WO2018192039A1 - 一种大雾化量的低频超声雾化装置 - Google Patents

一种大雾化量的低频超声雾化装置 Download PDF

Info

Publication number
WO2018192039A1
WO2018192039A1 PCT/CN2017/084644 CN2017084644W WO2018192039A1 WO 2018192039 A1 WO2018192039 A1 WO 2018192039A1 CN 2017084644 W CN2017084644 W CN 2017084644W WO 2018192039 A1 WO2018192039 A1 WO 2018192039A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
diameter
horn
stepped
Prior art date
Application number
PCT/CN2017/084644
Other languages
English (en)
French (fr)
Inventor
高建民
刘旭
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/604,882 priority Critical patent/US11161138B2/en
Publication of WO2018192039A1 publication Critical patent/WO2018192039A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0661Transducer materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0433Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/06Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
    • B05B7/062Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
    • B05B7/066Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet with an inner liquid outlet surrounded by at least one annular gas outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2402Apparatus to be carried on or by a person, e.g. by hand; Apparatus comprising containers fixed to the discharge device
    • B05B7/2405Apparatus to be carried on or by a person, e.g. by hand; Apparatus comprising containers fixed to the discharge device using an atomising fluid as carrying fluid for feeding, e.g. by suction or pressure, a carried liquid from the container to the nozzle
    • B05B7/2424Apparatus to be carried on or by a person, e.g. by hand; Apparatus comprising containers fixed to the discharge device using an atomising fluid as carrying fluid for feeding, e.g. by suction or pressure, a carried liquid from the container to the nozzle the carried liquid and the main stream of atomising fluid being brought together downstream of the container before discharge

