WO2018192434A1 - 直流电源系统的绝缘电阻的检测电路及检测方法 - Google Patents
直流电源系统的绝缘电阻的检测电路及检测方法 Download PDFInfo
- Publication number
- WO2018192434A1 WO2018192434A1 PCT/CN2018/083165 CN2018083165W WO2018192434A1 WO 2018192434 A1 WO2018192434 A1 WO 2018192434A1 CN 2018083165 W CN2018083165 W CN 2018083165W WO 2018192434 A1 WO2018192434 A1 WO 2018192434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- resistor
- insulation resistance
- switch
- voltage dividing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/025—Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/20—Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
Definitions
- the present disclosure relates to a DC power supply system, and more particularly to a detection circuit and a detection method for an insulation resistance of a DC power supply system.
- DC insulation monitoring techniques include balanced bridge method, unbalanced bridge method, and level signal injection method.
- unbalanced bridge method the detection speed is slower than the balanced bridge method.
- the calculation formula of the unbalanced bridge method is a two-dimensional equation, and the calculation result is not accurate.
- the measurement accuracy is low.
- the embodiments of the present disclosure provide a detection circuit and a detection method for an insulation resistance of a DC power supply system, which can comprehensively and accurately detect the insulation resistance value of the DC power supply system to the ground at a low cost.
- An embodiment of the present disclosure provides a detection circuit for an insulation resistance of a DC power supply system, including: a first voltage dividing module, a second voltage dividing module, a detecting module, and a control module, the first voltage dividing module and the DC power source
- the positive-side insulation resistance of the positive-side busbar of the system forms a first voltage-dividing circuit
- the second voltage-dividing module and the negative-end insulation resistance of the negative-side busbar of the DC power supply system form a second voltage-dividing circuit .
- the control module is configured to: send a first control signal to the first voltage dividing module, and send a second control signal to the second voltage dividing module, so that the first voltage dividing module is in a first partial voltage state And causing the second voltage dividing module to be in a second partial pressure state; transmitting a third control signal to the first voltage dividing module, and transmitting a fourth control signal to the second voltage dividing module, a partial pressure module is in a third partial pressure state, and the second partial pressure module is in a fourth partial pressure state; and a fifth control signal is sent to the first partial pressure module, and the second partial pressure is applied
- the module sends a sixth control signal, so that the first voltage dividing module is in a fifth partial pressure state, and the second voltage dividing module is in a sixth partial pressure state.
- the detecting module is configured to: when the first voltage dividing module is in the first partial pressure state and the second voltage dividing module is in the second partial pressure state, detecting and acquiring the first side of the positive terminal bus to the ground a voltage and a second voltage of the negative terminal bus to ground; detecting and acquiring the positive when the first voltage dividing module is in a third partial pressure state and the second voltage dividing module is in a fourth partial pressure state a third voltage of the end bus to ground and a fourth voltage of the negative bus to ground; and when the first voltage dividing module is in a fifth partial pressure state and the second voltage dividing module is in a sixth partial pressure state At the time, the fifth voltage of the positive terminal bus to ground and the sixth voltage of the negative terminal bus to ground are detected and acquired.
- the control module is further configured to acquire a resistance value of the positive-end insulation resistance and an insulation resistance of the negative-end insulation resistance based on the first voltage, the second voltage, the third voltage, the fourth voltage, the fifth voltage, and the sixth voltage Resistance value.
- Embodiments of the present disclosure provide a method for detecting an insulation resistance of a DC power system by using a detection circuit, the detection circuit including a first voltage dividing module, a second voltage dividing module, a detecting module, and a control module, the first partial voltage And a positive-side insulation resistance of the module and the positive-side busbar of the DC power supply system to form a first voltage-dividing circuit, and the negative-side insulation resistance of the second voltage-dividing module and the negative-side busbar of the DC power supply system to the ground Forming a second voltage dividing circuit; the method includes: the control module sends a first control signal to the first voltage dividing module, and sends a second control signal to the second voltage dividing module to cause the first voltage dividing The module is in a first partial pressure state, and the second voltage dividing module is in a second partial pressure state, and the detecting module detects and acquires the first voltage of the positive terminal bus to the ground and the negative terminal bus to the ground a second voltage; the control module sends a third
- An embodiment of the present disclosure provides a detection circuit for an insulation resistance of a DC power supply system, including a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, and an eighth resistor. a first switch, a second switch, a third switch, and a fourth switch.
- the first end of the first resistor is connected to the positive terminal bus of the DC power system, the second end of the first resistor is connected to the first end of the second resistor, and the second end of the second resistor is grounded.
- the third resistor is in series with the first switch, and the third resistor and the first switch are in parallel with the first resistor.
- the fourth resistor and the second switch are connected in series, and the fourth resistor and the second switch are connected in parallel with the second resistor.
- the first end of the fifth resistor is connected to the negative terminal bus of the DC power system, the second end of the fifth resistor is connected to the first end of the sixth resistor, and the second end of the sixth resistor is connected.
- the seventh resistor and the third switch are connected in series, and the seventh resistor and the third switch are connected in parallel with the fifth resistor.
- the eighth resistor and the fourth switch are connected in series, and the eighth resistor and the fourth switch are connected in parallel with the sixth resistor.
- An embodiment of the present disclosure provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, causes the processor to perform a method of detecting an insulation resistance of a DC power system according to the present disclosure. .
- 1 is a schematic structural view of a circuit of a balanced bridge method
- FIG. 2 is a schematic structural view of a circuit of an unbalanced bridge method
- FIG. 3 is a schematic block diagram of a detection circuit of an insulation resistance of a direct current power supply system according to an embodiment of the present disclosure
- FIG. 4 is a flow chart showing a method of detecting an insulation resistance of a DC power supply system according to an embodiment of the present disclosure
- FIG. 5 is a schematic circuit diagram of a detection circuit of an insulation resistance of a direct current power supply system according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of the detecting circuit of the insulation resistance of the DC power supply system according to the embodiment of the present disclosure in a state at a time;
- FIG. 7 is a schematic diagram of the detecting circuit of the insulation resistance of the DC power supply system according to the embodiment of the present disclosure in the state 2;
- FIG. 8 is a schematic diagram of the detection circuit of the insulation resistance of the DC power supply system shown in FIG. 5 in a state three according to an embodiment of the present disclosure.
- FIG. 1 is a schematic structural view of a circuit of a balanced bridge method.
- FIG. 2 is a schematic structural view of a circuit of the unbalanced bridge method.
- the unbalanced bridge method can detect single-ended grounding, double-ended grounding, and balanced grounding.
- the positive and negative busbars need to be connected to the ground respectively, and the positive and negative busbars to ground voltage are changed.
- the capacitance of the busbar to ground each time a new resistor is connected to the circuit where the busbar is located, a certain delay is required to wait for the busbar to ground voltage to be stable, so the detection speed is slower than the balanced bridge method.
- the calculation formula of the unbalanced bridge method is a two-dimensional equation, and the calculation result is not accurate.
- the low frequency signal injection method can monitor the insulation resistance, but because of the need to inject high voltage AC signal into the high voltage loop, the additional AC signal will affect the power quality of the high voltage DC power system, and the distributed capacitance of the system will directly affect the measured voltage value, resulting in The measurement accuracy is low.
- Embodiments of the present disclosure provide a detection circuit and a detection method for an insulation resistance of a DC power supply system, which can comprehensively and accurately detect an insulation resistance value of a DC power supply system to the ground at a low cost.
- FIG. 3 is a schematic block diagram of a detection circuit of an insulation resistance of a direct current power supply system according to an embodiment of the present disclosure.
- the detection circuit of the insulation resistance of the DC power supply system includes a first voltage dividing module 11, a second voltage dividing module 12, a detecting module 13, and a control module 14.
- the first voltage dividing module 11 and the positive terminal insulation resistance of the positive terminal bus of the DC power supply system form a first voltage dividing circuit.
- the second voltage dividing module 12 and the negative terminal insulation resistance of the negative power bus of the DC power supply system form a second voltage dividing circuit.
- the control module 14 is configured to: send a first control signal to the first voltage dividing module 11, and send a second control signal to the second voltage dividing module 12, so that the first voltage dividing module 11 is in the first partial pressure state, and The second partial pressure module 12 is in the second partial pressure state; the third control signal is sent to the first voltage dividing module 11, and the fourth control signal is sent to the second voltage dividing module 12, so that the first voltage dividing module 11 is in the third minute.
- the detecting module 1 is configured to: when the first voltage dividing module 11 is in the first partial pressure state and the second voltage dividing module 12 is in the second partial pressure state, detecting and acquiring the first voltage of the positive terminal bus to the ground of the DC power system And a second voltage of the negative power bus of the DC power system to the ground; when the first voltage dividing module 11 is in the third partial pressure state and the second voltage dividing module 12 is in the fourth partial pressure state, detecting and acquiring the DC power system a third voltage of the positive terminal bus to ground and a fourth voltage of the negative terminal bus of the DC power supply system to the ground; and when the first voltage dividing module 11 is in the fifth partial pressure state and the second voltage dividing module 12 is in the sixth partial voltage In the state, the fifth voltage of the positive terminal bus of the DC power system to the ground and the sixth voltage of the negative bus of the DC power system to the ground are detected and acquired.
