WO2018191978A1 - 处理方法、遥控器和飞行控制系统 - Google Patents

处理方法、遥控器和飞行控制系统 Download PDF

Info

Publication number
WO2018191978A1
WO2018191978A1 PCT/CN2017/081514 CN2017081514W WO2018191978A1 WO 2018191978 A1 WO2018191978 A1 WO 2018191978A1 CN 2017081514 W CN2017081514 W CN 2017081514W WO 2018191978 A1 WO2018191978 A1 WO 2018191978A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote controller
button
mode
aircraft
control
Prior art date
Application number
PCT/CN2017/081514
Other languages
English (en)
French (fr)
Inventor
钟晓航
赵涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780005397.5A priority Critical patent/CN108513638A/zh
Priority to PCT/CN2017/081514 priority patent/WO2018191978A1/zh
Publication of WO2018191978A1 publication Critical patent/WO2018191978A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0016Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials

Definitions

  • the present invention relates to the field of consumer electronics, and in particular, to a processing method, a remote controller, and a flight control system.
  • the functions of the aircraft are more and more diversified, and the control method of the aircraft is complicated.
  • the same aircraft can be controlled by using multiple remote controllers.
  • the key functions of different remote controllers may be different, and different key functions may need to be changed when the remote control switches the button function. The user needs to reset the button function, which will compare trouble.
  • Embodiments of the present invention provide a processing method, a remote controller, and a flight control system.
  • a processing method provided by an embodiment of the present invention is configured to configure a button setting of a remote controller, where the remote controller is pre-configured with a plurality of operating modes, each of the operating modes corresponding to one of the button settings, and the processing Methods include:
  • the button settings of the remote controller are configured according to the determined operation mode.
  • An embodiment of the present invention provides a remote controller that is pre-configured with a plurality of operating modes, each of which corresponds to a button setting, the remote controller including a processor, the processor is configured to:
  • the button settings of the remote controller are configured according to the determined operation mode.
  • the remote controller is pre-configured with a plurality of operating modes, each of the operating modes corresponding to a button setting;
  • a processor for:
  • the button settings of the remote controller are configured according to the determined operation mode.
  • the processing method, the remote controller and the flight control system of the embodiment of the present invention can configure the button information according to the operation mode of the remote controller. After the operation mode of the remote controller is changed, the user does not need to reconfigure the button function, which is convenient for the user to use.
  • FIG. 1 is a schematic flow chart of a processing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a remote controller according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a flight control system according to an embodiment of the present invention.
  • FIG. 4 is another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 5 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of signal transmission of a remote controller and an aircraft according to an embodiment of the present invention.
  • FIG. 7 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 8 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an aircraft according to an embodiment of the present invention.
  • FIG. 10 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of still another processing method of an embodiment of the present invention.
  • FIG. 12 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 13 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 14 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • 16 is another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 17 is another schematic flow chart of a processing method according to an embodiment of the present invention.
  • FIG. 18 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 19 is still another schematic flowchart of a processing method according to an embodiment of the present invention.
  • FIG. 20 is another schematic block diagram of a remote controller according to an embodiment of the present invention.
  • 21 is another block diagram of a flight control system in accordance with an embodiment of the present invention.
  • Flight control system 1000 remote controller 100, button 120, processor 140, memory 160, aircraft 200, pan/tilt 220, camera 240.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the processing method of the embodiment of the present invention can be used to configure the button settings of the remote controller 100.
  • the remote controller 100 is pre-configured with a plurality of operating modes, each of which corresponds to a button setting. Processing methods include:
  • Step S2 determining an operation mode of the remote controller 100
  • Step S4 Configure the button settings of the remote controller 100 according to the determined operation mode.
  • the remote controller 100 of the embodiment of the present invention is pre-configured with a plurality of operation modes, each of which corresponds to a button setting.
  • the remote controller 100 includes a processor 140 for determining an operation mode of the remote controller 100 and configuring key settings of the remote controller 100 according to the determined operation mode.
  • a flight control system 1000 of an embodiment of the present invention includes a remote controller 100 and a processor 140.
  • the remote controller 100 is pre-configured with a plurality of operating modes, each of which corresponds to a button setting.
  • the processor 140 is configured to determine an operation mode of the remote controller 100 and configure a button setting of the remote controller 100 according to the determined operation mode.
  • processing method of the embodiment of the present invention may be implemented by the remote controller 100 of the embodiment of the present invention or the flight control system 1000 of the embodiment of the present invention, wherein the steps S2 and S4 may be implemented by the processor 140.
  • flight control system 1000 includes aircraft 200 and electronics.
  • the processor 140 can be applied to the remote control 100 or the flight control system 1000.
  • the processor 140 may be applied to at least one of the remote controller 100, the aircraft 200, and an electronic device (such as a mobile phone, a tablet, etc.) in the flight control system 1000. That is, the application of the processor 140 may include one of a plurality of situations: the processor 140 is applied to the remote controller 100; the processor 140 is applied to the aircraft 200; the processor 140 is applied to the electronic device; and the processor 140 is applied.
  • the remote controller 100 and the aircraft 200; the processor 140 is applied to the remote controller 100 and the electronic device; the processor 140 is applied to the aircraft 200 and the electronic device; the processor 140 is applied to the remote controller 100, the aircraft 200, and the electronic device. It should be noted that the processor 140 may include one or more, which is not specifically limited herein.
  • the processing method, the remote controller 100, and the flight control system 1000 of the embodiment of the present invention can configure the button information according to the operation mode of the remote controller 100. After the operation mode of the remote controller 100 is changed, the user does not need to reconfigure the button function, which is convenient for the user. use.
  • the remote controller 100 includes a plurality of buttons 120.
  • the buttons 120 include physical buttons and virtual buttons.
  • the physical buttons include control members such as a joystick and a dial, and the virtual buttons include buttons on the touch screen of the remote controller 100.
  • Aircraft 200 includes an unmanned aerial vehicle.
  • step S2 includes:
  • Step S22 Determine the operation mode of the remote controller 100 according to the user input.
  • the processor 140 is configured to determine an operational mode of the remote control 100 based on user input.
  • step S22 can be implemented by the processor 140.
  • the operation mode of the remote controller 100 can be determined according to the needs of the user.
  • the user can control the operation mode of the remote controller 100 through the button 120.
  • the user selects an operational mode of the remote control 100 via a virtual button of the remote control 100 touch screen, and the processor 140 receives user input to determine an operational mode of the remote control 100.
  • the remote controller 100 may have multiple operation modes, such as a first operation mode, a second operation mode, a third operation mode, and the like, which are not limited herein.
  • the processing method includes:
  • Step S5 determining a button control signal triggered by the button 120 of the remote controller 100 according to the button setting.
  • the processor 140 is configured to determine a button control signal triggered by the button 120 of the remote controller 100 according to the button settings.
  • step S5 can be implemented by the processor 140.
  • the button control signal of the remote controller 100 can be determined by the button setting.
  • the different button settings of the remote controller 100 may cause the same button 120 to have different button control signals.
  • the remote control 100 moves forward in a button setting to control the forward movement of the aircraft 200, and in another button setting the joystick forwards to control the aircraft 200 to fly upward. Therefore, the operation mode of the remote controller 100 can be determined according to different operating habits of the user or different requirements of the control of the aircraft 200, thereby obtaining different button settings and determining different triggers of the button 120 of the remote controller 100 according to different button settings.
