WO2018190560A1 - 광학물품 및 이를 포함하는 광학필터 - Google Patents

광학물품 및 이를 포함하는 광학필터 Download PDF

Info

Publication number
WO2018190560A1
WO2018190560A1 PCT/KR2018/003953 KR2018003953W WO2018190560A1 WO 2018190560 A1 WO2018190560 A1 WO 2018190560A1 KR 2018003953 W KR2018003953 W KR 2018003953W WO 2018190560 A1 WO2018190560 A1 WO 2018190560A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
absorption
optical filter
wavelength
equation
Prior art date
Application number
PCT/KR2018/003953
Other languages
English (en)
French (fr)
Inventor
최정옥
정준호
양선호
정진호
김주영
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to CN201880020222.6A priority Critical patent/CN110462462B/zh
Priority to US16/495,861 priority patent/US10908081B2/en
Publication of WO2018190560A1 publication Critical patent/WO2018190560A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to an optical article and an optical filter including the same, and more particularly, to an optical article and an optical filter including the same, which can suppress light transmittance in the wavelength range of 800 nm to 1,200 nm.
  • An imaging device using a solid-state imaging device such as a CMOS image sensor (CIS) blocks light in the range of 800 nm to 1,200 nm in the near-infrared region detected by the sensor in order to obtain a natural color image as seen by a human eye.
  • CIS CMOS image sensor
  • Such a conventional optical component is manufactured by depositing a dielectric multilayer film on both sides of a reflective near-infrared cut filter or a fluoride phosphate-based glass containing divalent copper ions as a coloring component.
  • Absorption type near-infrared cut off filter etc. are mentioned.
  • the reflective near-infrared cut filter used in the related art a ghost phenomenon in which an unintended image is taken when the image is taken by the image pickup device due to the internal reflection between the optical filter and the microlens of the CIS occurs.
  • An object of the present invention is excellent in transmittance to light having a wavelength in the visible light region, and at the same time selectively and / or effectively block the light in the wavelength range of 800nm to 1,200nm to provide a high resolution even under low light shooting environment,
  • the present invention provides an optical article suitable for use in a high resolution image pickup device that can not only prevent flare, but also can be thinned.
  • Another object of the present invention is to provide an optical filter comprising the optical article.
  • Still another object of the present invention is to provide an imaging device including the optical filter.
  • the absorption spectrum measured using a spectrophotometer in the wavelength range of 380 nm to 1,200 nm has two or more absorption peaks including the following first and second absorption peaks,
  • the first absorption peak has an absorption maximum lambda max1 in the wavelength range of 650 nm to 750 nm
  • the second absorption peak has an absorption maximum lambda max2 in the wavelength range of 980 nm to 1,200 nm,
  • the absorbance value (OD1) at the absorption maximum of the first absorption peak When normalizing the absorbance value (OD1) at the absorption maximum of the first absorption peak to be 1, the absorbance value (OD2) at the absorption maximum of the second absorption peak provides an optical article satisfying the following equation:
  • the present invention provides an optical filter including the optical article.
  • the optical filter according to the present invention comprises two or more near-infrared absorbing pigments and includes an optical article having two or more absorption peaks including first and second absorption peaks in a wavelength range of 380 nm to 1,200 nm to provide a visible light region. It exhibits high transmittance with respect to light having a wavelength and suppresses flare phenomenon by suppressing transmittance with respect to light having a wavelength in the range of 800 nm to 1,100 nm to 0.5% or less, and also makes thinning of the imaging device easy and assembly process. The production cost is reduced by increasing the yield and productivity at.
  • FIG. 1 is a cross-sectional view showing the structure of an optical article according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of an optical filter according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a bent state of the optical filter:
  • a to C and (a) to (g) are as follows.
  • a and B specimens ⁇ in the (-) direction
  • C specimens ⁇ in the (+) direction
  • Figure 4 is a graph showing the absorbance curve normalized for each of the optical article according to the content of the pigment for absorbing near infrared rays according to an embodiment of the present invention.
  • 5 and 6 are graphs showing the spectral transmittances of the first and second selective wavelength reflecting layers according to the exemplary embodiment of the present invention, respectively.
  • FIG. 11 is an image photographed using an image pickup device equipped with an optical filter according to Example 5, Example 7, Comparative Example 4, and Comparative Example 6 according to an embodiment of the present disclosure.
  • visible light refers to light in a wavelength range that can be detected by the human eye among electromagnetic waves, and means light in a wavelength range of 380 nm to 650 nm.
  • “near-infrared ray” is an electromagnetic wave which is located outside the end of the red line and has a wavelength longer than visible light, and means light in the wavelength range of 650 nm to 3 ⁇ m.
  • the degree of blocking of the "near-infrared” may be expressed as absorbance with respect to the near-infrared.
  • the "absorption band” means a wavelength range in which light is absorbed, that is, a wavelength having maximum absorbance at the absorption band.
  • the "degree of warpage” is a measure of the degree of warpage of the optical filter, and is formed by connecting the ends of the specimens b in a straight line as shown in FIGS. 3A and 3B. It means the height of the point (f) having the largest value among the heights for any point existing on the inner surface of the specimen (b).
  • the "inner surface of the specimen” refers to a surface of which both sides of the specimen are warped with the smaller length, and the opposite surface is referred to as the "outer surface of the specimen”. The higher the value is, the greater the degree of warpage (c) of the specimen (b).
  • a "bending direction” means the direction to which an optical filter bends, and can represent it in a (+) direction or a (-) direction.
  • the bending point c is the largest on the inner surface of the specimen b based on the surface e formed by connecting the ends of the specimen b in a straight line. If f) is present between the horizontal plane (a) and the center plane (d), it can be said that the deflection of the specimen (b) has a negative direction.
  • the "middle surface (d)" is a surface (e) formed by connecting the end of the specimen (b) with the point (f or g) with the largest deflection degree (c) on the inner surface of the specimen (b) in a straight line (e)
  • a plane existing between) means a plane parallel to plane e at a position where the height of the point f or g is 1/2.
  • the "horizontal plane (a)" is a plane on which the specimen is supported when measuring the degree of warpage of the specimen (b), and is a specimen of a three-dimensional surface measuring apparatus such as an ultra-accuracy 3-D profilometer. And a fixed surface.
  • alkyl group means a substituent derived from a saturated hydrocarbon in a linear or branched form.
  • alkyl group for example, methyl group (ethyl group), ethyl group (ethyl group), n-propyl group (n-propyl group), isopropyl group (iso-propyl group), n-butyl group (n -butyl group, sec-butyl group, t-butyl group, tert-butyl group, n-pentyl group, 1,1-dimethylpropyl group (1,1- dimethylpropyl group), 1,2-dimethylpropyl group (1,2-dimethylpropyl group), 2,2-dimethylpropyl group (2,2-dimethylpropyl group), 1-ethylpropyl group (1-ethylpropyl group), 2- 2-ethylpropyl group, n-hexyl group, 1-methyl-2-ethylpropyl group, 1-ethyl-2-methylpropyl group (1-ethyl-2-methylpropyl group (1-ethyl
  • alkyl group may have 1 to 20 carbon atoms, for example, 1 to 12 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms.
  • cycloalkyl group means a substituent derived from a monocyclic saturated hydrocarbon.
  • cycloalkyl group for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group ( cycloheptyl group), cyclooctyl group, and the like.
  • cycloalkyl group may have 3 to 20 carbon atoms, for example, 3 to 12 carbon atoms, or 3 to 6 carbon atoms.
  • aryl group means a monovalent substituent derived from an aromatic hydrocarbon.
  • the "aryl group” for example, a phenyl group (phenyl group), naphthyl group (naphthyl group), anthracenyl group (anthracenyl group), phenanthryl group naphthacenyl group (naphthacenyl group), pyrenyl group (pyrenyl group), tolyl group (tolyl group), biphenyl group (biphenyl group), terphenyl group (terphenyl group), chrycenyl group (chrycenyl group), spirobifluorenyl group (spirobifluorenyl group), fluoranthenyl group ( fluoranthenyl group, fluorenyl group, fluorenyl group, perylenyl group, indenyl group, azulenyl group, heptarenyl group, heptalenyl group, phenalenyl group And phenanthrenyl
  • the "aryl group” may have 6 to 30 carbon atoms, for example, 6 to 10 carbon atoms, 6 to 14 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • heteroaryl group means “aromatic heterocycle” or “heterocyclic” derived from a monocyclic or condensed ring.
  • the “heteroaryl group” is at least one of nitrogen (N), sulfur (S), oxygen (O), phosphorus (P), selenium (Se) and silicon (Si) as a hetero atom, for example, one, two Dogs, three or four.
  • the "heteroaryl group” for example, pyrrolyl group (pyrrolyl group), pyridyl group (pyridyl group), pyridinyl group (pyridinyl group), pyridazinyl group, pyrimidinyl group (pyrimidinyl group) ), Pyrazinyl group, triazolyl group, tetrazolyl group, tetrazolyl group, benzotriazolyl group, pyrazolyl group, imidazolyl group ), Benzimidazolyl group (benzimidazolyl group), indolyl group (indolyl group), indolinyl group (indolinyl group), isoindolyl group, indolinzinyl group (indolizinyl group), purinyl group ), Inindazolyl group, quinolyl group, isoquinolinyl group, isoquinolinyl group, quinolizinyl
  • thiazolyl group (thiazolyl group), isothiazolyl group (isothiazolyl group), benzothiazolyl group (benzothiazolyl group), benzothiadiazolyl group (benzothiadiazolyl group), phenothia Phenothiazinyl group, isoxazolyl group, furazanyl group, furazanyl group, phenoxazinyl group, oxazolyl group, oxazolyl group, benzoxazolyl group, Oxadiazolyl group, pyrazoloxazolyl group, imidazothiazolyl group, thienofuranyl group, furopyrrolyl group, pyridoxazinyl group and compounds containing at least two heteroatoms such as (pyridoxazinyl group).
  • heteroaryl group may have 2 to 20 carbon atoms, for example, 4 to 19 carbon atoms, 4 to 15 carbon atoms, or 5 to 11 carbon atoms.
  • the heteroaryl group may have a ring member of 5 to 21.
  • aralkyl group means a saturated hydrocarbon substituent having a monovalent substituent derived from an aromatic hydrocarbon at the hydrogen site of the terminal hydrocarbon. That is, the “aralkyl group” refers to an alkyl group in which the chain terminal is substituted with an aryl group, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthalenylmethyl group. ) And a naphthalenylethyl group.
  • average transmittance means an arithmetic mean value of transmittance in a predetermined wavelength range in a transmittance curve according to wavelength when measuring a transmission spectrum of an optical article or an optical filter using a spectrophotometer.
  • maximum transmittance means a maximum value of transmittance in a predetermined wavelength range in a transmittance curve according to wavelength when measuring a transmission spectrum of an optical article and an optical filter using a spectrophotometer.
  • the "incidence angle” means an angle between the light source and the direction perpendicular to the main surface of the optical article or the optical filter when measuring a transmission spectrum or an absorption spectrum of the optical article and the optical filter using a spectrophotometer. Unless otherwise stated, the angle of incidence means the measurement at 0 °.
  • the absorption spectrum measured using a spectrophotometer in the wavelength range of 380 nm to 1,200 nm has two or more absorption peaks including the following first and second absorption peaks,
  • the first absorption peak has an absorption maximum lambda max1 in the wavelength range of 650 nm to 750 nm
  • the second absorption peak has an absorption maximum lambda max2 in the wavelength range of 980 nm to 1,200 nm,
  • the absorbance value (OD1) at the absorption maximum of the first absorption peak When normalizing the absorbance value (OD1) at the absorption maximum of the first absorption peak to be 1, the absorbance value (OD2) at the absorption maximum of the second absorption peak provides an optical article satisfying the following equation:
  • An imaging device using a solid-state imaging device blocks light in the range of 800 nm to 1,200 nm in the near-infrared region detected by the sensor and obtains 400 nm corresponding to the visible light region in order to obtain an image of natural color as seen by a human eye.
  • high resolution, thinning, and wide-angle imaging devices have been rapidly developed, providing high resolution in low-light imaging environments and strictly suppressing image degradation such as color distortion and flare even under natural or artificial lighting.
  • the demand for optical components for devices is also increasing.
  • the present inventors photograph a subject that is exposed to a light source and an illumination (regardless of natural or artificial lighting) or a subject including the light source and the illumination, which covers a wide wavelength range and emits light in the near infrared region together. It was found that the flare phenomenon was intensified, and by introducing an optical article and an optical filter including the optical article that can strictly control the light of a specific wavelength region incident to the image sensor to a certain level regardless of the incident angle, It was found that a clear image without flare can be obtained. In addition, in order to provide high resolution even in a low-light environment, the inventors have invented an optical article for an optical filter that can simultaneously provide a high transmittance in the visible light region.
  • the optical article according to the present invention may include two or more pigments for absorbing near infrared rays.
  • the optical article may include two or more kinds of near-infrared absorbing pigments, exhibit high transmittance with respect to light having a wavelength in the visible light region, and suppress transmittance with respect to light having a wavelength in the range of 800 nm to 1,200 nm.
  • the optical article may have one or more absorption peaks in the wavelength range of 650 nm to 750 nm and the wavelength range of 980 nm to 1,200 nm, respectively, and the absorption peak may include first and second absorption peaks having absorption maxima ⁇ max1 and ⁇ max2. Can be.
  • the absorbance value OD1 at the absorption maximum of the first absorption peak is normalized to be 1
  • the absorbance value OD2 at the absorption maximum of the second absorption peak may be 0.08 or more and 0.25 or less. Specifically 0.09 to 0.17; 0.13 to 0.17; 0.08 to 0.18; 0.15 to 0.175; 0.09 to 0.13; 0.16 to 0.24; 0.15 to 0.25; Or 0.16 to 0.235 to satisfy Equation 1.
  • the absorbance value (OD2) at the absorption maximum of the second absorption peak may satisfy the condition of Equation 1 at 0.13 to 0.18.
  • the optical article according to the present invention may include a transparent substrate, and the transparent substrate may have a structure including two or more kinds of near-infrared absorbing pigments for absorbing light in the wavelength range of 600 nm to 1,200 nm.
  • the optical article may include a transparent substrate 10, and the transparent substrate 10 may include a near-infrared absorbing pigment 11 and a base layer 12. It may include.
  • the near-infrared absorbing pigment 11 is applied to the near-infrared absorbing layers 13, 13a and / or 13b formed on one side and / or both sides of the base layer 12, as shown in FIGS. 1A and 1B. It may be included or may be included in a form uniformly dispersed in the base layer 12 as shown in (c) of FIG.
  • the transparent substrate 10 provided in the optical article according to the present invention will be described in more detail for each component.
  • the substrate layer 12 serves as a base substrate of the transparent substrate and the optical filter including the same, and is not particularly limited as long as it is transparent.
  • the base layer 12 may use a variety of materials known in the art, which may also be appropriately selected and used according to required functions and uses.
  • the base material layer 12 for example, one or more may be selected from glass, a polymer resin, and the like.
  • the polymer resin include polyester resins, polycarbonate resins, acrylic resins, polyolefin resins, cyclic olefin resins, polyimide resins, polyamide resins, and polyurethane resins.
  • the resin may be used in the form of a single sheet, laminated sheet or coextruded material.
  • the base layer 12 may be made of a polymer resin according to an exemplary form, and may include a polyester resin that is advantageous in heat resistance and the like as a base resin.
  • a polyester resin that is advantageous in heat resistance and the like as a base resin.
  • the polyester-based resin at least one selected from the group consisting of polyethylene terephthalate (PET: Polyethylene Naphthalate), polybutylene terephthalate (PBT: Polybutylene Terephthalate) But it is not limited thereto.
  • the base layer 12 may be selected from polyolefin resin, and the polyolefin resin may include, for example, polypropylene (PP).
  • the near-infrared absorbing pigment 11 may be used without particular limitation as long as it is a dye, pigment and / or metal complex that absorbs light in the wavelength range of 600 nm to 1,200 nm.
  • the near-infrared absorbing pigment 11 may have an absorption maximum in the wavelength range of 650 nm to 750 nm and the wavelength range of 980 nm to 1,200 nm when the absorption spectrum is measured using a spectrophotometer in the wavelength range of 380 nm to 1,200 nm.
  • the first and The second pigment may be used in a uniformly mixed form (see FIGS. 1A and 1C).
  • each of the first and second dyes may be used alone in each of the absorbing layers 13a and 13b. Or uniformly mixed forms (see FIG. 1B).
  • the near-infrared absorbing dye (11) for example, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, porphyrin compounds, benzoporphyrin compounds, squarylium compounds, anthraquinone compounds, and croconium compounds , Dimonium-based compounds, dithiol metal complex compounds and the like.
  • the near-infrared absorbing dye 11 may optionally include any one or more of the compounds represented by the following Chemical Formulas 1 and 2 as the first and second pigments:
  • A is an aminophenyl group; Indolyl methylene group; Or indolinyl,
  • any one or more of hydrogen present in the aminophenyl group, indolyl methylene group or indolinyl group is independently of each other hydrogen, halogen group, hydroxy group, cyano group, nitro group, carboxyl group, alkyl group having 1 to 20 carbon atoms, 3 to 20 carbon atoms A cycloalkyl group, a C1-C10 alkoxy group, a C7-20 aralkyl group, a sulfonamide group, or a C1-C4 alkyl group, a C1-C4 haloalkyl group, or a C7-20 aralkyl group Or an unsubstituted amide group;
  • Chemical Formula 1 may be any one of compounds represented by Chemical Formulas 1a to 1c:
  • a 1 , a 2, and a 3 are each independently hydrogen, a halogen group, a hydroxyl group, a cyano group, a nitro group, a carboxy group, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, Or an amide group unsubstituted or substituted with an aralkyl group having 7 to 20 carbon atoms, a sulfonamide group, or an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, n is 1 or 2, and X ⁇ is perchlorate (ClO 4 ⁇ ) or hexafluoroantimonate (SbF 6 - it may be), or to any one of the anion represented by the formula 2a) to (2c -), phosphate (PF 6 hexafluoro -), tetrafluoroborate (BF 4.
  • R 3 is independently a monofluoroalkyl group having 1 to 8 carbon atoms or a trifluoroalkyl group having 1 to 8 carbon atoms
  • R 4 is independently hydrogen, a nitro group or a cyano group
  • R 5 is independently a carbon atom 1
  • the content of the near-infrared absorbing pigment 11 is 1.07 to 1.16 parts by weight based on 100 parts by weight of the resin constituting the matrix of the near-infrared absorbing layers 13, 13 (a) and 13 (b); 1.11 to 1.16 parts by weight; 1.07 to 1.21 parts by weight; Or 1.11 to 1.21 parts by weight.
  • the present invention provides an optical filter including the optical article.
  • the optical filter according to the present invention a transparent substrate containing two or more pigments for absorbing near infrared rays; Including a selective wavelength reflection layer formed on one or both surfaces of the transparent substrate, when measuring the transmission spectrum using a spectrophotometer in the wavelength range of 380nm to 1,200nm, the following conditions (A) and (B) may be satisfied:
  • the average transmittance of light incident on the optical filter at an incident angle of 0 ° and 30 ° is at least 86%
  • the optical filter according to the present invention includes an optical article containing first and second pigments having an absorption maximum in the wavelength range of 650 nm to 750 nm and the wavelength range of 980 nm to 1,200 nm, respectively. It can exhibit an average transmittance of at least 86%, at least 87%, at least 88% and at least 89% in the wavelength range of about 430 nm to 565 nm, which is the visible region, at both 0 ° or 30 ° conditions.
  • the optical filter may suppress the maximum transmittance such that the maximum transmittance is 0.5% or less, 0.4% or less, or 0.3% or less in all incident angle conditions of 0 ° or 30 ° in the near infrared wavelength range of about 800 nm to 1,100 nm. .
