WO2018192325A1 - 真圆微波消融天线及系统 - Google Patents

真圆微波消融天线及系统 Download PDF

Info

Publication number
WO2018192325A1
WO2018192325A1 PCT/CN2018/078952 CN2018078952W WO2018192325A1 WO 2018192325 A1 WO2018192325 A1 WO 2018192325A1 CN 2018078952 W CN2018078952 W CN 2018078952W WO 2018192325 A1 WO2018192325 A1 WO 2018192325A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
water conduit
microwave
true
microwave ablation
Prior art date
Application number
PCT/CN2018/078952
Other languages
English (en)
French (fr)
Inventor
张鹏
杨婷
Original Assignee
南通融锋医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通融锋医疗科技有限公司 filed Critical 南通融锋医疗科技有限公司
Priority to JP2018550778A priority Critical patent/JP6755963B2/ja
Priority to EP18788105.7A priority patent/EP3494917B1/en
Priority to US16/087,098 priority patent/US11304754B2/en
Publication of WO2018192325A1 publication Critical patent/WO2018192325A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1482Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1427Needle with a beveled end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1497Electrodes covering only part of the probe circumference
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1823Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/183Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves characterised by the type of antenna
    • A61B2018/1853Monopole antennas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1869Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument interstitially inserted into the body, e.g. needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1884Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with non-uniform emissions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1892Details of electrical isolations of the antenna