- the control module 14 is further configured to acquire the resistance of the positive-end insulation resistance of the positive-side busbar of the DC power supply system to the ground based on the first voltage, the second voltage, the third voltage, the fourth voltage, the fifth voltage, and the sixth voltage.
- the first partial pressure state, the third partial pressure state, and the fifth partial pressure state may be the same partial pressure state or different partial pressure states
- the states can be the same partial pressure state or different partial pressure states.
- the sequence of the first voltage dividing module 11 in the first partial pressure state, the third partial pressure state, and the fifth partial pressure state according to the control signal sent by the control module 14 may be arbitrary, and the second voltage dividing module 12 is The order in which the control signal sent by the control module 14 is in the second partial pressure state, the fourth partial pressure state, and the sixth partial pressure state may also be arbitrary.
- the insulation resistance of the DC power supply system to ground where R p is the resistance of the positive-end insulation resistance of the positive-side busbar to ground of the DC power supply system, R n is DC
- the resistance of the negative terminal busbar to the ground insulation resistance of the power system overcomes the defect that the balanced bridge method cannot test the balance resistor, and overcomes the influence of the unbalanced bridge method on the time requirement, ensuring the positive and negative ends.
- the detection circuit of the insulation resistance of the DC power supply system can be applied to detect the insulation resistance of a high voltage DC power supply system such as a charging post.
- control module 14 is configured to: establish a first equation relationship between the first voltage, the second voltage, the positive-end insulation resistance, and the negative-end insulation resistance according to the first voltage and the second voltage; a third voltage and a fourth voltage establish a second equation relationship between the third voltage, the fourth power, the positive terminal insulation resistance and the negative terminal insulation resistance; and the fifth voltage and the sixth voltage are established according to the fifth voltage and the sixth voltage a third equation relationship between the voltage, the positive-end insulation resistance, and the negative-end insulation resistance; obtaining a resistance value of the negative-end insulation resistance according to the first equation relationship and the second equation relationship; The second equation relationship and the third equation relationship obtain the resistance of the positive terminal insulation resistance.
- the solution calculation process is simpler and faster than the two-dimensional equation of the unbalanced bridge method.
- the calculation results will also be more accurate.
- control module 14 is further configured to determine the positive terminal insulation when the resistance of the positive terminal insulation resistance is within a first set threshold and the resistance of the negative insulation resistance is within a second set threshold.
- the resistance and the negative insulation resistance meet the preset requirements, and when the resistance of the positive insulation resistance is not within the first set threshold or the resistance of the negative insulation resistance is not within the second set threshold, the positive insulation is determined The resistance and negative insulation resistance do not meet the preset requirements.
- the insulation condition of the DC power supply system to the ground is normal, that is, when the positive-end insulation resistance and the negative-end insulation resistance satisfy the corresponding presets.
- the DC insulation of the DC power system to the ground is normal, and when the positive insulation resistance or the negative insulation resistance does not meet the corresponding preset requirements, the DC insulation of the DC power system to the ground can be determined to be abnormal.
- the first set threshold range and the second set threshold range may be set according to actual conditions, for example, according to the technical conditions of the DC power system insulation monitoring device, that is, the industry standard DL/T1392-2014.
- the first voltage dividing module 11 may include a first resistor, a second resistor, a third resistor, a fourth resistor, a first switch, and a second switch.
- the first end of the first resistor is coupled to the positive terminal of the DC power system, and the second end of the first resistor is coupled to the first end of the second resistor.
- the second end of the second resistor is grounded.
- the third resistor is in series with the first switch, and the series circuit of the third resistor and the first switch is in parallel with the first resistor.
- the fourth resistor and the second switch are connected in series, and the series circuit of the fourth resistor and the second switch is connected in parallel with the second resistor.
- the second voltage dividing module 12 may include a fifth resistor, a sixth resistor, a seventh resistor, an eighth resistor, a third switch, and a fourth switch.
- the first end of the fifth resistor is connected to the negative terminal bus of the DC power system, and the second end of the fifth resistor is connected to the first end of the sixth resistor.
- the second end of the sixth resistor is grounded.
- the seventh resistor and the third switch are connected in series, and the series circuit of the seventh resistor and the third switch is connected in parallel with the fifth resistor.
- the eighth resistor and the fourth switch are connected in series, and the series circuit of the eighth resistor and the fourth switch is connected in parallel with the sixth resistor.
- the first voltage dividing module 11 and the second voltage dividing module 12 may respectively The switching states of the respective switches included therein are changed such that the first voltage dividing module 11 and the second voltage dividing module 12 are respectively in different partial pressure states.
- the resistor divider method When detecting the insulation resistance of the high-voltage DC power supply system to the ground, compared with the balanced bridge method circuit shown in FIG. 1 and the unbalanced bridge method shown in FIG. 2, the resistor divider method according to an embodiment of the present disclosure,
- the voltage signal required to cut off each switch can be reduced in size, reducing the hardware performance requirements of each switch, thereby making the cost of a single switch in accordance with embodiments of the present disclosure much lower than the circuits shown in FIGS. 1 and 2.
- the cost of a single switch Although the number of switches required in the embodiment of the present disclosure is greater than the number of switches in the circuit shown in FIGS. 1 and 2, since the cost of a single switch is low, the cost of all switches in the embodiments of the present disclosure is lower than that of FIG.
- the insulation resistance detecting circuit of the DC power supply system of the embodiment of the present disclosure can realize the insulation resistance value of the high voltage DC power supply system at low cost.
- the detecting circuit may further include a fifth switch; and the second end of the second resistor and the second end of the sixth resistor are grounded through the fifth switch.
- the fifth switch when the DC insulation resistance detection is performed, the fifth switch may be kept closed to ground the second end of the second resistor and the second end of the sixth resistor; when the DC insulation resistance is detected The fifth switch can be disconnected to make the fifth switch play a safety protection role. In the real-time monitoring system of the insulation resistance, the fifth switch can be omitted.
- the first switch, the second switch, the third switch, the fourth switch, and the fifth switch may include an optocoupler, a reed relay, and a conventional relay (such as an electromagnetic relay) to facilitate passing an electrical signal or Pulses control each switch.
- the detecting module 13 may include a voltage measuring device or a measuring circuit such as a DC standard digital voltmeter.
- the detection circuit of the insulation resistance of the DC power supply system combines the advantages of the balanced bridge method and the unbalanced bridge method, and can test the balance resistance value and the unbalance resistance value, and overcome the balance power.
- the bridge method can not test the defect of the balance resistor, and overcomes the influence of the unbalanced bridge method on the time requirement.
- the calculation process of obtaining the insulation resistance value of the positive and negative busbars to the ground is simple and high precision, thus ensuring positive and negative
- the terminal busbar and the ground have a large insulation resistance, and the insulation performance between the positive and negative terminal busbars and the ground is not affected during the detection, and the voltages of the positive and negative terminal busbars are not fluctuated during the insulation detection, and
- the calculation results are highly accurate.
- the resistances of the first resistor, the second resistor, the third resistor, the fourth resistor, the fifth resistor, the sixth resistor, the seventh resistor, and the eighth resistor are all equal, for the first switch, the second switch,
- the switching voltages of the third switch and the fourth switch are only one-sixth of the switching voltage used in the conventional method, so that the cost of the switch can be reduced and the reliability is high.
- FIG. 4 is a flow diagram of a method of detecting an insulation resistance of a DC power system, in accordance with an embodiment of the present disclosure.
- a detection circuit of an insulation resistance of a DC power supply system according to the present disclosure is employed.
- a method of detecting an insulation resistance of a DC power supply system includes steps 101 to 104.
- step 101 the control module 14 sends a first control signal to the first voltage dividing module 11, and sends a second control signal to the second voltage dividing module 12, so that the first voltage dividing module 11 is in the first partial pressure state, and The second voltage dividing module 12 is in the second partial pressure state, and the detecting module 13 detects and acquires the first voltage of the positive terminal bus to the ground and the second voltage of the negative terminal bus to the ground.
- step 102 the control module 14 sends a third control signal to the first voltage dividing module 11, and sends a fourth control signal to the second voltage dividing module 12, so that the first voltage dividing module 11 is in the third partial pressure state, and The second voltage dividing module 12 is in the fourth partial pressure state, and the detecting module 13 detects and acquires the third voltage of the positive terminal bus to ground and the fourth voltage of the negative terminal bus to ground.