  • the wavelength of 430 nm to 565 nm The average transmittance and the maximum transmittance in the wavelength range of 800 nm to 1,100 nm are 86% or more and 0.3% or less, 87% or more and 0.3% or less, 88% or more and 0.3% or less or 89% or more and 0.5% or less, respectively (A) And (B) conditions may be satisfied.
  • the maximum transmittance in the 1,100 nm wavelength region can satisfy the above conditions (A) and (B) with 88% or more and 0.3% or less, respectively.
  • the optical filter according to the present invention allows the optical filter according to the present invention to exhibit a high transmittance for light having a wavelength in the visible region by including the optical article, thereby enabling the image acquisition having a high resolution even in a low-light dark shooting environment, or 800 nm to 1,100
  • the transmittance of light having a wavelength in the range of nm to 0.5% or less it is possible to faithfully reproduce the light source that emits light in the near-infrared region or the object to be photographed by a level similar to that of human visual recognition.
  • the flare can provide a suppressed image.
  • it means that it is possible to meet the wide angle of the imaging device by providing a high visible light average transmittance and a low near infrared maximum transmittance at both the incident angle 0 ° and 30 ° conditions.
  • the optical filter according to the present invention includes a transparent substrate 10 including a near-infrared absorbing pigment 11 and a substrate layer 12, and selected wavelengths positioned on one side and / or both sides of the transparent substrate. It may have a structure including a reflective layer 20 and / or 30.
  • the transparent substrate 10 includes a base layer 12 to serve as a base substrate of the optical filter.
  • the transparent substrate 10, that is, the optical article may have two or more absorption peaks each having an absorption maximum in the wavelength range of 650 nm to 750 nm and the wavelength range of 980 nm to 1,200 nm, including two or more near infrared absorption pigments. May include first and second absorption peaks.
  • the absorbance value OD1 at the absorption maximum of the first absorption peak is normalized to be 1
  • the absorbance value OD2 at the absorption maximum of the second absorption peak may be 0.08 or more and 0.25 or less.
  • the absorbance value (OD2) at the absorption maximum of the second absorption peak may satisfy the condition of Equation 1 at 0.13 to 0.18.
  • the selective wavelength reflecting layers 20 and 30 reflect the light having a wavelength of 650 nm or more, specifically, a wavelength in the range of 700 nm to 1,200 nm among the light incident on the optical filter. It serves to prevent the light in the range from being incident on the image sensor or to prevent the light in the visible light region in the 400 nm to 650 nm wavelength range from being reflected. That is, the selective wavelength reflecting layers 20 and 30 serve as an near infrared reflecting layer (IR layer) reflecting near infrared rays and / or an anti-reflection layer (AR layer) for preventing visible light from being reflected. Can be performed.
  • IR layer near infrared reflecting layer
  • AR layer anti-reflection layer
  • the selective wavelength reflection layers 20 and 30 may have a structure such as a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked, and an aluminum deposition film; Precious metal thin film; Alternatively, the method may further include a resin film in which one or more fine particles of indium oxide and tin oxide are dispersed.
  • the selective wavelength reflecting layers 20 and 30 may have a structure in which a dielectric layer (not shown) having a first refractive index and a dielectric layer (not shown) having a second refractive index are alternately stacked, and having the first refractive index.
  • the refractive index difference between the dielectric layer and the dielectric layer having the second refractive index is 0.2 or more; 0.3 or more; Or 0.2 to 1.0.
  • the high refractive index layer and the low refractive index layer of the selective wavelength reflecting layer 20 and 30 is not particularly limited as long as the refractive index difference between the high refractive index layer and the low refractive index layer is included in the above-described range, but specifically, the high refractive index
  • the layer comprises one or more selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide and indium oxide having a refractive index of 1.6 to 2.4.
  • the indium oxide may further include a small amount of titanium oxide, tin oxide, cerium oxide, and the like.
  • the low refractive index layer may include at least one member selected from the group consisting of silicon dioxide, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium (cryolite, Na 3 AlF 6 ) having a refractive index of 1.3 to 1.6.
  • the selective wavelength reflecting layers 20 and 30 may be formed on one surface of the transparent substrate 10; In some cases, the first and second selective wavelength reflecting layers 20 and 30 are formed on both surfaces of the transparent substrate 10 so that the first selective wavelength reflecting layer is positioned on the first main surface of the transparent substrate 10.
  • the second selective wavelength reflecting layer may be disposed on the second main surface of (10).
  • the thickness of each of the selective wavelength reflecting layers 20 and 30 may satisfy Equation 3 below:
  • D1 represents the thickness of the first selective wavelength reflecting layer
  • D2 represents the thickness of the second selective wavelength reflecting layer.
  • the thickness ratio of the first and second selective wavelength reflecting layers 20 and 30 is 0.8 to 1.2; 0.8 to 1.0; 0.9 to 1.1; 1.0 to 1.2; 0.85 to 1.0; Alternatively, the condition of Equation 3 may be satisfied by 1.1 to 1.2.
  • each of the selective wavelength reflecting layers 20 and 30 may have a dielectric multilayer structure of 30 layers or less.
  • Equation 4 can be satisfied:
  • P1 represents the number of laminated multilayer dielectric films forming the first selective wavelength reflecting layer
  • P2 represents the number of laminated multilayer dielectric films forming the second selective wavelength reflecting layer.
  • the first and second selective wavelength reflecting layers 20 and 30 are 30 layers or less; 29 layers or less; 28 layers or less; 27 layers or less; 26 layers or less; Or it may have a dielectric multilayer film structure of 25 or less layers, wherein the difference in the number of each layer is less than 6 layers, 1 to 5 layers, 2 to 5 layers; 3 to 5 layers; 1 to 3 layers; 0 to 3 layers; Alternatively, the conditions of Equation 4 may be satisfied with 2 to 4 layers.
  • the imaging apparatus since the warpage phenomenon generated during the manufacture of the optical filter can be improved by controlling the difference between the number of stacked layers and the thickness ratio of the first and second selective wavelength reflecting layers 20 and 30 in the above range, the imaging apparatus including the same There is an advantage that can prevent the assembly failure due to the bending of the optical filter.
  • the conventional optical filter a near-infrared reflective layer having a dielectric multilayer structure is formed thick to block light having a wavelength of 700 nm or more.
  • the conventional optical filter is not sufficient to block light in the 800 nm to 1,200 nm region, and there is a limitation in that miniaturization of an imaging device including the flare phenomenon is difficult or thinning is difficult.
  • the optical filter according to the present invention is 800 nm by providing the transparent base material 10, that is, the optical article according to the present invention, comprising the base material layer 12 and two or more kinds of near infrared absorbing dyes 11 absorbing near infrared rays.
  • the optical filter Since the light having the above wavelength can be effectively blocked, the flare phenomenon is not only improved, and the number and thickness of the selective wavelength reflecting layers 20 and 30 are lowered to the above range, thereby making it easier to thin the optical filter 10.
  • the optical filter has an advantage of improving the bending phenomenon of the optical filter, which may occur in manufacturing the optical filter, by controlling the number and thickness of laminated layers of the selective wavelength reflecting layer.
  • the present invention provides an imaging device including the optical filter.
  • the imaging device comprises an optical article containing an optical article containing a first dye having an absorption maximum in the wavelength range of 650 nm to 750 nm and a second dye having an absorption maximum in the wavelength range of 950 nm to 1,200 nm. It has a high transmittance of 86% or more for light having a wavelength in the visible range including a filter, and can suppress a transmittance of 0.5% or less for light having a wavelength in the range of 800 nm to 1,100 nm. It is possible to provide an image having a resolution and to suppress flare when photographing an object that emits heat rays or near infrared rays or exposed to the radiation, and to reduce the thickness of the selective wavelength reflecting layer provided in the optical filter. There is an advantage that the thickness and the size of the imaging device can be reduced. In addition, the warpage phenomenon generated during the manufacture of the optical filter is improved to lower the assembly failure rate in the assembly process has the advantage of improving the yield and productivity.
  • the solid-state imaging device is an electronic device to which the solid-state imaging device is applied, for example, a digital still camera, a mobile phone camera, a digital video camera, a PC camera, a surveillance camera, a car camera, a portable information terminal, a personal computer, It can be usefully used for video games, medical devices, USB memory devices, portable game machines, fingerprint authentication systems, and digital music players.
  • an optical article having first and second absorption peaks was prepared as follows.
  • Near-infrared absorbing pigment A (QCR Solutions, USA) represented by the formula (1) and having an absorption maximum in the wavelength range of 700 ⁇ 5 nm (QCR Solutions, USA) and near-infrared absorbing pigment B (QCR) having an absorption maximum in the wavelength range of 720 ⁇ 5 nm Solutions, USA) and the near-infrared absorbing pigment C (Japan Carlit, Japan) represented by Formula 2 and having an absorption maximum in the wavelength range of 1,097 ⁇ 5 nm were mixed in the content of Table 1 based on 100 parts by weight of the resin.
  • PMMA polymethyl methacrylate
  • cyclohexanone was used as the organic solvent.
  • the absorbing solution thus prepared was coated on both sides of a 0.1 mm thick polyethylene terephthalate film (PET film, purchased by Toyo Spun Yarn, trade name A4100), and cured at 120 ° C. for 50 minutes to provide a near-infrared absorbing layer on both sides as shown in FIG.
  • PET film purchased by Toyo Spun Yarn, trade name A4100
  • the formed optical article was prepared.
  • the mass ratio of the near infrared absorption pigments A and B was adjusted to be 1: 1.
  • the absorption spectrum according to the wavelength was measured in the wavelength range of 380 nm to 1,200 nm using a spectrophotometer.
  • the absorbance at the maximum is derived and the absorbance value at the maximum at the absorption peak of the second absorption peak (OD2) when the absorbance curve is normalized so that the absorbance value at the absorption peak of the first absorption peak (OD1) is 1 is obtained. Calculated. The results are shown in Table 1 together. In addition, a normalized absorbance curve for each of the optical article according to the preparation example disclosed in Table 1 is shown in FIG. Referring to Table 1 and Figure 4, it can be seen that the absorbance value OD2 represents a value in the range of 0.08 to 0.25. Examples 1 to 7.
  • E-beam evaporator By using an electron beam evaporator (E-beam evaporator) to alternately deposit SiO 2 and Ti 3 O 5 on the first main surface of the optical article prepared in Preparation Examples 1 to 4 at 110 ⁇ 5 °C temperature of the dielectric multilayer film structure A selective wavelength reflection layer was formed. Subsequently, SiO 2 and Ti 3 O 5 are alternately deposited on the second main surface of the optical article using an E-beam evaporator at 110 ⁇ 5 ° C. to form a second selective wavelength reflecting layer having a dielectric multilayer structure. An optical filter having the same structure as in (c) was prepared. In this case, the number of laminated layers and the thickness of the stacked first and second selective wavelength reflecting layers are shown in Table 2 below. Here, the thickness means the total thickness of each of the first and second selective wavelength reflecting layers, and the unit is micrometer ( ⁇ m).
  • Example 2 Preparation Example 1 23 2.8 26 3.1 0.90 3
  • Example 3 Preparation Example 1 28 3.5 28 3.4 1.03 0
  • Example 7 Preparation Example 4 23 2.8 26 3.1 0.90 3
  • the numerical value is in the range of 0.8 to 1.2, specifically, 0.82 to 1.15.
  • the first and second selective wavelength reflecting layers may be, for example, a structure in which SiO 2 and Ti 3 O 5 are alternately stacked. .
  • the first selective wavelength reflecting layer has a 23-31 layer structure, the thickness thereof is in the range of 2.8 to 3.9 ⁇ m, the second selective wavelength reflecting layer has a 26-28 layer structure, and the thickness thereof may be in the range of 3.1 to 3.4 ⁇ m.
  • the first selective wavelength reflecting layer and the second selective wavelength reflecting layer of the optical filter stacked structures and thicknesses of the first selective reflecting reflective layer and the second selective wavelength reflecting layer applied to Example 1 are shown in Tables 3 and 4, respectively. Respectively.
  • An optical article according to Comparative Preparation Examples 1 to 3 was prepared in substantially the same manner as in Preparation Examples 1 to 4 except for the content of the near-infrared absorbing pigment C having an absorption maximum at 1,097 ⁇ 5 nm. At this time, the content of the pigment for absorbing near infrared rays is shown in Table 5 below.
  • E-beam evaporator By using an electron beam evaporator (E-beam evaporator) at 110 ⁇ 5 °C to alternately deposit SiO 2 and Ti 3 O 5 on the first main surface of the optical article prepared in Comparative Preparation Examples 1 to 3 first of the dielectric multilayer film structure A selective wavelength reflection layer was formed. Subsequently, SiO 2 and Ti 3 O 5 are alternately deposited on the second main surface of the optical article at 110 ⁇ 5 ° C. using an E-beam evaporator to form a second selective wavelength reflective layer having a dielectric multilayer structure. An optical filter having the same structure as in (c) was prepared. At this time, the number and thickness of laminated layers of the first and second selective wavelength reflecting layers formed on the optical filter are shown in Table 6 below. Here, the thickness means the total thickness of each of the first and second selective wavelength reflecting layers, and the unit is micrometer ( ⁇ m).
  • the transmission spectra of the optical filters prepared in Examples 2, 5 to 7 and Comparative Examples 4 to 6 were measured using a spectrophotometer in the wavelength range of 380 nm to 1,200 nm.
  • Table 7 shows the absorbance values OD2 for each of the optical articles used in Examples 2, 5 to 7 and Comparative Examples 4 to 6 together.
  • Optical filter Optics used OD2 Incident angle 0 ° Angle of incidence 30 ° Visible ray average transmittance [%] Near Infrared Maximum Transmittance [%] Near infrared ray average transmittance [%] Visible ray average transmittance [%] Near Infrared Maximum Transmittance [%] Near infrared ray average transmittance [%]
  • Example 2 Preparation Example 1 0.25 87.23 0.11 0.02 86.04 0.23 0.04
  • Example 5 Preparation Example 2 0.18 88.59 0.12 0.02 87.15 0.26 0.05
  • Preparation Example 3 0.13 89.73 0.14 0.02 88.34 0.29 0.06
  • Example 7 Preparation Example 4 0.08 90.84 0.15 0.03 89.49 0.41 0.07 Comparative Example 4 Comparative Production Example 1 0.00 92.67 0.18 0.04 91.40 0.71 0.10 Comparative Example 5 Comparative Production Example 2 0.28 86.45 0.10 0.02 84.93
  • the optical filter according to the present invention has a high average transmittance of 86% or more with respect to light in the visible region, and light having a wavelength of 800 nm or more that may affect flare at the same time. It can be seen that it can effectively block so that the maximum transmittance for the to 0.5% or less.
  • the optical filter prepared in Examples 2 and 5 to 7 is the incident angle 0 in the wavelength range of 800nm to 1,100nm
  • the near-infrared maximum transmittances measured at ° and angle of incidence of 30 ° were 0.2% or less and 0.5% or less, respectively, indicating very low transmittances of 0.5% or less regardless of the incident angle.
  • the optical filter of Comparative Example 4 using the optical article having an absorbance value of OD2 of 0.00 and the optical filter of Comparative Example 6 using the optical article having an absorbance value of OD2 of 0.05 had a maximum transmittance of 0.5% for light having an incident angle of 30 °. It was found to exceed. If it exceeds 0.5%, there is a high possibility that flare occurs when taking an image of an object that emits heat rays or near infrared rays or an object exposed to heat rays and near infrared rays.
  • the optical filters manufactured in Examples 2 and 5 to 7 have an average visible light transmittance measured at an incident angle of 0 ° and an incident angle of 30 ° in a wavelength range of 430 nm to 565 nm. At least 87% and at least 86%, respectively, at least 86% regardless of incident angle.
  • the optical filter of Comparative Example 5 using an optical article having an absorbance value of OD2 of 0.28 did not show an average transmittance of 85% of the visible light measured at an incident angle of 30 °.
  • the transmittance is lowered to 86% or less in the visible light region, there is a problem that it is difficult to secure sufficient resolution enough to identify an object when the image is played in a low light dark environment.
  • the optical filter according to the present invention has excellent transmittance with respect to light in the visible light region and can effectively block light having a wavelength of 800 nm or more.
  • the optical filter using the optical article according to the present invention having an absorbance value OD2 of 0.08 to 0.25 provides excellent blocking performance with respect to light having a wavelength of 800 nm or more with high visible light transmittance.
  • the degree of warpage and direction indicated were measured.
  • the first selective wavelength reflecting layer of the optical filter is fixed so as to contact the horizontal plane of the roughness system and the heights of the points present on the fixed optical filter surface based on the horizontal plane were measured.
  • the temperature of the chamber to which the optical filter is fixed is 23 °C
  • the relative humidity was 60%
  • the vibration acceleration was 0.5 cm / s 2
  • the measured results are shown in Table 8 below.
  • the optical filter according to the present invention can improve warpage by adjusting the number and thickness of laminated layers of the selective wavelength reflecting layer. Specifically, the first and second selective wavelength reflecting layers formed on the surface of the optical article may be improved.
  • ) is less than six layers;
  • the optical filters of Examples 1 to 4 having a thickness ratio (D1 / D2) of 0.8 or more and less than 1.2 were found to have a warping degree of about 6.3 ⁇ m or less regardless of the direction.
  • Table 8 shows the assembly failure rate in the assembling process when assembling the optical filter (width 5.7 mm ⁇ length 4.6 mm) manufactured in Examples 1 to 4 and Comparative Examples 1 to 3 to the imaging device.
  • the defect rate increases in the assembling process when the bending degree exceeds 7 ⁇ m. This result is to improve the warpage of the optical filter by adjusting the ratio of the difference between the number of laminated layers and the thickness of the first and second selective wavelength reflecting layer formed on the surface of the optical article, by reducing the assembly defect rate in the image pickup device assembly process This means that the yield and productivity can be improved.
  • An image was captured using an imaging device made of a camera module equipped with an optical filter according to Example 5 of the present invention.
  • the image is changed by using an image pickup device that is replaced with an optical filter according to Example 7, Comparative Example 4 and Comparative Example 6 of the present invention while the lens and the image sensor are left in the camera module.
  • Photographed An image of an object exposed to a halogen lamp together with a halogen lamp is illustrated in FIG. 11.
  • 11 (c) and 11 (d) show images taken by the image pickup device equipped with the optical filter according to Comparative Example 4 and Comparative Example 6, respectively, and strong purple flare phenomenon occurred throughout the left and right sides of the image. Can be seen.
  • the optical filter according to the present invention exhibits high transmittance with respect to light having a wavelength in the visible light range, thereby providing high resolution even in a low light environment, and 0.5% transmittance with respect to light having a wavelength in the range of 800 nm to 1,100 nm.
  • the flare phenomenon can be prevented by suppressing below.
  • the warpage phenomenon of the optical filter is improved by controlling the number and thickness of the selected wavelength reflecting layer to be laminated, there is an advantage that the assembly failure rate due to the warpage of the optical filter in the imaging device assembly process can be significantly lowered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

