WO2022048543A1 - 一种飞行控制方法、无人机及存储介质 - Google Patents

一种飞行控制方法、无人机及存储介质 Download PDF

Info

Publication number
WO2022048543A1
WO2022048543A1 PCT/CN2021/115736 CN2021115736W WO2022048543A1 WO 2022048543 A1 WO2022048543 A1 WO 2022048543A1 CN 2021115736 W CN2021115736 W CN 2021115736W WO 2022048543 A1 WO2022048543 A1 WO 2022048543A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
wind
rotor
force
axis
Prior art date
Application number
PCT/CN2021/115736
Other languages
English (en)
French (fr)
Inventor
汪康利
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2022048543A1 publication Critical patent/WO2022048543A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to a flight control method, an unmanned aerial vehicle and a storage medium.
  • UAVs have been widely used in many industrial fields such as surveying, mapping and inspection.
  • UAVs There are three main types of UAVs, fixed-wing UAVs, rotary-wing UAVs and vertical take-off and landing fixed-wing UAVs.
  • fixed-wing UAVs have long flight times and fast flight speeds, but are inconvenient to take off and land;
  • rotary-wing UAVs It has the ability to take off and land vertically, but the flight time is too short to meet the needs of most large-area surveying and mapping;
  • the tilt-rotor UAV is a combination of fixed-wing aircraft and rotary-wing UAV to achieve both vertical take-off and landing. , and can meet the needs of fixed-wing flight.
  • the UAV due to its light weight, the UAV is easily affected by the wind field environment when performing flight tasks, especially when encountering a strong wind environment, the strong wind forms a huge flight resistance on the fuselage of the UAV. , which seriously affects the flight safety and stability of the UAV.
  • An object of the embodiments of the present invention is to provide a flight control method, an unmanned aerial vehicle, and a storage medium, which can improve the flight safety and stability of the unmanned aerial vehicle.
  • the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a flight control method, which is applied to an unmanned aerial vehicle, and the method includes:
  • the drone includes a fuselage, a wing, a main rotor and a tilt rotor, the fuselage includes a nose and a tail, the wings and the The main rotors are all mounted on the fuselage, the tilt rotors are mounted on the ends of the wings, the tilt rotors can rotate relative to the wings, and the tilt rotors are located where the wings are located. rotation between the plane and the vertical plane of the wing;
  • the wind direction is opposite to the nose direction of the UAV, adjust the rotation angle of the tilt rotor so that the tilt rotor generates a horizontal vector force, the horizontal vector force is opposite to the wind force, and all the The magnitude of the horizontal vector force is the same as the magnitude of the wind force;
  • the determining the wind direction of the environment where the UAV is located includes:
  • the wind direction of the environment where the UAV is located is determined.
  • the sensor data includes position data and speed data of the drone.
  • the rotation angle of the tilt rotor so that the tilt rotor generates a horizontal vector force, and the horizontal vector force Opposite to the wind force, and the magnitude of the horizontal vector force is the same as the magnitude of the wind force, including:
  • Adjusting the tiltrotor produces a horizontal vector force of the same magnitude as the wind.
  • the adjusting the tilt rotor to generate a horizontal vector force with the same magnitude as the wind force including:
  • the tilt rotor of the UAV is adjusted to provide a horizontal vector force, wherein the horizontal vector force is the same as the wind force.
  • adjusting the horizontal vector force provided by the tilt rotor of the UAV according to the propeller force and the respective axial wind components including:
  • the horizontal vector force provided by the tiltrotor of the drone is adjusted according to the following equation:
  • F x,b , F y,b and F z,b are the resultant forces of the X-axis, Y-axis and Z-axis of the UAV coordinate system
  • max may and ma z are the UAV’s
  • Gravity is the gravitational component of the X-axis, Y-axis and Z-axis of the UAV coordinate system, respectively
  • F xl , F xr , F zl and F zr are respectively provided by the tilt rotor of the UAV for the UAV.
  • T f and T b are the propeller forces provided by the main rotor, and are the wind components of the wind force in the X-axis, Y-axis and Z-axis of the UAV coordinate system, respectively.
  • an embodiment of the present invention provides a non-volatile computer-readable storage medium, where the non-volatile computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to enable an unmanned The aircraft executes the flight control method described in any one of the above.
  • an embodiment of the present invention provides an unmanned aerial vehicle, comprising:
  • a fuselage a fuselage
  • a wing mounted on the fuselage
  • a main rotor mounted on the fuselage
  • a tilt rotor mounted on the wing
  • a power unit mounted in the fuselage, for the powered by drones
  • the power plant includes:
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the flight control method as described in any of the above .
  • the main rotor includes a first VTOL rotor and a second VTOL rotor, and the first VTOL rotor and the second VTOL rotor are respectively installed on two opposite sides of the fuselage.
  • the tilt rotor includes a first rotor and a second rotor, and the first rotor and the second rotor are respectively installed on two opposite sides of the wing.
  • an embodiment of the present invention provides a flight control method, an unmanned aerial vehicle and a storage medium, which are applied to unmanned aerial vehicles. If there is an angle between the nose direction of the drone and the wind direction of the wind, adjust the nose direction of the drone to be opposite to the wind direction, so as to change the wind force from head wind to cross wind, and then control the tilt
  • the rotor generates a horizontal vector force with the same magnitude and opposite direction as the wind force to resist the wind force, so that the UAV can resist the wind force with a smaller control ability, and the resistance of the UAV is improved. wind performance, thereby improving the flight safety and stability of the UAV.
  • 1a is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 1b is a schematic structural diagram of another unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for controlling the flight of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the force of a UAV coordinate system according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for controlling the flight of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the force of a tilt-rotor of an unmanned aerial vehicle provided by an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a UAV flight control method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for measuring the wind power of an unmanned aerial vehicle according to an embodiment of the present invention.
  • Tilt-rotor UAV not only has the ability of vertical take-off and landing rotor UAV, but also has the characteristics of long flight time and fast flight speed of fixed-wing UAV, so it has been widely used. It can be understood that when the tiltrotor drone is hovering or flying at a low speed, it is necessary to control the drone to be in a tilted attitude, and then provide the drone with hovering or low-speed flight according to the tilted attitude. required acceleration. However, if the tilt-rotor UAV encounters a windy environment when hovering or flying at a low speed, the tilted attitude will increase the wind-receiving area of the tilt-rotor, which in turn brings huge wind resistance .
  • the crosswind forms huge resistance and downward pressure on the airfoil of the UAV.
  • the pressure greatly increases the flying dead weight of the drone.