Definitions

  • the invention relates to a true circular microwave ablation antenna, belonging to the technical field of microwave ablation needles.
  • Microwave tumor ablation is the use of microwave energy to act on the tissue to produce a thermal effect. In a few minutes to ten minutes, the temperature of the thermal field can reach above 100 °C, and the tumor tissue is coagulated and inactivated at an instant high temperature to reach the tumor.
  • Microwave tumor ablation is a method in which a microwave ablation needle is inserted into a human body tissue, and the microwave energy is continuously emitted from the front end to perform surgery. Because of its high efficiency, the wound is small, and the depth and range of the tissue can be controlled. Ablation surgery of whole body solid tumors.
  • microwave ablation needle used in clinical practice has the following deficiencies:
  • the working temperature of the front end of the needle body is high, which affects the stability of microwave energy emission. At the same time, the high temperature of the needle bar will burn normal tissue.
  • the current microwave ablation damage is not round (long or elliptical), the true roundness is less than 0.7, the ablation short diameter is less than 3 cm, can not treat a 3 cm tumor with a needle. Clinical use is greatly limited, and complete ablation therapy is not guaranteed, and the results become unpredictable.
  • the dielectric system of the tissue changes dynamically, and the core tissue dielectric coefficient of carbonization ( ⁇ 140°C) or coking (about 110°C) caused by high temperature changes greatly.
  • the wavelength will become longer, causing the diffraction ability of the creeping wave to become stronger (the choke ring can be bypassed).
  • the carbonized structure forms a reflecting surface, and some microwave energy is reflected to the needle bar direction (the rear end of the antenna).
  • the common result is that the shape of the microwave antenna ablation is not round when the continuous ablation occurs, and the "true circle” coefficient in clinical practice (Short/long diameter) is hard to exceed 0.7.
  • the technical problem to be solved by the present invention is to overcome the above disadvantages of the prior art and provide a true-circular microwave ablation antenna and system.
  • the present invention provides a true-circular microwave ablation antenna comprising: a needle, a needle bar, a coaxial cable, a water conduit and a choke ring, the antenna has a chamber for accommodating a coaxial cable and a water conduit, and a water conduit A water inlet is disposed between the coaxial cables, and a water return channel is disposed between the water conduit and the needle bar; wherein the chamber and the water conduit extend forward to the front end of the antenna, and the emission window of the antenna is at least partially located in the water diversion In the tube, the cooling medium can cool the emission window area of the antenna; the water conduit of the microwave emission area is a microwave permeable material, so that the microwave can radiate outward, and the rest of the water conduit is a microwave shielding material; The choke ring is sealed and fixed to the water conduit, so that the choke ring acts to block the microwave, and there is a gap between the choke ring and the needle bar, and the gap is used for the backflow of the cooling medium
  • the microwave permeable material is made of insulating material; the microwave shielding material is made of metal.
  • the invention replaces the water-cooling structure of the traditional ablation antenna, and the emission window of the antenna is disposed in the water conduit, so that the cooling medium (water) can cool the antenna front end, preventing the tumor tissue in the high temperature region from being carbonized or coked in a short time, and the high temperature
  • the change of the dielectric coefficient of the regional tumor tissue is small, so that the microwave wavelength is basically stable during the operation, and the climbing ability is weak, and it can be suppressed by the turbulent ring; and there is no "carbonized structure" mentioned in the background art.
  • the formed reflecting surface ensures that the shape of the microwave ablation is rounder, and the "true circle” coefficient (short diameter / long diameter) reaches 0.95; and because the temperature of the high temperature region of the needle is effectively controlled, it is possible to increase the power and increase the ablation time.
  • a larger ablation radius (5 cm or more) can be achieved.
  • the present invention also proposes a true-circle microwave ablation system characterized by using the above-described special structure of a true-circular microwave ablation antenna.
  • Figure 1 is a cross-sectional view showing a front end portion of a true-circle microwave ablation antenna of the first embodiment.
  • Figure 2 is a cross-sectional view showing the front end of the second embodiment of the true-circle microwave ablation antenna.
  • the figures are shown as follows: 1-needle bar, 2-coaxial cable, 3-pole core, 4-pin, 5-antenna emission window, 6-duct, 6-first sub-tube, 62-second sub-tube , 7-choke ring, 8-media sleeve, 9-bump.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the true-circle microwave ablation antenna of the present embodiment comprises: a needle 4, a needle bar 1, a coaxial cable 2, a water conduit 6 and a choke ring 7.
  • the antenna has a chamber for accommodating the coaxial cable 2 and the water conduit 6, and a water inlet is provided between the water conduit 6 and the coaxial cable 2 (it is recommended to use the gap between the water conduit 6 and the coaxial cable 2 as a water inlet).
  • a water return pipe is provided between the water pipe 6 and the needle bar 1 (it is recommended to use the gap between the water pipe 6 and the needle bar 1 as a water return pipe).
  • the needle 4 zirconia thorn head
  • the needle 4 has a blind hole with an opening facing backward
  • a pole core 3 is arranged in the blind hole
  • an inner conductor of the coaxial cable 2 is connected to the pole core 3 (electrically conductive connection).
  • An antenna emission window 5 is formed between the core 3 and the coaxial cable outer conductor 2.
  • a cavity is formed between the wall of the blind hole and the pole core 3 and the outer conductor 2 of the coaxial cable.
  • the front end of the water conduit is close to or against the bottom of the blind hole, so that the emission window 5 of the antenna is at least partially located in the water conduit. So that the cooling medium can cool the emission window area of the antenna.
  • the cooling medium is drained to the foremost end of the antenna by means of a water conduit, so that the central region of the microwave radiation can be cooled and cooled.
  • the water conduit 6 has a first sub-tube 61 near the needle and a second sub-tube 62 away from the needle.
  • the first sub-tube 61 is made of insulating material, and can be selected from polyvinyl chloride (PVC). Or polytetrafluoroethylene (PTFE) or the like to enable the microwave to radiate outward, and the rear portion is sealingly connected with the second sub-tube 61 to ensure the cooling medium is transported forward; the second sub-tube 62 is made of metal, and the copper or stainless steel can be selected.
  • PVC polyvinyl chloride
  • PTFE polytetrafluoroethylene
  • the front part is sealed and fixed with the choke ring 71, so that the choke ring acts to block the microwave; there is a gap between the choke ring and the needle bar, and the gap is used for the backflow of the cooling medium.
  • the arrows in the antenna chamber indicate the flow direction of the cooling medium.
  • first sub-tube 61 and the second sub-tube 62 of the water conduit 6 are sealingly butted, and the choke ring 7 is fitted to the second sub-tube 62 and sealed and fixed.
  • the water conduit and the choke can also be equipped with other assembly structures, such as:
  • the first sub-tube 61 and the second sub-tube 62 are respectively fixed to the front and rear ends of the choke ring 7;
  • the first sub-tube is inserted into the inner hole of the choke ring 7 for sealing and fixing; the second sub-tube 62 is sealed and welded to the rear end of the choke ring 7.
  • the choke ring 7 is fitted to the second sub-tube 62, and the first sub-tube 61 is inserted into the front portion of the second sub-tube 62.
  • the main structure of the embodiment is basically the same as that of the first embodiment, and the difference is the front end portion of the antenna.
  • the needle 4 is a metal lancet
  • the tail of the metal spur has a rearward projection 9
  • the inner conductor of the coaxial cable 2 is connected to the tail (protrusion 9) of the metal thorn
  • the rear end of 9) forms an emission window 5 of the antenna between the front end of the outer conductor of the coaxial cable 2.
  • the needle 4 is connected to the needle bar 1 through a medium sleeve 8, and a cavity is formed between the medium sleeve 8 and the coaxial cable 2.
  • the water conduit extends forwardly into the cavity, and the emission window of the antenna is at least partially located in the water conduit.
  • the cooling medium is capable of cooling the emission window area of the antenna.
  • the present invention also provides a true circular microwave ablation system comprising the aforementioned true circular microwave ablation antenna.
  • the present invention also protects the aforementioned true circular microwave ablation antenna for a true circular microwave ablation system.