Definitions

  • the invention relates to a low-frequency ultrasonic atomization device, belonging to the field of agricultural engineering atomization cultivation.
  • Ultrasonic nebulizers have a wide range of applications in agricultural engineering due to their small size and uniform droplet size.
  • ultrasonic atomization technology there are two main methods for generating power ultrasound: one is to generate ultrasound by using an electro-acoustic transducer, and the other is to use a fluid as a power to generate ultrasound. These two methods have their own advantages and disadvantages.
  • the atomization nozzle produced by the electro-acoustic transducer has uniform droplets and low energy consumption.
  • the droplet size changes with the design frequency of the piezoelectric vibrator. The higher the frequency, the droplet size.
  • the invention adopts the combination of piezoelectric ultrasonic atomization technology and two-phase flow dynamics technology to design a low-frequency ultrasound which can produce relatively fine droplets and has a large atomization amount and a large range of spray effects. Atomizing device.
  • the amount of atomization is small. Because the low-frequency ultrasonic atomizing device is equipped with a Laval valve core, a high-speed airflow can be formed at the outlet, and a large amount of atomization can be generated in a short time.
  • the diameter of the droplet is large. Because the low-frequency ultrasonic atomizing device adopts a secondary atomizing chamber structure, the mist that has been atomized and mixed with the sonic airflow is directly or repeatedly rebounded and then hit on the atomizing end surface of the ultrasonic atomizing nozzle to perform secondary fogging. Therefore, the particle size of the finally atomized droplet is finer.
  • the present invention provides a low-atom ultrasonic atomizing device with a large atomization amount, which combines the advantages of ultrasonic atomization technology and two-phase flow dynamics technology to realize multiple atomization of droplets, thereby improving the nozzle
  • the amount of atomization reduces the average particle size of the droplets and makes the droplet size more uniform.
  • a low atomizing ultrasonic atomizing device with large atomization amount comprising: piezoelectric vibrator, horn, secondary atomizing chamber, gas liquid valve end cover, sealing ring, Laval type valve core, stepped valve Core, gas-liquid valve body,
  • the horn is a stepped horn with an exponential transition section
  • the secondary atomization chamber has a cylindrical inner cavity open at one end and a conical gas-liquid inlet connected to the bottom of the cylindrical inner cavity;
  • the electric vibrator and the copper electrode are sequentially spaced
  • the two sides of the piezoelectric vibrator are respectively clamped at one end of the horn and the other end of the horn extends into the secondary atomization chamber.
  • the cylindrical side surface and the atomizing end surface of the horn are respectively spaced apart from the cylindrical surface and the annular surface of the secondary atomizing chamber by a distance of 1-2 mm; the cylindrical side of the horn and the secondary atomizing chamber a sealing sleeve is arranged between the cylindrical surfaces of the inner cavity;
  • the gas-liquid valve body has a stepped cylindrical cavity, and the stepped valve core and the Laval type valve core are located in a cylindrical cavity of the valve body of the gas-liquid valve;
  • the diameter of the middle section of the stepped spool is smaller than the diameter of the end portions, and the center of the stepped spool is opened with an axial through hole, and one end of the stepped spool is in contact with the cylindrical cavity to play a radial positioning function.
  • a cylindrical groove is formed at the inlet end of the Laval type spool, the cylindrical groove is sleeved on the other end of the stepped valve core, and an O-shaped cavity is formed between the outer surface of the stepped valve core and the inner surface of the groove of the valve body of the gas-liquid valve,
  • the side of the cylindrical cavity of the valve body of the gas-liquid valve has a liquid inlet hole at a position corresponding to the axial midpoint of the stepped valve core, and an air inlet hole is opened at the end surface; a plurality of openings are provided at the side wall of the Laval-type valve core outlet Radial drainage holes,
  • the gas liquid valve end cover is screwed to the liquid discharge end of the gas liquid valve body, the sealing ring is assembled between the gas liquid valve end cover and the Laval type valve core, and the gas liquid valve end cover is provided with gas Liquid outlet
  • the zero amplitude surface circular surface of the horn, the secondary atomization chamber and the outer circular surface of the gas liquid valve end cover are respectively provided with a flange, between the horn and the secondary atomization chamber, and the secondary atomization chamber
  • a double-headed stud and a nut are respectively connected with the gas-liquid valve end cover; the gas-liquid outlet of the gas-liquid valve end cover faces the tapered gas-liquid inlet.
  • the vibration frequency of the main body of the ultrasonic atomizing nozzle composed of the piezoelectric vibrator rear cover, the copper plate electrode, the piezoelectric vibrator front cover, and the horn is 50-65 kHz.
  • the horn has a large diameter of 15 mm, an atomization end face diameter of 5 mm, and a length of 45 mm.
  • the inner cavity of the secondary atomization chamber is stepped, the diameter of the large end is 6 mm, the diameter of the small end is 4 mm, and the diameters of the end faces of the tapered gas-liquid inlet are 3 mm and 5 mm, respectively.
  • the outer surface of the end cap of the gas-liquid valve is provided with a flange, the diameter of the connecting hole is 4 mm, a gas-liquid outlet having a diameter of 4 mm is opened at one end, and a cylindrical groove is opened at the other end, and the inner surface of the cylindrical groove is opened. Thread.
  • the sealing ring is assembled between the gas liquid valve end cover and the Laval valve core and has a through hole, the through hole has a diameter of 4 mm, and the sealing ring has a thickness of 1.5 mm.