  • the crosswind also produces downward pressure on the horizontal tail of the tilt-rotor UAV, which causes the UAV to generate a head-up moment, so the UAV needs to provide a huge motor
  • the control force can resist the resistance, downforce and head-up moment formed by the crosswind. Then, the UAV consumes a lot of control force due to the resistance to wind resistance, which reduces the load capacity and flight time, which seriously affects the UAV’s performance. Flight safety and stability.
  • FIGS. 1a and 1b An embodiment of the present invention provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle encounters a strong wind environment during hovering or low-speed flight, it can better resist the wind caused by the strong wind.
  • the UAV 100 includes a fuselage 10 , a main rotor 20 , a wing 30 , a tilt rotor 40 and a power device (not shown in the figure).
  • the fuselage 10 is in a shuttle shape as a whole, and the power device is installed in the fuselage 10.
  • the power device includes a control circuit assembly composed of electronic components such as MCU.
  • the control circuit assembly It includes a plurality of control modules, for example, a flight control module for controlling the flight of the UAV 100, a Beidou module for navigating the UAV 100, and a module for processing environmental information obtained by related airborne equipment. Data processing module, etc.
  • the main rotor 20 is installed on the fuselage 10, and the main rotor 20 generates vertical lift through its rotor, so that the UAV 100 can generate a flying speed in the vertical direction. During vertical take-off and landing, the main rotor 20 generates vertical lift, so that the UAV 100 can take off and land precisely at a predetermined position. It can be understood that the main rotor 20 also balances the gravity of the UAV 100 through the vertical lift generated by its rotor, so that the UAV 100 can adjust its flight by controlling the rotation speed of the main rotor 20 For example, by adjusting the rotation speed of the main rotor 20, the UAV 100 can hover at a preset height.
  • the main rotor 20 includes a first vertical take-off and landing rotor 21 and a second vertical take-off and landing rotor 22, and the first vertical take-off and landing rotor 21 and the second vertical take-off and landing rotor 22 are respectively installed on the two opposite sides of the fuselage 10 .
  • the first vertical take-off and landing rotor 21 is installed in the UAV 100 near the nose
  • the second vertical take-off and landing rotor 22 is installed in the UAV 100 near the tail of the aircraft , so that the take-off and landing flight of the UAV can be stably controlled.
  • the wing 30 is installed on the fuselage 10 .
  • the wing 30 is laterally arranged at the center of gravity of the fuselage 10 .
  • the airfoil 30 crosses the air, and a pressure difference is formed between the upper and lower airfoil surfaces of the airfoil 30, Thereby, vertical lift is generated to float the UAV 100 in the air.
  • the tilt rotor 40 is installed on both ends of the wing 30 , the tilt rotor 40 can rotate relative to the wing 30 , and the tilt rotor 40 is on the plane where the wing 30 is located and the The wing 30 rotates between the vertical planes.
  • the tilting rotor 40 includes a tilting mechanism and a rotor connected to the tilting mechanism, and the tilting mechanism drives the rotor to tilt relative to the wing 30, and according to the different flight of the drone The state rotates with different tilt angles.
  • the tilt rotor 40 rotates to the plane where the wing 30 is located, so as to provide the UAV 100 with a horizontal pulling force.
  • the rotation of the tilt rotor 40 to the plane where the wing 30 is located specifically means that the rotation axis of the rotor in the tilt rotor 40 is flat or parallel to the plane where the wing 30 is located.
  • the tilt rotor 40 rotates to the vertical plane of the wing 30 to provide vertical lift for the UAV 100 .
  • the rotation of the tilt rotor 40 to the vertical plane of the wing 30 specifically means that the rotation axis of the rotor in the tilt rotor 40 is perpendicular or close to the plane on which the wing 30 is located.
  • the tilt rotor 40 includes a first rotor 41 and a second rotor 42 , and the first rotor 41 and the second rotor 42 are respectively mounted on two opposite sides of the airfoil 30 .
  • the first rotor 41 and/or the second rotor 42 are composed of a tilting mechanism and a rotor, and the rotor is installed on the tilting mechanism and follows the tilting mechanism relative to the wing 30 Tilt to provide endurance power for the UAV 100 .
  • an embodiment of the present invention provides a flight control method, which is applied to an unmanned aerial vehicle having the above structure, and the method includes:
  • the drone includes a fuselage, wings, a main rotor and a tilting rotor, the fuselage includes a nose and a tail, the wings and the main rotor are both installed on the fuselage, and the tilting
  • the rotor is mounted on the end of the wing, the tilt rotor is rotatable relative to the wing, and the tilt rotor rotates between the plane where the wing is located and the vertical plane of the wing.
  • the wind direction of the environment refers to the flow direction of the airflow encountered by the drone during flight, wherein the wind direction may be opposite to the flight direction of the drone or have a certain angle.
  • the wind direction is opposite to the flying direction of the UAV, at this time, the wind direction is opposite to the nose direction of the UAV, then the airflow constitutes the head wind of the UAV.
  • the wind direction is at an angle to the existence of the UAV, at this time, the airflow flows laterally through the UAV, and then the airflow constitutes the crosswind of the UAV.
  • the airflow forms the wind force on the fuselage of the UAV, and the wind force can be represented by the wind force magnitude and the wind force direction.
  • the UAV detects the wind power in real time when hovering or flying at a low speed, for example, an anemometer is set in the UAV, and the dynamic pressure and static pressure on the anemometer are calculated by calculating The pressure difference between them is used to obtain the wind power.
  • the UAV also presets a wind disturbance threshold. If the wind force is smaller than the wind disturbance threshold, the current wind force is smaller, so the UAV communicates with the UAV through the output. Control power adapted to the magnitude of the wind to resist the wind. If the wind force is greater than or equal to the wind disturbance threshold, the current wind force will affect the stability and safety of the UAV flying, so the UAV continues to obtain the wind direction of the wind force.
  • the force model is based on the UAV coordinate system.
  • the UAV coordinate system takes the center of gravity of the UAV as the coordinate origin O, and the The head direction of the UAV is the X axis, the Y axis of the UAV coordinate system is determined according to the right-hand principle, and the direction perpendicular to the XOY coordinate plane and toward the center of the earth is the Z axis to construct the unmanned aerial vehicle. machine coordinate system.
  • the first vertical take-off and landing rotor and the second vertical take-off and landing rotor provide vertical lift T f and T b for the unmanned aerial vehicle, respectively.
  • F xl , F xr , F zl and F zr are the components of the vector force on the X-axis and the Z-axis, respectively, of the tiltrotor of the unmanned aerial vehicle provided for the unmanned aerial vehicle.