Abstract

一种真圆微波消融天线,天线具有容纳同轴电缆(2)和引水管(6)的腔室,腔室和引水管(6)向前延伸至天线的前端,天线的发射窗口(5)至少部分的位于引水管(6)内,使冷却介质能够对天线的发射窗口(5)区域进行降温;微波发射区域的引水管(6)为绝缘材质,使微波能够向外辐射,引水管(6)的其余部分为微波屏蔽材质;位于发射区域后侧的扼流环(7)与引水管(6)密封固定,使扼流环(7)起到阻挡微波的作用,扼流环(7)与针杆(1)之间存在间隙,该间隙用于冷却介质的回流。天线的发射窗口(5)设置于引水管(6)内,使得冷却介质能够对天线前端进行降温,配合扼流环对微波进行抑制,确保微波消融的形态较圆,"真圆"系数(短径/长径)达到0.95,并且可实现5cm以上的消融半径。

Description

真圆微波消融天线及系统 技术领域
本发明涉及一种真圆微波消融天线,属于微波消融针技术领域。
背景技术
随着现代科技与肿瘤学的进步,近十年来,国内微波肿瘤消融技术取得了突破性的进展。微波肿瘤消融是利用微波能作用组织即可产生热效应,在数分钟到十数分钟的时间内,其热场中心温度可达100℃以上,肿瘤组织在瞬间高温下被凝固、灭活,达到肿瘤消融治疗的目的。微波肿瘤消融术是将微波消融针介入人体组织的病灶,由其前端持续发射微波能,以实施手术,因其效率高,创口小,并且对组织的作用深度及范围大小均可控,适用于全身实体肿瘤的消融手术。
目前,临床使用的微波消融针存在以下不足之处:
1、针体前端工作温度高,影响微波能发射的稳定性,同时针杆温度高会灼伤正常组织。
2、针体前端微波发射结构存在缺陷,制约其可使用的微波输出功率。
3、目前的微波消融损毁形态都不圆(长条或椭圆),真圆率小于0.7,消融短径小于3厘米,不能一针治疗3厘米的肿瘤。临床使用时受到很大限制,不能保证完全消融治疗,结果变得不可预知。
为了解决上述技术问题,申请人于2010年9月向专利局提交了专利申请CN201020520138.1,涉及一种“可大功率使用的水冷微波消融针”,该方案在发射端后侧的同轴电缆上焊接扼流环(堵水轴),套装在同轴电缆外的引水管前端固定于扼流环,从而形成进出水道,利用冷却介质(水)对针体前端(微波发射区域的后端)进行水冷,从而一定程度上解决了上述问题,然而该方案消融 的真圆率依然没有达到0.9,因此,仍然需要进一步的研发与改进。
由于微波消融时,肿瘤组织迅速被凝固脱水后,组织的介电系统会发生动态变化,而且高温导致的碳化(≧140℃)或焦化(约110℃)的核心组织介电系数变化大,微波的波长会变长,造成爬行波的衍射能力变强(可绕过扼流环)。同时碳化的组织形成一个反射面,将部分微波能量向针杆方向(天线的后端)反射,共同的结果导在致持续消融时微波天线消融的形态不圆,临床实践中“真圆”系数(短径/长径)很难超过0.7。
发明内容
本发明所要解决的技术问题是,克服现有技术的上述缺点,提供一种真圆微波消融天线及系统。
为了解决以上技术问题,本发明提供的真圆微波消融天线,包括:针头、针杆、同轴电缆、引水管和扼流环,天线具有容纳同轴电缆和引水管的腔室,引水管与同轴电缆之间设置有进水道,引水管与针杆之间设置有回水道;其特征在于:所述腔室和引水管向前延伸至天线的前端,天线的发射窗口至少部分的位于引水管内,使冷却介质能够对天线的发射窗口区域进行降温;微波发射区域的引水管为微波可穿透材质,使微波能够向外辐射,引水管的其余部分为微波屏蔽材质;位于发射区域后侧的扼流环与引水管密封固定,使扼流环起到阻挡微波的作用,扼流环与针杆之间存在间隙,该间隙用于冷却介质的回流。
其中,微波可穿透材质为绝缘材质;微波屏蔽材质为金属材质。
