WO2018191356A2 - Illuminateurs réglables et procédés de thérapie photodynamique et diagnostic - Google Patents

Illuminateurs réglables et procédés de thérapie photodynamique et diagnostic Download PDF

Info

Publication number
WO2018191356A2
WO2018191356A2 PCT/US2018/027070 US2018027070W WO2018191356A2 WO 2018191356 A2 WO2018191356 A2 WO 2018191356A2 US 2018027070 W US2018027070 W US 2018027070W WO 2018191356 A2 WO2018191356 A2 WO 2018191356A2
Authority
WO
WIPO (PCT)
Prior art keywords
illuminator
light
panels
patient
light sources
Prior art date
Application number
PCT/US2018/027070
Other languages
English (en)
Other versions
WO2018191356A3 (fr
Inventor
Thomas Boyajian
Mark Carota
Brian Mazejka
Original Assignee
Dusa Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/487,991 external-priority patent/US10603508B2/en
Application filed by Dusa Pharmaceuticals, Inc. filed Critical Dusa Pharmaceuticals, Inc.
Priority to AU2018250595A priority Critical patent/AU2018250595A1/en
Priority to CA3057840A priority patent/CA3057840A1/fr
Priority to JP2019555822A priority patent/JP7382832B2/ja
Publication of WO2018191356A2 publication Critical patent/WO2018191356A2/fr
Publication of WO2018191356A3 publication Critical patent/WO2018191356A3/fr
Priority to JP2023146114A priority patent/JP2023162440A/ja
Priority to AU2023285927A priority patent/AU2023285927A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • A61N2005/0633Arrangements for lifting or hinging the frame which supports the light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0652Arrays of diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0625Warming the body, e.g. hyperthermia treatment

