット状であると、隣り合った呈色部120の間から傾斜反射部119bが露出しているため、例えば、照明装置112の組立時において、反射シート119の傾斜反射部119bにある呈色部120が、不必要に他の部材と接着することが抑制される。
 <実施形態7>
 次いで、本発明の実施形態7を、図11を参照しつつ説明する。本実施形態は、実施形態6の呈色部120に代えて、呈色部120Aを、反射シート119の傾斜反射部119bに形成したものからなる。なお、実施形態1及び6と同様の構成については、説明を省略する(以降の実施形態においても同様である)。図11は、実施形態7の照明装置が備える呈色部120Aが形成された反射シート119の一部を拡大した平面図である。図11には、平面状に展開された反射シート119の一部が示されている。反射シート119の傾斜反射部119bには、実施形態6と同様、LED117からの光(マゼンタ色光)と同じマゼンタ色のドット状の呈色部(マゼンタ呈色部)120Aが形成されている。ただし、各呈色部120Aは、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S2当たりのマゼンタ色の濃度が徐々に高くなるように複数個設定されている。なお、本実施形態の場合、各呈色部120Aは同じ形状(円形状)であり、各呈色部120Aの大きさも同じに設定されている。「単位面積S2」は、上記単位面積S1と同様、最も大きな呈色部120Aが内側に収まる正方形の面積S2として定義され、傾斜反射部119b(短辺側傾斜反射部119b1)の表面は、底側反射部119aと短辺側傾斜反射部119b1との間の境界線L1から、短辺側延設部119c1と短辺側傾斜反射部119b1との間の境界線L2との間において、単位面積S2に相当する正方形で、複数の領域に分割される。このように単位面積S2毎に分割された各領域では、底側反射部119a側から外側(延設部119c側)に向かうにつれて、各領域(単位面積S2)内の呈色部120Aの濃度が高くなっている。なお、各呈色部120Aは、境界線L1、L2が延びる方向においては、等間隔であり、かつ同じ色の濃度で配設されている。各呈色部120Aの濃度は、呈色部120A用の塗料に添加する着色剤(例えば、顔料等)の量を適宜、変えることで調整される。各呈色部120Aは、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。なお、底側反射部119aには、実施形態6と同様、マゼンタ色の呈色部130が形成され、また、延設部119cにも、マゼンタ色の呈色部140Aが形成されている。
 本実施形態のような呈色部120Aを設けた反射シート119を利用しても、実施形態6と同様、波長変換シートの画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置から出射される出射光の色が均質化され、色ムラが抑制される。また、本実施形態においても、反射シート119の傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制される。つまり、傾斜反射部119bの外側寄りの部分では、より多くの一次光(マゼンタ色光)が反射され、かつより多くの二次光(緑色光)が吸収される。
 <実施形態8>
 次いで、本発明の実施形態8を、図12を参照しつつ説明する。本実施形態は、実施形態6の呈色部120に代えて、呈色部120Bを、反射シート119の傾斜反射部119bに形成したものからなる。図12は、実施形態8の照明装置が備える呈色部120Bが形成された反射シート119の一部を拡大した平面図である。図12には、平面状に展開された反射シート119の一部が示されている。反射シート119の傾斜反射部119bには、実施形態6と同様、LED117からの光(マゼンタ色光)と同じマゼンタ色のドット状の呈色部(マゼンタ呈色部)120Bが形成されている。ただし、各呈色部120Bは、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S3当たりの個数が多くなるように複数個設定されている。つまり、本実施形態でも、内側から外側に向かうにつれて、単位面積S3当たりの密度が高くなるように、呈色部120Bが傾斜反射部119b上に形成されている。なお、各呈色部120Bの大きさは、同じに設定されているものの、各呈色部120Bの中には、複数個の呈色部120Bが集まって1つの呈色部群を形成しているものがある。例えば、図12において、最も外側(延設部119c側)に配されている呈色部群は、7つの呈色部120Bが集まって構成されてり、また、それよりも内側(底側反射部119a側)には、5つの呈色部120Bが集まって構成された呈色部群、及び3つの呈色部120Bが集まって構成された呈色部群が配されている。「単位面積S3」は、最も大きな呈色部群が内側に収まる正方形の面積S3として定義され、傾斜反射部119b(短辺側傾斜反射部119b1)の表面は、境界線L1から境界線L2との間において、単位面積S3に相当する正方形で、複数の領域に分割される。なお、各呈色部120B(呈色部群)は、境界線L1、L2が延びる方向においては、等間隔であり、かつ同じ色の濃度で配設されている。各呈色部120Bは、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。なお、底側反射部119a及び延設部119cにも、実施形態6と同様、マゼンタ色の呈色部130及び呈色部140が形成されている。
 本実施形態のような呈色部120B(呈色部群)を設けた反射シート119を利用しても、実施形態6と同様、波長変換シートの画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置から出射される出射光の色が均質化され、色ムラが抑制される。また、本実施形態においても、反射シート119の傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制される。
 <実施形態9>
 次いで、本発明の実施形態9を、図13を参照しつつ説明する。本実施形態は、実施形態6の呈色部120に代えて、呈色部120C1,120C2を、反射シート119の傾斜反射部119bに形成したものからなる。図13は、実施形態9の照明装置が備える呈色部120C1,120C2が形成された反射シート119の一部を拡大した平面図である。図13には、平面状に展開された反射シート119の一部が示されている。傾斜反射部119bには、実施形態6とは異なり、LED117からの光(マゼンタ色光)を構成する各原色光(つまり、青色光、赤色光)と同じ色と呈するドット状の青色の呈色部(青色呈色部)120C1と、ドット状の赤色の呈色部(赤色呈色部)120C2とが形成されている。青色呈色部120C1は、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S4当たりの密度が高くなるように、複数個配設されており、また、赤色呈色部120C2も、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S4当たりの密度が高くなるように、複数個配設されている。「単位面積S4」は、最も大きな呈色部が内側に収まる正方形の面積S4として定義され、傾斜反射部119b(短辺側傾斜反射部119b1)の表面は、境界線L1から境界線L2との間において、単位面積S4に相当する正方形の複数の領域に分割される。なお、本実施形態の場合、境界線L1と境界線L2との間において、青色呈色部120C1及び赤色呈色部120C2は、共に同じ個数配され、かつ共に同じ大きさのものが境界線L1の延びる方向に並ぶ形で配されている。また、境界線L1が延びる方向において、青色呈色部120C1と赤色呈色部120C2とは交互に等間隔で配されている。各呈色部120C1,120C2は、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。なお、底側反射部119aには、実施形態6と同様、マゼンタ色の呈色部130が形成されている。また、延設部119cには、青色の呈色部140C1と、赤色の呈色部140C2とが、境界線L2が延びる方向に沿って交互に並ぶ形で配設されている。
 本実施形態のような青色呈色部120C1及び赤色呈色部120C2を設けた反射シート119を利用しても、実施形態6と同様、波長変換シートの画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置から出射される出射光の色が均質化され、色ムラが抑制される。また、本実施形態においても、反射シート119の傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制される
 <実施形態10>
 次いで、本発明の実施形態10を、図14を参照しつつ説明する。本実施形態は、実施形態6の呈色部120に代えて、呈色部120D1,120D2を、反射シート119の傾斜反射部119bに形成したものからなる。図14は、実施形態10の照明装置が備える呈色部120D1,120D2が形成された反射シート119の一部を拡大した平面図である。図14には、平面状に展開された反射シート119の一部が示されている。傾斜反射部119bには、実施形態6とは異なり、LED117からの光(マゼンタ色光)を構成する各原色光(つまり、青色光、赤色光)と同じ色と呈するドット状の青色の呈色部(青色呈色部)120D1と、ドット状の赤色の呈色部(赤色呈色部)120D2とが形成されている。青色呈色部120D1と、赤色呈色部120D2とは、境界線L1と境界線L2との間において、交互に並ぶ形で配設されている。そして、青色呈色部120D1及び赤色呈色部120D2は、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S5当たりの密度が高くなるように、配設されている。「単位面積S5」は、最も大きな呈色部120D1が内側に収まる正方形の面積S5として定義され、傾斜反射部119b(短辺側傾斜反射部119b1)の表面は、境界線L1から境界線L2との間において、単位面積S5に相当する正方形の複数の領域に分割される。また、境界線L1が延びる方向において、青色呈色部120D1と赤色呈色部120D2とは交互に等間隔で配されている。各呈色部120D1,120D2は、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。なお、底側反射部119aには、実施形態6と同様、マゼンタ色の呈色部130が形成されている。また、延設部119cには、青色の呈色部140D1と、赤色の呈色部140D2とが、境界線L2が延びる方向に沿って交互に並ぶ形で配設されている。
 本実施形態のような青色呈色部120D1及び赤色呈色部120D2を設けた反射シート119を利用しても、実施形態6と同様、波長変換シートの画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置から出射される出射光の色が均質化され、色ムラが抑制される。また、本実施形態においても、反射シート119の傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制される。
 <実施形態11>
 次いで、本発明の実施形態11を、図15を参照しつつ説明する。本実施形態は、実施形態6の円形状の呈色部120に代えて、四角形(正方形)状(ドット状の一例)のマゼンタ色の呈色部(マゼンタ色呈色部)120Eを形成したものからなる。図15は、実施形態11の照明装置が備える呈色部120Eが形成された反射シート119の一部を拡大した平面図である。各呈色部120Eは、内側(底側反射部119a側)から外側(延設部119c側)に向かうにつれて、単位面積S6当たりの密度が高くなるように設定されている。「単位面積S6」は、最も大きな呈色部120Eが内側に収まる正方形の面積S6として定義され、傾斜反射部119b(短辺側傾斜反射部119b1)の表面は、境界線L1から境界線L2との間において、単位面積S6に相当する正方形の複数の領域に分割される。なお、境界線L1が延びる方向において、呈色部120Eは等間隔で配されている。各呈色部120Eは、全体的には、傾斜反射部119bの表面上に全面的に拡がるように形成されている。なお、底側反射部119aには、四角形状のマゼンタ色の呈色部130が形成され、また、延設部119cには、四角形状のマゼンタ色の呈色部140Eが形成されている。
