WO2018192588A1 - 流体能转换装置及系统 - Google Patents

流体能转换装置及系统 Download PDF

Info

Publication number
WO2018192588A1
WO2018192588A1 PCT/CN2018/090416 CN2018090416W WO2018192588A1 WO 2018192588 A1 WO2018192588 A1 WO 2018192588A1 CN 2018090416 W CN2018090416 W CN 2018090416W WO 2018192588 A1 WO2018192588 A1 WO 2018192588A1
Authority
WO
WIPO (PCT)
Prior art keywords
sail wing
sail
energy conversion
fluid energy
conversion device
Prior art date
Application number
PCT/CN2018/090416
Other languages
English (en)
French (fr)
Inventor
刘恩均
Original Assignee
刘恩均
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710478719.XA external-priority patent/CN107237712A/zh
Application filed by 刘恩均 filed Critical 刘恩均
Publication of WO2018192588A1 publication Critical patent/WO2018192588A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B9/00Endless-chain machines or engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present application belongs to the field of renewable energy, and in particular relates to an energy conversion device, and more particularly to a fluid energy conversion device and system.
  • the conversion device for fluid energy to mechanical energy such as wind power and hydraulic power is generally a horizontal axis propeller, a vertical shaft blade and various resistance type devices, and the structure is complicated, the single piece is large, the installation is difficult, the cost is high, and the power is high. Difficulties, etc., especially not suitable for installation in complex terrain.
  • the present application is directed to the above technical problem and proposes a fluid energy conversion device and system.
  • the present application provides, in one aspect, a fluid energy conversion device, wherein a closed flexible cable surrounds two or more wheel bodies, and a plurality of sail wings are hinged along the closed flexible cable.
  • the sail wing applies power to the flexible cable under the action of a fluid, pushing the flexible cable to move around the wheel body and driving the wheel body to rotate.
  • the cable is a rope, a chain or a conveyor belt
  • the wheel body is a pulley, a sprocket or a pulley.
  • the sail wing is eccentrically mounted on the cable.
  • the sail wing has a force receiving surface that receives a fluid force, and the force receiving surface is disposed along a length direction of the cable.
  • the sail wing comprises two sail wing bodies symmetrically arranged with respect to the cable, respectively a first sail wing body and a second sail wing body, the first sail wing body and the second sail wing body Fixed or rotatably disposed on the flexible cord.
  • a sail wing frame is disposed between the first sail wing body and the second sail wing body, the sail wing frame is fixedly coupled to the flexible cable, the first sail wing body and the The second sail wing body is fixedly or rotatably disposed on the sail wing frame.
  • a resilient element is provided between the sail wing body and the sail wing frame for limiting the angle of rotation of the sail wing body, and one end of the elastic element is fixedly connected with the sail wing body, the elastic element The other end is fixedly connected to the sail wing frame.
  • the elastic member is one of a torsion spring, a leaf spring or a spring wire.
  • a sail gear is fixedly disposed at an end of the sail wing frame adjacent to the sail wing body, and the steering gear is provided with a steering gear shaft, and the steering gear shaft is fixedly connected with the sail wing body.
  • the sail wing is fixedly disposed at one end of the sail wing frame with a sail wing shaft
  • the sail wing shaft is provided with a cam
  • the cam is fixedly disposed circumferentially with the sail wing shaft
  • the cam One side is provided with a ram, one end of the ram is abutted on the cam, the other end of the ram is in contact with a spring, and one end of the spring away from the ejector is fixedly disposed on the sail frame on.
  • the position of the sail wing frame corresponding to the spring is fixedly disposed with a receiving chamber, and the spring is disposed in the receiving chamber.
  • the sail wing frame is provided with a splint assembly for connecting the flexible cable
  • the splint assembly comprises a fixed clamping plate fixedly disposed on the sail wing frame, and the movable clamping plate clamped with the fixed clamping plate And a first bolt for fastening the movable plate and the fixed plate, the cable is clamped between the fixed plate and the movable plate.
  • the sail wing is provided with a clamp for attaching the cable, the size of the clamp being matched to the size of the cable to clamp the cable.
  • the sail wing frame is provided with a bracket for supporting the cable along the length of the cable, and the bracket is arranged side by side with the clip.
  • Another aspect of the present application provides a fluid energy conversion system, comprising the fluid energy conversion device according to any one of the above, wherein the fluid energy conversion device is at least two groups, and two sets of the fluid energy conversion devices are relatively biased. Shifting, the angle between the offset direction and the horizontal plane is ⁇ , the ⁇ 180° ⁇ n, wherein the n is an integer, and each two adjacent flexible cables are connected by the sail wing assembly Keep paced movements.
  • the device is simple in structure, easy to install and maintain, has a long service life, the same structure of multiple components, easy to standardize and mass production, thereby saving a large amount of materials and reducing manufacturing costs, especially in mountainous areas; since the sails can drive the flexible cable to move at high speed
  • the wheel body driven by the flexible cable can be rotated at a high speed. If it is used for power generation, the generator can be driven by direct drive to save the speed increase machine, reduce the cost, and improve the fluid energy conversion efficiency.