  • the Laval type valve core has a contraction end inlet diameter of 4.9 mm, a throat diameter of 1.8 mm, and an expansion end face outlet diameter of 4.3 mm.
  • the diameter of the drain hole on the Laval type spool is 1-1.6 mm.
  • the stepped spool has an axial through hole diameter of 5 mm.
  • the high pressure gas of 3-6bar enters through the inlet hole of the end face of the gas-liquid valve body, passes through the stepped spool and Laval type.
  • the gas behind the spool is accelerated to the speed of sound or supersonic.
  • the liquid to be atomized flows through the drain hole near the outlet of the Laval tube and mixes with the sonic flow to achieve the first atomization.
  • the gas-liquid mixture After the first atomization, the gas-liquid mixture
  • the high-speed airflow flows through the center hole of the gas-liquid valve end cover at a high speed, and flows through the secondary atomization chamber along the conical gas-liquid inlet into the inner cavity of the secondary atomization chamber, and the gas-liquid mixture impacts the vibrating horn end face to realize the first
  • the droplets after the secondary atomization are again sprayed and atomized in the inner cavity of the secondary atomization chamber by the high-speed airflow, and then ejected from the conical gas-liquid inlet again, and the secondary atomization chamber
  • the multiple reflection atomization in the inner cavity further reduces the particle diameter of the larger diameter droplets in the droplet group, and the droplet size is more uniform after multiple atomization, and the atomization amount is remarkably improved.
  • the object of atomization by the conventional piezoelectric ultrasonic atomizer is a liquid film, so the atomization amount of the invention is larger than that of the conventional piezoelectric ultrasonic atomizing nozzle, and the droplets are finer.
  • the secondary atomization chamber is added at the gas-liquid outlet of the gas-liquid valve body, the mist of the gas-liquid mixture after the first atomization is further broken under the action of the high-speed airflow in the secondary atomization chamber. Small to make the droplets more even.
  • Figure 1 is a front view of the low atomizing ultrasonic atomizing device of the large atomization amount according to the present invention
  • FIG. 2 is a cross-sectional view of the A-A direction of the high atomization amount of the low-frequency ultrasonic atomizing device of FIG. 1 and its corresponding axial displacement amplitude relationship;
  • Figure 3 is a partial cross-sectional view of the valve body of the gas liquid valve
  • Figure 4 is a plan sectional view showing the axis of the five drainage holes of the Laval type valve core
  • Figure 5 is an exploded view of the low atomization ultrasonic atomizing device of the large atomization amount.
  • the main body length of the large atomizing amount low-frequency ultrasonic atomizing device is 110mm, ultrasonic atomizing spray
  • the length of the head portion is 70mm
  • the length of the secondary atomization chamber is 15mm
  • the distance between the gas-liquid inlet end face of the secondary atomization chamber and the end face of the gas-liquid valve end cover is 3mm
  • the length of the gas-liquid valve body is 28mm.
  • the large atomizing amount low frequency ultrasonic atomizing device of the invention comprises a piezoelectric vibrator 3, a horn 5, a secondary atomizing chamber 6, a gas liquid valve end cover 7, a sealing ring 8, a Laval type valve core 10. Stepped valve body 11, gas-liquid valve body 12.
  • the horn 5 is a stepped horn with an exponential transition section and is made of hard aluminum 7075.
  • the horn 5 has a large diameter of 15 mm and an atomized end face diameter of 5 mm.
  • the horn 5 has a length of 45 mm, which is 3/4 wavelength.
  • the secondary atomization chamber 6 has a cylindrical inner chamber 19 open at one end and a tapered gas-liquid inlet 20 connected to the bottom of the cylindrical inner chamber 19.
  • the inner chamber 19 of the secondary atomization chamber 6 is used for multi-stage atomization.
  • the inner chamber 19 of the secondary atomization chamber 6 is stepped, with a large end diameter of 6 mm and a small end diameter of 4 mm.
  • the diameters of the two end faces of the conical gas-liquid inlet 20 are respectively 3 mm and 5 mm, which reduces the resistance, so that the high-speed gas-liquid mixture can smoothly enter the secondary atomization chamber 6. .
  • the piezoelectric vibrator and the copper plate electrode are sequentially spaced apart, and the two sides are sandwiched by the piezoelectric vibrator front cover and the piezoelectric vibrator rear cover.
  • the piezoelectric vibrator front cover and the horn 5 are coaxially bonded together.
  • the vibration frequency of the main body of the ultrasonic atomizing nozzle composed of the piezoelectric vibrator rear cover 1, the copper electrode 2, the piezoelectric vibrator front cover 4, and the horn 5 is 50-65 kHz.
  • the other end of the horn 5 extends into the inner cavity 19 of the secondary atomization chamber 6, and the cylindrical side surface and the atomization end surface of the horn 5 are respectively left with the cylindrical surface and the annular surface of the inner chamber 19 of the secondary atomization chamber 6.
  • the annular gap between the cylindrical surface of the end of the horn 5 and the inner chamber 19 of the secondary atomizing chamber 6 leaks to cause the droplet to be lost.
  • the gas-liquid valve body 12 has a cylindrical cavity, and the stepped valve core 11 and the Laval-type valve core 10 are located in a cylindrical cavity of the gas-liquid valve body 12.
  • the diameter of the intermediate portion of the stepped spool 11 is smaller than the diameter of the end portions, and the stepped spool 11 has a through hole in the center thereof, and one end of the stepped spool 11 is in contact with the cylindrical cavity. , plays a role in radial positioning.
  • the Laval type valve core 10 has a diameter of 4.9 mm at the contraction end, a throat diameter of 1.8 mm, and an outlet end diameter of 4.3 mm.