Definitions

  • the present disclosure relates generally to adjustable illuminators which provide a uniform distribution of visible light in a number of configurations and are suitable for use in photodynamic therapy and diagnosis, and to methods including operation of adjustable illuminators.
  • Photodynamic therapy (PDT), photodynamic diagnosis (PD), or photochemotherapy is generally used to treat and/or diagnose several types of ailments in or near the skin or other tissues, such as those in a body cavity.
  • PDT or PD may be used for treatment or diagnosis of actinic keratosis of the scalp or facial areas of a patient.
  • PDT and PD may be used for treatment and diagnosis of other indications (e.g., acne, warts, psoriasis, photo-damaged skin, and cancer) and other areas of the patient (e.g., arms and legs).
  • a patient is first administered a photoactivatable agent or a precursor of a photoactivatable agent that accumulates in the tissue to be treated or diagnosed.
  • the agent or precursor may be administered to treat dermatological conditions, for example.
  • the area in which the photoactivatable agent is administered is then exposed to visible light, which causes chemical and/or biological changes in the agent. These changes allow the agent to then selectively locate, destroy, or alter the target tissue while, at the same time, causing only mild and reversible damage to other tissues in the treatment area.
  • ALA 5-aminolevulinic acid
  • ALA or 5- aminolevulinic acid refer to ALA itself, precursors thereof and pharmaceutically acceptable salts of the same.
  • Illuminators such as those disclosed in U.S. Patent Nos. 8,758,418; 8,216,289; 8,030,836; 7,723,910; 7, 190,109; 6,709,446; and 6,223,071, which are
  • These devices generally include a light source (e.g., a fluorescent tube), coupling elements that direct, filter or otherwise conduct emitted light so that it arrives at its intended target in a usable form, and a control system that starts and stops the production of light when necessary.
  • a light source e.g., a fluorescent tube
  • coupling elements that direct, filter or otherwise conduct emitted light so that it arrives at its intended target in a usable form
  • a control system that starts and stops the production of light when necessary.
  • some illuminators utilize two or more panels, each panel having a light source to emit light at the intended target area. These panels are coupled together so as to be rotatable relative to each other. By incorporating multiple, rotatable panels, the overall size and shape of the area that is illuminated can be changed according to the intended treatment area.
  • the panels are equally sized by width and length and are typically driven at the same power level.
  • the panels are further joined at their edges by hinges so as to be rotatable to achieve a desired configuration.
  • the light source(s) of one panel does not immediately adjoin the light source(s) of an adjacent panel.
  • the lack of light emitting from such areas, together with the uniform supply of power to the panels can cause optical "dead space" in certain portions of the target treatment area. These portions, in turn, receive less overall light, resulting in a lower dose of treatment in those portions.
  • the dose of treatment can be lowered by as much as a factor of five when compared with those areas receiving an optimal amount of light.
  • these conventional illuminators are used for phototherapy of acne, which typically does not require the administration of a photoactivatable agent for effective treatment.
  • exposure to the light alone is generally sufficient treatment.
  • multiple treatment sessions can be utilized to effectively treat the condition, uniformity of light across the target area during a given treatment is less of a concern in some situations.
  • some forms of treatment involving PDT such as the use of ALA to treat actinic keratosis, require specific and highly uniform intensity and color of light to achieve effectiveness.
  • successful PDT relies on the targeted delivery of both the correct quantity of the photoactivatable agent and the correct quantity (i.e., power and wavelength) of light to produce the desired photochemical reactions in the target cells.
  • the light source must provide illumination to the target area and this illumination must be uniform with respect to both wavelength and power.
  • the optical dead space that can occur at or near the hinges of conventional adjustable illuminators reduces the uniformity of the light along the treatment area, thereby reducing the effectiveness of PDT for these specific treatments.
  • these illuminators are also configured to adjust within a limited range, such that only a limited amount of surfaces on a patient's body may be treated, such as a patient's face and scalp.
  • the uniformity of light delivered by these conventional illuminators may vary substantially depending on the treatment area of the patient.
  • an object of some embodiments of the present invention to reduce or eliminate these dead spaces and provide for a more uniform light distribution in an adjustable illuminator designed for PDT and/or PD of a variety of targeted areas.
  • an infinitely adjustable illuminator that can effectively deliver a uniformity of light across various areas of a patient's body, such as a patient's extremities (e.g., arms and legs) or torso, in addition to a patient's face and scalp.
  • a uniform light may be delivered to a targeted treatment area regardless of the shape and location of the contours of the patient's body.
  • One embodiment of the present disclosure includes a plurality of panels, wherein at least one panel is of a different width than the other panels. This panel is positioned between two other panels and, in a way, acts as a "lighted hinge" to provide enough "fill-in” light to reduce or eliminate the optical dead spaces when the panels are bent into a certain
  • the panels are preferably of a smaller width than the other three larger panels.
  • the panels are positioned in an alternating manner such that each of the smaller-width panels is situated in between two of the three larger panels to allow for both adjustability and increased uniformity.
  • the panels are preferably coupled together by nested hinges, thereby reducing the area in which no light source is present on the illuminator.
  • the light sources on each of the panels are individually configurable to provide specific power output to certain areas of the light sources on the panels to compensate for decreased uniformity. For example, the power outputted to each individual diode in an array of light emitting diodes (LED) may be individually adjusted.
  • LED light emitting diodes
  • One embodiment of the present disclosure relates to an illuminator for
  • photodynamically diagnosing or treating a surface comprising a plurality of panels; a plurality of light sources, each mounted to one of the plurality of panels, the plurality of light sources configured to irradiate the surface with substantially uniform intensity visible light; and a heat source configured to emit heat to a patient between outer panels of the plurality of panels.
  • Another embodiment of the present disclosure relates to a method of
  • photodynamically diagnosing or treating a patient comprising controlling a heat source to direct heat to the skin of a patient during a first time period; and illuminating, during a second time period following the first time period, the patient with an illuminator having a plurality of panels to treat a dermatological condition, at least one of the panels being provided with at least one light source.
  • a further embodiment of the present disclosure relates to a method of
  • photodynamically diagnosing or treating a patient comprising illuminating the patient with an illuminator having a plurality of light sources, and during the illumination, emitting heat from a heat source so as to heat the skin of the patient, wherein illumination from the plurality of light sources commences at approximately the same time as emission of heat from the heat source toward the patient.
  • An additional embodiment of the present disclosure relates to a system comprising an illuminator for photodynamically diagnosing or treating a surface, comprising a plurality of panels; a plurality of light sources, each one mounted to one of the plurality of panels, the plurality of light sources configured to irradiate the surface with visible light; and at least one sensor configured to detect an orientation of at least one of the plurality of panels.
  • FIGS. 1 A-1B show top views of a main body of an illuminator according to an exemplary embodiment.
  • FIGS. 2A-2B show perspective views of the main body of the illuminator of FIGS. 1A-1B.
  • FIGS. 3A-3B show detailed views of the nested hinges of the main body of the illuminator of FIGS. 1A-1B.
  • FIG. 4 shows a perspective view of the illuminator having the main body of FIGS. 1A-1B mounted to a stand.
  • FIG. 5 shows a schematic view illustrating an addressable configuration of LEDs mounted on the main body of the illuminator of FIGS. 1 A-1B.
  • FIG. 6 shows a schematic view illustrating widths and lengths of individual panels of the main body of the illuminator of FIGS. 1 A-1B.
  • FIG. 7 shows a graph illustrating light dosage across a treatment area according to a conventional paneled illuminator.
  • FIG. 8 illustrates a graph illustrating light dosage across the same treatment area as FIG. 7 using an illuminator according to an embodiment.
  • FIGS. 9 A and 9B illustrate an illuminator according to an embodiment.
  • FIG. 9C illustrates an illuminator according to an embodiment.
  • FIG. 9D illustrates an illuminator according to an embodiment, in which heat is emitted to a control volume, e.g., a cubic volume.
  • FIG. 9E depicts a control volume according to an embodiment.
  • FIG. 9F is a perspective view showing a configuration according to an embodiment.
  • FIG. 10 illustrates a cubic volume at which a plurality of nodes are defined.
  • FIGS. 11 A-B illustrate thermal data according to an embodiment.
  • FIGS. 12A-D illustrate thermal data without application of light.
  • FIGS. 13A-D illustrate thermal data without application of heat.
  • FIGS. 14A-D illustrate thermal data on a nodal basis, according to an embodiment.
  • FIGS. 1A-1B and 2A-2B illustrate an embodiment of a configurable illuminator according to the present disclosure.
  • the illuminator includes a main body 100, which preferably has five individual panels 10a- lOe, each of which are connected in a rotatable manner via nested hinges 50.