  • the fact that the wind direction is opposite to the nose direction of the UAV means that the wind direction and the flight direction of the UAV are on the same straight line and in opposite directions. Then, according to the above formula, when the wind direction is opposite to the direction of the nose of the UAV, the wind force components F windy and F windz in the Y axis and Z axis are 0, and the wind force is only in the X axis.
  • step 22 includes:
  • the tilt-rotor is under the action of multi-gravity during the rotation process.
  • the UAV is hovering or at a low speed.
  • the tilting rotor is subjected to the rotor pulling force T, aerodynamic lift L and aerodynamic resistance D generated by the high-speed rotation of the rotor, and after the rotor pulling force T, aerodynamic lift L and aerodynamic resistance D are decomposed in the horizontal direction and the vertical direction, the result is obtained.
  • the vertical vector force Fz of the tilt-rotor in the vertical direction and the horizontal vector force Fx of the horizontal direction, ⁇ is the tilt angle of the tilt-rotor of the UAV, and the differential of the tilt-rotor horizontal vector force Fx is The UAV provides a heading moment, and the differential motion of the vertical vector force Fz of the tilt rotor provides a rolling moment for the UAV. When the UAV rolls, the tiltrotor horizontal vector force Fx provides the UAV with the required force for lateral movement in flight.
  • the tilt rotor of the drone includes a first rotor and a second rotor, and the first rotor and the second rotor respectively provide horizontal vector forces F xl and F xr for the flight of the drone, and vertical Vector forces F zl and F zr .
  • the UAV has a smaller control ability to resist the wind force.
  • the wind power improves the wind resistance performance of the UAV.
  • the UAV when the UAV is hovering or flying at a low speed, in addition to the power required to resist wind disturbance, the UAV also needs to provide the power required for hovering or flying at a low speed, please refer to Fig. 6.
  • the method further includes:
  • the propeller force provided by the main rotor refers to the lift force of the UAV, which is mainly used to overcome the dead weight of the UAV itself.
  • the direction of the paddle force is always toward the negative direction of the Z axis in the UAV coordinate system.
  • the method of adjusting the tilt rotor of the UAV to provide the horizontal vector force can refer to the description of the embodiment of the force schematic diagram shown in FIG. Repeat them one by one.
  • the direction of the nose of the drone is adjusted to be opposite to the direction of the wind force, so that the wind force is changed from head wind to cross wind.
  • control the tilt rotor to generate a horizontal vector force with the same magnitude and opposite direction as the wind force to resist the wind force, that is, when the drone detects the head wind, return to the step In the processing method of S22, details are not repeated here.
  • the tilt rotor is controlled to generate a horizontal vector force with the same magnitude and opposite direction as the wind force to resist the wind force, thereby achieving
  • the UAV can resist the wind force with a small control ability, which improves the wind resistance performance of the UAV, thereby improving the flight safety and stability of the UAV.
  • a method for acquiring a wind direction provided by an embodiment of the present invention includes:
  • the sensors mounted on the UAV mainly include GPS, barometer, compass and IMU (inertial detection unit), and GPS is used to obtain the longitude and latitude information of the UAV to determine the position;
  • the barometer is used to measure the current atmospheric pressure to obtain the altitude information of the UAV;
  • the compass is used to distinguish the orientation of the aircraft in the world coordinate system, that is, to associate the east, west, northwest and the front, rear, left, and right of the UAV;
  • the IMU Inertial Detection Unit
  • the IMU includes a three-axis accelerometer and a three-axis gyroscope, which are used to measure the acceleration and angular velocity of the UAV in three-dimensional space respectively, and calculate the data according to the acceleration and angular velocity data. Describe the attitude of the drone.
  • the sensor data used for determining the wind direction of the drone when flying includes position data and speed data of the drone.
  • the position data mainly refers to the longitude and latitude data of the UAV
  • the speed data mainly refers to the acceleration and angular velocity of the UAV in three-dimensional space.
  • the Kalman filter is described by a series of recursive mathematical formulas, providing an efficient and computable method to estimate the state of the process, including estimating the past state, current state and future state of the signal.
  • each sensor data currently obtained by the UAV is input into the Kalman filter, so as to estimate the wind force in each axis of the UAV coordinate system (X-axis, Y-axis, and Z-axis) wind force components, and then according to the respective axial wind force components, the wind direction is estimated.
  • the sensor data of the UAV is obtained when the UAV is flying, and the obtained sensor data is used to estimate the wind force components of the wind force in each axis of the UAV coordinate system through the Kalman filter.
  • the respective axial wind components estimate the wind direction when the UAV is flying.
  • Embodiments of the present invention provide a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, to execute the above The method steps of Figures 2, 4, 6 and 7 are described.
  • An embodiment of the present invention provides a computer program product, including a computer program stored on a non-volatile computer-readable storage medium, where the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the random encoding method in any of the above method embodiments, for example, executes the method steps of FIG. 2 , FIG. 4 , FIG. 6 and FIG. 7 described above.