본 발명은 광학물품 및 이를 포함하는 광학필터에 관한 것으로서, 상기 광학필터는 2종 이상의 근적외선 흡수용 색소를 함유하여 380㎚ 내지 1,200㎚ 파장 범위에서 제1 및 제2 흡수 피크를 포함하는 2 이상의 흡수피크를 갖는 광학물품을 구비함으로써 가시광선 영역의 파장을 갖는 광에 대하여 86% 이상의 높은 평균 투과율을 나타내고, 800㎚ 내지 1,100㎚ 범위의 파장을 갖는 광에 대한 최대 투과율을 0.5% 이하로 억제하여 플레어 현상을 방지할 수 있을 뿐만 아니라 촬상장치 조립공정에서 광학필터의 휨에 기인한 조립불량을 저감하여 수율 및 생산성을 향상시킬 수 있는 이점이 있다.

Description

광학물품 및 이를 포함하는 광학필터
본 발명은 광학물품 및 이를 포함하는 광학필터에 관한 것으로서, 상세하게는 800㎚ 내지 1,200㎚ 범위 파장의 광 투과율을 억제할 수 있는 광학물품 및 이를 포함하는 광학필터에 관한 것이다.
CIS(CMOS image sensor) 등 고체 촬상 소자를 이용하는 촬상장치는 사람이 눈으로 보는 것과 같이 자연스러운 색상의 화상을 얻기 위하여, 센서가 감지하는 근적외선 영역의 800㎚ 내지 1,200nm 범위의 광을 차단하고, 400㎚ 내지 600nm 범위의 빛은 투과시켜 사람의 시감도에 근사 보정시킬 수 있는 광학 부품이 필수적으로 요구된다.
이러한 종래의 광학 부품으로는 일반 광학유리의 양면에 유전체 다층막을 증착하여 제조되는 반사형 근적외선 차단 필터 혹은 2가의 구리이온을 착색성분으로 포함하는 불화인산염계 유리의 양면에 유전체 다층막을 증착하여 제조되는 흡수형 근적외선 차단 필터 등을 들 수 있다. 그러나, 종래 사용되고 있는 반사형 근적외선 차단 필터의 경우 광학필터와 CIS의 마이크로렌즈(microlens) 간의 내부 반사로 인하여 촬상장치로 이미지 촬영시 의도하지 않은 이미지가 촬상되는 고스트(ghost) 현상이 심하게 발생하므로 5 메가픽셀 이상의 고화소 카메라 모듈에 적용할 수 없는 한계가 있다. 또한, 종래의 흡수형 근적외선 차단 필터의 경우 800㎚ 내지 1,200㎚ 범위의 파장을 차단하는 효과는 양호하나 재료의 특성상 내구성이 약하여 박형화가 어렵고 깨지기 쉬운 문제점이 있다.
따라서, 800㎚ 내지 1,200㎚ 범위의 파장을 갖는 빛을 차단할 수 있고, 박형화가 가능한 광학부품의 개발이 절실히 요구되고 있다.
본 발명의 목적은 가시광선 영역의 파장을 갖는 광에 대한 투과율이 우수하고, 동시에 800㎚ 내지 1,200㎚의 파장 범위의 빛을 선택적 및/또는 효과적으로 차단하여 저조도 촬영 환경하에서도 높은 해상력을 제공하고, 또한 플레어(flare) 현상을 방지할 수 있을 뿐만 아니라 박형화가 용이하여 고해상도의 촬상장치에 이용하기 적합한 광학물품을 제공하는데 있다.
본 발명의 다른 목적은 상기 광학물품을 포함하는 광학필터를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 광학필터를 포함하는 촬상 장치를 제공하는데 있다.
상기 본 발명의 목적을 해결하기 위하여,
본 발명은 일실시예에서,
2종 이상의 근적외선 흡수용 색소를 함유하는 투명기재를 포함하고,
380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 측정한 흡수 스펙트럼(absorbance spectrum)이 하기 제 1 및 제 2 흡수피크를 포함하는 2 이상의 흡수피크를 가지며,
제1 흡수피크는 650㎚ 내지 750㎚의 파장 범위에서 흡수극대(λmax1)를 가지고,
제2 흡수피크는 980nm 내지 1,200nm의 파장 범위에서 흡수극대(λmax2)를 가지며,
상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화하는 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 1을 만족하는 광학물품을 제공한다:
[식 1]
0.08 ≤ OD2 ≤ 0.25
또한, 본 발명은 일실시예에서, 상기 광학물품을 포함하는 광학필터를 제공한다.
본 발명에 따른 광학필터는 2종 이상의 근적외선 흡수용 색소를 함유하여 380㎚ 내지 1,200㎚ 파장 범위에서 제1 및 제2 흡수 피크를 포함하는 2 이상의 흡수피크를 갖는 광학물품을 구비함으로써 가시광선 영역의 파장을 갖는 광에 대하여 높은 투과율을 나타내고, 800㎚ 내지 1,100㎚ 범위의 파장을 갖는 광에 대한 투과율을 0.5% 이하로 억제하여 플레어 현상을 방지할 수 있을 뿐만 아니라 촬상 장치의 박형화가 용이하고 조립공정에서의 수율 및 생산성 향상으로 생산비용이 절감되는 이점이 있다.
도 1은 일실시예에서 본 발명에 따른 광학물품의 구조를 도시한 단면도이다.
도 2는 다른 일실시예에서 본 발명에 따른 광학필터의 구조를 도시한 단면도이다.
도 3은 광학필터의 휘어진 상태를 도시한 단면도이다:
여기서, A 내지 C 및 (a) 내지 (g)는 다음과 같다.
A 및 B: (-) 방향으로 휜 시편, C: (+) 방향으로 휜 시편,
(a): 수평면, (b): 시편,
(c): 휨 정도, (d): 중앙면,
(e): 시편의 말단을 포함하는 면,
(f) 및 (g): 시편의 내면 상에서 휨 정도가 가장 큰 지점.
도 4는 본 발명의 일실시예에 따른 근적외선 흡수용 색소의 함량에 따른 광학물품 각각에 대하여 정규화된 흡광도 곡선을 도시한 그래프이다.
도 5 및 6은 본 발명의 일실시예에 따른 제1 및 제2 선택파장 반사층의 분광 투과율을 각각 도시한 그래프이다.
도 7 내지 도 10은 일실시예에서 본 발명에 따른 실시예 5, 실시예 7, 비교예 4 및 비교예 5에서 제조된 광학필터를 대상으로 300㎚ 내지 1,200㎚ 파장 범위에서 측정한 분광 투과율을 도시한 그래프이다.
도 11은 일실시예에서 본 발명에 따른 실시예 5, 실시예 7, 비교예 4 및 비교예 6에 따른 광학필터를 탑재한 촬상 장치를 이용하여 촬영한 이미지이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 구체적인 내용에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다", "가지다" 또는 "구성하다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.
이하, 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명에서 "가시광선"이란, 전자파 중에서 인간의 눈으로 감지할 수 있는 파장 영역의 광으로서, 380㎚ 내지 650㎚ 파장 범위의 광을 의미한다.
또한, 본 발명에서 "근적외선"이란, 적색선의 끝보다 바깥쪽에 위치하고 가시광선보다 파장이 긴 전자파로서, 650㎚ 내지 3㎛ 파장 범위의 광을 의미한다. 본 발명에서는 상기 "근적외선"의 차단 정도를 근적외선에 대한 흡광도로 나타낼 수 있다. 이때, 상기 흡광도(OD)는 빛이 흡광 매체를 통과할 때 입사하는 빛의 강도가 Io이고 통과하는 빛의 강도가 I이라고 할 때 Io/I에 대하여 상용로그를 취한 값으로 정의된다. 즉, 흡광도(OD) = log(Io/I)으로 표현되는 값을 의미한다. 상기 흡광도는 분광광도계를 이용하여 산출될 수 있다.
아울러, 본 발명에서 "흡수극대"란 광이 흡수되는 파장 범위, 즉 흡수대에서 흡광도가 최대인 파장을 의미한다.
이와 더불어, 본 발명에서, "휨 정도"란, 광학필터가 휘어진 정도를 나타내는 척도로서, 도 3의 A 및 B에 나타낸 바와 같이 시편(b)의 말단을 직선으로 연결하여 형성되는 면(e)을 기준으로 시편(b) 내면 상에 존재하는 임의의 지점에 대한 높이 중 그 값이 가장 큰 지점(f)의 높이를 의미한다. 이때, "시편의 내면"이란 휨이 발생된 시편의 양면 중 길이가 작은 면을 의미하고, 그 반대면을 "시편의 외면"이라 한다. 상기 높이는 그 값이 클수록 시편(b)의 휨 정도(c)가 크다고 할 수 있다.
또한, 본 발명에서, "휨 방향"이란, 광학필터가 휘는 방향을 의미하며, (+) 방향 또는 (-) 방향으로 나타낼 수 있다. 구체적으로 도 3의 A 및 B에 나타낸 바와 같이, 시편(b)의 말단을 직선으로 연결하여 형성되는 면(e)을 기준으로 시편(b)의 내면 상에서 휨 정도(c)가 가장 큰 지점(f)이 수평면(a)과 중앙면(d) 사이에 존재하면, 시편(b)의 휨은 (-) 방향을 갖는다고 할 수 있다. 이와 달리, 도 3의 C에 나타낸 바와 같이, 시편(b)의 말단을 직선으로 연결하여 형성되는 면(e)을 기준으로 시편(b)의 내면 상에서 휨 정도(c)가 가장 큰 지점(g)이 수평면(a)과 중앙면(d) 사이에 존재하지 않으면, 시편(b)의 휨은 (+) 방향을 갖는다고 할 수 있다.
이때, 상기 "중앙면(d)"이란, 시편(b)의 내면 상에서 휨 정도(c)가 가장 큰 지점(f 또는 g)과 시편(b)의 말단을 직선으로 연결하여 형성되는 면(e) 사이에 존재하는 평면으로서, 상기 지점(f 또는 g)의 높이가 1/2이 되는 위치에서 면(e)에 평행한 면을 의미한다.
이와 더불어, 상기 "수평면(a)"란, 시편(b)의 휨 정도 측정 시 시편이 지지되는 평면으로서, 초정밀 3차원 조면계(Ultra accuracy 3-D profilometer)와 같은 3차원 표면 측정장치의 시편 고정면 등을 포함할 수 있다.
나아가, 본 발명에서 "알킬기(alkyl group)"란 직쇄(linear) 또는 분지(branched) 형태의 포화 탄화수소로부터 유도된 치환기를 의미한다.
이때, 상기 "알킬기"로는 예를 들면, 메틸기(methyl group), 에틸기(ethyl group), n-프로필기(n-propyl group), 이소프로필기(iso-propyl group), n-부틸기(n-butyl group), sec-부틸기(sec-butyl group), t-부틸기(tert-butyl group), n-펜틸기(n-pentyl group), 1,1-디메틸프로필기(1,1-dimethylpropyl group), 1,2-디메틸프로필기(1,2-dimethylpropyl group), 2,2-디메틸프로필기(2,2-dimethylpropyl group), 1-에틸프로필기(1-ethylpropyl group), 2-에틸프로필기(2-ethylpropyl group), n-헥실기(n-hexyl group), 1-메틸-2-에틸프로필기(1-methyl-2-ethylpropyl group), 1-에틸-2-메틸프로필기(1-ethyl-2-methylpropyl group), 1,1,2-트리메틸프로필기(1,1,2-trimethylpropyl group), 1-프로필프로필기(1-propylpropyl group), 1-메틸부틸기(1-methylbutyl group), 2-메틸부틸기(2-methylbutyl group), 1,1-디메틸부틸기(1,1-dimethylbutyl group), 1,2-디메틸부틸기(1,2-dimethylbutyl group), 2,2-디메틸부틸기(2,2-dimethylbutyl group), 1,3-디메틸부틸기(1,3-dimethylbutyl group), 2,3-디메틸부틸기(2,3-dimethylbutyl group), 2-에틸부틸기(2-ethylbutyl group), 2-메틸펜틸기(2-methylpentyl group), 3-메틸펜틸기(3-methylpentyl group) 등을 들 수 있다.
또한, 상기 "알킬기"는 1 내지 20의 탄소수, 예를 들어 1 내지 12의 탄소수, 1 내지 6의 탄소수, 또는 1 내지 4의 탄소수를 가질 수 있다.
아울러, 본 발명에서 "사이클로알킬기"란 단일고리(monocyclic)의 포화 탄화수소로부터 유도된 치환기를 의미한다.
상기 "사이클로알킬기(cycloalkyl group)"로는 예를 들면, 사이클로프로필기(cyclopropyl group), 사이클로부틸기(cyclobutyl group), 사이클로펜틸기(cyclopentyl group), 사이클로헥실기(cyclohexyl group), 사이클로헵틸기(cycloheptyl group), 사이클로옥틸기(cyclooctyl group) 등을 들 수 있다.
또한, 상기 "사이클로알킬기"는 3 내지 20의 탄소수, 예를 들어 3 내지 12의 탄소수, 또는 3 내지 6의 탄소수를 가질 수 있다.
나아가, 본 발명에서 "아릴기(aryl group)"란 방향족 탄화수소로부터 유도된 1가의 치환기를 의미한다.
이때, 상기 "아릴기"로는 예를 들면, 페닐기(phenyl group), 나프틸기(naphthyl group), 안트라세닐기(anthracenyl group), 페난트릴기(phenanthryl group) 나프타세닐기(naphthacenyl group), 피레닐기(pyrenyl group), 톨릴기(tolyl group), 바이페닐기(biphenyl group), 터페닐기(terphenyl group), 크리세닐기(chrycenyl group), 스파이로바이플루오레닐기(spirobifluorenyl group), 플루오란테닐기(fluoranthenyl group), 플루오레닐기(fluorenyl group), 페릴레닐기(perylenyl group), 인데닐기(indenyl group), 아줄레닐기(azulenyl group), 헵타레닐기(heptalenyl group), 페날레닐기(phenalenyl group), 페난트레닐기(phenanthrenyl group) 등을 들 수 있다.
또한, 상기 "아릴기"는 6 내지 30의 탄소수, 예를 들어, 6 내지 10의 탄소수, 6 내지 14의 탄소수, 6 내지 18의 탄소수, 또는 6 내지 12의 탄소수를 가질 수 있다.
이와 더불어, 본 발명에서, "헤테로아릴기(heteroaryl group)"란 단환 또는 축합환으로부터 유도된 "방향족 복소환"또는 "헤테로사이클릭"을 의미한다. 상기 "헤테로아릴기"는 헤테로 원자로서 질소(N), 황(S), 산소(O), 인(P), 셀레늄(Se) 및 규소(Si) 중에서 적어도 하나, 예를 들어 1개, 2개, 3개 또는 4개를 포함할 수 있다.
이때, 상기 "헤테로아릴기"로는 예를 들면, 피롤릴기(pyrrolyl group), 피리딜기(pyridyl group), 피리디닐기(pyridinyl group), 피리다지닐기(pyridazinyl group), 피리미디닐기(pyrimidinyl group), 피라지닐기(pyrazinyl group), 트리아졸릴기(triazolyl group), 테트라졸릴기(tetrazolyl group), 벤조트리아졸릴기(benzotriazolyl group), 피라졸릴기(pyrazolyl group), 이미다졸릴기(imidazolyl group), 벤즈이미다졸릴기(benzimidazolyl group), 인돌릴기(indolyl group), 인돌리닐기(indolinyl group), 이소인돌릴기(isoindolyl group), 인돌리지닐기(indolizinyl group), 푸리닐기(purinyl group), 인다졸릴기(indazolyl group), 퀴놀릴기(quinolyl group), 이소퀴놀리닐기(isoquinolinyl group), 퀴놀리지닐기(quinolizinyl group), 프탈라지닐기(phthalazinyl group), 나프틸리디닐기(naphthylidinyl group), 퀴녹살리닐기(quinoxalinyl group), 퀴나졸리닐기(quinazolinyl group), 신놀리닐기(cinnolinyl group), 프테리디닐기(pteridinyl group), 이미다조트리아지닐기(imidazotriazinyl group), 아크리디닐기(acridinyl group), 페난트리디닐기(phenanthridinyl group), 카바졸릴기(carbazolyl group), 카바졸리닐기(carbazolinyl group), 피리미디닐기(pyrimidinyl group), 페난트롤리닐기(phenanthrolinyl group), 페나지닐기(phenazinyl group), 이미다조피리디닐기(imidazopyridinyl group), 이미다조피리미디닐기(imidazopyrimidinyl group), 피라졸로피리디닐기(pyrazolopyridinyl group) 등을 포함하는 함질소 헤테로아릴기; 티에닐기(thienyl group), 벤조티에닐기(benzothienyl group), 디벤조티에닐기(dibenzothienyl group) 등을 포함하는 황 함유 헤테로아릴기; 퓨릴기(furyl group), 피라닐기(pyranyl group), 사이클로펜타피라닐기(cyclopentapyranyl group), 벤조퓨라닐기(benzofuranyl group), 이소벤조퓨라닐기(isobenzofuranyl group), 디벤조퓨라닐기(dibenzofuranyl group), 벤조디옥솔기(benzodioxole group), 벤조트리옥솔기(benzotrioxole group) 등을 포함하는 함산소 헤테로아릴기 등을 들 수 있다.