  • Each panel contains an array of light emitting diodes (LED) 60, which may be configured in an evenly spaced pattern across the face of the panel.
  • LED light emitting diodes
  • light sources such as fluorescent or halogen lamps.
  • each LED array 60 extends as far to the edges as possible.
  • the LED arrays 60 are preferably dimensioned to provide an overall lighted area for a given treatment area based on a range from the 5th percentile of corresponding sizes of female subjects to the 95th percentile of corresponding sizes of male subjects for that particular treatment area.
  • the LED arrays 60 emit light at an appropriate wavelength according to the intended treatment or to activate the particular photoactivatable agent used in treatment or diagnosis.
  • the LED arrays 60 preferably emit blue light having
  • the LED arrays 60 may also emit visible light in other ranges of the spectrum, such as in the green and/or red ranges between 400 and 700 nm, for example, about 625 nm to 640 nm or, for example, 635 nm.
  • the LED arrays 60 may also emit light having wavelengths of 510 nm, 540 nm, 575 nm, 630 nm, or 635 nm.
  • the LED arrays 60 may be configured to emit light continuously or the LED arrays 60 may be configured to flash the diodes on and off based on a predetermined interval.
  • the LED arrays 60 may be configured such that only one wavelength of light (e.g., blue) is emitted. Alternatively, the LED arrays 60 may be configured such that two or more wavelengths of light are emitted from the arrays. For example, the LED arrays 60 may be configured to alternately emit blue light and red light for treatment purposes.
  • one wavelength of light e.g., blue
  • the LED arrays 60 may be configured such that two or more wavelengths of light are emitted from the arrays.
  • the LED arrays 60 may be configured to alternately emit blue light and red light for treatment purposes.
  • the five panels 10a- lOe are of different widths relative to one another.
  • three panels 10a, 10c, lOe are configured to have wider widths, while two panels 10b, lOd have smaller, narrower widths, each of the narrower widths of the two panels 10b, lOd being less than each of the wider widths of the three panels 10a, 10c, lOe.
  • the wider widths of the three larger panels 10a, 10c, lOe are approximately equal. In other embodiments, the wider widths of the three larger panels 10a, 10c, lOe are different relative to one another.
  • the narrower widths of the two panels 10b, lOd may be approximately equal or may be different relative to one another.
  • the panels are further arranged in an alternating configuration, with the narrower panels (e.g., 10b) positioned in between two wider panels (e.g., 10a, 10c).
  • the narrower panels 10b, lOd are configured to have a width that is about 30% to 60% less than the width of the wider panels 10a, 10c, lOe.
  • the narrower panels 10b, lOd are configured to have a width that is about 30% to 50% less than the width of the wider panels 10a, 10c, lOe.
  • the panels 10a- lOe are rotatably connected by hinges 50.
  • the hinges 50 may take the form of nested hinges, which may include hinges that substantially reduce or eliminate optical dead spaces.
  • a tab 23 may extend out from both the top and bottom of the panel. The tabs 23 are configured such that a side of an adjacent panel may be received between the tabs 23, as shown in FIG. 2 A.
  • the height of the adjacent panel is slightly smaller than the height of the tabbed panel (e.g., panel 10b) into which the adjacent panel is received.
  • the middle panel i.e., panel 10c
  • each of the tabs 23 further includes an opening to receive a bolt to connect adjacent panels together.
  • the panels 10a- lOe may be arranged such that side panels can move so as to expand a total footprint or coverage area of the panels 10a- lOe, and may be configured to extend to portions of a patient such as the patient's chest or stomach.
  • at least one of the panels 10a- lOe may be arranged such that at least one of the panels is provided in a flat or folded (bent or angled, for example) arrangement.
  • the panels may be moved in a continuously variable manner.
  • one or more of the panels is provided with one or more detent mechanisms to retain the one or more panels in a desired position.
  • the one or more detent mechanisms may be provided with the one or more panels such that the movement of the panels is restrained by the detent mechanisms to achieve a plurality of distinct panel configurations for treatment, in which the panels are kept in a specific position while a patient is being treated.
  • the panels may be arranged relative to each other so as to achieve one or more particular configurations of the illuminator. In at least one embodiment, the panels may be arranged relative to each other such that the illuminator achieves at least one of a curved, flat or folded configuration, for example.
  • the nested hinges 50 which are mounted to the inner side surfaces of adjacent panels (e.g., 10a, 10b) to allow for rotation of the panels.
  • a flange 51 of the hinge 50 is mounted to the inner side surface of a panel via bolts 53.
  • the inner side surface of a panel may include a recess in which the flange 51 may be placed.
  • the inner side surface of the panel may also include an additional recess to accommodate the joint of the hinge 50 such that the joint of the hinge 50 becomes substantially flush with an outer front surface of the panel.
  • Such configurations may allow for the outside vertical edges of adjoining panels to be positioned closer to one another. By spacing the vertical edges of adjoining panels closer, optical dead spaces may be further reduced or eliminated.
  • the hinges 50 together with the tabs 23 may reduce the number of pinch points present in the system.
  • the main body 100 of the illuminator may include a mounting head 40.
  • the mounting head 40 may allow for the main body 100 to be mounted to a movable stand 80, which is shown in FIG. 4, to allow a user to easily move the main body 100 to the appropriate treatment position.
  • the stand 80 includes a base 81 and a vertical pillar 82.
  • the base 81 may further include wheels 87 at its bottom in order to allow the user to horizontally move the illuminator to an appropriate position.
  • the wheels 87 may include locks, such that the stand 80 is prevented from further horizontal movement once positioned.
  • the vertical pillar 82 may be attached to the base 81 at a pivot point 83.
  • the pivot point 83 allows the vertical pillar 82 to be rotated to increase the range of positioning for the illuminator.
  • the vertical pillar 82 includes a connecting arm 85, which may serve as a mounting structure for the main body 100.
  • the connecting arm 85 includes a hinge point 86 such that the main body 100 can be moved vertically relative to the stand 80.
  • the vertical pillar 82 may also be configured as a telescopic structure, such that the user can change the height of the vertical pillar 82. This allows for an increased range of vertical movement for the main body 100, which can allow the user to position the main body 100 at lower portions of a treatment area, such as a patient's legs or feet.
  • the stand 80 may also include a stabilization arm 84.
  • the stabilization arm 84 may be attached to the main body 100 to prevent unwanted movement of the main body 100 during treatment.
  • a controller and power supply 90 is mounted to the stand 80 in order to supply electrical power to the main body 100 and allow the user to control the main body 100 for treatment purposes.
  • the controller and power supply 90 may be directly mounted to the main body 100.
  • one or more fans 70 may be mounted onto each of the panels, as shown in FIG. 4.
  • At least one controller (also referred to as a control unit) is also connected to the panels to regulate power to the lights to achieve the required uniformity and intensity for the target treatment.
  • the controller may also control output of a heat source 160 discussed in more detail below.
  • there may be a plurality of controllers controlling at least one dynamic process e.g., controlling output(s) of one or more of: one or more light sources, one or more heat sources, and/or one or more air sources (such as a fan), in any combination.
  • separate controllers or integrated controllers may be provided for respectively controlling the output of LED arrays 60 and the heat source 160.
  • a first controller may control both light and heat sources, and a second controller may control an air source, for example.
  • the controller may be implemented as hardware, software, or a combination of both, such as a memory device storing a computer program and a processor to execute the program.
  • each panel may have a dedicated controller to regulate power to the individual LED array on a given panel to allow for more particular calibration of the illuminator, which may further enhance uniformity and increase efficiency.
  • Lambert's cosine law light intensity at a given point on a "Lambertian" surface (such as skin) is directly proportional to the cosine of the angle between the incoming ray of light and the normal to the surface.
  • a ray of light that is directed to the front of a curved surface will arrive in a substantially perpendicular manner to that area and will result in 100% absorbance.
  • a ray of light that arrives at a side edge of the curved surface will arrive in a substantially parallel manner.
  • Lambert's cosine law the intensity, and thus absorption, of the light at the side edge will approach zero, making treatment at that area ineffective.
  • a "fall off of light exposure tends to occur at the edges of a curved surface.
  • "fall off increases as the distance between the light source and the point on the surface increases.
  • an illuminator to conform to the curved surface aids in reducing this effect and increases overall uniformity.
  • the light source should be larger relative to the target treatment area in order to fully encompass the body part to be treated and also provide light from all angles to any target point on the treatment area.
  • the LED arrays 60 may be individually configured to increase the intensity of light emitting from certain diodes to compensate for this fall-off effect.
  • LED arrays 60 may be individually configured is shown in FIG. 5.
  • the LED arrays 60 are divided into three general areas, which may be described as "addressable strings.”