  • the apparatus or device embodiments described above are merely illustrative, wherein the unit modules described as separate components may or may not be physically separated, and components shown as modular units may or may not be physical units , that is, it can be located in one place, or it can be distributed to multiple network module units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种飞行控制方法、无人机(100)及存储介质,飞行控制方法应用于无人机(100),通过确定无人机(100)所处环境的风力方向,若无人机(100)的机头方向与风力风向存在角度,则调整无人机(100)的机头方向与风力方向相对,从而将风力由侧风变成头风,然后,控制倾转旋翼(40)产生与风力大小相同、方向相反的水平矢量力以抵抗风力。

Description

一种飞行控制方法、无人机及存储介质
本申请要求于2020年9月2日提交中国专利局、申请号为2020109104321、申请名称为“一种飞行控制方法、无人机及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人飞行器领域,尤其涉及一种飞行控制方法、无人机及存储介质。
【背景技术】
近年来由于技术的逐渐成熟,无人机在测绘、巡检等众多工业领域得到了广泛的应用。无人机主要有三种,固定翼无人机、旋翼无人机及垂直起降固定翼无人机,其中,固定翼无人机航时长,飞行速度快,但是起降不便;旋翼无人机具备垂直起降的能力,但航时过短,不满足绝大多数大面积测绘需求;倾转旋翼无人机则是把固定翼飞机和旋翼无人机结合起来,达到既能满足垂直起降,又能满足固定翼飞行的需求。
然而,无人机由于其重量较轻而使得其在执行飞行任务时容易收到风场环境的影响,尤其是在遇到大风环境时,大风在无人机的机身上形成巨大的飞行阻力,从而严重的影响了无人机的飞行安全及稳定性。
【发明内容】
本发明实施例的一个目的旨在提供一种飞行控制方法、无人机及存储介质,其能够提高无人机的飞行安全及稳定性。
为了解决上述技术问题,本发明提供以下技术方案:
第一方面,本发明实施例提供一种飞行控制方法,应用于无人机,所述方法包括:
确定所述无人机所处环境的风力方向,所述无人机包括机身、机翼、主旋翼及倾转旋翼,所述机身包括机头与机尾,所述机翼及所述主旋翼皆安装 于所述机身,所述倾转旋翼安装于所述机翼的端部,所述倾转旋翼可相对于所述机翼转动,所述倾转旋翼在所述机翼所在平面与所述机翼的垂直面之间转动;
若所述风力方向与所述无人机的机头方向相对,调节所述倾转旋翼的转动角度,以使所述倾转旋翼产生水平矢量力,所述水平矢量力与风力相对,且所述水平矢量力的大小与所述风力大小相同;
若所述风力风向与所述无人机的机头方向之间存在角度,所述角度大于0°小于180°,调节所述无人机的机头方向,使所述无人机的机头方向与所述风力方向相对。
可选地,所述确定所述无人机所处环境的风力方向包括:
获取所述无人机飞行时的传感器数据;
使用卡尔曼滤波器融合所述传感器数据,得到风力在所述无人机坐标系的各个轴向风力分量;
根据所述各个轴向风力分量,确定所述无人机所处环境的风力方向。
可选地,所述传感器数据包括所述无人机的位置数据及速度数据。
可选地,所述若所述风力方向与所述无人机的机头方向相对,调节所述倾转旋翼的转动角度,以使所述倾转旋翼产生水平矢量力,所述水平矢量力与风力相对,且所述水平矢量力的大小与所述风力大小相同,包括:
控制所述倾转旋翼相对于所述机翼转动至所述机翼所在的平面;
调节所述倾转旋翼产生与所述风力大小相同的水平矢量力。
可选地,所述调节所述倾转旋翼产生与所述风力大小相同的水平矢量力,包括:
获取所述主旋翼提供的桨力;
根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供水平矢量力,其中,所述水平矢量力与所述风力的大小相同。
可选地,所述根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供的水平矢量力,包括:
根据以下等式,调整所述无人机的倾转旋翼提供的水平矢量力:
Figure PCTCN2021115736-appb-000001
Figure PCTCN2021115736-appb-000002
Figure PCTCN2021115736-appb-000003
其中,F x,b、F y,b及F z,b为所述无人机坐标系X轴、Y轴及Z轴的合力,ma x、ma y及ma z为所述无人机的重力分别在无人机坐标系X轴、Y轴及Z轴的重力分量,F xl、F xr、F zl及F zr分别为所述无人机的倾转旋翼为所述无人机提供的矢量力分别在X轴和Z轴的分量,T f和T b则为所述主旋翼提供的桨力,
Figure PCTCN2021115736-appb-000004
Figure PCTCN2021115736-appb-000005
分别为所述风力在所述无人机坐标系的的X轴、Y轴及Z轴的风力分量。
第二方面,本发明实施例提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机执行如上述任一项所述的飞行控制方法。
第三方面,本发明实施例提供一种无人机,包括
机身;机翼,安装于所述机身;主旋翼,安装于所述机身;倾转旋翼,安装于所述机翼;动力装置,安装于所述机身内,用于为所述无人机提供动力;
其中,所述动力装置包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上述任一项所述的飞行控制方法。
可选地,所述主旋翼包括第一垂直起降旋翼及第二垂直起降旋翼,所述第一垂直起降旋翼及第二垂直起降旋翼分别安装于所述机身的两相对侧。
可选地,所述倾转旋翼包括第一旋翼及第二旋翼,所述第一旋翼及所述第二旋翼分别安装于所述机翼的两相对侧。
与现有技术相比较,本发明实施例提供一种飞行控制方法、无人机及存储介质,应用于无人机,通过确定所述无人机所处环境的风力方向,若所述无人机的机头方向与所述风力风向存在角度,则调整所述无人机的机头方向与所述风力方向相对,从而将所述风力由头风变成侧风,然后,控制所述倾转旋翼产生与所述风力大小相同、方向相反的水平矢量力以抵抗所述风力, 从而实现了所述无人机以较小的控制能力以抵抗所述风力,提升了所述无人机的抗风性能,进而提高了所述无人机的飞行的安全及稳定性。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a为本发明实施例提供的一种无人机的结构示意图;
图1b为本发明实施例提供的又一无人机的结构示意图;
图2为本发明实施例提供的一种无人机飞行控制方法的流程示意图;
图3为本发明实施例提供的一种无人机坐标系的受力示意图;
图4为本发明实施例提供的一种无人机飞行控制方法的流程示意图;
图5为本发明实施例提供的一种无人机倾转旋翼的受力示意图;
图6为本发明实施例提供的一种无人机飞行控制方法的流程示意图;
图7为本发明实施例提供的一种无人机风力测量方法的流程示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