 本実施形態のような四角形状の呈色部120Eを設けた反射シート119を利用しても、実施形態6と同様、波長変換シートの画面中央側と画面周縁側とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置から出射される出射光の色が均質化され、色ムラが抑制される。また、本実施形態においても、反射シート119の傾斜反射部119bの内側寄りの部分での反射光と、傾斜反射部119bの外側寄りの部分での反射光との間に、色の差が生じることが抑制される。
 <実施形態12>
 次いで、本発明の実施形態12を、図16~図18を参照しつつ説明する。照明装置212は、図16に示されるように、主として、シャーシ214、光学部材215、フレーム216、LED(光源)217が実装されたLED基板(光源基板)218、呈色部(マゼンタ色呈色部)230が設けられた反射シート219、波長変換シート221等を備えている。なお、シャーシ214、光学部材215、フレーム216、LED(光源)217が実装されたLED基板(光源基板)218、波長変換シート221については上記実施形態1、6等と同様の構成である。
 照明装置212において、シャーシ214の外側には、コントロール基板やLED駆動基板(制御手段の一例)250等の基板類が取り付けられている。各LED基板18には、図示されない配線部材が接続されるコネクタ部が設けられており、前記配線部材を介してLED駆動基板250から駆動電力が供給される。なお、各LED基板218上の各LED217は、前記LED駆動基板250に制御されて、部分駆動(ローカルディミング)を行うことも可能である。
 反射シート(反射部材)219は、シャーシ214内の光を、表側(光学部材215側)に向けて反射させる。反射シート219は、シャーシ214の底部214aを覆う矩形状の底側反射部219aと、底側反射部219aの4つの辺に対応する各側縁から外側に傾斜しつつ液晶パネル211側(波長変換シート221側)に向かって立ち上がる4つの傾斜反射部219bと、傾斜反射部219bから外側に向かって延び、シャーシ214の受け部214dを覆う延設部219cとを備えている。底側反射部219aは、底部214a上に配設されている全てのLED基板218の表面(実装面)218aを、全面的にまとめて覆う部分である。なお、底側反射部219aには、複数の開口状の挿通部219dが設けられており、各挿通部219dにLED基板218上の各LED217を1つずつ挿通させて、各挿通部219dから各LED217を露出させている。
 シャーシ214内において、LED217が配置されている領域は、反射シート219の底側反射部219aが配置されている領域と略同じである。なお、反射シート219の傾斜反射部219b、及び延設部219cが配置されている領域に、LED217は配置されていない。
 反射シート219の底側反射部219aの表面上には、LED217の発光面217aから発せられた光と同色(マゼンタ色)の呈色部(マゼンタ色呈色部)230が複数設けられている。呈色部230は、底側反射部219aの表面上において、行列状に均一に分散配置されている。各呈色部230は、平面視で円形をなしており、底側反射部219aの略全域に散らばるように形成されている。なお、隣り合った呈色部230の間からは、白色の底側反射部219aが露出している。隣り合った呈色部230の間には、1つ分の呈色部230の大きさ以上のスペースが設けられている。
 呈色部230は、マゼンタ色を呈する顔料を含む塗膜からなる。このような塗膜は、前記顔料を含む塗料を、公知の塗工技術(例えば、印刷技術)を利用して形成されたものからなる。前記塗膜は、必要に応じて、適宜、乾燥される。呈色部230は、発光面217aから発せられた光(マゼンタ色光)の色と補色の関係にある色の光(緑色光)の吸収率が、発光面217aから発せられた光(マゼンタ色光(青色光、赤色光))の吸収率よりも高くなっている。また、呈色部230は、発光面217aから発せられた光(マゼンタ色光(青色光、赤色光))の反射率が、発光面217aから発せられた光と補色の関係にある色の光(緑色光)の反射率よりも高くなっている。つまり、呈色部230は、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。これにより、呈色部230で反射された光(例えば、白色の戻り光)は、呈色部230が設けられていない白色の部分(底側反射部219a等)で反射された場合と比べて、マゼンタ色を帯びることになる。
 各呈色部230の大きさは、略同じであり、濃度(色の濃さ)も、略同様である。なお、底側反射部219aの最も外側に配設される呈色部230は、製造設備上の都合で、内側に配設される呈色部230と比べて、サイズが小さくされている。呈色部230は、底側反射部219aの表面上において、単位面積当たりの密度が均一になるように設定されている。また、呈色部230は、底側反射部219aの表面上において、単位面積当たりの濃度(色の濃さ)が均一になるように設定されている。なお、底側反射部219a側は、傾斜反射部219b側と比べて、LED217からの光(一次光)が十分供給されるため、単位面積当たりの密度については、呈色部230の方が、後述する呈色部220よりも小さく設定されている。
 照明装置212内において、LED217から発せられた一次光(マゼンタ色光)は、底側反射部219aと比べて傾斜反射部219bに供給され難く、LED217からの一次光(マゼンタ色光)に係る光量の分布が、表示面211a(表示領域AA)の中央側(底側反射部219a側)で高く、表示面211a(表示領域AA)の周縁側(傾斜反射部219b側)で低くなり易い状況となっている。特に、表示面211a(表示領域AA)の周縁において、外側に行く程、前記光量が少なくなり易い状況にある。
 また、傾斜反射部219bでは、波長変換シート221で既に波長変換された光のうち、光学シート215bで反射される等した後、反射シート219側に戻される光(戻り光)の割合が高くなり易い。傾斜反射部219bと光学部材215との距離は、内側(底側反射部219a側)から外側(延設部219c)に向かうにつれて徐々に短くなっており、傾斜反射部219bによる反射光は、傾斜反射部219bの外側に行く程、光学部材215との間で多重反射し易くなっている。そのため、傾斜反射部219bの外側に行く程、波長変換シート221による波長変換効率が相対的に高くなり易い。
 以上のような照明装置212を備えた液晶表示装置210の電源が投入されると、図示されないコントロール基板から出力される各種信号が液晶パネル211に伝送され、液晶パネル211の表示が制御されると共に、LED駆動基板250によりLED基板218上のLED217の点灯駆動が制御される。LED217の発光面217aから発せられた光は、光学部材215及び波長変換シート221で所定の光学作用が付された後、最終的に、液晶パネル211側に向かう光となる。このような光を利用することで、液晶パネル211の表示領域AAに、視認可能な画像が表示される。
 次いで、反射シート219及び呈色部230等の光学作用について詳細に説明する。反射シート219は、直接、光学部材215側に向かわないLED217からの一次光(青色光及び赤色光からなるマゼンタ色光)や、光学部材215等で裏側へ戻された光(一次光及び二次光)を、表側に向けて反射する。
 本実施形態の照明装置212では、各LED217を部分駆動(ローカルディミング)させることができる。本実施形態では、1つのLED基板218に実装された複数のLED217からなるLED群毎に、点灯駆動及び消灯駆動を行うことができる。図17には、照明装置212内におけるLED217の点灯領域S1と消灯領域S2とが示されている。図17に示されるように、照明装置212内には、合計8つのLED基板218が縦方向(Y軸方向)に2つ、横方向(X軸方向)に4つ並ぶ形で、整列配置されている。1つのLED基板218上には、合計20個のLED217が縦方向(Y軸方向)に5つ、横方向(X軸方向)に4つ並ぶ形で、実装されている。図17には、8つのLED基板218のうち、左側に配される2つのLED基板218上のLED群が点灯駆動し、その右側に配される残りの6つのLED基板218上のLED群が消灯駆動した状態が示されている。図17において、点灯駆動するLED群が配される領域(点灯した光源が配される特定の領域、点灯領域)が符号S1で示され、消灯駆動するLED群が配される領域(消灯領域)が符号S2で示される。
 点灯領域S1内において、LED217からの光(一次光)の供給量は、中央側が多く、周縁側で少なくなる傾向がある。例えば、消灯領域S2と接する点灯領域S1の周縁部Rでは、LED217からの光(一次光)の供給量が、中央側と比べて少なくなる。そのため、このような箇所は、一次光に対する二次光の割合が高くなり易い。本実施形態の照明装置212では、上述したように、底側反射部219aの表面上に、呈色部230が均一に分散配置されており、そのため、このような周縁部R及びその近くに、マゼンタ色の呈色部230が配されているため、戻り光に含まれる一次光(マゼンタ色光(青色光、赤色光))は、呈色部230で反射され、かつ戻り光に含まれる二次光(緑色光)は、呈色部230で吸収される。その結果、前記周縁部Rにおいて、一次光に対する二次光の割合が高くなることが抑制され、点灯領域S1の中央側から出射される光の色と、周縁部Rから出射される光の色の差が抑制される。このようにして、点灯領域S1から出射される光に色ムラが発生することが抑制される。なお、呈色部230は、反射シート219の底側反射部219aにおいて、波長変換シート221(蛍光体)により波長変換された光がLED(光源)217から発せられた光よりも多く供給される箇所に配されていると言える。
 このような照明装置212では、前記点灯領域S1に対応する部分の波長変換シート221に供給される一次光の量等が均質化され、その結果、照明装置212から出射される出射光の色が均質化され、色ムラが抑制される。
 また、反射シート219において、傾斜反射部219bには、底側反射部219aよりも、単位面積当たりの密度が高くなるように、呈色部220が形成されている。そのため、傾斜反射部219b側に供給される一次光の量が、底側反射部219a側に供給される一次光の量よりも少なくても、傾斜反射部219b側では、呈色部220が多くの一次光(マゼンタ色光)を反射するため、傾斜反射部219b側での反射光と、底側反射部219a側での反射光との間に、色の差が生じることが抑制されている。また、傾斜反射部219bと、光学部材215との間で多重反射が生じて波長変換シート221による光の波長変換効率が局所的に高くなり、傾斜反射部219b側に二次光(緑色光)が多く供給されても、傾斜反射部219b側では、呈色部220が多くの二次光(緑色光)を吸収するため、傾斜反射部219b側での反射光と、底側反射部219a側での反射光との間に、色の差が生じることが抑制されている。
 本実施形態の呈色部230等は、ドット状であるため、LED217からの光(一次光)の反射効率(及び二次光の吸収効率)を高めるために、呈色部230の密度を容易に段階的に変化させることができる。また、呈色部230がドット状であると、呈色部230を形成する塗料等の材料の使用量を抑えることができる。また、呈色部230がドット状であると、隣り合った呈色部230の間から傾斜反射部219bが露出しているため、例えば、照明装置212の組立時において、反射シート219の底側反射部219aにある呈色部230が、不必要に他の部材と接着することが抑制される。
 <実施形態13>
 次いで、本発明の実施形態13を、図19を参照しつつ説明する。本実施形態は、実施形態12のマゼンタ色の呈色部230に代えて、青色の呈色部(青色呈色部)230A1と、赤色の呈色部(赤色呈色部)230A2を、反射シート219の底側反射部219aに形成したものからなる。なお、実施形態12と同様の構成については、説明を省略する(以降の実施形態においても同様である)。図19は、実施形態13の照明装置が備える呈色部230A1,230A2が形成された反射シート219の一部を拡大した平面図である。図19には、平面状に展開された反射シート219の一部が示されている。反射シート219の底側反射部219aには、実施形態12とは異なり、LED217からの光(マゼンタ色光)を構成する各原色光(つまり、青色光、赤色光)と同じ色と呈するドット状の青色の呈色部(青色呈色部)230A1と、ドット状の赤色の呈色部(赤色呈色部)230A2とが形成されている。呈色部230A1及び呈色部230A2は、全体的には、実施形態12と同様、底側反射部219aの表面上において、行列状に均一に分散配置されている。なお、青色の呈色部230A1と、赤色の呈色部230A2とは、縦方向(Y軸方向)及び横方向(X軸方向)において、交互に並ぶように配設されている。なお、各呈色部230A1,230A2は、実施形態12と同様、平面視で円形状をなしている。なお、傾斜反射部219bには、マゼンタ色の呈色部220が形成されている。