또한, 상기 "헤테로아릴기"의 구체적인 예로서는, 티아졸릴기(thiazolyl group), 이소티아졸릴기(isothiazolyl group), 벤조티아졸릴기(benzothiazolyl group), 벤조티아디아졸릴기(benzothiadiazolyl group), 페노티아지닐기(phenothiazinyl group), 이소옥사졸릴기(isoxazolyl group), 퓨라자닐기(furazanyl group), 페녹사지닐기(phenoxazinyl group), 옥사졸릴기(oxazolyl group), 벤조옥사졸릴기(benzoxazolyl group), 옥사다이아졸릴기(oxadiazolyl group), 피라졸로옥사졸릴기(pyrazoloxazolyl group), 이미다조티아졸릴기(imidazothiazolyl group), 티에노퓨라닐기(thienofuranyl group), 퓨로피롤릴기(furopyrrolyl group), 피리독사지닐기(pyridoxazinyl group) 등의 적어도 2개 이상의 헤테로 원자를 포함하는 화합물들을 들 수 있다.
나아가, 상기 "헤테로아릴기"는 2 내지 20의 탄소수, 예를 들어 4 내지 19의 탄소수, 4 내지 15의 탄소수 또는 5 내지 11의 탄소수를 가질 수 있다. 예를 들어, 헤테로 원자를 포함하면, 헤테로아릴기는 5 내지 21의 환원(ring member)을 가질 수 있다.
또한, 본 발명에서 "아랄킬기(aralkyl group)"는 말단 탄화수소의 수소 자리에 방향족 탄화수소로부터 유도된 1가의 치환기가 결합된 포화 탄화수소 치환기를 의미한다. 즉, "아랄킬기"는 사슬 말단이 아릴기로 치환된 알킬기를 나타내며, 그 예로서 벤질기(benzyl group), 펜에틸기(phenethyl group), 페닐프로필기(phenylpropyl group), 나프탈레닐메틸기(naphthalenylmethyl group), 나프탈레닐에틸기(naphthalenylethyl group) 등을 들 수 있다.
또한, 본 발명에서 "평균 투과율"이란 분광광도계를 이용하여 광학물품 및 광학필터 등의 투과 스펙트럼 측정시 파장에 따른 투과율 곡선에서 소정의 파장 범위에서의 투과율의 산술 평균값을 의미한다.
아울러, 본 발명에서 "최대 투과율"이란 분광광도계를 이용하여 광학물품 및 광학필터 등의 투과 스펙트럼 측정시 파장에 따른 투과율 곡선에서 소정의 파장 범위에서의 투과율의 최대값을 의미한다.
이와 더불어, 본 발명에서 "입사각"이란 분광광도계를 이용하여 광학물품 및 광학필터 등의 투과 스펙트럼 혹은 흡수 스펙트럼 측정시 광원이 광학물품 또는 광학필터의 주면에 수직한 방향과 이루는 각도를 의미하며, 입사각 조건에 대한 별도의 설명이 없으면 입사각은 0°조건에서 측정한 것을 의미한다.
이하, 본 발명을 상세히 설명한다.
<광학물품>
본 발명은 일실시예에서,
2종 이상의 근적외선 흡수용 색소를 함유하는 투명기재를 포함하고,
380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 측정한 흡수 스펙트럼(absorbance spectrum)이 하기 제 1 및 제 2 흡수피크를 포함하는 2 이상의 흡수피크를 가지며,
제1 흡수피크는 650㎚ 내지 750㎚의 파장 범위에서 흡수극대(λmax1)를 가지고,
제2 흡수피크는 980nm 내지 1,200nm의 파장 범위에서 흡수극대(λmax2)를 가지며,
상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화하는 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 1을 만족하는 광학물품을 제공한다:
[식 1]
0.08 ≤ OD2 ≤ 0.25
고체 촬상 소자를 이용하는 촬상장치는 사람이 눈으로 보는 것과 같이 자연스러운 색상의 화상을 얻기 위하여, 센서가 감지하는 근적외선 영역의 800㎚ 내지 1,200㎚ 범위의 광을 차단하고, 가시광선 영역에 해당하는 400㎚ 내지 600㎚ 범위의 빛은 투과시켜 사람의 시감도에 근사 보정시킬 수 있는 광학부품이 필수적으로 요구된다. 최근 촬상장치의 고해상도화, 박형화, 광각화가 급속도로 진전되고 있는 가운데, 저조도 촬영 환경에서도 높은 해상력을 제공하고 자연조명 혹은 인공조명하에서도 색상의 왜곡이나 플레어 등의 화질 열화를 엄격하게 억제할 수 있는 촬상장치용 광학부품에 대한 요구도 증가되고 있다. 본 발명자들은 넓은 파장범위에 걸쳐있으면서 근적외선 영역의 빛을 함께 방사하는 광원 및 조명(자연조명이거나 인공조명이거나에 상관없이)하에 노출되어 있는 피사체, 혹은 그 광원 및 조명을 포함하는 피사체를 대상으로 촬영시 플레어 현상이 심화됨을 발견하게 되었으며 이미지센서로 입사되는 특정 파장영역의 빛을 입사각에 관계없이 특정 수준 이하로 엄격히 통제할 수 있는 광학물품과 상기 광학물품을 포함하는 광학필터를 촬상 장치에 도입함으로써 플레어가 없는 선명한 이미지를 얻을 수 있음을 발견하게 되었다. 아울러 저조도 환경하에서도 높은 해상력을 제공하기 위해서 가시광선 영역에서는 높은 투과율을 동시에 제공할 수 있는 광학필터용 광학물품을 발명하기에 이르렀다.
본 발명에 따른 광학물품은 2종 이상의 근적외선 흡수용 색소를 포함할 수 있다. 상기 광학물품은 2종 이상의 근적외선 흡수용 색소를 포함하여 가시광선 영역의 파장을 갖는 광에 대하여 높은 투과율을 나타내고, 800㎚ 내지 1,200㎚ 범위의 파장을 갖는 광에 대한 투과율을 억제할 수 있다.
여기서, 상기 광학물품은 650nm 내지 750nm 파장 범위와 980nm 내지 1,200nm 파장 범위에서 각각 1개 이상의 흡수피크를 가질 수 있으며 상기 흡수피크는 흡수극대 λmax1 및 λmax2를 갖는 제1 및 제2 흡수피크를 포함할 수 있다. 또한, 상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화할 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 0.08 이상 0.25 이하일 수 있으며, 구체적으로는 0.09 내지 0.17; 0.13 내지 0.17; 0.08 내지 0.18; 0.15 내지 0.175; 0.09 내지 0.13; 0.16 내지 0.24; 0.15 내지 0.25; 또는 0.16 내지 0.235로 식 1을 만족할 수 있다. 바람직하게는 상기 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 0.13 내지 0.18로 식 1의 조건을 만족할 수 있다. 본 발명에 따른 상기 광학물품은 투명기재를 포함할 수 있으며, 상기 투명기재는 600㎚ 내지 1,200㎚ 파장 범위의 광을 흡수하는 2종 이상의 근적외선 흡수용 색소를 포함하는 구조를 가질 수 있다.
도 1은 본 발명에 따른 광학물품의 구조를 나타낸 단면도이다. 도 1의 (a) 내지 (c)를 참고하면, 상기 광학물품은 투명기재(10)를 포함할 수 있으며, 상기 투명기재(10)는 근적외선 흡수용 색소(11)와 기재층(12)을 포함할 수 있다. 이때, 상기 근적외선 흡수용 색소(11)는 도 1의 (a) 및 (b)에 나타낸 바와 같이 기재층(12)의 일면 및/또는 양면에 형성된 근적외선 흡수층(13, 13a 및/또는 13b)에 포함되거나, 도 1의 (c)에 나타낸 바와 같이 기재층(12)에 균일하게 분산된 형태로 포함될 수 있다.
이하, 본 발명에 따른 광학물품에 구비된 투명기재(10)를 각 구성요소 별로 보다 상세히 설명한다.
먼저, 본 발명에 따른 투명기재에 있어서, 기재층(12)은 투명기재 및 이를 포함하는 광학필터의 베이스 기판의 역할을 수행하고, 투명한 것이면 특별히 제한되지 않는다.
상기 기재층(12)은 당 분야에서 공지된 다양한 소재를 사용할 수 있으며, 이는 또한 요구되는 기능 및 용도 등에 따라 적절히 선택하여 사용할 수 있다. 기재층(12)으로는 예를 들면, 유리 및 고분자 수지 등으로부터 1종 이상 선택될 수 있다. 또한, 상기 고분자 수지로는, 예를 들어 폴리에스테르계 수지, 폴리카보네이트계 수지, 아크릴계 수지, 폴리올레핀계 수지, 환상올레핀계 수지, 폴리이미드계 수지, 폴리아미드계 수지 및 폴리우레탄계 수지 등을 들 수 있으며, 상기 수지를 단일 시트, 적층 시트 또는 공압출물의 형태로 사용할 수 있다.
이와 더불어, 상기 기재층(12)은 예시적인 형태에 따라서 고분자 수지로 구성되되, 베이스 수지로서 내열성 등에서 유리한 폴리에스테르계 수지를 포함할 수 있다. 그리고 상기 폴리에스테르계 수지의 예로는, 폴리에틸렌테레프탈레이트(PET: Polyethylene Terephthalate), 폴리에틸렌나프탈레이트(PEN: Polyethylene Naphthalate) 및 폴리부틸렌테레프탈레이트(PBT: Polybutylene Terephthalate) 등으로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 또한 다른 하나의 예로서, 상기 기재층(12)은 폴리올레핀계 수지로 선택될 수 있으며, 상기 폴리올레핀계 수지로는 예를 들어, 폴리프로필렌(PP) 등을 들 수 있다.
다음으로, 본 발명에 따른 투명기재에 있어서, 근적외선 흡수용 색소(11)는 600㎚ 내지 1,200㎚ 파장 범위의 광을 흡수하는 염료, 안료 및/또는 금속 착화합물이라면 특별히 제한되지 않고 사용될 수 있다.
하나의 예로서, 상기 근적외선 흡수용 색소(11)는 380㎚ 내지 1,200㎚ 파장 범위에서 분광광도계를 이용한 흡수 스펙트럼 측정 시, 650㎚ 내지 750㎚ 파장 범위와 980㎚ 내지 1,200㎚ 파장 범위에서 흡수극대를 갖는 색소, 구체적으로는 650㎚ 내지 750㎚ 파장 범위와 980㎚ 내지 1,200㎚ 파장 범위에서 각각 흡수극대(λmax1 및 λmax2)를 갖는 제1 및 제2 색소를 포함할 수 있다.
여기서, 상기 근적외선 흡수용 색소(11)는 앞서 설명한 바와 같이 기재층(12)의 일면에 형성되는 근적외선 흡수층(13)에 포함되거나 기재층(12) 내부에 분산된 형태를 가질 경우, 제1 및 제2 색소가 균일하게 혼합된 형태로 사용될 수 있다(도 1의 (a) 및 (c) 참조). 또한, 상기 근적외선 흡수용 색소(11)는 기재층(12)의 양면에 형성되는 근적외선 흡수층(13a 및 13b)에 포함될 경우 각 흡수층(13a 및 13b)에 제1 및 제2 색소 각각을 단독으로 사용하거나, 균일하게 혼합된 형태로 사용될 수 있다(도 1의 (b) 참조).
아울러, 상기 근적외선 흡수용 색소(11)로는 예를 들어 시아닌계 화합물, 프탈로시아닌계 화합물, 나프탈로시아닌계 화합물, 포르피린계 화합물, 벤조포르피린계 화합물, 스쿠아릴륨계 화합물, 안트라퀴논계 화합물, 크로코늄계 화합물, 디이모늄계 화합물, 디티올 금속 착화합물 등 일 수 있다. 하나의 예로서, 상기 근적외선 흡수용 색소(11)는 제1 및 제2 색소로서 하기 화학식 1 및 화학식 2로 나타내는 화합물 중 어느 하나 이상을 선택적으로 포함할 수 있다:
[화학식 1]
Figure PCTKR2018003953-appb-I000001
[화학식 2]
Figure PCTKR2018003953-appb-I000002
상기 화학식 1 및 화학식 2에서,
A는 아미노페닐기; 인돌릴메틸렌기; 또는 인돌리닐기이되,
2개의 A가
Figure PCTKR2018003953-appb-I000003
을 중심으로 서로 컨쥬게이션(conjugation)을 이루는 구조를 갖고,
상기 아미노페닐기, 인돌릴메틸렌기 또는 인돌리닐기에 존재하는 수소 중 어느 하나 이상은, 서로 독립적으로 수소, 할로겐기, 히드록시기, 시아노기, 니트로기, 카르복시기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 7 내지 20의 아랄킬기, 설폰아미드기이거나, 또는 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 할로알킬기 또는 탄소수 7 내지 20의 아랄킬기로 치환되거나 비치환된 아미드기이며;
구체적으로, 상기 화학식 1은 하기 화학식 1a 내지 화학식 1c로 나타내는 화합물 중 어느 하나일 수 있다:
[화학식 1a]
Figure PCTKR2018003953-appb-I000004
[화학식 1b]
Figure PCTKR2018003953-appb-I000005
[화학식 1c]
Figure PCTKR2018003953-appb-I000006
상기 화학식 1a 내지 화학식 1c에서,
a1, a2 및 a3은 서로 독립적으로 수소, 할로겐기, 히드록시기, 시아노기, 니트로기, 카르복시기, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 사이클로알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 7 내지 20의 아랄킬기, 설폰아미드기이거나, 또는 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 할로알킬기 또는 탄소수 7 내지 20의 아랄킬기로 치환되거나 비치환된 아미드기이다.
R1, R2는 서로 독립적으로 탄소수 1 내지 20의 알킬기 또는 탄소수 3 내지 20의 사이클로 알킬기이고, n은 1 또는 2이며, X-는 퍼클로레이트(ClO4 -), 헥사플루오로안티모네이트(SbF6 -), 헥사플루오로포스페이트(PF6 -), 테트라플루오로보레이트(BF4 -) 또는 하기 화학식 2a 내지 화학식 2c로 나타내는 음이온 중 어느 하나일 수 있다.
[화학식 2a]
Figure PCTKR2018003953-appb-I000007
[화학식 2b]
Figure PCTKR2018003953-appb-I000008
[화학식 2c]
Figure PCTKR2018003953-appb-I000009
화학식 2a 내지 화학식 2c에서
R3는 서로 독립적으로 탄소수 1 내지 8 의 모노플루오로알킬기 또는 탄소수 1 내지 8 의 트리플루오로알킬기이고, R4는 서로 독립적으로 수소, 니트로기 또는 시아노기이며, R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 8 의 모노플루오로알킬기 또는 탄소수 1 내지 8 의 트리플루오로알킬기이다.
나아가, 상기 근적외선 흡수용 색소(11)의 함량은 근적외선 흡수층(13, 13(a), 13(b))의 매트릭스를 구성하는 수지 100 중량부에 대하여 1.07 내지 1.16 중량부; 1.11 내지 1.16 중량부; 1.07 내지 1.21 중량부; 또는 1.11 내지 1.21 중량부일 수 있다.
<광학필터>
또한, 본 발명은 일실시예에서, 상기 광학물품을 포함하는 광학필터를 제공한다.