倾转旋翼无人机既具有垂直起降的旋翼无人机的能力,又具有固定翼无人机飞行时间长和飞行速度快等特点,从而得到广泛的应用。可以理解的, 当所述倾转旋翼无人机处于悬停或低速飞行时,需控制所述无人机为倾斜姿态,进而根据该倾斜姿态为所述无人机提供悬停或低速飞行时所需的加速度。然而,若所述倾转旋翼无人机在悬停或低速飞行时遇见大风的环境,则会由于该倾斜姿态而使得所述倾转旋翼的受风面积变大,进而带来了巨大的风阻。特别是当该大风为侧风时,由于所述倾转旋翼无人机的倾斜姿态,使得该侧风在所述无人机的翼面形成巨大的阻力和向下的压力,该向下的压力大幅度的增加了所述无人机的飞行死重。同时,该侧风还在所述倾转旋翼无人机的水平尾翼上产生向下的压力,该压力使得所述无人机产生一个抬头力矩,于是,所述无人机需要提供巨大的电机控制力才能抵抗该侧风形成的阻力、下压力及抬头力矩,那么,所述无人机由于抵抗风阻消耗了大量的控制力而降低了负载能力及飞行时长,严重影响所述无人机的飞行安全和稳定性。
为此,请一并参阅图1a和1b,本发明实施例提供一种无人机,所述无人机在悬停或低速飞行中遇到大风环境时,能够较好的抵抗由于大风形成风扰,如图1所示,所述无人机100包括机身10、主旋翼20、机翼30、倾转旋翼40及动力装置(图中未示出)。
其中,所述机身10整体呈梭形,所述动力装置安装于所述机身10内,可以理解的,所述动力装置包括由MCU等电子元器件组成的控制电路组件,该控制电路组件包括多个控制模块,例如,用于控制所述无人机100飞行的飞控模块、用于导航所述无人机100的北斗模块、以及用于处理相关机载设备所获取的环境信息的数据处理模块等。
所述主旋翼20安装于所述机身10,所述主旋翼20通过其旋翼产生垂直升力,以使所述无人机100在垂直方向上产生飞行速度,例如,所述无人机100在垂直起降时,通过所述主旋翼20产生垂直升力,以使所述无人机100在预定的位置精准起降。可以理解的,所述主旋翼20还通过其旋翼产生的垂直升力来平衡所述无人机100的重力,以使所述无人机100通过控制所述主旋翼20的旋转速度来调节其飞行的姿态,例如,通过调节主旋翼20的旋转速度,使得所述无人机100悬停于预设的高度。
在一些实施例中,所述主旋翼20包括第一垂直起降旋翼21及第二垂直起降旋翼22,所述第一垂直起降旋翼21及第二垂直起降旋翼22分别安装于所述机身10的两相对侧。例如,所述第一垂直起降旋翼21安装于所述无人 机100中靠近机头的位置,所述第二垂直起降旋翼22则安装于所述无人机100中靠近机尾的位置,从而能够稳定的控制所述无人机的起降飞行。
所述机翼30安装于所述机身10,优选的,所述机翼30横向设置于所述机身10的重心位置。同时,由于所述机翼20的构型,在所述无人机100的飞行过程中,所述机翼30越过空气,在所述机翼30的上翼面和下翼面形成压差,从而产生使所述无人机100浮空的垂直升力。
所述倾转旋翼40安装于所述机翼30的两端,所述倾转旋翼40可相对于所述机翼30转动,所述倾转旋翼40在所述机翼30所在平面与所述机翼30的垂直面之间转动。具体的,所述倾转旋翼40包括倾转机构及与倾转机构连接的旋翼,所述倾转机构带动所述旋翼相对于所述机翼30发生倾转,并根据无人机不同的飞行状态转动不同的倾转角。
请继续参阅图1a,当所述无人机100高速巡航时,所述倾转旋翼40转动至所述机翼30所在的平面,以为所述无人机100提供水平的拉力。其中,所述倾转旋翼40转动至所述机翼30所在的平面具体是指倾转旋翼40中旋翼的旋转轴与机翼30所在的平面相平或相平行。
请参阅图1b,当所述无人机100垂直起降时,所述倾转旋翼40转动至所述机翼30的垂直面,以为所述无人机100提供垂直升力。其中,所述倾转旋翼40转动至所述机翼30的垂直面具体是指倾转旋翼40中旋翼的旋转轴与机翼30所在的平面相垂直或接近于垂直。
在一些实施例中,所述倾转旋翼40包括第一旋翼41及第二旋翼42,所述第一旋翼41及所述第二旋翼42分别安装于所述机翼30的两相对侧。可以理解的,所述第一旋翼41和/或第二旋翼42均由倾转机构及旋翼构成,所述旋翼安装于所述倾转机构,并跟随所述倾转机构相对所述机翼30倾转,为所述无人机100提供续航动力。
可以理解的,无人机在悬停或低速飞行时,容易遇到大风环境,该大风环境会在所述无人机的机身上形成风扰进而影响所述无人机的飞行稳定性。在本发明实施例中,请参阅图2,本发明实施例提供一种飞行控制方法,应用于具有上述结构的无人机,所述方法包括:
S21、确定所述无人机所处环境的风力方向;
所述无人机包括机身、机翼、主旋翼及倾转旋翼,所述机身包括机头与机尾,所述机翼及所述主旋翼皆安装于所述机身,所述倾转旋翼安装于所述机翼的端部,所述倾转旋翼可相对于所述机翼转动,所述倾转旋翼在所述机翼所在平面与所述机翼的垂直面之间转动。
所处环境的风力方向是指所述无人机在飞行过程中遭遇到的气流的流动方向,其中,所述风力方向与无人机的飞行方向可能相反或存在一定的夹角。当所述风力方向与所述无人机的飞行方向相反时,此时,所述风力方向与所述无人机的机头方向相对,那么,该气流构成所述无人机的头风。当所述风力风向与所述无人机的存在角度时,此时,该气流横向流过所述无人机,那么,该气流构成所述无人机的侧风。可以理解的,所述气流在所述无人机的机身形成风力,所述风力可通过风力大小和风力方向来表示。
在一些实施例中,所述无人机在悬停或低速飞行时实时检测所述风力大小,例如,在所述无人机中设置风速计,通过计算所述风速计上动压与静压之间的压差来获取所述风力大小。在具体操作时,所述无人机还预设一个风扰阈值,若所述风力大小小于所述风扰阈值,则当前的风力大小较小,于是,所述无人机通过输出与所述风力大小相适应的控制动力以抵抗所述风力。若所述风力大小大于或等于所述风扰阈值,则当前的风力将影响所述无人机飞行的稳定性及安全,于是,所述无人机继续获取所述风力的风力方向。
S22、若所述风力方向与所述无人机的机头方向相对,调节所述倾转旋翼的转动角度,以使所述倾转旋翼产生水平矢量力,所述水平矢量力与风力相对,且所述水平矢量力的大小与所述风力大小相同;
当所述无人机在悬停或低速飞行时的遭遇到风力环境时,此时,该气流在所述无人机上形成风力,请参阅图3所示的所述无人机在风力环境下的受力模型,应该说明的是,所述受力模型基于所述无人机坐标系,具体的,所述无人机坐标系以所述无人机的重心位置点为坐标原点O,以所述无人机的机头方向为X轴,根据右手原则确定所述无人机坐标系的Y轴,并以垂直于XOY坐标平面且朝向地心的方向为Z轴构建出所述无人机坐标系。
具体的,在所述无人机的悬停或低速飞行过程中,通过第一垂直起降旋翼和第二垂直起降旋翼分别为所述无人机提供垂直升力T f和T b,所述无人机的尾翼产生的浮力T tail,其中,所述垂直升力T f、T b及浮力T tail的合力用以克服 所述无人机的重力及Z轴的风力分量。F xl、F xr、F zl及F zr分别为所述无人机的倾转旋翼为所述无人机提供的矢量力分别在X轴和Z轴的分量。
Figure PCTCN2021115736-appb-000006
Figure PCTCN2021115736-appb-000007
分别为所述风力在所述无人机坐标系的X轴、Y轴及Z轴的风力分量。进而得到所述无人机分别在X轴、Y轴及Z轴的受力分析如下:
Figure PCTCN2021115736-appb-000008
Figure PCTCN2021115736-appb-000009
Figure PCTCN2021115736-appb-000010
其中,F x,b、F y,b及F z,b为所述无人机坐标系的X轴、Y轴及Z轴的合力,ma x、ma y及ma z为所述无人机的重力分别在无人机坐标系的X轴、Y轴及Z轴的重力分量,F xl、F xr、F zl及F zr分别为所述无人机的倾转旋翼为所述无人机提供的矢量力分别在X轴和Z轴的分量,T f和T b则为所述主旋翼提供的桨力,
Figure PCTCN2021115736-appb-000011