  • Areas 1, 3, and 5 correspond to an addressable string configuration that may be included in the wider panels 10a, 10c, and lOe, while areas 2, 4, and 6 correspond to an addressable string configuration that may be included in the narrower panels 10b and lOd.
  • the current to each area is adjusted in order to adjust the intensity of light emitting from each of the areas. For example, a higher current may be supplied to areas 1 and 2 than the current supplied to areas 3 and 4 such that areas 1 and 2 emit a higher intensity of light than areas 3 and 4.
  • the illuminator may be configured to adjust each individual diode present in a given LED array 60, allowing for an even greater calibration effect (that is, fine tuning).
  • the LED arrays 60 can be individually configured to emit more intense light to only those areas that require it.
  • pre-programmed sensors can be used to detect the orientation of one or more panels (e.g., whether a panel is curved or folded flat) and may be used to configure the LED arrays 60 to emit more or less intense light in areas that require it.
  • at least one sensor detects an orientation of at least one panel and provides detection information (a detection result) to the controller.
  • the sensors may include one or more encoders, such as one or more angle encoders, which are provided at one or more locations on the panels.
  • At least one sensor is a microswitch configured to sense a position of at least one panel.
  • a plurality of sensors may include an encoder, a microswitch, or combinations thereof.
  • the sensors are communicated with the controller and are configured to provide information about the panel orientation, such as an angle at which a panel is disposed, to the controller.
  • the controller then controls the intensity of light in accordance with a detection result.
  • a plurality of sensors provides information to the controller so that the controller may carry out a determination as to whether the illuminator has a configuration that is one of a plurality of preset
  • the controller may store, in a memory, information relating to one or more preset configurations (e.g., for a bent illuminator, a flat illuminator, etc.).
  • the controller may compare the sensed information to the preset configurations to determine a match between the sensed information and one or more preset configurations.
  • the controller may further store a protocol for altering intensity which is executed upon determining a match between the sensed information and the preset configuration. For example, if the illuminator is detected to be a curved illuminator, the controller implements a light intensity output which is correlated to the preset protocol for a curved illuminator.
  • the controller may further compare an existing intensity to an intensity associated with a particular configuration and determine whether the intensity should be adjusted.
  • a plurality of preset configurations may be presented to a clinician or practitioner, e.g., on a touch screen, who may then select the preset configuration corresponding to the physical arrangement of the illuminator in the clinical environment.
  • the addressable strings of the LED arrays 60 may also include varying amounts of individual diodes mounted within the particular area. For example, for the wider panels 10a, 10c, and lOe, 12 diodes may be mounted in each of areas 1, while 9 diodes may be mounted in each of areas 3, and 41 diodes may be mounted in area 5, resulting in a total of 83 individual diodes included within each of the wider panels 10a, 10c, and lOe.
  • 8 diodes may be mounted in each of areas 2, while 9 diodes may be mounted in each of areas 4, and 23 diodes may be mounted in area 6, resulting in a total of 57 individual diodes included within each of the narrower panels 10b and lOd.
  • the number and arrangement of diodes included within each of the LED arrays 60 is not particularly limited.
  • the wider panels 10a, 10c, and lOe may each contain a total amount of diodes that ranges from about 80 diodes to about 350 diodes.
  • the narrower panels 10b and lOd may each contain a total amount of diodes that ranges from about 50 diodes to about 250 diodes.
  • individually regulating power to the LED arrays 60 can also contribute to the reduction or elimination of the optical dead spaces that may otherwise occur at the hinge points. Specifically, power output and/or the emitted light intensity may be increased close to the edges of the array that are closest to the nested hinges to compensate for the lack of light emitting from the meeting point of panels.
  • the narrower panels 10b, lOd are also preferably operated at a higher power level and/or at a higher emitted light intensity compared to the wider panels 10a, 10c, lOe in order to provide additional fill-in light.
  • each array 60 the panels can be easily deployed for other applications as each array is specifically configurable to address the lighting needs of the specific application.
  • the illuminator may further include a timer, which can indicate to the user the appropriate length of exposure time for the particular treatment.
  • the illuminator may also be programmed with pre-stored light dosing parameters to allow the user to select a desired treatment type.
  • the pre-stored parameters may include, for example, pre-stored settings for exposure time, light intensity, and outputted wavelength.
  • the illuminator is automatically configured to provide the correct lighting dosage by being supplied with the appropriate power output to achieve the required uniformity for the treatment.
  • the illuminator can be provided with sensors that detect the size of the treatment area positioned in front of the illuminator. The sensors then determine the correct light dosing parameters based on the sensed treatment area.
  • the illuminator may also further include actuators and may be programmed to be moved automatically depending on the selected treatment. Once a treatment is selected, the illuminator may be automatically positioned into the proper configuration by the actuators without requiring the user to move the system by hand. Alternatively, the sensors may detect the adjusted position of the illuminator manually set by the user. The detected position of the illuminator may then be used to indicate the intended treatment area. Correct light dosing parameters for the specific treatment area may then be provided based on the detected position set by the user.
  • the illuminator of the present disclosure allows for an infinite amount of configurations that can be adapted for the targeted treatment area.
  • the configurations may range from a flat-plane emitter (as shown in FIGS. IB and 2B) to a substantially U-shaped configuration (as shown in FIGS. 1 A and 2A).
  • the adjustable illuminator may also be configured such that the two end panels 10a, lOe can be pulled back relative to the three middle panels 10b, 10c, lOd, such that a smaller U-shaped configuration may be created by the middle panels.
  • the adjustable illuminator allows for the treatment of additional areas of a patient's body.
  • the adjustable illuminator can also provide a device that can easily be configured to treat other portions of a patient's body, in particular, those having smaller curved surfaces, such as the arms and legs.
  • the adjustable illuminator may also be easily positioned to deliver a uniform light intensity to larger treatment areas, such as the back or chest.
  • the narrower panels 10b, lOd are dimensioned such that the panels act as "lighted hinges.”
  • the illuminator “bends" at the narrower panels 10b, lOd, where traditionally the "bend” would occur substantially at the hinge itself.
  • the present illuminator instead of an unlighted "bent” portion as would occur in the conventional illuminator, provides a "bent" portion that is also configured to emit light, thereby helping to reduce optical dead space without requiring large amounts of power differentiation among the light sources of each panel to provide the required fill-in light.
  • FIGS The effects of this configuration can be best seen in a comparison of FIGS.
  • FIG. 7 illustrates the light uniformity produced by a conventional illuminator, measured with a cosine response detector, which mimics the response of a patient's skin to the incident of light as described above, at a distance of two inches.
  • Total light dose in terms of J/cm 2 , was measured based on emitted irradiance (W/cm 2 ) over time (in seconds).
  • the targeted treatment area shown is a patient's head, where height is shown as the y-axis and rotation angle from the center of the emitting surface is shown as the x-axis. As can be seen in FIG.
  • the illuminator may be constructed of at least one curvilinear member.
  • the arcuate illuminator may have substantially curved portions extending from a substantially flat portion provided between the substantially curved portion.
  • the patient's face may be positioned so as to be opposed to the substantially flat portion, such that at least three sides of the patient's head are surrounded by the illuminator.
  • the patient's face may be directly opposed to a first portion of the illuminator, while the left and right sides of the patient's head may be opposed to second and third portions, respectively.
  • FIG. 8 illustrates the light uniformity produced by an
  • the targeted treatment area is the same as that measured in FIG. 7.
  • the light output uniformity produced by the illuminator is greatly enhanced across the patient's face and exhibits little to no deviation from the light output measured in the center of the patient's face to the light output measured at the edges of the patient's face.
  • total light doses of about 10 J/cm 2 are provided across all regions of the face, including the center of the face (for example, the patient's nose), the patient's check areas, and the outer boundaries of the patient's cheek areas, such as the ears and forehead.
  • the measured output over an active emitting area is within 60% of the measured maximum (over the entire active emitting area) measured with a cosine response detector over all operation distances. More preferably, the measured output over the emitting area is within 70% of the measured maximum over a distance of two and four inches. Even more preferably, the measured output over the emitting area is within 80% of the measured maximum over a distance of two and four inches.
  • anhydrous ALA is admixed with a liquid diluent just prior to its use.
  • the ALA admixture is topically applied to the lesions using a point applicator to control dispersion of the ALA admixture.