- step 103 the control module 14 sends a fifth control signal to the first voltage dividing module 11, and sends a sixth control signal to the second voltage dividing module 12, so that the first voltage dividing module 11 is in the fifth partial pressure state, and The second voltage dividing module is in the sixth partial pressure state, and the detecting module 13 detects and acquires the fifth voltage of the positive terminal bus to the ground and the sixth voltage of the negative terminal bus to the ground.
- step 104 the control module obtains the resistance value of the positive terminal insulation resistance and the resistance value of the negative terminal insulation resistance based on the first voltage, the second voltage, the third voltage, the fourth voltage, the fifth voltage, and the sixth voltage.
- the control module 14 establishes a first equation relationship between the first voltage, the second voltage, the positive-end insulation resistance, and the negative-end insulation resistance according to the first voltage and the second voltage.
- the control module 14 establishes a second equation relationship between the third voltage, the fourth voltage, the positive-end insulation resistance, and the negative-end insulation resistance according to the third voltage and the fourth voltage.
- the control module 14 establishes a third equation relationship between the fifth voltage, the sixth voltage, the positive-end insulation resistance, and the negative-end insulation resistance according to the fifth voltage and the sixth voltage.
- the control module 14 acquires the resistance of the negative-end insulation resistance according to the first equation relationship and the second equation relationship.
- the control module 14 obtains the resistance of the positive terminal insulation resistance according to the second equation relationship and the third equation relationship.
- the insulation resistance of the DC power system where R p is the resistance of the positive-side insulation resistance of the positive-side busbar of the DC power supply system to the ground, and R n is the negative terminal of the DC power supply system
- the resistance of the negative-side insulation resistance of the busbar to the ground overcomes the defect that the balanced bridge method cannot test the balance resistance, and overcomes the influence of the unbalanced bridge method on the time requirement, ensuring the between the positive and negative busbars and the ground.
- the method may further include: when the resistance value of the positive terminal insulation resistance is within a first set threshold value range and the resistance value of the negative terminal insulation resistance is within a second set threshold value range, the control module 14 determines The positive terminal insulation resistance and the negative terminal insulation resistance satisfy a preset requirement; and when the resistance value of the positive terminal insulation resistance is not within the first set threshold value or the resistance value of the negative terminal insulation resistance is not within the second set threshold value, the control Module 14 determines that the positive terminal insulation resistance and the negative terminal insulation resistance do not meet the preset requirements.
- the insulation condition of the DC power supply system to the ground is normal, that is, when the positive-end insulation resistance and the negative-end insulation resistance satisfy the corresponding presets.
- the DC insulation of the DC power system to the ground is normal, and when the positive insulation resistance or the negative insulation resistance does not meet the corresponding preset requirements, the DC insulation of the DC power system to the ground can be determined to be abnormal.
- the first set threshold range and the second set threshold range may be set according to actual conditions, for example, according to the technical conditions of the DC power system insulation monitoring device, that is, the industry standard DL/T1392-2014.
- FIG. 5 is a schematic circuit diagram of a detection circuit of an insulation resistance of a direct current power supply system according to an embodiment of the present disclosure.
- the detecting circuit may include a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, and an eighth resistor R8.
- the first resistor R1, the second resistor R2, the third resistor R3, the fourth resistor R4, the first switch K1 and the second switch K2 may constitute the first voltage dividing module 11 shown in FIG.
- the resistor R6, the seventh resistor R7, the eighth resistor R8, the third switch K3, and the fourth switch K4 may constitute the second voltage dividing module 12 shown in FIG.
- the detection module 13 and control module 14 shown in FIG. 3 are not shown in FIG.
- the first end of the first resistor R1 is connected to the positive terminal bus Up of the DC power supply system, and the second end of the first resistor R1 is connected to the first end of the second resistor R2.
- the second end of the second resistor R2 is grounded through the fifth switch K5.
- the third resistor R3 is connected in series with the first switch K1, and the third resistor R3 and the first switch K1 are connected in parallel with the first resistor R1.
- the fourth resistor R4 and the second switch K2 are connected in series, and the fourth resistor R4 and the second switch K2 are connected in parallel with the second resistor R2.
- the first end of the fifth resistor R5 is connected to the negative terminal bus Un of the DC power system, and the second end of the fifth resistor R5 is connected to the first end of the sixth resistor R6.
- the second end of the sixth resistor R6 is grounded through the fifth switch K5.
- the seventh resistor R7 and the third switch K3 are connected in series, and the seventh resistor R7 and the third switch K3 are connected in parallel with the fifth resistor R5.
- the eighth resistor R8 and the fourth switch K4 are connected in series, and the eighth resistor R8 and the fourth switch K4 are connected in parallel with the sixth resistor R6.
- the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, and the fifth switch K5 may be electromagnetic relays, optocouplers, reed relays, etc., and the first resistor R1
- the resistance values of the second resistor R2, the third resistor R3, the fourth resistor R4, the fifth resistor R5, the sixth resistor R6, the seventh resistor R7, and the eighth resistor R8 are selected in the circuit design, and need to be based on actual conditions.
- the high voltage DC output voltage is selected.
- the fifth switch K5 When the high voltage DC insulation resistance is detected, the fifth switch K5 can be kept closed, so that the second end of the second resistor R2 and the second end of the sixth resistor R6 are grounded; when the high voltage DC insulation resistance is detected, the disconnection can be disconnected.
- the fifth switch K5 causes the fifth switch K5 to function as a safety protection.
- the fifth switch K5 may be omitted, that is, the second end of the second resistor R2 and the second end of the sixth resistor R6 are directly grounded.
- the equivalent resistance value R n of the negative-end insulation resistance can be obtained by opening and closing the third switch K3 and the fourth switch K4; at the third switch K3
- the equivalent resistance value R p of the positive-end insulation resistance can be obtained by opening and closing the first switch K1 and the second switch K2.
- R a , R b , R c , and R d may be predefined according to the resistance values of the first resistors R1 to R8;
- R a is a resistance value when the first resistor R1 is connected in parallel with the third resistor R3
- R b is a resistance value when the second resistor R2 is connected in parallel with the fourth resistor R4
- R c is a fifth resistor R5 and a seventh resistor R7.
- the resistance value in parallel, and R d is the resistance value when the sixth resistor R6 is connected in parallel with the eighth resistor R8.
- FIG. 6 is a schematic diagram showing the state in which the detecting circuit of the insulation resistance of the DC power supply system according to the embodiment of the present disclosure is in a state.
- the first switch K1, the second switch K2, and the fifth switch K5 are closed, and the third switch K3 and the fourth switch K4 are turned off, and the positive and negative terminal bus-to-ground voltages are respectively detected as U. P1 , U n1 .
- the resistance value R p1 of the positive terminal bus to the ground and the resistance value R n1 of the negative terminal bus to the ground may be respectively Calculated by Equation 1 and Equation 2 below:
- Equation 1 Where R a and R b are known values, and U p1 and U n1 are test values.
- FIG. 7 is a schematic diagram of the detecting circuit of the insulation resistance of the DC power supply system according to the embodiment of the present disclosure in a state two according to an embodiment of the present disclosure.
- the first switch K1 to the fifth switch K5 are both closed, and the positive and negative terminal bus-to-ground voltages are detected as U p2 and U n2 , respectively.
- the resistance value R p2 of the positive terminal bus to ground and the resistance value R n2 of the negative terminal bus to ground can be respectively calculated by the following Equation 3 and Equation 4:
- Equation 2 Where R a , R b , R c , and R d are known values, and U p2 and U n2 are test values.
- FIG. 8 is a schematic diagram of the detection circuit of the insulation resistance of the DC power supply system shown in FIG. 5 in a state three according to an embodiment of the present disclosure.
- the first switch K1 and the second switch K2 are disconnected, and the third switch K3, the fourth switch K4, and the fifth switch K5 are closed, and the positive and negative terminal bus-to-ground voltages are respectively detected as U p3. , U n3 .
- the positive terminal bus-to-ground resistance value R p3 and the negative terminal bus-to-ground resistance value R n3 may be respectively Calculated by Equation 5 and Equation 6 below:
- Equation 3 Where R c and R d are known values, and U p3 and U n3 are test values.
- the R n value can be calculated, and according to Equation 2 and Equation 3, the R p value can be calculated.
- the bus voltage output at the positive and negative terminals is 500VDC
- the resistance values of the first resistor R1 to the eighth resistor R8 are both 80K ⁇
- R a , R b , R c , R d are both It is 40K ⁇
- the resistance value R n of the negative terminal bus to ground is 200 K ⁇
- the resistance value R p of the positive terminal bus to ground is 50 K ⁇ .
- the technical requirements of the DC power system insulation monitoring device ie, the industry standard DL/T1392-2014 requires less than 10%; for insulation resistance less than 100K ⁇ , the industry standard DL/T1392-2014 requires less than 5% accuracy. . It can be seen that the above example meets the requirements, and it can be determined that the DC insulation of the high voltage DC power supply system to the ground is normal.
