WO2018191981A1 - 无人飞行器姿态计算方法、飞行控制器及无人飞行器 - Google Patents

无人飞行器姿态计算方法、飞行控制器及无人飞行器 Download PDF

Info

Publication number
WO2018191981A1
WO2018191981A1 PCT/CN2017/081519 CN2017081519W WO2018191981A1 WO 2018191981 A1 WO2018191981 A1 WO 2018191981A1 CN 2017081519 W CN2017081519 W CN 2017081519W WO 2018191981 A1 WO2018191981 A1 WO 2018191981A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
unmanned aerial
aerial vehicle
uav
moment
Prior art date
Application number
PCT/CN2017/081519
Other languages
English (en)
French (fr)
Inventor
周长兴
蓝求
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/081519 priority Critical patent/WO2018191981A1/zh
Priority to CN201780004899.6A priority patent/CN108475066B/zh
Publication of WO2018191981A1 publication Critical patent/WO2018191981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft

Definitions

  • the embodiments of the present invention relate to the field of unmanned aerial vehicles, and particularly to an unmanned aerial vehicle attitude calculation method, a flight controller, and an unmanned aerial vehicle.
  • the flight controller of the prior art unmanned aerial vehicle includes an Inertial Measurement Unit (IMU), which is a device for measuring the three-axis attitude angle (or angular velocity) and acceleration of the unmanned aerial vehicle.
  • the IMU includes a three-axis accelerometer and a three-axis gyroscope.
  • the three-axis accelerometer and the three-axis gyroscope are used to detect the attitude of the unmanned aerial vehicle.
  • the attitude of the unmanned aerial vehicle includes a pitch angle, a roll angle, and a yaw angle.
  • the flight controller controls the flight of the unmanned aerial vehicle according to the attitude of the unmanned aerial vehicle.
  • the IMU when the IMU fails, the IMU will not be able to detect the attitude of the UAV.
  • the flight controller cannot obtain the attitude of the UAV, it will not be able to control the flight of the UAV, resulting in the UAV may crash. .
  • Embodiments of the present invention provide an unmanned aerial vehicle attitude calculation method, a flight controller, and an unmanned aerial vehicle to avoid a crash caused by an IMU failure.
  • An aspect of an embodiment of the present invention provides a method for calculating an attitude of an unmanned aerial vehicle, including:
  • the attitude of the unmanned aerial vehicle is determined according to a pulling force generated by the propeller and a rotational moment of the propeller to the motor base.
  • Another aspect of an embodiment of the present invention is to provide a flight controller comprising: one or more processors operating separately or in cooperation, the processor for:
  • the attitude of the unmanned aerial vehicle is determined according to a pulling force generated by the propeller and a rotational moment of the propeller to the motor base.
  • a power system mounted to the fuselage for providing flight power, the power system including at least a motor and a propeller;
  • a flight controller communicatively coupled to the power system for controlling flight of the unmanned aerial vehicle;
  • the flight controller including one or more processors operating separately or in cooperation, the processor for:
  • the attitude of the unmanned aerial vehicle is determined according to a pulling force generated by the propeller and a rotational moment of the propeller to the motor base.
  • the unmanned aerial vehicle attitude calculation method, the flight controller and the unmanned aerial vehicle provided by the embodiment provide the pulling force generated by the propeller and the rotating torque of the propeller to the motor base by the rotation of the motor, and determine the posture of the unmanned aerial vehicle, that is, the IMU is not required.
  • the attitude of the unmanned aerial vehicle can be detected.
  • the flight controller can also drive the pulling force generated by the propeller by the rotation of the motor, and determine the unmanned aerial vehicle by the rotation torque of the propeller on the motor base. Attitude, and then flight control of the unmanned aerial vehicle to avoid crashes caused by IMU failure.
  • FIG. 1 is a schematic diagram of a body coordinate system and a ground inertial coordinate system in the prior art
  • FIG. 2 is a flowchart of a method for calculating an attitude of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a power system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another power system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a four-rotor unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the force of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a schematic diagram of a body coordinate system and a ground inertial coordinate system in the prior art.
  • x b represents the X axis of the body coordinate system
  • y b represents the Y axis of the body coordinate system
  • z b represents the Z axis of the body coordinate system
  • x e represents the X axis of the ground inertial coordinate system
  • y e represents The Y axis of the ground inertial coordinate system
  • z e represents the Z axis of the ground inertial coordinate system.
  • the body coordinate system may be a body coordinate system corresponding to the unmanned aerial vehicle, and the angle between the body coordinate system and the ground inertial coordinate system is an attitude angle of the unmanned aerial vehicle, and the attitude angle includes at least one of the following : pitch angle ⁇ , yaw angle ⁇ , roll angle ⁇ , wherein the pitch angle ⁇ is the angle between the X axis of the body coordinate system, ie, x b , and the ground plane, and the ground plane may be the X axis of the ground inertial coordinate system That is, x e is a plane formed by the Y axis of the ground inertial coordinate system, that is, y e , and the X axis of the body coordinate system, that is, x b , may be in the axial direction of the body axis.
  • the yaw angle ⁇ is the angle between the projection of the body axis on the ground plane and the X-axis of the ground inertial coordinate system, ie, x e .
  • the roll angle ⁇ is the angle at which the symmetry plane of the UAV rotates around the body axis. Since the X axis of the body coordinate system, ie, x b , is in the axial direction of the body axis, the X axis of the body coordinate system is x b and the body coordinate.
  • the plane formed by the Y-axis of the system, ie, y b can be used as the plane of symmetry of the UAV.
  • the roll angle ⁇ is the clip between the plane of symmetry of the UAV and the plane of the X-axis of the body coordinate system and perpendicular to the ground plane. angle.
  • the pitch angle ⁇ is positive when the U-axis x b of the body coordinate system is raised with the ground plane when the UAV is raised
  • the yaw angle ⁇ is the projection of the body axis on the ground plane relative to the ground inertia.
  • the clockwise direction of the X-axis x e of the coordinate system is positive
  • the roll angle ⁇ is positive in the clockwise direction around the axis of the body with the symmetry plane of the UAV.
  • FIG. 1 is only a schematic illustration.
  • the pitch angle ⁇ may be positive when the U-head is lowered and the angle between the x b and the ground plane is positive, and the yaw angle ⁇ may also be the body axis at the ground.
  • the projection on the plane is positive with respect to the counterclockwise direction of x e , and the roll angle ⁇ can also be positive in the counterclockwise direction around the body axis of the symmetry plane of the unmanned aerial vehicle.
  • the prior art detects an attitude angle of an unmanned aerial vehicle by an inertial measurement unit (IMU), that is, a three-axis accelerometer and a three-axis gyroscope, and the flight controller can be unmanned according to the posture of the unmanned aerial vehicle detected by the IMU.
  • the aircraft is controlled by flight.
  • the IMU fails, the IMU will not be able to detect the attitude of the UAV.
  • the flight controller cannot obtain the attitude of the UAV, it will not be able to control the flight of the UAV, resulting in the UAV may crash. .
  • an embodiment of the present invention provides a method for calculating an attitude of an unmanned aerial vehicle, which is different from a method for detecting an attitude of an unmanned aerial vehicle by an IMU, which will be described below in conjunction with a specific embodiment.
  • Embodiments of the present invention provide a method for calculating an attitude of an unmanned aerial vehicle.
  • FIG. 2 is a flowchart of a method for calculating an attitude of an unmanned aerial vehicle according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step S201 Acquire a pulling force generated by the rotation of the motor to drive the propeller, and a rotating torque of the propeller to the base of the motor.
  • the flight controller of the unmanned aerial vehicle controls the rotation of the motor, and the propeller rotates as the motor rotates, and the propeller generates a pulling force during the rotation.
  • the unmanned aerial vehicle can be Hovering in the air, in addition, if the UAV is a multi-rotor unmanned aerial vehicle, the flight controller can also control the flight attitude, speed, angular velocity, acceleration, etc. of the multi-rotor UAV by controlling the rotational speed of each motor.
  • the forces and reaction forces between two interacting objects are equal in magnitude and opposite in direction. Therefore, while the motor drives the propeller to rotate, the propeller also applies a reaction force (anti-torque) to the motor, causing the motor to rotate in the opposite direction, and the motor is fixed on the motor base. Therefore, the propeller generates a rotational moment to the motor base.
  • a motor of the multi-rotor UAV and its corresponding propeller specifically, the rotation of the motor 32 drives the propeller 31 to rotate. For example, the propeller 31 rotates counterclockwise, and the propeller 31 generates an upward pulling force while the propeller 31 is opposite.
  • the motor base 33 generates a rotational moment which is opposite to the rotational direction of the propeller 31.
  • the other motors of the multi-rotor UAV and their corresponding propellers are similar to the structure shown in FIG. 3 and will not be described again here.
  • obtaining a pulling force generated by the rotation of the motor to drive the propeller, and an achievable manner of the rotating torque of the propeller to the motor base is: acquiring the pulling force generated by the propeller when the motor is detected by the mechanical sensor, and The rotational torque of the propeller to the motor base is located between the motor and the motor base.
  • a mechanical sensor 34 is provided between the motor 32 and the motor base 33. The mechanical sensor 34 can sense the upward pulling force generated by the propeller 31 during rotation, or pull the torque, and can also sense the propeller 31. The rotational moment to the motor base 33.
  • the upward pulling force generated by the propeller 31 during the rotation may be determined according to the upward pulling torque generated by the propeller 31 during the rotation, or the propeller may be determined according to the upward pulling force generated by the propeller 31 during the rotation.
  • the mechanical sensor 34 may specifically be a six-axis mechanical sensor, and the six-axis mechanical sensor may be used to sense the unmanned aerial vehicle in the X-axis, the Y-axis, and the Z-axis. The force in the three directions of the shaft and the torque in the three directions.
  • the positional relationship between each motor of the multi-rotor UAV and its corresponding mechanical sensor and motor base is similar to that of FIG. 4 and will not be described herein.
  • Step S202 determining a posture of the unmanned aerial vehicle according to a pulling force generated by the propeller and a rotating torque of the propeller to a motor base.
  • the posture of the UAV includes at least one of the following: a pitch angle, a roll angle, and a yaw angle.
  • the pitch angle is denoted by ⁇ pitch
  • the roll angle is denoted by ⁇ roll
  • the yaw angle is denoted by ⁇ yaw .
  • an achievable manner of determining the attitude of the unmanned aerial vehicle is: according to the pulling force generated by the propeller, and the propeller pair motor Calculating a triaxial angular acceleration of the unmanned aerial vehicle, wherein the triaxial angular acceleration includes at least one of: an angular acceleration ⁇ pitch of the pitch angle, and an angular acceleration ⁇ of the roll angle Roll and the angular acceleration ⁇ yaw of the yaw angle; determining the attitude of the unmanned aerial vehicle according to the triaxial angular acceleration.
  • the unmanned aerial vehicle can be regarded as a rigid body.
  • the relationship between the angular acceleration ⁇ , the moment of inertia J, and the torque M of the rigid body can be determined by the following formula (1):
  • the total torque received by the UAV can be the combined moment of the pitching moment, the rolling moment, and the yaw moment. Therefore, according to formula (1), the angular acceleration of the pitching moment M pitch and the pitch angle of the UAV can be determined.