  • the inlet end of the Laval type spool 10 is provided with a cylindrical groove, and the cylindrical groove is sleeved on the other end of the stepped valve core 11 to play a radial position, which ensures the Laval type spool 10 and the stepped spool 11 Concentricity between.
  • the stepped spool 11 is radially positioned by the Laval-type spool 10 and the gas-liquid valve body 12 through a cylindrical groove, and the axial through-hole diameter of the stepped spool 11 is 5 mm.
  • An O-shaped cavity that is, an annular passage is formed between the outer circular surface of the stepped valve body 11 and the inner circumferential surface of the groove of the gas-liquid valve body 12, and the side surface of the cylindrical cavity of the gas-liquid valve body 12 and the stepped spool 11 are axially
  • the corresponding position of the point is provided with a liquid inlet hole 13 and the end surface is provided with an air inlet hole 14; at the outlet of the Laval type valve body 10, five radial drainage holes 9 are opened, as shown in FIG. .
  • the diameter of the drain hole 9 is 1-1.6 mm.
  • the liquid to be atomized is made by the liquid inlet hole 13 The inflow, through the annular cavity to achieve the split, and finally into the drain hole 9, followed by the supersonic gas blowing, impacting the liquid flowing out of the drain hole 9 to achieve the first atomization.
  • the gas-liquid valve end cover 7 has a gas-liquid outlet with a diameter of 4 mm at one end and a cylindrical groove at the other end, and the inner surface of the cylindrical groove is internally threaded.
  • the gas liquid valve end cover 7 is screwed to the liquid discharge end of the gas liquid valve body 12, and the sealing ring 8 is assembled between the gas liquid valve end cover 7 and the Laval type valve core 10, and has a through hole.
  • the through hole has a diameter of 4 mm and the seal ring 8 has a thickness of 1.5 mm.
  • the gas-liquid valve end cover 7 is provided with a gas-liquid outlet.
  • the gas-liquid mixture after the first atomization flows out through the central hole of the gas-liquid valve end cover 7 at a high speed and flows through the conical gas-liquid inlet 20 of the secondary atomization chamber 6, and then enters the inner cavity of the secondary atomization chamber 6
  • the gas-liquid mixture is sprayed on the atomizing end face of the horn 5 for the second atomization.
  • the gas-liquid mixture rebounds and atomizes in the inner cavity 19 of the secondary atomizing chamber 6 several times, and finally realizes the liquid. Multi-stage atomization.
  • the zero-amplitude surface round surface of the horn 5, the secondary atomization chamber 6 and the outer circular surface of the gas-liquid valve end cover 7 are respectively provided with flanges, and the horn 5 and the secondary atomization chamber 6 pass through Three sets of first double studs 16 are connected with the first nut 15; between the secondary atomizing chamber 6 and the gas liquid valve end cover 7, three sets of second studs 17 and the second nut 18 are passed through the gas and liquid.
  • the valve end caps 7 are connected; axial and radial positioning is achieved.
  • the gas-liquid outlet of the gas-liquid valve end cap 7 faces the tapered gas-liquid inlet 20.
  • the rear cover 1, the copper sheet electrode 2, the front cover 4, and the horn 5 are integrally formed by the core bonding.
  • three first studs 16 are screwed into the three threaded holes on the outer circular flange disc of the secondary atomizing chamber 6, and then the three first studs 16 are inserted through the centering.
  • the other end of the stepped spool 11 is inserted into the cylindrical cavity of the gas-liquid valve body 12 to complete the radial positioning of the stepped spool 11 and the gas-liquid valve body 12, and then the other end of the Laval-type spool 10 is placed over One end of the stepped spool 11 completes the radial positioning of the Laval-type spool 10 and the stepped spool 11.
  • the sealing ring 8 is coaxially fitted into the gas liquid valve end cover 7 and is in close contact with the toroidal surface thereof, and then passes through the internal thread of the gas liquid valve end cover 7 with the sealing ring 8 and the outer portion of the gas liquid valve body The threaded connection of the threads completes the assembly of the gas and liquid valve.
  • three second studs 17 are screwed into the three threaded holes on the other side of the outer circular flange disc of the secondary atomizing chamber 6, and then three second studs are passed through the centering 17 is inserted into the three through holes on the outer circumferential surface of the gas liquid valve end cover 7 until the stepped cylindrical toroidal surface of the second double stud 17 close to the end surface of the gas liquid valve end cover 7 is at the gas liquid valve end cover 7
  • the assembly of the low-atom ultrasonic atomization device of the large atomization amount according to the present invention is completed.
  • the high pressure gas is supplied by the air compressor, and the intake pipe is connected to the air inlet hole 14 of the gas liquid valve body 12; the liquid to be atomized is pumped by the hydraulic pump to the liquid inlet hole 13; the ultrasonic atomizing nozzle part of the device is driven by Power drive, first and third copper
  • the electrode 2 is connected to the negative pole of the power supply, and the second copper electrode is connected to the positive pole of the power supply, and the driving frequency is 50-65 kHz.
  • the internal cavity 19 of the secondary atomization chamber 6 After the internal cavity 19 of the secondary atomization chamber 6 is repeatedly reflected and atomized, it is again ejected from the conical gas-liquid inlet 20, and multiple reflections and atomization in the inner cavity 19 of the secondary atomization chamber 6 make the diameter of the droplet group.
  • the larger droplet size is further reduced, and the droplet size is more uniform after multiple atomization, and the atomization amount is remarkably improved.
  • the distance between the atomizing end face of the horn 5 and the inner cavity 19 of the secondary atomizing chamber 6 away from the end of the tapered gas-liquid inlet 20 is about 1 mm, which leaves sufficient space for the atomizing end face vibration of the horn to avoid occurrence. Interference collision affects the atomization effect.