  • Button control signal is a button setting to control the forward movement of the aircraft 200, and in another button setting the joystick forwards to control the aircraft 200 to fly upward. Therefore, the operation mode of the remote controller 100 can be determined according to different operating habits of the user or different requirements of the control of the aircraft 200, thereby obtaining different button settings and determining different triggers of the button 120 of the remote controller 100 according to different button settings.
  • step S5 may be implemented by the remote controller 100 or by the flight control system 1000.
  • the processor 140 may be applied to the remote controller 100 or the aircraft 200.
  • the specific implementation method of step S5 may be: the processor 140 in the remote controller 100 receives the input signal triggered by the button 120 and processes the input signal to form a button control signal, and then sends the button control signal.
  • the specific implementation method of step S5 may be: the remote controller 100 directly transmits the input signal triggered by the button 120 to the aircraft 200, and the processor 140 in the aircraft 200 processes the input signal to form a button control signal.
  • the plurality of modes of operation include a master mode and a slave mode.
  • the remote controller 100 is capable of implementing different control functions of the master mode and the slave mode.
  • the aircraft 200 in order to facilitate the control of the aircraft 200, the aircraft 200 can be controlled using two remote controllers 100.
  • the operation mode of one of the remote controllers can be set.
  • the operation mode of the other remote controller is set to the slave mode as the slave remote controller.
  • the uplink signals sent by the two remote controllers 100 to the aircraft 200 may be transmitted to the aircraft 200 by the main remote controller, so in order to implement the uplink signal transmission of the remote controller 100 to the aircraft 200 , the main remote controller It is required to perform the frequency matching with the aircraft 200. After the frequency is successful, the uplink signal of the main remote controller can be transmitted; and the uplink signal from the remote controller to the aircraft 200 can be transmitted to the aircraft 200 through the main remote controller, that is, The uplink signal from the remote controller is first transmitted from the remote controller to the master remote controller, and the master remote controller is forwarded to the aircraft 200.
  • the downlink signal transmitted by the aircraft 200 to the remote controller 100 can be directly transmitted to the master remote controller and the slave remote controller.
  • the downlink signal is an image signal of the aircraft 200 (the image signal includes a moving image signal and a still image signal). At least one of the images of the aircraft 200 is sent directly to the main remote and from the remote.
  • the remote controller 100 is used to control the aircraft 200, and the step S4 includes:
  • Step S41 When the remote controller 100 is in the host mode, the remote controller 100 is configured to control the button settings related to the flight of the aircraft 200.
  • the remote control 100 is used to control the aircraft 200, and the processor 140 is configured to configure the remote controller 100 to configure the button settings associated with controlling the flight of the aircraft 200 when the remote control 100 is in the host mode.
  • step S41 can be implemented by the processor 140.
  • the aircraft 200 can be controlled to fly using the remote control 100 in the master mode.
  • the button settings associated with the flight of the aircraft 200 may refer to the settings of the buttons 120 that control the heading, speed, etc. of the aircraft 200.
  • the buttons 120 of the remote control 100 in the host mode are more convenient or the buttons 120 habitually used by the user can be set to control the flight of the aircraft 200.
  • the aircraft 200 includes a pan/tilt head 220, and step S4 includes:
  • Step S42 When the remote controller 100 is in the slave mode, the button settings related to the remote control unit 100 and the control platform 220 are configured.
  • the aircraft 200 includes a pan/tilt 220, and the processor 140 is configured to configure the button settings associated with the remote control 100 and the control platform 220 when the remote controller 100 is in the slave mode.
  • step S42 can be implemented by the processor 140.
  • pan/tilt head 220 can be controlled by the remote controller 100 in the slave mode.
  • the pan/tilt refers to a supporting device for mounting and fixing a load such as a camera or a mobile phone.
  • the button 120 that is more convenient in the button 120 of the remote controller 100 in the slave mode or habitually used by the user may be set to control the pan/tilt 220.
  • the pan/tilt head 220 includes an attitude angle, and the attitude angle includes at least one of a pitch angle, a roll angle, and a yaw angle.
  • Step S42 includes:
  • Step S422 When the remote controller 100 is in the slave mode, the button settings related to the attitude angle of the control platform 120 are configured.
  • the pan/tilt head 220 includes an attitude angle including at least one of a pitch angle, a roll angle, and a yaw angle
  • the processor 140 is configured to configure the remote controller 100 when the remote controller 100 is in the slave mode
  • step S422 can be implemented by the processor 140.
  • the attitude angle of the pan/tilt head 220 can be controlled by the remote controller 100 in the slave mode.
  • the platform 220 includes an attitude angle, and the attitude angle includes at least one of a pitch, a roll, and a yaw including the following: the attitude angle includes a pitch angle; the attitude angle includes a rollover Angle; attitude angle includes yaw angle; attitude angle includes pitch angle and roll angle; attitude angle includes pitch angle and yaw angle; attitude angle includes roll angle and yaw angle; attitude angle includes pitch angle, roll angle and yaw angle .
  • the pan/tilt 220 can be divided into a single-axis pan/tilt, a two-axis pan/tilt head, and a three-axis pan/tilt head.
  • the attitude angle of the pan/tilt head 220 can be controlled, thereby adjusting the orientation of the load (such as a camera) on the gimbal 220.
  • the aircraft 200 includes a camera 240, and step S4 includes:
  • Step S43 When the remote controller 100 is in the slave mode, the button settings related to the remote controller 100 and the control camera 240 are configured.
  • the aircraft 200 includes a camera 240 for configuring the button settings associated with the remote control 100 and the control camera 240 when the remote control 100 is in the slave mode.
  • step S43 can be implemented by the processor 140.
  • the camera 240 can be controlled by the remote controller 100 in the slave mode.
  • camera 240 can be used to image and transmit image signals to remote control 100 via aircraft 200.
  • the button 120 that is more convenient in the button 120 of the remote controller 100 in the slave mode or habitually used by the user may be set to control the camera 240.
  • the camera 240 includes camera parameter settings, and the camera parameter settings include at least one of a focus mode setting, an exposure mode setting, and an imaging mode setting.
  • Step S43 includes:
  • Step S432 When the remote controller 100 is in the slave mode, the button settings related to the camera parameter setting of the control camera 240 are configured.
  • the camera 240 includes camera parameter settings including at least one of a focus mode setting, an exposure mode setting, and an imaging mode setting, and the processor 140 is configured to configure when the remote controller 100 is in the slave mode
  • the remote controller 100 has button settings related to controlling camera parameter settings of the camera 240.
  • step S432 can be implemented by the processor 140.
  • the camera parameter settings of the camera 240 can be configured using the remote controller 100 in the slave mode.
  • the camera 240 has various parameters to be set before and during imaging, such as a focus mode setting, an exposure mode setting, and an imaging mode setting.
  • a focus mode setting e.g., a laser range finder
  • an exposure mode setting e.g., a laser range finder
  • an imaging mode setting e.g., a laser range finder
  • the remote controller 100 in the slave mode can simultaneously control the pan/tilt 220 and the camera 240 without any limitation.
  • step S4 includes:
  • Step S44 When the remote controller 100 is in the slave mode, the button settings related to controlling the flight of the aircraft 200 by the remote controller 100 are configured.
  • the remote control 100 is used to control the aircraft 200
  • the processor 140 is configured to configure the button settings associated with controlling the flight of the aircraft 200 when the remote controller 100 is in the slave mode.
  • step S44 can be implemented by the processor 140.
  • the aircraft 200 can be controlled to fly using the remote control 100 in the slave mode.
  • the button settings associated with the flight of the aircraft 200 may refer to the settings of the buttons 120 that control the heading, speed, etc. of the aircraft 200.
  • the buttons 120 that are more convenient in the button 120 of the remote mode 100 of the slave mode or habitually used by the user may be set to control the flight of the aircraft 200.
  • the aircraft 200 includes a pan/tilt head 220, and step S4 includes:
  • Step S45 When the remote controller 100 is in the host mode, the button settings related to the remote control unit 100 and the control platform 220 are configured.
  • the aircraft 200 includes a pan/tilt 220, and the processor 140 is configured to configure the button settings associated with the remote control 100 and the control platform 220 when the remote controller 100 is in the host mode.
  • step S45 can be implemented by the processor 140.
  • pan/tilt head 220 can be controlled by the remote controller 100 in the host mode.