  • the relationship between the ⁇ pitch is as shown in the formula (2), and at the same time, the relationship between the roll moment M roll received by the UAV and the angular acceleration ⁇ roll of the roll angle is determined as shown in the formula (3).
  • the relationship between the yaw moment M yaw and the angular acceleration ⁇ yaw of the yaw angle is as shown in the formula (4).
  • the triaxial angular acceleration of the unmanned aerial vehicle can be calculated by the formula (2) (3) (4)
  • the angular acceleration ⁇ pitch according to the pitch angle calculated pitch angle ⁇ pitch; calculated roll angle ⁇ roll according to the angular acceleration of the roll angle ⁇ roll; yaw angle according to the angular acceleration ⁇ yaw calculates the yaw angle ⁇ yaw .
  • a method of calculating the pitching moment M pitch , the rolling moment M roll , and the yaw moment M yaw will be described in detail below.
  • One achievable manner is: the pulling force generated by the propeller and the arm length of the unmanned aerial vehicle Calculating a pitching moment M pitch and a rolling moment M roll of the propeller to the unmanned aerial vehicle; calculating a yaw moment of the propeller to the unmanned aerial vehicle M yaw according to a rotational moment of the propeller to the motor base .
  • the quadrotor unmanned aerial vehicle corresponds to four motors such as No. 1 motor, No. 2 motor, No. 3 motor, No. 4 motor, and No.
  • No. 1 motor drives No. 1 propeller. Rotating, the No. 2 motor drives the No. 2 propeller to rotate, the No. 3 motor drives the No. 3 propeller to rotate, and the No. 4 motor drives the No. 4 propeller to rotate.
  • the rotation direction of No. 1 motor and No. 3 motor is the same, which is clockwise; the rotation direction of No. 2 motor and No. 4 motor is the same, which is counterclockwise; in addition, the rotation direction of No. 1 motor and No. 3 motor can also be It is counterclockwise, and the direction of rotation of the No. 2 motor and No. 4 motor can also be clockwise.
  • each propeller When the four motors drive the corresponding propellers during the rotation, and the direction of rotation of the motor is the same as the direction of rotation of the propeller driven by the motor, the No. 1 propeller and the No. 3 propeller rotate clockwise, and the No. 2 propeller and No. 4 propeller are reversed.
  • each propeller In the hour hand direction, each propeller generates an upward pulling force.
  • No. 1 propeller produces an upward pulling force F1
  • No. 2 propeller produces an upward pulling force F2
  • No. 3 propeller produces an upward pulling force F3
  • No. 4 propeller produces an upward pulling force F4.
  • the propeller Since the motor drives the propeller to rotate, the propeller also applies a reaction force (anti-torque) to the motor, causing the motor to rotate in the opposite direction, and the motor is fixed on the motor base. Therefore, the propeller generates a rotational moment to the motor base, for example, 1
  • the rotation torque of the propeller to the base of No. 1 motor is M1; the rotation torque of No. 2 propeller to the base of No. 2 motor is M2; the rotation torque of No. 3 propeller to the base of No. 3 motor is M3; the No. 4 propeller is for the base of No. 4 motor
  • the turning moment is M4. It can be seen that the direction of rotation of the propeller and the direction of rotation of the propeller to the base of the motor are opposite.
  • the rotation speeds of the respective motors may be the same or not the same.
  • the tension generated by the propellers is not completely the same, and the rotation torques of the propellers on the motor base cannot be balanced with each other. This causes the UAV to rotate.
  • the speeds of the motors are the same, the tension generated by each propeller is the same, and the rotation of each propeller to its motor base The moments are balanced with each other and the unmanned aerial vehicle does not rotate.
  • the motor speed increases, it means that the pulling force generated by the propeller driven by the motor increases. If the motor speed decreases, it means that the pulling force generated by the propeller driven by the motor decreases.
  • the No. 1 motor is the head direction of the UAV
  • the No. 3 motor is the tail direction of the UAV
  • the No. 2 motor is the motor on the left side of the UAV
  • the No. 4 motor is No.
  • the motor on the right side of the human aircraft, that is, the flying direction of the unmanned aerial vehicle is a cross type, which is only a schematic description, and does not limit the flight direction of the unmanned aerial vehicle.
  • the flight direction of the unmanned aerial vehicle may also be It is X-type, that is, the No. 1 motor and the No. 2 motor are jointly used as the motor in front of the UAV, and the No. 3 motor and the No.
  • the pitch , the rolling moment M roll and the yaw moment M yaw and the UAV can be mathematically converted between the pitching moment M pitch , the rolling moment M roll and the yaw moment M yaw during the X-type flight.
  • O represents the centroid of the unmanned aerial vehicle
  • the body coordinate system is established with the centroid O of the unmanned aerial vehicle as the coordinate origin.
  • the X axis of the body coordinate system is the No. 1 motor and The diagonal of the No. 3 motor
  • the X-axis forward of the body coordinate system can be the direction from the O to the head, that is, the direction from the O to the No. 1 motor
  • the Y-axis of the body coordinate system is the No. 2 motor and the No. 4 motor.
  • Diagonal, the Y-axis forward of the body coordinate system can be from the direction of O to the right side of the fuselage, that is, from the direction of O to the No.
  • the Z-axis of the body coordinate system can be perpendicular to the X-axis and the Y-axis.
  • the axis is the yaw axis.
  • the center of mass O is equal to each motor, the length of the center of mass O can be used as the arm length of the unmanned aerial vehicle.
  • the roll axis is the resultant force of the X-axis rotation of the body coordinate system, and R represents the distance vector from the roll axis to the point of focus of the F roll , that is, the arm length of the UAV.
  • Calculating a pitching moment and a rolling moment of the propeller to the unmanned aerial vehicle according to a pulling force generated by the propeller and an arm length of the unmanned aerial vehicle including: according to the head direction of the unmanned aerial vehicle Calculating the pulling force generated by the propeller, the pulling force generated by the propeller in the tail of the UAV, and the arm length of the UAV, calculating the pitching moment of the propeller to the unmanned aerial vehicle;
  • the pulling force generated by the propeller on the left side of the aircraft, the pulling force generated by the propeller on the right side of the UAV, and the arm length of the UAV are calculated, and the rolling moment of the propeller to the UAV is calculated.
  • a possible situation is: when the rotational speeds of the No. 1 motor and the No. 3 motor are different, and the rotational speeds of the No. 2 motor and the No. 4 motor are the same, the pulling force generated by the No. 1 propeller and the pulling force generated by the No. 3 propeller are different.
  • the pulling force generated by No. 2 propeller and the pulling force generated by No. 4 propeller are the same.
  • the rotating torque of No. 1 propeller on its motor base and the rotating torque of No. 3 propeller on its motor base cannot be balanced with each other.
  • the rotation of No. 2 propeller on its motor base The moment and the propeller of the No. 4 propeller balance the rotation torque of the motor base, which causes the UAV to rotate with the pitch axis as the rotation axis.
  • FIG. 5 another possible situation is: when the rotational speeds of the No. 1 motor and the No. 3 motor are the same, and the rotational speeds of the No. 2 motor and the No. 4 motor are different, the pulling force generated by the No. 1 propeller and the pulling force generated by the No. 3 propeller Similarly, the tension generated by the No. 2 propeller and the tension generated by the No. 4 propeller are different.
  • the rotation torque of the No. 1 propeller to the motor base and the rotation torque of the No. 3 propeller to the motor base are balanced with each other, and the No. 2 propeller rotates the motor base.
  • the combined torque of the rotational moment generated by the propeller calculates the yaw moment of the propeller to the unmanned aerial vehicle.
  • FIG. 5 another possible situation is that the rotational speeds of the No. 1 motor and the No. 3 motor increase, and the rotational speeds of the No. 2 motor and the No. 4 motor decrease, and the pulling force generated by the No. 1 propeller and the No. 3 propeller increases, 2
  • the tension generated by the No. 1 propeller and the No. 4 propeller is reduced, and the rotational torque of the No. 1 propeller and the No. 3 propeller to the motor base is greater than the rotational torque of the No. 2 propeller and the No. 4 propeller to the motor base, so that the UAV body will be yaw
  • the axis rotates for the rotation axis.
  • the pitching moment M pitch (F1 - F3) * R
  • the rolling moment M roll (F2 - F4) * R
  • the yaw moment M yaw M1 + M3 - M2 - M4
  • the pitch Calculating a triaxial angular acceleration of the unmanned aerial vehicle, the torque, the rolling moment, and the yaw moment including at least one of the following:
  • F1 and F3 can be sensed by the mechanical sensor 34 as shown in FIG. 4.
  • the mechanical sensor 34 there is a mechanical sensor between the No. 1 motor and the No. 1 motor base, and the mechanical sensor is used for sensing F1;
  • the mechanical sensor is used to sense F3.
  • J and R are constant, the angular acceleration ⁇ pitch of the pitch angle can be obtained by formula (5).
  • F2 and F4 can be sensed by the mechanical sensor 34 as shown in Fig. 4.
  • the mechanical sensor 34 there is a mechanical sensor between the No. 2 motor and the No. 2 motor base, which is used to sense F2; No. 4 motor
  • the mechanical sensor is used to sense F4.
  • J and R are constant, the angular acceleration ⁇ roll of the roll angle can be obtained by formula (6).
  • M1, M3, M2, and M4 can be sensed by the mechanical sensor 34 as shown in FIG. 4, and therefore, the angular acceleration ⁇ yaw of the yaw angle can be obtained by the formula (7).
  • Determining the posture of the UAV according to the triaxial angular acceleration comprising: determining a triaxial angular velocity according to the triaxial angular acceleration; wherein the triaxial angular velocity includes the following At least one of: an angular velocity of the pitch angle, an angular velocity of the roll angle, and an angular velocity of the yaw angle; determining an attitude of the UAV based on the triaxial angular velocity.
  • the attitude of the unmanned aerial vehicle includes at least one of the following: the pitch angle ⁇ pitch , the roll angle ⁇ roll , and the yaw angle ⁇ raw , the relationship between the pitch angle ⁇ pitch and the angular acceleration ⁇ pitch of the pitch angle are as shown in the formula (8). It is shown that the relationship between the roll angle ⁇ roll and the angular acceleration ⁇ roll of the roll angle is as shown in the formula (9), and the relationship between the yaw angle ⁇ raw and the angular acceleration ⁇ raw of the yaw angle is as shown in the formula (10). ) shown:
  • ⁇ pitch represents the angular velocity of the pitch angle
  • ⁇ roll represents the angular velocity of the roll angle
  • ⁇ raw represents the angular velocity of the yaw angle. Therefore, according to the triaxial angular accelerations of the unmanned aerial vehicles, that is, ⁇ pitch , ⁇ roll , and ⁇ raw , the postures of the unmanned aerial vehicles, that is, ⁇ pitch , ⁇ roll , and ⁇ raw can be determined.
  • the ⁇ pitch is integrated to obtain the angular velocity ⁇ pitch of the pitch angle, and then the ⁇ pitch is integrated to obtain the pitch angle ⁇ pitch ; the ⁇ roll is integrated to obtain the angular velocity ⁇ roll of the roll angle, and then the ⁇ roll is integrated to obtain a roll.
  • the angle ⁇ roll ; the ⁇ raw is integrated to obtain the angular velocity ⁇ raw of the yaw angle, and then the ⁇ raw is integrated to obtain the yaw angle ⁇ raw , thereby obtaining the attitude of the unmanned aerial vehicle.
  • the unmanned aerial vehicle attitude calculation method provided by the embodiment provides a new method for the attitude estimation of the unmanned aerial vehicle, and the method can be based on the pulling force generated by the propeller and the rotational torque of the propeller to the motor base. Determining the posture of the unmanned aerial vehicle is different from the manner of detecting the posture of the unmanned aerial vehicle by the IMU in the prior art. Therefore, the unmanned aerial vehicle attitude calculation method provided by the embodiment can be used as an alternative to the prior art, for example, when the IMU appears In case of failure, the attitude of the UAV is determined instead of the IMU, and the determined posture of the UAV is used as a redundant backup, so that the flight controller of the UAV can still be based on the UAV in the event of an IMU failure.