  • This device has high standardization and simple structure. It can design different models according to different working conditions and environments, and can be randomly matched and combined according to actual conditions to form a high-power system with multiple sets of wheel bodies that can be dispersed. Output energy, working in an environment that accommodates high flow rates and low flow rates. Due to the small size of a single piece, it can overcome the difficulty of transportation in mountainous areas and reefs, and it can be used as a support for mountain island reefs. The cost is low; the system is easy to build up to hundreds of watts to several megawatts or even tens of megawatts or hundreds. The megawatt power output is more suitable for the use of mountain gullies, rivers and lakes, tidal currents and tidal power generation.
  • the device If the device is used for hydroelectric power generation, it does not need to build a dam body, has no damage to the natural environment, and can operate normally under any windy conditions. It can operate in a dust storm climate, which can reduce wind and sand energy and effectively suppress sandstorms.
  • This device is designed with appropriate deflection axis of the sail wing and appropriate deflection force, which can be automatically deflected according to the fluid flow rate. It is designed to automatically deflect the large angle of the sail at high flow rate to ensure system safety. It can also be designed to be at high flow rate. The rated power can still be output, unlike the current situation that power generation systems cannot generate electricity at high flow rates.
  • FIG. 1 is a schematic structural view 1 of a fluid energy conversion device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view 2 of a fluid energy conversion device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view 1 of a fluid energy conversion system according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view 2 of a fluid energy conversion system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view 1 of a sail wing connection manner according to an embodiment of the present application.
  • FIG. 6 is a schematic structural view 2 of a sail wing connection manner according to an embodiment of the present application.
  • FIG. 7 is a schematic structural view 3 of a sail wing connection manner according to an embodiment of the present application.
  • FIG. 8 is a schematic structural view 4 of a sail wing connection manner according to an embodiment of the present application.
  • FIG. 9 is a schematic structural view 5 of a sail wing connection manner according to an embodiment of the present application.
  • FIG. 10 is a schematic structural view 6 of a sail wing connection manner according to an embodiment of the present application.
  • an embodiment of the present application provides a fluid energy conversion device, in which a closed flexible cable 2 is wound around two or more wheel bodies 1 , and a plurality of sail wings 3 are distributed along the closed flexible cable 2 .
  • the sail wing 3 applies power to the flexible cable 2 under the action of a fluid, and pushes the flexible cable 2 around the wheel body 1 to drive the wheel body 1 to rotate.
  • the flexible cord 2 is a long-shaped object that is shaped in shape under tension but has no specific shape under the action of force or under pressure, and the flexible cord 2 may be a rope, a chain or a conveyor belt, or the like.
  • the wheel body 1 may be a pulley, a sprocket or a pulley.
  • the sail wing 3 when a fluid force such as wind force or hydraulic force acts on the sail wing 3, under the component force perpendicular to the force receiving surface of the sail wing 3, the sail wing 3 is pushed and driven.
  • the transport member 2 moves, and the wheel body 1 rotates under the action of the cable 2, thereby realizing the conversion of fluid energy into mechanical energy rotating around the axis, which can be converted into electrical energy or other energy.
  • the wheel bodies 1 are spaced apart on the same plane, which in turn may be more advantageous for the movement of the cable 2.
  • the sail wing 3 is eccentrically mounted on the cable 2.
  • the eccentric mounting means that the central axis of the sail wing 3 is disposed on the flexible cable 2 such that the sail wing 3 can adaptively rotate by a certain angle under the action of fluid force.
  • the sail wing 3 has a force receiving surface that receives a fluid force, the force receiving surface being disposed along the length of the cable 2 .
  • the force receiving surface being disposed along the length of the cable 2 .
  • the number of the wheel bodies 1 is two, since the longitudinal directions of the flexible cables 2 surrounding the two wheel bodies 1 are parallel, the force faces of the sail wings are In the same direction, this case is applicable to the case where the fluid force is relatively oriented, such as a river, etc.; when the fluid energy conversion device is used to convert wind energy or other undirected fluid force, the number of the wheel bodies 1 is preferably three. One (as shown in Fig. 1) or more than three, so that fluid forces in different directions can be applied to the sails of at least one of the directions, so that the device is more adaptable and the conversion efficiency is higher.
  • the sail wing 3 comprises two sail wing bodies symmetrically arranged with respect to the cable 2, respectively a first sail wing body 31 and a second sail wing body 32, the first sail wing body 31 and the second sail body 32 are fixedly or rotatably disposed on the cable 2.
  • the symmetric arrangement of the two sail wings prevents the twisting around the cable 2 due to the asymmetry of the force, thereby improving the stability of the device.
  • a sail wing frame 4 is disposed between the first sail wing body 31 and the second sail wing body 32, and the sail wing frame 4 is fixedly coupled to the flexible cable 2,
  • the first sail wing body 31 and the second sail wing body 32 are fixedly or rotatably disposed on the sail wing frame 4.
  • the sail wing frame 4 may be of any shape as long as the connection of the sail wing body to the cable 2 can be achieved.
  • the sail wing frame 4 may be a " ⁇ " shaped member having a recess, and the " ⁇ " shaped member may be connected by two parallel plane members and two parallel planes fixedly connected.
  • the intermediate planar member of the member is formed or formed by bending a flat member at both ends.
  • the sail wing frame 4 is provided with a splint assembly for connecting the flexible cable 2, the splint assembly