 本実施形態では、戻り光に含まれる一次光のうち、青色光は、青色の呈色部230A1で反射され、また赤色光は、赤色の呈色部230A2で反射されることになる。また、戻り光に含まれる二次光(緑色光)は、青色の呈色部230A1及び赤色の呈色部230A2で吸収される。そのため、本実施形態において、実施形態12と同様、各LED217を部分駆動(ローカルディミング)させて、特定の点灯領域からのみ光を出射させた場合でも、点灯領域の周縁部において、一次光に対する二次光の割合が高くなることが抑制され、点灯領域の中央側から出射される光の色と、周縁部から出射される光の色の差が抑制される。その結果、点灯領域に対応する部分の波長変換シートに供給される一次光の量等が均質化され、照明装置212から出射される出射光の色の均質化が図られ、かつ色ムラが抑制される。
 <実施形態14>
 次いで、本発明の実施形態14を、図20を参照しつつ説明する。本実施形態は、実施形態12の円形状の呈色部230に代えて、四角形(正方形)状(ドット状の一例)のマゼンタ色の呈色部(マゼンタ色呈色部)230Bを形成したものからなる。図20は、実施形態14の照明装置が備える呈色部230Bが形成された反射シート219の一部を拡大した平面図である。図20には、平面状に展開された反射シート219の一部が示されている。呈色部230Bは、全体的には、実施形態12と同様、底側反射部219aの表面上において、行列状に均一に分散配置されている。なお、傾斜反射部219bには、呈色部230Bと同様、平面視で四角形状をなしたマゼンタ色の呈色部220Bが形成されている。
 本実施形態のような四角形状の呈色部220Bを設けた反射シート219を利用しても、実施形態12と同様、各LED217を部分駆動(ローカルディミング)させて、特定の点灯領域からのみ光を出射させた場合でも、点灯領域の周縁部において、一次光に対する二次光の割合が高くなることが抑制され、点灯領域の中央側から出射される光の色と、周縁部から出射される光の色の差が抑制される。その結果、点灯領域に対応する部分の波長変換シートに供給される一次光の量等が均質化され、照明装置212から出射される出射光の色の均質化が図られ、かつ色ムラが抑制される。
 <実施形態15>
 次いで、本発明の実施形態15を、図21を参照しつつ説明する。図21は、実施形態15の照明装置212Cの一部を拡大した断面図である。図21には、シャーシ214の底部214a上に配されたLED基板218C及び反射シート219Cの断面図が示されている。本実施形態の各LED基板218C上にも、実施形態12と同様のLED217が実装されている。ただし、隣り合うLED217の間隔が、実施形態12の場合よりも長くなるように設定されている。本実施形態の反射シート219の底側反射部219Ca上にも、マゼンタ色の呈色部230Cが形成されている。呈色部230Cは、全体的には、実施形態12と同様、底側反射部219Caの表面上において、行列状に概ね均一に分散配置されている。ただし、隣り合ったLED217の間に配される呈色部230Cについては、その中央側が、LED217の近くよりも、呈色部230Cの密度(又は濃度)が高くなるように設定されている。図21において、隣り合ったLED217の中央側に配される呈色部230Cは、呈色部230C1と表し、LED217の近くの呈色部230Cは、呈色部230C2と表す。
 本実施形態のように、隣り合うLED217同士の距離を長く設定した場合、それらの中央部は、LED217の近くと比べて、一次光の量が少なくなり、そのような箇所においても、一次光に対する二次光の割合が高まる傾向がある。そのため、このような箇所に、相対的に密度又は濃度の高い呈色部230C1を配置することで、その箇所において、一次光に対する二次光の割合が高くなることが抑制され、LED217からの距離が遠い箇所から出射される光の色と、LED217の近くから出射される光の色の差が抑制される。その結果、波長変換シートに供給される一次光の量等が均質化され、照明装置212Cから出射される出射光の色の均質化が図られ、かつ色ムラが抑制される。
 <実施形態16>
 次いで、本発明の実施形態16を、図22を参照しつつ説明する。照明装置312は、図22に示されるように、主として、シャーシ314、光学部材315、フレーム316、LED(光源)317が実装されたLED基板(光源基板)318、呈色部(マゼンタ色呈色部)320が設けられた反射シート319、波長変換シート321等を備えている。なお、シャーシ314、フレーム316、LED(光源)317が実装されたLED基板(光源基板)318、反射シート319の構成については上記実施形態と同様であり、本実施形態では、光学部材315と波長変換シート321の構成(配置)に特徴がある。
 光学部材315は、シャーシ314の受け部314dに載せられるレンチ拡散板315aと、表側(液晶パネル11側)に配され、受け部314dに固定されたフレーム316上に載せられる光学シート315bとに大別される。レンチ拡散板315aは、所定の厚みを有する略透明な樹脂製の板材中に多数の拡散粒子が分散された構成を備えている。本実施形態のレンチ拡散板315aは、裏側に配される第1レンチ拡散板315a1と、表側に配される第2レンチ拡散板315a2とからなる。第1レンチ拡散板315a1の表面には、長辺方向(X軸方向)に沿って延びつつ、短辺方向(Y軸方向)に並ぶ複数のレンチキュラーレンズ(レンズ部)が形成され、第2レンチ拡散板315a2の表面には、短辺方向(Y軸方向)に沿って延びつつ、長辺方向(X軸方向)に並ぶ複数のレンチキュラーレンズ(レンズ部)が形成されている。第1レンチ拡散板315a1のレンチキュラーレンズ(レンズ部)、及び第2レンチ拡散板315a2のレンチキュラーレンズ(レンズ部)は、それぞれ透明な板状の基材部上に形成されている。第1レンチ拡散板315a1及び第2レンチ拡散板315a2は、互いのレンチキュラーレンズが交差するように重ねられている。なお、後述するように、レンチ拡散板315aの表側には、波長変換シート321が重ねられる。
 光学シート315bは、レンチ拡散板315aと比べて、厚みが小さいシート状をなしており、2枚のシートからなる。具体的には、レンズシート(プレズムシート)322と、レンズシート322の表側に重ねられる反射型偏光シート323とからなる。光学シート315bは、レンチ拡散板315a上の波長変換シート321に対して、離れた状態で表側から対向する形でシャーシ314内に配設されている。
 レンズシート322は、シート状の基材と、基材の表側の表面に設けられるプリズム部とからなる。プリズム部は、長辺方向(X軸方向)に沿って延びつつ、短辺方向(Y軸方向)に並ぶ複数の単位プリズムから構成されている。レンズシート322は、このようなプリズム部を備えることにより、レンチ拡散板315a側(波長変換シート321側)からの光に、単位プリズムの並び方向(Y軸方向)について選択的に集光作用(異方性集光作用)を付与できる。
 フレーム316の被覆部316aは、受け部314dとの間で、シャーシ314内に収容されたレンチ拡散板315a及び波長変換シート321からなる積層物の周端部を挟持する。被覆部316aは、レンチ拡散板315a上に載せられた波長変換シート321の周端部に対して表側から当接している。また、フレーム316の被覆部316aは、光学シート315b及び液晶パネル311を裏側から受ける構成となっている。更に、被覆部316aは、表側で光学シート315bの周端部を受ける構成となっている。液晶パネル311は、光学シート315bの表側に重ねられた状態で、フレーム316の被覆部316aに載せられる。光学シート315b及び液晶パネル311からなる積層物は、その周端部がフレーム316の被覆部316aと表側に配されるベゼル313との間で挟持されることで、位置決めされる。
 一方、波長変換シート321は、LED317からの光を波長変換するための蛍光体を含有する蛍光体層と、蛍光体層を表裏から挟み込む一対の透明な基材層とを備えている。蛍光体層は、樹脂中に多数の蛍光体が分散されたものからなる。蛍光体層中の蛍光体としては、LED317から出射された青色光(単色光)によって励起されて、緑色の光(約500nm~約570nmの波長領域)を放出する緑色蛍光体が利用される。このような緑色蛍光体としては、比較的シャープな発光スペクトルを有するものが好ましく、例えば、「SrGa2S4:Eu2+」等の硫化物蛍光体が用いられる。
 波長変換シート321は、液晶パネル311等と同様、平面視矩形状をなしており、光学部材315のレンチ拡散板315aと略同等の大きさである。つまり、波長変換シート321は、液晶パネル311の表示領域AAよりも大きく設定されている。波長変換シート321は、レンチ拡散板315aよりも厚みの小さいシート状であり、シャーシ314内において、レンチ拡散板315a上に載置される。具体的には、2枚重ねの状態のレンチ拡散板315aのうち、表側に配される第2レンチ拡散板315a2の表面を覆うように配されている。波長変換シート321の周端部は、表裏方向(Z軸方向)において、レンチ拡散板315a(第2レンチ拡散板315a2)の表側に載せられた状態で、シャーシ14の受け部314d、及び受け部314d上に載せられた反射シート319の延設部319cと重なるように対向している。また、波長変換シート321の周端部は、レンチ拡散板315aに載せられた状態で、レンチ拡散板315aの周端部と共に、フレーム316の被覆部316aと、シャーシ314の受け部314dとの間で挟持される。
 また、反射シート319の傾斜反射部319bでは、波長変換シート321で既に波長変換された光のうち、光学シート315bで反射される等した後、反射シート319側に戻される光(戻り光)の割合が高くなり易い。傾斜反射部319bと光学部材315との距離は、内側(底側反射部319a側)から外側(延設部319c)に向かうにつれて徐々に短くなっており、傾斜反射部319bによる反射光は、傾斜反射部319bの外側に行く程、光学部材315との間で多重反射し易くなっている。そのため、傾斜反射部319bの外側に行く程、波長変換シート321による波長変換効率が相対的に高くなり易い。なお、光学部材315の中でも、最もLED317側に配されるレンチ拡散板315aにおいて、反射シート319側からの光が反射され易くなっている。本実施形態のレンチ拡散板315aは、上述したように、裏側(LED317側)に配される第1レンチ拡散板315a1と、表側に配される第2レンチ拡散板315a2との2枚(複数枚、2枚以上)で構成されている。各レンチ拡散板315a1,315a2の出光側の表面には、互いに交差するように配されレンチキュラーレンズが設けられており、特に、反射シート319側から供給された光が、各レンチ拡散板315a1,315a2で多重反射し易くなっている。
 照明装置312内において、波長変換シート321に供給される光(一次光)の量に偏りが生じると、最終的に照明装置312から出射される一次光(マゼンタ色光)と、波長変換シート321で波長変換された光(二次光)との比率が、表示領域AAの中央側と、表示領域AAの周縁側とで異なることになる。その場合、照明装置312からの出射光、及び液晶パネル311の表示画像に色ムラが発生する。具体的には、表示領域AAの周縁側(特に、非表示領域NAAに隣接する部分)で、LED317からの一次光の光量が相対的に少なくなり、その部分が、二次光の色(緑色)を帯びることになる。
 そこで、本実施形態の照明装置312では、このような色ムラの発生を抑制するために、波長変換シート321を、レンチ拡散板315aの表側(出光側)に配置している。レンチ拡散板315aは、反射シート319側からの光を、再び反射シート319側に向けて反射し易い。そのため、そのようなレンチ拡散板315aよりも、波長変換シート321を液晶パネル311側に配置することで、波長変換シート321で既に波長変換された光(二次光)を含む光が、レンチ拡散板315aで反射されて、再び波長変換シート321に入射することが抑制されている。なお、波長変換シート321は、表側の第2レンチ拡散板315a2の出光側に配される。