  • the attitude controls the flight of the unmanned aerial vehicle.
  • the unmanned aerial vehicle attitude calculation method provided by the embodiment may be merged with the manner of detecting the unmanned aerial vehicle attitude by the IMU in the prior art.
  • the attitude of the unmanned aerial vehicle detected by the IMU alone may have a certain error.
  • the posture of the unmanned aerial vehicle is determined, and the IMU is detected.
  • the posture of the unmanned aerial vehicle is fused, and the posture of the unmanned aerial vehicle with higher precision can be obtained.
  • the pulling force generated by the propeller and the rotating torque of the propeller to the motor base are determined by the rotation of the motor, and the posture of the unmanned aerial vehicle is determined, that is, the posture of the unmanned aerial vehicle can be detected without the IMU, and the IMU cannot be detected when the IMU fails.
  • the flight controller can also determine the unmanned aerial vehicle's attitude by driving the rotation force of the propeller and the rotation torque of the propeller to the motor base, thereby controlling the flight of the unmanned aerial vehicle to avoid the malfunction of the IMU. The crash accident.
  • Embodiments of the present invention provide a method for calculating an attitude of an unmanned aerial vehicle.
  • the method in this embodiment may include: according to the pulling force generated by the propeller, the gravity of the unmanned aerial vehicle, and the air received by the unmanned aerial vehicle in the vertical direction. Resistance, calculating the speed and acceleration of the UAV in the vertical direction. Wherein, the air resistance of the UAV in the vertical direction is determined according to the speed of the UAV in the vertical direction.
  • the four-rotor unmanned aerial vehicle shown in FIG. 5 is taken as an example.
  • the pulling forces generated by the four propellers are F1, F2, F3, and F4, respectively. Since the directions of F1, F2, F3, and F4 are upward, no one is present.
  • the gravity of the aircraft is downward.
  • the unmanned aerial vehicle hovers in the air.
  • the unmanned aerial vehicle moves in the vertical direction, no one
  • the aircraft is subjected to air resistance in the vertical direction, and the direction of the air resistance is opposite to the direction of movement of the UAV in the vertical direction. For example, if the UAV is flying upward in the vertical direction, the UAV receives the air in the vertical direction.
  • the resistance is downward, and when the UAV is flying downward in the vertical direction, the air resistance of the UAV in the vertical direction is upward.
  • the resultant force of F1, F2, F3, and F4 is F, and the direction of F is upward.
  • the UAV 60 is flying upward in the vertical direction and the rising speed is v, the UAV 60 is in the vertical direction.
  • the upper air resistance f is received. If the acceleration of the UAV 60 in the vertical direction is a, the UAV 60 satisfies the following formula (11)(12)(13) in the vertical direction:
  • m is the weight of the unmanned aerial vehicle and g is the gravity of the location where the unmanned aerial vehicle is located.
  • Acceleration, k represents the drag coefficient.
  • the acceleration a of the UAV in the vertical direction is the speed at which the UAV moves in the vertical direction.
  • the amount of change, while the size of a can reflect the speed of the UAV's movement in the vertical direction. Therefore, the velocity v and the acceleration a of the UAV in the vertical direction can be calculated according to the above formula (11) (12) (13).
  • the pulling force generated by the propeller, the gravity of the unmanned aerial vehicle, and the air resistance of the unmanned aerial vehicle in the vertical direction are calculated, and the speed and acceleration of the unmanned aerial vehicle in the vertical direction are calculated, and the detection function of the unmanned aerial vehicle is increased. Therefore, the flight controller can also control the flight of the unmanned aerial vehicle according to the speed and acceleration of the unmanned aerial vehicle in the vertical direction, and enhance the control function of the flight controller to the unmanned aerial vehicle.
  • FIG. 7 is a structural diagram of a flight controller according to an embodiment of the present invention.
  • the flight controller 70 includes one or more processors 71, and one or more processors 71 work alone or in cooperation, one or more.
  • the processor 71 is configured to: obtain a pulling force generated by the rotation of the motor to drive the propeller, and a rotating torque of the propeller to the base of the motor; determine the none according to the pulling force generated by the propeller and the rotating moment of the propeller to the motor base The attitude of the human aircraft.
  • the posture of the UAV includes at least one of the following: a pitch angle, a roll angle, and a yaw angle.
  • the flight controller 70 further includes a mechanical sensor 72, and the mechanical sensor 72 is communicatively coupled to the processor 71 for sensing the pulling force generated by the propeller when the motor rotates, and the rotational torque of the propeller to the motor base, and The sensed tension generated by the propeller and the rotational torque of the propeller to the motor base are transmitted to the processor 71; a mechanical sensor 72 is located between the motor and the motor base.
  • the mechanical sensor is a six-axis mechanical sensor.
  • the processor 71 when determining the posture of the UAV according to the pulling force generated by the propeller and the rotating torque of the propeller to the motor base, the processor 71 is specifically configured to: according to the pulling force generated by the propeller, Calculating a rotational moment of the propeller to the motor base, calculating a triaxial angular acceleration of the unmanned aerial vehicle; wherein the triaxial angular acceleration comprises at least one of: an angular acceleration of the pitch angle, an angle of the roll angle Acceleration and angular acceleration of the yaw angle; determining the attitude of the UAV based on the triaxial angular acceleration.
  • the processor 71 calculating, according to the pulling force generated by the propeller and the rotating torque of the propeller to the motor base, when calculating the triaxial angular acceleration of the unmanned aerial vehicle, specifically, according to the pulling force generated by the propeller, and the unmanned Calculating a pitching moment and a rolling moment of the propeller on the unmanned aerial vehicle; calculating a yaw moment of the propeller to the unmanned aerial vehicle according to a rotational moment of the propeller to the motor base; And calculating a triaxial angular acceleration of the unmanned aerial vehicle according to the pitching moment, the rolling moment, and the yaw moment.
  • the UAV is a multi-rotor drone.
  • the processor 71 calculates, according to the pulling force generated by the propeller and the arm length of the unmanned aerial vehicle, the pitching moment and the rolling moment of the propeller to the unmanned aerial vehicle, specifically for: according to the unmanned Calculating the pulling force of the propeller on the unmanned aerial vehicle by the pulling force generated by the propeller in the direction of the nose of the aircraft, the pulling force generated by the propeller in the tail of the UAV, and the arm length of the unmanned aerial vehicle; Calculating a pulling force generated by the propeller on the left side of the UAV, a pulling force generated by a propeller on the right side of the UAV, and an arm length of the UAV, and calculating a rolling moment of the propeller to the UAV .
  • the processor 71 calculates, according to the rotation torque of the propeller to the motor base, the yaw moment of the propeller to the unmanned aerial vehicle, specifically for: generating according to the clockwise rotating propeller of the UAV
  • the yaw moment of the propeller to the unmanned aerial vehicle is calculated by the combined torque of the rotational moment and the rotational torque generated by the counterclockwise rotating propeller.
  • the processor 71 when the processor 71 calculates the triaxial angular acceleration of the UAV according to the pitching moment, the rolling moment, and the yaw moment, the processor 71 is specifically configured to: at least one of: according to the pitching a moment, an angular acceleration of the pitch angle is calculated; an angular acceleration of the roll angle is calculated according to the roll moment; and an angular acceleration of the yaw angle is calculated according to the yaw moment.
  • the determining, by the processor 71, the posture of the UAV according to the triaxial angular acceleration specifically, determining, according to the triaxial angular acceleration, determining a triaxial angular velocity; wherein the triaxial angular velocity includes At least one of: an angular velocity of the pitch angle, an angular velocity of the roll angle, and an angular velocity of the yaw angle; determining an attitude of the unmanned aerial vehicle according to the triaxial angular velocity.
  • the pulling force generated by the propeller is driven by the rotation of the motor, and the propeller is connected to the bottom of the motor.
  • the rotation torque of the seat determines the attitude of the UAV, that is, the attitude of the UAV can be detected without the IMU.
  • the flight controller can also drive the propeller through the rotation of the motor.
  • the generated pulling force and the rotating torque of the propeller to the motor base determine the attitude of the unmanned aerial vehicle, and then the flight control of the unmanned aerial vehicle is avoided to avoid the crash caused by the IMU failure.
  • Embodiments of the present invention provide a flight controller.
  • the processor 71 is further configured to: receive a tensile force generated by the propeller, a gravity of the unmanned aerial vehicle, and a vertical direction of the unmanned aerial vehicle. Air resistance, calculating the speed and acceleration of the UAV in the vertical direction. Wherein, the air resistance of the UAV in the vertical direction is determined according to the speed of the UAV in the vertical direction.
  • the pulling force generated by the propeller, the gravity of the unmanned aerial vehicle, and the air resistance of the unmanned aerial vehicle in the vertical direction are calculated, and the speed and acceleration of the unmanned aerial vehicle in the vertical direction are calculated, and the detection function of the unmanned aerial vehicle is increased. Therefore, the flight controller can also control the flight of the unmanned aerial vehicle according to the speed and acceleration of the unmanned aerial vehicle in the vertical direction, and enhance the control function of the flight controller to the unmanned aerial vehicle.
  • FIG. 8 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes: a fuselage, a power system, and a flight controller 118, and the power system includes at least one of the following: a motor 107.
  • a propeller 106 and an electronic governor 117, the power system is mounted to the airframe for providing flight power; and the flight controller 118 is communicatively coupled to the power system for controlling the UAV flight.
  • the unmanned aerial vehicle 100 further includes: a sensing system 108, a communication system 110, a supporting device 102, and a photographing device 104.
  • the supporting device 102 may specifically be a pan/tilt
  • the communication system 110 may specifically include receiving
  • the receiver is configured to receive a wireless signal transmitted by the antenna 114 of the ground station 112, and 116 represents the power generated during the communication between the receiver and the antenna 114. Magnetic wave.
  • the pulling force generated by the propeller and the rotating torque of the propeller to the motor base are determined by the rotation of the motor, and the posture of the unmanned aerial vehicle is determined, that is, the posture of the unmanned aerial vehicle can be detected without the IMU, and the IMU cannot be detected when the IMU fails.
  • the flight controller can also determine the unmanned aerial vehicle's attitude by driving the rotation force of the propeller and the rotation torque of the propeller to the motor base, thereby controlling the flight of the unmanned aerial vehicle to avoid the malfunction of the IMU. The crash accident.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access memory (Random Access).
  • ROM read-only memory
  • Random Access random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种无人飞行器姿态计算方法、飞行控制器及无人飞行器,该方法包括:获取电机(32)转动带动螺旋桨(31)产生的拉力,以及螺旋桨(31)对电机底座(33)的转动力矩;根据螺旋桨(31)产生的拉力,以及螺旋桨(31)对电机底座(33)的转动力矩,确定无人飞行器(60)的姿态,在IMU出现故障时,飞行控制器(70)通过电机(32)转动带动螺旋桨(31)产生的拉力,以及螺旋桨(31)对电机底座(33)的转动力矩确定无人飞行器(60)的姿态,进而对无人飞行器(60)进行飞行控制,避免由于IMU故障而造成的坠机事故。