本发明一改传统消融天线的水冷结构,将天线的发射窗口设置于引水管内,使得冷却介质(水)能够对天线前端进行降温,防止高温区域的肿瘤组织在短时间内发生碳化或焦化,高温区域肿瘤组织的介电系数变化小,从而使得手术过程中微波波长基本稳定,其爬坡能力弱,配合扼流环即可对其进行抑制;同 时也不存在背景技术中提及的“碳化组织形成的反射面”,确保微波消融的形态较圆,“真圆”系数(短径/长径)达到0.95;并且由于针头高温区域的温度被有效控制,从而可以通过加大功率和增加消融时间可实现更大的消融半径(5cm以上)。
此外,本发明还提出了一种真圆微波消融系统,其特征在于使用了前述特殊结构的真圆微波消融天线。
附图说明
下面结合附图对本发明作进一步的说明。
图1是实施例一真圆微波消融天线前端部分剖视图。
图2是实施例二真圆微波消融天线前端部分剖视图。
图中标号示意如下:1-针杆,2-同轴电缆,3-极芯,4-针头,5-天线发射窗口,6-引水管,61-第一子管,62-第二子管,7-扼流环,8-介质套管,9-凸起。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例一:
如图1所示,本实施例真圆微波消融天线,包括:针头4、针杆1、同轴电缆2、引水管6和扼流环7。天线具有容纳同轴电缆2和引水管6的腔室,引水管6与同轴电缆2之间设置有进水道(建议利用引水管6与同轴电缆2之间的间隙作为进水道),引水管6与针杆1之间设置有回水道(建议利用引水管6与针杆1之间的间隙作为回水道)。如图1所示,针头4(二氧化锆刺头)具有开口朝后的盲孔,盲孔内设置有极芯3,同轴电缆2的内导体与极芯3相连(导电 连接),极芯3与同轴电缆外导体2之间形成天线发射窗口5。盲孔的孔壁与极芯3、同轴电缆外导体2之间形成空腔,引水管的前端靠近或抵住所述盲孔的底部,使得天线的发射窗口5(至少部分的)位于引水管内,从而使冷却介质能够对天线的发射窗口区域进行降温。本例中,借助引水管,冷却介质引流至天线的最前端,从而可以对微波辐射中心区域进行冷却降温。
如图1所示,本实施例中,引水管6具有靠近针头的第一子管61和远离针头的第二子管62,第一子管61为绝缘材质,可以选用聚氯乙烯(PVC)或聚四氟乙烯(PTFE)等,使微波能够向外辐射,其后部与第二子管61密封连接,确保冷却介质向前输送;第二子管62为金属材质,可以选择铜或不锈钢;其前部与扼流环71密封焊接固定,使扼流环起到阻挡微波的作用;扼流环与针杆之间存在间隙,该间隙用于冷却介质的回流。图1中,天线腔室内的箭头表示冷却介质的流动方向。
本施例中,引水管6的第一子管61和第二子管62密封对接,扼流环7套装于第二子管62,并密封焊接固定。引水管与扼流环还可以采用其他的装配结构,例如:
1、第一子管61和第二子管62分别固定于扼流环7的前后两端;
2、第一子管插入扼流环7的内孔进行密封固定;第二子管62密封焊接于扼流环7的后端。
3、扼流环7套装于第二子管62,第一子管61插入第二子管62的前部。
采用上述装配结构均落入本发明的保护范围。
实施例二
如图2所示,本实施例与实施例一的主体结构基本相同,区别在于天线的前端部分。本例中,针头4为金属刺头,金属刺头尾部具有向后凸起9,同轴电 缆2的内导体与该金属刺头的尾部(凸起9)相连,金属刺头尾部(凸起9)的后端与同轴电缆2外导体前端之间形成天线的发射窗口5。针头4通过介质套管8与针杆1相连,介质套管8与同轴电缆2之间具有空腔,引水管向前延伸该空腔内,天线的发射窗口至少部分的位于引水管内,使冷却介质能够对天线的发射窗口区域进行降温。
还有一种变形结构是:金属刺头直接与针杆相连,针杆前端与同轴电缆之间具有空腔,引水管向前延伸该空腔内,使天线的发射窗口至少部分的位于引水管内。
此外,本发明还提出了一种真圆微波消融系统,包含有前述真圆微波消融天线。本发明还保护前述真圆微波消融天线用于真圆微波消融系统。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (9)