  • the pan/tilt refers to a supporting device for mounting and fixing a load such as a camera or a mobile phone.
  • the button 120 of the remote controller 100 in the host mode is more convenient or the button 120 used by the user is used to control the pan/tilt 220.
  • the pan/tilt head 220 includes an attitude angle, and the attitude angle includes at least one of a pitch angle, a roll angle, and a yaw angle.
  • Step S45 includes:
  • Step S452 When the remote controller 100 is in the host mode, the button settings related to the attitude angle of the control platform 120 are configured.
  • the pan/tilt head 220 includes an attitude angle including at least one of a pitch angle, a roll angle, and a yaw angle
  • the processor 140 is configured to configure the remote controller 100 when the remote controller 100 is in the host mode.
  • the button setting related to the attitude angle of the pan/tilt head 220 is controlled.
  • step S452 can be implemented by processor 140.
  • the attitude angle of the pan/tilt head 220 can be controlled by the remote controller 100 in the host mode.
  • the platform 220 includes an attitude angle, and the attitude angle includes at least one of a pitch, a roll, and a yaw including the following: the attitude angle includes a pitch angle; the attitude angle includes a rollover Angle; attitude angle includes yaw angle; attitude angle includes pitch angle and roll angle; attitude angle includes pitch angle and yaw angle; attitude angle includes roll angle and yaw angle; attitude angle includes pitch angle, roll angle and yaw angle .
  • the pan/tilt 220 can be divided into a single-axis pan/tilt, a two-axis pan/tilt head, and a three-axis pan/tilt head.
  • the attitude angle of the pan/tilt head 220 can be controlled, thereby adjusting the orientation of the load (such as a camera) on the gimbal 220.
  • the aircraft 200 includes a camera 240, and step S4 includes:
  • Step S46 When the remote controller 100 is in the host mode, the button settings related to the remote controller 100 and the control camera 240 are configured.
  • the aircraft 200 includes a camera 240 for configuring the remote controller 100 to configure key settings associated with controlling the camera 240 when the remote control 100 is in the host mode.
  • step S46 can be implemented by the processor 140.
  • the camera 240 can be controlled using the remote controller 100 in the host mode.
  • camera 240 can be used to image and transmit image signals to remote control 100 via aircraft 200.
  • the button 120 that is more convenient in the button 120 of the remote controller 100 in the host mode or that the user habitually uses may be set to control the camera 240.
  • the camera 240 includes a camera parameter setting
  • the camera parameter setting includes at least one of a focus mode setting, an exposure mode setting, and an imaging mode setting
  • the step S46 includes:
  • Step S462 When the remote controller 100 is in the host mode, the button settings related to the camera parameter setting of the control camera 240 are configured.
  • the camera 240 includes camera parameter settings including at least one of a focus mode setting, an exposure mode setting, and an imaging mode setting, and the processor 140 is configured to configure the remote control when the remote controller 100 is in the host mode.
  • the device 100 has button settings associated with controlling camera parameter settings of the camera 240.
  • step S462 can be implemented by the processor 140.
  • the camera parameter settings of camera 240 can be configured with remote control 100 in host mode.
  • the camera 240 has various parameters to be set before and during imaging, such as a focus mode setting, an exposure mode setting, and an imaging mode setting.
  • a focus mode setting e.g., a laser range finder
  • an exposure mode setting e.g., a laser range finder
  • an imaging mode setting e.g., a laser range finder
  • the remote controller 100 in the host mode can simultaneously control the pan/tilt 220 and the camera 240 without any limitation.
  • the number of the remote controllers 100 is multiple, and the processing method includes:
  • Step S6 when the first button control signal sent by the remote controller 100 in the host mode conflicts with the second button control signal sent by the remote controller 100 in the slave mode, according to the button corresponding to the first button control signal Set to handle.
  • the number of remote controllers 100 is plural, and the processor 140 is used for the first button control signal issued by the remote controller 100 in the host mode and the second button issued by the remote controller 100 in the slave mode.
  • the buttons are processed according to the button settings corresponding to the first button control signals.
  • step S6 can be implemented by the processor 140.
  • the input of the button 120 can be processed according to the button setting corresponding to the first button control signal when the first button control signal and the second button control signal collide.
  • the input of the button 120 can be processed according to the button settings corresponding to the first button control signals.
  • the remote control 100 in the master mode and used to control the flight of the aircraft 200 issues a first button control signal that the aircraft 200 flies to the left while the remote controller 100 in the slave mode and used to control the pan/tilt 220 issues The second button control signal of the aircraft 200 flying to the right, at this time, the first button control signal and the second button control signal.
  • the processor 140 controls the aircraft 200 to fly to the left according to the first button control signal of the remote controller 100 in the host mode.
  • the remote control 100 in the master mode and used to control the flight of the aircraft 200 issues a first button control signal that the aircraft 200 flies to the left while the slave controller 100 is in the slave mode and is used to control the pan/tilt 220 A second button control signal for the aircraft 200 to fly to the left is issued.
  • the first button control signal and the second button control signal collide, and the processor 140 controls the aircraft 200 according to the first button control signal of the remote controller 100 in the host mode. Fly to the left.
  • the number of the remote controllers 100 is multiple, and the processing method includes:
  • Step S8 when the first button control signal sent by the remote controller 100 in the host mode conflicts with the second button control signal sent by the remote controller 100 in the slave mode, according to the button corresponding to the second button control signal Set to handle.
  • the number of remote controllers 100 is plural, and the processor 140 is used for the first button control signal issued by the remote controller 100 in the host mode and the second button issued by the remote controller 100 in the slave mode.
  • the buttons are processed according to the button settings corresponding to the second button control signals.
  • the input of the button 120 can be processed according to the button setting corresponding to the second button control signal when the first button control signal and the second button control signal collide.
  • the input of the button 120 can be processed according to the button settings corresponding to the second button control signals.
  • the remote controller 100 in the master mode and used to control the flight of the aircraft 200 issues a first button control signal for the pan/tilt 220 to rotate upward while the remote controller 100 in the slave mode and for controlling the pan/tilt head 220 is issued.
  • the second button control signal of the pan/tilt 220 is rotated downward.
  • the first button control signal and the second button control signal collide, and the processor 140 controls the cloud according to the second button control signal of the remote controller 100 in the slave mode.
  • the table 220 is rotated downward.
  • the remote controller 100 in the master mode and used to control the flight of the aircraft 200 issues a first button control signal for the pan/tilt 220 to rotate downward while the slave controller is in the slave mode and is used to control the pan/tilt 220.
  • 100 emits a second button control signal for the pan/tilt 220 to rotate downward.
  • the first button control signal and the second button control signal collide, and the processor 140 controls the signal according to the second button of the remote controller 100 in the slave mode.
  • the control platform 220 is rotated downward.
  • the remote controller 100 includes a memory 160 that stores a plurality of operational modes, key settings, and correspondences between various operational modes and key settings.
  • the flight control system 1000 includes a memory 160 that stores a plurality of operational modes, key settings, and correspondences between various operational modes and button settings.
  • the operating mode can be quickly selected and the corresponding button settings can be obtained.
  • the memory 160 may be disposed in the remote control 100 or in the flight control system 1000, that is, the remote control 100 includes the memory 160 or the aircraft 200 includes the memory 160.
  • the remote controller 100 can obtain the button settings directly through the operation mode; when the aircraft 200 includes the memory 160, the remote controller 100 transmits the operation mode to the aircraft 200, and the aircraft 200 obtains according to the operation mode of the remote controller 100.
  • the button settings corresponding to the remote controller 100 By storing the operating mode and button settings in memory, the application of the operating mode and corresponding button settings can be quickly implemented.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if performed in hardware, as in another embodiment, it can be used in the art.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or in the form of software functional modules.
  • the integrated modules, if executed in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种处理方法,用于配置遥控器(100)的按键(120)设置。遥控器(100)预设有多种操作模式,每种操作模式对应于一种按键(120)设置。处理方法包括:确定遥控器(100)的操作模式(S2);根据确定的操作模式,配置遥控器(100)的按键(120)设置(S4)。同时,还公开了一种遥控器(100)和一种飞行控制系统(1000)。