Description

无人飞行器姿态计算方法、飞行控制器及无人飞行器 技术领域
本发明实施例涉及无人机领域,尤其涉及一种无人飞行器姿态计算方法、飞行控制器及无人飞行器。
背景技术
现有技术中无人飞行器的飞行控制器包括惯性测量单元(Inertial Measurement Unit,IMU),IMU是测量无人飞行器三轴姿态角(或角速度)以及加速度的装置。IMU包括三轴加速度计和三轴陀螺仪,三轴加速度计和三轴陀螺仪用于检测无人飞行器的姿态,无人飞行器的姿态包括俯仰角、横滚角及偏航角等。飞行控制器根据无人飞行器的姿态对无人飞行器进行飞行控制。
但是,当IMU出现故障时,IMU将无法检测出无人飞行器的姿态,飞行控制器无法获取到无人飞行器的姿态时,将无法对无人飞行器进行飞行控制,从而导致无人飞行器可能坠机。
发明内容
本发明实施例提供一种无人飞行器姿态计算方法、飞行控制器及无人飞行器,以避免由于IMU故障而造成的坠机事故。
本发明实施例的一个方面是提供一种无人飞行器姿态计算方法,包括:
获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;
根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
本发明实施例的另一个方面是提供一种飞行控制器,包括:一个或多个处理器,单独或协同工作,所述处理器用于:
获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的 转动力矩;
根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
本发明实施例的另一个方面是提供一种无人飞行器,包括:
机身;
动力系统,安装在所述机身,用于提供飞行动力,所述动力系统至少包括电机和螺旋桨;
飞行控制器,与所述动力系统通讯连接,用于控制所述无人飞行器飞行;所述飞行控制器包括一个或多个处理器,单独或协同工作,所述处理器用于:
获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;
根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
本实施例提供的无人飞行器姿态计算方法、飞行控制器及无人飞行器,通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩,确定无人飞行器的姿态,即不需要IMU也可检测出无人飞行器的姿态,当IMU出现故障无法检测出无人飞行器的姿态时,飞行控制器还可通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩确定无人飞行器的姿态,进而对无人飞行器进行飞行控制,避免由于IMU故障而造成的坠机事故。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中机体坐标系和地面惯性坐标系的示意图;
图2为本发明实施例提供的无人飞行器姿态计算方法的流程图;
图3为本发明实施例提供的一种动力系统的示意图;
图4为本发明实施例提供的另一种动力系统的示意图;
图5为本发明实施例提供的一种四旋翼无人飞行器的示意图;
图6为本发明实施例提供的无人飞行器的受力示意图;
图7为本发明实施例提供的飞行控制器的结构图;
图8为本发明实施例提供的无人飞行器的结构图。
附图标记:
31-螺旋桨       32-电机         33-电机底座
34-力学传感器   60-无人飞行器   70-飞行控制器
71-处理器       72-力学传感器   100-无人飞行器
107-电机        106-螺旋桨      117-电子调速器
118-飞行控制器  108-传感系统    110-通信系统
102-支撑设备    104-拍摄设备    112-地面站
114-天线        116-电磁波
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为现有技术中机体坐标系和地面惯性坐标系的示意图。如图1所示,xb表示机体坐标系的X轴,yb表示机体坐标系的Y轴,zb表示机体坐标系的Z轴,xe表示地面惯性坐标系的X轴,ye表示地面惯性坐标系的Y轴,ze表示地面惯性坐标系的Z轴。具体的,该机体坐标系可以是无人飞行器对应的机体坐标系,则机体坐标系和地面惯性坐标系之间的夹角即是该无人飞行器的姿态角,该姿态角包括如下至少一种:俯仰角θ、偏航角ψ、横滚角φ,其中,俯仰角θ是机体坐标系的X轴即xb与地平面之间的夹角,地平面可以是地面惯性坐标系的X轴即xe与地面惯性坐标系的Y轴即ye构成的平面,另外,机体坐标系的X轴即xb可以在机体轴的轴向上。偏航角ψ是机体轴在地平面上的投影和地面惯性坐标系的X轴即xe之间的夹角。横滚角φ是无人飞行器的对称面绕机体轴转过的角度,由于机体坐标系的X轴即xb在机体轴的轴向上,则机体坐标系的X轴即xb和机体坐标系的Y轴即yb构成的平面可以作为无人飞行器的对称面,则横滚角φ是无人飞行器的对称面与过机体坐标系的X轴且与地平面垂直的平面之间的夹角。如图1所示,俯仰角θ以无人飞行器抬头时机体坐标系的X轴xb与地平面之间的夹角为正,偏航角ψ以机体轴在地平面上的投影相对地面惯性坐标系的X轴xe的顺时针方向为正,横滚角φ以无人飞行器的对称面绕机体轴顺时针方向转动为正。图1只是示意性说明,在其他实施例中,俯仰角θ还可以是以无人飞行器低头时xb与地平面之间的夹角为正,偏航角ψ还可以是以机体轴在地平面上的投影相对xe的逆时针方向为正,横滚角φ还可以是以无人飞行器的对称面绕机体轴逆时针方向转动为正。
现有技术通过惯性测量单元(Inertial Measurement Unit,IMU)即三轴加速度计和三轴陀螺仪来检测无人飞行器的姿态角,飞行控制器根据IMU检测的无人飞行器的姿态即可对无人飞行器进行飞行控制。但是,当IMU出现故障时,IMU将无法检测出无人飞行器的姿态,飞行控制器无法获取到无人飞行器的姿态时,将无法对无人飞行器进行飞行控制,从而导致无人飞行器可能坠机。为了解决该问题,本发明实施例提供了一种无人飞行器姿态计算方法,该方法不同于通过IMU检测无人飞行器姿态的方法,下面结合具体的实施例进行说明。
本发明实施例提供一种无人飞行器姿态计算方法。图2为本发明实施例提供的无人飞行器姿态计算方法的流程图。如图2所示,本实施例中的方法,可以包括:
步骤S201、获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩。
无人飞行器的飞行控制器控制电机转动,螺旋桨随着电机的转动而转动,螺旋桨在转动过程中产生拉力,当螺旋桨产生的拉力之和等于该无人飞行器的重量时,该无人飞行器即可悬停在空中,另外,若该无人飞行器是多旋翼无人飞行器,飞行控制器还可以通过控制各个电机的转速来控制多旋翼无人飞行器的飞行姿态、速度、角速度、加速度等。
根据牛顿第三定律:相互作用的两个物体之间的作用力和反作用力大小相等,方向相反。因此,电机带动螺旋桨旋转的同时,螺旋桨也会向电机施加一个反作用力(反扭矩),促使电机向反方向旋转,电机固定在电机底座上,因此,螺旋桨会对电机底座产生转动力矩。如图3所示为多旋翼无人飞行器的一个电机和其对应的螺旋桨,具体的,电机32转动带动螺旋桨31旋转,例如,螺旋桨31逆时针旋转,螺旋桨31产生向上的拉力,同时螺旋桨31对电机底座33产生转动力矩,转动力矩与螺旋桨31的旋转方向相反。此外,多旋翼无人飞行器的其他电机和其对应的螺旋桨与图3所示的结构类似,此处不再赘述。
具体的,获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩的一种可实现的方式是:获取力学传感器检测到的电机转动时带动所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,所述力学传感器位于所述电机和所述电机底座之间。如图4所示,在电机32和电机底座33之间设置有力学传感器34,力学传感器34可以感测螺旋桨31在旋转时产生的向上的拉力,或者拉升力矩,同时还可以感测螺旋桨31对电机底座33的转动力矩。可选的,根据螺旋桨31在旋转时产生的向上的拉升力矩,可确定出螺旋桨31在旋转时产生的向上的拉力,或者,根据螺旋桨31在旋转时产生的向上的拉力,可确定出螺旋桨31在旋转时产生的向上的拉升力矩。此外,力学传感器34具体可以是六轴力学传感器,六轴力学传感器可用于感测无人飞行器在X轴、Y轴、Z 轴三个方向的力和该三个方向的转矩。此外,多旋翼无人飞行器的每个电机与其对应的力学传感器、电机底座的位置关系均与图4类似,此处不再赘述。
步骤S202、根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
具体地,所述无人飞行器的姿态包括如下至少一种:俯仰角、横滚角和偏航角。在本实施例中,俯仰角记为θpitch、横滚角记为θroll、偏航角记为θyaw
根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态的一种可实现的方式是:根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度;其中,所述三轴角加速度包括如下至少一种:所述俯仰角的角加速度βpitch、所述横滚角的角加速度βroll以及所述偏航角的角加速度βyaw;根据所述三轴角加速度,确定所述无人飞行器的姿态。
无人飞行器可看作是一个刚体,刚体的角加速度β、转动惯量J、扭矩M之间的关系可由如下公式(1)确定:
M=J*β         (1)
其中,M具体可以是刚体所受到的总扭矩;β具体可以是刚体在总扭矩作用下的扭转方向上产生的角加速度。无人飞行器所受到的总扭矩可以是俯仰力矩、滚转力矩、偏航力矩的合力矩,因此,根据公式(1)可确定出无人飞行器所受到的俯仰力矩Mpitch和俯仰角的角加速度βpitch之间的关系如公式(2)所示,同时还可以确定出无人飞行器所受到的滚转力矩Mroll和横滚角的角加速度βroll之间的关系如公式(3)所示,以及偏航力矩Myaw和偏航角的角加速度βyaw之间的关系如公式(4)所示。
Mpitch=J*βpitch         (2)
Mroll=J*βroll         (3)
Myaw=J*βyaw        (4)