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

一种低频超声雾化装置,包括压电振子(3)、变幅杆(5)、二次雾化腔(6)、气液阀端盖(7)、拉瓦尔型阀芯(10)、阶梯式阀芯(11)、气液阀阀体(12),压电振子(3)胶接在变幅杆(5)上,气液阀端盖(7)通过螺纹与气液阀阀体(12)相连接,阶梯式阀芯(11)、拉瓦尔阀芯(10)均装在阀体内圆柱腔内,拉瓦尔阀芯(10)一端套在阶梯式阀芯(11)的一端。变幅杆(5)与二次雾化腔(6)、二次雾化腔(6)与气液阀端盖(7)均通过双头螺柱和螺母相连。该装置实现了雾滴的多级雾化,既可以提高喷雾装置的雾化量,雾滴小,又能够实现较远距离的喷雾。

Description

一种大雾化量的低频超声雾化装置 技术领域
本发明涉及一种低频超声雾化装置,属于农业工程雾化栽培领域。
背景技术
超声雾化器由于其雾滴尺寸细小均匀等优势在农业工程领域有着广泛的应用。目前,在超声雾化技术领域,产生功率超声的方法主要有两种:一种是利用电声换能器产生超声,另一种是利用流体做动力来产生超声。这两种方法有各自的优缺点,利用电声换能器雾化喷头产生的雾滴均匀、能耗小,雾滴粒径随压电振子设计频率变化而变化,频率越高雾滴粒径越小,其缺点是雾化量小;利用流体动力式超声雾化方式,雾化量大,但雾滴粒径不均匀,如需得到精细雾滴需要高功率空压机提供高压力、超大流量的压缩气体。本发明采用压电超声雾化技术和二相流动力学技术相结合的特点,设计出一种既可以产生较为细小的雾滴并且具有较大的雾化量以及具有较大范围喷雾效果的低频超声雾化装置。
现有超声雾化喷头有如下不足:
1.雾化量小。因为该低频超声雾化装置装有拉瓦尔阀芯,可以使出口处形成高速气流,短时间内可以产生较大的雾化量。
2.雾滴直径大。因为该低频超声雾化装置采用二次雾化腔结构,使得经过与音速气流混合雾化后的雾滴直接或者通过多次反弹后打在超声雾化喷头的雾化端面上从而进行二次雾化,因此最终雾化出的雾滴粒径更细小。
发明内容
针对现有技术的不足,本发明提供了一种大雾化量的低频超声雾化装置,结合超声雾化技术和二相流动力学技术的优点,实现雾滴的多次雾化,从而提高喷头的雾化量,减小雾滴的平均粒径和使雾滴粒径更为均匀。
本发明采用的具体技术方案如下:
一种大雾化量的低频超声雾化装置,其特征在于:包括压电振子、变幅杆、二次雾化腔、气液阀端盖、密封圈、拉瓦尔型阀芯、阶梯式阀芯、气液阀阀体,
所述变幅杆是一种带有指数形过渡段的阶梯形变幅杆,所述二次雾化腔具有一端开口的圆柱状内腔及连通圆柱状内腔底部的锥形气液入口;压电振子和铜片电极依次间隔 设置、两侧由压电振子前盖板和压电振子后盖板夹持,压电振子前盖板胶接在变幅杆的一端,变幅杆的另一端延伸至二次雾化腔内腔内,所述变幅杆圆柱侧面和雾化端面分别与二次雾化腔内腔圆柱面和圆环面留有1-2mm的间距;所述变幅杆圆柱侧面与二次雾化腔内腔圆柱面之间设置密封套;
所述气液阀阀体具有阶梯形圆柱腔,所述阶梯式阀芯、拉瓦尔型阀芯位于气液阀阀体圆柱腔内;
阶梯式阀芯的中间段的直径小于两端端部的直径,阶梯式阀芯中心开有沿轴向的通孔,阶梯式阀芯的一端与圆柱腔接触,起到径向定位的作用,拉瓦尔型阀芯入口端开有圆柱槽,圆柱槽套在阶梯式阀芯的另一端,阶梯式阀芯外圆面和气液阀阀体凹槽内圆面之间形成O型腔,所述气液阀阀体圆柱腔侧面与阶梯式阀芯轴向中点相对应的位置开有进液孔、端面开有进气孔;在所述拉瓦尔型阀芯出口处侧壁上开有数个径向的引流孔,
所述气液阀端盖螺纹连接在气液阀阀体出液端,所述密封圈装配在气液阀端盖与拉瓦尔型阀芯之间,所述气液阀端盖上设有气液出口;
所述变幅杆零振幅面圆面、二次雾化腔与气液阀端盖外圆面分别设有法兰,所述变幅杆和二次雾化腔之间、二次雾化腔与气液阀端盖之间分别采用双头螺柱和螺母连接;气液阀端盖的气液出口正对锥形气液入口。
进一步地,由压电振子后盖板、铜片电极、压电振子前盖板、变幅杆组成的超声雾化喷头的主体的振动频率为50-65kHz。
进一步地,所述变幅杆大径为15mm,雾化端面直径为5mm,长度为45mm。
进一步地,所述二次雾化腔内腔为阶梯状,大端直径为6mm,小端直径为4mm,锥形气液入口两端面的直径分别为3mm和5mm。
进一步地,所述气液阀端盖外圆面设有法兰,连接孔的直径为4mm,一端开有直径为4mm的气液出口,另一端开有圆柱槽,圆柱槽内表面开有内螺纹。
进一步地,所述密封圈装配在气液阀端盖与拉瓦尔阀芯之间并开有通孔,通孔直径为4mm,密封圈厚度为1.5mm。
进一步地,所述拉瓦尔型阀芯收缩端入口直径为4.9mm,喉口直径为1.8mm,扩张端面出口直径为4.3mm。
进一步地,在所述拉瓦尔型阀芯上的引流孔的直径为1-1.6mm。
进一步地,阶梯式阀芯的轴向通孔直径为5mm。
3-6bar的高压气体由气液阀阀体端面的进气孔进入,经过阶梯式阀芯以及拉瓦尔型 阀芯后的气体被加速至音速或超音速,待雾化液体在拉瓦尔管出口附近通过引流孔流入并与音速气流混合实现第一次雾化,经过第一次雾化后的气液混合物随高速气流通过气液阀端盖中心孔高速流出,并流经二次雾化腔的沿锥形气液入口进入二次雾化腔内腔,气液混合物撞击振动的变幅杆端面实现第二次雾化,随后经过二次雾化后的雾滴在高速气流的带动下在二次雾化腔内腔多次反弹雾化后再次从锥形气液入口喷射出来,二次雾化腔内腔内的多次反射雾化都使雾滴群中直径较大的雾滴粒径进一步变小,经过多次雾化后雾滴粒径更加均匀,雾化量显著提高。
本发明的优点是:
1、雾滴在受到超声雾化之前,在超音速气体的高动量的吹散、碰撞下发生第一次雾化,然后在超声振动的作用下发生第二次雾化,最后在二次雾化腔内多次反弹雾化实现多级雾化。而传统的压电式超声雾化器雾化的对象是液膜,所以本发明比传统压电式超声雾化喷头的雾化量更大,雾滴更为细小。
2、由于在气液阀阀体气液出口处增加了二次雾化腔,因此经过第一次雾化的气液混合物的雾滴在二次雾化腔内在高速气流的作用下进一步破裂变小,使雾滴更加均匀。
附图说明