Description

处理方法、遥控器和飞行控制系统 技术领域
本发明涉及消费性电子技术领域,特别涉及一种处理方法、遥控器和飞行控制系统。
背景技术
在相关技术中,飞行器的功能越来越多样化,导致飞行器的控制方法较为复杂,为了简化飞行器的控制方法和提高控制精准度,可以利用多个遥控器对同一飞行器进行控制。在利用多个遥控器对同一飞行器进行控制时,不同遥控器的按键功能可能不同,而且不同遥控器在切换按键功能时,某些按键功能可能需要改变,用户需要重新设置按键功能,这样会比较麻烦。
发明内容
本发明实施方式提供一种处理方法、遥控器和飞行控制系统。
本发明实施方式提供的一种处理方法,用于配置遥控器的按键设置,所述遥控器预设有多种操作模式,每种所述操作模式对应于一种所述按键设置,所述处理方法包括:
确定所述遥控器的操作模式;
根据确定的所述操作模式,配置所述遥控器的所述按键设置。
本发明实施方式提供的一种遥控器,其预设有多种操作模式,每种所述操作模式对应于一种按键设置,所述遥控器包括处理器,所述处理器用于:
确定所述遥控器的操作模式;
根据确定的所述操作模式,配置所述遥控器的所述按键设置。
本发明实施方式提供的一种飞行控制系统,包括:
遥控器,所述遥控器预设有多种操作模式,每种所述操作模式对应于一种按键设置;
处理器,所述处理器用于:
确定所述遥控器的操作模式;
根据确定的所述操作模式,配置所述遥控器的所述按键设置。
本发明实施方式的处理方法、遥控器和飞行控制系统可以根据遥控器的操作模式来配置按键信息,在遥控器的操作模式变更后,用户无需重新配置按键功能,方便了用户的使用。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的处理方法的流程示意图;
图2是本发明实施方式的遥控器的模块示意图;
图3是本发明实施方式的飞行控制系统的模块示意图;
图4是本发明实施方式的处理方法的另一个流程示意图;
图5是本发明实施方式的处理方法的再一个流程示意图;
图6是本发明实施方式的遥控器和飞行器的信号传输示意图;
图7是本发明实施方式的处理方法的又一个流程示意图;
图8是本发明实施方式的处理方法的又一个流程示意图;
图9是本发明实施方式的飞行器的模块示意图;
图10是本发明实施方式的处理方法的又一个流程示意图;
图11是本发明实施方式的处理方法的又一个流程示意图;
图12是本发明实施方式的处理方法的又一个流程示意图;
图13是本发明实施方式的处理方法的又一个流程示意图;
图14是本发明实施方式的处理方法的又一个流程示意图;
图15是本发明实施方式的处理方法的又一个流程示意图;
图16是本发明实施方式的处理方法的又一个流程示意图;
图17是本发明实施方式的处理方法的又一个流程示意图;
图18是本发明实施方式的处理方法的又一个流程示意图;
图19是本发明实施方式的处理方法的又一个流程示意图;
图20是本发明实施方式的遥控器的另一个模块示意图;
图21是本发明实施方式的飞行控制系统的另一个模块示意图。
主要元件符号附图说明:
飞行控制系统1000、遥控器100、按键120、处理器140、存储器160、飞行器200、云台220、相机240。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请一并参阅图1和图2,本发明实施方式的处理方法可以用于配置遥控器100的按键设置。遥控器100预设有多种操作模式,每种操作模式对应于一种按键设置。处理方法包括:
步骤S2:确定遥控器100的操作模式;
步骤S4:根据确定的操作模式,配置遥控器100的按键设置。
请再次参阅图2,本发明实施方式的遥控器100预设有多种操作模式,每种操作模式对应于一种按键设置。遥控器100包括处理器140,处理器140用于确定遥控器100的操作模式和根据确定的操作模式,配置遥控器100的按键设置。
请参阅图3,本发明实施方式的飞行控制系统1000包括遥控器100和处理器140。遥控器100预设有多种操作模式,每种操作模式对应于一种按键设置。处理器140用于确定遥控器100的操作模式和根据确定的操作模式,配置遥控器100的按键设置。
也即是说,本发明实施方式的处理方法可以由本发明实施方式的遥控器100或者本发明实施方式的飞行控制系统1000实现,其中,步骤S2和S4可以由处理器140实现。
在某些实施方式中,飞行控制系统1000包括飞行器200和电子装置。
在某些实施方式中,处理器140可以应用于遥控器100或者飞行控制系统1000。在处理器140应用于飞行控制系统1000时,处理器140可以应用于飞行控制系统1000中的遥控器100、飞行器200、电子装置(如手机、平板电脑等)中的至少一种。也即是说,处理器140的应用可以包括以下多种情况中的一种:处理器140应用于遥控器100;处理器140应用于飞行器200;处理器140应用于电子装置;处理器140应用于遥控器100和飞行器200;处理器140应用于遥控器100和电子装置;处理器140应用于飞行器200和电子装置;处理器140应用于遥控器100、飞行器200和电子装置。需要说明的是,处理器140可以包括一个或多个,在此不做具体限定。
本发明实施方式的处理方法、遥控器100和飞行控制系统1000可以根据遥控器100的操作模式来配置按键信息,在遥控器100的操作模式变更后,用户无需重新配置按键功能,方便了用户的使用。
在某些实施方式中,遥控器100包括多个按键120,按键120包括实体按键和虚拟按键,实体按键包括摇杆、拨轮等控制部件,虚拟按键包括遥控器100的触摸屏上的按键等。飞行器200包括无人飞行器。
请参阅图4,在一个实施方式中,步骤S2包括:
步骤S22:根据用户输入确定遥控器100的操作模式。
在一个实施方式中,处理器140用于根据用户输入确定遥控器100的操作模式。
也即是说,步骤S22可以由处理器140实现。
如此,能够根据用户的需求确定遥控器100的操作模式。
可以理解,用户可通过按键120控制遥控器100的操作模式。在一个实施例中,用户通过遥控器100触摸屏的虚拟按键选择遥控器100的操作模式,处理器140接收用户输入从而确定遥控器100的操作模式。
需要说明的是,遥控器100可以具有多种操作模式,比如第一操作模式、第二操作模式、第三操作模式等,在此不做限定。
请参阅图5,在一个实施方式中,处理方法包括:
步骤S5:根据按键设置确定遥控器100的按键120所触发的按键控制信号。
在一个实施方式中,处理器140用于根据按键设置确定遥控器100的按键120所触发的按键控制信号。
也即是说,步骤S5可以由处理器140实现。
如此,能够通过按键设置确定遥控器100的按键控制信号。
具体地,遥控器100不同的按键设置可以使得相同按键120具有不同的按键控制信号, 比如,遥控器100在一个按键设置中摇杆向前为控制飞行器200向前飞行,在另一个按键设置中摇杆向前为控制飞行器200向上飞行。因此,可以根据用户不同的操作习惯或对飞行器200控制的不同需求来确定遥控器100的操作模式,从而获得不同的按键设置和根据不同的按键设置确定遥控器100的按键120所触发获得的不同按键控制信号。
需要说明的是,步骤S5可以由遥控器100实现,也可以由飞行控制系统1000实现,例如,处理器140可应用于遥控器100或者飞行器200。在处理器140应用于遥控器100时,步骤S5的具体实现方法可以是:遥控器100中的处理器140接收按键120触发的输入信号并处理输入信号形成按键控制信号,再将按键控制信号发送给飞行器200。在处理器140应用于飞行器200时,步骤S5的具体实现方法可以是:遥控器100将按键120触发的输入信号直接发送给飞行器200,飞行器200中的处理器140处理输入信号形成按键控制信号。