因此,根据所述俯仰力矩Mpitch、所述滚转力矩Mroll和所述偏航力矩Myaw,通过公式(2)(3)(4)可计算所述无人飞行器的三轴角加速度即俯仰角的角加速度βpitch、横滚角的角加速度βroll和偏航角的角加速度 βyaw。再依据角加速度和角度之间的关系,根据俯仰角的角加速度βpitch计算出俯仰角θpitch;根据横滚角的角加速度βroll计算出横滚角θroll;根据偏航角的角加速度βyaw计算出偏航角θyaw
下面将详细介绍计算俯仰力矩Mpitch、滚转力矩Mroll和偏航力矩Myaw的方法,一种可实现的方式是:根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩Mpitch和滚转力矩Mroll;根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩Myaw。如图5所示,以四旋翼无人飞行器为例,该四旋翼无人飞行器对应有四个电机例如1号电机、2号电机、3号电机、4号电机,1号电机带动1号螺旋桨转动,2号电机带动2号螺旋桨转动,3号电机带动3号螺旋桨转动,4号电机带动4号螺旋桨转动。1号电机和3号电机的转动方向一致,均为顺时针方向;2号电机和4号电机的转动方向一致,均为逆时针方向;另外,1号电机和3号电机的转动方向还可以是逆时针方向,2号电机和4号电机的转动方向还可以是顺时针方向。四个电机在转动过程中带动相应的螺旋桨转动,且电机的转动方向和该电机带动的螺旋桨的转动方向一致,则1号螺旋桨和3号螺旋桨顺时针方向转动,2号螺旋桨和4号螺旋桨逆时针方向转动,各个螺旋桨产生向上的拉力,例如,1号螺旋桨产生向上的拉力F1;2号螺旋桨产生向上的拉力F2;3号螺旋桨产生向上的拉力F3;4号螺旋桨产生向上的拉力F4。由于电机带动螺旋桨旋转的同时,螺旋桨也会向电机施加一个反作用力(反扭矩),促使电机向反方向旋转,电机固定在电机底座上,因此,螺旋桨会对电机底座产生转动力矩,例如,1号螺旋桨对1号电机底座的转动力矩为M1;2号螺旋桨对2号电机底座的转动力矩为M2;3号螺旋桨对3号电机底座的转动力矩为M3;4号螺旋桨对4号电机底座的转动力矩为M4。可见,螺旋桨的转动方向和该螺旋桨对电机底座的转动力矩的方向相反。
如图5所示,各个电机的转速可以相同、也可以不完全相同,当各个电机转速不完全相同时,各螺旋桨产生的拉力不完全相同,各螺旋桨对其电机底座的转动力矩不能相互平衡,从而引起无人飞行器转动。当各个电机转速相同时,各螺旋桨产生的拉力相同,各螺旋桨对其电机底座的转动 力矩相互平衡,无人飞行器不发生转动。对于某个电机而言,若电机转速增加,表示该电机带动的螺旋桨产生的拉力增大,若电机转速下降,表示该电机带动的螺旋桨产生的拉力减小。
在本实施例中,假设以1号电机为无人飞行器的机头方向,3号电机为无人飞行器的机尾方向,2号电机为无人飞行器的左侧的电机,4号电机为无人飞行器的右侧的电机,即无人飞行器的飞行方向为十字型,此处只是示意性说明,并不限定无人飞行器的飞行方向,在其他实施例中,无人飞行器的飞行方向还可以是X型的,即1号电机和2号电机共同作为无人飞行器前方的电机,3号电机和4号电机共同作为无人飞行器后方的电机,无人飞行器以十字型飞行时的俯仰力矩Mpitch、滚转力矩Mroll和偏航力矩Myaw和无人飞行器以X型飞行时的俯仰力矩Mpitch、滚转力矩Mroll和偏航力矩Myaw之间可以进行数学转换。
如图5所示,O表示无人飞行器的质心,以无人飞行器的质心O为坐标原点建立机体坐标系,则无人飞行器以十字型飞行时,机体坐标系的X轴为1号电机和3号电机的对角线,机体坐标系的X轴正向可以是从O指向机头的方向即从O指向1号电机的方向;机体坐标系的Y轴为2号电机和4号电机的对角线,机体坐标系的Y轴正向可以是从O指向机身右侧的方向即从O指向4号电机的方向,机体坐标系的Z轴正向可以是垂直于X轴和Y轴构成的平面向上的方向。因此,机体坐标系的X轴为无人飞行器的横滚轴即roll轴,机体坐标系的Y轴为无人飞行器的俯仰轴即pitch轴,机体坐标系的Z轴为无人飞行器的偏航轴即yaw轴。另外,质心O距离各个电机等长,则质心O距离任一电机的长度可以作为无人飞行器的机臂长度。
由于力矩在物理学中是指作用力使物体绕着转动轴或支点转动的趋向,力矩M、距离矢量L、矢量力F之间的关系是:M=F*L,L具体为从转动轴到着力点的距离矢量,则无人飞行器所受到的俯仰力矩Mpitch可以表示为Mpitch=Fpitch*R,其中,Fpitch表示能够使无人飞行器绕着pitch轴即机体坐标系的Y轴转动的合力,R表示从pitch轴到Fpitch的着力点的距离矢量即无人飞行器的机臂长度;同理,滚转力矩Mroll=Froll*R,Froll表示能够使无人飞行器绕着roll轴即机体坐标系的X轴转动的合力,R表示从roll轴到 Froll的着力点的距离矢量即无人飞行器的机臂长度。
所述根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩,包括:根据所述无人飞行器机头方向的螺旋桨产生的拉力、所述无人飞行器机尾方向的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩;根据所述无人飞行器左边的螺旋桨产生的拉力、所述无人飞行器机右边的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的滚转力矩。
根据图5可知,一种可能的情况是:当1号电机和3号电机的转速不同、2号电机和4号电机的转速相同时,1号螺旋桨产生的拉力和3号螺旋桨产生的拉力不同,2号螺旋桨产生的拉力和4号螺旋桨产生的拉力相同,1号螺旋桨对其电机底座的转动力矩和3号螺旋桨对其电机底座的转动力矩不能相互平衡,2号螺旋桨对其电机底座的转动力矩和4号螺旋桨对其电机底座的转动力矩相互平衡,导致无人飞行器以pitch轴为转动轴转动,若以无人飞行器抬头时机体坐标系的X轴与地平面之间的夹角为正的俯仰角,则Fpitch=F1-F3,由于Mpitch=Fpitch*R,则Mpitch=(F1-F3)*R。
根据图5可知,另一种可能的情况是:当1号电机和3号电机的转速相同、2号电机和4号电机的转速不同时,1号螺旋桨产生的拉力和3号螺旋桨产生的拉力相同,2号螺旋桨产生的拉力和4号螺旋桨产生的拉力不同,1号螺旋桨对其电机底座的转动力矩和3号螺旋桨对其电机底座的转动力矩相互平衡,2号螺旋桨对其电机底座的转动力矩和4号螺旋桨对其电机底座的转动力矩不能相互平衡,导致无人飞行器以roll轴为转动轴转动,若无人飞行器右侧低于左侧即无人飞行器向右倾斜时无人飞行器的对称面绕机体轴转过的角度为正的横滚角,则Froll=F2-F4,由于Mroll=Froll*R,则Mroll=(F2-F4)*R。
所述根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩,包括:根据所述无人飞行器的顺时针转动的螺旋桨产生的转动力矩与逆时针转动的螺旋桨产生的转动力矩的合力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩。
根据图5可知,再一种可能的情况是:1号电机和3号电机的转速上 升,2号电机和4号电机的转速下降,则1号螺旋桨和3号螺旋桨产生的拉力增大,2号螺旋桨和4号螺旋桨产生的拉力减小,1号螺旋桨和3号螺旋桨对电机底座的转动力矩大于2号螺旋桨和4号螺旋桨对电机底座的转动力矩,导致无人飞行器的机身将以yaw轴为转动轴转动,若无人飞行器以yaw轴为转动轴向左转动即从上往下看无人飞行器逆时针旋转时为偏航角的正方向,则Myaw=M1+M3-M2-M4。
综上所述,俯仰力矩Mpitch=(F1-F3)*R、滚转力矩Mroll=(F2-F4)*R、偏航力矩Myaw=M1+M3-M2-M4,根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度,包括如下至少一种:
第一种:根据所述俯仰力矩,计算所述俯仰角的角加速度;具体的,结合Mpitch=(F1-F3)*R和上述公式(2)可得到如下公式(5):
J*βpitch=(F1-F3)*R     (5)
其中,F1和F3可通过如图4所示的力学传感器34感测得到,具体的,1号电机和1号电机底座之间有一个力学传感器,该力学传感器用于感测F1;3号电机和3号电机底座之间有一个力学传感器,该力学传感器用于感测F3;J和R为常数,则通过公式(5)可求得俯仰角的角加速度βpitch
第二种:根据所述滚转力矩,计算所述横滚角的角加速度;具体的,结合Mroll=(F2-F4)*R和上述公式(3)可得到如下公式(6):
J*βroll=(F2-F4)*R        (6)
其中,F2和F4可通过如图4所示的力学传感器34感测得到,具体的,2号电机和2号电机底座之间有一个力学传感器,该力学传感器用于感测F2;4号电机和4号电机底座之间有一个力学传感器,该力学传感器用于感测F4;J和R为常数,则通过公式(6)可求得横滚角的角加速度βroll
第三种:根据所述偏航力矩,计算所述偏航角的角加速度;具体的,结合Myaw=M1+M3-M2-M4和上述公式(4)可得到如下公式(7):
J*βyaw=M1+M3-M2-M4     (7)
其中,M1、M3、M2、M4可通过如图4所示的力学传感器34感测得到,因此,通过公式(7)可求得偏航角的角加速度βyaw
所述根据所述三轴角加速度,确定所述无人飞行器的姿态,包括:根据所述三轴角加速度,确定三轴角速度;其中,所述三轴角速度包括如下 至少一种:所述俯仰角的角速度、所述横滚角的角速度以及所述偏航角的角速度;根据所述三轴角速度,确定所述无人飞行器的姿态。
无人飞行器的姿态包括如下至少一种:俯仰角θpitch、横滚角θroll和偏航角θraw,俯仰角θpitch和俯仰角的角加速度βpitch之间的关系如公式(8)所示,横滚角θroll和横滚角的角加速度βroll之间的关系如公式(9)所示,偏航角θraw和偏航角的角加速度βraw之间的关系如公式(10)所示:
Figure PCTCN2017081519-appb-000001
Figure PCTCN2017081519-appb-000002
Figure PCTCN2017081519-appb-000003
其中,ωpitch表示俯仰角的角速度,ωroll表示横滚角的角速度,ωraw表示偏航角的角速度。因此,根据无人飞行器的三轴角加速度即βpitch、βroll和βraw,可确定出所述无人飞行器的姿态即θpitch、θroll和θraw。例如,对βpitch进行积分得到俯仰角的角速度ωpitch,再对ωpitch进行积分得到俯仰角θpitch;对βroll进行积分得到横滚角的角速度ωroll,再对ωroll进行积分得到横滚角θroll;对βraw进行积分得到偏航角的角速度ωraw,再对ωraw进行积分得到偏航角θraw,从而得到无人飞行器的姿态。