Figure PCTCN2021115736-appb-000012
Figure PCTCN2021115736-appb-000013
分别为所述风力在所述无人机坐标系的X轴、Y轴及Z轴的风力分量。需要说明的是,当所述无人机处于悬停或低速飞行时,可近似的认为此时无人机处于静态,亦即,无人机在其坐标系下的X轴、Y轴及Z轴的合力近似为0。
所述风力方向与所述无人机的机头方向相对是指风力方向与无人机的飞行方向位于同一直线上且方向相反。那么,根据上述公式可知,当所述风力方向与所述无人机的机头方向相对时,风力在Y轴及Z轴的风力分量F windy和F windz的大小为0,风力只在X轴方向形成了风扰,于是,无人机只需提供X轴方向的动力以抵抗该风扰,且无人机提供的X轴方向的动力大小满足F xl+F xr=F windx+ma x
在一些实施例中,控制所述无人机的横滚角及俯仰角均为0度,使得所述无人机的重力在X轴及Y轴的重力分量为0,亦即,ma x=0,且ma y=0。于是,当所述风力方向与所述无人机的机头方向相对时,无人机只需提供X轴方向的动力就能抵抗该风扰,且无人机提供的X轴方向的动力大小满足F xl+F xr=F windx,进而提升了所述无人机的抗风性能。
其中,F xl、F xr分别为无人机的第一旋翼和第二旋翼提供的矢量力在X轴分量,于是,在一些实施例中,请参阅图4,步骤22包括:
S221、控制所述倾转旋翼相对于所述机翼转动至所述机翼所在的平面;
其中,所述倾转旋翼在转动过程中,受到多重力的作用,请参阅图5所示的所述无人机任一倾转旋翼的受力示意图,所述无人机在悬停或低速飞行时,所述倾转旋翼受到旋翼高速旋转产生的旋翼拉力T、气动升力L及气动阻力D,将旋翼拉力T、气动升力L及气动阻力D进行水平方向和垂直方向的分解后,得到所述倾转旋翼在垂直方向的垂直矢量力Fz及水平方向的水平矢量力Fx,θ为所述无人机的倾转旋翼的倾转角,所述倾转旋翼水平矢量力Fx的差动为所述无人机提供航向力矩,所述倾转旋翼垂直矢量力Fz的差动为所述无人机提供滚转力矩。当所述无人机滚转后,所述倾转旋翼水平矢量力Fx为所述无人机提供飞行横向移动的所需力。其中,所述无人机的倾转旋翼包括第一旋翼和第二旋翼,所述第一旋翼和第二旋翼分别为所述无人机的飞行提供水平矢量力F xl和F xr,以及垂直矢量力F zl和F zr
S222、调节所述倾转旋翼产生与所述风力大小相同的水平矢量力。
如上述所述的,当所述风力方向与所述无人机的机头方向相对时,风力在Y轴及Z轴的风力分量F windy和F windz的大小为0,风力只在X轴方向形成了风扰,于是,无人机只需提供X轴方向的动力以抵抗该风扰,且所述倾转旋翼产生的水平矢量力的大小与所述风力大小相同,即满足F xl+F xr=F windx的等量关系。
在本实施例中,通过控制所述倾转旋翼产生与所述风力大小相同、方向相反的水平矢量力以抵抗所述风力,从而实现了所述无人机以较小的控制能力以抵抗所述风力,提升了所述无人机的抗风性能。
在又一些实施例中,无人机在悬停或低速飞行过程中,除了抵抗风扰所需的动力外,所述无人机还需要提供悬停或低速飞行所述的动力,请参阅图6,所述方法还包括:
S222a、获取所述主旋翼提供的桨力;
其中,所述主旋翼提供的桨力是指所述无人机的升力,主要用于克服所述无人机自身的死重。
S222b、根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供水平矢量力,其中,所述水平矢量力与所述风力的大小相同。
可以理解的,所述桨力的方向始终朝向所述无人机坐标系中Z轴的负方 向。根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供水平矢量力的方法可参阅上述图3所示的受力示意图的实施例的描述,在此不再一一赘述。
S23、若所述风力风向与所述无人机的机头方向之间存在角度,所述角度大于0°小于180°,调节所述无人机的机头方向,使所述无人机的机头方向与所述风力方向相对。
当所述风力风向与所述无人机的机头方向之间存在角度,由于所述倾转旋翼无人机的倾斜姿态,使得该侧风在所述无人机的翼面形成巨大的阻力和向下的压力,该向下的压力大幅度的增加了所述无人机的飞行死重。于是,在本实施例中,调节所述无人机的机头方向与所述风力方向相对,从而,将所述风力由头风变成侧风。当无人机检测到头风后,控制所述倾转旋翼产生与所述风力大小相同、方向相反的水平矢量力以抵抗所述风力,亦即,当无人机检测到头风后,返回到步骤S22的处理方法中,在此不再一一赘述。
在本发明实施例中,通过确定所述无人机所处环境的风力方向,若所述无人机的机头方向与所述风力风向存在角度,则调整所述无人机的机头方向与所述风力方向相对,从而将所述风力由头风变成侧风,然后,控制所述倾转旋翼产生与所述风力大小相同、方向相反的水平矢量力以抵抗所述风力,从而实现了所述无人机以较小的控制能力以抵抗所述风力,提升了所述无人机的抗风性能,进而提高了所述无人机的飞行的安全及稳定性。
为了准确获取所述无人机所处环境的风力方向,以使所述无人机能根据所述风力方向调节其机头朝向,从而提高所述无人机的飞行稳定。在一些实施例中,请参阅图7,本发明实施例提供的一种风力方向的获取方法,包括:
S31、获取所述无人机飞行时的传感器数据;
可以理解的,为了更好的控制所述无人机的飞行,在所述无人机上搭载了多种类型的传感器,飞行控制器(FC)通过各类传感器获得相应的传感器数据,并对这些传感器数据进行演算处理,从而控制所述无人机的飞行。其中,搭载在所述无人机上的传感器主要包括GPS、气压计、指南针及IMU(惯性检测装置),GPS用于获取所述无人机的经度和纬度信息,以确定所述无人机的位置;气压计用于测量当前的大气压,以获取所述无人机的高度信息;指南 针用于分辨飞机在世界坐标系中的朝向,即将东南西北与所述无人机的前后左右进行关联;IMU(惯性检测装置)中包含了一个三轴加速度计和一个三轴陀螺仪,分别用于测量所述无人机在三维空间中的加速度和角速度,并根据所述加速度和角速度数据计算出所述无人机的姿态。
在本发明实施例中,用于确定所述无人机飞行时的风力方向的所述传感器数据包括所述无人机的位置数据及速度数据。可以理解的,所述位置数据主要是指所述无人机的经度和纬度数据,所述速度数据则主要是指所述无人机在三维空间中的加速度和角速度。
S32、使用卡尔曼滤波器融合所述传感器数据,得到风力在所述无人机坐标系的各个轴向风力分量;
S33、根据所述各个轴向风力分量,确定所述无人机所处环境的风力方向。
其中,卡尔曼滤波器由一系列递归数学公式描述,提供一种高效可计算的方法来估算过程的状态,包括估计信号过去的状态、当前的状态及将来的状态。在本发明实施例中,通过设计卡尔曼滤波器,将所述无人机当前获取的各传感器数据输入所述卡尔曼滤波器,以估算出风力在所述无人机坐标系的各个轴向(X轴、Y轴及Z轴)风力分量,进而根据所述各个轴向风力分量,估算出所述风力方向。
在本发明实施例中,获取所述无人机飞行时的传感器数据,将获取的传感器数据通过卡尔曼滤波器估算出风力在所述无人机坐标系的各个轴向的风力分量,并根据所述各个轴向风力分量估算出所述无人机飞行时的风力方向。通过设计卡尔曼滤波器计算各个轴向的风力分量,提高估算所述无人机飞行时的风力方向的准确性。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,执行以上描述的图2、图4、图6和图7的方法步骤。
本发明实施例提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的随机编码方法,例如,执行以上描述的图2、图4、图6和图7的方法步骤。