- the switching voltages of the switches K1, K2, K3, and K4 need only balance one-sixth of the switching voltages in the bridge method and the unbalanced bridge method. Therefore, the requirement for the hardware performance of each switch is lowered, so that the cost per switch is greatly reduced, that is, the hardware cost of the detection circuit according to the present embodiment is lower than the hardware cost of the balanced bridge circuit and the unbalanced bridge method. The hardware cost of the circuit.
- Large insulation resistance does not affect the insulation between the positive and negative bus bars and the ground, and the voltage of the positive and negative bus bars does not fluctuate during the insulation detection. Since the calculation formulas are all one-dimensional equations, the calculation process is simpler and faster, and the calculation results are more accurate.
- the above embodiment method can be implemented by means of software and a combination of necessary general hardware platforms. Of course, it can also be implemented by hardware. Based on such understanding, the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk) and including a plurality of instructions for causing the detecting device to execute The method described in various embodiments of the present disclosure.
- a storage medium such as a ROM/RAM, a magnetic disk, an optical disk
- the embodiment of the present disclosure changes the positive and negative terminal bus-to-ground voltage of the DC power supply system by changing the voltage dividing mode, and obtains the resistance of the insulation resistance of the positive and negative terminal busbars to the ground based on the change of the positive and negative terminal busbars to the ground voltage.
- the value can be used to comprehensively and accurately detect the insulation resistance value of the DC power system to the ground at a low cost, and the calculation is simple and the calculation result has high precision.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
一种直流电源系统的绝缘电阻的检测电路及检测方法。检测电路包括第一分压模块(11)、第二分压模块(12)、检测模块(13)和控制模块(14),控制模块(14)设置为向第一分压模块(11)和第二分压模块(12)发送不同控制信号,使第一分压模块(11)和第二分压模块(12)处于不同分压状态,检测模块(13)设置为当第一分压模块(11)和第二分压模块(12)处于不同分压状态时,检测并获取所述直流电源系统的正端母线对地的电压和负端母线对地的电压,并且控制模块(14)还设置为基于所述正端母线对地的电压和负端母线对地的电压,获取所述直流电源系统的正端母线对地的正端绝缘电阻的阻值和所述负端母线对地的负端绝缘电阻的阻值。
Description
本公开涉及直流电源系统,尤其涉及一种直流电源系统的绝缘电阻的检测电路及检测方法。
近年来,伴随着电动汽车的迅速发展,与电动汽车相关的充电桩等高压直流电源系统同样也获得了飞速发展。在充电桩系统中,充电桩系统的绝缘特性至关重要。因此,准确测试高压直流电源系统的绝缘电阻值是充电桩系统安全的保证。如果绝缘测试不准确,将对人身安全存在很大的隐患。
相关的直流绝缘监测技术包括平衡电桥法、非平衡电桥法以及电平信号注入法等。对于平衡电桥法而言,当R
p=R
n≠∞时,不能进行监测。对于非平衡电桥法而言,其检测速度比平衡电桥法慢。此外,非平衡电桥法的计算公式为二维方程,计算结果不精确。对于低频信号注入法而言,其测量精度较低。
发明内容
有鉴于此,本公开实施例提供了一种直流电源系统的绝缘电阻的检测电路及检测方法,能够以低成本实现全面、且准确的检测直流电源系统对地的绝缘电阻值。
本公开实施例提供了一种直流电源系统的绝缘电阻的检测电路,包括:第一分压模块、第二分压模块、检测模块和控制模块,所述第一分压模块与所述直流电源系统的正端母线对地的正端绝缘电阻构成第一分压回路,并且所述第二分压模块与所述直流电源系统的负端母线对地的负端绝缘电阻构成第二分压回路。所述控制模块设置为:向所述第一分压模块发送第一控制信号,并且向所述第二分压模块发送第二控制信号,使所述第一分压模块处于第一分压状态,并且使所述第二分压模块处于第二分压状态;向所述第一分压模块发送第三控 制信号,并且向所述第二分压模块发送第四控制信号,使所述第一分压模块处于第三分压状态,并且使所述第二分压模块处于第四分压状态;以及向所述第一分压模块发送第五控制信号,并且向所述第二分压模块发送第六控制信号,使所述第一分压模块处于第五分压状态,并且使所述第二分压模块处于第六分压状态。所述检测模块设置为:当所述第一分压模块处于第一分压状态且所述第二分压模块处于第二分压状态时,检测并获取所述正端母线对地的第一电压和所述负端母线对地的第二电压;当所述第一分压模块处于第三分压状态且所述第二分压模块处于第四分压状态时,检测并获取所述正端母线对地的第三电压和所述负端母线对地的第四电压;以及当所述第一分压模块处于第五分压状态且所述第二分压模块处于第六分压状态时,检测并获取所述正端母线对地的第五电压和所述负端母线对地的第六电压。所述控制模块还设置为基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取所述正端绝缘电阻的阻值和所述负端绝缘电阻的阻值。
本公开实施例提供了一种利用检测电路检测直流电源系统的绝缘电阻的方法,所述检测电路包括第一分压模块、第二分压模块、检测模块和控制模块,所述第一分压模块与所述直流电源系统的正端母线对地的正端绝缘电阻构成第一分压回路,并且所述第二分压模块与所述直流电源系统的负端母线对地的负端绝缘电阻构成第二分压回路;所述方法包括:控制模块向所述第一分压模块发送第一控制信号,并且向所述第二分压模块发送第二控制信号,使所述第一分压模块处于第一分压状态,并且使所述第二分压模块处于第二分压状态,检测模块检测并获取所述正端母线对地的第一电压和所述负端母线对地的第二电压;控制模块向所述第一分压模块发送第三控制信号,并且向所述第二分压模块发送第四控制信号,使所述第一分压模块处于第三分压状态,并且使所述第二分压模块处于第四分压状态,检测模块检测并获取所述正端母线对地的第三电压和所述负端母线对地的第四电压;控制模块向所述第一分压模块发送第五控制信号,并且向所述第二分压模块发送第六控制信号,使所述第一分压模块处于第五分 压状态,并且使所述第二分压模块处于第六分压状态,检测模块检测并获取所述正端母线对地的第五电压和所述负端母线对地的第六电压;以及控制模块基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取所述正端绝缘电阻的阻值和所述负端绝缘电阻的阻值。
本公开实施例提供了一种直流电源系统的绝缘电阻的检测电路,包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一开关、第二开关、第三开关和第四开关。第一电阻的第一端连接所述直流电源系统的正端母线,第一电阻的第二端连接第二电阻的第一端,第二电阻的第二端接地。第三电阻和第一开关串联,并且第三电阻和第一开关与第一电阻并联。第四电阻和第二开关串联,并且第四电阻和第二开关与第二电阻并联。第五电阻的第一端连接所述直流电源系统的负端母线,第五电阻的第二端连接第六电阻的第一端,第六电阻的第二端接。第七电阻和第三开关串联,并且第七电阻和第三开关与第五电阻并联。第八电阻和第四开关串联,并且第八电阻和第四开关与第六电阻并联。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行根据本公开的检测直流电源系统的绝缘电阻的方法。