综上所述,本实施例提供的无人飞行器姿态计算方法为无人飞行器的姿态估算提供了一种新的方法,该方法根据螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩,即可确定无人飞行器的姿态,不同于现有技术中通过IMU检测无人飞行器的姿态的方式,因此,本实施例提供的无人飞行器姿态计算方法可以作为现有技术的替代方式,例如当IMU出现故障时,代替IMU确定无人飞行器的姿态,并将确定出的无人飞行器的姿态作为冗余备份,以使无人飞行器的飞行控制器在IMU出现故障的情况下依然能够根据无人飞行器的姿态对无人飞行器进行飞行控制。另外,本实施例提供的无人飞行器姿态计算方法还可以与现有技术中通过IMU检测无人飞行器姿态的方式进行融合,例如,单独通过IMU检测出的无人飞行器的姿态可能存在一定的误差,将根据螺旋桨产生的拉力和螺旋桨对电机底座的转动力矩,确定出的无人飞行器的姿态,以及通过IMU检测 出的无人飞行器的姿态进行融合,可得到精度更高的无人飞行器的姿态。
本实施例通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩,确定无人飞行器的姿态,即不需要IMU也可检测出无人飞行器的姿态,当IMU出现故障无法检测出无人飞行器的姿态时,飞行控制器还可通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩确定无人飞行器的姿态,进而对无人飞行器进行飞行控制,避免由于IMU故障而造成的坠机事故。
本发明实施例提供一种无人飞行器姿态计算方法。在图2所示实施例的基础上,本实施例中的方法,可以包括:根据所述螺旋桨产生的拉力、所述无人飞行器的重力、以及所述无人飞行器在垂直方向上受到的空气阻力,计算所述无人飞行器在垂直方向上的速度和加速度。其中,所述无人飞行器在垂直方向上受到的空气阻力是根据所述无人飞行器在垂直方向上的速度确定的。
本实施例以如图5所示的四旋翼无人飞行器为例,四个螺旋桨产生的拉力分别为F1、F2、F3、F4,由于F1、F2、F3、F4的方向是向上的,无人飞行器的重力是向下的,当F1、F2、F3、F4的合力的大小等于无人飞行器的重力大小时,无人飞行器悬停在空中,当无人飞行器在垂直方向上运动时,无人飞行器在垂直方向上会受到空气阻力,空气阻力的方向与无人飞行器在垂直方向上的运动方向相反,例如,无人飞行器在垂直方向上向上飞行,则无人飞行器在垂直方向上受到的空气阻力向下,当无人飞行器在垂直方向上向下飞行时,无人飞行器在垂直方向上受到的空气阻力向上。如图6所示,F1、F2、F3、F4的合力为F,F的方向向上,若无人飞行器60在垂直方向上向上飞行,且上升的速度为v,则无人飞行器60在垂直方向上受到向下的空气阻力f,若无人飞行器60在垂直方向上的加速度为a,则无人飞行器60在垂直方向上满足如下公式(11)(12)(13):
ma=F1+F2+F3+F4-mg-f       (11)
f=kv2         (12)
Figure PCTCN2017081519-appb-000004
其中,m表示无人飞行器的重量,g表示无人飞行器所处地点的重力 加速度,k表示阻力系数,无人飞行器在垂直方向上运动的速度越大,其受到的空气阻力越大,无人飞行器在垂直方向上的加速度a是无人飞行器在垂直方向上运动的速度的变化量,同时a的大小能够反映出无人飞行器在垂直方向上运动的速度的变化快慢。因此,根据上述公式(11)(12)(13)可计算得到无人飞行器在垂直方向上的速度v和加速度a。
本实施例通过螺旋桨产生的拉力、无人飞行器的重力、以及无人飞行器在垂直方向上受到的空气阻力,计算无人飞行器在垂直方向上的速度和加速度,增加了对无人飞行器的检测功能,使得飞行控制器还可以根据无人飞行器在垂直方向上的速度和加速度,对无人飞行器进行飞行控制,增强了飞行控制器对无人飞行器的控制功能。
本发明实施例提供一种飞行控制器。图7为本发明实施例提供的飞行控制器的结构图,如图7所示,飞行控制器70包括一个或多个处理器71,一个或多个处理器71单独或协同工作,一个或多个处理器71用于:获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。其中,所述无人飞行器的姿态包括如下至少一种:俯仰角、横滚角和偏航角。
另外,飞行控制器70还包括力学传感器72,力学传感器72与处理器71通讯连接,用于感测电机转动时带动所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,并将感测到的所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩传输给处理器71;力学传感器72位于所述电机和所述电机底座之间。具体的,该力学传感器为六轴力学传感器。
可选的,处理器71根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态时,具体用于:根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度;其中,所述三轴角加速度包括如下至少一种:所述俯仰角的角加速度、所述横滚角的角加速度以及所述偏航角的角加速度;根据所述三轴角加速度,确定所述无人飞行器的姿态。其中,处理器 71根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度时,具体用于:根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩;根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩;根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度。
可选的,该无人飞行器为多旋翼无人机。处理器71根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩时,具体用于:根据所述无人飞行器机头方向的螺旋桨产生的拉力、所述无人飞行器机尾方向的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩;根据所述无人飞行器左边的螺旋桨产生的拉力、所述无人飞行器机右边的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的滚转力矩。另外,处理器71根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩时,具体用于:根据所述无人飞行器的顺时针转动的螺旋桨产生的转动力矩与逆时针转动的螺旋桨产生的转动力矩的合力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩。
可选的,处理器71根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度时,具体用于如下至少一种:根据所述俯仰力矩,计算所述俯仰角的角加速度;根据所述滚转力矩,计算所述横滚角的角加速度;根据所述偏航力矩,计算所述偏航角的角加速度。
可选的,处理器71根据所述三轴角加速度,确定所述无人飞行器的姿态时,具体用于:根据所述三轴角加速度,确定三轴角速度;其中,所述三轴角速度包括如下至少一种:所述俯仰角的角速度、所述横滚角的角速度以及所述偏航角的角速度;根据所述三轴角速度,确定所述无人飞行器的姿态。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图2所示实施例类似,此处不再赘述。
本实施例通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底 座的转动力矩,确定无人飞行器的姿态,即不需要IMU也可检测出无人飞行器的姿态,当IMU出现故障无法检测出无人飞行器的姿态时,飞行控制器还可通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩确定无人飞行器的姿态,进而对无人飞行器进行飞行控制,避免由于IMU故障而造成的坠机事故。
本发明实施例提供一种飞行控制器。在图7所示实施例提供的技术方案的基础上,处理器71还用于:根据所述螺旋桨产生的拉力、所述无人飞行器的重力、以及所述无人飞行器在垂直方向上受到的空气阻力,计算所述无人飞行器在垂直方向上的速度和加速度。其中,所述无人飞行器在垂直方向上受到的空气阻力是根据所述无人飞行器在垂直方向上的速度确定的。
本发明实施例提供的飞行控制器的具体原理和实现方式均与图6所示实施例类似,此处不再赘述。
本实施例通过螺旋桨产生的拉力、无人飞行器的重力、以及无人飞行器在垂直方向上受到的空气阻力,计算无人飞行器在垂直方向上的速度和加速度,增加了对无人飞行器的检测功能,使得飞行控制器还可以根据无人飞行器在垂直方向上的速度和加速度,对无人飞行器进行飞行控制,增强了飞行控制器对无人飞行器的控制功能。
本发明实施例提供一种无人飞行器。图8为本发明实施例提供的无人飞行器的结构图,如图8所示,无人飞行器100包括:机身、动力系统和飞行控制器118,所述动力系统包括如下至少一种:电机107、螺旋桨106和电子调速器117,动力系统安装在所述机身,用于提供飞行动力;飞行控制器118与所述动力系统通讯连接,用于控制所述无人飞行器飞行。
另外,如图8所示,无人飞行器100还包括:传感系统108、通信系统110、支撑设备102、拍摄设备104,其中,支撑设备102具体可以是云台,通信系统110具体可以包括接收机,接收机用于接收地面站112的天线114发送的无线信号,116表示接收机和天线114通信过程中产生的电 磁波。
在本实施例中,飞行控制器118具体原理和实现方式均与上述实施例一致,此处不再赘述。
本实施例通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩,确定无人飞行器的姿态,即不需要IMU也可检测出无人飞行器的姿态,当IMU出现故障无法检测出无人飞行器的姿态时,飞行控制器还可通过电机转动带动螺旋桨产生的拉力,以及螺旋桨对电机底座的转动力矩确定无人飞行器的姿态,进而对无人飞行器进行飞行控制,避免由于IMU故障而造成的坠机事故。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access  Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (39)