图1为本发明所述大雾化量的低频超声雾化装置主视图;
图2为图1中大雾化量的低频超声雾化装置的A-A向旋转剖视图与其对应轴向位移幅值关系;
图3为气液阀阀体局部剖视图;
图4为拉瓦尔型阀芯五个引流孔轴线所在平面剖视图;
图5为所述大雾化量的低频超声雾化装置爆炸图。
图中:
1-压电振子后盖板,2-铜片电极,3-压电振子,4-压电振子前盖板,5-变幅杆,6-二次雾化腔,7-气液阀端盖,8-密封圈,9-引流孔,10-拉瓦尔型阀芯,11-阶梯式阀芯,12-气液阀阀体,13-进液孔,14-进气孔,15-第一螺母,16-第一双头螺柱,17-第二双头螺柱,18-第二螺母,19-内腔,20-锥形气液入口,21-密封套。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1、图2所示,大雾化量低频超声雾化装置的主体长度为110mm,超声雾化喷 头部分长度为70mm,二次雾化腔体长度为15mm,二次雾化腔气液入口端面距离气液阀端盖端面距离为3mm,气液阀阀体长度为28mm。本发明所述的大雾化量的低频超声雾化装置,包括压电振子3、变幅杆5、二次雾化腔6、气液阀端盖7、密封圈8、拉瓦尔型阀芯10、阶梯式阀芯11、气液阀阀体12。所述变幅杆5是一种带有指数形过渡段的阶梯形变幅杆,材料为硬铝7075。所述变幅杆5大径为15mm,雾化端面直径为5mm。变幅杆5的长度为45mm,即为3/4波长。所述二次雾化腔6具有一端开口的圆柱状内腔19及连通圆柱状内腔19底部的锥形气液入口20。二次雾化腔6内腔19用于实现多级雾化,所述二次雾化腔6内腔19为阶梯状,大端直径为6mm,小端直径为4mm。锥形气液入口20两端面的直径分别为3mm和5mm,减小阻力,便于高速气液混合物可以顺利进入二次雾化腔6。。
压电振子和铜片电极依次间隔设置、两侧由压电振子前盖板和压电振子后盖板夹持,所述压电振子前盖板和变幅杆5同轴胶接成一体。由压电振子后盖板1、铜片电极2、压电振子前盖板4、变幅杆5组成的超声雾化喷头的主体的振动频率为50-65kHz。
变幅杆5的另一端延伸至二次雾化腔6内腔19内,所述变幅杆5圆柱侧面和雾化端面分别与二次雾化腔6内腔19圆柱面和圆环面留有1-2mm的间距;所述变幅杆5圆柱侧面与二次雾化腔6内腔19圆柱面之间设置密封套21,防止二次雾化腔6内腔19内的高压气液混合物从变幅杆5端部圆柱面与二次雾化腔6内腔19之间的圆环间隙泄露从而造成雾滴流失。所述气液阀阀体12具有圆柱腔,所述阶梯式阀芯11、拉瓦尔型阀芯10位于气液阀阀体12圆柱腔内。
如图3所示,阶梯式阀芯11的中间段的直径小于两端端部的直径,阶梯式阀芯11中心开有沿轴向的通孔,阶梯式阀芯11的一端与圆柱腔接触,起到径向定位的作用。所述拉瓦尔型阀芯10收缩端入口直径为4.9mm,喉口直径为1.8mm,扩张端面出口直径为4.3mm,
拉瓦尔型阀芯10入口端开有圆柱槽,圆柱槽套在阶梯式阀芯11的另一端,起到径向定位的作用,这就保证了拉瓦尔型阀芯10与阶梯式阀芯11之间的同心度。所述阶梯式阀芯11由拉瓦尔型阀芯10和气液阀阀体12通过圆柱槽径向定位,阶梯式阀芯11的轴向通孔直径为5mm。阶梯式阀芯11外圆面和气液阀阀体12凹槽内圆面之间形成O型腔,即环形通道,所述气液阀阀体12圆柱腔侧面与阶梯式阀芯11轴向中点相对应的位置开有进液孔13、端面开有进气孔14;在所述拉瓦尔型阀芯10出口处侧壁上开有五个径向的引流孔9,如图4所示。引流孔9的直径为1-1.6mm。待雾化的液体由进液孔13 流入,经过环形空腔实现分流,进一步最终流入引流孔9,紧接着超音速的气体吹散、撞击从引流孔9流出的液体实现第一次雾化。
所述气液阀端盖7一端开有直径为4mm的气液出口,另一端开有圆柱槽,圆柱槽内表面开有内螺纹。所述气液阀端盖7螺纹连接在气液阀阀体12出液端,所述密封圈8装配在气液阀端盖7与拉瓦尔型阀芯10之间,并开有通孔,通孔直径为4mm,密封圈8厚度为1.5mm。所述气液阀端盖7上设有气液出口。经过第一次雾化的气液混合物通过气液阀端盖7中心孔高速流出并流经二次雾化腔6的锥形气液入口20,之后射入二次雾化腔6内腔19,气液混合物打在变幅杆5雾化端面进行第二次雾化,经过二次雾化后的气液混合物在二次雾化腔6内腔19多次反弹雾化,最终实现液体的多级雾化。
所述变幅杆5零振幅面圆面、二次雾化腔6与气液阀端盖7外圆面分别设有法兰,所述变幅杆5和二次雾化腔6之间通过三套第一双头螺柱16和第一螺母15相连接;二次雾化腔6与气液阀端盖7之间通过三套第二双头螺柱17和第二螺母18与气液阀端盖7相连接;实现轴向以及径向定位。气液阀端盖7的气液出口正对锥形气液入口20。
如图5所示,在组装时,后盖板1、铜片电极2、前盖板4和变幅杆5由通过对心胶接组成一体。先将三个第一双头螺柱16旋进二次雾化腔6外圆面法兰圆盘上的三个螺纹孔内,然后通过对心将三个第一双头螺柱16插入变幅杆5零振幅面上的三个通孔内,直至第一双头螺柱16上靠近变幅杆5零振幅面的阶梯圆柱圆环面顶在零振幅面上,同时二次雾化腔6内腔19套在变幅杆5的雾化端圆柱上,旋紧三个第一螺母15完成超声雾化喷头和二次雾化腔的装配。进一步,将阶梯式阀芯11另一端插入气液阀阀体12内圆柱腔完成阶梯式阀芯11和气液阀阀体12的径向定位,然后将拉瓦尔型阀芯10的另一端套在阶梯式阀芯11的一端完成拉瓦尔型阀芯10和阶梯式阀芯11的径向定位。进一步,将密封圈8同轴装入气液阀端盖7内并贴紧其圆环面,然后通过装有密封圈8的气液阀端盖7的内螺纹与气液阀阀体的外螺纹的螺纹连接完成气液阀的装配。进一步,将三个第二双头螺柱17旋进二次雾化腔6外圆面法兰圆盘上另一面的三个螺纹孔内,然后通过对心将三个第二双头螺柱17插入气液阀端盖7外圆面上的三个通孔内,直至第二双头螺柱17上靠近气液阀端盖7端面的阶梯圆柱圆环面顶在气液阀端盖7端面上,同时要保证气液阀气液出口与二次雾化腔6锥形气液入口20同轴相对,最终完成本发明所述大雾化量的低频超声雾化装置的装配。