在一个实施方式中,多种操作模式包括主机模式和从机模式。
如此,遥控器100能够实现主机模式和从机模式的不同控制功能。
在一个实施例中,为了方便对飞行器200进行控制,可以使用两个遥控器100对飞行器200进行控制,为了方便两个遥控器100的按键120的操作,可以将其中一个遥控器的操作模式设置为主机模式而作为主遥控器,将另一个遥控器的操作模式设置为从机模式而作为从遥控器。
请参阅图6,在某些实施方式中,两个遥控器100发送至飞行器200的上行信号可由主遥控器传输至飞行器200,因此为了实现遥控器100的上行信号传输至飞行器200,主遥控器需要和飞行器200进行对频,在对频成功后,才能实现主遥控器的上行信号的传输;而从遥控器对飞行器200的上行信号可通过主遥控器传输到飞行器200,也即是说,从遥控器的上行信号先由从遥控器传输至主遥控器,主遥控器再转发给飞行器200。需要说明的是,飞行器200传输至遥控器100的下行信号可以直接传输到主遥控器和从遥控器,例如,下行信号为飞行器200的图像信号(图像信号包括动态图像信号和静态图像信号中的至少一种),飞行器200的图像信号直接发送给主遥控器和从遥控器。
请参阅图7,在一个实施方式中,遥控器100用于控制飞行器200,步骤S4包括:
步骤S41:在遥控器100处于主机模式时,配置遥控器100与控制飞行器200飞行相关的按键设置。
在一个实施方式中,遥控器100用于控制飞行器200,处理器140用于在遥控器100处于主机模式时,配置遥控器100与控制飞行器200飞行相关的按键设置。
也即是说,步骤S41可以由处理器140实现。
如此,可以利用处于主机模式的遥控器100控制飞行器200飞行。
具体地,与飞行器200飞行相关的按键设置可以是指控制飞行器200的航向、速度等按键120的设置。为了实现对飞行器200的飞行进行较佳的控制,可以将处于主机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制飞行器200飞行。
请一并参阅图8和图9,在一个实施方式中,飞行器200包括云台220,步骤S4包括:
步骤S42:在遥控器100处于从机模式时,配置遥控器100与控制云台220相关的按键设置。
在一个实施方式中,飞行器200包括云台220,处理器140用于在遥控器100处于从机模式时,配置遥控器100与控制云台220相关的按键设置。
也即是说,步骤S42可以由处理器140实现。
如此,可以利用处于从机模式的遥控器100控制云台220。
具体地,云台是指用于安装、固定相机或手机等负载的支撑设备。为了实现对云台220进行较佳的控制,可以将处于从机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制云台220。
请参阅图10,在一个实施方式中,云台220包括姿态角,姿态角包括俯仰角、翻滚角和偏航角中的至少一种,步骤S42包括:
步骤S422:在遥控器100处于从机模式时,配置遥控器100与控制云台220的姿态角相关的按键设置。
在一个实施方式中,云台220包括姿态角,姿态角包括俯仰角、翻滚角和偏航角中的至少一种,处理器140用于在遥控器100处于从机模式时,配置遥控器100与控制云台220的姿态角相关的按键设置。
也即是说,步骤S422可以由处理器140实现。
如此,可以利用处于从机模式的遥控器100控制云台220的姿态角。
具体地,云台220包括姿态角,姿态角包括俯仰角(pitch)、翻滚角(roll)和偏航角(yaw)中的至少一种包括以下情况:姿态角包括俯仰角;姿态角包括翻滚角;姿态角包括偏航角;姿态角包括俯仰角和翻滚角;姿态角包括俯仰角和偏航角;姿态角包括翻滚角和偏航角;姿态角包括俯仰角、翻滚角和偏航角。按照云台220包括的姿态角的个数,云台220可分为单轴云台、双轴云台和三轴云台。通过控制云台220的姿态角,可以控制云台220的姿态,从而调整云台220上的负载(如相机)的朝向。
请一并参阅图9和图11,在一个实施方式中,飞行器200包括相机240,步骤S4包括:
步骤S43:在遥控器100处于从机模式时,配置遥控器100与控制相机240相关的按键设置。
在一个实施方式中,飞行器200包括相机240,处理器140用于在遥控器100处于从机模式时,配置遥控器100与控制相机240相关的按键设置。
也即是说,步骤S43可以由处理器140实现。
如此,可以利用处于从机模式的遥控器100控制相机240。
具体地,相机240可以用于成像并通过飞行器200将图像信号发送给遥控器100。为了实现对相机240进行较佳的控制,可以将处于从机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制相机240。
请参阅图12,在一个实施方式中,相机240包括相机参数设置,相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,步骤S43包括:
步骤S432:在遥控器100处于从机模式时,配置遥控器100与控制相机240的相机参数设置相关的按键设置。
在一个实施方式中,相机240包括相机参数设置,相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,处理器140用于在遥控器100处于从机模式时,配置遥控器100与控制相机240的相机参数设置相关的按键设置。
也即是说,步骤S432可以由处理器140实现。
如此,可以利用处于从机模式的遥控器100配置相机240的相机参数设置。
具体地,相机240成像前和成像时有多种参数需要进行设置,比如对焦模式设置、曝光模式设置和成像模式设置。通过配置相机240的相机参数设置,可以控制相机240成像的质量和速度,从而使得提高相机240的工作效率。
在某些实施方式中,处于从机模式的遥控器100可以同时控制云台220和相机240,在此不做任何限制。
请参阅图13,在一个实施方式中,遥控器100用于控制飞行器200,步骤S4包括:
步骤S44:在遥控器100处于从机模式时,配置遥控器100与控制飞行器200飞行相关的按键设置。
在一个实施方式中,遥控器100用于控制飞行器200,处理器140用于在遥控器100处于从机模式时,配置遥控器100与控制飞行器200飞行相关的按键设置。
也即是说,步骤S44可以由处理器140实现。
如此,可以利用处于从机模式的遥控器100控制飞行器200飞行。
具体地,与飞行器200飞行相关的按键设置可以是指控制飞行器200的航向、速度等按键120的设置。为了实现对飞行器200的飞行进行较佳的控制,可以将处于从机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制飞行器200飞行。
请一并参阅图9和图14,在一个实施方式中,飞行器200包括云台220,步骤S4包括:
步骤S45:在遥控器100处于主机模式时,配置遥控器100与控制云台220相关的按键设置。
在一个实施方式中,飞行器200包括云台220,处理器140用于在遥控器100处于主机模式时,配置遥控器100与控制云台220相关的按键设置。
也即是说,步骤S45可以由处理器140实现。
如此,可以利用处于主机模式的遥控器100控制云台220。
具体地,云台是指用于安装、固定相机或手机等负载的支撑设备。为了实现对云台220进行较佳的控制,可以将处于主机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制云台220。