  1. 一种无人飞行器姿态计算方法,其特征在于,包括:
    获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述无人飞行器的姿态包括如下至少一种:
    俯仰角、横滚角和偏航角。
  3. 根据权利要求1所述的方法,其特征在于,所述获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,包括:
    获取力学传感器检测到的电机转动时带动所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,所述力学传感器位于所述电机和所述电机底座之间。
  4. 根据权利要求3所述的方法,其特征在于,所述力学传感器为六轴力学传感器。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态,包括:
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度;其中,所述三轴角加速度包括如下至少一种:所述俯仰角的角加速度、所述横滚角的角加速度以及所述偏航角的角加速度;
    根据所述三轴角加速度,确定所述无人飞行器的姿态。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度,包括:
    根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩;
    根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人 飞行器的偏航力矩;
    根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度。
  7. 根据权利要求6所述的方法,其特征在于,所述无人飞行器为多旋翼无人机。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩,包括:
    根据所述无人飞行器机头方向的螺旋桨产生的拉力、所述无人飞行器机尾方向的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩;
    根据所述无人飞行器左边的螺旋桨产生的拉力、所述无人飞行器机右边的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的滚转力矩。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩,包括:
    根据所述无人飞行器的顺时针转动的螺旋桨产生的转动力矩与逆时针转动的螺旋桨产生的转动力矩的合力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度,包括如下至少一种:
    根据所述俯仰力矩,计算所述俯仰角的角加速度;
    根据所述滚转力矩,计算所述横滚角的角加速度;
    根据所述偏航力矩,计算所述偏航角的角加速度。
  11. 根据权利要求5所述的方法,其特征在于,所述根据所述三轴角加速度,确定所述无人飞行器的姿态,包括:
    根据所述三轴角加速度,确定三轴角速度;其中,所述三轴角速度包括如下至少一种:所述俯仰角的角速度、所述横滚角的角速度以及所述偏 航角的角速度;
    根据所述三轴角速度,确定所述无人飞行器的姿态。
  12. 根据权利要求1所述的方法,其特征在于,还包括:
    根据所述螺旋桨产生的拉力、所述无人飞行器的重力、以及所述无人飞行器在垂直方向上受到的空气阻力,计算所述无人飞行器在垂直方向上的速度和加速度。
  13. 根据权利要求12所述的方法,其特征在于,所述无人飞行器在垂直方向上受到的空气阻力是根据所述无人飞行器在垂直方向上的速度确定的。
  14. 一种飞行控制器,其特征在于,包括一个或多个处理器,单独或协同工作,所述处理器用于:
    获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
  15. 根据权利要求14所述的飞行控制器,其特征在于,所述无人飞行器的姿态包括如下至少一种:
    俯仰角、横滚角和偏航角。
  16. 根据权利要求14所述的飞行控制器,其特征在于,还包括:
    力学传感器,与所述处理器通讯连接,用于感测电机转动时带动所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,并将感测到的所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩传输给所述处理器;
    所述力学传感器位于所述电机和所述电机底座之间。
  17. 根据权利要求16所述的飞行控制器,其特征在于,所述力学传感器为六轴力学传感器。
  18. 根据权利要求15所述的飞行控制器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态时,具体用于:
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力 矩,计算所述无人飞行器的三轴角加速度;其中,所述三轴角加速度包括如下至少一种:所述俯仰角的角加速度、所述横滚角的角加速度以及所述偏航角的角加速度;
    根据所述三轴角加速度,确定所述无人飞行器的姿态。
  19. 根据权利要求18所述的飞行控制器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度时,具体用于:
    根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩;
    根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩;
    根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度。
  20. 根据权利要求19所述的飞行控制器,其特征在于,所述无人飞行器为多旋翼无人机。
  21. 根据权利要求20所述的飞行控制器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩时,具体用于:
    根据所述无人飞行器机头方向的螺旋桨产生的拉力、所述无人飞行器机尾方向的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩;
    根据所述无人飞行器左边的螺旋桨产生的拉力、所述无人飞行器机右边的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的滚转力矩。
  22. 根据权利要求20所述的飞行控制器,其特征在于,所述处理器根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩时,具体用于:
    根据所述无人飞行器的顺时针转动的螺旋桨产生的转动力矩与逆时针转动的螺旋桨产生的转动力矩的合力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩。
  23. 根据权利要求20所述的飞行控制器,其特征在于,所述处理器根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度时,具体用于如下至少一种:
    根据所述俯仰力矩,计算所述俯仰角的角加速度;
    根据所述滚转力矩,计算所述横滚角的角加速度;
    根据所述偏航力矩,计算所述偏航角的角加速度。
  24. 根据权利要求18所述的飞行控制器,其特征在于,所述处理器根据所述三轴角加速度,确定所述无人飞行器的姿态时,具体用于:
    根据所述三轴角加速度,确定三轴角速度;其中,所述三轴角速度包括如下至少一种:
    所述俯仰角的角速度、所述横滚角的角速度以及所述偏航角的角速度;
    根据所述三轴角速度,确定所述无人飞行器的姿态。
  25. 根据权利要求14所述的飞行控制器,其特征在于,所述处理器还用于:
    根据所述螺旋桨产生的拉力、所述无人飞行器的重力、以及所述无人飞行器在垂直方向上受到的空气阻力,计算所述无人飞行器在垂直方向上的速度和加速度。
  26. 根据权利要求25所述的飞行控制器,其特征在于,所述无人飞行器在垂直方向上受到的空气阻力是根据所述无人飞行器在垂直方向上的速度确定的。
  27. 一种无人飞行器,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供飞行动力,所述动力系统至少包括电机和螺旋桨;
    飞行控制器,与所述动力系统通讯连接,用于控制所述无人飞行器飞行;所述飞行控制器包括一个或多个处理器,单独或协同工作,所述处理器用于:
    获取电机转动带动螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩;
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述无人飞行器的姿态包括如下至少一种:
    俯仰角、横滚角和偏航角。
  29. 根据权利要求27所述的无人飞行器,其特征在于,所述飞行控制器还包括:
    力学传感器,与所述处理器通讯连接,用于感测电机转动时带动所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,并将感测到的所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩传输给所述处理器;
    所述力学传感器位于所述电机和所述电机底座之间。
  30. 根据权利要求29所述的无人飞行器,其特征在于,所述力学传感器为六轴力学传感器。
  31. 根据权利要求28所述的无人飞行器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,确定所述无人飞行器的姿态时,具体用于:
    根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度;其中,所述三轴角加速度包括如下至少一种:所述俯仰角的角加速度、所述横滚角的角加速度以及所述偏航角的角加速度;
    根据所述三轴角加速度,确定所述无人飞行器的姿态。
  32. 根据权利要求31所述的无人飞行器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述螺旋桨对电机底座的转动力矩,计算所述无人飞行器的三轴角加速度时,具体用于:
    根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩;
    根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩;
    根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞 行器的三轴角加速度。
  33. 根据权利要求32所述的无人飞行器,其特征在于,所述无人飞行器为多旋翼无人机。
  34. 根据权利要求33所述的无人飞行器,其特征在于,所述处理器根据所述螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩和滚转力矩时,具体用于:
    根据所述无人飞行器机头方向的螺旋桨产生的拉力、所述无人飞行器机尾方向的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的俯仰力矩;
    根据所述无人飞行器左边的螺旋桨产生的拉力、所述无人飞行器机右边的螺旋桨产生的拉力,以及所述无人飞行器的机臂长度,计算所述螺旋桨对所述无人飞行器的滚转力矩。
  35. 根据权利要求33所述的无人飞行器,其特征在于,所述处理器根据所述螺旋桨对电机底座的转动力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩时,具体用于:
    根据所述无人飞行器的顺时针转动的螺旋桨产生的转动力矩与逆时针转动的螺旋桨产生的转动力矩的合力矩,计算所述螺旋桨对所述无人飞行器的偏航力矩。
  36. 根据权利要求33所述的无人飞行器,其特征在于,所述处理器根据所述俯仰力矩、所述滚转力矩和所述偏航力矩,计算所述无人飞行器的三轴角加速度时,具体用于如下至少一种:
    根据所述俯仰力矩,计算所述俯仰角的角加速度;
    根据所述滚转力矩,计算所述横滚角的角加速度;
    根据所述偏航力矩,计算所述偏航角的角加速度。
  37. 根据权利要求31所述的无人飞行器,其特征在于,所述处理器根据所述三轴角加速度,确定所述无人飞行器的姿态时,具体用于:
    根据所述三轴角加速度,确定三轴角速度;其中,所述三轴角速度包括如下至少一种:
    所述俯仰角的角速度、所述横滚角的角速度以及所述偏航角的角速度;
    根据所述三轴角速度,确定所述无人飞行器的姿态。
  38. 根据权利要求27所述的无人飞行器,其特征在于,所述处理器还用于:
    根据所述螺旋桨产生的拉力、所述无人飞行器的重力、以及所述无人飞行器在垂直方向上受到的空气阻力,计算所述无人飞行器在垂直方向上的速度和加速度。
  39. 根据权利要求38所述的无人飞行器,其特征在于,所述无人飞行器在垂直方向上受到的空气阻力是根据所述无人飞行器在垂直方向上的速度确定的。
PCT/CN2017/081519 2017-04-21 2017-04-21 无人飞行器姿态计算方法、飞行控制器及无人飞行器 WO2018191981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/081519 WO2018191981A1 (zh) 2017-04-21 2017-04-21 无人飞行器姿态计算方法、飞行控制器及无人飞行器
CN201780004899.6A CN108475066B (zh) 2017-04-21 2017-04-21 无人飞行器姿态计算方法、飞行控制器及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081519 WO2018191981A1 (zh) 2017-04-21 2017-04-21 无人飞行器姿态计算方法、飞行控制器及无人飞行器