 また、本実施形態の照明装置312では、上記色ムラの発生を抑制するために、反射シート319の傾斜反射部319bの表面上に、LED317の発光面317aから発せられた光と同色(つまり、マゼンタ色)を呈する複数のドット状の呈色部(マゼンタ色呈色部)320も形成されている。呈色部320は、マゼンタ色を呈する顔料を含む塗膜からなる。このような塗膜は、前記顔料を含む塗料を、公知の塗工技術(例えば、印刷技術)を利用して形成されたものからなる。前記塗膜は、必要に応じて、適宜、乾燥される。呈色部320は、発光面317aから発せられた光(マゼンタ色光)の色と補色の関係にある色の光(緑色光)の吸収率が、発光面317aから発せられた光(マゼンタ色光(青色光、赤色光))の吸収率よりも高くなっている。また、呈色部320は、発光面317aから発せられた光(マゼンタ色光(青色光、赤色光))の反射率が、発光面317aから発せられた光と補色の関係にある色の光(緑色光)の反射率よりも高くなっている。つまり、呈色部320は、緑色光を吸収して、マゼンタ色光(青色光、赤色光)を反射する機能を備えている。これにより、呈色部320で反射された光(例えば、白色の戻り光)は、呈色部320が設けられていない白色の部分(反射シート319)で反射された場合と比べて、マゼンタ色を帯びることになる。
 また、底側反射部319aの周りに配される4つの傾斜反射部319bの表面上に、複数のドット状の呈色部320が形成されている。各呈色部320は、平面視で円形をなしており、傾斜反射部319bの略全域に散らばるように形成されている。なお、隣り合った呈色部320の間からは、白色の底側反射部319aが露出している。各呈色部320は、底側反射部319a側から外側(延設部319c)に向かうにつれて、サイズ(大きさ)が大きくなるように設定されている。また、底側反射部319aには、上述した傾斜反射部319bの呈色部320と同様、LED317の発光面317aから発せられた光と同色(マゼンタ色)の呈色部330が複数設けられている。また、延設部319cにも、上述した傾斜反射部319bの呈色部320と同様、LED317の発光面317aから発せられた光と同色(マゼンタ色)の呈色部340が複数設けられている。
 ここで、照明装置312における光学部材315及び波長変換シート321での光学作用について詳細に説明する。LED317の発光面317aからは、青色光と赤色光からなるマゼンタ色光が一次光として出射される。LED317からの一次光は、レンチ拡散板315a(第1レンチ拡散板315a1、第2レンチ拡散板315a2)で拡散作用が付与され、その後、その一部は、レンチ拡散板315a上の波長変換シート321に入射する。波長変換シート321に入射した一次光のうち、青色光の一部は、波長変換シート321中の緑色蛍光体により波長変換されて緑色光(二次光)となって放出される。波長変換シート321からは、緑色光と共に、波長変換されずに透過した青色光や赤色光が出射される。このように、波長変換シート321からは、LED317からの一次光(青色光、赤色光)と、波長変換後に得られた二次光(緑色光)とが出射されることで、白色光が形成される。
 なお、波長変換シート321から出射された一次光(青色光、赤色光)と、二次光(緑色光)とは、レンズシート322に入射して集光作用が付与され、その後、反射型偏光シート323において、特定の偏光光(p波)が選択的に透過されて液晶パネル311に向かい、それとは異なる特定の偏光光(s波)が選択的に裏側へ反射される。反射型偏光シート323で反射されたs波の光、レンズシート322で集光作用を付与されずに裏側に向けて反射された光、更にはレンチ拡散板315aで裏側に向けて反射された光等は、反射シート319で反射されて再び表側に向けて進行することになる。
 次いで、反射シート319及び呈色部320等の光学作用について詳細に説明する。反射シート319は、直接、光学部材315側に向かわないLED317からの一次光(青色光及び赤色光からなるマゼンタ色光)や、光学部材315等で裏側へ戻された光(一次光及び二次光)を、表側に向けて反射する。反射シート319において、傾斜反射部319bには、底側反射部319aよりも、単位面積当たりの密度が高くなるように、呈色部320が形成されている。そのため、傾斜反射部319b側に供給される一次光の量が、底側反射部319a側に供給される一次光の量よりも少なくても、傾斜反射部319b側では、呈色部320が多くの一次光(マゼンタ色光)を反射するため、傾斜反射部319b側での反射光と、底側反射部319a側での反射光との間に、色の差が生じることが抑制されている。
 また、傾斜反射部319bと、光学部材315との間で多重反射が生じて波長変換シート321による光の波長変換効率が局所的に高くなり、傾斜反射部319b側に二次光(緑色光)が多く供給されても、傾斜反射部319b側では、呈色部320が多くの二次光(緑色光)を吸収するため、傾斜反射部319b側での反射光と、底側反射部319a側での反射光との間に、色の差が生じることが抑制されている。つまり、図22に示されるように、戻り光として傾斜反射部319b側に白色光L1が供給されると、一次光であるマゼンタ色光(青色光、赤色光)は呈色部320で反射され、レンチ拡散板315a側(波長変換シート321側)に供給される。これに対し、白色光L1に含まれる二次光(緑色光)は呈色部320で吸収される。その結果、液晶パネル311の表示領域AAの周縁に対応する箇所の照明装置312から、緑色を帯びた光R1が出射されることが抑制される。
 上述したように、本実施形態の照明装置312では、波長変換シート321を、レンチ拡散板315aの表側(出光側)に配置しており、波長変換シート321で既に波長変換された光(二次光)を含む光(白色光)が、レンチ拡散板315aで反射されて、再び波長変換シート321に入射することが抑制されている。その結果、反射シート319の傾斜反射部319b側に供給される白色光(二次光を含む)の割合が低くなり、液晶パネル311の表示領域AAの周縁に対応する箇所の照明装置312から、緑色を帯びた光R1が出射されることが更に抑制される。
 このような照明装置312では、波長変換シート321の画面中央側(表示領域AAの中央側)と画面周縁側(表示領域AAの周縁側)とにそれぞれ供給される一次光の量等が均質化され、その結果、照明装置312から出射される出射光の色が均質化され、色ムラが抑制される。
 なお、LED317の発光面317aから発せられた一次光(青色光と赤色光とからなるマゼンタ色光)の中には、波長変換シート321で波長変換される前に、レンチ拡散板315a(第1レンチ拡散板315a1,第2レンチ拡散板315a2)で反射されて、反射シート319の傾斜反射部319b側に向かう光(一次光)L3もある(図22参照)。このような光L3の一部は、傾斜反射部319b上の呈色部320で反射された後、表示領域AAの周縁側に向かって進行するものの、光L3の中には、呈色部320で反射された後、表示領域AAの中央側(表示領域AAの周縁側よりも内側)に向かって進行する光L4となるものもある。なお、表示領域AAの中央側は、その真下にLED317が配されているため、一次光は十分供給されている。
 光L4は、LED317から出射された光と同様、マゼンタ色の光(一次光)である。そのような光L4が多く供給されると、表示領域AAの中央側(表示領域AAの周縁側よりも内側)において、一次光(特に、赤色光)の量が多くなり過ぎる箇所が形成され、その結果、照明装置312からは、その箇所に対応して、赤色を帯びた光R2が色ムラとなって出射される虞がある(図22参照)。しかしながら、本実施形態の照明装置312では、上記のように、波長変換シート321が、レンチ拡散板315aの表側(出光側)に配置されているため、上記光L4は、レンチ拡散板315aで反射され易くなっており、しかも、レンチ拡散板315aと反射シート319(底側反射部319a等)との間で反射を繰り返して、面方向に分散しつつ広がり易くなっている。そのため、照明装置312では、上記のような赤色を帯びた光R2の出射が抑制され、出射光の色が均質化されている。
 <実施形態17>
 次いで、本発明の実施形態17を、図23を参照しつつ説明する。本実施形態の液晶表示装置310Aは、波長変換シート321Aの位置を、レンズシート322(光学シート315b)の表側(出光側)に変更した照明装置312Aを備える。図23は、実施形態17に係る液晶表示装置310Aの断面図である。なお、実施形態16と同様の構成については、図23において、実施形態16と同じ符号、又は同じ符号に添え字「A」を加えたもの付し、説明を省略する。
 波長変換シート321Aを、レンズシート322の表側(出光側)に積層する形で配することで、波長変換シート321Aで既に波長変換された光(二次光)を含む光(白色光)が、レンチ拡散板315a(315a1,315a2)や、レンズシート322で反射されて、再び波長変換シート321Aに入射することが抑制され、しかも、反射シート319の傾斜反射部319b1上の呈色部320で反射された一次光が、表示領域AAの中央側(表示領域AAの周縁側よりも内側)に集まることが抑制される。このように、レンチ拡散板315aのみならず、レンズシート322の表側に波長変換シート321Aを配置することで、実施形態16よりも、更に、色ムラ(実施形態16の光(色ムラ)R1及び光(色ムラ)R2参照)の発生を抑制することができる。
 本実施形態の波長変換シート321Aは、レンズシート322と反射型偏光シート323との間に介在された状態で、フレーム316Aとベゼル313Aとの間で、レンズシート322及び反射型偏光シート323と共に保持されている。
 なお、照明装置312A内において、波長変換シート321Aは、実施形態16と比べて、LED317から離されているため、光路長が長くなっている。そのため、本実施形態の場合、波長変換シート321Aに照射されるLED317からの一次光(青色光及び赤色光からなるマゼンタ色光)の量(エネルギー)が、実施形態16と比べて減少する。そのため、本実施形態では、波長変換シート321Aにおける蛍光体の含有量を、実施形態16と比べて多くすることが好ましい。
 本実施形態では、波長変換シート321Aが載せられる光学シート315bとして、レンズシート322を例示したが、他の光学シートの表側(出光側)に、波長変換シート321Aが載せられる構成であってもよい。ただし、波長変換シート321Aを、反射型偏光シート323の出光側(表側)に配置することは、好ましくない。何故ならば、仮に、反射型偏光シート323の出光側(表側)に、波長変換シート321Aを配置すると、反射型偏光シート323でわざわざ選別されたp波の光が、反射型偏光シート323に照射されること、p波とs波に分かれて、光の利用効率が低下してしまうからである。
 <実施形態18>
 次いで、本発明の実施形態18を、図24から図27を参照しつつ説明する。照明装置であるバックライト装置412は、図24に示すように、表側(光出射側、液晶パネル411側)に開口する光出射部414Bを有して略箱型をなすシャーシ414と、シャーシ414の光出射部414Bを覆うようにして配される光学部材415と、シャーシ414の外縁部に沿って配され光学部材415の外縁部をシャーシ414との間で挟んで保持するフレーム(拡散板押さえ部材)416と、を備える。さらに、シャーシ414内には、LED(光源)417と、LED417が実装されたLED基板418と、シャーシ414内の光を反射させる反射シート(反射部材)419と、が備えられる。なお、シャーシ414、フレーム416、LED417、LED基板418、反射シート419については上記実施形態と同様の構成を備えており、光学部材415の構成が上記実施形態と異なる。
 光学部材415は、液晶パネル411及びシャーシ414と同様に平面に視て横長の方形状をなしており、図24に示すように、その外端部が受け板部414Dに載せられることで、シャーシ414の光出射部414Bを覆うとともに、液晶パネル411とLED417との間に介在して配される。光学部材415は、LED417の発光面417Aに対して表側、つまり光出射側に所定の間隔を空けて対向状をなしている。光学部材415は、相対的に裏側(LED417側、光出射側とは反対側)に配される第1光学部材415Aと、第1光学部材415Aに対してフレーム416を挟んで相対的に表側に配される第2光学部材415Bと、から構成される。第1光学部材415Aは、その外端部がシャーシ414の受け板部414Dに対して表側に重なる形で載置される。第1光学部材415Aには、第1拡散板420と、第2拡散板421と、波長変換シート422と、が含まれる。このうち、第1拡散板420及び第2拡散板421は、所定の厚みを持つほぼ透明な樹脂製の基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。