请参阅图15,在一个实施方式中,云台220包括姿态角,姿态角包括俯仰角、翻滚角和偏航角中的至少一种,步骤S45包括:
步骤S452:在遥控器100处于主机模式时,配置遥控器100与控制云台220的姿态角相关的按键设置。
在一个实施方式中,云台220包括姿态角,姿态角包括俯仰角、翻滚角和偏航角中的至少一种,处理器140用于在遥控器100处于主机模式时,配置遥控器100与控制云台220的姿态角相关的按键设置。
也即是说,步骤S452可以由处理器140实现。
如此,可以利用处于主机模式的遥控器100控制云台220的姿态角。
具体地,云台220包括姿态角,姿态角包括俯仰角(pitch)、翻滚角(roll)和偏航角(yaw)中的至少一种包括以下情况:姿态角包括俯仰角;姿态角包括翻滚角;姿态角包括偏航角;姿态角包括俯仰角和翻滚角;姿态角包括俯仰角和偏航角;姿态角包括翻滚角和偏航角;姿态角包括俯仰角、翻滚角和偏航角。按照云台220包括的姿态角的个数,云台220可分为单轴云台、双轴云台和三轴云台。通过控制云台220的姿态角,可以控制云台220的姿态,从而调整云台220上的负载(如相机)的朝向。
请一并参阅图9和图16,在一个实施方式中,飞行器200包括相机240,步骤S4包括:
步骤S46:在遥控器100处于主机模式时,配置遥控器100与控制相机240相关的按键设置。
在一个实施方式中,飞行器200包括相机240,处理器140用于在遥控器100处于主机模式时,配置遥控器100与控制相机240相关的按键设置。
也即是说,步骤S46可以由处理器140实现。
如此,可以利用处于主机模式的遥控器100控制相机240。
具体地,相机240可以用于成像并通过飞行器200将图像信号发送给遥控器100。为了实现对相机240进行较佳的控制,可以将处于主机模式的遥控器100的按键120中较为顺手或者用户习惯性使用的按键120设置为用于控制相机240。
请参阅图17,在一个实施方式中,相机240包括相机参数设置,相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,步骤S46包括:
步骤S462:在遥控器100处于主机模式时,配置遥控器100与控制相机240的相机参数设置相关的按键设置。
在一个实施方式中,相机240包括相机参数设置,相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,处理器140用于在遥控器100处于主机模式时,配置遥控器100与控制相机240的相机参数设置相关的按键设置。
也即是说,步骤S462可以由处理器140实现。
如此,可以利用处于主机模式的遥控器100配置相机240的相机参数设置。
具体地,相机240成像前和成像时有多种参数需要进行设置,比如对焦模式设置、曝光模式设置和成像模式设置。通过配置相机240的相机参数设置,可以控制相机240成像的质量和速度,从而使得提高相机240的工作效率。
在某些实施方式中,处于主机模式的遥控器100可以同时控制云台220和相机240,在此不做任何限制。
请参阅图18,在一个实施方式中,遥控器100的数量为多个,处理方法包括:
步骤S6:在处于主机模式的遥控器100所发出的第一按键控制信号和处于从机模式的遥控器100所发出的第二按键控制信号相冲突时,根据第一按键控制信号所对应的按键设置来处理。
在一个实施方式中,遥控器100的数量为多个,处理器140用于在处于主机模式的遥控器100所发出的第一按键控制信号和处于从机模式的遥控器100所发出的第二按键控制信号相冲突时,根据第一按键控制信号所对应的按键设置来处理。
也即是说,步骤S6可以由处理器140实现。
如此,可以在第一按键控制信号和第二按键控制信号发生冲突时根据第一按键控制信号对应的按键设置来处理按键120的输入。
可以理解,在两个遥控器100的按键控制信号同时控制飞行器200并且按键控制信号不同或者相同时,可以根据第一按键控制信号所对应的按键设置来处理按键120的输入。在一个例子中,处于主机模式并且用于控制飞行器200的飞行的遥控器100发出飞行器200向左飞行的第一按键控制信号,同时处于从机模式并且用于控制云台220的遥控器100发出飞行器200向右飞行的第二按键控制信号,此时,第一按键控制信号和第二按键控制信 号发生冲突,处理器140根据处于主机模式的遥控器100的第一按键控制信号控制飞行器200向左飞行。
在另一个例子中,处于主机模式并且用于控制飞行器200的飞行的遥控器100发出飞行器200向左飞行的第一按键控制信号,同时处于从机模式并且用于控制云台220的遥控器100发出飞行器200向左飞行的第二按键控制信号,此时,第一按键控制信号和第二按键控制信号发生冲突,处理器140根据处于主机模式的遥控器100的第一按键控制信号控制飞行器200向左飞行。
请参阅图19,在一个实施方式中,遥控器100的数量为多个,处理方法包括:
步骤S8:在处于主机模式的遥控器100所发出的第一按键控制信号和处于从机模式的遥控器100所发出的第二按键控制信号相冲突时,根据第二按键控制信号所对应的按键设置来处理。
在一个实施方式中,遥控器100的数量为多个,处理器140用于在处于主机模式的遥控器100所发出的第一按键控制信号和处于从机模式的遥控器100所发出的第二按键控制信号相冲突时,根据第二按键控制信号所对应的按键设置来处理。
如此,可以在第一按键控制信号和第二按键控制信号发生冲突时根据第二按键控制信号对应的按键设置来处理按键120的输入。
可以理解,在两个遥控器100的按键控制信号同时控制飞行器200并且按键控制信号不同或者相同时,可以根据第二按键控制信号所对应的按键设置来处理按键120的输入。在一个例子中,处于主机模式并且用于控制飞行器200的飞行的遥控器100发出云台220向上转动的第一按键控制信号,同时处于从机模式并且用于控制云台220的遥控器100发出云台220向下转动的第二按键控制信号,此时,第一按键控制信号和第二按键控制信号发生冲突,处理器140根据处于从机模式的遥控器100的第二按键控制信号控制云台220向下转动。
在另一个例子中,处于主机模式并且用于控制飞行器200的飞行的遥控器100发出云台220向下转动的第一按键控制信号,同时处于从机模式并且用于控制云台220的遥控器100发出云台220向下转动的第二按键控制信号,此时,第一按键控制信号和第二按键控制信号发生冲突,处理器140根据处于从机模式的遥控器100的第二按键控制信号控制云台220向下转动。
请参阅图20,在一个实施方式中,遥控器100包括存储器160,存储器160存储有多种操作模式、按键设置和多种操作模式与按键设置的对应关系。
请参阅图21,在一个实施方式中,飞行控制系统1000包括存储器160,存储器160存储有多种操作模式、按键设置和多种操作模式与按键设置的对应关系。
如此,可以快速地选择操作模式并且获得相对应的按键设置。
可以理解,存储器160可以设置在遥控器100中或者飞行控制系统1000中,也即是说,遥控器100包括存储器160或者飞行器200包括存储器160。在遥控器100包括存储器160时,遥控器100可以直接通过操作模式获得按键设置;在飞行器200包括存储器160时,遥控器100将操作模式发送给飞行器200,飞行器200根据遥控器100的操作模式获得遥控器100对应的按键设置。通过将操作模式和按键设置存储于存储器中,可以快速地实现操作模式和对应的按键设置的应用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下 列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (51)