하나의 예로서, 본 발명에 따른 상기 광학필터는, 2종 이상의 근적외선 흡수용 색소를 함유하는 투명기재; 상기 투명기재의 일면 또는 양면에 형성된 선택파장 반사층을 포함하며, 380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 투과 스펙트럼 측정 시, 하기 조건 (A) 및 (B)를 만족할 수 있다:
(A) 430㎚ 내지 565㎚ 파장 영역에서, 광학필터에 입사각 0°및 30°로 입사되는 광에 대한 평균 투과율이 86% 이상,
(B) 800㎚ 내지 1,100㎚ 파장 영역에서, 광학필터에 입사각 0°및 30°로 입사되는 광에 대한 최대 투과율이 0.5% 이하.
본 발명에 따른 광학필터는 650㎚ 내지 750㎚ 파장 범위와 980㎚ 내지 1,200㎚ 파장 범위에서 각각 흡수극대를 갖는 제1 및 제2 색소를 함유하는 광학물품을 포함하여 광학필터에 입사되는 광이 입사각 0°또는 30°조건 모두에서 가시광선 영역인 약 430㎚ 내지 565㎚의 파장 범위에서 86% 이상, 87% 이상, 88% 이상 및 89% 이상의 평균 투과율을 나타낼 수 있다. 또한, 상기 광학필터는 약 800㎚ 내지 1,100㎚의 근적외선 파장 범위에서 0°또는 30°의 입사각 조건 모두에서 최대 투과율이 0.5% 이하, 0.4% 이하 또는 0.3% 이하가 되도록 최대 투과율을 억제할 수 있다. 하나의 예로서, 상기 광학필터를 대상으로 300㎚ 내지 1,200㎚의 파장 범위에서 분광광도계를 이용하여 입사각이 0° 및 30°를 갖는 광에 대한 투과 스펙트럼을 측정할 경우, 430nm 내지 565nm 파장영역에서 평균 투과율 및 800㎚ 내지 1,100㎚ 파장 영역에서 최대 투과율이 각각 86% 이상 및 0.3% 이하, 87% 이상 및 0.3% 이하, 88% 이상 및 0.3% 이하 또는 89% 이상 0.5% 이하로 상기 (A) 및 (B) 조건을 만족할 수 있다. 보다 바람직하게는, 가시광선 영역에서의 높은 평균 투과율과 근적외선 영역에서의 낮은 최대 투과율을 동시에 제공할 수 있는 점으로부터 입사각 0°또는 30°조건 모두에서 430nm 내지 565nm 파장영역에서 평균 투과율 및 800㎚ 내지 1,100㎚ 파장 영역에서 최대 투과율이 각각 88% 이상 및 0.3% 이하로 상기 (A) 및 (B) 조건을 만족할 수 있다.
이는 본 발명에 따른 광학필터가 상기 광학물품을 포함함으로써 가시광선 영역의 파장을 갖는 광에 대하여 높은 투과율을 나타내어 저조도의 어두운 촬영환경에서도 높은 해상력을 갖는 이미지 획득을 가능하게 하거나, 또한 800㎚ 내지 1,100㎚ 범위의 파장을 갖는 광에 대한 투과율을 0.5% 이하로 엄격히 억제하여 근적외선 영역의 광선을 방사하는 광원이나 조명의 영향을 받는 촬영 대상물을 인간이 시인하는 수준과 유사한 수준으로 충실히 재현할 수 있는, 플레어가 억제된 이미지를 제공할 수 있음을 의미하는 것이다. 또한, 입사각 0°및 30°조건 모두에서 높은 가시광선 평균 투과율과 낮은 근적외선 최대 투과율을 제공함으로써 촬상장치의 광각화에 부응할 수 있음을 의미하는 것이다.
도 2는 일실시예에서 본 발명에 따른 광학필터의 구조를 도시한 단면도이다. 도 2를 살펴보면, 본 발명에 따른 광학필터는 근적외선 흡수용 색소(11) 및 기재층(12)을 포함하는 투명기재(10)를 포함하고, 투명기재의 일면 및/또는 양면에 위치하는 선택파장 반사층(20 및/또는 30)을 포함하는 구조를 가질 수 있다.
이하, 본 발명에 따른 광학필터의 각 구성요소를 도 2를 참조하여 보다 상세히 설명한다.
먼저, 본 발명에 따른 광학필터에 있어서, 투명기재(10)는 기재층(12)을 포함하여 광학필터의 베이스 기판의 역할을 수행한다. 상기 투명기재(10), 즉 광학물품은 2종 이상의 근적외선 흡수용 색소를 포함하여 650nm 내지 750nm 파장 범위와 980nm 내지 1,200nm 파장 범위에서 각각 흡수극대를 갖는 2 이상의 흡수피크를 가질 수 있으며 상기 흡수피크는 제1 및 제2 흡수피크를 포함할 수 있다. 또한, 상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화할 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 0.08 이상 0.25 이하일 수 있으며, 구체적으로는 0.09 내지 0.17; 0.13 내지 0.17; 0.08 내지 0.18; 0.15 내지 0.175; 0.09 내지 0.13; 0.16 내지 0.24; 0.15 내지 0.25; 또는 0.16 내지 0.235로 식 1을 만족할 수 있다. 바람직하게는 상기 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 0.13 내지 0.18로 식 1의 조건을 만족할 수 있다. 상기 조건하에서, 입사되는 광중 700nm 이상의 파장, 구체적으로는 800nm 내지 1,200nm 범위의 파장을 갖는 광을 선택적으로 및/또는 효과적으로 흡수하고, 또한 가시광선 영역의 광에 대해서는 높은 투과율을 제공할 수 있다.
다음으로 본 발명에 따른 광학필터에 있어서, 선택파장 반사층(20 및 30)은 광학필터로 입사되는 광 중 650㎚ 이상의 파장, 구체적으로는 700㎚ 내지 1,200㎚ 범위의 파장을 갖는 광을 반사하여 상기 범위의 광이 이미지 센서로 입사되는 것을 차단하거나, 400㎚ 내지 650㎚ 파장 범위의 가시광선 영역의 광이 반사되는 것을 방지하는 역할을 수행한다. 즉, 상기 선택파장 반사층(20 및 30)은 근적외선을 반사시키는 근적외선 반사층(Infrared Reflective layer, IR층) 및/또는 가시광선이 반사되는 것을 방지하는 반사방지층(Anti-Reflection layer, AR층)의 역할을 수행할 수 있다.
이때, 상기 선택파장 반사층(20 및 30)은 고굴절률층과 저굴절률층을 교대로 적층한 유전체 다층막 등의 구조를 가질 수 있으며, 알루미늄 증착막; 귀금속 박막; 또는 산화인듐 및 산화주석 중 1종 이상의 미립자가 분산된 수지막을 더 포함할 수도 있다. 예를 들면, 상기 선택파장 반사층(20 및 30)은 제1 굴절률을 가지는 유전체층(미도시)과 제2 굴절률을 가지는 유전체층(미도시)이 교대 적층된 구조일 수 있으며, 상기 제1 굴절률을 가지는 유전체층과 제2 굴절률을 가지는 유전체층의 굴절률 차이는 0.2 이상; 0.3 이상; 또는 0.2 내지 1.0 일 수 있다.
또한, 상기 선택파장 반사층(20 및 30)의 고굴절률층 및 저굴절률층으로는, 고굴절률층과 저굴절률층의 굴절률 차이가 앞서 설명한 범위에 포함되는 것이라면 특별히 제한되는 것은 아니나, 구체적으로 고굴절률층은 1.6 내지 2.4의 굴절률을 갖는 산화티탄늄, 산화알루미늄, 산화지르코늄, 오산화탄탈륨, 오산화니오븀, 산화란타늄, 산화이트륨, 산화아연, 황화아연 및 산화인듐으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있으며, 상기 산화인듐은, 산화티타늄, 산화주석, 산화세륨 등을 소량 더 포함할 수 있다. 또한, 저굴절률층은 1.3 내지 1.6의 굴절률을 갖는 이산화규소, 불화란탄, 불화마그네슘 및 육불화알루미륨나트륨(빙정석, Na3AlF6)으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있다.
나아가, 선택파장 반사층(20 및 30)은 투명기재(10)의 일면에 형성될 수 있으며; 경우에 따라서는 상기 투명기재(10)의 양면에 제1 및 제2 선택파장 반사층(20 및 30)이 형성되어 투명기재(10)의 제1 주면 상에 제1 선택파장 반사층이 위치하고, 투명기재(10)의 제2 주면 상에 제2 선택파장 반사층이 위치하는 구조를 가질 수 있다.
또한, 하나의 실시예에서, 상기 선택파장 반사층은 제1 및 제2 선택파장 반사층(20 및 30)을 포함하는 경우 각 선택파장 반사층(20 및 30)의 두께가 하기 식 3을 만족할 수 있다:
[식 3]
0.8 ≤ D1/D2 < 1.2
식 3에서,
D1은 제1 선택파장 반사층의 두께를 나타내고,
D2는 제2 선택파장 반사층의 두께를 나타낸다.
구체적으로, 상기 제1 및 제2 선택파장 반사층(20 및 30)의 두께 비율은 0.8 내지 1.2; 0.8 내지 1.0; 0.9 내지 1.1; 1.0 내지 1.2; 0.85 내지 1.0; 또는 1.1 내지 1.2로 상기 식 3의 조건을 만족할 수 있다.
다른 하나의 예로서, 상기 선택파장 반사층은 제1 및 제2 선택파장 반사층(20 및 30)을 포함하는 경우 각 선택파장 반사층(20 및 30)은 30층 이하의 유전체 다층막 구조를 가질 수 있고, 식 4의 조건을 만족할 수 있다:
[식 4]
0 ≤ | P1 - P2 | < 6
식 4에서,
P1은 제1 선택파장 반사층을 형성하는 유전체 다층막의 적층수를 나타내고,
P2는 제2 선택파장 반사층을 형성하는 유전체 다층막의 적층수를 나타낸다.
구체적으로, 상기 제1 및 제2 선택파장 반사층(20 및 30)는 30층 이하; 29층 이하; 28층 이하; 27층 이하; 26층 이하; 또는 25층 이하의 유전체 다층막 구조를 가질 수 있으며, 이때 각 층수의 차이는 6층 미만, 1층 내지 5층, 2층 내지 5층; 3층 내지 5층; 1층 내지 3층; 0층 내지 3층; 또는 2층 내지 4층으로 상기 식 4의 조건을 만족할 수 있다.
본 발명은 제1 및 제2 선택파장 반사층(20 및 30)의 적층수의 차이 및 두께의 비율을 상기 범위로 제어함으로써 광학필터 제조시 발생되는 휨 현상을 개선할 수 있으므로 이를 포함하는 촬상 장치는 광학필터의 휨으로 인한 조립불량을 방지할 수 있는 이점이 있다.
종래의 광학필터는 유전체 다층막 구조의 근적외선 반사층을 두껍게 형성하여 700㎚ 이상의 파장을 갖는 광을 차단할 수 있었다. 그러나, 종래의 광학필터는 800nm 내지 1,200nm 영역의 광을 차단하는 성능이 충분하지 않고 또한 플레어 현상이 발생되거나 박형화가 어려워 이를 포함하는 촬상 장치의 소형화를 구현할 수 없는 한계가 있었다. 그러나, 본 발명에 따른 광학필터는 기재층(12) 및 근적외선을 흡수하는 2종 이상의 근적외선 흡수용 색소(11)를 포함하는 투명기재(10), 즉 본 발명에 따른 광학물품을 구비함으로써 800㎚ 이상의 파장을 갖는 광을 효과적으로 차단할 수 있으므로 플레어 현상이 개선될 뿐만 아니라 선택파장 반사층(20 및 30)의 층수 및 두께를 상기 범위로 낮춰 광학필터(10)의 박형화가 용이하다. 이와 더불어, 상기 광학필터는 선택파장 반사층의 적층 층수 및 두께를 제어하여 광학필터의 제조시 발생될 수 있는 광학필터의 휨 현상을 개선할 수 있는 이점이 있다.
<고체 촬상 장치>
나아가, 본 발명은 일실시예에서, 상기 광학필터를 포함하는 촬상 장치를 제공한다.
본 발명에 따른 촬상 장치는 650㎚ 내지 750㎚ 파장범위에서 흡수극대를 갖는 제1 색소와 950㎚ 내지 1,200㎚ 파장범위에서 흡수극대를 갖는 제2 색소를 함유하는 광학물품을 포함하는 본 발명의 광학필터를 포함하여 가시광선 영역의 파장을 갖는 광에 대하여 86% 이상의 높은 투과율을 나타내고, 800㎚ 내지 1,100㎚ 범위의 파장을 갖는 광에 대한 투과율을 0.5% 이하로 억제 가능함으로써 저조도의 어두운 환경에서도 높은 해상력을 갖는 이미지를 제공하고, 또한 열선 혹은 근적외선을 방사하는 혹은 그 방사선에 노출된 대상물 촬영시 플레어 현상을 억제할 수 있을 뿐만 아니라 광학필터에 구비된 선택파장 반사층의 두께를 낮출 수 있으므로 광학필터의 박형화 및 촬상 장치의 소형화가 가능한 이점이 있다. 아울러, 광학필터 제조시 발생하는 휨 현상이 개선되어 조립공정에서 조립불량률을 낮출 수 있어 수율향상 및 생산성을 높일 수 있는 이점이 있다.
따라서, 상기 고체 촬상 소자는, 고체 촬상 장치가 적용되는 전자기기 예를 들어, 디지털 스틸 카메라, 휴대 전화용 카메라, 디지털 비디오 카메라, PC 카메라, 감시 카메라, 자동차용 카메라, 휴대 정보 단말기, 퍼스널 컴퓨터, 비디오 게임, 의료 기기, USB 메모리, 휴대 게임기, 지문 인증 시스템, 디지털 뮤직 플레이어 등에 유용하게 활용될 수 있다.
이하, 본 발명을 제조예, 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 제조예, 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 제조예, 실시예 및 실험예에 한정되는 것은 아니다.
제조예 1 내지 4.
본 발명에 따른 제조예로서, 제1 및 제2 흡수피크를 가진 광학물품을 하기와 같이 준비하였다.
화학식 1로 나타내고 700±5㎚ 파장 범위에서 흡수극대를 갖는 근적외선 흡수용 색소 A(QCR Solutions사, 미국)와 화학식 1로 나타내고 720±5㎚ 파장 범위의 흡수극대를 갖는 근적외선 흡수용 색소 B(QCR Solutions사, 미국) 및 화학식 2로 나타내고 1,097±5㎚ 파장 범위의 흡수극대를 갖는 근적외선 흡수용 색소 C(Japan Carlit사, 일본)을 수지 100 중량부를 기준으로 하기 표 1의 함량으로 혼합하였다. 이때, 수지로서는 폴리메틸메타크릴레이트(PMMA) 수지를 이용하였고, 유기 용매로서는 사이클로헥사논(cyclohexanone)을 이용하였다. 이후 교반기로 24시간 이상 교반하여 흡수 용액을 제조하였다. 제조된 흡수 용액을 두께가 0.1mm인 폴리에틸렌테레프탈레이트 필름(PET 필름, 토요 방적사 구입, 상품명 A4100)의 양면에 도포하고 120℃에서 50분간 경화하여 도 1의 (b)와 같이 양면에 근적외선 흡수층이 형성된 광학물품을 제조하였다. 이때, 근적외선 흡수용 색소 A와 B의 질량비는 1:1이 되도록 조절하였다.
  제1 흡수피크 제2 흡수피크
색소명 함량 OD1 색소명 함량 OD2
제조예 1 A + B 1.0 중량부 1.00 C 0.21 중량부 0.25
제조예 2 A + B 1.0 중량부 1.00 C 0.16 중량부 0.18
제조예 3 A + B 1.0 중량부 1.00 C 0.11 중량부 0.13
제조예 4 A + B 1.0 중량부 1.00 C 0.07 중량부 0.08
본 발명에 따른 제조예 1 내지 4에 따라서 제조된 광학물품 각각에 대하여 광학물품의 흡광도(OD)를 평가하기 위하여 분광광도계를 이용하여 380㎚ 내지 1,200㎚ 파장 범위에서 파장에 따른 흡수 스펙트럼을 측정하였다. 흡광도 곡선으로부터 650㎚ 내지 750㎚ 파장 범위에서 흡수극대를 갖는 피크(제1 흡수피크)의 흡수극대에서의 흡광도와 980㎚ 내지 1,200㎚ 파장 범위에 흡수극대를 갖는 피크(제2 흡수피크)의 흡수극대에서의 흡광도를 도출하고, 상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 상기 흡광도 곡선을 정규화하였을 때의 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)을 산출하였다. 그 결과를 상기 표 1에 함께 나타내었다. 아울러, 상기 표 1에 개시한 제조예에 따른 광학물품 각각에 대한 정규화된 흡광도 곡선을 도 4에 나타내었다. 상기 표 1 및 도 4를 참조하면, 흡광도 값 OD2는 0.08 내지 0.25 범위의 값을 나타냄을 알 수 있다. 실시예 1 내지 실시예 7.
전자빔 증착기(E-beam evaporator)를 이용하여 110±5℃ 온도에서 상기 제조예 1 내지 4에서 준비된 광학물품의 제1 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제1 선택파장 반사층을 형성하였다. 이후, 전자빔 증착기(E-beam evaporator)로 110±5℃ 온도에서 광학물품의 제2 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제2 선택파장 반사층을 형성하여 도 2의 (c)와 같은 구조를 갖는 광학필터를 제조하였다. 이때, 적층된 제1 및 제2 선택파장 반사층의 적층 층수 및 두께를 하기 표 2에 나타내었다. 여기서, 상기 두께는 제1 및 제2 선택파장 반사층의 각각의 총 두께를 의미하며, 단위는 마이크로미터(㎛)이다.