  • the admixture may be applied in accordance with the techniques disclosed in U.S. Patent Application No. 15/371,363, filed on December 7, 2016, which is hereby incorporated by reference in its entirety for the background, apparatuses and methods described therein. After the initial application of the ALA admixture has dried, one or more subsequent applications may be similarly applied. Approximately 10-20%) solution of ALA is administered .
  • the lesions are irradiated by the adjustable illuminator according to the present disclosure.
  • the illuminator irradiates the lesions with a uniform blue light for a prescribed period.
  • the visible light has a nominal wavelength of 417 nm.
  • Such embodiments thus provide a method for photodynamically diagnosing or treating a contoured surface of a patient, which includes providing the adjustable illuminator described above, placing the patient in the illuminator, and illuminating the patient to diagnose or treat the patient.
  • the patient may be illuminated to treat actinic keratosis, acne, photo-damaged skin, cancer, warts, psoriasis, or other dermatological conditions.
  • the method may also be used to remove hair and diagnose and treat cancer.
  • the total light dose (J/cm 2 ) is equal to irradiance (W/cm 2 ) multiplied by time (sec)
  • one parameter that needs to be controlled for delivery of the correct treatment light dose is exposure time. This may be accomplished by the timer described above, which can control the electrical power supplied to the LED arrays 60 appropriately, and which can be set by the physician. Data has shown that 10 J/cm 2 delivered from a source with an irradiance density of 10 mW/cm 2 , or an irradiance density of about 9.3 to about 10.7 mW/cm 2 , produces clinically acceptable results for desired treatment areas (e.g., face, scalp, extremities).
  • this light dose will require an exposure time of 1000 seconds (16 min., 40 sec).
  • the illuminator may be used to treat a patient at higher power such that less time is required for effective treatment.
  • the adjustable illuminator may deliver an irradiance density of 20 mW/cm 2 for an exposure time of 500 seconds (8 min. 20 sec) to deliver a clinically acceptable light dose of 10 J/cm 2 .
  • the adjustable illuminator may include higher power ranges, such as 30 mW/cm 2 , over an exposure time resulting in a light dose of 10 J/cm 2 .
  • a selected light dose may also be administered by additionally or alternatively varying the irradiance density over treatment time.
  • a parameter which is controlled is the temperature to which the illuminator is heated, as discussed below.
  • a method of treatment includes warming up an illuminator so as to cause heat to be emitted from the illuminator, and exposing a patient's skin to the illuminator.
  • the heat accelerates the conversion of the ALA to porphyrin (e.g., photosensitive porphyrin or proto porphyrin).
  • porphyrin e.g., photosensitive porphyrin or proto porphyrin
  • the relationship between temperature exposure and ALA conversion is non-linear, and the enzymatic pathways responsible for the conversion are highly sensitive to temperature.
  • increasing the temperature by approximately 2 °C may approximately double the rate of production of protoporphyrin IX (PpIX), for example.
  • increasing the heat output of the illuminator e.g. by approximately 2 °C, may produce an effect after about 20 minutes of treatment which is comparable to that realized over the course of 1-3 hours of treatment, without increased temperature.
  • a method includes turning on a light such as LEDs 60, and turning on a heating element of the illuminator.
  • the method may include turning on both the LEDS 60 and the heating element simultaneously, such that light and heat are both applied during a treatment period.
  • the method may further include turning on the LEDs 60 after a period in which the heater heats up (e.g., a 5 minute warm-up period).
  • the total acceptable light dose delivered to the patient may be approximately 10-20 J/cm 2 .
  • the embodiment may be from about 10 minutes to about 1 hour.
  • the total acceptable light dose in an exemplary embodiment may be about 10-40 J/cm 2 .
  • the treatment period may be longer than 1 hour or shorter than ten minutes, and the acceptable light dose may be less than 10 J/cm 2 or more than 40 J/cm 2 , depending on the clinical circumstances.
  • the LEDS 60 and a heating element (a heat source) 160 may not be turned on simultaneously, but in a consecutive manner.
  • the ALA may be applied.
  • the heating element may be activated, to apply heat to the patient's skin for a first treatment period for a thermal soak, which may be 20-30 minutes, for example. It has been found that the surface temperature of a face will stabilize in about 5 minutes.
  • light may be applied for a second treatment period, e.g., about 8-15 minutes.
  • the total light dose delivered to the patient may be approximately 10-20 J/cm 2 .
  • at least a portion of the heat may be delivered through one or more heating pads positioned on a patient's skin.
  • such a process is carried out for treating a dermatological condition of the patient, for example.
  • the treatment period in an exemplary embodiment may be from about 10 minutes to about 1 hour.
  • the total acceptable light dose in an exemplary embodiment may be about 10-40 J/cm 2 .
  • the treatment period may be longer than 1 hour or shorter than ten minutes, while the acceptable light dose may be less than 10 J/cm 2 or more than 40 J/cm 2 , depending on the clinical circumstances.
  • a method of treatment further includes recording data indicative of temperature for at least one node in a volume, and recording data indicative of temperature for at least one additional node in the volume.
  • the volume may be a control volume of cubic or other form corresponding at least in part to a portion of the patient's skin which is exposed to the illuminator.
  • Figs. 9A and 9B illustrate an apparatus according to an embodiment of the present disclosure.
  • the apparatus is an illuminator including certain components shown, for example, in Figs. 2A-2B.
  • the illuminator includes a frame 150 into which panels lOa-lOe are assembled.
  • a heat source (heating element) 160 is assembled in the frame 150.
  • the heat source 160 may be sandwiched between panels 10b, lOd and positioned at least partially behind panel 10c.
  • the heat source 160 may include curved terminal portions 162, 164 which project beyond the panels, such that at least a portion of the heat source is not obstructed by the panels and is directly exposed to the patient.
  • the heat source 160 may be an infrared quartz heater. Together the panels 10a- lOe, frame 150, and portions 162, 164 create a partially enclosed space which retains a bath of warm air into which a portion of the patient (e.g., the patient's head) may be immersed.
  • the heat source 160 may comprise frame mounted resistance tape heaters.
  • the heat source 160 may comprise a plurality of heaters, including at least one selected from the group including IR LEDs, resistance cartridge heaters, positive temperature coefficient heaters, or IR quartz heaters, as mentioned above.
  • the IR quartz heater is relatively responsive and produces a sufficient heat output, and may be readily controlled, e.g., by a controller 77, which may be a proportional integral derivative (PID) controller. Further, the IR quartz heater is relatively compact and may be integrated into the frame 150 without requiring enlargement of the frame 150.
  • PID proportional integral derivative
  • the heat source 160 may be equipped with at least one controller ( a control unit), such as the controller 77 to heat output to the target treatment.
  • the control unit may be a controller implemented as hardware, software, or a combination of both, such as a memory device storing a computer program and a processor to execute the program.
  • the heat source 160 is controlled by a PID controller with monitoring and over/under temperature limit control.
  • the controller may further include one or more of an input/output (I/O) expansion module and a data logging and field communications access module.
  • the controller may be a microprocessor regulator with software framework drivers programmed to control an input set temperature to a specified tolerance based on feedback from a reference control thermistor 170 discussed below.
  • the heat source is configured to output sufficient heat to reach a predetermined skin or tissue temperature target, e.g., 40 °C ⁇ 2 °C.
  • Fig. 9C illustrates an illuminator according to an embodiment.
  • the illuminator further includes one or more thermistors.
  • the thermistors may be integrated into the illuminator or provided in a kit including a suite of diagnostic tools.
  • a negative temperature coefficient or a positive temperature coefficient thermistor may be provided as a reference control thermistor 170 disposed on or near the heat source 160.
  • the thermistor 170 may be arranged at a portion of the heat source 160 proximate to an upper portion of panel 10c.
  • a temperature measured by the reference control thermistor 170 may be compared to a temperature measured at the exposed skin of the patient, e.g., by a temperature probe placed on the patient's forehead, such as a contact thermocouple.
  • a temperature probe placed on the patient's forehead such as a contact thermocouple.
  • one or more thermocouples may be used to ascertain a relationship between the skin temperature
  • thermocouple temperature thermocouple temperature
  • thermistor 170 a temperature sensed by thermistor 170
  • the one or more thermocouples may be used to ascertain a relationship between skin temperature and control temperatures when the illuminator is originally manufactured, or when a first diagnosis is carried out.
  • a reference or control temperature may be set based on experimentally derived data, and a reference or control temperature against which the thermocouple temperature is compared may be temperature value from a table stored in a memory of a control unit connected to the illuminator.
  • the thermistor may be a programmable thermistor in which one or more temperature values are stored, and after the thermistor is programmed, it may be used to regulate the heat output of heat source 160.