  1. 一种处理方法,用于配置遥控器的按键设置,其特征在于,所述遥控器预设有多种操作模式,每种所述操作模式对应于一种所述按键设置,所述处理方法包括:
    确定所述遥控器的操作模式;
    根据确定的所述操作模式,配置所述遥控器的所述按键设置。
  2. 如权利要求1所述的处理方法,其特征在于,所述确定所述遥控器的操作模式包括:
    根据用户输入确定所述遥控器的所述操作模式。
  3. 如权利要求1所述的处理方法,其特征在于,所述多种操作模式包括主机模式和从机模式。
  4. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述根据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  5. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括云台,所述根据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  6. 如权利要求5所述的处理方法,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台相关的所述按键设置包括:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  7. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括相机,所述根据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  8. 如权利要求7所述的处理方法,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机相关的所述按键设置包括:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机的所述相机参数设置相关的所述按键设置。
  9. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述根 据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  10. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括云台,所述根据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  11. 如权利要求10所述的处理方法,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台相关的所述按键设置包括:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  12. 如权利要求3所述的处理方法,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括相机,所述根据确定的所述操作模式,配置所述遥控器的所述按键设置包括:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  13. 如权利要求12所述的处理方法,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机相关的所述按键设置包括:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机的所述相机参数设置相关的所述按键设置。
  14. 如权利要求3所述的处理方法,其特征在于,所述遥控器的数量为多个,所述处理方法包括:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第一按键控制信号所对应的所述按键设置来处理。
  15. 如权利要求3所述的处理方法,其特征在于,所述遥控器的数量为多个,所述处理方法包括:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第二按键控制信号所对应的所述按键设置来处理。
  16. 如权利要求1所述的处理方法,其特征在于,所述遥控器包括存储器,所述存储 器存储有所述多种操作模式、所述按键设置和所述多种操作模式与所述按键设置的对应关系。
  17. 如权利要求1所述的处理方法,其特征在于,所述处理方法包括:
    根据所述按键设置确定所述遥控器的按键所触发的按键控制信号。
  18. 一种遥控器,其特征在于,所述遥控器预设有多种操作模式,每种所述操作模式对应于一种按键设置,所述遥控器包括处理器,所述处理器用于:
    确定所述遥控器的操作模式;
    根据确定的所述操作模式,配置所述遥控器的所述按键设置。
  19. 如权利要求18所述的遥控器,其特征在于,所述处理器用于:
    根据用户输入确定所述遥控器的所述操作模式。
  20. 如权利要求18所述的遥控器,其特征在于,所述多种操作模式包括主机模式和从机模式。
  21. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  22. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括云台,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  23. 如权利要求22所述的遥控器,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  24. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括相机,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  25. 如权利要求24所述的遥控器,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机的所述相机参数 设置相关的所述按键设置。
  26. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  27. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括云台,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  28. 如权利要求27所述的遥控器,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  29. 如权利要求20所述的遥控器,其特征在于,所述遥控器用于控制飞行器,所述飞行器包括相机,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  30. 如权利要求29所述的遥控器,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机的所述相机参数设置相关的所述按键设置。
  31. 如权利要求20所述的遥控器,其特征在于,所述遥控器的数量为多个,所述处理器用于:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第一按键控制信号所对应的所述按键设置来处理。
  32. 如权利要求20所述的遥控器,其特征在于,所述遥控器的数量为多个,所述处理器用于:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第二按键控制信号所对应的所述按键设置来处理。
  33. 如权利要求18所述的遥控器,其特征在于,所述遥控器包括存储器,所述存储器存储有所述多种操作模式、所述按键设置和所述多种操作模式与所述按键设置的对应关系。
  34. 如权利要求18所述的遥控器,其特征在于,所述处理器用于:
    根据所述按键设置确定所述遥控器的按键所触发的按键控制信号。
  35. 一种飞行控制系统,其特征在于,包括:
    遥控器,所述遥控器预设有多种操作模式,每种所述操作模式对应于一种按键设置;
    处理器,所述处理器用于:
    确定所述遥控器的操作模式;
    根据确定的所述操作模式,配置所述遥控器的所述按键设置。
  36. 如权利要求35所述的飞行控制系统,其特征在于,所述处理器用于:
    根据用户输入确定所述遥控器的所述操作模式。
  37. 如权利要求35所述的飞行控制系统,其特征在于,所述多种操作模式包括主机模式和从机模式。
  38. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  39. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述飞行器包括云台,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  40. 如权利要求39所述的飞行控制系统,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  41. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述飞行器包括相机,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  42. 如权利要求41所述的飞行控制系统,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述相机的所述相机参数设置相关的所述按键设置。
  43. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述处理器用于:
    在所述遥控器处于所述从机模式时,配置所述遥控器与控制所述飞行器飞行相关的所述按键设置。
  44. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述飞行器包括云台,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台相关的所述按键设置。
  45. 如权利要求44所述的飞行控制系统,其特征在于,所述云台包括姿态角,所述姿态角包括俯仰角、翻滚角和偏航角中的至少一种,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述云台的所述姿态角相关的所述按键设置。
  46. 如权利要求37所述的飞行控制系统,其特征在于,所述飞行控制系统包括飞行器,所述遥控器用于控制所述飞行器,所述飞行器包括相机,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机相关的所述按键设置。
  47. 如权利要求46所述的飞行控制系统,其特征在于,所述相机包括相机参数设置,所述相机参数设置包括对焦模式设置、曝光模式设置和成像模式设置中的至少一种,所述处理器用于:
    在所述遥控器处于所述主机模式时,配置所述遥控器与控制所述相机的所述相机参数设置相关的所述按键设置。
  48. 如权利要求37所述的飞行控制系统,其特征在于,所述遥控器的数量为多个,所述处理器用于:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第一按键控制信号所对应的所述按键设置来处理。
  49. 如权利要求37所述的飞行控制系统,其特征在于,所述遥控器的数量为多个,所述处理器用于:
    在处于所述主机模式的所述遥控器所发出的第一按键控制信号和处于所述从机模式的所述遥控器所发出的第二按键控制信号相冲突时,根据所述第二按键控制信号所对应的所 述按键设置来处理。
  50. 如权利要求35所述的飞行控制系统,其特征在于,所述飞行控制系统包括存储器,所述存储器存储有所述多种操作模式、所述按键设置和所述多种操作模式与所述按键设置的对应关系。
  51. 如权利要求35所述的飞行控制系统,其特征在于,所述处理器用于:
    根据所述按键设置确定所述遥控器的按键所触发的按键控制信号。
PCT/CN2017/081514 2017-04-21 2017-04-21 处理方法、遥控器和飞行控制系统 WO2018191978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780005397.5A CN108513638A (zh) 2017-04-21 2017-04-21 处理方法、遥控器和飞行控制系统
PCT/CN2017/081514 WO2018191978A1 (zh) 2017-04-21 2017-04-21 处理方法、遥控器和飞行控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081514 WO2018191978A1 (zh) 2017-04-21 2017-04-21 处理方法、遥控器和飞行控制系统