  • the fixed clamping plate 401 fixedly disposed on the sail wing frame 4, the movable clamping plate 402 clamped with the fixed clamping plate 401, and the first bolt 403 for fastening the movable clamping plate 402 and the fixed clamping plate 401,
  • the cable 2 is clamped between the fixed plate 401 and the movable plate 402.
  • the clamping plate 401 and the movable clamping plate 402 are provided with a size matching with the flexible cable 2 for the flexible cable 2 to pass through. And a clamped hole that is interference fit with the cable 2 . This way it is possible to increase the contact area of the splint assembly with the cable 2 so that the grip is more secure.
  • a retaining pad 404 is disposed between the first bolt 403 and the movable clamping plate 402 to prevent the first bolt 403 from loosening.
  • the sail wing frame 4 is coupled to the transmission member 2, as shown in FIG. 10, the sail wing frame 4 is provided with a clamp 411 for connecting the flexible cable 2,
  • the size of the band 411 cooperates with the size of the cable 2 to clamp the cable 2.
  • the clip 411 is preferably annular.
  • a connecting plate 413 can be disposed and fixed to the sail wing frame 4 by the first bolt 403 to facilitate the installation and replacement of the clamp 411.
  • a retaining pad 404 may be disposed between the first bolt 403 and the connecting plate 413.
  • a bracket 412 for supporting the cable 2 is disposed on the sail wing frame 4 along the length direction of the cable 2, the bracket 412 and the bracket The clamps 411 are arranged side by side.
  • the bracket 412 may be provided in a semicircular shape or the like as long as the cable 2 can be supported.
  • the clip 411 can also sandwich the cable 2, which is more advantageous for the cable.
  • the fixing of the cable 2 prevents the relative movement of the cable 2 and the clamp 411.
  • Figure 5 (a) is a schematic view showing the structure in which the sail wing body and the sail wing frame 4 are connected in a fixed manner
  • Figure 5 (b) is a sectional view in the AA direction of Figure 5 (a), which is the position of the sail wing 3 through the wheel body 1 s position.
  • the first sail wing body 31 and the second sail wing body 32 are fixedly disposed on the sail wing frame 4 such that the sail wing 3 can drive the flexible cable 2 to rotate.
  • the first sail wing body 31 and the second sail wing body 32 may be welded to both ends of the sail wing frame 4 by welding, respectively.
  • the first sail wing body 31 and the second sail wing body 32 are rotatably disposed on the sail wing frame 4 on.
  • the sail wing body can be automatically deflected according to the fluid flow rate, and the rated power can still be output under the condition of large flow rate, which solves the current situation that the power generation system cannot generate electricity under the large flow rate condition.
  • an elastic element, a steering gear or a jack cam structure may be disposed between the sail wing frame 4 and the sail wing body, and It may be any other way in which the above object can be achieved.
  • an elastic element is provided between the sail wing body and the sail wing frame 4 to limit the rotation angle of the sail wing body, and one end of the elastic element is fixedly connected to the sail wing body.
  • the other end of the elastic member is fixedly coupled to the sail wing frame 4 to control the rotation of the sail wing body by utilizing the elastic force and restoring force of the elastic member.
  • the elastic member may be a torsion spring 5 as shown in Fig. 6, a leaf spring 6 shown in Fig. 7, or a spring steel wire 7 shown in Fig. 8.
  • a torsion spring 5 is disposed between the sail wing frame 4 and the sail wing body, and the specific structure is as follows:
  • a sail wing shaft 301 is disposed at one end of the sail wing body near the sail wing frame, and the sail wing shaft 301 is rotatably connected to the sail wing frame 4, and the torsion spring 5 is sleeved on the sail On the wing shaft 301, one end of the torsion spring 5 is fixedly connected to the sail wing body, and the other end is fixedly connected to the sail wing frame 4.
  • the fixed connection manner may be any one, as long as a fixed connection can be realized. For example, as shown in FIG.
  • a hole may be formed in a bottom portion of the sail wing body and a portion corresponding to the end of the torsion spring 5 on the sail wing frame 4, Both ends of the torsion spring 5 are respectively inserted into the corresponding holes to achieve fixing, and in order to avoid relative movement, the fixing may be further fixed by welding or gluing.
  • the elastic force and the restoring force of the torsion spring 5 are utilized to make the sail wing body rotate under a certain angle range under the action of the fluid force, and can also be reset in the case where the fluid force is released.
  • a leaf spring 6 is disposed between the sail wing frame 4 and the sail wing body, and the specific structure is as follows:
  • a sail wing shaft 301 is disposed at an end of the sail wing body adjacent to the sail wing frame, and the sail wing shaft 301 is rotatably coupled to the sail wing bracket 4, and the leaf spring 6 has one end and the sail wing
  • the body is fixedly connected and the other end is fixedly connected to the sail wing frame 4.
  • the fixed connection manner may be any manner as long as a fixed connection can be realized.
  • a spring seat 601 can be fixedly disposed on the sail wing frame 4, and the bottom of the sail wing body is provided with a plate spring limit.
  • the position of the leaf spring 6 is fixed on the leaf spring seat 601, and the other end is disposed on the sail wing body through the leaf spring limiting seat 602.
  • the elastic force and the restoring force of the leaf spring 6 are used to make the sail wing body rotate under a certain angle range under the action of the fluid force, and can also be reset in the case where the fluid force is released.
  • a spring wire 7 is disposed between the sail wing frame 4 and the sail wing body, and the specific structure is as follows:
  • a sail wing shaft 301 is disposed at one end of the sail wing body near the sail wing frame, the sail wing shaft 301 is rotatably connected to the sail wing frame 4, and the spring wire 7 is U-shaped, One end of the spring wire 7 is fixedly connected to the sail wing body, and the other end is fixedly connected to the sail wing frame 4.
  • the fixed connection manner may be any manner as long as a fixed connection can be realized. For example, as shown in FIG.
  • the bottom of the sail wing body is provided with a sleeve 701 sized to fit the spring steel wire 7, the sail A hole is formed in the wing frame 4 corresponding to the spring wire 7, and one end of the spring wire 7 is inserted into the sleeve 701, and the other end of the spring wire 7 is inserted into a hole in the sail wing frame 4.
  • the elastic force and the restoring force of the spring wire 7 are used to make the sail wing body rotate under a certain angle range under the action of the fluid force, and can also be reset in the case where the fluid force is released.
  • the sail wing frame 4 is fixedly provided with a steering gear near one end of the sail wing body.
  • the steering gear 8 is provided with a steering gear shaft 801, and the steering gear shaft 801 is fixedly coupled to the sail wing body.
  • the steering gear shaft 801 is driven by the steering gear 8 to control the rotation of the sail wing body.
  • the sail wing body As shown in FIG. 10, as another embodiment of the sail wing body rotatably disposed on the sail wing frame 4 in a certain angular range, the sail wing body is fixedly provided with a sail wing shaft near one end of the sail wing frame. 301, the sail wing shaft 301 is rotatably connected to the sail wing frame 4, and the sail wing shaft 301 is provided with a cam 901, and the cam 901 is fixedly disposed circumferentially with the sail wing shaft 301.
  • One side of the cam 901 is provided with a jack 902.
  • One end of the jack 902 abuts against the cam 901, and the other end of the jack 902 is in contact with a spring 903.
  • the spring 903 is away from the jack 902.
  • One end is fixedly disposed on the sail wing frame 4.
  • the position at which the surface of the cam is the smallest with respect to the cam shaft is defined as a low position, and the position at which the distance is the largest is defined as a high position.
  • the jack 903 abuts against the lower position of the cam 901, and the spring is in an equilibrium state.
  • the sail wing body drives the sail wing shaft 301 to rotate.
  • the cam 901 is rotated, and the cam surface that is in contact with the jack 902 gradually changes to a high position during the rotation, and the compression spring 903 contracts.
  • the cam 901 is rotated by the spring 903, and the jack 902 is rotated.
  • the cam surface of the contact gradually returns to the low position.
  • a position of the spring 903 on the sail wing frame 4 is fixedly disposed with a receiving chamber 904, and the spring 903 is disposed in the receiving chamber 904 to fix the position of the spring.
  • an adjusting bolt 905 is disposed at an end of the receiving chamber 904 away from the spring 903, and the pressure of the spring 903 can be adjusted by adjusting the bolt 905 to achieve an optimal pressing force to the cam 901, and The adjusting bolts 905 are removed to replace the springs 903 of different spring constants or to replace the worn jacks 902.
  • the sail wing shaft 301 is engaged with the sail wing frame 4 by a screw connection to limit the angle of rotation of the sail wing body and to prevent the sail wing shaft 301 from coming out of the sail wing frame 4.
  • other connections can be made, such as by bolting or articulating.
  • the embodiment of the present application further provides the structural composition of the sail wing body.
  • the sail wing body includes a sail wing shell 302, a sail wing bottom plate 303 disposed at one end of the sail wing shell 302, and the sail wing shaft 301 protrudes from the sail wing bottom plate 303.
  • the sail wing structure is hollow inside and light in weight, which is convenient for rapid movement under the force of fluid force.
  • the outer gap of the sail wing shaft 301 is provided with a sail wing sleeve 304, and the sail wing shaft 301 is in the sail wing
  • One end of the shaft sleeve 304 is fastened by a nut 305 and a second bolt 306.
  • a seal ring is disposed in the sail bottom plate 303.
  • the sail wing shaft 301 is provided with a sail wing positioning cylinder 311 which is sized in cooperation with the sail wing shaft 301.
  • the sail wing axle positioning cylinder 311 is fixedly coupled to the sail wing shaft 301, and the two can be welded together by welding.
  • the above two embodiments provide a manner of fixing the sail wing shaft 301, but it can be understood that it can also be any fixing manner that can achieve the above object.
  • the present application further provides a fluid energy conversion system, comprising the fluid energy conversion device according to any one of the above embodiments, wherein the fluid energy conversion device is at least two groups.
  • the two groups of fluid energy conversion devices are disposed opposite to each other, and the angle between the offset direction and the horizontal plane is ⁇ , and the ⁇ 180° ⁇ n, wherein the n is an integer, and each of the two adjacent softnesses
  • the cables 2 are connected by the sail wings 3 to maintain synchronized motion.
  • the sail wing 3 includes a sail wing body, and two ends of the sail wing body are respectively connected to two adjacent transmission members 2 to drive the two transmission members 2 Synchronous movement.
  • the sail wing 3 includes two sail wing bodies symmetrically disposed with respect to the transmission member, and the adjacent two sets of fluid energy conversion devices share the sail wing 3
  • One of the sail wing bodies, that is, the adjacent two transmission members 2 are connected by the sail wing body to achieve synchronous movement.
  • Two or more sets of fluid energy conversion devices can be connected together, and can be randomly matched and combined according to actual application conditions to form a high-power fluid energy conversion system.
  • Multiple sets of wheel bodies can be operated at the same time, disperse output energy, and improve fluid energy to mechanical energy. Conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Abstract