 第2光学部材415Bは、その外端部がフレーム416に対して表側に重なる形で載置されており、第1光学部材415Aとの間にフレーム416の厚み分の間隔が空けられている。第2光学部材415Bは、プリズムシート(レンズシート)423と、プリズムシート423の表側に重ねられる反射型偏光シート424と、から構成される。プリズムシート423は、シート状の基材と、基材の表側の表面に設けられるプリズム部とからなる。プリズム部は、長辺方向(X軸方向)に沿って延びつつ、短辺方向(Y軸方向)に並ぶ複数の単位プリズムから構成されている。プリズムシート423は、このようなプリズム部を備えることにより、第1光学部材415A側からの光に、単位プリズムの並び方向(Y軸方向)について選択的に集光作用(異方性集光作用)を付与できる。反射型偏光シート424は、反射型偏光フィルムと、反射型偏光フィルムを表裏から挟み込む一対の拡散フィルムとからなる。反射型偏光フィルムは、例えば、屈折率の互いに異なる層を交互に積層した多層構造からなり、プリズムシート423からの光のうち、p波を透過させ、s波を裏側へ反射させる。反射型偏光フィルムによって反射されたs波は、後述する反射シート419等によって、再度表側に反射され、その際に、s波とp波に分離する。このように、反射型偏光シート424は、反射型偏光フィルムを備えることで、本来ならば、液晶パネル411の偏光板によって吸収されるs波を、裏側(反射シート419側)へ反射させることで有効活用することができ、光の利用効率(輝度)を高めることができる。一対の拡散フィルムは、ポリカーボネート樹脂等の透明な合成樹脂材料からなり、反射型偏光フィルム側とは反対側の表面に、光に拡散作用を付与するためのエンボス加工が施されている。
 フレーム416は、合成樹脂からなり、光反射性を有するように白色塗装されており、図24に示すように、全体として液晶パネル411及び光学部材415の外周縁部に沿う枠状をなしている。フレーム416は、各受け板部414Dと対向状をなしていて各受け板部414Dとの間で第1光学部材415Aの外端部を挟持する内枠部416Aと、内枠部416Aの外端から裏側に向けて突出して立板部414Eの外面と対向する外枠部416Bと、から構成される。内枠部416Aは、第1光学部材415Aを構成する第2拡散板421の外端部を受け板部414D側とは反対側から押さえる。内枠部416Aは、液晶パネル411及び第2光学部材415Bの外端部をベゼル413との間で挟持する。内枠部416Aの大部分は、液晶パネル411の非表示領域NAAに配されているものの、内枠部416Aの内周縁側の端部は、液晶パネル411の表示領域AAに入り込んでいる。つまり、内枠部416Aは、非表示領域NAAと表示領域AAとに跨って配されている。なお、内枠部416Aは、シャーシ414の受け板部414Dより表示領域AA側に突き出している。
 波長変換シート422は、液晶パネル411等と同様、平面視矩形状をなしており、第1光学部材415の各拡散板420,421と略同等の大きさである。つまり、波長変換シート422は、平面に視た大きさが液晶パネル411の表示領域AAより大きく設定されている。波長変換シート422は、各拡散板420,421より厚みの小さい(薄い)シート状とされる。具体的には、各拡散板420,421の厚みは、例えば1.5mm~2mm程度とされるのに対し、波長変換シート422の厚みは、例えば200μm~400μm程度とされる。このため、波長変換シート422は、機械的な剛性や強度が各拡散板420,421より低くなっている。波長変換シート422は、LED417からの光を波長変換するための蛍光体(波長変換物質)を含有する蛍光体層(波長変換層)と、蛍光体層を表裏から挟み込んでこれを保護する一対の保護層と、から構成されている。蛍光体層には、LED417からのマゼンダ色光に含まれる青色光を励起光として、緑色光(約500nm~約570nmの波長領域)を発する緑色蛍光体が分散配合されている。これにより、バックライト装置412の出射光は、LED417から発せられる青色光及び赤色光と、波長変換シート422に含まれる緑色蛍光体により波長変換される緑色光と、を含むことになり、全体として白色光となる。このような緑色蛍光体としては、比較的シャープな発光スペクトルを有するものが好ましく、例えば、「SrGa:Eu2+」等の硫化物蛍光体が用いられる。
 上記した波長変換シート422は、各拡散板420,421に比べると剛性が低いため、例えば外力が作用すると歪みや皺などの局所的な変形が生じるおそれがある。また、発光に伴ってLED417などから生じる熱によって伸縮しても同様の局所的な変形が生じるおそれがある。波長変換シート422に上記のような局所的な変形が生じると、出射光に色ムラなどが生じ、液晶パネル411に表示不良が生じることが懸念される。また、波長変換シート422は、他の光学シートに比べると吸湿し易くなっており、吸湿に伴って波長変換シート422に含有される蛍光体(硫化物蛍光体)が変性してしまい、波長変換性能が劣化することが懸念される。波長変換シート422の波長変換性能が劣化すると、出射光に色ムラなどが生じ、結果として液晶パネル411に表示不良が生じるおそれがある。
 そこで、本実施形態に係るバックライト装置412では、図26に示すように、波長変換シート422が第1拡散板420と第2拡散板421との間に挟み込まれている。波長変換シート422は、相対的に高い剛性を有する第1拡散板420と第2拡散板421との間に挟み込まれているから、外力が作用した場合でも波長変換シート422に歪みや皺などの局所的な変形が生じ難くなるとともに、熱膨張や熱収縮に伴う局所的な変形も生じ難くなる。さらには、第1拡散板420と第2拡散板421との間に挟み込まれた波長変換シート422は、外部に露出する面積が極めて小さくなるので、外気に含まれる水分を吸収する事態が生じ難くなる。以上により、波長変換シート422の変形や吸湿の発生が好適に抑制されるので、波長変換シート422の透過光を利用して液晶パネル411の表示面411DSに表示される画像(テレビ画像を含む)に色ムラなどが生じ難くなり、もって優れた表示品位が得られる。
 波長変換シート422に対して裏側(LED417側)に重なる第1拡散板420は、図27に示すように、その板面に沿うX軸方向(第1方向)に沿って延在し、板面に沿い且つX軸方向と直交するY軸方向(第2方向)に沿って並んで配される複数の第1シリンドリカルレンズ425Aからなる第1レンチキュラーレンズ425を有する。第1レンチキュラーレンズ425は、第1拡散板420を構成する平板状の第1基材420Aにおける表側の板面に設けられている。第1シリンドリカルレンズ425Aは、軸線方向がX軸方向と一致した略半円柱状をなしており、その表側(波長変換シート422側)を向いた表面が円弧状をなす凸型の第1円弧状面425A1とされる。第1シリンドリカルレンズ425Aは、その軸線方向(延在方向、第1方向)と直交する並び方向(第2方向)に沿って切断した断面形状が略半円形状をなしている。Y軸方向に沿って並列した多数本の第1シリンドリカルレンズ425Aは、底面の幅寸法及び高さ寸法が全てほぼ同一とされており、隣り合う第1シリンドリカルレンズ425A間の配列間隔もほぼ一定で等間隔に配列されている。このようにすれば、第1拡散板420に入射した光には、拡散粒子により拡散作用が付与されるのに加えて、第1レンチキュラーレンズ425によって複数の第1シリンドリカルレンズ425Aの並び方向であるY軸方向について選択的に集光作用が付与される。その一方、第1拡散板420に入射した光が第1レンチキュラーレンズ425を構成する第1シリンドリカルレンズ425Aの表面である第1円弧状面425A1に達すると、その第1円弧状面425A1にて反射されてLED417側に戻される場合があり、その反射光はLED417側で反射シート419などにより反射されて再び第1拡散板420に入射することになる。ここで、仮に波長変換シートが第1拡散板420に対してLED417側に配された場合には、第1拡散板420による反射光が波長変換シート422を繰り返し透過するため、光が過剰に波長変換されて色ムラが生じるおそれがある。その点、波長変換シート422は、第1拡散板420に対してLED417側とは反対側に配されているから、第1拡散板420による反射光が波長変換シート422を繰り返し透過ことが避けられ、もってLED417の光が波長変換シート422によって過剰に波長変換されることに起因する色ムラの発生が生じ難くなる。なお、第1拡散板420は、各第1シリンドリカルレンズ425Aの表面が波長変換シート422における裏側の板面に対して線接触している。
 波長変換シート422に対して表側(LED417側とは反対側)に重なる第2拡散板421は、図27に示すように、Y軸方向(第2方向)に沿って延在し、X軸方向(第1方向)に沿って並んで配される複数の第2シリンドリカルレンズ426Aからなる第2レンチキュラーレンズ426を有する。第2レンチキュラーレンズ426は、第2拡散板421を構成する平板状の第2基材421Aにおける表側の板面に設けられている。第2シリンドリカルレンズ426Aは、軸線方向がY軸方向と一致した略半円柱状をなしており、その表側(波長変換シート422側とは反対側)を向いた表面が円弧状をなす凸型の第2円弧状面426A1とされる。第2シリンドリカルレンズ426Aは、その軸線方向(延在方向、第2方向)と直交する並び方向(第1方向)に沿って切断した断面形状が略半円形状をなしている。X軸方向に沿って並列した多数本の第2シリンドリカルレンズ426Aは、底面の幅寸法及び高さ寸法が全てほぼ同一とされており、隣り合う第2シリンドリカルレンズ426A間の配列間隔もほぼ一定で等間隔に配列されている。このようにすれば、第2拡散板421に入射した光には、拡散粒子により拡散作用が付与されるのに加えて、第2レンチキュラーレンズ426によって複数の第2シリンドリカルレンズ426Aの並び方向であるX軸方向について選択的に集光作用が付与される。従って、当該バックライト装置412の出射光には、第1拡散板420によりY軸方向について選択的に集光作用が付与されるのに加えて、第2拡散板421によりX軸方向について選択的に集光作用が付与されることになるから、バックライト装置412の出射光に係る正面輝度が高いものとなる。なお、第2拡散板421は、第2基材421Aにおける裏側の板面が波長変換シート422における表側の板面に対して面接触している。
 波長変換シート422は、図26に示すように、その外端部がシャーシ414の受け板部414Dとフレーム416との間に、第1拡散板420及び第2拡散板421の各外端部を介して挟み込まれている。詳しくは、波長変換シート422は、既述した通り、平面に視た大きさが第1拡散板420及び第2拡散板421の同大きさと同等とされており、その外周端面が第1拡散板420及び第2拡散板421の外周端面とほぼ面一状に揃えられているので、外周端部が第1拡散板420及び第2拡散板421の外周端部と重畳配置されている。このようにすれば、受け板部414Dとフレーム416との間には、波長変換シート422の外端部が第1拡散板420及び第2拡散板421の各外端部を介して挟み込まれる。従って、第1拡散板420の外端部を出射した光が波長変換シート422の外端部を透過して波長変換される確実性が高くなるので、仮に波長変換シートの外端部が第1拡散板420及び第2拡散板421の各外端部より内側に引っ込む配置とされる場合に比べると、バックライト装置412の外端部付近にてLED417の光が波長変換されずに外部に出射する事態が生じ難くなる。これにより、バックライト装置412における外端部付近の出射光に色ムラが生じ難くなる。