실시예 No. 사용된 광학물품 제1 선택파장 반사층 제2 선택파장 반사층 [식 3] [식 4]
층수 [P1] 두께 [D1] 층수 [P2] 두께 [D2] | D1/D2 | | P1-P2 |
실시예 1 제조예 1 23 2.8 28 3.4 0.82 5
실시예 2 제조예 1 23 2.8 26 3.1 0.90 3
실시예 3 제조예 1 28 3.5 28 3.4 1.03 0
실시예 4 제조예 1 31 3.9 28 3.4 1.15 3
실시예 5 제조예 2 23 2.8 26 3.1 0.90 3
실시예 6 제조예 3 23 2.8 26 3.1 0.90 3
실시예 7 제조예 4 23 2.8 26 3.1 0.90 3
표 2를 참조하면, 실시예 1 내지 7은, 본원 명세서의 [식 3]에 따른 | D1/D2 | 수치가 0.8 내지 1.2, 구체적으로는 0.82 내지 1.15 범위에 해당됨을 알 수 있다. 또한, 실시예 1 내지 7은, 본원 명세서의 [식 4]에 따른 | P1 - P2 | 수치가 0 내지 6 미만, 구체적으로는 0 내지 5 범위에 해당됨을 알 수 있다.제1 및 제2 선택파장 반사층은, 예를들어, SiO2 및 Ti3O5가 교대 적층된 구조일 수 있다. 제1 선택파장 반사층은 23층 내지 31층 구조이며 그 두께는 2.8 내지 3.9 ㎛ 범위이고, 제2 선택파장 반사층은 26층 내지 28층 구조이며 그 두께는 3.1 내지 3.4㎛ 범위일 수 있다. 상기 광학필터의 제1 선택파장 반사층 및 제2 선택파장 반사층의 일례로서 상기 실시예 1에 적용된 제 1 선택반사 반사층 및 제2 선택파장 반사층의 각각의 적층 구조 및 두께를 하기 표 3 및 표 4에 각각 나타내었다.
적층 순서 재료 Optical Thickness (QWOT) 두께 (nm)
1 SiO2 1.34 105.6
2 Ti3O5 0.18 8.6
3 SiO2 0.48 38.2
4 Ti3O5 2.17 104.6
5 SiO2 2.10 165.3
6 Ti3O5 2.16 104.1
7 SiO2 2.16 170.2
8 Ti3O5 2.20 106.1
9 SiO2 2.17 170.8
10 Ti3O5 2.19 106.0
11 SiO2 2.18 171.7
12 Ti3O5 2.20 106.5
13 SiO2 2.17 171.1
14 Ti3O5 2.20 106.3
15 SiO2 2.18 171.5
16 Ti3O5 2.19 106.0
17 SiO2 2.16 170.1
18 Ti3O5 2.18 105.2
19 SiO2 2.14 168.6
20 Ti3O5 2.12 102.2
21 SiO2 2.05 161.2
22 Ti3O5 2.00 96.4
23 SiO2 0.98 77.2
적층 순서 재료 Optical Thickness (QWOT) 두께 (nm)
1 SiO2 0.63 88.7
2 Ti3O5 1.20 107.0
3 SiO2 1.38 194.8
4 Ti3O5 1.37 122.9
5 SiO2 1.48 208.9
6 Ti3O5 0.17 15.2
7 SiO2 0.10 14.3
8 Ti3O5 1.31 116.9
9 SiO2 1.39 197.2
10 Ti3O5 1.21 108.7
11 SiO2 1.23 173.9
12 Ti3O5 1.14 102.3
13 SiO2 1.21 170.9
14 Ti3O5 1.12 100.5
15 SiO2 1.21 170.8
16 Ti3O5 1.11 99.2
17 SiO2 1.21 171.0
18 Ti3O5 1.11 99.3
19 SiO2 1.21 170.8
20 Ti3O5 1.11 99.8
21 SiO2 1.21 171.1
22 Ti3O5 1.13 101.1
23 SiO2 1.22 172.9
24 Ti3O5 1.16 103.8
25 SiO2 1.30 183.4
26 Ti3O5 1.28 114.5
27 SiO2 0.28 39.9
28 Ti3O5 0.11 9.8
또한, 상기 표 3에 개시한 제1 선택파장 반사층에 대한 분광 투과율을 도 5에 나타내었고, 표 4에 개시한 제2 선택파장 반사층에 대한 분광 투과율을 도 6에 나타내었다.비교 제조예 1 내지 3.
1,097±5㎚에서 흡수극대를 갖는 근적외선 흡수용 색소 C의 함량을 제외하고는 상기 상술한 제조예 1 내지 4와 실질적으로 동일한 방법으로 비교 제조예 1 내지 3에 따른 광학물품을 준비하였다. 이때, 근적외선 흡수용 색소의 함량은 하기 표 5에 나타내었다.
  제1 흡수피크 제2 흡수피크
색소명 함량 OD1 색소명 함량 OD2
비교 제조예 1 A + B 1.0 중량부 1.00 C 0.00 중량부 0.00
비교 제조예 2 A + B 1.0 중량부 1.00 C 0.24 중량부 0.28
비교 제조예 3 A + B 1.0 중량부 1.00 C 0.04 중량부 0.05
상기 상술한 제조예 1 내지 4에 따른 광학물품의 흡광도 측정 방법과 실질적으로 동일한 방법으로 비교 제조예 1 내지 3에 따른 광학물품의 흡광도 값을 산출하였다. 그 결과를 상기 표 5에 함께 나타내었다. 아울러, 상기 표 5에 개시한 비교 제조예 1 내지 3에 따른 광학물품 각각에 대하여 정규화된 흡광도 곡선을 도 4에 함께 나타내었다. 상기 표 5 및 도 4를 참조하면, 흡광도 값 OD2는 0.08 내지 0.25 범위를 벗어남을 알 수 있다.비교예 1 내지 6.
전자빔 증착기(E-beam evaporator)를 이용하여 110±5℃에서 상기 비교 제조예 1 내지 3에서 준비된 광학물품의 제1 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제1 선택파장 반사층을 형성하였다. 이후, 전자빔 증착기(E-beam evaporator)로 110±5℃에서 광학물품의 제2 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제2 선택파장 반사층을 형성하여 도 2의 (c)와 같은 구조를 갖는 광학필터를 제조하였다. 이때, 광학필터에 형성된 제1 및 제2 선택파장 반사층의 적층 층수 및 두께를 하기 표 6에 나타내었다. 여기서, 상기 두께는 제1 및 제2 선택파장 반사층의 각각의 총 두께를 의미하며, 단위는 마이크로미터(㎛)이다.
비교예 No.  사용된 광학물품 제1 선택파장 반사층 제2 선택파장 반사층 [식 3] [식 4]
층수 [P1] 두께 [D1] 층수 [P2] 두께 [D2] | D1/D2 | | P1-P2 |
비교예 1 비교 제조예 1 23 2.8 30 3.6 0.78 7
비교예 2 비교 제조예 1 23 2.8 32 3.8 0.74 9
비교예 3 비교 제조예 1 31 3.9 26 3.1 1.26 5
비교예 4 비교 제조예 1 23 2.8 26 3.1 0.90 3
비교예 5 비교 제조예 2 23 2.8 26 3.1 0.90 3
비교예 6 비교 제조예 3 23 2.8 26 3.1 0.90 3
표 6을 참조하면, 비교예 1 내지 3은 본원 명세서의 [식 3]에 따른 | D1/D2 | 수치가 0.8 내지 1.2를 벗어남을 알 수 있다. 또한, 비교예 1 및 2는, 본원 명세서의 [식 4]에 따른 | P1 - P2 | 수치가 0 내지 6을 벗어남을 알 수 있다. 실험예 1.
본 발명에 따른 광학필터의 입사각에 따른 투과율을 평가하기 위하여 하기와 같은 실험을 수행하였다.
실시예 2, 5 내지 7 및 비교예 4 내지 6에서 제조된 광학필터 각각을 대상으로 380㎚ 내지 1,200㎚ 파장 범위에서 분광광도계를 이용하여 투과 스펙트럼을 측정하였다.
입사각 0°및 입사각 30°에 대한 투과율을 측정하여 입사각에 따른 가시광선 및 근적외선의 투과율을 도출하였다. 상기 결과를 하기 표 7과 도 7 내지 도 10에 나타내었다. 표 7에서, 가시광선 평균 투과율은 430㎚ 내지 565㎚ 파장 범위에서 산출된 평균 투과율을 의미하고, 근적외선 최대 투과율은 800㎚ 내지 1,100㎚ 파장 범위에서 산출된 최대 투과율을 의미하며, 근적외선 평균 투과율은 800㎚ 내지 1,100㎚ 파장 범위에서의 평균 투과율을 의미한다.
또한, 상기 표 7에는 상기 실시예 2, 5 내지 7 및 비교예 4 내지 6에서 사용된 광학물품 각각에 대한 흡광도 값 OD2를 함께 정리하여 나타내었다.
광학필터 사용된 광학물품 OD2 입사각 0° 입사각 30°
가시광선평균 투과율[%] 근적외선최대 투과율[%] 근적외선평균 투과율[%] 가시광선평균 투과율[%] 근적외선최대 투과율[%] 근적외선평균 투과율[%]
실시예 2 제조예 1 0.25 87.23 0.11 0.02 86.04 0.23 0.04
실시예 5 제조예 2 0.18 88.59 0.12 0.02 87.15 0.26 0.05
실시예 6 제조예 3 0.13 89.73 0.14 0.02 88.34 0.29 0.06
실시예 7 제조예 4 0.08 90.84 0.15 0.03 89.49 0.41 0.07
비교예 4 비교 제조예 1 0.00 92.67 0.18 0.04 91.40 0.71 0.10
비교예 5 비교 제조예 2 0.28 86.45 0.10 0.02 84.93 0.22 0.03
비교예 6 비교 제조예 3 0.05 91.72 0.17 0.03 90.41 0.53 0.08
상기 표 7 및 도 7 내지 10에 나타낸 바와 같이 본 발명에 따른 광학필터는 가시광선 영역의 광에 대한 평균 투과율이 86% 이상으로 높고, 동시에 플레어에 영향을 줄 수 있는 800㎚ 이상의 파장을 갖는 광에 대한 최대 투과율이 0.5% 이하가 되도록 효과적으로 차단할 수 있음을 알 수 있다.구체적으로, 표 7을 살펴보면 실시예 2 및 5 내지 7에서 제조된 광학필터는 800㎚ 내지 1,100㎚의 파장 범위에서 입사각 0°및 입사각 30°에서 측정된 근적외선 최대 투과율이 각각 0.2% 이하 및 0.5% 이하로, 입사각에 관계없이 모두 0.5% 이하의 매우 낮은 투과율을 나타냈다. 이에 반해, 흡광도 값 OD2가 0.00인 광학물품을 사용한 비교예 4의 광학필터와 흡광도값 OD2가 0.05인 광학물품을 사용한 비교예 6의 광학필터는 입사각이 30°인 광에 대한 최대 투과율이 0.5%를 초과하는 것으로 나타났다. 0.5%를 초과하는 경우 열선 혹은 근적외선을 방사하는 대상물 혹은 열선 및 근적외선에 노출된 대상물의 이미지 촬영시 플레어 현상이 발생할 우려가 높다.
또한, 표 7과 도 7 내지 도 10를 함께 살펴보면, 실시예 2 및 5 내지 7에서 제조된 광학필터는 430㎚ 내지 565㎚ 파장 범위에서 입사각 0°및 입사각 30°에서 측정된 가시광선 평균 투과율이 각각 87% 이상 및 86% 이상으로, 입사각에 관계없이 모두 86% 이상으로 나타났다. 반면, 흡광도 값 OD2가 0.28인 광학물품을 사용한 비교예 5의 광학필터는 입사각 30°에서 측정된 가시광선 평균 투과율이 85%에 미치지 못하는 것으로 나타났다. 가시광선 영역에서 투과율이 86% 이하로 낮아지는 경우, 저조도의 어두운 환경에서 이미지 활영시 대상물을 식별할 수 있을 정도로 충분한 해상력을 확보하기 어려운 문제점이 있다.
이러한 결과로부터, 본 발명에 따른 광학필터는 가시광선 영역의 광에 대한 투과율이 우수하고, 800㎚ 이상의 파장을 갖는 광을 효과적으로 차단할 수 있음을 알 수 있다.
아울러, 흡광도 값 OD2가 0.08 내지 0.25인 범위를 갖는 본 발명에 따른 광학물품을 사용한 광학필터는 높은 가시광선 투과율과 함께 800nm 이상의 파장을 갖는 광에 대하여 우수한 차단 성능을 제공함을 알 수 있다.
실험예 2.
본 발명에 따른 광학필터의 휨(warpage) 정도를 평가하기 위하여 하기와 같은 실험을 수행하였다.
초정밀 3차원 조면계(Ultra accuracy 3-D profilometer, UA3P-300, Panasonic Corporation)를 이용하여 실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 광학필터(가로 3 mm × 세로 3 mm)의 휨을 나타내는 휨 정도 및 방향을 측정하였다. 구체적으로, 광학필터의 제1 선택파장 반사층이 조면계의 수평면에 닿도록 고정시키고 수평면을 기준으로 고정된 광학필터 표면에 존재하는 지점들의 높이를 측정하였다. 이때, 광학필터가 고정되는 챔버의 온도는 23℃이고, 상대습도는 60%였으며, 진동 가속도는 0.5 cm/s2였으며, 측정된 결과는 하기 표 8에 나타내었다.
광학필터 D1/D2 │P1-P2│ 휨 정도(㎛) 조립불량률 (%)
실시예 1 0.82 5 6.3 0
실시예 2 0.90 3 3.5 0
실시예 3 1.03 0 0.3 0
실시예 4 1.15 3 -4.0 0
비교예 1 0.78 7 9.0 2
비교예 2 0.74 9 13.5 6
비교예 3 1.26 5 -7.7 2
표 8을 살펴보면, 본 발명에 따른 광학필터는 선택파장 반사층의 적층 층수와 두께를 조절함으로써 휨을 개선할 수 있음을 알 수 있다.구체적으로, 광학물품 표면에 형성된 제1 및 제2 선택파장 반사층의 적층 층수의 차이(|P1-P2|)가 6층 미만이고; 두께의 비율(D1/D2)이 0.8 이상이고 1.2 미만인 실시예 1 내지 4의 광학필터는 휨 정도가 방향에 상관없이 약 6.3㎛ 이하인 것으로 나타났다.
이에 반해, 제1 및 제2 선택파장 반사층의 적층 층수의 차이(|P1-P2|)가 6층을 초과하거나; 두께의 비율(D1/D2)이 0.8 미만이거나 1.2를 초과하는 비교예 1 내지 3의 광학필터는 7㎛를 초과하는 큰 휨 현상이 발생되는 것으로 확인되었다.
아울러, 표 8에는 실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 광학필터(가로 5.7 mm × 세로 4.6 mm)를 촬상장치에 조립시 조립공정에서의 조립불량률을 나타내었다. 상기 표 8의 휨 정도 측정결과 휨 정도가 7㎛를 초과하는 경우 조립공정에서 불량률이 증가하는 것을 알 수 있다. 이러한 결과는 광학물품 표면에 형성되는 제1 및 제2 선택파장 반사층의 적층 층수의 차이와 두께의 비율을 조절함으로써 광학필터의 휨 현상을 개선할 수 있고, 촬상장치 조립공정에서 조립불량률을 감소시킴으로써 수율 및 생산성을 향상시킬 수 있음을 의미한다.
실험예 3.
본 발명에 따른 광학필터의 화질을 평가하기 위하여 하기와 같은 실험을 수행하였다.
본 발명의 실시예 5에 따른 광학필터를 탑재한 카메라 모듈로 제작된 촬상 장치를 이용하여 이미지를 촬영하였다. 또한, 화질에 대한 비교 평가를 위하여 상기 카메라 모듈에서 렌즈 및 이미지 센서는 그대로 둔 상태에서 본 발명의 실시예 7, 비교예 4 및 비교예 6에 따른 광학필터로 교체한 촬상 장치를 이용하여 이미지를 촬영하였다. 할로겐등(Halogen Lamp) 조명과 함께 할로겐등에 노출된 대상물을 촬영한 이미지를 도 11에 나타내었다. 도 11(c) 및 도 11(d)는 각각 비교예 4 및 비교예 6에 따른 광학필터가 탑재된 촬상 장치로 촬영한 이미지를 나타낸 것으로 이미지의 좌우측 전체에 걸쳐서 강한 보라색 플레어(purplish flare) 현상을 볼 수 있다. 특히, OD2 값이 0.00인 광학물품을 포함한 비교예 4에 따른 광학필터가 탑재된 경우 보라색 플레어가 이미지 전체에 강하게 드리워져 있음을 확인할 수 있다. 이에 반하여, 도 11(a)와 도 11(b)를 살펴보면 본 발명의 실시예 5 및 실시예 7에 따른 광학필터가 탑재된 촬상 장치로 촬영한 이미지에서는 플레어 현상이 나타나지 않음을 확인할 수 있다.
따라서, 본 발명에 따른 광학필터는 가시광선 영역의 파장을 갖는 광에 대하여 높은 투과율을 나타내어 저조도 환경하에서도 높은 해상력을 제공하고, 800㎚ 내지 1,100㎚ 범위의 파장을 갖는 광에 대한 투과율을 0.5% 이하로 억제하여 플레어 현상을 방지할 수 있다. 또한, 선택파장 반사층이 적층되는 층수와 두께를 제어하여 광학필터의 휨 현상이 개선되는 효과가 우수하므로 촬상장치 조립공정에서 광학필터의 휨으로 인한 조립불량률을 현저히 낮출 수 있는 이점이 있다.