  • the comparison of temperatures may be carried out at one or more locations across the exposed skin of the patient. For example, by carrying out temperature measurement at a plurality of locations across the patient's face, a thermal map of the patient's face may be constructed. A thermal mapping may be performed before and after treatment. Further, the results of the thermal mapping may be compared, e.g., to a user's needs as articulated in a treatment or clinical plan. The results of a patient's thermal mapping may be compared to one or more other patient's thermal mapping data.
  • the heat source 160 may be used in conjunction with fans 70.
  • the fans 70 may be operated to circulate cooling air through the system. Further, cool air or room temperature air, which travels along a path indicated by arrows labeled 'C in Fig. 9C, may be directed toward a heat exchanger in the heat source 160. The heat exchanger heats the cool air. The heated air, which travels along a path indicated by arrows labeled ⁇ ' in Fig. 9C, may be blown at relatively gentle flow rates.
  • the fans 70 are controlled by a controller to provide an air speed of approximately 3-6 knots and a volumetric flow rate of 14 cubic feet per minute (CFM).
  • the fan speed may be constant or variable.
  • a controller (which may be a controller that controls at least one of the LEDs 60 or heat source 160) controls the fans 70.
  • the controller may control the output of one or more of fans 70 by varying the revolutions per minute (RPM) of fans 70, for example.
  • RPM revolutions per minute
  • the heated air may be blown by fans 70 toward the face of the patient, e.g., from a top and bottom of the heat source 160.
  • the air flow creates a bath or pocket of heated air which substantially arounds the patient's skin, such that the patient's face, for example, may be enveloped in warm air.
  • the thermodynamic behavior of the system may allow for controlling the disparity between the temperature at the patient's skin (measured with the contact thermocouple) and the temperature measured by the thermistor, so as to be within about 15 °C, for example.
  • the surface of the patient's skin e.g., their facial skin
  • thermodynamic transfer behavior allows for the air that is being blown and the heat output by the heat source to be modulated in accordance with a desired heating effect of the skin.
  • a desired raise in skin temperature e.g., by 2 °C
  • the controller may be programmed to determine how high and for how long the temperature should be raised in order to heat a patient's skin to a desired level. Further, in at least one embodiment, the controller may also make such a determination with respect to air speed and/or volumetric flow rate. Such determinations by the controller may be made with reference to one or more maps stored in the memory of the controller.
  • one such map is a map correlating the temperature of thermistor 170 to a rise in skin temperature.
  • Another such map is a map correlating the thermistor temperature to the air speed and the volumetric flow rate of the air.
  • the air speed and volumetric flow rate themselves vary at least in part based on the configuration of heat source 160, and more particularly, how the curved portions (plenums) 162, 164 are structured and arranged.
  • the one or more maps stored in memory may correlate one or more of the thermistor temperature, a desired skin temperature, a volumetric flow rate, an air speed, and an air temperature to each other.
  • the controller may reference information from one or more such maps to carry out a precise control of skin temperature.
  • the system may be provided with a plurality of sensors for sensing temperature at a plurality of locations, and the controller may reference the aforementioned maps containing data from such sensors to control the heat source 160 at one or more locations. Further, by taking into account information from the thermal heat maps, heating of the skin at multiple points may be controlled in accordance with a treatment plan. In one embodiment, the use of such map allows the desired skin temperature to be obtained without directly measuring the skin temperature by one or more temperature sensors on the skin, for example.
  • Fig. 9D illustrates an illuminator according to an embodiment, in which heat is emitted to a control volume, e.g., a cubic volume.
  • the heat source 160 may emit heat to a treatment target, such as a target within a cubic volume 172 as shown in Fig. 9D.
  • the cubic volume 172 may have a total height of 6", and the temperature may be measured at a plurality of points in the x, y and z directions of the cubic volume 172. For example, the temperature may be sensed at 3" from a center panel 10c, where a predetermined treatment target is disposed at a center of the cubic volume 172.
  • Fig. 9E depicts the cubic volume 172 wherein a treatment target is a patient's nose, centered in the volume.
  • Fig. 9F is a perspective view showing an exemplary positioning of a patient with respect to the heat source 160 and illuminator.
  • Fig. 10 illustrates a volume with respect to which nodes 1-12 may be defined, with node 10 being a centermost node within the volume, and node 12 being a node outside the volume (e.g., at a distance from the volume).
  • the temperature may be measured at any or all of the nodes so as to construct a thermal map.
  • the data may be recorded every minute, or at a different predetermined time interval.
  • the cubic volume 172 is established as a measurement framework.
  • Measurements of temperature may be taken at one or more of the nodes and compared, for example, to the temperature taken at the thermistor 170. In this manner, the positioning of the patient may be controlled with respect to the illuminator to ensure that the total acceptable light dose is achieved.
  • FIGS. 11 A-B illustrate thermal maps according to an embodiment.
  • FIG. 11 A depicts a thermal map of a patient's skin, prior to application of heat. Prior to application of heat, the average skin temperature was 93.6 °F.
  • the heat source 160 may be warmed up for five minutes, and the patient may then be exposed to light from light source 60 and heat from heat source 160 for about 10 minutes.
  • FIG. 1 IB depicts a thermal map after a five-minute warm up period of the heat source 160 and a ten minute thermal soak. After the warm-up period and ten minute heat soak, the average skin temperature was 102 °F.
  • selected forced convection may be used, as it may have fewer instabilities and narrower variation in temperature over a heated target.
  • an indirect heat application may be employed, such that the patient's skin does not directly contact the heat source 160. Rather, heat is emitted at a distance from the patient's skin, and the controller determines a proposed emission pattern based on the results of a comparison between a plurality of temperature measurements taken at nodes of the control volume 172 to a temperature measurement taken by thermistor 170.
  • the controller may turn the heat source 160 on or off through firmware that takes feedback from the temperature of thermistor 170 and has a firmware setting of +/- 1 degree.
  • a non-contact infrared (IR) sensor such as a laser infrared sensor, may be used to detect skin temperature and supply the sensed skin temperature data to the controller. The input from the non-contact IR sensor may be provided in one or more maps stored in the controller, as further data indicative of skin temperature.
  • the system is not yet at a steady state where it can be controlled to deliver a desired output, but is in a transient state.
  • the non-contact IR sensor may allow for the patient's skin temperature to be detected and for the detection result to be compared to skin temperature values for a plurality of patients.
  • skin temperature data may be data derived from a sample population and stored in a map in the controller. If a given patient's skin temperature is colder than an average skin temperature, the controller may accelerate heating up of the heat source 160 in order to promote warming up of the patient's skin in a more efficient manner. Alternatively, if the patient's skin temperature is comparable to or warmer than the average skin
  • the warm-up process may not be accelerated, but may continue normally.
  • a high skin or tissue temperature was between about 40.3 - 42.6 °C, with an average skin temperature of 41.3 °C.
  • Thermal testing was conducted with application of only light or heat, or both light and heat, at 10 mW/cm 2 and 20 mW/cm 2 . Thermal testing indicated that light itself did not appear to influence the temperature of skin on the patient's face, when the heat was on.
  • FIGS. 12A-D illustrate thermal data without application of light. More particularly, FIG. 12A depicts a thermal map of a patient's skin or tissue temperature before heat was applied, while FIG. 12B depicts a thermal map after heat was applied in a 10 minute soak.
  • FIG. 12C shows skin temperature (thermocouple temperature) and thermistor temperature data for nodes 1-12.
  • FIG. 12D depicts a plot of the thermocouple and thermistor temperature over time, during the thermal soak, for the center node 10.
  • FIGS. 13A-D illustrate thermal data without application of heat.
  • FIG. 13 A depicts a thermal map of a patient's skin or tissue, without applying heat.
  • FIG. 13B depicts a thermal map following light treatment.
  • FIG. 13C shows temperature data
  • FIG. 13D depicts a plot of the thermocouple and thermistor data over time, in a treatment protocol where the heat source 160 was not turned on.
  • FIG. 13D reflects a "light-only" treatment, where there may be an elapse of a predetermined time period between when the light source is first turned on and when the patient's skin temperature is measured. For example, a period of five minutes may elapse between when the light source was first turned on and when the patient's skin temperature is taken, and the patient may then receive light-only treatment for another ten minutes.
  • FIGS. 14A-D illustrate thermal data on a nodal basis, according to an embodiment.
  • FIGS. 14A-D illustrate data according to an embodiment in which the patient is exposed to both light and heat during treatment.
  • FIG. 14 A depicts a thermal map of a patient's skin or tissue temperature before heat treatment.
  • FIG. 14B depicts a thermal map of a patient's skin or tissue temperature after heat treatment.
  • FIG. 14C depicts temperature data, including thermocouple temperature (skin temperature) and thermistor temperature (control temperature) data at node 10, with an irradiance density of 20 mW/cm 2 .
  • FIG. 14D depicts a plot of temperature data over time during a ten minute soak, at 3" from the front panel (e.g., panel 10c), with a control temperature setting of 57 °C.