 続いて、バックライト装置412における光学部材415及び波長変換シート422での光学作用について詳細に説明する。LED417の発光面417Aからは、図26に示すように、青色光と赤色光からなるマゼンタ色光が一次光として出射される。LED417からの一次光は、第1光学部材415Aを構成する第1拡散板420に含有される拡散粒子により拡散作用が付与されるのに加えて第1レンチキュラーレンズ425によりY軸方向について選択的に集光作用が付与された後、その一部は、第1拡散板420上の波長変換シート422に入射する。波長変換シート422に入射した一次光のうち、青色光の一部は、波長変換シート422中の緑色蛍光体により波長変換されて緑色光(二次光)となって放出される。波長変換シート422からは、緑色光と共に、波長変換されずに透過した青色光や赤色光が出射される。このように、波長変換シート422からは、LED417からの一次光(青色光、赤色光)と、波長変換後に得られた二次光(緑色光)と、が出射されることで、白色光が形成される。波長変換シート422の出射光は、第2拡散板421に入射し、第2拡散板421に含有される拡散粒子により拡散作用が付与されるのに加えて第2レンチキュラーレンズ426によりX軸方向について選択的に集光作用が付与される。
 なお、波長変換シート422から出射された一次光(青色光、赤色光)と、二次光(緑色光)と、は、図26に示すように、第2光学部材415Bを構成するプリズムシート423に入射して集光作用が付与され、その後、反射型偏光シート424において、特定の偏光光(p波)が選択的に透過されて液晶パネル411に向かい、それとは異なる特定の偏光光(s波)が選択的に裏側へ反射される。反射型偏光シート424にて反射されたs波の光、プリズムシート423で集光作用を付与されずに裏側に向けて反射された光、更には各拡散板420,421にて裏側に向けて反射された光等は、反射シート419で反射されて再び表側に向けて進行することになる。
 次いで、反射シート419及び呈色部427等の光学作用について詳細に説明する。反射シート419は、図26に示すように、直接、光学部材415側に向かわないLED417からの一次光(青色光及び赤色光からなるマゼンタ色光)や、光学部材415等により裏側へ戻された光(一次光及び二次光)を、表側に向けて反射する。反射シート419において、傾斜反射部419Bには、底側反射部419Aよりも、単位面積当たりの密度が高くなるように、呈色部427が形成されている。そのため、傾斜反射部419B側に供給される一次光の量が、底側反射部419A側に供給される一次光の量よりも少なくても、傾斜反射部419B側では、呈色部427が多くの一次光(マゼンタ色光)を反射するため、傾斜反射部419B側での反射光と、底側反射部419A側での反射光との間に、色の差が生じることが抑制されている。
 より詳しくは、傾斜反射部419Bは、図26に示すように、底側反射部419Aに比べると、光学部材415を構成する第1光学部材415Aとの間の距離が短くなっているため、傾斜反射部419Bと第1光学部材415Aとの間で多重反射が生じ易くなっていることから、第1光学部材415Aに含まれる波長変換シート422による光の波長変換効率が局所的に高くなることが懸念される。特に、傾斜反射部419Bと第1光学部材415Aとの間の距離は、底側反射部419Aから外側に向かう(離れる)ほど短くなる傾向であるため、多重反射光が波長変換シート422を透過する回数は、底側反射部419Aから外側に向かうほど多くなる。その点、傾斜反射部419Bに設けられる呈色部427は、底側反射部419Aに設けられる呈色部427より単位面積当たりの密度が高くなっているから、傾斜反射部419B側に波長変換シート422により波長変換された二次光(緑色光)が多く供給されても、傾斜反射部419B側では、呈色部427が多くの二次光(緑色光)を吸収するため、傾斜反射部419B側での反射光と底側反射部419A側での反射光との間に、色の差が生じることが抑制されている。しかも、傾斜反射部419Bにおいて呈色部427は、底側反射部419A側から外側に向かうにつれて単位面積当たりの密度が高くなっているから、波長変換シート422を透過する回数が多い多重反射光ほど強い呈色作用が付与され、二次光の吸収量がより多くなる。これにより、多重反射光に色ムラがより生じ難くなっている。
 ところで、図26に示すように、第1拡散板420に入射した光が第1レンチキュラーレンズ425を構成する第1シリンドリカルレンズ425Aの表面に達すると、その表面にて反射されてLED417側に戻される場合があり、その反射光はLED417側で反射されて再び第1拡散板420に入射することになる。ここで、仮に波長変換シートが第1拡散板420に対してLED417側に配された場合には、第1拡散板420による反射光が波長変換シート422を繰り返し透過するため、光が過剰に波長変換されて色ムラが生じるおそれがある。その点、波長変換シート422は、第1拡散板420に対してLED417側とは反対側に配されているから、第1拡散板420による反射光が波長変換シート422を繰り返し透過ことが避けられ、もってLED417の光が波長変換シート422によって過剰に波長変換されることに起因する色ムラの発生が生じ難くなる。
 このようなバックライト装置412では、波長変換シート422の画面中央側(表示領域AAの中央側)と画面周縁側(表示領域AAの周縁側)とにそれぞれ供給される一次光の量等が均質化され、その結果、バックライト装置412から出射される出射光の色が均質化され、色ムラが抑制される。
 以上説明したように本実施形態のバックライト装置(照明装置)412は、光を発する発光面417Aを有するLED(光源)417と、発光面417Aと対向するよう配され、発光面417Aから発せられた光に拡散作用を付与する第1拡散板420と、第1拡散板420に対してLED417側とは反対側に重なる状態で配され、発光面417Aから発せられた光に拡散作用を付与する第2拡散板421と、発光面417Aから発せられた光を波長変換する蛍光体を含む波長変換シート422であって、第1拡散板420と第2拡散板421との間に挟み込まれる波長変換シート422と、を備える。
 このようにすれば、LED417の発光面417Aから発せられた光は、第1拡散板420を透過する際に少なくとも拡散作用が付与され、その後波長変換シート422を透過する際に波長変換され、さらにその後第2拡散板421を透過する際に再び少なくとも拡散作用が付与される。波長変換シート422は、相対的に高い剛性を有する第1拡散板420と第2拡散板421との間に挟み込まれているから、外力が作用した場合でも波長変換シート422に歪みや皺などの局所的な変形が生じ難くなるとともに、熱膨張や熱収縮に伴う局所的な変形も生じ難くなる。さらには、第1拡散板420と第2拡散板421との間に挟み込まれた波長変換シート422は、外部に露出する面積が極めて小さくなるので、外気に含まれる水分を吸収する事態が生じ難くなる。以上により、波長変換シート422の変形や吸湿の発生が好適に抑制される。
 また、第1拡散板420は、その板面に沿う第1方向に沿って延在し、板面に沿い且つ第1方向と直交する第2方向に沿って並んで配される複数の第1シリンドリカルレンズ425Aからなる第1レンチキュラーレンズ425を有する。このようにすれば、第1拡散板420に入射した光には、第1レンチキュラーレンズ425によって複数の第1シリンドリカルレンズ425Aの並び方向である第2方向について選択的に集光作用が付与される。その一方、第1拡散板420に入射した光が第1レンチキュラーレンズ425を構成する第1シリンドリカルレンズ425Aの表面に達すると、その表面にて反射されてLED417側に戻される場合があり、その反射光はLED417側で反射されて再び第1拡散板420に入射することになる。ここで、仮に波長変換シートが第1拡散板420に対してLED417側に配された場合には、第1拡散板420による反射光が波長変換シート422を繰り返し透過するため、光が過剰に波長変換されて色ムラが生じるおそれがある。その点、波長変換シート422は、第1拡散板420に対してLED417側とは反対側に配されているから、第1拡散板420による反射光が波長変換シート422を繰り返し透過ことが避けられ、もってLED417の光が波長変換シート422によって過剰に波長変換されることに起因する色ムラの発生が生じ難くなる。
 また、第2拡散板421は、第2方向に沿って延在し、第1方向に沿って並んで配される複数の第2シリンドリカルレンズ426Aからなる第2レンチキュラーレンズ426を有する。このようにすれば、第2拡散板421に入射した光には、第2レンチキュラーレンズ426によって複数の第2シリンドリカルレンズ426Aの並び方向である第1方向について選択的に集光作用が付与される。従って、当該バックライト装置412の出射光には、第1拡散板420により第2方向について選択的に集光作用が付与されるのに加えて、第2拡散板421により第1方向について選択的に集光作用が付与されることになるから、当該バックライト装置412の出射光に係る正面輝度が高いものとなる。
 また、LED417に対して発光面417A側とは反対側に配される底板部(底部)414Aと、底板部414Aの外端部に連ねられて第1拡散板420の外端部を支持する受け板部(拡散板支持部)414Dと、を有していてLED417を収容するシャーシ414と、第2拡散板421の外端部を受け板部414D側とは反対側から押さえるフレーム(拡散板押さえ部材)416と、を備えており、波長変換シート422は、その外端部が受け板部414Dとフレーム416との間に、第1拡散板420及び第2拡散板421の各外端部を介して挟み込まれる。このようにすれば、LED417を収容するシャーシ414は、底板部414Aの外端部に連ねられる受け板部414Dが第1拡散板420の外端部を支持する。フレーム416は、第2拡散板421の外端部を受け板部414D側とは反対側から押さえる。そして、受け板部414Dとフレーム416との間には、波長変換シート422の外端部が第1拡散板420及び第2拡散板421の各外端部を介して挟み込まれる。従って、第1拡散板420の外端部を出射した光が波長変換シート422の外端部を透過して波長変換される確実性が高くなるので、仮に波長変換シートの外端部が第1拡散板420及び第2拡散板421の各外端部より内側に引っ込む配置とされる場合に比べると、当該バックライト装置412の外端部付近にてLED417の光が波長変換されずに外部に出射する事態が生じ難くなり、もって外端部付近の出射光に色ムラが生じ難くなる。
 また、LED417に対して発光面417A側とは反対側に配される底板部414Aを有していてLED417を収容するシャーシ414と、発光面417Aから発せられた光を第1拡散板420側へ反射する反射シート419であって、LED417を露出させつつ底板部414Aを覆う底側反射部419Aと、底側反射部419Aから外側に傾斜しつつ第1拡散板420側に向かって立ち上がる傾斜反射部419Bと、を少なくとも有する反射シート419と、各々が発光面417Aから発せられた光と同色、又はその光を構成する各原色光と同色を呈していて少なくとも傾斜反射部419Bの表面上に配される複数のドット状の呈色部427と、を備える。このようにすれば、シャーシ414内に収容されたLED417の発光面417Aから発せられた光は、反射シート419の底側反射部419A及び傾斜反射部419Bによって第1拡散板420側へ反射される。第1拡散板420や第2拡散板421に達した光には、反射シート419側へ反射されるものも少なからず含まれている。ここで、反射シート419のうち、傾斜反射部419Bは、各拡散板420,421との間の距離が底側反射部419Aに比べて短いため、各拡散板420,421との間で光の多重反射が生じ易くなっている。この多重反射光は、その過程で波長変換シート422を繰り返し透過することで波長変換が過度になされてしまい、結果として色ムラが生じることが懸念される。その点、反射シート419の傾斜反射部419Bの表面上には、LED417の発光面417Aから発せられた光と同色、又はその光を構成する各原色光と同色を呈する呈色部427が配されているから、上記のように各拡散板420,421と傾斜反射部419Bとの間で多重反射する光には、呈色部427による呈色作用が付与され、呈色作用を受けない光に比べると、LED417の光の色味に近い色味を帯びることになる。従って、多重反射光に色ムラが生じ難くなる。しかも、呈色部427は、複数のドット状とされているから、傾斜反射部419Bにおける分布密度や色の濃度などを細やかに調整することができ、色ムラを抑制するのに好適となっている。