流体能转换装置,闭合柔索(2)环绕在两个或多个轮体(1)上,沿着闭合柔索(2)分布铰链多个帆翼(3),帆翼(3)在流体的作用下给柔索(2)施加动力,推动柔索(2)绕着轮体(1)移动并带动轮体(1)自转。该流体能转换装置构造简单,容易安装和维修,提高流体能转换效率。

Description

流体能转换装置及系统 技术领域
本申请属于可再生能源领域,尤其涉及一种能量转换装置,特别是一种流体能转换装置及系统。
背景技术
由于人类社会的发展进步,有限的自然资源被过度开发,同时环境遭到污染。随着可持续发展的提出,可再生资源的利用和转换越来越受到人们的关注。其中,目前被广泛应用的有风力、水力、太阳能等。
现有技术中,针对风力、水力等流体能量向机械能的转换装置一般是水平轴旋桨、垂直轴叶片和各种阻力型装置,其结构复杂、单件大、安装困难、成本高、大功率困难等,尤其不宜在复杂地形安装。
发明内容
本申请针对上述技术问题,提出一种流体能转换装置及系统。
为了达到上述目的,本申请一方面提供了一种流体能转换装置,其中,闭合的柔索环绕在两个或多个轮体上,沿着闭合的所述柔索分布铰链多个帆翼,所述帆翼在流体的作用下对所述柔索施加动力,推动所述柔索绕着所述轮体移动并带动所述轮体自转。
作为优选,所述柔索为绳索、链条或传送带,所述轮体为滑轮、链轮或带轮。
作为优选,所述帆翼偏心地安装于所述柔索上。
作为优选,所述帆翼具有一接受流体力作用的受力面,所述受力面沿所述柔索的长度方向设置。
作为优选,所述帆翼包括相对于柔索对称设置的两个帆翼体,分别为第一帆翼体和第二帆翼体,所述第一帆翼体和所述第二帆翼体固定或可转动地设置于所述柔索上。
作为优选,所述第一帆翼体和所述第二帆翼体之间设置有帆翼架,所述帆翼架固定连接于所述柔索上,所述第一帆翼体和所述第二帆翼体固定或可转动地设置于所述帆翼架上。
作为优选,所述帆翼体与所述帆翼架之间设置有用以限制所述帆翼体转动角度的弹性元件,所述弹性元件的一端与所述帆翼体固定连接,所述弹性元件的另一端与所述帆翼架固定连接。
作为优选,所述弹性元件为扭簧、板弹簧或弹簧钢丝中的一种。
作为优选,所述帆翼架靠近所述帆翼体的一端固定设置有舵机,所述舵机上设置有舵机轴,所述舵机轴与所述帆翼体固定连接。
作为优选,所述帆翼靠近所述帆翼架的一端固定设置有帆翼轴,所述帆翼轴上设置有凸轮,所述凸轮与所述帆翼轴周向固定设置,所述凸轮的一侧设置有顶杆,所述顶杆的一端抵在所述凸轮上,所述顶杆的另一端接触设置有弹簧,所述弹簧远离所述顶杆的一端固定设置于所述帆翼架上。
作为优选,所述帆翼架上对应所述弹簧的位置固定设置有容纳室,所述弹簧设置于所述容纳室内。
作为优选,所述帆翼架上设置有用以连接所述柔索的夹板组件,所述夹板组件包括固定设置于所述帆翼架上的定夹板,与所述定夹板配合夹紧的动夹板以及用以紧固所述动夹板和所述定夹板的第一螺栓,所述柔索夹紧设置于所述定夹板和所述动夹板之间。
作为优选,所述帆翼架上设置有用以连接所述柔索的卡箍,所述卡箍的尺寸与所述柔索的尺寸配合以夹紧所述柔索。
作为优选,所述帆翼架上沿柔索长度方向设置有用以支撑所述柔索的支架,所述支架与所述卡箍并排设置。
本申请另一方面提供了一种流体能转换系统,包括上述任一项所述的流体能转换装置,所述流体能转换装置至少为两组,相邻两组所述流体能转换装置相对偏移设置,偏移方向与水平面的夹角为α,所述α≠180°×n,其中所述n为 整数,每两个相邻的所述柔索之间通过所述帆翼组件连接以保持同步运动。
与现有技术相比,本申请的优点和积极效果在于:
1.此装置构造简单、容易安装和维修、寿命长,多构件结构相同,易于标准化和批量生产,从而节约大量材料降低制造成本,尤其是山区安装更加节约;由于帆翼可以带动柔索高速移动,被柔索带动的轮体就可以高速转动,如果用于发电可以用直驱方式带动发电机,节约升速机,减少成本,提高流体能转换效率。
2.此装置标准化程度高,结构简单,可以根据不同工况和环境设计不同的机型,并且可以根据实际情况多组装置随意搭配和组合,形成大功率系统,具有多组轮体,可以分散输出能量,适应大流速和低流速的环境下工作。由于单件体积小,可以克服山区和岛礁运输困难的问题,并且可利用山体岛礁做支架,成本低;系统容易建成小到数百瓦大到数兆瓦乃至数十兆瓦或数百兆瓦的功率输出,更加适合利用山涧沟壑、江河湖泊、潮流及潮汐发电。
3.此装置若用在水力发电,无需构建坝体,对自然环境无破坏,并且可以在任何大风情况下正常运行,在沙尘暴的气候下运行,能够降低风沙能,有效抑制沙尘暴。
4.此装置设计合适的帆翼偏转轴线和适当的偏转力,可以根据流体流速情况自动偏转,设计在大流速情况下帆翼大角度自动偏转,保证系统安全,也可以设计成在大流速情况下依然可以输出额定功率,不像目前发电系统在大流速情况下不能发电的现状。
附图说明
图1为本申请实施例所述流体能转换装置的结构示意图一;
图2为本申请实施例所述流体能转换装置的结构示意图二;
图3为本申请实施例所述流体能转换系统的结构示意图一;
图4为本实用新型实施例所述流体能转换系统的结构示意图二;
图5为本申请实施例中帆翼连接方式的结构示意图一;
图6为本申请实施例中帆翼连接方式的结构示意图二;
图7为本申请实施例中帆翼连接方式的结构示意图三;
图8为本申请实施例中帆翼连接方式的结构示意图四;
图9为本申请实施例中帆翼连接方式的结构示意图五;
图10为本申请实施例中帆翼连接方式的结构示意图六。
以上各图中:1、轮体;2、柔索;3、帆翼;301、帆翼轴;302、帆翼壳;303、帆翼底板;304、帆翼轴套筒;305、丝母;306、第二螺栓;311、帆翼轴定位筒;31、第一帆翼体;32、第二帆翼体;4、帆翼架;401、定夹板;402、动夹板;403、第一螺栓;404、止退垫;411、卡箍;412、支架;413、连接板;5、扭簧;6、板弹簧;601、板弹簧座;602、板弹簧限位座;7、弹簧钢丝;701、套管;8、舵机;801、舵机轴;901凸轮;902、顶杆;903、弹簧;904、容纳室;905、调节螺栓。
具体实施方式
下面,通过示例性的实施方式对本申请进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