通过阅读下文的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出各实施方式,而并不旨在限制本公开。在整个附图中,用相同的附图标记表示相同的部件。在附图中:
图1为平衡电桥法的电路的结构示意图;
图2为非平衡电桥法的电路的结构示意图;
图3为根据本公开实施例的直流电源系统的绝缘电阻的检测电路的示意性框图;
图4为根据本公开实施例的检测直流电源系统的绝缘电阻的方 法的流程示意图;
图5为根据本公开实施例的直流电源系统的绝缘电阻的检测电路的示意电路图;
图6为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态一时的示意图;
图7为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态二时的示意图;以及
图8为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态三时的示意图。
以下结合附图对本发明本公开的各实施例进行详细说明。应当理解,此处所描述的具体实施例仅仅用以用于通过示例的方式来解释本发明本公开,并不旨在限定本发明本公开的范围。
图1为平衡电桥法的电路的结构示意图。
如图1所示,平衡电桥法能够测量正、负母线对地的静态直流电压,因此母线对地电容的大小不影响测量精度;同时,由于不受接地电容的影响,因此检测速度快;但是当R
p=R
n≠∞时,不能进行监测。
图2为非平衡电桥法的电路的结构示意图。
如图2所示,非平衡电桥法能够检测单端接地、双端接地、平衡接地,但是测量中需要正、负母线分别对地接入电阻,并且正、负母线对地电压是变化的。由于容易受母线对地电容的影响,每次在母线所在电路上接入新电阻后需要一定延时,以等待母线对地电压稳定,因此检测速度比平衡电桥法慢。此外,非平衡电桥法的计算公式为二维方程,计算结果不精确。
低频信号注入法能够监测绝缘电阻,但是由于需要向高压回路上注入高压交流信号,附加的交流信号会影响高压直流电源系统的供电质量,并且系统的分布电容会直接影响测量的电压值,从而导致测量精度较低。
本公开实施例提供了一种直流电源系统的绝缘电阻的检测电路及检测方法,能够以低成本实现全面、且准确的检测直流电源系统对地的绝缘电阻值。
图3为根据本公开实施例的直流电源系统的绝缘电阻的检测电路的示意性框图。
如图3所示,根据本公开实施例的直流电源系统的绝缘电阻的检测电路包括第一分压模块11、第二分压模块12、检测模块13和控制模块14。第一分压模块11与直流电源系统的正端母线对地的正端绝缘电阻构成第一分压回路。第二分压模块12与直流电源系统的负端母线对地的负端绝缘电阻构成第二分压回路。
控制模块14设置为:向第一分压模块11发送第一控制信号,并且向第二分压模块12发送第二控制信号,使第一分压模块11处于第一分压状态,并且使第二分压模块12处于第二分压状态;向第一分压模块11发送第三控制信号,并且向第二分压模块12发送第四控制信号,使第一分压模块11处于第三分压状态,并且使第二分压模块12处于第四分压状态;以及向第一分压模块11发送第五控制信号,并且向第二分压模块12发送第六控制信号,使第一分压模块11处于第五分压状态,并且使第二分压模块12处于第六分压状态。
检测模块1设置为:当第一分压模块11处于第一分压状态且第二分压模块12处于第二分压状态时,检测并获取直流电源系统的正端母线对地的第一电压和直流电源系统的负端母线对地的第二电压;当第一分压模块11处于第三分压状态且第二分压模块12处于第四分压状态时,检测并获取直流电源系统的正端母线对地的第三电压和直流电源系统的负端母线对地的第四电压;以及当第一分压模块11处于第五分压状态且第二分压模块12处于第六分压状态时,检测并获取直流电源系统的正端母线对地的第五电压和直流电源系统的负端母线对地的第六电压。
控制模块14还设置为基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取直流电源系统的正端母线对地的正端绝缘电阻的阻值和直流电源系统的负端母线对地的负端绝缘电 阻的阻值。
这里,第一分压状态、第三分压状态、第五分压状态可为相同的分压状态或为不同的分压状态,第二分压状态、第四分压状态、第六分压状态可为相同的分压状态或为不同的分压状态。第一分压模块11根据所述控制模块14发送的控制信号而处于第一分压状态、第三分压状态、第五分压状态的先后顺序可以是任意的,第二分压模块12根据所述控制模块14发送的控制信号而处于第二分压状态、第四分压状态、第六分压状态的先后顺序也可以是任意的。
这里,根据本公开实施例的直流电源系统的绝缘电阻的检测电路结合了平衡电桥法和非平衡电桥法的优点,能够测试平衡电阻值和非平衡电阻值,即,能够测试当R
p=R
n≠∞和R
p≠R
n≠∞时直流电源系统对地的绝缘电阻,其中,R
p为直流电源系统的正端母线对地的正端绝缘电阻的阻值,R
n为直流电源系统的负端母线对地的负端绝缘电阻的阻值,从而克服了平衡电桥法不能测试平衡电阻的缺陷,也克服了非平衡电桥法对时间要求的影响,确保正、负端母线与地之间存在较大的绝缘阻抗,而不会影响正、负端母线与地之间的绝缘性能,并且能够在绝缘检测时,使正、负端母线的电压不会产生波动,且精度较高。因此,根据本公开的直流电源系统的绝缘电阻的检测电路可运用于检测充电桩等高压直流电源系统的绝缘电阻。
根据本公开实施例,控制模块14设置为:根据第一电压和第二电压,建立第一电压、第二电压、正端绝缘电阻和负端绝缘电阻之间的第一等式关系;根据第三电压和第四电压,建立第三电压、第四电、正端绝缘电阻和负端绝缘电阻之间的第二等式关系;根据第五电压和第六电压,建立第五电压、第六电压、正端绝缘电阻和负端绝缘电阻之间的第三等式关系;根据所述第一等式关系和所述第二等式关系,获取负端绝缘电阻的阻值;以及根据所述第二等式关系和所述第三等式关系,获取正端绝缘电阻的阻值。
这里,由于所述第一等式关系、第二等式关系、第三等式关系都是一维方程,因此求解计算过程相比于非平衡电桥法的二维方程会更加简单、快速,计算结果也会更精确。
根据本公开实施例,控制模块14还设置为当正端绝缘电阻的阻值在第一设定阈值范围内且负端绝缘电阻的阻值在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻满足预设要求,并且当正端绝缘电阻的阻值不在第一设定阈值范围内或负端绝缘电阻的阻值不在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻不满足预设要求。
这里,基于通过检测获取到的直流电源系统对地的绝缘电阻值,可以判断该直流电源系统对地的绝缘状况是否正常,即,当正端绝缘电阻和负端绝缘电阻均满足相应的预设要求时,可判定该直流电源系统对地的直流绝缘正常,而当正端绝缘电阻或负端绝缘电阻不满足相应的预设要求时,可判定该直流电源系统对地的直流绝缘异常。
这里,所述第一设定阈值范围和第二设定阈值范围可根据实际情况需要进行设置,比如,可根据直流电源系统绝缘监测装置技术条件,即,行业标准DL/T1392-2014进行设置。
根据本公开实施例,第一分压模块11可以包括第一电阻、第二电阻、第三电阻、第四电阻、第一开关和第二开关。第一电阻的第一端连接直流电源系统的正端母线,并且第一电阻的第二端连接第二电阻的第一端。第二电阻的第二端接地。第三电阻和第一开关串联,并且第三电阻和第一开关的串联电路与第一电阻并联。第四电阻和第二开关串联,并且第四电阻和第二开关的串联电路与第二电阻并联。
根据本公开实施例,第二分压模块12可以包括第五电阻、第六电阻、第七电阻、第八电阻、第三开关和第四开关。第五电阻的第一端连接直流电源系统的负端母线,并且第五电阻的第二端连接第六电阻的第一端。第六电阻的第二端接地。第七电阻和第三开关串联,并且第七电阻和第三开关的串联电路与第五电阻并联。第八电阻和第四开关串联,并且第八电阻和第四开关的串联电路与第六电阻并联。
这里,当第一分压模块11和第二分压模块12接收到控制模块14发送的控制信号时,响应与接收到的控制信号,第一分压模块11和第二分压模块12可以分别改变其所包括的各个开关的开关状态,以使第一分压模块11和第二分压模块12分别处于不同分压状态。
在检测高压直流电源系统对地的绝缘电阻时,与图1所示的平衡电桥法电路和图2所示的非平衡电桥法电路相比,根据本公开实施例的电阻分压方式,可以使每个开关需要切断的电压信号大小减小,降低对每个开关的硬件性能的要求,从而使根据本公开实施例中的单个开关的成本远远低于图1和图2所示电路中单个开关的成本。虽然本公开实施例中所需开关的数量比图1和图2所示电路中开关的数量多,但是由于单个开关的成本低,因此本公开实施例中所有开关的成本分别低于图1和图2所示电路中所有开关的成本。此外,由于单个电阻的成本通常较低,因此图1、图2、图3所示电路的硬件成本基本由开关的成本决定。综上所述,本公开实施例的直流电源系统的绝缘电阻的检测电路能够实现以低成本检测高压直流电源系统的绝缘电阻值。
根据本公开实施例,检测电路还可以包括第五开关;并且第二电阻的第二端和第六电阻的第二端通过第五开关接地。
这里,当包括第五开关时,在进行直流绝缘电阻检测时,可以保持第五开关闭合,以使第二电阻的第二端和第六电阻的第二端接地;当直流绝缘电阻检测完毕时,可以断开第五开关,使第五开关起到安全保护作用。在绝缘电阻的实时监测系统中,可省略第五开关。
这里,通过控制第五开关的断开或闭合,可以起到安全保护作用,从而延长检测电路的工作寿命。
根据本公开实施例,第一开关、第二开关、第三开关、第四开关和第五开关可以包括光耦、干簧继电器和常规继电器(如电磁式继电器)等,以便于通过电信号或脉冲对各个开关进行控制。
根据本公开实施例,检测模块13可以包括直流标准数字电压表等电压测量器件或测量电路。
综上所述,根据本公开实施例的直流电源系统的绝缘电阻的检测电路结合了平衡电桥法和非平衡电桥法的优点,能够测试平衡电阻值和非平衡电阻值,克服了平衡电桥法不能测试平衡电阻的缺陷,也克服了非平衡电桥法对时间要求的影响,获取正、负端母线对地的绝缘电阻值的计算过程简单,且精度高,从而能够确保正、负端母线与 地存在较大的绝缘阻抗,检测时不会影响正、负端母线与地之间的绝缘性能,并且能够在绝缘检测时,使正、负端母线的电压不会产生波动,且计算结果精度较高。例如,当第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻的阻值都相等时,对于第一开关、第二开关、第三开关、第四开关的切换电压仅为常规方法中采用的切换电压的六分之一,因此可以降低开关的成本且可靠度高。