 また、呈色部427は、底側反射部419A側から外側に向かうにつれて単位面積当たりの密度又は色の濃度が高くなる。傾斜反射部419Bと各拡散板420,421との間の距離は、底側反射部419A側から外側に向かうほど短くなるため、多重反射光が波長変換シート422を透過する回数は、底側反射部419A側から外側に向かうほど多くなる。これに対し、呈色部427は、底側反射部419A側から外側に向かうにつれて単位面積当たりの密度又は色の濃度が高くなっているから、波長変換シート422を透過する回数が多い多重反射光ほど強い呈色作用が付与されることになる。これにより、多重反射光に色ムラがより生じ難くなる。
 また、LED417は、発光面417Aから青色光と赤色光とを含むマゼンタ色光を発し、波長変換シート422は、蛍光体として、青色光を緑色光に波長変換する緑色蛍光体を含む。このようにすれば、LED417の発光面417Aから発せられたマゼンダ色光には、青色光と赤色光とが含まれているから、波長変換シート422を透過する際には、マゼンダ色光に含まれる青色光が緑色光に波長変換される。これにより、当該バックライト装置412の出射光には、青色光、緑色光及び赤色光が含まれ、全体として白色光となる。
 <実施形態19>
 本発明の実施形態19を図28によって説明する。この実施形態19では、第1拡散板4120及び第2拡散板4121の構成を変更したものを示す。なお、上記した実施形態18と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る第1拡散板4120及び第2拡散板4121は、図28に示すように、共に平板状をなしている。つまり、第1拡散板4120及び第2拡散板4121は、上記した実施形態18に記載したようなレンチキュラーレンズ425,426(図27を参照)を有さない構成とされる。このような構成の第1拡散板4120及び第2拡散板4121は、波長変換シート4122を表裏両側から面接触する形で挟持するので、波長変換シート4122に局所的な変形がより生じ難いものとなる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記実施形態では、呈色部として塗膜からなるものを例示したが、本発明はこれに限られず、例えば、LEDから発せられた光と同色のセロファン等を呈色部として用いてもよい。ただし、上記実施形態のように、塗膜からなる呈色部は、既存の塗工装置(印刷装置等)を使用して形成することができ、しかも形成速度が速く好ましい。
 (2)上記実施形態では、マゼンタ色光(青色光、赤色光)を出射するLED(光源)を使用したが、本発明はこれに限られない。例えば、青色光を一次光として出射する光源を使用し、蛍光体として、青色光を緑色光に波長変換する緑色蛍光体と、青色光を赤色光に波長変換する赤色蛍光体とを含む波長変換シートを使用してもよい。この場合、波長変換シートからは、前記蛍光体で波長変換された二次光として、緑色光と赤色光が出射され、反射シートの延設部等には、青色の呈色部(青色呈色部)が形成される。また、緑色蛍光体として、例えば、SrGa:Eu2+を使用し、赤色蛍光体として、例えば、(Ca,Sr,Ba)S:Eu2+を使用してもよい。
 (3)また、他の場合としては、青色光を一次光として出射する光源を使用し、蛍光体として、青色光を黄色光に波長変換する黄色蛍光体を含む波長変換シートを使用してもよい。この場合、波長変換シートからは、前記蛍光体で波長変換された二次光として、黄色光が出射され、反射シートの延設部等には、青色の呈色部(青色呈色部)が形成される。
 (4)また、他の場合としては、紫色の光を出射する光源を使用し、蛍光体として、黄色蛍光体及び緑色蛍光体を含む波長変換シートを使用してもよい。この場合、呈色部としては、紫色の呈色部が利用される。
 (5)また、他の場合としては、シアン色の光を出射する光源を使用し、蛍光体として、赤色蛍光体を含む波長変換シートを使用してもよい。この場合、呈色部としては、シアン色の呈色部が利用される。
 (6)上記実施形態では、波長変換シートの蛍光体として、硫黄化物蛍光体を使用したが、本発明はこれに限られず、例えば、量子ドット蛍光体(Quantum Dot Phosphor)を用いてもよい。量子ドット蛍光体は、ナノサイズ(例えば、直径2nm~10nm程度)の半導体結晶中に電子・正孔や励起子を三次元空間方位で閉じ込めることで、離散的エネルギー準位を有しており、そのドットのサイズを変えることで発光光のピーク波長(発光色)等を適宜選択することができる。なお、量子ドット蛍光体は、空気中の酸素や水分と反応して劣化し易く、また環境負荷物質であるカドミウム等を使用するため、波長変換シートの蛍光体としては、上述した硫化物蛍光体が好ましい。硫化物蛍光体は、二酸化ケイ素膜で被覆されており、また、波長変換シート中にガス吸収材を添加することで、高温高湿環境下においても、信頼性が高いと言える。
 (7)上記実施形態では、ドット状の呈色部として、円形状、四角形状のものを使用したが、本発明のドット状の呈色部は、これらの形状に限られず、例えば、三角形状等の多角形状、楕円形状、不規則な形状等、本願発明の目的を損なわない限り、特に制限はない。
 (8)上記実施形態において、反射シートの単位面積としては、例えば、一辺の長さが0.5mmの正方形の面積を使用してもよい。
 (9)上記実施形態では、透過型の液晶表示装置を例示したが、それ以外に、半透過型の液晶表示装置にも本発明は適用可能である。
 (10)上記実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。
 (11)上記実施形態では、チューナーを備えたテレビ受信装置を例示したが、本発明は、チューナーを備えていない表示装置(例えば、電子看板、電子黒板等)にも適用可能である。
 (12)上記した実施形態18以外にも、第1拡散板の第1レンチキュラーレンズを構成する第1シリンドリカルレンズの延在方向がY軸方向と、並び方向がX軸方向と、それぞれ一致し、第2拡散板の第2レンチキュラーレンズを構成する第2シリンドリカルレンズの延在方向がX軸方向と、並び方向がY軸方向と、それぞれ一致する構成であっても構わない。
 (13)上記した実施形態18では、第1光学部材と第2光学部材との間にフレームの内枠部が介在する構成を示したが、第1光学部材に対して表側に第2光学部材が直接載置されていても構わない。また、第2光学部材に含まれる光学シートの具体的な種類・枚数・積層順などは適宜に変更可能である。
 (14)上記した実施形態18では、第1光学部材が2枚の拡散板を有する構成を示したが、第1光学部材が3枚以上の拡散板を有する構成であっても構わない。その場合、2枚以上の拡散板が波長変換シートに対して表側と裏側とのいずれか一方のみに配されていても構わないが、2枚以上の拡散板が波長変換シートに対して表側と裏側との両方に配されていても構わない。なお、2枚以上の拡散板を波長変換シートに対して裏側にのみ選択的に配置し、波長変換シートに対して表側には拡散板が1枚のみ配される構成を採れば、波長変換シートに対して表側に配される1枚の拡散板(第1拡散板)による反射光量が、波長変換シートに対して裏側に配される2枚以上の拡散板(第2拡散板)による反射光量より少なくなるので、波長変換シートを透過する反射光量が少なくなり、もって色ムラの発生を抑制する上で好ましい。
 10…液晶表示装置(表示装置)、11…液晶パネル、11a…表示面、11b…背面、11c…遮光部、12…照明装置、13…ベゼル、14…シャーシ、14a…底部、14b…光出射部、14c…側壁部、14d…受け部、14e…立壁部、15…光学部材、15a…拡散板、15a1…第1拡散板、15a2…第2拡散板、15b…光学シート、16…フレーム(枠状部材)、16a…被覆部、16b…外壁部、17…LED(光源)、17a…発光面、18…LED基板、18a…実装面、19…反射シート、19a…底側反射部、19b…傾斜反射部、19c…延設部、19d…挿通部、40…呈色部、21…波長変換シート、22…レンズシート、23…反射型偏光シート、AA…表示領域、NAA…非表示領域

Claims (19)

  1.  光を発する発光面を有する光源と、
     前記発光面の反対側に配される底部と、前記底部の周縁から立ち上がる側壁部と、前記側壁部から外側に向かって延びる受け部とを有し、前記光源を収容するシャーシと、
     前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、
     前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から前記側壁部側に傾斜しつつ前記波長変換シート側に向かって立ち上がる傾斜反射部と、前記傾斜反射部から外側に向かって延び、前記受け部を覆う延設部とを有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記延設部上に配される複数のドット状の呈色部とを備える照明装置。
  2.  前記波長変換シートは、その周端部が前記反射シートの前記延設部及び前記シャーシの前記受け部と平面視で重なるように配され、
     前記シャーシに被せられる内側が開口した枠状部材であって、前記波長変換シートの前記周端部を覆う枠状の被覆部を有する枠状部材を備える請求項1に記載の照明装置。
  3.  前記枠状部材の前記被覆部は、前記反射シートの前記延設部よりも内側に突出している請求項2に記載の照明装置。
  4.  光を発する発光面を有する光源と、
     前記発光面の反対側に配される底部を有し、前記光源を収容するシャーシと、
     前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、
     前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記波長変換シート側に向かって立ち上がる傾斜反射部とを有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記底側反射部側から外側に向かうにつれて単位面積当たりの密度又は色の濃度が高くなるように、前記傾斜反射部の表面上に配される複数のドット状の呈色部とを備える照明装置。
  5.  各々が光を発する発光面を有する複数の光源と、
     前記発光面の反対側に配される底部を有し、複数の前記光源が互いに間隔を保った状態で収容されるシャーシと、
     前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートと、
     前記発光面から発せられた光を前記波長変換シート側へ反射する反射シートであって、複数の前記光源を露出させつつ前記底部を覆う底側反射部を有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、前記底側反射部の表面上に配される複数のドット状の呈色部と、を備える照明装置。
  6.  前記呈色部は、隣り合った前記光源の間において、前記光源の近くよりも前記光源の間の中央側の方が、単位面積当たりの密度又は色の濃度が高くなる請求項5に記載の照明装置。
  7.  前記呈色部は、前記反射シートの前記底側反射部において、前記蛍光体により波長変換された光が前記光源から発せられた光よりも多く供給される箇所に配される請求項5または請求項6に記載の照明装置。
  8.  複数の前記光源のうち、一部の前記光源のみを点灯させ、残りの前記光源を消灯させることで、点灯した前記光源が配される特定の領域からのみ光を出射させる制御手段を備え、
     点灯した前記光源が配される特定の領域の周縁部に、前記呈色部が配される請求項5から請求項7のいずれか1項に記載の照明装置。
  9.  光を発する発光面を有する光源と、
     前記発光面の反対側に配される底部を有し、前記光源を収容するシャーシと、
     前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光に拡散作用を付与するレンチ拡散板と、
     前記発光面から発せられた光を前記レンチ拡散板側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記レンチ拡散板側に向かって立ち上がる傾斜反射部とを有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、少なくとも前記傾斜反射部の表面上に配される複数のドット状の呈色部と、
     前記レンチ拡散板の出光側に配され、前記発光面から発せられて前記レンチ拡散板を透過した光を波長変換する蛍光体を含む波長変換シートと、を備える照明装置。
  10.  前記波長変換シートは、平面視で、前記反射シートの前記底側反射部及び前記傾斜反射部と重なるように配され、