Claims (15)

  1. 2종 이상의 근적외선 흡수용 색소를 함유하는 투명기재를 포함하고,
    380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 측정한 흡수 스펙트럼(absorbance spectrum)이 하기 제 1 및 제 2 흡수피크를 포함하는 2 이상의 흡수피크를 가지며,
    제1 흡수피크는 650㎚ 내지 750㎚의 파장 범위에서 흡수극대(λmax1)를 가지고,
    제2 흡수피크는 980nm 내지 1,200nm의 파장 범위에서 흡수극대(λmax2)를 가지며,
    상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화하는 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 1을 만족하는 광학물품:
    [식 1]
    0.08 ≤ OD2 ≤ 0.25
  2. 제1항에 있어서,
    제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 2를 만족하는 광학물품:
    [식 2]
    0.13 ≤ OD2 ≤ 0.18
  3. 제1항에 있어서,
    투명기재는 유리 및 고분자 수지 중 적어도 어느 하나를 포함하는 광학물품.
  4. 제3항에 있어서,
    고분자 수지는, 폴리에스테르계 수지, 폴리카보네이트계 수지, 아크릴계 수지, 폴리올레핀계 수지, 환상올레핀계 수지, 폴리이미드계 수지, 폴리아미드계 수지 및 폴리우레탄계 수지로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 광학물품.
  5. 제1항에 있어서,
    근적외선 흡수용 색소는,
    650nm 내지 750nm 범위에서 흡수극대를 갖는 제1 색소; 및
    980nm 내지 1,200nm 범위에서 흡수극대를 갖는 제2 색소를 포함하는 광학물품.
  6. 제1항에 있어서,
    근적외선 흡수용 색소는, 하기 화학식 1 및 화학식 2로 나타내는 화합물 중 어느 하나 이상을 포함하는 광학물품:
    [화학식 1]
    Figure PCTKR2018003953-appb-I000010
    [화학식 2]
    Figure PCTKR2018003953-appb-I000011
    상기 화학식 1 및 화학식 2에서,
    A는 아미노페닐기; 인돌릴메틸렌기; 또는 인돌리닐기이되,
    2개의 A가
    Figure PCTKR2018003953-appb-I000012
    을 중심으로 서로 컨쥬게이션(conjugation)을 이루는 구조를 갖고,
    상기 아미노페닐기, 인돌릴메틸렌기 또는 인돌리닐기에 존재하는 수소 중 어느 하나 이상은, 서로 독립적으로 수소, 할로겐기, 히드록시기, 시아노기, 니트로기, 카르복시기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 7 내지 20의 아랄킬기, 설폰아미드기이거나, 또는 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 할로알킬기 또는 탄소수 7 내지 20의 아랄킬기로 치환되거나 비치환된 아미드기이며;
    R1, R2는 서로 독립적으로 탄소수 1 내지 20의 알킬기 또는 탄소수 3 내지 20의 사이클로 알킬기이고, n은 1 또는 2이며, X-는 퍼클로레이트(ClO4 -), 헥사플루오로안티모네이트(SbF6 -), 헥사플루오로포스페이트(PF6 -), 테트라플루오로보레이트(BF4 -) 또는 하기 화학식 2a 내지 화학식 2c로 나타내는 음이온 중 어느 하나이다:
    [화학식 2a]
    Figure PCTKR2018003953-appb-I000013
    [화학식 2b]
    Figure PCTKR2018003953-appb-I000014
    [화학식 2c]
    Figure PCTKR2018003953-appb-I000015
    화학식 2a 내지 화학식 2c에서
    R3는 서로 독립적으로 탄소수 1 내지 8 의 모노플루오로알킬기 또는 탄소수 1 내지 8 의 트리플루오로알킬기이고, R4는 서로 독립적으로 수소, 니트로기 또는 시아노기이며, R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 8 의 모노플루오로알킬기 또는 탄소수 1 내지 8 의 트리플루오로알킬기이다.
  7. 제1항에 있어서,
    상기 투명기재는,
    기재층; 및
    상기 기재층의 일면 또는 양면에 형성되며, 근적외선 흡수용 색소를 함유하는 근적외선 흡수층을 포함하는 광학물품.
  8. 제1항에 있어서,
    상기 투명기재는,
    기재층; 및
    상기 기재층 내부에 분산된 근적외선 흡수용 색소를 포함하는 광학물품.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 광학물품을 포함하는 광학필터.
  10. 2종 이상의 근적외선 흡수용 색소를 함유하는 투명기재;
    상기 투명기재의 일면 또는 양면에 형성된 선택파장 반사층을 포함하며,
    380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 투과 스펙트럼 측정 시, 하기 조건 (A) 및 (B)를 만족하는 광학필터:
    (A) 430㎚ 내지 565㎚ 파장 영역에서, 광학필터에 입사각 0°및 30°로 입사되는 광에 대한 평균 투과율이 86% 이상,
    (B) 800㎚ 내지 1,100㎚ 파장 영역에서, 광학필터에 입사각 0°및 30°로 입사되는 광에 대한 최대 투과율이 0.5% 이하.
  11. 제10항에 있어서,
    상기 투명 기재는,
    380nm 내지 1,200nm 파장범위에서 분광광도계를 이용하여 측정한 흡수 스펙트럼이 하기 제 1 및 제 2 흡수피크를 포함하는 2 이상의 흡수피크를 가지며,
    제1 흡수피크는 650㎚ 내지 750㎚의 파장 범위에서 흡수극대(λmax1)를 가지고,
    제2 흡수피크는 980nm 내지 1,200nm의 파장 범위에서 흡수극대(λmax2)를 가지며,
    상기 제1 흡수피크의 흡수극대에서의 흡광도 값(OD1)을 1이 되도록 정규화하는 경우, 제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 1을 만족하는 광학필터:
    [식 1]
    0.08 ≤ OD2 ≤ 0.25
  12. 제11항에 있어서,
    제2 흡수피크의 흡수극대에서의 흡광도 값(OD2)은 하기 식 2를 만족하는 광학물품:
    [식 2]
    0.13 ≤ OD2 ≤ 0.18
  13. 제10항에 있어서,
    상기 광학필터는,
    투명 기재의 제1 주면 상에 형성된 제1 선택파장 반사층; 및
    투명 기재의 제2 주면 상에 형성된 제2 선택파장 반사층을 포함하며,
    하기 식 3을 만족하는 광학필터:
    [식 3]
    0.8 ≤ D1/D2 < 1.2
    식 3에서,
    D1은 제1 선택파장 반사층의 두께를 나타내고,
    D2는 제2 선택파장 반사층의 두께를 나타낸다.
  14. 제10항에 있어서,
    제1 및 제2 선택파장 반사층은, 각각 독립적으로 유전체 다층막으로 형성되고,
    하기 식 4를 만족하는 광학필터:
    [식 4]
    0 ≤ | P1 - P2 | < 6
    식 4에서,
    P1은 제1 선택파장 반사층을 형성하는 유전체 다층막의 적층수를 나타내고,
    P2는 제2 선택파장 반사층을 형성하는 유전체 다층막의 적층수를 나타낸다.
  15. 제10항 내지 제14항 중 어느 한 항에 따른 광학필터를 포함하는 고체 촬상 장치.
PCT/KR2018/003953 2017-04-10 2018-04-04 광학물품 및 이를 포함하는 광학필터 WO2018190560A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880020222.6A CN110462462B (zh) 2017-04-10 2018-04-04 光学物品以及包括该光学物品的光学滤波器
US16/495,861 US10908081B2 (en) 2017-04-10 2018-04-04 Optical article and optical filter including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0046181 2017-04-10
KR1020170046181A KR101907970B1 (ko) 2017-04-10 2017-04-10 광학물품 및 이를 포함하는 광학필터