图4为根据本公开实施例的检测直流电源系统的绝缘电阻的方法的流程示意图。在图4所示的方法中,采用根据本公开的直流电源系统的绝缘电阻的检测电路。
参见图3和图4,根据本公开实施例的检测直流电源系统的绝缘电阻的方法包括步骤101至104。
在步骤101,控制模块14向第一分压模块11发送第一控制信号,并且向第二分压模块12发送第二控制信号,使第一分压模块11处于第一分压状态,并且使第二分压模块12处于第二分压状态,检测模块13检测并获取正端母线对地的第一电压和负端母线对地的第二电压。
在步骤102,控制模块14向第一分压模块11发送第三控制信号,并且向第二分压模块12发送第四控制信号,使第一分压模块11处于第三分压状态,并且使第二分压模块12处于第四分压状态,检测模块13检测并获取正端母线对地的第三电压和负端母线对地的第四电压。
在步骤103,控制模块14向第一分压模块11发送第五控制信号,并且向第二分压模块12发送第六控制信号,使第一分压模块11处于第五分压状态,并且使第二分压模块处于第六分压状态,检测模块13检测并获取正端母线对地的第五电压和负端母线对地的第六电压。
在步骤104,控制模块基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取正端绝缘电阻的阻值和负端绝缘电阻的阻值。
根据本公开实施例,控制模块14根据第一电压和第二电压,建 立第一电压、第二电压、正端绝缘电阻和负端绝缘电阻之间的第一等式关系。控制模块14根据第三电压和第四电压,建立第三电压、第四电压、正端绝缘电阻和负端绝缘电阻之间的第二等式关系。控制模块14根据第五电压和第六电压,建立第五电压、第六电压、正端绝缘电阻和负端绝缘电阻之间的第三等式关系。控制模块14根据所述第一等式关系和所述第二等式关系,获取负端绝缘电阻的阻值。控制模块14根据所述第二等式关系和所述第三等式关系,获取正端绝缘电阻的阻值。
这里需要说明的是,上述对于第一等式关系、第二等式关系和第三等式关系的获取不存在先后顺序,即,上述步骤101、102和103之间不存在先后顺序,可以随意执行,只需要确保在每两个对应的分压状态获得相应的电压与电阻之间的等式关系。
本公开实施例的检测直流电源系统的绝缘电阻的方法结合了平衡电桥法和非平衡电桥法的优点,能够测试平衡电阻值和非平衡电阻值,即,能够测试当R
p=R
n≠∞和R
p≠R
n≠∞时直流电源系统的绝缘电阻,其中,R
p为直流电源系统的正端母线对地的正端绝缘电阻的阻值,R
n为直流电源系统的负端母线对地的负端绝缘电阻的阻值,从而克服了平衡电桥法不能测试平衡电阻的缺陷,也克服了非平衡电桥法对时间要求的影响,确保正、负端母线与地之间存在较大的绝缘阻抗,而不会影响正、负端母线与地之间的绝缘性能,并且能够在绝缘检测时,使正、负端母线的电压不会产生波动,且精度较高。此外,由于上述第一等式关系、第二等式关系、第三等式关系都是一维方程,因此求解计算过程更加简单、快速,计算结果也会更精确。
根据本公开实施例,该方法还可以包括:当正端绝缘电阻的阻值在第一设定阈值范围内且负端绝缘电阻的阻值在第二设定阈值范围内时,控制模块14判定正端绝缘电阻和负端绝缘电阻满足预设要求;以及当正端绝缘电阻的阻值不在第一设定阈值范围内或负端绝缘电阻的阻值不在第二设定阈值范围内时,控制模块14判定正端绝缘电阻和负端绝缘电阻不满足预设要求。
这里,基于通过检测获取到的直流电源系统对地的绝缘电阻值, 可以判断该直流电源系统对地的绝缘状况是否正常,即,当正端绝缘电阻和负端绝缘电阻均满足相应的预设要求时,可判定该直流电源系统对地的直流绝缘正常,而当正端绝缘电阻或负端绝缘电阻不满足相应的预设要求时,可判定该直流电源系统对地的直流绝缘异常。
这里,所述第一设定阈值范围和第二设定阈值范围可根据实际情况需要进行设置,比如,可根据直流电源系统绝缘监测装置技术条件,即,行业标准DL/T1392-2014进行设置。
图5为根据本公开实施例的直流电源系统的绝缘电阻的检测电路的示意电路图。
如图5所示,检测电路可以包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第一开关K1、第二开关K2、第三开关K3、第四开关K4和第五开关K5。第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一开关K1和第二开关K2可以构成图3所示的第一分压模块11,第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第三开关K3和第四开关K4可以构成图3所示的第二分压模块12。为了简明起见,图3所示的检测模块13和控制模块14未在图5中示出。
如图5所示,第一电阻R1的第一端连接直流电源系统的正端母线Up,第一电阻R1的第二端连接第二电阻R2的第一端。第二电阻R2的第二端通过第五开关K5接地。第三电阻R3和第一开关K1串联,并且第三电阻R3和第一开关K1与第一电阻R1并联。第四电阻R4和第二开关K2串联,并且第四电阻R4和第二开关K2与第二电阻R2并联。第五电阻R5的第一端连接直流电源系统的负端母线Un,第五电阻R5的第二端连接第六电阻R6的第一端。第六电阻R6的第二端通过第五开关K5接地。第七电阻R7和第三开关K3串联,并且第七电阻R7和第三开关K3与第五电阻R5并联。第八电阻R8和第四开关K4串联,并且第八电阻R8和第四开关K4与第六电阻R6并联。
根据本公开实施例,第一开关K1、第二开关K2、第三开关K3、第四开关K4和第五开关K5可以是电磁式继电器、光耦、干簧继电器 等器件,并且第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8的电阻值大小为电路设计时选取的,需要根据实际的高压直流输出电压进行选取。
在进行高压直流绝缘电阻检测时,可以保持第五开关K5闭合,以使第二电阻R2的第二端和第六电阻R6的第二端接地;当高压直流绝缘电阻检测完毕时,可以断开第五开关K5,使第五开关K5起到安全保护作用。在绝缘电阻实时监测系统中,可省略第五开关K5,即,使得第二电阻R2的第二端和第六电阻R6的第二端直接接地。
在第一开关K1和第二开关K2闭合的情况下,通过断开和闭合第三开关K3和第四开关K4,可以求得负端绝缘电阻的等效电阻值R
n;在第三开关K3和第四开关K4闭合的情况下,通过断开和闭合第一开关K1和第二开关K2,可以求得正端绝缘电阻的等效电阻值R
p。
在实际的测试过程中,通过第一开关K1、第二开关K2、第三开关K3、第四开关K4的断开和闭合可以形成三个不同的分压状态,从而获得对应的三个不同的等式关系,从而可以计算得到R
n和R
p。
为了计算方便,可以根据第一电阻R1至第八电阻R8的阻值预先定义R
a、R
b、R
c、R
d四个常量;其中,
即,R
a为第一电阻R1与第三电阻R3并联时的阻值,R
b为第二电阻R2与第四电阻R4并联时的阻值,R
c为第五电阻R5与第七电阻R7并联时的阻值,并且R
d为第六电阻R6与第八电阻R8并联时的阻值。
下面对三个不同状态进行简要分析。
图6为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态一时的示意图。
如图6所示,此时第一开关K1、第二开关K2、第五开关K5闭合,并且第三开关K3和第四开关K4断开,检测到正、负端母线对地电压分别为U
p1、U
n1。
在第一开关K1和第二开关K2闭合,而第三开关K3和第四开关K4断开情况下,正端母线对地的电阻值R
p1和负端母线对地的电阻值 R
n1可以分别通过以下等式1和等式2计算:
图7为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态二时的示意图。
如图7所示,此时第一开关K1至第五开关K5均闭合,检测到正、负端母线对地电压分别为U
p2、U
n2。
在第一开关K1至第四开关K4均闭合情况下,正端母线对地的电阻值R
p2和负端母线对地的电阻值R
n2可以分别通过以下等式3和等式4计算:
图8为图5所示的根据本公开实施例的直流电源系统的绝缘电阻的检测电路处于状态三时的示意图。
如图8所示,此时第一开关K1和第二开关K2断开,第三开关K3、第四开关K4、第五开关K5闭合,检测到正、负端母线对地电压分别为U
p3、U
n3。
在第一开关K1和第二开关K2断开,而第三开关K3和第四开关K4闭合情况下,正端母线对地的电阻值R
p3和负端母线对地的电阻值R
n3可以分别通过以下等式5和等式6计算:
根据公式①和公式②,可以计算得到R
n值,并且根据公式②和公式③,可以计算得到R
p值。
这里需要说明的是,上述公式①至公式③的获取不存在先后顺序,可以随意执行,而只需要确保在每两个对应的分压状态获得相应的电压与电阻之间的等式关系。
下面通过一个具体示例对本公开实施例作进一步的说明。
假设,在高压直流电源充电过程中,在正、负端母线电压输出为500VDC,第一电阻R1至第八电阻R8的阻值均为80KΩ,则R
a、R
b、R
c、R
d均为40KΩ。另外假设,负端母线对地的电阻值R
n为200KΩ,正端母线对地的电阻值R
p为50KΩ。
在状态一时,检测到正、负端母线对地电压分别为U
p1=128.57V和U
n1=371.43V,因此公式①为:
在状态二时,检测到正、负端母线对地电压分别为U
p2=175V和U
n2=325V,因此公式②为:
在状态三时,检测到正、负端母线对地电压分别为U
p3=199.99V和U
n3=300.01V,因此公式③为:
根据公式①和公式②,计算得出R
n=201.69KΩ,根据公式②和公式③,可以得出R
p=49.87KΩ。
对于超过100KΩ的绝缘电阻,直流电源系统绝缘监测装置技术条件,即,行业标准DL/T1392-2014要求精度小于10%;对于小于100KΩ的绝缘电阻,行业标准DL/T1392-2014要求精度小于5%。由此可见,上述示例符合要求,可以判定该高压直流电源系统对地的直流绝缘正常。