Publications (1)

Publication Number Publication Date
WO2018191978A1 true WO2018191978A1 (zh) 2018-10-25

Family

ID=63375237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081514 WO2018191978A1 (zh) 2017-04-21 2017-04-21 处理方法、遥控器和飞行控制系统

Country Status (2)

Country Link
CN (1) CN108513638A (zh)
WO (1) WO2018191978A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106527458B (zh) * 2016-11-24 2019-04-02 腾讯科技(深圳)有限公司 一种飞行器的空翻动作实现方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426034A (zh) * 2007-10-31 2009-05-06 宁波萨基姆波导研发有限公司 一种具有鼠标功能的手机及其实现方法
US20100004798A1 (en) * 2005-01-25 2010-01-07 William Kress Bodin Navigating a UAV to a next waypoint
CN202257475U (zh) * 2011-09-13 2012-05-30 许涛 一种可自由切换左右键功能的鼠标
CN203455782U (zh) * 2013-08-13 2014-02-26 深圳市咫尺互联科技有限公司 多模式切换鼠标
CN103838509A (zh) * 2007-09-14 2014-06-04 松下航空电子公司 用于交通工具信息系统的便携式用户控制设备和方法
CN105513433A (zh) * 2016-01-19 2016-04-20 清华大学合肥公共安全研究院 一种基于无人机机载系统的地面控制站
CN105721524A (zh) * 2014-12-04 2016-06-29 深圳市大疆创新科技有限公司 一种多机互联系统、控制设备及多机互联配置方法
CN106327817A (zh) * 2015-06-17 2017-01-11 中兴通讯股份有限公司 投影设备遥控器及其按键复用方法、装置
CN106512434A (zh) * 2015-09-09 2017-03-22 王军 一种飞行器控制器及其控制方法
CN206515783U (zh) * 2016-12-27 2017-09-22 深圳市好捷华科技有限公司 一种手持式无线虚拟键盘触摸板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030944A1 (de) * 2007-07-03 2009-01-15 Astrium Gmbh Regelung von Master/Slave-Satellitenkonstellationen
CN202394368U (zh) * 2011-12-22 2012-08-22 深圳市同洲电子股份有限公司 遥控装置
CN203786564U (zh) * 2014-04-22 2014-08-20 零度智控(北京)智能科技有限公司 一种双余度飞行控制系统
CN106292711A (zh) * 2016-10-20 2017-01-04 高域(北京)智能科技研究院有限公司 一种无人飞行器主副控制系统及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004798A1 (en) * 2005-01-25 2010-01-07 William Kress Bodin Navigating a UAV to a next waypoint
CN103838509A (zh) * 2007-09-14 2014-06-04 松下航空电子公司 用于交通工具信息系统的便携式用户控制设备和方法
CN101426034A (zh) * 2007-10-31 2009-05-06 宁波萨基姆波导研发有限公司 一种具有鼠标功能的手机及其实现方法
CN202257475U (zh) * 2011-09-13 2012-05-30 许涛 一种可自由切换左右键功能的鼠标
CN203455782U (zh) * 2013-08-13 2014-02-26 深圳市咫尺互联科技有限公司 多模式切换鼠标
CN105721524A (zh) * 2014-12-04 2016-06-29 深圳市大疆创新科技有限公司 一种多机互联系统、控制设备及多机互联配置方法
CN106327817A (zh) * 2015-06-17 2017-01-11 中兴通讯股份有限公司 投影设备遥控器及其按键复用方法、装置
CN106512434A (zh) * 2015-09-09 2017-03-22 王军 一种飞行器控制器及其控制方法
CN105513433A (zh) * 2016-01-19 2016-04-20 清华大学合肥公共安全研究院 一种基于无人机机载系统的地面控制站
CN206515783U (zh) * 2016-12-27 2017-09-22 深圳市好捷华科技有限公司 一种手持式无线虚拟键盘触摸板

Also Published As

Publication number Publication date
CN108513638A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
US10366548B2 (en) Unmanned aerial vehicle communications methods and systems
KR20150134591A (ko) 무인 항공기를 제어하는 포터블 디바이스 및 그 제어 방법
WO2017181512A1 (zh) 无人机的飞行控制方法和装置
WO2018058310A1 (zh) 控制方法、控制装置、遥控系统及无人机控制系统
CN108401450B (zh) 终端设备及其控制方法、无人机及其控制方法和控制设备
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、系统
US11064123B2 (en) Method and Apparatus for zooming relative to an object
US11381751B2 (en) Handheld gimbal control method, handheld gimbal, and handheld device
US11924539B2 (en) Method, control apparatus and control system for remotely controlling an image capture operation of movable device
WO2018121193A1 (zh) Vr设备的控制方法、装置及遥控器
US11117662B2 (en) Flight direction display method and apparatus, and unmanned aerial vehicle
US20200213517A1 (en) Gimbal camera and unmanned aerial vehicle having the same
WO2018090807A1 (zh) 飞行拍摄控制系统和方法、智能移动通信终端、飞行器
CN110491178B (zh) 航点的操作方法、装置和系统、地面站和计算机可读存储介质
WO2018191969A1 (zh) 云台的控制方法及装置
JP6481121B1 (ja) 飛行体の制御に関する情報表示方法
WO2019205070A1 (zh) 无人机的控制方法、控制设备及无人机
US20210271430A1 (en) Managing the configurations of printing devices
WO2018191978A1 (zh) 处理方法、遥控器和飞行控制系统
WO2020087346A1 (zh) 拍摄控制方法、可移动平台、控制设备及存储介质
US9319376B2 (en) Information processing apparatus, control method, and storage medium
WO2019148348A1 (zh) 云台控制方法和装置
CN109155819A (zh) 拍摄系统、承载装置、拍摄装置以及它们的控制方法
CN112455664A (zh) 自稳定的球形无人机车辆摄像机组件
JP2017112439A (ja) 移動撮像装置および移動撮像装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906272

Country of ref document: EP

Kind code of ref document: A1