在本申请的描述中,需要说明的是,术语“内”、“外”、“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。本申请中所述的“固定连接”为两连接部件之间不产生相对运动的连接。所述“帆翼体”是指的第一帆翼体31或第二帆翼体32。
如图1,本申请实施例提供了一种流体能转换装置,闭合的柔索2环绕在 两个或多个轮体1上,沿着闭合的所述柔索2分布铰链多个帆翼3,所述帆翼3在流体的作用下对所述柔索2施加动力,推动所述柔索2绕着所述轮体1移动并带动所述轮体1自转。
在上述实施例中,所述柔索2为在张力作用下形状确定但当无力作用或在压力作用下无特定形状的长条状物体,所述柔索2可以为绳索、链条或传送带等,对应不同的所述柔索2,所述轮体1可以选用滑轮、链轮或带轮。
本实施例所提供的流体能转换装置,当流体力,如风力或水力作用在帆翼3上时,在垂直于帆翼3受力面的分力作用下,帆翼3被推动,带动所述传送件2运动,轮体1在柔索2的作用下自转,从而实现将流体能转化为绕轴线旋转的机械能,进而可以转化为电能或其它能量。
作为优选,所述轮体1于同一平面上间隔设置,进而可以更有利于柔索2的运动。
作为优选,所述帆翼3偏心地安装于所述柔索2上。偏心安装是指偏离帆翼3的中轴线设置在所述柔索2上,从而使得帆翼3在流体力的作用下可适应性地旋转一定角度。
在一优选实施例中,所述帆翼3具有一接受流体力作用的受力面,所述受力面沿所述柔索2的长度方向设置。如图2所示,当所述轮体1数量为两个时,由于环绕于两个所述轮体1上的所述柔索2的长度方向平行,因此所述帆翼的受力面均为同一方向,此种情况适用于流体力较为定向的情况下,如河流等;当此流体能转换装置用于转换风能或其它不定向的流体力时,所述轮体1的数量优选为三个(如图1所示)或三个以上,以使不同方向的流体力均可作用于其中至少一个方向的帆翼上,使得该装置的适应性更强,转换效率更高。
在一优选实施例中,所述帆翼3包括相对于柔索2对称设置的两个帆翼体,分别为第一帆翼体31和第二帆翼体32,所述第一帆翼体31和所述第二帆翼体32固定或可转动地设置于所述柔索2上。在本实施例中,两帆翼体对称设置可避免由于受力不对称而造成的绕所述柔索2的扭转,提高装置的稳定性。
在一优选实施例中,所述第一帆翼体31和所述第二帆翼体32之间设置有帆翼架4,所述帆翼架4固定连接于所述柔索2上,所述第一帆翼体31和所述第二帆翼体32固定或可转动地设置于所述帆翼架4上。
在上述实施例中,帆翼架4可以为任一形状,只要可以实现帆翼体与柔索2的连接即可。如图5-图10所示,作为一种实施方式,帆翼架4可以为具有一凹部的“匚”形构件,所述“匚”形构件可以由两平行平面构件以及固定连接两平行平面构件的中间平面构件组成,或者由一个平面构件两端弯曲而形成。
作为所述帆翼架4与所述传动件2连接的一种实施方式,如图5所示,所述帆翼架4上设置有用以连接所述柔索2的夹板组件,所述夹板组件包括固定设置于帆翼架4上的定夹板401,与所述定夹板401配合夹紧的动夹板402,以及用于紧固所述动夹板402和所述定夹板401的第一螺栓403,所述柔索2夹紧设置于所述定夹板401和所述动夹板402之间。
进一步地,作为优选,为了更稳定的夹持所述柔索2,所述定夹板401与所述动夹板402之间开设有与所述柔索2尺寸匹配以供所述柔索2穿过并夹紧的孔,该孔与所述柔索2过盈配合。这种方式可以增加夹板组件与柔索2的接触面积,使得夹持更紧固。
作为优选,所述第一螺栓403与动夹板402之间设置有止退垫404,以防止第一螺栓403松动。
作为所述帆翼架4与所述传动件2连接的另一种实施方式,如图10所示,所述帆翼架4上设置有用以连接所述柔索2的卡箍411,所述卡箍411的尺寸与所述柔索2的尺寸配合以夹紧所述柔索2。所述卡箍411优选为圆环形。
进一步地,可以设置一连接板413并配合第一螺栓403将所述卡箍411固定设置于帆翼架4上,便于卡箍411的安装与更换。同样,还可以在第一螺栓403与连接板413之间设置止退垫404。
作为优选,参见图10(c)、(e),所述帆翼架4上沿所述柔索2的长度方向设置有用以支撑所述柔索2的支架412,所述支架412与所述卡箍411并排 设置。所述支架412可以设置为半圆形或其它形状,只要可以支撑柔索2即可。
作为上述实施方式的变形,如图7(b)所示,当柔索2为由多股编织组成的绳索时,所述卡箍411还可以分股夹所述柔索2,更有利于所述柔索2的固定,防止柔索2与卡箍411的相对运动。
以上所列举的仅是两种具体实施方式,还可以采用其它任何可以实现帆翼架4与传动件2连接的方式。
图5(a)为帆翼体与帆翼架4以固定方式连接的结构示意图,图5(b)为图5(a)中A-A方向的截面图,此位置为帆翼3通过轮体1的位置。在本实施例中,所述第一帆翼体31和所述第二帆翼体32固定地设置于所述帆翼架4上,从而所述帆翼3可带动所述柔索2转动。具体地,可以直接采用焊接的方式将第一帆翼体31和第二帆翼体32分别焊接在所述帆翼架4的两端。
在以上这种固定连接的情况下,由于帆翼体固定设置于帆翼架4上并且帆翼架4固定设置于柔索2上,当帆翼体在流体力的作用下旋转一定角度时,则帆翼架4会跟随帆翼体旋转相同的角度,并使得所述柔索2在固定连接位置小幅度扭转。
为了避免固定连接对流体力向机械能的转换效果的影响,作为一种优选的实施方式,所述第一帆翼体31和所述第二帆翼体32可转动地设置于所述帆翼架4上。帆翼体可根据流体流速自动偏转,在大流速的情况下依然可以输出额定功率,解决了目前发电系统在大流速情况下不能发电的现状。
在上述实施例中,为了限制所述帆翼体的转动角度,可采用在所述帆翼架4与所述帆翼体之间设置弹性元件、舵机或顶杆凸轮结构的方式实现,还可以为可实现上述目的的其它任一方式。
作为一种实施方式,所述帆翼体与所述帆翼架4之间设置有用以限制所述帆翼体转动角度的弹性元件,所述弹性元件的一端与所述帆翼体固定连接,所述弹性元件的另一端与所述帆翼架4固定连接,以实现利用弹性元件的弹力和恢复力控制帆翼体的转动。具体地,所述弹性元件可以采用如图6所述的扭簧 5、图7中所示的板弹簧6或者图8中所示的弹簧钢丝7。
(1)如图6所示,在所述帆翼架4与所述帆翼体之间设置有扭簧5,具体结构如下:
所述帆翼体靠近所述帆翼架的一端设置有帆翼轴301,所述帆翼轴301可与所述帆翼架4可相对转动连接,所述扭簧5套接于所述帆翼轴301上,并且所述扭簧5一端与所述帆翼体固定连接,另一端与所述帆翼架4固定连接。固定连接方式可以采用任一方式,只要可以实现固定连接即可,例如,如图6所示,可在帆翼体底部以及帆翼架4上与扭簧5端部对应的部位开设有孔,扭簧5的两端分别插入对应的孔中以实现固定,为了避免相对运动可利用焊接或胶粘的方式进一步固定。本实施例利用扭簧5的弹性力和恢复力使得帆翼体既可以在流体力的作用下在一定角度范围内旋转,又可以在流体力解除的情况下复位。
(2)如图7所示,在所述帆翼架4与所述帆翼体之间设置有板弹簧6,具体结构如下:
所述帆翼体靠近所述帆翼架的一端设置有帆翼轴301,所述帆翼轴301可与所述帆翼架4可相对转动连接,所述板弹簧6一端与所述帆翼体固定连接,另一端与所述帆翼架4固定连接。固定连接方式可以采用任一方式,只要可以实现固定连接即可,例如,如图7所示,可在帆翼架4上固定设置板弹簧座601,所述帆翼体底部设置有板弹簧限位座602,所述板弹簧6的一端固定设置于板弹簧座601上,另一端通过板弹簧限位座602设置于帆翼体上。本实施例利用板弹簧6的弹性力和恢复力使得帆翼体既可以在流体力的作用下在一定角度范围内旋转,又可以在流体力解除的情况下复位。
(3)如图8所示,在所述帆翼架4与所述帆翼体之间设置有弹簧钢丝7,具体结构如下:
所述帆翼体靠近所述帆翼架的一端设置有帆翼轴301,所述帆翼轴301可与所述帆翼架4可相对转动连接,所述弹簧钢丝7为U形,所述弹簧钢丝7 的一端与所述帆翼体固定连接,另一端与所述帆翼架4固定连接。固定连接方式可以采用任一方式,只要可以实现固定连接即可,例如,如图8所示,所述帆翼体的底部设置有与所述弹簧钢丝7尺寸配合的套管701,所述帆翼架4上对应所述弹簧钢丝7开设有孔,所述弹簧钢丝7一端插入到所述套管701内,所述弹簧钢丝7的另一端插入帆翼架4上的孔中。本实施例利用弹簧钢丝7的弹性力和恢复力使得帆翼体既可以在流体力的作用下在一定角度范围内旋转,又可以在流体力解除的情况下复位。
如图9所示,作为帆翼体在一定角度范围内可转动地设置于帆翼架4上的另一实施例,所述帆翼架4靠近所述帆翼体的一端固定设置有舵机8,所述舵机8上设置有舵机轴801,所述舵机轴801与所述帆翼体固定连接。通过舵机8驱动舵机轴801进而实现控制帆翼体的转动。
如图10所示,作为帆翼体在一定角度范围内可转动地设置于帆翼架4上的再一实施例,所述帆翼体靠近所述帆翼架的一端固定设置有帆翼轴301,所述帆翼轴301与所述帆翼架4可相对转动连接,所述帆翼轴301上设置有凸轮901,所述凸轮901与所述帆翼轴301周向固定设置,所述凸轮901的一侧设置有顶杆902,所述顶杆902的一端抵在所述凸轮901上,所述顶杆902的另一端接触设置有弹簧903,所述弹簧903远离所述顶杆902的一端固定设置于所述帆翼架4上。
在本实施例中,所述凸轮的表面相对于凸轮转轴距离最小的位置定义为低位,距离最大的位置定义为高位。作为优选,当没有流体力作用时,所述顶杆903抵于所述凸轮901的低位上,弹簧处于平衡状态,当流体力作用在帆翼体上时,帆翼体会带动帆翼轴301转动,进而带动凸轮901转动,在转动过程中与顶杆902接触的凸轮面逐渐向高位变化,压迫弹簧903收缩,当流体力解除时,在弹簧903的作用下,凸轮901回转,与顶杆902接触的凸轮面逐渐回复至低位。
作为优选,所述帆翼架4上对应所述弹簧903的位置固定设置有容纳室 904,所述弹簧903设置于所述容纳室904内以实现对弹簧位置的固定。进一步地,在所述容纳室904远离所述弹簧903的一端设置有调节螺栓905,可通过调节螺栓905调节弹簧903的压力,以实现对凸轮901施加最佳的压紧力,此外还可以通过将调节螺栓905卸下从而更换不同弹性系数的弹簧903或更换磨损的顶杆902。
作为优选,所述帆翼轴301与帆翼架4通过螺纹连接配合,可限制帆翼体的转动角度,并可防止帆翼轴301从帆翼架4中脱出。此外,还可以为其它连接方式,如通过螺栓连接或铰接。
本申请实施例进一步提供了所述帆翼体的结构组成。
作为一种实施方式,所述帆翼体包括帆翼壳302、设置于所述帆翼壳302一端的帆翼底板303,所述帆翼轴301凸出于所述帆翼底板303。该帆翼结构内部中空,重量轻,有利于在流体力的推动下快速运动。
作为一种实施例,如图6(a)所示,在所述帆翼壳302内,所述帆翼轴301外部间隙设置有帆翼轴套筒304,所述帆翼轴301在帆翼轴套筒304内的一端通过丝母305和第二螺栓306紧固。作为优选,所述帆翼底板303内设置有密封圈。
作为另一种实施例,如图10(a)所示,在所述帆翼壳302内,所述帆翼轴301外设置有与帆翼轴301尺寸配合的帆翼轴定位筒311,所述帆翼轴定位筒311与所述帆翼轴301固定连接,如可以采用焊接的方式将两者焊为一体。
上述两实施例提供了所述帆翼轴301的固定方式,但可以理解的是,还可以为任一可以实现上述目的的固定方式。
如图3、图4所示,本申请进一步提供一种流体能转换系统,其特征在于,包括上述任一实施例所述的流体能转换装置,所述流体能转换装置至少为两组,相邻两组所述流体能转换装置相对偏移设置,偏移方向与水平面的夹角为α,所述α≠180°×n,其中所述n为整数,每两个相邻的所述柔索2之间通过所述帆翼3连接以保持同步运动。
作为一种实施方式,如图3所示,所述帆翼3包括一个帆翼体,所述帆翼体的两端分别连接相邻的两个所述传动件2,以带动两传动件2同步运动。
作为另一种实施方式,如图4所示,所述帆翼3包括相对于所述传动件对称设置的两个帆翼体,所述相邻两组流体能转换装置之间共用帆翼3中的一个帆翼体,即相邻的两个传动件2之间通过帆翼体连接,以实现同步运动。
将两组或多组流体能转换装置连接在一起,可以根据实际应用情况随意搭配和组合,形成大功率的流体能转换系统,多组轮体可同时运转,分散输出能量,提高流体能向机械能的转换效率。
以上所述,仅是本申请的较佳实施例而已,并非是对本申请作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本申请技术方案的保护范围。