     前記レンチ拡散板よりも厚みが小さく、前記波長変換シートから離された状態で、前記波長変換シートの出光側に配される光学シートを備える請求項9に記載の照明装置。
  11.  光を発する発光面を有する光源と、
     前記発光面の反対側に配される底部を有し、前記光源を収容するシャーシと、
     前記発光面と対向しつつ前記光源から離された状態で配され、前記発光面から発せられた光に拡散作用を付与するレンチ拡散板と、
     前記レンチ拡散板よりも厚みが小さく、前記レンチ拡散板の出光側に配される光学シートと、
     前記光学シートの出光側に配され、前記発光面から発せられて前記レンチ拡散板及び前記光学シートを透過した光を波長変換する蛍光体を含む波長変換シートとを備える照明装置。
  12.  前記発光面から発せられた光を前記レンチ拡散板側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記レンチ拡散板側に向かって立ち上がる傾斜反射部とを有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈し、少なくとも前記傾斜反射部の表面上に配される複数のドット状の呈色部とを備える請求項11に記載の照明装置。
  13.  光を発する発光面を有する光源と、
     前記発光面と対向するよう配され、前記発光面から発せられた光に拡散作用を付与する第1拡散板と、
     前記第1拡散板に対して前記光源側とは反対側に重なる状態で配され、前記発光面から発せられた光に拡散作用を付与する第2拡散板と、
     前記発光面から発せられた光を波長変換する蛍光体を含む波長変換シートであって、前記第1拡散板と前記第2拡散板との間に挟み込まれる波長変換シートと、を備える照明装置。
  14.  前記第1拡散板は、その板面に沿う第1方向に沿って延在し、前記板面に沿い且つ前記第1方向と直交する第2方向に沿って並んで配される複数の第1シリンドリカルレンズからなる第1レンチキュラーレンズを有する請求項13記載の照明装置。
  15.  前記第2拡散板は、前記第2方向に沿って延在し、前記第1方向に沿って並んで配される複数の第2シリンドリカルレンズからなる第2レンチキュラーレンズを有する請求項14記載の照明装置。
  16.  前記光源に対して前記発光面側とは反対側に配される底部と、前記底部の外端部に連ねられて前記第1拡散板の外端部を支持する拡散板支持部と、を有していて前記光源を収容するシャーシと、
     前記第2拡散板の外端部を前記拡散板支持部側とは反対側から押さえる拡散板押さえ部材と、を備えており、
     前記波長変換シートは、その外端部が前記拡散板支持部と前記拡散板押さえ部材との間に、前記第1拡散板及び前記第2拡散板の各外端部を介して挟み込まれる請求項13から請求項15のいずれか1項に記載の照明装置。
  17.  前記光源に対して前記発光面側とは反対側に配される底部を有していて前記光源を収容するシャーシと、
     前記発光面から発せられた光を前記第1拡散板側へ反射する反射シートであって、前記光源を露出させつつ前記底部を覆う底側反射部と、前記底側反射部から外側に傾斜しつつ前記第1拡散板側に向かって立ち上がる傾斜反射部と、を少なくとも有する反射シートと、
     各々が前記発光面から発せられた光と同色、又はその光を構成する各原色光と同色を呈していて少なくとも前記傾斜反射部の表面上に配される複数のドット状の呈色部と、を備える請求項13から請求項16のいずれか1項に記載の照明装置。
  18.  請求項1から請求項17の何れか一項に記載の照明装置と、
     前記照明装置から照射される光を利用して画像を表示する表示領域と、前記表示領域の周りを取り囲む枠状の非表示領域とを有する表示パネルとを備える表示装置。
  19.  請求項18に記載の表示装置を備えるテレビ受信装置。
PCT/JP2018/004316 2017-04-21 2018-02-08 照明装置、表示装置及びテレビ受信装置 WO2018193691A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2017-084691 2017-04-21
JP2017084692A JP6889015B2 (ja) 2017-04-21 2017-04-21 照明装置、表示装置及びテレビ受信装置
JP2017-084692 2017-04-21
JP2017084690A JP6889014B2 (ja) 2017-04-21 2017-04-21 照明装置、表示装置及びテレビ受信装置
JP2017-084690 2017-04-21
JP2017084691A JP6951109B2 (ja) 2017-04-21 2017-04-21 照明装置、表示装置及びテレビ受信装置
JP2017-084693 2017-04-21
JP2017084693A JP2018181813A (ja) 2017-04-21 2017-04-21 照明装置、表示装置及びテレビ受信装置
JP2017-165394 2017-08-30
JP2017165394A JP6907071B2 (ja) 2017-08-30 2017-08-30 照明装置、表示装置及びテレビ受信装置

Publications (1)

Publication Number Publication Date
WO2018193691A1 true WO2018193691A1 (ja) 2018-10-25

Family

ID=63857105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004316 WO2018193691A1 (ja) 2017-04-21 2018-02-08 照明装置、表示装置及びテレビ受信装置

Country Status (1)

Country Link
WO (1) WO2018193691A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614655B1 (en) * 2021-09-28 2023-03-28 Qisda Corporation Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047794A1 (fr) * 2006-10-17 2008-04-24 Kuraray Co., Ltd. Dispositif d'éclairage et dispositif d'affichage d'image associé
JP2009301793A (ja) * 2008-06-11 2009-12-24 Sony Corp 照明装置および表示装置
WO2010113363A1 (ja) * 2009-04-02 2010-10-07 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2015015105A (ja) * 2013-07-03 2015-01-22 ソニー株式会社 蛍光体シート、発光装置および表示装置
WO2016136787A1 (ja) * 2015-02-25 2016-09-01 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2016158370A1 (ja) * 2015-04-01 2016-10-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047794A1 (fr) * 2006-10-17 2008-04-24 Kuraray Co., Ltd. Dispositif d'éclairage et dispositif d'affichage d'image associé
JP2009301793A (ja) * 2008-06-11 2009-12-24 Sony Corp 照明装置および表示装置
WO2010113363A1 (ja) * 2009-04-02 2010-10-07 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2015015105A (ja) * 2013-07-03 2015-01-22 ソニー株式会社 蛍光体シート、発光装置および表示装置
WO2016136787A1 (ja) * 2015-02-25 2016-09-01 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2016158370A1 (ja) * 2015-04-01 2016-10-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11614655B1 (en) * 2021-09-28 2023-03-28 Qisda Corporation Display device
US20230099548A1 (en) * 2021-09-28 2023-03-30 Qisda Corporation Display device

Similar Documents

Publication Publication Date Title
JP7122832B2 (ja) 照明装置、表示装置及びテレビ受信装置
JP5154695B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP6951109B2 (ja) 照明装置、表示装置及びテレビ受信装置
KR101337072B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
WO2011096247A1 (ja) 照明装置、表示装置、及びテレビ受信装置
US9016919B2 (en) Lighting device, display device and television receiver
WO2011077866A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2006059606A (ja) バックライト装置
US8203665B2 (en) Blacklight unit, liquid crystal display device having the same, and method for providing substantially white light for liquid crystal display device
JP7164956B2 (ja) 照明装置、表示装置及びテレビ受信装置
US10184640B2 (en) Lighting device, display device, and television device
JP5337882B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5138813B2 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2014021303A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011077864A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP6907071B2 (ja) 照明装置、表示装置及びテレビ受信装置
WO2018193691A1 (ja) 照明装置、表示装置及びテレビ受信装置
CN111665662A (zh) 照明装置以及显示装置
JP6889014B2 (ja) 照明装置、表示装置及びテレビ受信装置
JP6889015B2 (ja) 照明装置、表示装置及びテレビ受信装置
TW201243438A (en) Laser illuminating type display structure
WO2011083642A1 (ja) 照明装置、表示装置、及びテレビ受信装置
KR101481663B1 (ko) 액정 표시 장치
JP2018181813A (ja) 照明装置、表示装置及びテレビ受信装置
WO2012169439A1 (ja) 照明装置、表示装置、及びテレビ受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788397

Country of ref document: EP

Kind code of ref document: A1