  1. 真圆微波消融天线,包括:针头、针杆、同轴电缆、引水管和扼流环,天线具有容纳同轴电缆和引水管的腔室,引水管与同轴电缆之间设置有进水道,引水管与针杆之间设置有回水道;其特征在于:所述腔室和引水管向前延伸至天线的前端,天线的发射窗口至少部分的位于引水管内,使冷却介质能够对天线的发射窗口区域进行降温;微波发射区域的引水管为微波可穿透材质,使微波能够向外辐射,引水管的其余部分为微波屏蔽材质;位于发射区域后侧的扼流环与引水管密封固定,使扼流环起到阻挡微波的作用,扼流环与针杆之间存在间隙,该间隙用于冷却介质的回流。
  2. 根据权利要求1所述的真圆微波消融天线,其特征在于:所述针头具有盲孔,所述盲孔内具有极芯,同轴电缆内导体与极芯相连,极芯与同轴电缆外导体之间形成天线发射窗口,所述引水管的前端靠近或抵住所述盲孔的底部。
  3. 根据权利要求1所述的真圆微波消融天线,其特征在于:所述针头为金属刺头,金属刺头尾部向后凸起,同轴电缆内导体与该金属刺头的尾部相连,金属刺头尾部的后端与同轴电缆外导体前端之间形成天线的发射窗口。
  4. 根据权利要求3所述的真圆微波消融天线,其特征在于:金属刺头通过介质套管与针杆相连,介质套管与同轴电缆之间具有空腔,引水管向前延伸该空腔内。
  5. 根据权利要求3所述的真圆微波消融天线,其特征在于:金属刺头与针杆相连,针杆前端与同轴电缆之间具有空腔,引水管向前延伸该空腔内。
  6. 根据权利要求1所述的真圆微波消融天线,其特征在于:所述扼流环套装在引水管外。
  7. 根据权利要求1所述的真圆微波消融天线,其特征在于:所述引水管具有靠近针头的第一子管和远离针头的第二子管,所述第一子管为绝缘材质,其 后部与第二子管或扼流环密封连接;所述第二子管为金属材质,其前部与扼流环密封焊接固定。
  8. 真圆微波消融系统,其特征在于:包含有权利要求1-7任一项所述的真圆微波消融天线。
  9. 权利要求1-7任一项真圆微波消融天线,其特征在于:用于真圆微波消融系统。
PCT/CN2018/078952 2017-04-20 2018-03-14 真圆微波消融天线及系统 WO2018192325A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018550778A JP6755963B2 (ja) 2017-04-20 2018-03-14 真円のマイクロ波焼灼アンテナ及システム
EP18788105.7A EP3494917B1 (en) 2017-04-20 2018-03-14 Truly spherical microwave ablation antenna and system
US16/087,098 US11304754B2 (en) 2017-04-20 2018-03-14 Circular microwave ablation antenna and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710260121.3A CN107260301B (zh) 2017-04-20 2017-04-20 真圆微波消融天线及系统
CN201710260121.3 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192325A1 true WO2018192325A1 (zh) 2018-10-25