高压气体由空压机供给,进气管道与气液阀阀体12上的进气孔14连接;待雾化液体由液压泵泵至进液孔13;该装置的超声雾化喷头部分由驱动电源驱动,第一、三片铜 片电极2接电源负极,第二片铜片电极接电源正极,驱动频率为50-65kHz。
工作过程:3-6bar的高压气体由气液阀阀体12端面的进气孔14进入,经过阶梯式阀芯11以及拉瓦尔型阀芯10后的气体被加速至音速或超音速(1.3-1.6马赫),待雾化液体在拉瓦尔管出口附近通过引流孔9流入并与音速气流混合产生吹散、碰撞效应,实现第一次雾化,雾化后的液滴随高速气流即气液混合物沿锥形气液入口20进入二次雾化腔6内腔19并撞击振动的变幅杆5端面实现第二次雾化,随后经过二次雾化后的雾滴在高速气流的带动下在二次雾化腔6内腔19多次反射雾化后再次从锥形气液入口20喷射出来,二次雾化腔6内腔19内的多次反射雾化都使雾滴群中直径较大的雾滴粒径进一步变小,经过多次雾化后雾滴粒径更加均匀,雾化量显著提高。
变幅杆5雾化端面与二次雾化腔6内腔19远离锥形气液入口20一端的圆环面距离在1mm左右,为变幅杆雾化端面振动留有足够的空间,以免发生干涉碰撞影响雾化效果。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种大雾化量的低频超声雾化装置,其特征在于:包括压电振子(3)、变幅杆(5)、二次雾化腔(6)、气液阀端盖(7)、密封圈(8)、拉瓦尔型阀芯(10)、阶梯式阀芯(11)、气液阀阀体(12),
    所述变幅杆(5)是一种带有指数形过渡段的阶梯形变幅杆,所述二次雾化腔(6)具有一端开口的圆柱状内腔(19)及连通圆柱状内腔(19)底部的锥形气液入口(20);压电振子(3)和铜片电极(2)依次间隔设置、两侧由压电振子前盖板(4)和压电振子后盖板(1)夹持,压电振子前盖板(4)胶接在变幅杆(5)的一端,变幅杆(5)的另一端延伸至二次雾化腔(6)内腔(19)内,所述变幅杆(5)圆柱侧面和雾化端面分别与二次雾化腔(6)内腔(19)圆柱面和圆环面留有1-2mm的间距;所述变幅杆(5)圆柱侧面与二次雾化腔(6)内腔(19)圆柱面之间设置密封套(21);
    所述气液阀阀体(12)具有阶梯形圆柱腔,所述阶梯式阀芯(11)、拉瓦尔型阀芯(10)位于气液阀阀体(12)圆柱腔内;
    阶梯式阀芯(11)的中间段的直径小于两端端部的直径,阶梯式阀芯(11)中心开有沿轴向的通孔,阶梯式阀芯(11)的一端与圆柱腔接触,起到径向定位的作用,拉瓦尔型阀芯(10)入口端开有圆柱槽,圆柱槽套在阶梯式阀芯(11)的另一端,阶梯式阀芯(11)外圆面和气液阀阀体(12)凹槽内圆面之间形成O型腔,所述气液阀阀体(12)圆柱腔侧面与阶梯式阀芯(11)轴向中点相对应的位置开有进液孔(13)、端面开有进气孔(14);在所述拉瓦尔型阀芯(10)出口处侧壁上开有数个径向的引流孔(9),
    所述气液阀端盖(7)螺纹连接在气液阀阀体(12)出液端,所述密封圈(8)装配在气液阀端盖(7)与拉瓦尔型阀芯(10)之间,所述气液阀端盖(7)上设有气液出口;
    所述变幅杆(5)零振幅面圆面、二次雾化腔(6)与气液阀端盖(7)外圆面分别设有法兰,所述变幅杆(5)和二次雾化腔(6)之间、二次雾化腔(6)与气液阀端盖(7)之间分别采用双头螺柱和螺母连接;气液阀端盖(7)的气液出口正对锥形气液入口(20)。
  2. 根据权利要求1所述的低频超声雾化装置,其特征在于:由压电振子后盖板(1)、铜片电极(2)、压电振子前盖板(4)、变幅杆(5)组成的超声雾化喷头的主体的振动频率为50-65kHz。
  3. 根据权利要求1所述的低频超声雾化装置,其特征在于:所述变幅杆(5)大径为15mm,雾化端面直径为5mm,长度为45mm。
  4. 根据权利要求1所述的低频超声雾化装置,其特征在于:所述二次雾化腔(6)内腔(19)为阶梯状,大端直径为6mm,小端直径为4mm,锥形气液入口(20)两端面的直径分别为3mm和5mm。
  5. 根据权利要求1所述的低频超声雾化装置,其特征在于:所述气液阀端盖(7)外圆面设有法兰,连接孔的直径为4mm,一端开有直径为4mm的气液出口,另一端开有圆柱槽,圆柱槽内表面开有内螺纹。
  6. 根据权利要求1所述的低频超声雾化装置,其特征在于:所述密封圈(8)装配在气液阀端盖(7)与拉瓦尔阀芯(10)之间并开有通孔,通孔直径为4mm,密封圈(8)厚度为1.5mm。
  7. 根据权利要求1所述的低频超声雾化装置,其特征在于:所述拉瓦尔型阀芯(10)收缩端入口直径为4.9mm,喉口直径为1.8mm,扩张端面出口直径为4.3mm。
  8. 根据权利要求1或7所述的低频超声雾化装置,其特征在于:在所述拉瓦尔型阀芯(10)上的引流孔(9)的直径为1-1.6mm。
  9. 根据权利要求1所述的低频超声雾化装置,其特征在于:阶梯式阀芯(11)的轴向通孔直径为5mm。
  10. 根据权利要求1所述的低频超声雾化装置,其特征在于:变幅杆(5)雾化端面与二次雾化腔(6)内腔(19)远离锥形气液入口(20)一端的圆环面距离在1mm左右。
PCT/CN2017/084644 2017-04-18 2017-05-17 一种大雾化量的低频超声雾化装置 WO2018192039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/604,882 US11161138B2 (en) 2017-04-18 2017-05-17 Low-frequency ultrasonic atomizing device having large atomization quantity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710254527.0 2017-04-18
CN201710254527.0A CN107096677B (zh) 2017-04-18 2017-04-18 一种大雾化量的低频超声雾化装置