以上所描述的装置或设备实施例仅仅是示意性的,其中所述作为分离部件说明的单元模块可以是或者也可以不是物理上分开的,作为模块单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络模块单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种飞行控制方法,应用于无人机,其特征在于,所述方法包括:
    确定所述无人机所处环境的风力方向,所述无人机包括机身、机翼、主旋翼及倾转旋翼,所述机身包括机头与机尾,所述机翼及所述主旋翼皆安装于所述机身,所述倾转旋翼安装于所述机翼的端部,所述倾转旋翼可相对于所述机翼转动,所述倾转旋翼在所述机翼所在平面与所述机翼的垂直面之间转动;
    若所述风力方向与所述无人机的机头方向相对,调节所述倾转旋翼的转动角度,以使所述倾转旋翼产生水平矢量力,所述水平矢量力与风力相对,且所述水平矢量力的大小与所述风力大小相同;
    若所述风力风向与所述无人机的机头方向之间存在角度,所述角度大于0°小于180°,调节所述无人机的机头方向,使所述无人机的机头方向与所述风力方向相对。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述无人机所处环境的风力方向包括:
    获取所述无人机飞行时的传感器数据;
    使用卡尔曼滤波器融合所述传感器数据,得到风力在无人机坐标系的各个轴向风力分量;
    根据所述各个轴向风力分量,确定所述无人机所处环境的风力方向。
  3. 根据权利要求2所述的方法,其特征在于,所述传感器数据包括所述无人机的位置数据及速度数据。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述若所述风力方向与所述无人机的机头方向相对,调节所述倾转旋翼的转动角度,以使所述倾转旋翼产生水平矢量力,所述水平矢量力与风力相对,且所述水平矢量力的大小与所述风力大小相同,包括:
    控制所述倾转旋翼相对于所述机翼转动至所述机翼所在的平面;
    调节所述倾转旋翼产生与所述风力大小相同的水平矢量力。
  5. 根据权利要求4所述的方法,其特征在于,所述调节所述倾转旋翼产生与所述风力大小相同的水平矢量力,包括:
    获取所述主旋翼提供的桨力;
    根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供水平矢量力,其中,所述水平矢量力与所述风力的大小相同。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述桨力及所述各个轴向风力分量,调整所述无人机的倾转旋翼提供的水平矢量力,包括:
    根据以下等式,调整所述无人机的倾转旋翼提供的水平矢量力:
    Figure PCTCN2021115736-appb-100001
    Figure PCTCN2021115736-appb-100002
    Figure PCTCN2021115736-appb-100003
    其中,F x,b、F y,b及F z,b为所述无人机坐标系X轴、Y轴及Z轴的合力,ma x、ma y及ma z为所述无人机的重力分别在无人机坐标系X轴、Y轴及Z轴的重力分量,F xl、F xr、F zl及F zr分别为所述无人机的倾转旋翼为所述无人机提供的矢量力分别在X轴和Z轴的分量,T f和T b则为所述主旋翼提供的桨力,
    Figure PCTCN2021115736-appb-100004
    Figure PCTCN2021115736-appb-100005
    分别为所述风力在所述无人机坐标系的X轴、Y轴及Z轴的风力分量。
  7. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机执行如权利要求1至6任一项所述的飞行控制方法。
  8. 一种无人机,其特征在于,包括
    机身;
    机翼,安装于所述机身;
    主旋翼,安装于所述机身;
    倾转旋翼,安装于所述机翼;
    动力装置,安装于所述机身内,用于为所述无人机提供动力;
    其中,所述动力装置包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6任一项所述的飞行控制方法。
  9. 根据权利要求8所述的无人机,其特征在于,所述主旋翼包括第一垂直起降旋翼及第二垂直起降旋翼,所述第一垂直起降旋翼及第二垂直起降旋翼分别安装于所述机身的两相对侧。
  10. 根据权利要求8所述的无人机,其特征在于,所述倾转旋翼包括第一旋翼及第二旋翼,所述第一旋翼及所述第二旋翼分别安装于所述机翼的两相对侧。
PCT/CN2021/115736 2020-09-02 2021-08-31 一种飞行控制方法、无人机及存储介质 WO2022048543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010910432.1A CN111976974A (zh) 2020-09-02 2020-09-02 一种飞行控制方法、无人机及存储介质
CN202010910432.1 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022048543A1 true WO2022048543A1 (zh) 2022-03-10

Family

ID=73447922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115736 WO2022048543A1 (zh) 2020-09-02 2021-08-31 一种飞行控制方法、无人机及存储介质

Country Status (2)

Country Link
CN (1) CN111976974A (zh)
WO (1) WO2022048543A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299339A (zh) * 2022-07-20 2022-11-08 中国农业科学院都市农业研究所 一种育种授粉机器人导风装置及方法
CN115599127A (zh) * 2022-12-16 2023-01-13 西北工业大学(Cn) 一种基于激光雷达的无人机编队避障控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111976974A (zh) * 2020-09-02 2020-11-24 深圳市道通智能航空技术有限公司 一种飞行控制方法、无人机及存储介质
CN112731957B (zh) * 2021-04-06 2021-09-07 北京三快在线科技有限公司 无人机的控制方法、装置、计算机可读存储介质及无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275410A (zh) * 2016-11-17 2017-01-04 湖南科瑞特科技股份有限公司 一种防风扰无人机
US9586683B1 (en) * 2014-12-22 2017-03-07 Amazon Technologies, Inc. Transitioning an unmanned aerial vehicle to horizontal flight
CN206968972U (zh) * 2017-05-23 2018-02-06 福州大学 一种抗风扰的非平面飞行器
CN109131915A (zh) * 2018-09-20 2019-01-04 广州大学 一种具有风向识别功能的抗风无人机
CN110304244A (zh) * 2019-06-26 2019-10-08 深圳市道通智能航空技术有限公司 飞行控制方法、装置、倾转翼飞行器及介质