Family

ID=60073581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078952 WO2018192325A1 (zh) 2017-04-20 2018-03-14 真圆微波消融天线及系统

Country Status (5)

Country Link
US (1) US11304754B2 (zh)
EP (1) EP3494917B1 (zh)
JP (1) JP6755963B2 (zh)
CN (1) CN107260301B (zh)
WO (1) WO2018192325A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023278944A1 (en) * 2021-06-29 2023-01-05 Varian Medical Systems, Inc. Microwave ablation probe with choke

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107260301B (zh) * 2017-04-20 2021-04-02 南通融锋医疗科技有限公司 真圆微波消融天线及系统
CN108652738A (zh) * 2018-05-02 2018-10-16 华东理工大学 一种微波消融天线
CN108670405A (zh) * 2018-05-25 2018-10-19 南通融锋医疗科技有限公司 一种非穿刺型微波消融天线及其应用
CN109199582B (zh) * 2018-10-30 2020-11-20 赛诺微医疗科技(浙江)有限公司 宽域微波消融天线及采用其的肺微波消融软电极
WO2020087274A1 (zh) * 2018-10-30 2020-05-07 赛诺微医疗科技(浙江)有限公司 宽域微波消融天线及采用其的肺微波消融软电极
CN111012485A (zh) * 2020-01-07 2020-04-17 南京康友医疗科技有限公司 一种微波消融针头及微波消融针
CN111537808B (zh) * 2020-04-28 2022-07-15 中国人民解放军63660部队 一种基于水介质的超宽谱高功率微波传感器
CN114039209A (zh) * 2021-12-23 2022-02-11 南京臻泰微波科技有限公司 一种采用空心内导体同轴电缆的微波消融针
CN114366289A (zh) * 2022-01-14 2022-04-19 南通大学 一种微波消融天线及制作方法
CN116327350B (zh) * 2023-05-24 2023-08-22 浙江伽奈维医疗科技有限公司 一种消融针组件及消融系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245919A1 (en) * 2004-04-29 2005-11-03 Van Der Weide Daniel W Triaxial antenna for microwave tissue ablation
CN104323856A (zh) * 2014-11-11 2015-02-04 南京维京九洲医疗器械研发中心 无磁水冷微波消融针制造方法
CN104688335A (zh) * 2015-03-16 2015-06-10 郑加生 一种用于治疗大肝癌的微波消融天线
CN104688336A (zh) * 2015-03-16 2015-06-10 陈勇辉 一种腹腔镜专用肾癌微波消融天线
CN105596079A (zh) * 2016-02-18 2016-05-25 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106572884A (zh) * 2014-08-20 2017-04-19 柯惠有限合伙公司 用于球形消融的系统和方法
CN107260301A (zh) * 2017-04-20 2017-10-20 南通融锋医疗科技有限公司 真圆微波消融天线及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945111B2 (en) * 2008-01-23 2015-02-03 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US8059059B2 (en) * 2008-05-29 2011-11-15 Vivant Medical, Inc. Slidable choke microwave antenna
US20100045559A1 (en) * 2008-08-25 2010-02-25 Vivant Medical, Inc. Dual-Band Dipole Microwave Ablation Antenna
US9113924B2 (en) * 2008-10-17 2015-08-25 Covidien Lp Choked dielectric loaded tip dipole microwave antenna
US10045819B2 (en) * 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8292881B2 (en) * 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
DK2459096T3 (en) * 2009-07-28 2015-01-19 Neuwave Medical Inc ablation device
US8355803B2 (en) * 2009-09-16 2013-01-15 Vivant Medical, Inc. Perfused core dielectrically loaded dipole microwave antenna probe
CN201775680U (zh) * 2010-09-07 2011-03-30 南京庆海微波电子研究所 可大功率使用的水冷微波消融针
US9119647B2 (en) * 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9017319B2 (en) * 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) * 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8992413B2 (en) * 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US9301723B2 (en) * 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US10813691B2 (en) * 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
CN104546126B (zh) * 2015-01-21 2017-07-18 南京维京九洲医疗器械研发中心 一种适用于肺癌介入治疗的微波消融天线
CN204723177U (zh) * 2015-03-16 2015-10-28 南京维京九洲医疗器械研发中心 腹腔镜专用肾癌微波消融针
CN204671269U (zh) * 2015-04-09 2015-09-30 张靖 一种用于婴儿的微波消融天线
CN105816240B (zh) * 2016-05-24 2018-09-28 赛诺微医疗科技(浙江)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN106037930B (zh) * 2016-06-15 2019-07-12 上海市胸科医院 一种微波消融软杆针
CN207605007U (zh) * 2017-04-20 2018-07-13 南通融锋医疗科技有限公司 一种真圆水冷微波消融天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245919A1 (en) * 2004-04-29 2005-11-03 Van Der Weide Daniel W Triaxial antenna for microwave tissue ablation
CN106572884A (zh) * 2014-08-20 2017-04-19 柯惠有限合伙公司 用于球形消融的系统和方法
CN104323856A (zh) * 2014-11-11 2015-02-04 南京维京九洲医疗器械研发中心 无磁水冷微波消融针制造方法
CN104688335A (zh) * 2015-03-16 2015-06-10 郑加生 一种用于治疗大肝癌的微波消融天线
CN104688336A (zh) * 2015-03-16 2015-06-10 陈勇辉 一种腹腔镜专用肾癌微波消融天线
CN105596079A (zh) * 2016-02-18 2016-05-25 赛诺微医疗科技(北京)有限公司 用于微波消融的天线组件及采用其的微波消融针
CN107260301A (zh) * 2017-04-20 2017-10-20 南通融锋医疗科技有限公司 真圆微波消融天线及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3494917A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023278944A1 (en) * 2021-06-29 2023-01-05 Varian Medical Systems, Inc. Microwave ablation probe with choke