在本示例中,由于电阻R1至R8的阻值都相同,开关K1、K2、K3、K4的切换电压只需要平衡电桥法和非平衡电桥法中的开关切换电压的六分之一,因此降低了对每个开关的硬件性能的要求,使得每个开关的成本大大降低,即,根据本实施例的检测电路的硬件成本低于平衡电桥法电路的硬件成本和非平衡电桥法电路的硬件成本。此外,根据本实施例的检测电路能够测试当R
p=R
n≠∞和R
p≠R
n≠∞时高压直流电源系统对地的绝缘电阻,能够确保正、负端母线与地之间存在较大的绝缘阻抗,而不会影响正、负端母线与地之间的绝缘性能,并且能够在绝缘检测时,使正、负端母线的电压不会产生波动。由于计算公式都是一维方程,因此计算过程更加简单快速、计算结果精度更高。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件以及必需的通用硬件平台的组合的方式来实现。当然,也可以通过硬件来实现。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,并包括若干指令以使得检测设备执行本公开各个实施例所述的方法。
本公开实施例通过改变分压方式来改变直流电源系统的正、负端母线对地电压,并基于正、负端母线对地电压的变化来获取正、负端母线对地的绝缘电阻的阻值,从而能够以低成本全面、准确地检测直流电源系统对地的绝缘电阻值,并且计算简单、计算结果精度高。此外,基于检测所获得的直流电源系统对地的绝缘电阻值,可进一步判断该直流电源系统对地的绝缘状况是否正常。
以上所述,仅为本公开的实施例,并非用于限定本公开的保护范围。凡在本公开的精神和范围之内所作的任何修改、等同替换和改进等,均包含在本公开的保护范围之内。
Claims (12)
- 一种直流电源系统的绝缘电阻的检测电路,包括:第一分压模块、第二分压模块、检测模块和控制模块,所述第一分压模块与所述直流电源系统的正端母线对地的正端绝缘电阻构成第一分压回路,并且所述第二分压模块与所述直流电源系统的负端母线对地的负端绝缘电阻构成第二分压回路,其中,所述控制模块设置为:向所述第一分压模块发送第一控制信号,并且向所述第二分压模块发送第二控制信号,使所述第一分压模块处于第一分压状态,并且使所述第二分压模块处于第二分压状态;向所述第一分压模块发送第三控制信号,并且向所述第二分压模块发送第四控制信号,使所述第一分压模块处于第三分压状态,并且使所述第二分压模块处于第四分压状态;以及向所述第一分压模块发送第五控制信号,并且向所述第二分压模块发送第六控制信号,使所述第一分压模块处于第五分压状态,并且使所述第二分压模块处于第六分压状态,所述检测模块设置为:当所述第一分压模块处于第一分压状态且所述第二分压模块处于第二分压状态时,检测并获取所述正端母线对地的第一电压和所述负端母线对地的第二电压;当所述第一分压模块处于第三分压状态且所述第二分压模块处于第四分压状态时,检测并获取所述正端母线对地的第三电压和所述负端母线对地的第四电压;以及当所述第一分压模块处于第五分压状态且所述第二分压模块处于第六分压状态时,检测并获取所述正端母线对地的第五电压和所述负端母线对地的第六电压,所述控制模块还设置为基于所述第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取所述正端绝缘电阻的阻值和所述负端绝缘电阻的阻值。
- 根据权利要求1所述的检测电路,其中,所述第一分压模块包括第一电阻、第二电阻、第三电阻、第四电阻、第一开关和第二开关,其中,第一电阻的第一端连接所述正端母线,第一电阻的第二端连接第二电阻的第一端,第二电阻的第二端接地,第三电阻和第一开关串联,并且第三电阻和第一开关与第一电阻并联,并且第四电阻和第二开关串联,并且第四电阻和第二开关与第二电阻并联。
- 根据权利要求2所述的检测电路,其中,所述第二分压模块包括第五电阻、第六电阻、第七电阻、第八电阻、第三开关和第四开关;其中,第五电阻的第一端连接所述负端母线,第五电阻的第二端连接第六电阻的第一端,第六电阻的第二端接地,第七电阻和第三开关串联,并且第七电阻和第三开关与第五电阻并联,第八电阻和第四开关串联,并且第八电阻和第四开关与第六电阻并联。
- 根据权利要求3所述的检测电路,还包括第五开关,并且第二电阻的第二端和第六电阻的第二端通过第五开关接地。
- 根据权利要求1至4任一项所述的检测电路,其中,所述控制模块还设置为:根据第一电压和第二电压,建立第一电压、第二电压、正端绝缘电阻和负端绝缘电阻之间的第一等式关系;根据第三电压和第四电压,建立第三电压、第四电压、正端绝缘电阻和负端绝缘电阻之间的第二等式关系;根据第五电压和第六电压,建立第五电压、第六电压、正端绝缘电阻和负端绝缘电阻之间的第三等式关系;根据所述第一等式关系和所述第二等式关系,获取负端绝缘电阻的阻值;以及根据所述第二等式关系和所述第三等式关系,获取正端绝缘电阻的阻值。
- 根据权利要求1所述的检测电路,其中,所述控制模块还设置为:当正端绝缘电阻的阻值在第一设定阈值范围内且负端绝缘电阻的阻值在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻满足预设要求;以及当正端绝缘电阻的阻值不在第一设定阈值范围内或负端绝缘电阻的阻值不在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻不满足预设要求。
- 一种利用检测电路检测直流电源系统的绝缘电阻的方法,所述检测电路包括第一分压模块、第二分压模块、检测模块和控制模块,所述第一分压模块与所述直流电源系统的正端母线对地的正端绝缘电阻构成第一分压回路,并且所述第二分压模块与所述直流电源系统的负端母线对地的负端绝缘电阻构成第二分压回路,所述方法包括:控制模块向所述第一分压模块发送第一控制信号,并且向所述第二分压模块发送第二控制信号,使所述第一分压模块处于第一分压状态,并且使所述第二分压模块处于第二分压状态,检测模块检测并获取所述正端母线对地的第一电压和所述负端母线对地的第二电压;控制模块向所述第一分压模块发送第三控制信号,并且向所述第二分压模块发送第四控制信号,使所述第一分压模块处于第三分压状态,并且使所述第二分压模块处于第四分压状态,检测模块检测并获取所述正端母线对地的第三电压和所述负端母线对地的第四电压;控制模块向所述第一分压模块发送第五控制信号,并且向所述 第二分压模块发送第六控制信号,使所述第一分压模块处于第五分压状态,并且使所述第二分压模块处于第六分压状态,检测模块检测并获取所述正端母线对地的第五电压和所述负端母线对地的第六电压;以及控制模块基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取所述正端绝缘电阻的阻值和所述负端绝缘电阻的阻值。
- 根据权利要求7所述的方法,其中,控制模块基于第一电压、第二电压、第三电压、第四电压、第五电压、第六电压,获取所述正端绝缘电阻的阻值和所述负端绝缘电阻的阻值的步骤包括:根据第一电压和第二电压,建立第一电压、第二电压、正端绝缘电阻和负端绝缘电阻之间的第一等式关系;根据第三电压和第四电压,建立第三电压、第四电压、正端绝缘电阻和负端绝缘电阻之间的第二等式关系;根据第五电压和第六电压,建立第五电压、第六电压、正端绝缘电阻和负端绝缘电阻之间的第三等式关系;根据所述第一等式关系和所述第二等式关系,获取负端绝缘电阻的阻值;以及根据所述第二等式关系和所述第三等式关系,获取正端绝缘电阻的阻值。
- 根据权利要求7所述的方法,还包括:当正端绝缘电阻的阻值在第一设定阈值范围内且负端绝缘电阻的阻值在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻满足预设要求;以及当正端绝缘电阻的阻值不在第一设定阈值范围内或负端绝缘电阻的阻值不在第二设定阈值范围内时,判定正端绝缘电阻和负端绝缘电阻不满足预设要求。
- 一种直流电源系统的绝缘电阻的检测电路,包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一开关、第二开关、第三开关和第四开关,其中,第一电阻的第一端连接所述直流电源系统的正端母线,第一电阻的第二端连接第二电阻的第一端,第二电阻的第二端接地,第三电阻和第一开关串联,并且第三电阻和第一开关与第一电阻并联,第四电阻和第二开关串联,并且第四电阻和第二开关与第二电阻并联,第五电阻的第一端连接所述直流电源系统的负端母线,第五电阻的第二端连接第六电阻的第一端,第六电阻的第二端接地,第七电阻和第三开关串联,并且第七电阻和第三开关与第五电阻并联,并且第八电阻和第四开关串联,并且第八电阻和第四开关与第六电阻并联。
- 根据权利要求10所述的检测电路,还包括第五开关,并且第二电阻的第二端和第六电阻的第二端通过第五开关接地。
- 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行根据权利要7至9中任一项所述的检测直流电源系统的绝缘电阻的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710254231.9 | 2017-04-18 | ||
CN201710254231.9A CN108732511A (zh) | 2017-04-18 | 2017-04-18 | 一种直流电源系统的绝缘电阻检测电路及检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018192434A1 true WO2018192434A1 (zh) | 2018-10-25 |
Family
ID=63856956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/083165 WO2018192434A1 (zh) | 2017-04-18 | 2018-04-16 | 直流电源系统的绝缘电阻的检测电路及检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108732511A (zh) |
WO (1) | WO2018192434A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111366785A (zh) * | 2020-04-02 | 2020-07-03 | 南方电网电动汽车服务有限公司 | 直流充电桩绝缘监测电路及方法 |