Publications (1)

Publication Number Publication Date
WO2018192039A1 true WO2018192039A1 (zh) 2018-10-25

Family

ID=59657086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084644 WO2018192039A1 (zh) 2017-04-18 2017-05-17 一种大雾化量的低频超声雾化装置

Country Status (3)

Country Link
US (1) US11161138B2 (zh)
CN (1) CN107096677B (zh)
WO (1) WO2018192039A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669156B (zh) * 2018-04-11 2019-08-21 Microbase Technology Corp. 霧化液容器及其進排氣件
CN113289879A (zh) * 2021-06-02 2021-08-24 深圳市智博超声科技有限公司 一种用于超声换能器的z型弹性法兰结构及其应用
WO2023275805A1 (en) * 2021-06-30 2023-01-05 Worcester Polytechnic Institute Atomizing spray dryer
CN113546778B (zh) * 2021-07-27 2022-03-25 辽宁分子流科技有限公司 一种卷绕喷涂设备
CN113712279A (zh) * 2021-08-27 2021-11-30 深圳麦克韦尔科技有限公司 电子雾化装置、雾化器、雾化芯及其雾化芯的制备方法
CN113856978B (zh) * 2021-11-18 2022-09-09 广州大学 一种可调控的超声雾化装置
CN115007387B (zh) * 2022-06-16 2023-06-20 广州大学 一种压电雾化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806029A (en) * 1973-01-24 1974-04-23 Energy Sciences Inc Shock enhancement of pressure wave energy
US6126086A (en) * 1995-01-10 2000-10-03 Georgia Tech Research Corp. Oscillating capillary nebulizer with electrospray
CN102294313A (zh) * 2011-07-27 2011-12-28 江苏大学 可调喷射角的低频超声二次雾化喷头
CN102500502A (zh) * 2011-10-10 2012-06-20 苏州科技学院 一种二级超声振动雾化器
CN105834054A (zh) * 2016-05-13 2016-08-10 江苏大学 一种压电二相流超声雾化喷头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408719A (en) * 1981-06-17 1983-10-11 Last Anthony J Sonic liquid atomizer
US5501401A (en) 1994-03-29 1996-03-26 Munk; Michael Ultrasonic fogging device with agitation chamber
US7934665B2 (en) * 2003-03-28 2011-05-03 Ultrasonic Systems Inc. Ultrasonic spray coating system
US9101949B2 (en) * 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
JP5293989B2 (ja) * 2007-07-24 2013-09-18 ノードソン株式会社 少量液体の噴霧装置
WO2014036737A1 (en) * 2012-09-10 2014-03-13 Nanjing University Devices and methods for removing nano-particulates from gases
CN203508288U (zh) 2013-10-10 2014-04-02 苏州华安矿业科技有限公司 超声雾化喷嘴
CN206027973U (zh) * 2016-06-21 2017-03-22 安徽理工大学 一种交错液膜超音速气雾化喷头
CN106423607B (zh) 2016-10-19 2018-12-14 江苏大学 一种气液两相二级雾化喷头
CN106513232B (zh) * 2016-12-01 2019-04-30 江苏大学 一种低频超声超细直线雾滴流发生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806029A (en) * 1973-01-24 1974-04-23 Energy Sciences Inc Shock enhancement of pressure wave energy
US6126086A (en) * 1995-01-10 2000-10-03 Georgia Tech Research Corp. Oscillating capillary nebulizer with electrospray
CN102294313A (zh) * 2011-07-27 2011-12-28 江苏大学 可调喷射角的低频超声二次雾化喷头
CN102500502A (zh) * 2011-10-10 2012-06-20 苏州科技学院 一种二级超声振动雾化器
CN105834054A (zh) * 2016-05-13 2016-08-10 江苏大学 一种压电二相流超声雾化喷头

Also Published As

Publication number Publication date
CN107096677B (zh) 2019-06-28
US11161138B2 (en) 2021-11-02
CN107096677A (zh) 2017-08-29
US20200122184A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2018192039A1 (zh) 一种大雾化量的低频超声雾化装置
WO2017193507A1 (zh) 一种压电二相流超声雾化喷头
US9168545B2 (en) Spray nozzle assembly with impingement post-diffuser
US8613400B2 (en) Ultrasonic atomizing nozzle with cone-spray feature
CN102500502B (zh) 一种二级超声振动雾化器
US4408719A (en) Sonic liquid atomizer
CN108772218B (zh) 一种涡流式清洗喷射装置
CN104324839B (zh) 一种自然聚焦式超声雾化喷头
CN104209222B (zh) 一种伯努利双扭线型低频超声三次雾化喷头
CN110052340B (zh) 一种多级超声波雾化喷射装置
CN105964473B (zh) 一种两相流超声雾化装置
WO2018201531A1 (zh) 一种带可旋涡流叶轮的阶梯腔式低频超声雾化喷头
JP2018533465A (ja) 加圧空気アシスト式フルコーンスプレーノズル組立体
CN204234256U (zh) 一种自然聚焦式超声雾化喷头
CN217725898U (zh) 一种气体辅助雾化喷嘴及其喷雾器
CN109382231B (zh) 一种探针式超音速气动雾化喷嘴
CN216094337U (zh) 一种气溶胶喷嘴
CN205020305U (zh) 一种一体式超声波喷嘴
CN109201365B (zh) 一种压电-气力复合超声雾化喷头
CN114713390A (zh) 一种气体辅助雾化喷嘴及其喷雾器
CN209866390U (zh) 一种多级超声波雾化喷射装置
CN218610080U (zh) 一种超声波雾化喷嘴
CN112122052A (zh) 一种高效雾化装置
CN217250121U (zh) 一种超声波雾化器
CN219291811U (zh) 一种多通道供液的超声雾化喷头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905954

Country of ref document: EP

Kind code of ref document: A1