Also Published As

Publication number Publication date
JP2019515713A (ja) 2019-06-13
EP3494917B1 (en) 2020-08-19
US11304754B2 (en) 2022-04-19
CN107260301B (zh) 2021-04-02
EP3494917A1 (en) 2019-06-12
US20210220048A1 (en) 2021-07-22
CN107260301A (zh) 2017-10-20
EP3494917A4 (en) 2019-10-30
JP6755963B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2018192325A1 (zh) 真圆微波消融天线及系统
AU2009212766B2 (en) Dual-band dipole microwave ablation antenna
EP3466364B1 (en) Antenna assembly for microwave ablation and microwave ablation needle using same
CN101711705B (zh) 微波消融针及其微波消融治疗仪
US20100045559A1 (en) Dual-Band Dipole Microwave Ablation Antenna
CN201642316U (zh) 微波消融针及其微波消融治疗仪
WO2018040253A1 (zh) 柔性微波消融天线及采用其的微波消融针
CN104027168A (zh) 具有抽液结构的囊肿微波消融治疗针形天线
CN207605007U (zh) 一种真圆水冷微波消融天线
CN207605008U (zh) 一种真圆水冷微波消融系统
WO2021051542A1 (zh) 一种多缝隙微波消融针
CN210992656U (zh) 一种结合石墨烯红外热疗的激光癌症治疗仪
CN215960246U (zh) 微波消融针
CN113576659A (zh) 微波消融针
CN104027169A (zh) 用于甲状腺肿瘤治疗的微波消融针
CN109199582B (zh) 宽域微波消融天线及采用其的肺微波消融软电极
CN215778600U (zh) 大功率水冷微波消融天线
CN210408590U (zh) 一种磁兼容的水冷微波消融针
WO2020087274A1 (zh) 宽域微波消融天线及采用其的肺微波消融软电极
CN107252351A (zh) 用于甲状腺肿瘤治疗的微波消融针
CN215960247U (zh) 微波消融针
CN214966560U (zh) 一种方便快捷的微波消融针
CN116492045B (zh) 一种微波消融针及消融组件
CN117695001A (zh) 微波消融软针
CN109009426B (zh) 一种微波热凝器系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550778

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018788105

Country of ref document: EP

Effective date: 20190308

NENP Non-entry into the national phase

Ref country code: DE