Abstract

La présente invention concerne un illuminateur pour le diagnostic ou le traitement photodynamique d'une surface. Ledit illuminateur comprend une pluralité de panneaux. L'illuminateur comprend en outre une pluralité de sources lumineuses, chacune montée sur l'un parmi la pluralité de panneaux. La pluralité de sources lumineuses sont configurées pour irradier la surface avec une lumière visible d'intensité sensiblement uniforme. L'illuminateur comprend également une source thermique configurée pour émettre de la chaleur vers un patient. La chaleur augmente la génération d'un agent photoactivable et raccourcit ainsi le temps nécessaire pour achever une thérapie photodynamique.
PCT/US2018/027070 2017-04-14 2018-04-11 Illuminateurs réglables et procédés de thérapie photodynamique et diagnostic WO2018191356A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018250595A AU2018250595A1 (en) 2017-04-14 2018-04-11 Adjustable illuminators and methods for photodynamic therapy and diagnosis
CA3057840A CA3057840A1 (fr) 2017-04-14 2018-04-11 Illuminateurs reglables et procedes de therapie photodynamique et diagnostic
JP2019555822A JP7382832B2 (ja) 2017-04-14 2018-04-11 光線力学療法及び診断のための調節可能な照射装置及び方法
JP2023146114A JP2023162440A (ja) 2017-04-14 2023-09-08 光線力学療法及び診断のための調節可能な照射装置及び方法
AU2023285927A AU2023285927A1 (en) 2017-04-14 2023-12-22 Adjustable illuminators and methods for photodynamic therapy and diagnosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/487,991 US10603508B2 (en) 2015-10-15 2017-04-14 Adjustable illuminators and methods for photodynamic therapy and diagnosis
US15/487,991 2017-04-14