Claims (15)

  1. 一种流体能转换装置,其特征在于:闭合的柔索环绕在两个或多个轮体上,沿着闭合的所述柔索分布铰链多个帆翼,所述帆翼在流体的作用下对所述柔索施加动力,推动所述柔索绕着所述轮体移动并带动所述轮体自转。
  2. 根据权利要求1所述的流体能转换装置,其特征在于:所述柔索为绳索、链条或传送带,所述轮体为滑轮、链轮或带轮。
  3. 根据权利要求1所述的流体能转换装置,其特征在于:所述帆翼偏心地安装于所述柔索上。
  4. 根据权利要求1所述的流体能转换装置,其特征在于:所述帆翼具有一接受流体力作用的受力面,所述受力面沿所述柔索的长度方向设置。
  5. 根据权利要求1或3所述的流体能转换装置,其特征在于:所述帆翼包括相对于柔索对称设置的两个帆翼体,分别为第一帆翼体和第二帆翼体,所述第一帆翼体和所述第二帆翼体固定或可转动地设置于所述柔索上。
  6. 根据权利要求4所述的流体能转换装置,其特征在于:所述第一帆翼体和所述第二帆翼体之间设置有帆翼架,所述帆翼架固定连接于所述柔索上,所述第一帆翼体和所述第二帆翼体固定或可转动地设置于所述帆翼架上。
  7. 根据权利要求6所述的流体能转换装置,其特征在于:所述帆翼体与所述帆翼架之间设置有用以限制所述帆翼体转动角度的弹性元件,所述弹性元件的一端与所述帆翼体固定连接,所述弹性元件的另一端与所述帆翼架固定连接。
  8. 根据权利要求7所述的流体能转换装置,其特征在于:所述弹性元件为扭簧、板弹簧或弹簧钢丝中的一种。
  9. 根据权利要求6所述的流体能转换装置,其特征在于:所述帆翼架靠近所述帆翼体的一端固定设置有舵机,所述舵机上设置有舵机轴,所述舵机轴与所述帆翼体固定连接。
  10. 根据权利要求6所述的流体能转换装置,其特征在于:所述帆翼靠近 所述帆翼架的一端固定设置有帆翼轴,所述帆翼轴上设置有凸轮,所述凸轮与所述帆翼轴周向固定设置,所述凸轮的一侧设置有顶杆,所述顶杆的一端抵在所述凸轮上,所述顶杆的另一端接触设置有弹簧,所述弹簧远离所述顶杆的一端固定设置于所述帆翼架上。
  11. 根据权利要求10所述的流体能转换装置,其特征在于:所述帆翼架上对应所述弹簧的位置固定设置有容纳室,所述弹簧设置于所述容纳室内。
  12. 根据权利要求6所述的流体能转换装置,其特征在于:所述帆翼架上设置有用以连接所述柔索的夹板组件,所述夹板组件包括固定设置于所述帆翼架上的定夹板,与所述定夹板配合夹紧的动夹板以及用以紧固所述动夹板和所述定夹板的第一螺栓,所述柔索夹紧设置于所述定夹板和所述动夹板之间。
  13. 根据权利要求6所述的流体能转换装置,其特征在于:所述帆翼架上设置有用以连接所述柔索的卡箍,所述卡箍的尺寸与所述柔索的尺寸配合以夹紧所述柔索。
  14. 根据权利要求13所述的流体能转换装置,其特征在于:所述帆翼架上沿柔索长度方向设置有用以支撑所述柔索的支架,所述支架与所述卡箍并排设置。
  15. 一种流体能转换系统,其特征在于,包括如权利要求1-14任一项所述的流体能转换装置,所述流体能转换装置至少为两组,相邻两组所述流体能转换装置相对偏移设置,偏移方向与水平面的夹角为α,所述α≠180°×n,其中所述n为整数,每两个相邻的所述柔索之间通过所述帆翼组件连接以保持同步运动。
PCT/CN2018/090416 2017-06-09 2018-06-08 流体能转换装置及系统 WO2018192588A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720713568 2017-06-09
CN201720713568.7 2017-06-09
CN201710478719.X 2017-06-09
CN201710478719.XA CN107237712A (zh) 2017-06-09 2017-06-09 环柔索帆翼流体能转换装置

Publications (1)

Publication Number Publication Date
WO2018192588A1 true WO2018192588A1 (zh) 2018-10-25

Family

ID=63856217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090416 WO2018192588A1 (zh) 2017-06-09 2018-06-08 流体能转换装置及系统

Country Status (1)

Country Link
WO (1) WO2018192588A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1546698A1 (ru) * 1988-02-09 1990-02-28 Ufimsk Aviatsion Inst Уctpoйctbo для иcпoльзobahия эhepгии tekучeй cpeды
CN101413471A (zh) * 2007-10-21 2009-04-22 梁运富 直回水力机
CN101560943A (zh) * 2004-04-05 2009-10-21 张宏浓 江河水自然流动水能履带式发电装置
CN102400842A (zh) * 2010-09-15 2012-04-04 刘文晏 辅助发电系统
CN107237712A (zh) * 2017-06-09 2017-10-10 刘恩均 环柔索帆翼流体能转换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1546698A1 (ru) * 1988-02-09 1990-02-28 Ufimsk Aviatsion Inst Уctpoйctbo для иcпoльзobahия эhepгии tekучeй cpeды
CN101560943A (zh) * 2004-04-05 2009-10-21 张宏浓 江河水自然流动水能履带式发电装置
CN101413471A (zh) * 2007-10-21 2009-04-22 梁运富 直回水力机
CN102400842A (zh) * 2010-09-15 2012-04-04 刘文晏 辅助发电系统
CN107237712A (zh) * 2017-06-09 2017-10-10 刘恩均 环柔索帆翼流体能转换装置

Similar Documents

Publication Publication Date Title
US20190212410A1 (en) Off-set drive assembly for solar tracker
US11558007B2 (en) Clamp assembly for solar tracker
US10222446B2 (en) Off-set swivel drive assembly for solar tracker
US20140216522A1 (en) Horizontal balanced solar tracker
CN100389277C (zh) 风电用组合式行星架
NZ587846A (en) Clamp for clamping a blade for a wind turbine and method of installing wind turbine blades
US20120171035A1 (en) Leverage-maximizing vertical axis reciprocating blade hydro power generator
JP5702781B2 (ja) 波力潮汐発電プラントおよびその方法
WO2018192588A1 (zh) 流体能转换装置及系统
TW201602452A (zh) 流力葉片裝置
US10024297B2 (en) Reciprocating motion energy conversion apparatus
CN105370487A (zh) 海流发电装置
US11384726B2 (en) Hydroelectric energy systems and methods
CN211500862U (zh) 流体能转换装置及系统
KR101700570B1 (ko) 링 기어가 형성된 터빈과 이를 이용한 유체에너지 수집 및 이용 시스템
KR102142243B1 (ko) 돛 장치
US20130292945A1 (en) In-conduit turbines and hydroelectric power systems
CN205445921U (zh) 一种单向转换装置及采用该装置的发电系统
JP2006183648A (ja) 流体力発電装置
RU144415U1 (ru) Ветроэнергетическая установка
KR101275883B1 (ko) 유연성을 갖는 태양광 패널 날개 구조
CN207459671U (zh) 一种方向可调的防振线夹
CN107023623B (zh) 一种具备摇摆旋转壳体的单向动力转换装置及实现该单向动力转换的方法
CN201810468U (zh) 风力、水力、海浪潮汐能多用途发电机
TWI755810B (zh) 具可適流速變化螺距功能之渦輪機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788051

Country of ref document: EP

Kind code of ref document: A1