CN112924753A (zh) * | 2019-12-06 | 2021-06-08 | 苏州阿特斯阳光电力科技有限公司 | 一种光伏阵列对地绝缘阻抗的检测装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109596885A (zh) * | 2018-11-13 | 2019-04-09 | 浙江合众新能源汽车有限公司 | 一种reess的绝缘电阻测试方法 |
CN111337747B (zh) * | 2020-03-23 | 2022-03-15 | 东软睿驰汽车技术(沈阳)有限公司 | 测量电阻的装置、方法、车载控制器及电动汽车 |
CN113835039B (zh) * | 2020-06-23 | 2023-01-20 | 株洲中车时代电气股份有限公司 | 一种接地检测电路及方法 |
CN114325096A (zh) * | 2021-02-27 | 2022-04-12 | 华为数字能源技术有限公司 | 一种绝缘电阻检测电路、方法、装置 |
CN113189463A (zh) * | 2021-04-15 | 2021-07-30 | 常州易控汽车电子股份有限公司 | 一种车辆绝缘性检测电路 |
CN113671256A (zh) * | 2021-08-02 | 2021-11-19 | 成都英格瑞德科技有限公司 | 基于恒流转换器系统的离线绝缘电阻采样电路 |
CN116148538B (zh) * | 2023-04-19 | 2023-07-04 | 深之蓝海洋科技股份有限公司 | 直流高压绝缘检测系统及检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486518A (zh) * | 2010-12-03 | 2012-06-06 | 北京人民电器厂有限公司 | 可减小母线电压波动的直流绝缘监测系统及方法 |
CN104034978A (zh) * | 2014-05-28 | 2014-09-10 | 许继电气股份有限公司 | 直流充换电站绝缘检测装置 |
EP2796887A1 (en) * | 2012-03-27 | 2014-10-29 | LG Chem, Ltd. | Insulation resistance measurement device having malfuction self-diagnosis function, and method for self-diagnosing malfuction using same |
CN106093739A (zh) * | 2016-08-23 | 2016-11-09 | 山东泰开自动化有限公司 | 一种特殊电桥法设计的充电桩绝缘监测装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB678975A (en) * | 1950-05-04 | 1952-09-10 | English Electric Co Ltd | Electrical insulation resistance measuring apparatus |
CN102320251A (zh) * | 2011-06-29 | 2012-01-18 | 奇瑞汽车股份有限公司 | 一种电动车电池组高压系统管理的方法及装置 |
CN202330561U (zh) * | 2011-09-30 | 2012-07-11 | 首瑞(北京)投资管理集团有限公司 | 可补偿正负极对地电压偏移的直流绝缘监测装置 |
CN202870176U (zh) * | 2012-10-09 | 2013-04-10 | 浙江埃菲生能源科技有限公司 | 一种直流接地电阻检测装置 |
CN106353599B (zh) * | 2016-10-21 | 2018-04-03 | 西安特锐德智能充电科技有限公司 | 一种直流充电桩绝缘监测电路及检测方法 |
-
2017
- 2017-04-18 CN CN201710254231.9A patent/CN108732511A/zh not_active Withdrawn
-
2018
- 2018-04-16 WO PCT/CN2018/083165 patent/WO2018192434A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486518A (zh) * | 2010-12-03 | 2012-06-06 | 北京人民电器厂有限公司 | 可减小母线电压波动的直流绝缘监测系统及方法 |
EP2796887A1 (en) * | 2012-03-27 | 2014-10-29 | LG Chem, Ltd. | Insulation resistance measurement device having malfuction self-diagnosis function, and method for self-diagnosing malfuction using same |
CN104034978A (zh) * | 2014-05-28 | 2014-09-10 | 许继电气股份有限公司 | 直流充换电站绝缘检测装置 |
CN106093739A (zh) * | 2016-08-23 | 2016-11-09 | 山东泰开自动化有限公司 | 一种特殊电桥法设计的充电桩绝缘监测装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112924753A (zh) * | 2019-12-06 | 2021-06-08 | 苏州阿特斯阳光电力科技有限公司 | 一种光伏阵列对地绝缘阻抗的检测装置 |
CN112924753B (zh) * | 2019-12-06 | 2022-09-16 | 苏州阿特斯阳光电力科技有限公司 | 一种光伏阵列对地绝缘阻抗的检测装置 |
CN111366785A (zh) * | 2020-04-02 | 2020-07-03 | 南方电网电动汽车服务有限公司 | 直流充电桩绝缘监测电路及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108732511A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018192434A1 (zh) | 直流电源系统的绝缘电阻的检测电路及检测方法 | |
CN102830283A (zh) | 一种直流电源绝缘检测装置及其检测方法 | |
US9612290B2 (en) | Reducing or avoiding noise in measured signals of a tested battery cell(s) in a battery power system used to determine state of health (SOH) | |
RU2014136748A (ru) | Способ определения причины потери напряжения на выходе выключатетя, вспомогательный прибор для выключателя, электрическая система, содержащая выключатель и такой вспомогательный прибор | |
US11499997B2 (en) | Method for validating voltage measurements in a digital-electricity transmission system | |
CN105842540A (zh) | 一种直流母线绝缘电阻检测方法 | |
WO2020181739A1 (zh) | 一种负载检测系统及其负载检测方法 | |
US20230053450A1 (en) | Method for Detecting a Series Resistance Fault in a Digital-Electricity Transmission System | |
KR20240115786A (ko) | 불량애자 판별 장치 | |
TWI684770B (zh) | 直流供電洩漏電流偵測裝置 | |
US20230142049A1 (en) | Fault detection in a power transmission system | |
US9529031B2 (en) | Grounding detection device and method | |
CN118033477A (zh) | 一种绝缘漏电检测系统及检测方法 | |
CN116520098A (zh) | 一种差异频率信号注入原理的绝缘检测方法及电路仿真方法 | |
US11011335B2 (en) | In or relating to circuit interruption devices | |
CN115267341A (zh) | 一种接地电阻测量装置和方法 | |
CN205691705U (zh) | 一种基于电容分压的接地故障监测装置 | |
CN109270480A (zh) | 检测源监控单元的方法 | |
CN111044961A (zh) | 测试机台自检系统及检测方法 | |
TWI731448B (zh) | 測試機台自檢系統及檢測方法 | |
CN108037342A (zh) | 一种自动平衡桥及其阻抗测量方法 | |
CN108169664B (zh) | 电路板故障检测方法和装置、计算机设备和存储介质 | |
CN110221644B (zh) | 一种芯片及其外置rset电阻开路监测电路 | |
CN108845220B (zh) | 一种电池系统接地故障检测装置及方法 | |
CN110161363B (zh) | 基于主频表征量的变压器运行状态振声检测方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18786948 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18786948 Country of ref document: EP Kind code of ref document: A1 |