Publications (2)

Publication Number Publication Date
WO2018191356A2 true WO2018191356A2 (fr) 2018-10-18
WO2018191356A3 WO2018191356A3 (fr) 2018-11-22

Family

ID=62067901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/027070 WO2018191356A2 (fr) 2017-04-14 2018-04-11 Illuminateurs réglables et procédés de thérapie photodynamique et diagnostic

Country Status (4)

Country Link
JP (2) JP7382832B2 (fr)
AU (2) AU2018250595A1 (fr)
CA (1) CA3057840A1 (fr)
WO (1) WO2018191356A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111773550A (zh) * 2020-07-10 2020-10-16 北京大学第三医院(北京大学第三临床医学院) 一种具备多种光谱光源的光化学诊疗设备
CN112473019A (zh) * 2020-12-16 2021-03-12 迈尔健康科技(深圳)有限公司 一种保持红外热疗辐射平衡的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022258649A1 (fr) * 2021-06-08 2022-12-15 Inframedic Ag Dispositif, unité et module de chauffage à infrarouge pour apporter de la chaleur
EP4119190A1 (fr) * 2021-07-13 2023-01-18 Inframedic AG Dispositif et module de chauffage infrarouge permettant de fournir de la chaleur

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223071B1 (en) 1998-05-01 2001-04-24 Dusa Pharmaceuticals Inc. Illuminator for photodynamic therapy and diagnosis which produces substantially uniform intensity visible light

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492185U (fr) * 1972-04-06 1974-01-10
JPH11239624A (ja) * 1998-02-25 1999-09-07 Omron Corp 赤外線治療器
DE10149462A1 (de) 2001-10-08 2003-04-17 Waldmann Gmbh & Co Herbert Bestrahlungsgerät insbesondere zur fotodynamischen Therapie
AU2003301111A1 (en) 2002-12-20 2004-07-22 Palomar Medical Technologies, Inc. Apparatus for light treatment of acne and other disorders of follicles
TWM279352U (en) 2005-05-06 2005-11-01 Lighthouse Technology Co Ltd Photo power supply device capable of being controlled by programs
US20060287696A1 (en) * 2005-06-21 2006-12-21 Wright David W Heat and light therapy treatment device and method
EP2644228A1 (fr) * 2007-06-27 2013-10-02 The General Hospital Corporation Procédé et appareil d'inhibition optique de thérapie photodynamique
JP2009055969A (ja) 2007-08-30 2009-03-19 Panasonic Corp 光線治療器
US20130190845A1 (en) * 2012-01-25 2013-07-25 Tria Beauty, Inc. Edge-Lit Apparatus and Methods for Providing Light-Based Therapy
US20140067024A1 (en) * 2012-08-30 2014-03-06 Photocure Asa Dual panel photodynamic therapy lamp
CA2902360A1 (fr) * 2013-03-01 2014-09-04 Klox Technologies Inc. Dispositif phototherapeutique, methode et utilisation
KR101480238B1 (ko) 2013-07-26 2015-01-09 가톨릭대학교 산학협력단 굴곡부 조사를 위한 광역동요법용 치료기구
US10064940B2 (en) 2013-12-11 2018-09-04 Siva Therapeutics Inc. Multifunctional radiation delivery apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223071B1 (en) 1998-05-01 2001-04-24 Dusa Pharmaceuticals Inc. Illuminator for photodynamic therapy and diagnosis which produces substantially uniform intensity visible light
US6709446B2 (en) 1998-05-01 2004-03-23 Dusa Pharmaceuticals, Inc. Illuminator for photodynamic therapy and diagnosis which produces substantially uniform intensity visible light
US7190109B2 (en) 1998-05-01 2007-03-13 Dusa Pharmaceuticals, Inc. Illuminator for photodynamic therapy
US7723910B2 (en) 1998-05-01 2010-05-25 Dusa Pharmaceuticals, Inc. Method of photodynamically diagnosing or treating a contoured surface
US8030836B2 (en) 1998-05-01 2011-10-04 Dusa Pharmaceuticals, Inc. Illuminator for photodynamic therapy
US8216289B2 (en) 1998-05-01 2012-07-10 Dusa Pharmaceuticals, Inc. Illuminator for photodynamic therapy
US8758418B2 (en) 1998-05-01 2014-06-24 Dusa Pharmaceuticals, Inc. Illuminator for photodynamic therapy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111773550A (zh) * 2020-07-10 2020-10-16 北京大学第三医院(北京大学第三临床医学院) 一种具备多种光谱光源的光化学诊疗设备
CN112473019A (zh) * 2020-12-16 2021-03-12 迈尔健康科技(深圳)有限公司 一种保持红外热疗辐射平衡的方法及装置

Also Published As

Publication number Publication date
AU2018250595A1 (en) 2019-10-17
CA3057840A1 (fr) 2018-10-18
WO2018191356A3 (fr) 2018-11-22
JP2023162440A (ja) 2023-11-08
AU2023285927A1 (en) 2024-01-25
JP7382832B2 (ja) 2023-11-17
JP2020516393A (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
US11904180B2 (en) Adjustable illuminators and methods for photodynamic therapy and diagnosis
AU2023285927A1 (en) Adjustable illuminators and methods for photodynamic therapy and diagnosis
US11697028B2 (en) Adjustable illuminator for photodynamic therapy and diagnosis
US20230321243A1 (en) Methods for photodynamic therapy
US20220176148A1 (en) Device for delivering precision phototherapy
ES2237102T3 (es) Iluminador para terapia fotodinamica.
CN103801007B (zh) 一种紫外光治疗仪及其光强自动调节方法
US10286226B2 (en) Phototherapy device for the treatment of hyperbilirubinemia
JP2008245836A (ja) 光治療器
US20190000704A1 (en) Autoregulation of irradiance in phototherapy systems
WO2012011042A2 (fr) Améliorations en photothérapie
CN104971441A (zh) 一种紫外光治疗设备及其光强自动调节方法
JP2021521960A (ja) 光線療法システム及び方法
TWM501265U (zh) 光波治療裝置
US20230218923A1 (en) Photodynamic antimicrobial therapy device
KR20130021045A (ko) 피부 관리 장치 및 피부 관리 시스템
KR20220037933A (ko) 진균 감염 치료 장치
KR20220113900A (ko) 진균 감염 치료 장치
WO2023278376A1 (fr) Systèmes et procédés de commande de luminothérapie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18720941

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 3057840

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019555822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018250595

Country of ref document: AU

Date of ref document: 20180411

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18720941

Country of ref document: EP

Kind code of ref document: A2