Publications (1)

Publication Number Publication Date
WO2018190560A1 true WO2018190560A1 (ko) 2018-10-18

Family

ID=63792567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003953 WO2018190560A1 (ko) 2017-04-10 2018-04-04 광학물품 및 이를 포함하는 광학필터

Country Status (4)

Country Link
US (1) US10908081B2 (ko)
KR (1) KR101907970B1 (ko)
CN (1) CN110462462B (ko)
WO (1) WO2018190560A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093317B (zh) * 2019-12-23 2023-04-18 株式会社Lms 近红外线吸收基板及包括其的光学装置
CN114120832B (zh) * 2021-11-23 2023-03-21 武汉华星光电技术有限公司 显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740631B2 (ja) * 2005-04-18 2011-08-03 日本カーリット株式会社 ジイモニウム塩化合物並びにこれを利用する近赤外線吸収色素および近赤外線遮断フィルター
JP2013029708A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 近赤外線カットフィルターおよび近赤外線カットフィルターの製造方法
KR20140088559A (ko) * 2011-10-14 2014-07-10 제이에스알 가부시끼가이샤 광학 필터 및 이 광학 필터를 이용한 고체 촬상 장치 및 카메라 모듈
JP2015040895A (ja) * 2013-08-20 2015-03-02 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
WO2016158461A1 (ja) * 2015-03-27 2016-10-06 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034668B2 (ja) 1991-11-02 2000-04-17 有限会社光伸光学 干渉フィルター
US6602447B2 (en) * 2001-08-21 2003-08-05 Milliken & Company Low-color ultraviolet absorbers for high UV wavelength protection applications
KR20090051250A (ko) 2006-08-31 2009-05-21 니폰 쇼쿠바이 컴파니 리미티드 근적외선 흡수성 조성물용 및 근적외선 흡수성 감압 접착제조성물용 염
CN103597379B (zh) * 2011-05-25 2016-10-05 3M创新有限公司 光控膜
JP6036689B2 (ja) * 2011-06-06 2016-11-30 旭硝子株式会社 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置
US9057835B2 (en) * 2011-06-06 2015-06-16 Ppg Industries Ohio, Inc. Coating compositions that transmit infrared radiation and exhibit color stability and related coating systems
US9500790B2 (en) * 2012-02-22 2016-11-22 Konica Minolta, Inc. Optical film, circularly polarizing plate, and image display device
US8649081B1 (en) * 2012-09-14 2014-02-11 Transitions Optical, Inc. Photochromic article having two at least partially crossed photochromic-dichroic layers
KR101377201B1 (ko) * 2013-03-25 2014-03-25 주식회사 엘지화학 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
KR101554778B1 (ko) * 2013-08-14 2015-09-21 주식회사 엘지화학 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
KR101874722B1 (ko) * 2013-09-10 2018-07-04 미쯔이가가꾸가부시끼가이샤 광학 재료 및 그 용도
KR101661088B1 (ko) * 2013-10-17 2016-09-28 제이에스알 가부시끼가이샤 광학 필터, 고체 촬상 장치 및 카메라 모듈
KR101611807B1 (ko) * 2013-12-26 2016-04-11 아사히 가라스 가부시키가이샤 광학 필터
KR101780913B1 (ko) * 2015-02-18 2017-09-21 아사히 가라스 가부시키가이샤 광학 필터 및 촬상 장치
US10315994B2 (en) * 2015-11-27 2019-06-11 Commomwealth Scientific And Industrial Research Organization Photostable compounds, absorbing compounds and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740631B2 (ja) * 2005-04-18 2011-08-03 日本カーリット株式会社 ジイモニウム塩化合物並びにこれを利用する近赤外線吸収色素および近赤外線遮断フィルター
JP2013029708A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 近赤外線カットフィルターおよび近赤外線カットフィルターの製造方法
KR20140088559A (ko) * 2011-10-14 2014-07-10 제이에스알 가부시끼가이샤 광학 필터 및 이 광학 필터를 이용한 고체 촬상 장치 및 카메라 모듈
JP2015040895A (ja) * 2013-08-20 2015-03-02 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置
WO2016158461A1 (ja) * 2015-03-27 2016-10-06 Jsr株式会社 光学フィルターおよび光学フィルターを用いた装置

Also Published As

Publication number Publication date
CN110462462B (zh) 2021-07-30
US10908081B2 (en) 2021-02-02
US20200072741A1 (en) 2020-03-05
KR101907970B1 (ko) 2018-10-16
CN110462462A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2017146413A2 (ko) 광학물품 및 이를 포함하는 광학필터
WO2015122595A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
WO2012169778A2 (en) Imaging lens and camera module
KR101903884B1 (ko) 근적외선 차단 필터 및 근적외선 차단 필터를 포함하는 장치
WO2013024979A2 (en) Imaging lens
WO2019066398A2 (ko) 광학 물품 및 이를 포함하는 광학 필터
WO2015034217A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
WO2018080100A1 (ko) 렌즈 광학계
WO2018190560A1 (ko) 광학물품 및 이를 포함하는 광학필터
WO2013048089A1 (en) Imaging lens
WO2022124850A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
KR101904500B1 (ko) 광학물품 및 이를 포함하는 광학필터
TW202113424A (zh) 光學構件及相機模組
JP2019066742A (ja) 光学フィルタ及び撮像装置
WO2015034211A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
KR20180062380A (ko) 광학 필터, 카메라 모듈 및 전자 장치
WO2016148518A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
WO2018080103A1 (ko) 렌즈 광학계
US11686892B2 (en) Combination structures and optical filters and image sensors and camera modules and electronic devices
US20230170364A1 (en) Combination structures and optical filters and image sensors and camera modules and electronic devices
WO2018124756A1 (ko) 카메라 모듈에 포함되는 근적외선 컷-오프 필터용 광학물품 및 이를 포함하는 카메라 모듈용 근적외선 컷-오프 필터
WO2019069688A1 (ja) 光学フィルタ及び撮像装置
WO2017200306A1 (ko) 광각 렌즈계 및 이를 포함한 차량용 카메라
US20210072439A1 (en) Combination structures and optical filters and image sensors and camera modules and electronic devices
WO2018043955A1 (ko) 카메라 모듈에 포함되는 근적외선 컷-오프 필터용 광학물품 및 이를 포함하는 카메라 모듈용 근적외선 컷-오프 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784959

Country of ref document: EP

Kind code of ref document: A1