CN111413997A (zh) * 2020-04-14 2020-07-14 中国人民解放军32180部队 高抗风倾转旋翼系留无人机及其飞行控制方法
CN111976974A (zh) * 2020-09-02 2020-11-24 深圳市道通智能航空技术有限公司 一种飞行控制方法、无人机及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998266B (zh) * 2017-07-21 2021-12-10 日本电气株式会社 数据处理设备、驱动控制设备、数据处理方法和存储介质
WO2019148088A1 (en) * 2018-01-29 2019-08-01 Aerovironment, Inc. Methods and systems for energy-efficient take-offs and landings for vertical take-off and landing (vtol) aerial vehicles
CN110641692A (zh) * 2018-12-14 2020-01-03 深圳市格上格创新科技有限公司 机身平衡无人机及其控制方法
CN109720563A (zh) * 2019-02-28 2019-05-07 南京邮电大学 智能四旋翼滑翔无人机及其飞行控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586683B1 (en) * 2014-12-22 2017-03-07 Amazon Technologies, Inc. Transitioning an unmanned aerial vehicle to horizontal flight
CN106275410A (zh) * 2016-11-17 2017-01-04 湖南科瑞特科技股份有限公司 一种防风扰无人机
CN206968972U (zh) * 2017-05-23 2018-02-06 福州大学 一种抗风扰的非平面飞行器
CN109131915A (zh) * 2018-09-20 2019-01-04 广州大学 一种具有风向识别功能的抗风无人机
CN110304244A (zh) * 2019-06-26 2019-10-08 深圳市道通智能航空技术有限公司 飞行控制方法、装置、倾转翼飞行器及介质
CN111413997A (zh) * 2020-04-14 2020-07-14 中国人民解放军32180部队 高抗风倾转旋翼系留无人机及其飞行控制方法
CN111976974A (zh) * 2020-09-02 2020-11-24 深圳市道通智能航空技术有限公司 一种飞行控制方法、无人机及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115299339A (zh) * 2022-07-20 2022-11-08 中国农业科学院都市农业研究所 一种育种授粉机器人导风装置及方法
CN115599127A (zh) * 2022-12-16 2023-01-13 西北工业大学(Cn) 一种基于激光雷达的无人机编队避障控制方法
CN115599127B (zh) * 2022-12-16 2023-03-21 西北工业大学 一种基于激光雷达的无人机编队避障控制方法

Also Published As

Publication number Publication date
CN111976974A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2022048543A1 (zh) 一种飞行控制方法、无人机及存储介质
Naidoo et al. Development of an UAV for search & rescue applications
CN106114854B (zh) 一种无人驾驶航空器
CN109808913B (zh) 一种带有可偏转翼梢小翼的无人机设计方法
CN106155076B (zh) 一种多旋翼无人飞行器的稳定飞行控制方法
CN106114853A (zh) 一种无人驾驶航空器
CN109606674A (zh) 尾坐式垂直起降无人机及其控制系统与控制方法
CN206050075U (zh) 一种油动多旋翼无人机定桨距变转速系统
Wang et al. Design, implementation and verification of a quadrotor tail-sitter VTOL UAV
Zhang et al. Modeling and flight control simulation of a quadrotor tailsitter vtol uav
CN108413956A (zh) 多旋翼飞行器稳定性分析平台
Sheng et al. Autonomous takeoff and landing control for a prototype unmanned helicopter
KR20140125222A (ko) 수직 이착륙이 가능한 무인 비행체 및 무인 비행체의 기동성 비행 방법
Bronz et al. Development of a fixed-wing mini UAV with transitioning flight capability
Jeong et al. Dynamic modeling and analysis of a single tilt-wing unmanned aerial vehicle
Cakir et al. Design and aerodynamic analysis of a VTOL tilt-wing UAV
Gao et al. Flight dynamics and control of a new VTOL aircraft in fixed-wing mode
CN207881710U (zh) 一种多旋翼飞行器的飞行姿态分析平台
Mancinelli et al. Dual-axis tilting rotor quad-plane design, simulation, flight and performance comparison with a conventional quad-plane design
Urakubo et al. Aerodynamic drag of a tilt-rotor UAV during forward flight in rotary-wing mode
CN212220549U (zh) 采用机载流量传感增强风中旋翼俯仰控制的飞行器
Fan Flight Control System Simulation for Quadcopter Unmanned Aerial Vehicle (UAV) based on Matlab Simulink
Prudden Rotor aerodynamic interaction effects for multirotor unmanned aircraft systems in forward flight
Kaya Modeling and experimental identification of quadrotor aerodynamics
Kai Nonlinear automatic control of fixed-wing aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863607

Country of ref document: EP

Kind code of ref document: A1