Publications (1)

Publication Number Publication Date
WO2018191981A1 true WO2018191981A1 (zh) 2018-10-25

Family

ID=63266570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081519 WO2018191981A1 (zh) 2017-04-21 2017-04-21 无人飞行器姿态计算方法、飞行控制器及无人飞行器

Country Status (2)

Country Link
CN (1) CN108475066B (zh)
WO (1) WO2018191981A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063626A (zh) * 2021-09-18 2022-02-18 航天时代飞鹏有限公司 基于重心检测的四旋翼货运无人机飞行姿态控制方法
CN116090097A (zh) * 2022-12-30 2023-05-09 北京机电工程研究所 基于等效撞水设计的近水面流固耦合有限元高效计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104760695A (zh) * 2015-03-23 2015-07-08 松翰科技(深圳)有限公司 一种利用矢量旋转法来进行四旋翼飞机控制的方法
CN105138003A (zh) * 2015-09-18 2015-12-09 山东科技大学 多操纵面无人机直接升力控制方法
WO2016060816A1 (en) * 2014-09-25 2016-04-21 Sikorsky Aircraft Corporation Steady state differential roll moment control with automated differential lateral control
CN106200665A (zh) * 2016-08-25 2016-12-07 东北大学 携带不确定负载的四轴飞行器的建模与自适应控制方法
CN106249745A (zh) * 2016-07-07 2016-12-21 苏州大学 四轴无人机的控制方法
CN106406334A (zh) * 2016-12-09 2017-02-15 北京韦加无人机科技股份有限公司 一种基于拉力测量的多旋翼无人机及其飞行控制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821034A1 (de) * 1988-06-22 1989-12-28 Herbert Michael Neumaier Umlaufmomentausgleich am einfluegelpropeller
CN106342284B (zh) * 2008-08-18 2011-11-23 西北工业大学 一种飞行载体姿态确定方法
CN100565405C (zh) * 2008-09-12 2009-12-02 航天东方红卫星有限公司 一种操纵律奇异回避的航天器姿态控制系统
CN101793582B (zh) * 2010-02-09 2011-09-28 北京理工大学 一种刚体质量、质心和转动惯量的测量系统和测量方法
CN102114914B (zh) * 2011-01-21 2014-03-19 文杰 分布式动力多旋翼垂直起降飞行器及其控制方法
CN102520726B (zh) * 2011-12-19 2013-07-03 南京航空航天大学 大攻角飞行状态下的大气攻角及侧滑角估计方法
CN102749851B (zh) * 2012-07-24 2015-01-28 北京航空航天大学 一种挠性高超声速飞行器的精细抗干扰跟踪控制器
US10464661B2 (en) * 2013-06-09 2019-11-05 Eth Zurich Volitant vehicle rotating about an axis and method for controlling the same
CN104049637B (zh) * 2014-04-14 2016-08-24 西北工业大学 一种空间绳系机器人三轴主动姿态控制方法
CN105000175A (zh) * 2015-07-09 2015-10-28 杨小韬 多旋翼飞行器及其控制方法
CN104960663A (zh) * 2015-07-09 2015-10-07 杨小韬 多旋翼飞行器及其控制方法
CN105468009B (zh) * 2015-12-25 2017-05-31 西北工业大学 应用于微小型飞行器的多动力融合飞控系统以及方法
CN105539834B (zh) * 2016-01-12 2018-08-21 成都纵横自动化技术有限公司 一种复合翼垂直起降无人机
CN106094855B (zh) * 2016-07-27 2019-03-12 浙江工业大学 一种四旋翼无人机的终端协同控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060816A1 (en) * 2014-09-25 2016-04-21 Sikorsky Aircraft Corporation Steady state differential roll moment control with automated differential lateral control
CN104760695A (zh) * 2015-03-23 2015-07-08 松翰科技(深圳)有限公司 一种利用矢量旋转法来进行四旋翼飞机控制的方法
CN105138003A (zh) * 2015-09-18 2015-12-09 山东科技大学 多操纵面无人机直接升力控制方法
CN106249745A (zh) * 2016-07-07 2016-12-21 苏州大学 四轴无人机的控制方法
CN106200665A (zh) * 2016-08-25 2016-12-07 东北大学 携带不确定负载的四轴飞行器的建模与自适应控制方法
CN106406334A (zh) * 2016-12-09 2017-02-15 北京韦加无人机科技股份有限公司 一种基于拉力测量的多旋翼无人机及其飞行控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063626A (zh) * 2021-09-18 2022-02-18 航天时代飞鹏有限公司 基于重心检测的四旋翼货运无人机飞行姿态控制方法
CN114063626B (zh) * 2021-09-18 2024-01-09 航天时代飞鹏有限公司 基于重心检测的四旋翼货运无人机飞行姿态控制方法
CN116090097A (zh) * 2022-12-30 2023-05-09 北京机电工程研究所 基于等效撞水设计的近水面流固耦合有限元高效计算方法

Also Published As

Publication number Publication date
CN108475066B (zh) 2021-02-19
CN108475066A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
US20220137643A1 (en) Aircraft control method and aircraft
Naidoo et al. Development of an UAV for search & rescue applications
JP6114865B1 (ja) 移動体、移動体の制御方法、及びプログラム
JP6536043B2 (ja) 飛行体
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
WO2018040006A1 (zh) 控制方法、装置和系统、飞行器、载体及操纵装置
WO2022048543A1 (zh) 一种飞行控制方法、无人机及存储介质
WO2018068193A1 (zh) 控制方法、控制装置、飞行控制系统与多旋翼无人机
JP6536042B2 (ja) 飛行体
JPWO2020141567A1 (ja) 有人飛行体
WO2018191981A1 (zh) 无人飞行器姿态计算方法、飞行控制器及无人飞行器
US11628951B2 (en) Electronic component and aircraft with electronic component attached thereto
WO2021124573A1 (ja) 離着陸システム
WO2021024323A1 (ja) 飛行体及び飛行体の飛行方法
KR101622277B1 (ko) 모듈화된 쿼드 로터 제어 시스템 및 그의 제어 방법
JP2023108065A (ja) 有人飛行体
JP2017007429A (ja) 制御装置、航空機、及びプログラム
JP2019156127A (ja) 無人飛行装置
KR101621461B1 (ko) 쿼드 로터 자세 제어 시스템 및 그의 제어 방법
US20220297834A1 (en) Flying body
Tsai et al. Platform for Simulating Six-rotor Unmanned Aerial Vehicle.
WO2021217362A1 (zh) 一种无人飞行器桨叶安装检测方法及装置
CN113296527B (zh) 一种小型旋翼空中机器人在非零初始状态下的飞行控制方法
Kim Multirotor configurations of an unmanned mini aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906557

Country of ref document: EP

Kind code of ref document: A1